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Abstract

This thesis presents experiments investigating the phase diagram of ultracold atomic
Fermi gases using radio-frequency spectroscopy. The tunability of many experimen-
tal parameters including the temperature, the interparticle interaction strength and
the relative population of different Fermions allows to access very different physical
regimes. Radio-frequency spectroscopy has been developed into an ideal tool to probe
correlations between particles in these different phases.

In particular, radio-frequency spectroscopy of highly population imbalanced atomic
Fermi systems gives access to the impurity problem: A single Fermion, or Boson, im-
mersed in a sea of Fermions constitutes a polaron, which can be described by Landau’s
Fermi liquid theory. A critical interaction strength can be identified separating the
regime of a fermionic polaron and a bosonic polaron. Radio-frequency spectroscopy
of the polarized superfluid phase allows an accurate measure of the superfluid gap A
and allows to identify the importance of Hartree Mean-field energies. Furthermore,
it is shown how these different physical regimes are connected.
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Chapter 1
Introduction

All particles in nature are Fermions. Fermions have half-integer spin and according
to the spin-statistics theorem [1, 2] the wavefunction of indistinguishable Fermions is
antisymmetric with respect to exchange of two particles. The Pauli exclusion principle
[3] is a direct result, which states that two identical Fermions can not occupy the same
quantum state. Therefore, the ground state of Fermions consists of particles “stacked
up” in momentum space to the Fermi momentum. We will call this ground state a
Fermi sea in the following. For all temperatures, the distribution of Fermions over
energy states is described by Fermi-Dirac statistics.

Bosons are either exchange particles mediating interactions between Fermions or
composite particles comprised of an even number of Fermions and have integer spin.
Bosons obey Bose-Einstein statistics and can all occupy the same quantum state.
Below a critical temperature, Bosons occupy the ground state of the system in large
numbers, forming a Bose-Einstein Condensate (BEC) [4].

Fermions and Bosons thus exhibit a very different behavior at low temperatures.
This immediately raises the question what makes a “composite particle”? To compose
a particle, interactions between Fermions are required. Physically, it is clear that the
energy scale characterizing the interactions must be compared to the kinetic energy
of the Fermi sea. If there is a bound state between two Fermions whose binding
energy is much larger than the kinetic energy, we arrive at the simplest case of stable
composite Bosons which can subsequently form a BEC. For bound state energies
comparable to or lower than the Fermi energy, one expects no such stable composite
particles as surrounding Fermions can trade places with one of the constituents of
the pair. This is a highly correlated state of interacting Fermions. The limit of weak
attractive interactions compared to the Fermi energy is again well understood and
is characterized by the formation of Cooper pairs of Fermions [5]. The ground state
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is a BCS superfluid, named after the authors of the seminal paper [6] providing a
theoretical framework for the understanding of conventional superconductors.

For arbitrary interaction strength, temperature and particle numbers of a two-
component Fermion system, the phase diagram is still poorly understood on a quan-
titative and even qualitative level. Here, experimental data is of crucial importance
to gain a deeper insight into interacting Fermi systems. Since the experimental re-
alization of Bose-Einstein Condensation in 1995 [7, 8] and degenerate Fermi gases in
1998 [9] the field of ultracold atoms has been developed into a powerful toy model
for many-body theories. Experiments with ultracold atoms offer the unique possibil-
ity to control almost any parameter of the system at will, including the interaction
strength, temperature, density imbalance, dimensionality, disorder, lattice parameters
and more. In particular, controlling the interaction strength between Fermions allows
the experimenter to access the BEC regime of strongly bound diatomic molecules as
well as the regime of BCS pairing. The crossover region connecting these two regimes
is called the BEC-BCS crossover.

In this thesis, we will summarize experiments with ultracold atomic Fermi gases
performed at MIT in the past few years. In particular, the emphasis will be on
quantitative studies of the BEC-BCS crossover using radiofrequency spectroscopy. In
the remainder of this chapter we will give a brief overview of the experimental efforts
in BEC1 at MIT over the past five years. This overview will be followed by a few
basics, concepts and tools relevant to experiments with ultracold atomic Fermi gases.
Chapter 2 deals with the theoretical and experimental investigation of the phase
diagram of interacting Fermions. In chapter 3 and 4 we present a quantitative study
of two limits of particular interest: The highly imbalanced normal phase allowing
access to Fermi liquid properties of the system in its normal state and the moderately
imbalanced superfluid region allowing access to the superfluid gap and the Hartree
energy. In chapter 5 an ongoing effort will be presented on the extraction of the
equation of state of a unitary Fermi gas.

1.1 A Brief History of Time from 2005 to 2010:
Ultracold Fermions in BEC1

The field of ultracold atomic Fermi gases has matured considerably over the past
five years. When I joined the BEC1 lab in 2005, condensates of bosonic Feshbach

molecules comprised of two fermionic atoms had been created [10, 11] a little over a
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Figure 1-1: The presence of vortex lattices is evidence for superfluidity throughout
the BEC-BCS crossover.

vear earlier. However, in the unitary limit, where there is no two-body bound state
and pairing is a many-body affair, evidence for superfluidity of ultracold fermionic
atoms remained elusive. There were several observations consistent with superfluidity
(12, 13, 14] but conclusive evidence was only provided by the observation of vortex
lattices, see figure 1-1, in our lab in the spring of 2005 [15].

Figure 1-2: The presence of vortex lattices is evidence for superfluidity in imbalanced
Fermi mixtures. Superfluidity is stable against number imbalance up to a critical
value of 70(5)%. For higher number imbalance, the Fermi mixture is in the normal
phase.

Using the presence of vortex lattices as a marker for superfluidity, see figure 1-2, it
was possible for the first time to test for superfluidity with unequal numbers of |1)and
|{) Fermions [16], thus opening a door to the new and exciting field of imbalanced
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Fermi gases. Exploring the phase diagram of imbalanced Fermi mixtures as a function
of interaction strength, density imbalance and temperature was the major task we
had set out to accomplish and this would keep us busy for the next five years, still
with many questions left to answer today.
Up to this point, much of the information obtained from ultracold atomic Fermi
gases relied on two experimental techniques: 1.) The rapid field ramp technique [12],
“projecting” Fermion pairs onto molecules and 2.) the density distributions were
obtained after time-of-flight, meaning the atoms were released from the trapping
potential before imaging.

Employing these techniques was necessary to observe resonance superfluidity but
it was not entirely clear how they would affect the physics quantitatively and quali-
tatively.

Figure 1-3: Direct observation of superfluidity in the unitary limit. Shown are radially
averaged density profiles for the majority component (blue) and minority component
(red). The bimodal feature in the minority density profile clearly shows the onset of
the formation of a superfluid core.

We subsequently circumvented the “projection method” by preparing a number
imbalanced Fermi gas which enabled us to directly observe the superfluid phase tran-
sition [17]: If the core of the atomic sample is in the superfluid phase at equal density,
it is surrounded by unpaired Fermions at unequal density. Therefore, the number im-
balanced Fermi gas shows a bimodal density distribution, see figure 1-3, similar to a
BEC surrounded by a thermal cloud.

Beginning around 2006/2007 we have started concentrating our efforts on quanti-
tative studies of the BEC-BCS crossover using in-situ density distributions and ra-
diofrequency spectroscopy.

Employing phase-contrast imaging allowed us to overcome the “problem” of the
high optical density of the trapped atoms and gave us immediate access to the density

difference between the two spin states. This way, we were able to demonstrate in-situ
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Figure 1-4: Phase separation in a strongly interacting Fermi gas. As the trap depth
of the potential, and therefore the temperature, is lowered, excess majority atoms
are expelled out of the center of the Fermi mixture. The superfluid core of the
sample is characterized by equal densities of majority and minority components. It
is surrounded by a density imbalanced Fermi gas in the normal phase.

the phase separation of a number imbalanced Fermi mixture into a superfluid core
surrounded by a polarized normal gas [18], see figure 1-4.

This, however, gave us access only to the density difference and not the individual
density of each spin state. With the upgrade to a new camera, which allowed us
to take two consecutive images separated by only a few tens of us, we were able to
image not only the density difference ny — n; but a different linear combination of
the densities any — bny with a second phase contrast image!. We were thus able to
determine both the majority and the minority density, see figure 1-5. Using the local
density approximation and three-dimensional density reconstruction, we were able to
map out the phase diagram of the unitary Fermi gas [19] and the zero temperature
phase diagram of imbalanced Fermi gases for various interaction strengths in the
BEC-BCS crossover. The results will be presented in parts in chapter 2.

At the same time we performed experiments on radiofrequency spectroscopy in
BEC1. Our first publication on radiofrequency spectroscopy of highly imbalanced
Fermi gases in the normal state in 2007 raised the question of the nature of this
normal state: We have observed a spectral gap in the normal phase even at the low-
est temperatures achievable in the experiment. Initially, we have interpreted this as

n our previous setup this had not been possible due to the heating of the cloud as a result of the
first phase contrast image. The typical detuning of 40MHz is not sufficient to suppress absorption
of the first imaging pulse. With a sufficiently short delay time between the images, the cloud can
be imaged before heating distorts the density profiles.
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Figure 1-5: In-situ three-dimensional density profiles in the unitary limit at low tem-
perature T'/Tp ~ 0.03. The plot on the left shows the radially averaged column
density profiles of majority (red) and minority (blue). Also shown are the column
density difference profile (solid black) and the non-interacting density profile (dashed
black) fit to the wings of the majority density distribution in order to determine
the temperature. The center plot shows the three-dimensional density distributions
of majority and minority. The plot on the right shows the local density imbalance
o = (ny —ny)/(ny + ny). R, denotes the radius of the superfluid core.

evidence for paired Fermions which remain in the normal state even at zero temper-
ature [20]. It became clear after experiments performed a year later that, in fact, the
spectral gap is a signature of the normal Fermi liquid. This topic will be the subject
of chapter 3.

Up to this point, experiments on radiofrequency spectroscopy in Li had been
plagued by several complications described below in chapter 1.5.1 and in the PhD
thesis of my long-time colleague Christian Schunck [21]. In the following years we
overcame these problems and developed radiofrequency spectroscopy into a power-
ful tool for quantitative studies. The first step was the introduction of tomographic
radiofrequency spectroscopy [22]: Taking an image immediately after the radiofre-
quency population transfer and reconstructing the three-dimensional density allowed
us to overcome the problem of trap-averaged radiofrequency spectra and to probe
the local excitation spectrum. The next improvement was the introduction of a new
strongly interacting Fermi mixture, comprised of hyperfine states |1) and |3) of ®Li, see
figure 1-10. This overcame the problem of strong final state interactions and further-
more allowed taking spectra of both spin states. This paved the road for quantitative
studies using radiofrequency spectroscopy and therefore the most recent results pre-
sented in chapters 3 and 4.

Before proceeding to the presentation of our experimental results, a few concepts and
their underlying physics will be discussed in the next few sections.
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1.2 Feshbach Resonances

Feshbach resonances are now a standard tool in in the field of ultracold atomic physics
as they are the mechanism allowing to tune the interaction strength between atoms
in different states. For an extensive treatment please refer to [23]. The principle
of a Feshbach resonance in the case of °Li is shown in figure 1-6: Two free neutral
atoms in the triplet configuration at a relative kinetic energy of £ ~ 0 interacting
through the van der Waals potential are coupled to a quasibound state. The singlet
and triplet states of the interatomic potential are coupled by the hyperfine interaction
Vir = app(s - i1 + sg - i2). Since singlet and triplet state have different magnetic
moments the energy of the incoming colliding atoms can be tuned with respect to a
bound state in the singlet potential. A scattering resonance occurs when the energy
of the incoming atoms is resonant with that of the bound state.

T 0
Interatomic Distance Detuning & %

Figure 1-6: a) A Feshbach resonance occurs when the energy of two free atoms is
coupled to and resonant with a bound state in the interatomic potential. b) The
resulting energy level structure for two particles in a box

The s-wave scattering length, completely characterizing the interactions between
atoms at low enough temperatures (1" < 1lmK), can be shown to diverge and change

its sign around a Feshbach resonance. Below the Feshbach resonance, where the
ﬁ2

maZ2’

interatomic potential supports a bound state? of energy Ej, = the excited states
in figure 1-6b) consist of free atoms interacting repulsively, corresponding to a positive

scattering length a > 0. The metastable ground state consists of molecular dimers

2The experimentally relevant bound state in the singlet potential is the vibrational state with
quantum number n = 38.

16



whose residual interaction depends on four-body physics and can be calculated exactly
and is given by agq ~ 1.18a. Above the Feshbach resonance the interatomic potential
does not support a bound state and colliding atoms simply acquire a phase shift
in the scattering event given by the usual result § = arctan(—ka) corresponding to
attractive interactions between the atoms.

It is important to note that the bound state in the interatomic potential is only
populated when the magnetic field is adiabatically ramped from above the Feshbach
resonance to below the Feshbach resonance if three-body interactions are suppressed.
This is the case if the Franck-Condon factor, quantifying the wavefunction overlap
between the incoming free atoms and the bound molecular state, is small enough for
the time scale of three-body relaxation to be longer than other relevant time scales
of the experiment, like the inverse Fermi energy h/er. Therefore, a sample prepared
below the Feshbach resonance represents a repulsive Fermi gas. This has important
implications for the experiments presented in this thesis and has been used recently
in search for ferromagnetic states in ultracold Fermi gases [24].

It is insightful to compare the above model of a Feshbach resonance to the more
familiar case of a discrete state coupled to a continuum, e.g. an atom in an excited
electronic state. A simple model has been presented in [25] based on a discrete state
coupled to an unbounded continuum (—o0o0 < FE.n < 00) of scattering states. Let
us now remove the unphysical restriction of the absence of a lower bound for the
free wave states. The resulting energy level structure corresponds the above single-
channel model for a Feshbach resonance once the bound state energy Ey, crosses the
lower bound Ey;, = 0 to negative energies.

Before proceeding to the mean-field treatment of a many-body system, whose
interactions can be tuned through the strongly interacting regime, let us review a
simple toy model capturing many qualitative features of the many-body treatment
[26]: A particle interacting with a J-potential characterized by the scattering length
a, into which Pauli blocking effects are incorporated by confining it to a spherical box
of the size of the interparticle spacing, see figure 1-7.

One of the important features that can be reproduced is the existence of an ex-
citation gap between the ground state and the excited states above the Feshbach
resonance, where pairing is a many-body effect. This model also demonstrates that
there is a smooth crossover between the different physical regimes in spite of the
diverging scattering length around the Feshbach resonance.

17
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Figure 1-7: a) Toy model of a Fermi mixture with tunable interactions 1/kra: The
interaction strength is characterized by the pseudo-potential V' (r) = 4mwh*a/md,e; and
Pauli blocking is mimicked by choosing a box of the size of the interparticle spacing
R. b) Many qualitative features of the many-body treatment can be reproduced.
Taken from [26]

1.3 BEC-BCS Crossover: A Mean-Field Descrip-
tion

The tunability of the interaction strength by simply changing the external magnetic
field gives ultracold atomic physics a unique advantage over condensed matter ex-
periments. Let us consider a many-body system comprised of two fermionic species,
I1) and ||). Without interactions, the momentum distributions are simply given by
O(k = kr), with the Fermi momentum kp.

For small positive interactions, corresponding to a < 0, there is no bound state in
the interatomic potential but the presence of the Fermi sea results in Cooper pairing
[5], a many-body bound state. It was shown that the ground state of this system is
not a Fermi Liquid, see chapter 3, but a Superfluid described by the famous BCS-
wavefunction, named after the authors of their seminal paper [6], Bardeen, Cooper
and Schrieffer. A simple picture for the effect of the presence of the Fermi seas is a
restriction of phase space available for particles above the Fermi surface to scatter
into. The Fermi sea makes this essentially a two-dimensional system?, in which a
bound state exists for arbitrarily small interactions.

For a deeply bound molecular state with small residual repulsive interactions,
corresponding to a > 0, the system is comprised of composite bosons. The ground
state is a Bose-Einstein condensate (BEC) of dimers and can be described by the

3The naive picture does not hold for N-dimensional space. The figure of merit is a constant
density of states and not the restriction of the phase space to N — 1 dimensions.
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BEC mean-field description.

A mean-field description of the entire BEC-BCS crossover regime, including the
strongly interacting regime |a| — oo, based on [27, 28] can be found in [23]. Here we
will review a few of the results. The generalized BCS-wavefunction takes the same
form as in the limit a — 0~:

[¥BCs) = H(uk + vkcLTcLNO) (1.1)
K

where the u, v, are variational parameters obeying the normalization condition

|uk|? + |vk|* = 1 and the c] are the creation operators for a particle in spin state o.

Figure 1-8: Chemical potential u (black dashed) and the superfluid gap A (red) as
a function of interaction strength in the BEC-BCS crossover regime in a mean-field
description based on the seminal work of Nozieres Schmitt-Rink [28].

We use the Hamiltonian

= Yad N gl
H = ety Bt v Ol 91C_1e4 9 O+ 16k +91
k,o kk',q

Vo
— Z EkCLaCka- 4+ v Z cLTcT_k\Lcerc_ka (1.2)
k,o kk’

where 14 is a measure of the interaction strength between the particles, V is the
volume of the system. The second row represents the standard BCS approximation

in which only terms of q = 0 are retained in the interaction, thereby neglecting finite
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momentum Cooper pairs*
The energy can be minimized under variation of £ — pu/N with respect to wuy, vg.

The results are:

1 &k
2 = |14+ 1.3
@ = 31+ (1)
1 &k
2
= —-|1—-= 1.4
2 - ;(1-%) (1.49)
(1.5)
1kga =1 1/kea = 0,563 1/kea =0 1/kea = -1 1/ka = -2
31u=-08E: 1 1u=095E,
A=133E¢ A=021E¢
w
hy N
0 v \ . . " - "
0 1 20 1 20 1 20 1 2
K/ ke K/ ke k/ ke K/ ke

Figure 1-9: Quasiparticle excitation spectrum Ej = /£ + A? for various interac-
tion strengths in a mean-field description. A qualitative change can be observed at
1/kpa = 0.553.

Physically, v? represents the momentum distribution of particles and uZ represents
the distribution of holes. Here we have defined the kinetic energy & = €, — p with
respect to the chemical potential p and the quasiparticle excitation energy Ey =
\/W, A being the superfluid gap. The above equations are identical to the usual
BCS result, the difference for atomic gases with arbitrary interactions strength being
that the chemical potential and the superfluid gap have to be solved self-consistently
as a function of interaction strength 1/kpa:

1 k1
% = | oy -
d*k

The results for ; and A are plotted in figure 1-8.

4This is a severe approximation with important results. See discussion below and in chpater 4.1.
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The resulting quasiparticle excitation spectrum is shown in figure 1-9

Although the above picture provides valuable qualitative insight, the results have
been shown to be quantitatively inaccurate: a) In the deep BEC limit the residual
interaction between molecules, characterized by the dimer-dimer scattering length
can be shown to be agq = 2a, differing from the exact result [29] agq ~ 0.6a. b) Even
in the BCS limit, the mean-field result overestimates of the superfluid gap by a factor
of ~ 2.2 - see discussion in 4.1. The reason for both of the above discrepancies is
the reduction of the Hamiltonian 1.2 by setting ¢ = 0. The same inaccuracy can be
observed in the unitary limit: ¢) The chemical potential in the unitary limit in the
mean-field treatment is p ~ 0.59¢p, while it has been shown theoretically to range
between 0.32¢r and 0.45¢r [30, 31, 32, 33, 34, 35, 36, 37| and experimentally to range
between 0.32¢x and 0.51er [38, 39, 14, 40]. c¢) The superfluid gap is A =~ 0.69p
in the above mean-field theory and has been theoretically predicted to be on the
order of 0.45er — 0.54er [41, 42]. An experimental determination of the gap using
momentum-resolved radiofrequency spectroscopy has found A ~ 0.8¢r close to the
critical temperature [43]. In chapter 4 we will use radiofrequency spectroscopy of
Fermi systems characterized by a small density imbalance between |1) and |]) to
determine the superfluid gap to be A ~ 0.44¢r [44]. d) Another point of quantitative
interest is the critical interaction at which the character of the system changes from
fermionic to bosonic. This should be related to the position of the minimum in the
quasiparticle dispersion, figure 1-9. For interactions stronger than 1/kra = 0.553,
the lowest single-particle excitation energy is at finite momentum & > 0 and costs an
energy A, whereas for weaker interactions the lowest excitation energy is at k = 0 at
an energy of \/m . The interaction strength at which this transition happens is
the one at which the chemical potential y is zero, see definition for Ej. The critical
interaction strength determining the change of character from fermionic to bosonic
will be discussed in more detail in chapter 3.

We will discuss the approximations made in the above treatment and its short-
comings in chapter 4, in which we present a determination of the superfluid gap in
the unitary regime using radiofrequency spectroscopy.

1.4 Experiment

The experimental setup and production of a strongly interacting degenerate gas of
®Li has been described in detail in [45, 23]. Here, we will only briefly review the

procedure: An atomic beam is created in an oven containing ?*Na, a Boson, and °Li,
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a Fermion. After a Zeeman slowing stage, ~ 10'° 23Na atoms and ~ 10° ®Li atoms
are loaded into a dual species Magneto-Optical Trap (MOT) for a typically one sec-
ond. After optically pumping ?®Na and SLi into their respective stretched states in
order to avoid spin exchange collisions and for their magnetic trapping properties,
the atoms are loaded into a magnetic trap of the Ioffe-Pritchard type. Both 2Na and
®Li are subsequently evaporated within 20s using microwave /radiofrequency radia-
tion. At this point the SLi atoms are typically in the quantum degenerate regime at
a temperature of 7' ~ 0.37F with typically a few 107 Li atoms and no ?*Na atoms
left. The ®Liatoms are subsequently loaded into an optical dipole trap (ODT) with a
waist size of ~ 70um and an power of a few Watts, resulting in a typical trap depth
of a few ten uK. Next the magnetic field is ramped up to around 690G within 2s,
where there is a Feshbach resonance between the hyperfine states |1) and |3)°. Here a
spin mixture of the states |1) and |3) of variable number imbalance is created using a
Landau-Zener sweep. For the experiments on radiofrequency spectroscopy presented
in this thesis, the |1)-|3) mixture is preferred over the |1)-|2) mixture because the final
state interactions are weak and can easily be accounted for [46]. Next the power of
the ODT is ramped down for evaporative cooling in 4s to a typical trap depth of a few
pK. For the experiments presented in this thesis the typical atom number for highly
imbalanced samples is 5 - 10° at a temperature of T ~ 0.15TF and for the balanced

or moderately imbalanced samples 1 - 107 at a temperature of 7' ~ 0.05T 5.

1.5 Radiofrequency Spectroscopy: An Overview

1.5.1 A Little Bit of History

Radiofrequency spectroscopy has been experimentally realized on trapped cold neu-
tral atoms for the first time a little over 20 years ago [47], from which the authors were
able to deduce the temperature. Subsequently, forced evaporative cooling of neutral
atoms using radiofrequency has been suggested [48, 49]. This was a crucial step to in
order to increase phase space density [50, 51] and eventually made the realization of
Bose-Einstein condensation possible [7, 8]. Radiofrequency induced transitions have
also been used as an output coupler in order to create the first atom Laser [52] and
to create spinor condensates [53, 54].

In the years following, radiofrequency spectroscopy has developed into a powerful

SWe have realized strongly interacting superfluid Fermi gases in other combinations of hyperfine
states [46]: There is the much employed Feshbach resonance between states |1) and |2) at 834G, and
also the |2)-|3) Feshbach resonance at 810G
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" tool to study single-particle excitations in degenerate quantum gases. The first density
dependent radiofrequency spectrum has been observed in Bose-Einstein condensates
[55, 56], a clear signature of a mean-field shift due to interactions between the atoms.

With the advent of mixtures of degenerate Fermi gases [57, 58, 59, 60, 61, 62]
radiofrequency spectroscopy has been used to study a variety of aspects of this new
system: In the first radiofrequency spectroscopy experiments performed at JILA [63]
and at MIT [64] the scattering length around a Feshbach resonance has been deter-
mined by an observation of the mean-field shift and was shown to switch sign around
the Feshbach resonance. The authors of [64] also found an absence of the mean-field
shift in a two-level system, in spite of the strong interactions between the atoms in-
duced by a Feshbach resonance. This can be shown to be a direct consequence of the
asymmetry of the fermionic wavefunction [65]. In the same year, the JILA group has
verified the creation of molecules consisting of two Fermions below the Feshbach res-
onance [10] using radiofrequency dissociation spectra. The binding energy was shown
to closely follow Ey, = mh—; In 2004, the Innsbruck group [13] observed bimodal ra-
diofrequency spectra throughout the entire BEC-BCS crossover, see chapter 1.3: At
low enough temperatures a second peak appeared in the radiofrequency spectra. This
was interpreted as evidence for pairing and superfluidity throughout the BEC-BCS
crossover. Three years later, after the experimental realization of number imbalanced
mixtures of Fermi gases [16, 40], it was found that the minority component in a highly
imbalanced normal mixture also shows a gap in the excitation spectrum [20]. This
spectral gap was initially interpreted as a signature of pairing of Fermions in the
imbalanced ground state.

At this time, a few shortcomings of standard radiofrequency spectroscopy became
obvious. Up to this point spectra were obtained by radiofrequency transfer to a
third state and subsequent time-of-flight for an accurate measure of the transferred
atom number. Quantitative, and even qualitative, interpretation of the spectra was
difficult due a variety of factors (for a detailed discussion see [21]), which have all

been overcome by our group in the past few years:

1. Problem: Inhomogeneous trapping potential. Since many-body effects depend
on the density, the spatially varying density yields a spatially varying gap A,
mean-field shift, interaction strength 1/kra and normalized temperature T/TF.
Even separate phases can exist within the trap [18].

Solution: We have performed spatially resolved radiofrequency spectroscopy

[22]. Immediately after the radiofrequency pulse an absorption image of the
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final state is taken, projecting the three-dimensional density distribution onto
a two-dimensional image. The three-dimensional density distribution can be
obtained using the Inverse Abel Transform®[66]. The resulting spectra represent

the response of a homogeneous system in the local density approximation.

2. Problem: Strong final state interactions alter radiofrequency spectra qualita-
tively and quantitatively. If the atoms in the final state are non-interacting, or
at least weakly interacting, the spectrum shows the typical dissociative shape

\/w—wt")

Iw , see 1.5.2. If the final state is also strongly interacting, the line

shape is altered. Furthermore, bound-bound transitions [46, 67] appear.

Solution: We have a created a degenerate Fermion mixture using the hyperfine
states |1) and |3). State |2) is only weakly interacting with both states |1) and
13). The local spectra can be used to determine the pair size of Fermion pairs
in the unitary regime [46, 21].

3. Problem: Hartree energy: Mean-field shifts usually neglected in interpretations
can shift radiofrequency spectra. These are difficult to predict theoretically in
the strongly interacting regime.

Solution: Hartree terms can be identified and quantified in radiofrequency
spectra of imbalanced mixtures. This is discussed in chapter 4.

4. Problem: Absence of majority spectra: The qualitative and quantitative inter-

pretation of the minority spectra requires comparison to the majority spectra.

Solution: The use of |1)-|3) mixtures has the additional advantage of allowing
us to perform spectroscopy on both majority and minority components of the
mixture using state |2) as the final state. In previous experiments, obtaining
radiofrequency spectra from both states |1) and |3) would have required a two-
photon transition from state |1) to state |3).

Recently, momentum resolved radiofrequency spectroscopy has been performed
at JILA [43] allowing to extract information about the spectral function of strongly
interacting Fermions, see also 3.3.2.

6 1 gg(v :2)
The inverse Abel transform is given by f(z,z2) = f y—\/”_—z, where nop(y, 2) is the

column density measured in a typical experiment
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1.5.2 A Little Bit of Theory

Radiofrequency is broadly defined as electromagnetic radiation in the frequency range
from 300Hz to 3GHz. Since the ®Li |1)-|3) Feshbach resonance is located at a mag-
netic field of 690G and the hyperfine constant for 5Liis agr ~ 152MHz, typical transi-
tion frequencies in our experiments are around 80MHz, corresponding to a wavelength
of 3 —4m. As a consequence the momentum of the radiofrequency photon is negligi-
ble compared to the recoil of the atom. Another consequence is that radiofrequency

transitions are typically magnetic dipole transitions - they act as a spin-flip operator®.
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Figure 1-10: Energy level structure of ®Lias a function of magnetic field. The relatively
small hyperfine constant agr ~ 152MHz results in a small splitting between the
ground states with F' = 3/2 and F' = 1/2 of 3/2agr ~ 228MHz and in entering
the Paschen-Back region at relatively low field (state |2) has a maximum at ~ 27G).
However, the admixture of the upper hyperfine levels is still large enough to ensure
efficient radiofrequency transfer, see text.

Looking at the energy level structure in figure 1-10 of °Li, one might be tempted
to assume that the magnetic field around 690G would bring °Lideep into the Paschen-
Back regime and that the radiofrequency radiation flips the nuclear spin. However,

"Wikipedia entry: http://en.wikipedia.org/wiki/Radio_spectrum
8There are, however, electric dipole transitions in the radiofrequency range, e.g. The 25, /2 to
2p /2 transition at a frequency of 1000MHz in hydrogen.
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using perturbation theory it can be shown that the hyperfine interaction V = agpS-I
results in an admixture to the wavefunction® of the upper manifold m, = 1 /2 into
the lower manifold m, = —1/2, containing the experimentally relevant states |1) and
|2), on the order of ten percent. Since the magnetic moment of the nucleus is a few
thousand times smaller than that of the electron, the transitions are mostly due to
electronic spin-flip. This raises the question whether, for the same radiofrequency
power, a |1)-|2) transition will have a matrix-element similar to the |3)-|2) transition.
Using the Breit-Rabi formula [68] it can be shown that the matrix elements, and hence
Rabi frequencies Qg = 1 - B/A, are equal to within a few percent (Q' 72 /Qi=12 ~
0.94). Using fully spin-polarized atomic samples we were able to confirm the close
agreement of the Rabi frequencies experimentally by directly measuring the Rabi
frequency of spin transfer. This point is of importance for both experiments presented
in chapters 3 and 4.

1.5.3 Radiofrequency Spectroscopy on the Microscopic Level

After establishing the nature of radiofrequency spectroscopy as a spin-flip operator,

one can immediately define the corresponding interaction operator:

Vi = 27hQ2 Z (ck3ckT+cchk3)
- 27hQ% Z Che3Cict (1.9)
Kk
where (g is the Rabi frequency, c{d is the creation operator for a free particle in

the final state and ci+ the annihilation operator for a single particle in the initial state.

The second line holds if the final state is empty, which is the case in a typical exper-

°In first order perturbation theory, the admixture to state |1) (good quantum numbers: m, =
—1/2,m; = +1) is given by

(kO[S . 1|n®)
[ny = aHFZ - - [£©)
& B9 B9
(27271>OIS+I |2a 1 171>

11
= =201
aH 2I~lBB |272a 70>

(1.8)

where we have used S -I = S,I, — S.I_ — S_I, and only kept the relevant states in the second
equality. Therefore, the admixture is %‘gﬂ ~ (.1
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iment!?. From equation 1.9 it can be seen that the radiofrequency operator probes
the single-particle excitation spectrum: One particle is removed from its environment
and the energy cost, including interaction and kinetic energy, is provided by the ra-
diofrequency photon: fuwrp = Ey + €, — p. Using the generalized BCS-wavefunction
|Bes), see section 1.3, and Fermi’s Golden Rule one can calculate the radiofrequency
spectrum in linear response [23]:

1) = 2 3 4 Vaelwcs) P5(0o — ) (1.10)
f

which can be written as [23]:

w huw

with p the chemical potential of the generalized BCS state and the definition
for the threshold frequency wy, = v/p? + A% — p. The first square-root factor is the
dominant feature of the spectrum and quite generic, with the square-root representing

I(w) x %\/1-%%4-& (1.11)

the three-dimensional density of states and the 1/w? dependence can be understood
in the limit of high energy: It has been shown recently [69] that the momentum
distribution of any system of Fermions interacting through a d-potential behaves as
C/k* for high momenta. C is the called the contact coefficient. In this limit, the
kinetic energy dominates the dispersion relation and w o< k2. The contact coefficient
will be the subject of chapter 3.7.4.

0Transitions from states other than the approximately resonant one, state |3) in the above case,
are usually highly suppressed as a typical linewidth of an experimental radiofrequency transition
is on the order of kilohertz, whereas other hyperfine states are typically detuned by hundreds of
Megahertz.
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Chapter 2

Imbalanced Fermi Systems and the

Phase Diagram

2.1 BEC-BCS Crossover with Density Imbalance:
A Mean-Field Description (and Beyond)

In a mean-field description, the results of chapter 1.3, see also 4.3 are readily gener-
alized, see [70, 71] and references therein. For imbalanced Fermi systems ny # n, 1 the
free energy to be minimized now takes the form (H — un — hAn), where H is the
Hamiltonian defined previously in equation 1.2, u is the systems chemical potential
fixing the total density n = ny 4 ny, h is the species-imbalance chemical potential,
fixing a constant density difference An just as p fixes the total particle density. By
comparison to electrons in a metal subject to a magnetic field it is clear that h plays
the role of an effective Zeeman field and An can be regarded as an effective magnetic
moment. From now on we will refer to h as the Zeeman field. The dimensionless nor-
malized density difference 0 = An/n is typically used as a parameter of the system.
o is usually referred to as the polarization.

It can be shown that the excitation spectrum 1-9 takes the form:

Eik) = \/&+A2—h (2.1)
E(k) = /&€ +A2+h (2.2)

where, as before, {; = e, — . Now the coherence factors vy, u; are modified to:

Erk) —&—h
r=l-f = 2.3
Uy Uk E:+ E, (2.3)
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Figure 2-1: Zero temperature mean-field phase diagram of Fermions in the BEC-BCS
crossover. Plotted is the phase as a function of number imbalance P = ﬁ:;ﬁi and
interaction strength 1/kpa (taken from [71]). The grey area is a phase separated state
between a superfluid of equal densities and a partially polarized normal phase. SFy,
stands for a polarized superfluid. P,; and P,, denote the phase boundaries separating

the different phases.

And the number and gap equations 1.7 are:

L [k 1 f(Ey) - f(B)
Vo o ./ (27  Ey(k) + Ey(k) (24)
B = 2 (;[Tk).’i (uif(Ea) ¥ UEf(—E_U)) (25)

It can be seen that in the limit of equal densities ¢ = 0 the above equations reduce
to the familiar BCS results of chapter 1.3.

2.2 Theoretical Phase Diagrams

With the above equations one can produce the zero-temperature phase diagram in
the BEC-BCS crossover shown in figure 2-1.

This treatment has been generalized to finite temperatures [72].

Just as in the balanced case presented in chapter 1.3, the above mean-field treat-
ment for the imbalanced case exhibits many of the qualitative features of the phase
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Figure 2-2: Zero temperature phase diagram obtained by fixed-node Monte Carlo cal-
culations, including interactions in the normal phase (taken from [73] and modified).

Plotted is the phase as a function of number imbalance P = %5% and interaction

strength 1/krpa. The arrows point to the qualitatively very different regimes, which
will be presented in the following chapters. The nomenclature is as follows: Polarized
superfluid SFp, balanced superfluid SFy, partially polarized normal phase Npp, fully
polarized normal phase Ngp. The different phases are discussed in chapter 2.3.

diagram. But the mean-field treatment fails when put to the test quantitatively. A
discussion of the shortcomings of a mean-field treatment have been provided at the
end of chapter 1.3 and will be discussed in more detail in chapter 4.1. In essence, the
quantitative inaccuracy can be traced back to neglecting interactions in the normal
phase. The authors of [73] perform fixed-node Monte Carlo simulations taking the
interactions in the normal phase into account [74, 75|, see figure 2-2. These normal
state interactions will be the subject of chapter 3, in which we use radiofrequency
spectroscopy to experimentally determine the properties of this Landau Fermi Liquid
of a strongly interacting Fermi system.

As is indicated in figure 2-2, in the following chapters 4 and 5 we will focus on
quantitative studies of the single-particle excitation spectrum using radiofrequency
spectroscopy in two different physical regimes: The highly imbalanced normal phase
and the (almost) balanced superfluid phase. In chapter 6 we will present another
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quantitative study, in which we use the density distribution in a non-homogeneous
potential to determine the equation of state for finite temperature at unitarity.

2.3 Discussion of the Theoretical Phase Diagram

T = 0: The phase diagram in figure 2-2 shows a very rich structure and here we will
discuss the different phases based on [71, 73, 76].

The line P =1 or Ny = 0 is the fully polarized non-interacting Fermi gas (Npp).
Here, the system consists of Fermions filled up to momentum kg, resulting in the

well-known equation of state:

3
Enge = N1 Epy (2.6)
. . h2k2
with the Fermi energy Epy = —5.F.

The limit of a single impurity (P = 17) is the line infinitesimally below P =
1. This polaronic phase, a phase of dressed quasiparticles interacting with a Fermi
sea, already yields rich information about the interacting system. In particular, in
chapter 3 we will show that a dilute gas of such Fermi-polarons (more than a single
impurity) is characterized by a binding energy, an effective mass m* # m and weak
interactions and essentially follows the physics of the single impurity limit. This
allows to extrapolate into the much more complicated partially polarized normal phase
(Npp). We encounter this phase at finite imbalance (concentration z = N, /N; > 0) if
the two-body bound state energy is not too large. In the regime x < 1 the equation
of state can be expanded as [74]:

3 3
ENPP = NTEFT (5 — Ax + 3%15/3 + gF.'L‘Z) (27)

The first term is the energy of the majority Fermi sea, assumed not to be apprecia-
bly perturbed by the presence of a few minority particles. The second term represents
the interaction energy of polarons with the majority particles. It is attractive and
quite significant in the unitary limit: A ~ 0.6er. The third term represents the en-
ergy of a Fermi sea of non-interacting polarons since' (Eg, N,)/(Eps Ny) = Za®/3.
The effective mass renormalization has been shown to be fairly small and on the or-
der of m* = 1.17m in the unitary limit [77, 74, 78]. The fourth term represents the

1Since the effective mass might depend on the density, the third term in the parametrization in
equation 2.7 might have to be modified to depend on z7/3 instead of z%/3.
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(weak) interactions between polarons and has been calculated to be F' = 0.14 using
fixed-node Monte Carlo calculations [74].

Once the density imbalance between majority and minority becomes smaller, the
system enters a phase separated state (SFo+Npp) with a balanced superfluid sepa-
rated from a partially polarized normal phase. The unitary limited balanced super-
fluid state is described by the equation of state:

p=¢Er (2.8)

where £ = 1+ (8 with the Bertsch parameter 8. The value of £ is still subject to
discussion, ranging between 0.32 < £ < 0.49 [30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
14, 40]. In this regime of equal densities, the existence of the superfluid gap expels
all excess particles out of the superfluid as their presence would “cost” an energy A.
It is obvious that the phase diagram depends strongly on the precise energetics of
the normal and the superfluid phase and they will be the subject of the following
chapters.

In the deep BEC regime, it is clear that the imbalanced ground state consists of a
BEC of strongly bound molecules weakly interacting with excess majority atoms (all
minority atoms are bound into molecules). The interactions between fermionic atoms
and the bosonic molecules are characterized by the scattering length a.q ~ 1.18a [79]
and the typical mean-field energy Uyp = %nd. In this regime, the superfluid is
called partially polarized (SFp).

If Uy is increased beyond a critical value, the system will phase separate into a
partially polarized superfluid and a fully polarized normal cloud (SFp+Ngp). In a
homogeneous system the phase separation would be evident. For the experimentally
relevant harmonic trapping potential, this transition would be less obvious as the
majority cloud extends beyond the size of the superfluid. Since the superfluid density
continuously approaches zero and the transition is of first order, it can only be observ-
able through a kink in the trapped three-dimensional majority density distribution
at the interface, a signature very hard to detect experimentally.

For increasing interactions one might enter a small sliver of a phase separated
state between a partially polarized superfluid and a partially polarized normal region
(SFp+Npp). This phase does not exist in a mean-field description and the authors
of [73] concede that this phase might not be realized.

A further increase in the interaction strength results in a phase separated state
between a balanced superfluid and a partially polarized normal gas. The critical
density imbalance o, in the normal phase at the interface between the superfluid

32



and the normal region was calculated [73] and experimentally confirmed [19] to be
o. ~ 0.36.

2.4 Experimental Phase Diagram

As is intuitively obvious and as can be seen from figure 2-2, as 1/kpa is increased
towards the BEC side of the Feshbach resonance, more and more minority particles
pair up with majority particles, thereby increasing the critical polarization o, in the
normal phase. At a certain critical interaction strength, all minority particles will be
bound in generalized molecules, no matter how high the density imbalance - this is
the polarized superfluid regime.

Its experimental signature is immediately accessible through the majority and
minority density profiles, see figure 2-3. The top row shows elliptically averaged
column density profiles and the column density difference. The reconstructed three-
dimensional density profiles of majority and minority are shown in the second row.
As the BEC limit is approached, one can indeed clearly see the region of the par-
tially polarized normal region shrinking until all minority particles are paired into a
Bose-Einstein condensate of molecules, phase separated from a fully polarized normal
region. The density imbalance o = (ny — n;)/(ny +ny) is shown in the third row,
confirming that the critical imbalance indeed approaches unity. This critical imbal-
ance is plotted in figure 2-4 as a function of interaction strength and compared to the
Monte Carlo phase diagram, as well as to the data in the following chapters using a
different method: Radiofrequency spectroscopy.

2.5 Phase Diagram at Finite Temperatures

So far we have limited the discussion to the zero-temperature case. Theoretically,
making a quantitative prediction at finite temperature for a density imbalanced sys-
tem remains a formidable challenge even within the realm of mean-field theory as
one must include the effect of thermally excited molecules and quasiparticle excita-
tions (see also chapter 4), which might be strongly interacting in the unitary regime.
Again, one must resort to Monte Carlo calculations? and experiments [19, 80] to test

the accuracy of theories. In fact, even the balanced two-component Fermi mixture at

2While there have been various Monte Carlo calculations for the imbalanced case at zero temper-
ature and the balanced case at finite temperature, to date the treatment of imbalanced Fermi gases
at finite temperature remains elusive.
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Figure 2-3: Density profiles of imbalanced Fermi mixtures in a harmonic trap. The
top row (a)(e) shows the averaged column-density profiles for various magnetic fields.
Green: Majority, blue: Minority, black: Column density difference. The black dotted
line is a zero-temperature Thomas-Fermi distribution fit to the majority wing (r >
R;). The middle row (f)(j) and the bottom row (k)(o) show the reconstructed three-
dimensional density distributions and the spin polarizations obtained from the profiles
in the top row. The critical polarizations o, at the phase boundary r = R, are
indicated by the right-pointing arrows. The values for R; (in ym), R./R;, and R/ =
R4 were respectively: for (a), (f), (k), 381, 0.33, 0.33; for (b), (g), (1), 380, 0.33, 0.33;
for (c), (h), (m), 362, 0.35, 0.59; for (d), (i), (n), 371, 0.44, 0.72; for (e), (j), (o), 367,
0.41, 0.76. T'/Tro ~ 0.05, and Tro ~ 1.0uK (see the text for definitions).

finite temperatures in the unitary regime is still under current theoretical and exper-
imental investigation. We will present an outlook on our recent experimental efforts
in this regard in chapter 5.

For completeness, we will briefly present our results on the finite temperature

phase diagram in the unitary limit. For more details refer to [19] and Christian
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Figure 2-4: Experimental phase diagram approaching zero temperature. Critical
interaction strength determined by several methods: Solid green triangles: Density
distribution. Solid red circles: Radiofrequency spectroscopy of polarons, chapter 3.
Open blue squares: Radiofrequency spectroscopy of moderately imbalanced Fermi
mixtures based on figure 4-9 in chapter 4. For comparison, the first order phase
transition line from Monte Carlo calculations is added as solid black line, see figure
2-2.

Schunck’s thesis [21].

We have used an analysis of the density profiles of majority and minority com-
ponents and recorded the critical density imbalance in the normal (o) and in the
superfluid (o.) region, this time as a function of the normalized local temperature
T'/Tr. The resulting finite temperature phase diagram is shown in figure 2-5.

The fact that at finite temperature the superfluid supports finite polarizations o
in the form of thermally excited quasiparticles will be used in chapter 4 to determine
the superfluid gap A and the Hartree energy U.

Furthermore, finite temperatures make the superfluid less robust against imbal-
ance, for instance the critical polarization is reduced from o, ~ 0.36 at zero temper-
ature to o, ~ 0.2 at T'/Ty ~ 0.07, see figure 2-5. This might explain the discrepancy

between the Monte Carlo calculations and our data in figure 2-4. For an accurate
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Figure 2-5: Experimental phase diagram at finite temperature in the unitary limit.
The critical polarizations o, (black solid circles and square) and o, (grey solid cir-
cles) are displayed along the local /T at the phase boundary. The yellow area
(os < 0 < 0.) represents a thermodynamically unstable region, leading to the phase
separation, see chapter 2.3. We identify the tricritical point, separating a first order
phase transition (7/Tr < 0.07) from a second order phase transition (7'/TF > 0.07).
The linear fit to the o, values is shown as a guide to the eye for the normal-to-
superfluid phase transition line. Each data point consists of five independent mea-
surements and error bars indicate the standard deviation.

comparison, a theoretical phase diagram is needed for finite temperatures.
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Chapter 3

The Fermi-Polaron

3.1 N+1 = The Impurity Problem

A seemingly simple problem: What is the energy of a single ||) particle (fermion or
boson) interacting with an environment of |1) fermions, composing a Fermi sea, which
we will denote as |F'S)4+? Apart from the universal interest the impurity problem has
as discussed below, we have seen in the previous chapter that the interactions in
the normal state have substantial impact on the phase diagram of imbalanced Fermi
mixtures. This becomes obvious when a quantitative comparison is made between
the mean-field phase diagram, neglecting normal phase interactions, and the Monte
Carlo calculations including these interactions, see figures 2-1 and 2-2.

In general, no real physical system is free of imperfections and impurities. Mod-
eling the ions in a metal as having a perfect crystalline structure and treating the
electrons as free waves in Bloch bands is surprisingly successful in describing many
properties at high temperature. However, at low temperatures, on the order of the
interaction energy between impurity and environment, new phenomena appear. A
famous example is the Kondo effect, where immobile magnetic impurities decrease
the mobility of conduction electrons, therefore giving rise to an enhanced resistance
in metals below the Kondo temperature [81]. Without the presence of an impurity,
the resistance decreases quadratically with the temperature, the usual signature of
Pauli blocking.

A different example for an impurity problem is an electron moving in a crystal
lattice creating a localized polarization, or phonon wavepackets, by displacing the
ions in a crystal from their respective equilibrium positions. The electron dressed by
phonons forms the lattice polaron [82]. The difference to the above examples and the

experimental system presented later in this chapter is that the fermion is interacting
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with a bosonic environment, the lattice phonons.

The phonons, or lattice polarization, created by one electron can, in turn, interact
with another electron giving rise to the small attractive interaction responsible for
Cooper pairing [5] and are therefore an essential ingredient for the formation of the
superfluid phase. This immediately raises the question of the connection between
interacting polarons (the limit of 7 — 0 and ¢ — 1 in 2-5) and the normal state
of a balanced Fermi gas above the superfluid transition temperature Ty (the limit
of 0 — 0and T > T, in 2-5). If superfluidity can be regarded as condensation of
interacting polarons, a good understanding of the normal polaronic phase might prove
essential.

As interacting Fermi systems have been successfully described within the frame-
work of Landau’s Fermi Liquid Theory, we will introduce the basic concepts of quasi-
particles and their properties below, largely based on [83].

3.2 Another Angle on the Impurity Problem

Above, the argument is made that the a single Fermion interacting with a Fermi sea
constitutes a quasiparticle which can be described in terms of Fermi liquid theory.
One can look at this problem from the other end: Consider two Fermions in a box
at almost zero kinetic energy, whose interaction potential is close to supporting a
bound state and that this bound state can be tuned above or below the energy of
the incoming particles. This is a typical realization of a strongly interacting system
around a Feshbach resonance and can be solved exactly [23]. Their energy is shown
figure 3-1a: There exists a bound state in the interatomic potential below the Feshbach
resonance (dashed line), above the Feshbach resonance the particles scatter off each
other and acquire a phase shift related to the scattering length a.

How is the energy of the particles modified if one were to add particles of one
kind to the system, one by one, building up a majority Fermi sea? The result is also
shown in figure 3-1a as the solid black line. It can be seen that the energy changes
substantially: At unitarity where we expect the binding energy to be zero, it is in fact
a sizeable fraction of the majority Fermi energy. Away from the Feshbach resonance
the modification reduces and eventually approaches the mean-field limit. The energy
difference between two-body physics and many-body physics is shown in figure 3-1b.
Another important result is that, even when the interatomic potential supports a
bound state, no two-body bound state is formed. The particle remains a fermionic
(quasi-) particle instead of forming a composite boson or molecule. Physically it
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Flgure 3-1: Two-body physics vs many-body physics: a) Dashed line: Binding energy

# as a function of interaction strength — s according to the simple model of two

particles interacting through a scattering resonance, see Feshbach resonance 1.2. Solid
line: Energy from a variational many-body calculation, see equation 3.23. b) Energy
difference between the two-body and many-body calculation.

is clear, though, that once the two-body binding energy reaches a critical value, a
bosonic molecule will form regardless of the presence of a Fermi sea. We expect this
critical interaction strength to be reached when the two-body binding energy m; is
on the order of the Fermi energy of the Fermi sea. It is important to note, see also
ﬁgure 3-11 and 3-1 that the energy of this bosonic quasiparticle is not described by
but will also be modified due to the presence of the Fermi sea. We will discuss

ma"’
this “Molaron” below.

3.3 Landau’s Fermi Liquid Theory

How is it possible that the naive model for metals as free electrons moving in a lattice
structure is so successful in describing the properties of solids when the electrons
are, in fact, interacting through the Coulomb force, which is, although screened, still
rather strong? The explanation and theoretical framework has been provided by L.D.
Landau more than 50 years ago [82]. At the core of Fermi Liquid Theory is the notion
of a quasiparticle, characterized by its effective mass m*, its quasiparticle residue Z
and the interaction parameters F; and Fj,.

In a non-interacting Fermi system free particles of wavevector k are the eigenstates.
This, together with Pauli’s exclusion principle, completely characterizes the ground

and excited states: The ground state is just a filled Fermi sea - at zero temperature the
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occupation probability is one for £ < kp and it is zero for k > kp. A particle added
above the Fermi momentum kr or a hole added below kg constitutes an elementary
excitation of the system. These excitations are also eigenstates of the system and
therefore have an infinite lifetime.

Consider now a system of Fermions in which the interactions are gradually, i.e.
adiabatically, switched on. The system will remain in its ground state but now with
an interaction term in the Hamiltonian. Free particles are no longer eigenstates of
the system as particles will scatter and “dissolve” into the ground state by way of
particle-hole excitations in the Fermi sea. Similarly, if interactions are switched on
starting with a system in its ground state plus an elementary excitation at k > kg,
this excitation will be an approximate eigenstate of the real interacting system if
its lifetime is long enough that it qualifies as an eigenstate. As the Pauli principle
together with energy conservation restrict the available phase space for decay, one can
see that the lifetime of an added particle of energy &, = €; — u, measured relative to
the Fermi energy, has a scattering probability, or lifetime, proportional to 1/7(£) o £2.
Hence, this excitation can be treated as an approximate eigenstate if its energy is
close to the Fermi energy & — 0. This elementary excitation is called a quasiparticle
of momentum k to the real ground state. Similarly, an elementary excitation of
k < kr is called a quasihole.

3.3.1 Quasiparticles

Quasiparticles are Fermions since the system adiabatically evolves from a system of
non-interacting Fermions. In the ground state the real system can be represented
as is shown as the solid black line in figure 3-2 - there are no quasiparticles present
above kr and no quasiholes below kp. It is important to stress that figure 3-2 does
not show the distribution of quasiparticles, as they are only well-defined entities close
to the Fermi energy. In other words, quasiparticles are elementary excitations and
give no information about the ground state of the system. Also shown is the effect of
interactions on the distribution of the bare particles.

Just as in the non-interacting case, the excitation of the system can be character-
ized by the deviation from the ground state:

Sn(k) = n(k) — no(k) (3.1)

and for small densities of quasiparticles Nex. = >, |0n(k)| < N and energies near

the Fermi energy, the energy of the system can be expanded as:
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Figure 3-2: Cartoon picture of the ground state momentum distribution (solid black
line) and bare particle momentum distribution (solid red line).

Eon(k)] = Eo + Y _ exdn(k) + % > f(k,K)on(k)on(k') (3.2)

kk!

where Ej is the (interacting) ground state energy, €, is the energy of non-interacting
quasiparticles €; =: %, with the definition of the effective mass m* and f(k, k') con-
tains the interactions between quasiparticles.

The effective mass m* will be different from the bare mass m due to the interactions
between the bare particles. It is insightful to think of quasiparticles as bare particles
being “dressed” by their surroundings - a quasiparticle is a superposition of different
unperturbed states. In this picture it is easy to see why the effective mass of a
quasiparticle differs from that of a free particle: It is dragging along a cloud of dressing
particles. A quantity related to the effective mass is the quasiparticle residue Z, which
quantifies how much “bare particle” is contained in a quasiparticle at momentum k.
Z also gives the size of the “jump” in the bare particle distribution at k = kp called
the Migdal discontinuity, see also figure 3-2. We will get back to this point in the
next section on the microscopic description of interacting Fermi systems.

The function f(k,%’) in equation 3.2 is difficult and tedious to compute. How-
ever, it is generally clear that the interaction between quasiparticles is important in
the description of collective excitations, such as sound waves, spin waves, etc. More

specifically, f(k,k’) can be decomposed into a symmetric part f*(k, k'), independent
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of spin, and an antisymmetric part f*(k, k'), and then expanded in Legendre polyno-
mials. The resulting coefficients F;** can be connected to parameters measurable in
experiments, such as the effective mass m* related to F}, the speed of sound or the
compressibility g—z related to F§ and the paramagnetic spin susceptibility x, related
to F§.

3.3.2 Fermi Liquid Theory on a Microscopic Level

We begin with the definition of the single particle Green function G(xt,z't'). It
contains all the information about one particle or one hole. It is defined as:

G(xt,2't') := i{go|T{(, t)¥ (z', ')} |do) (3.3)

where |¢p) is the true ground state wavefunction of the system and generally un-
known, T'{...} is the time ordering operator, and ¥(z,t),¥(x,t) are the annihilation
and creation at operator, respectively. The interpretation of formula 3.3 is immedi-
ately clear: G(xt,z't") is the probability amplitude of finding a particle at = at time
t, when a particle has been added at z’ at time ¢

For simplicity, let us assume that the system is translationally invariant and that
the time evolution is independent of the starting time #. The Fourier transform is
then G(k,t). G(k,07) is proportional to the momentum distribution n(k):

G(k,07) = —in(k) (3.4)

A hole is added at ¢’ = 0: ax(0)|¢o). If one were to measure at an infinitesimal
time step later, one would have have measured the probability of being able to create
a bare hole, which is proportional to the momentum distribution n(k). Note that the
added particle is a bare particle and therefore not an eigenstate. Eventually, for long
enough times the particle will scatter and the according excitation will damped as
expressed by the fact that lim;_,o, G(k,t) — 0.

At this point it is convenient to introduce the spectral function A(k,w):

Ap(kw) = > |(dulaflee) 0w — €n) (35)
A(k,w) = > [(dnlarldo)2o(w — ) (3.6)
Ak,w) = Aik,w)+A_(kw) (3.7)
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Similarly to the physical interpretation of equation 3.3, A;,_ is the probability
that adding/removing a particle with momentum % to the system will be associated
with, in other words “costs”, the energy fw. For free particles the energies €, are just
the e = h—;’;—z and A(k,w) is a sum of discrete d-functions as the fermionic excitations
are eigenstates. Including interactions, an added particle is not an eigenstate any more
but a superposition of the eigenstates of the interacting system. However, following
the argument above, excitations close to the Fermi energy constitute quasiparticles
and one can expect A(k,w) still to exhibit maxima at the new resonance frequencies
€r spread out over a width I'y, determining the inverse lifetime of the quasiparticle.
More explicitly, with the definition of the spectral function and the Green function
above:

—iG(k,t) = e'i”t/ Ay (k,w)e “tdw (3.8)
0

with the chemical potential x. This can be rewritten deforming the contour of
integration and choosing a > 1/t:

—iG(k, t)e™ ~ /w At (k,w)e ™ dw — 27 Z je it (3.9)
0 j
where (; are the residues of A;(k,w). One of the poles of A(k,w) will give a
dominant contribution. The according frequency is w = & — i['x. The other poles
and the integral along the imaginary axis give contributions of various frequencies
and very quickly decohere. Defining z; := 2w, the time evolution of an added bare
particle is:

iG(k, t) = zze “k TRt 4G (K, B) (3.10)

Therefore, with A(k,w) = —2ImG(k,w) for £ — kr the spectral function can be

written as:

Alk,w) = Z6(w — &) + Aimc(k,w) (3.11)

From the equations above it is clear that Z = 2z, can be interpreted as the
probability of free propagation of a quasiparticle. More generally, it can be shown
that zx measures how much bare particle is contained in a quasiparticle.

Inserting a complete set of eigenstates into 3.3 and using the above definitions
3.7 for the spectral function and performing the Fourier transform, one arrives at the
Lehmann-representation for the Green function:
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_ * ’ A+ (k7 w) A- (k’ w)
G(k,w)—/o e <w’—w+u—i0+_w’+w——u—i0+ (3.12)

which we will need in the next chapter when making the connection between the
self-energy X(k,w) amd the spectral function.

3.3.3 Calculating m* and Z

In order to explicitly calculate the properties of an interacting system described by
a Hamiltonian of the form H = H, + H;, we not only need the single particle Green
function but the two-particle Green function, which is defined similar to the one-
particle Green function in equation 3.3:

K (%1, X9, X3,Xq) := (0| T{(x1)1b(x2) 9" (x3)¥" (x4) } | o) (3.13)

With this definition, the Schrodinger equation can be expressed in terms of the

Green functions:

2 B ih2V2
ot 2m

) G(x,x') — /d3x"V(|x] - X"NK",%x,x",x') =i6(x — x') (3.14)

After Fourier-transforming this equation can be expressed as:

h2k?
( 5 W E(k,w)) Gk,w)=1 (3.15)

The quantity ¥(k,w) is called the self-energy and contains all the effects of in-
teractions in the system. It is in essence the correction to the free-particle kinetic
energy € by interactions and is therefore closely related to the effective mass m* and
the quasiparticle residue Z, see discussion following equation 3.2. Equation 3.15 and

3.10 can be combined to give the well-known result for the quasiparticle residue Z:
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2 = 3= pGlwds (3.16)
- Wl T ) 17
_ 1 dwf(HQ%l‘”ze’“)_l (3.18)

2mi w'
AT oo

As mentioned above, one can relate the effective mass to the self-energy ¥ (k,w)
from equation 3.15. The pole of the Green function giving the dispersion relation
satisfies w = ¢, + X(k,w). Expanding around the ground state k = 0 and w = p + w’

gives:
ptw = e +5(0,0) +3Z(ek,w’)€k N 32(ek,w’)w,
~_\#,_z Oey, ow’
leading to:
’:: = i; ;E:“z; (3:20)

Here we made the substitution €, = % and replaced ¥(0,0) by u, which is only
true in the case of a single impurity particle as no momentum states are blocked.

Finally, for completeness let us make the connection between the self-energy

Y(k,w) and the spectral function A(k,w) by inserting the standard identity wilm =

Pl 1 imé(w) into the Lehmann representation 3.12 and using equation 3.15:

Ak,w) = —2Im[G(k,w)]
B —2Im[E(k,w)]
C (w-EE _Re[S(k,w)))? + (Im[S(k,w)])? (3:21)

The above equations for m*, Z and A(k,w) from the self-energy will become

important in the next section when the self-energy will be calculated for a particular
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limit of a Fermi Liquid, namely a ||) impurity particle interacting with a |1) Fermi
sea.

One result of the above equation is that the (bare) particle momentum distribution
n(k) can be written as, using 3.4 (T = 0):

n(k) = / " Ak w) (3.22)

—o0
with the energy measured relative to the Fermi energy.
For the special case of a Fermi Liquid of a single particle immersed in a Fermi sea

of majority particles, the according momentum distributions are plotted in figure 3-3.
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Figure 3-3: Momentum distribution for the polaron system at unitarity. It can be seen
that the minority momentum distribution has a d-peak of weight Z at k = 0 and a
continuous momentum distribution at £ > 0. The majority momentum distribution is
described by a stepfunction only in the thermodynamic limit. For a finite volume V we
see the particle-hole excitations in the ground state. The discontinuity in the majority
momentum distribution is given by the quasiparticle residue of the majority Z;. It
approaches unity in the thermodynamic limit. At large momenta, the momentum
distributions of majority and minority overlap and are characterized by the contact
coefficient C, see chapter 3.7.4.

From the expression for the spectral function in equation 3.11 one can readily see
another interpretation of the quasiparticle residue Z: At T' = 0 the distribution of
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the bare particles jumps by Z at k = kp. If £ < kp, the é-function is included with
a weight of Z in the above integration as & < 0. If £ > kg, it is not included. The
coherent part of the spectral function only determines the size of the jump in the
momentum distribution and stems from the fact that excitations change in character
from quasiparticles to quasiholes at k = kr. The actual distribution is determined
by the complicated integral over the incoherent part of the spectral function, see
equation 3.11, and therefore not necessarily inflection symmetric around kr. We will
see this below in the specific example of an impurity particle interacting with a Fermi

sea.

3.4 A Special Case: A ||) Swimming in a 1) Fermi

sea

In this section we will use some of the results from the previous section and apply them
to a particular limit of a Fermi Liquid: A ||) impurity particle strongly interacting
with a Fermi sea of |1) particles. Of particular interest are the value of the self-
energy ¥(0,0) = p and the Fermi liquid parameters m* and Z as they are directly
accessible in our experiments. The general cooking recipe to approach this problem

would consist of the following steps:

e get vertex function I' [84] describing the full interaction based on the Hamilto-

nian of the system

e T-matrix approximation for I': The impurity particle interacts repeatedly with
only a single particle in the Fermi sea of |1) at a time. In other words, upon
a scattering event the impurity particle creates only a single particle-hole pair.
It can do so any number of times and hence perturbation theory can be car-
ried out to arbitrarily high orders, giving the well-known ladder series (ladder

approximation).
e get self-energy Y(k,w) from T' [84]
e extract physical quantities from X(k,w)

In order to simplify the above calculation, in addition the non-selfconsistent ap-
proximation is often made of an undisturbed majority momentum distribution that

can still be described by a step-function - it does not exhibit the characteristic C/k*
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behavior, see chapter 3.7.4 and figure 3-3. In the Chevy Ansatz, see below, the mo-
mentum distribution of the majority retains the high momentum tail for finite volume
but approaches a step function in the thermodynamic limit, as one would expect for
a single impurity particle interacting with a majority Fermi sea.

If the constraint of an undisturbed majority momentum distribution is released in
the T-matrix approximation, however, the resulting minority energy is E 1~ —0.9¢ep
85]' compared to the exact result Ey ~ —0.615¢ [87] and experimental result E, ~
—0.64¢p, see below.

A more insightful but mostly equivalent approach has been provided by F. Chevy:
It is a variational calculation based on a trial wavefunction for the system in the vein
of the T-matrix approximation, namely the impurity particle only interacting with
single particle-hole pairs. It allows, however, for a modified majority momentum

distribution. The Ansatz can be written as:

) = o[k )| FS)t+ > daxchycarlk’ +q — k), |FS)s (3.23)

q<kp
k>kp

The Hamiltonian for this N + 1 body system is:

3 Yo
H = Z €kCI(UCkU- + T)‘ Z cL+gTCT-k+g¢Ck’+%lc—k'+§T (324)
k,O’ kvklvq
where e, = h?k?/2m, V is the volume of the system and the ¢} _,cx, are the usual
creation and annihilation operators for fermions with momentum k and spin o.
In the standard way the variational parameters ¢y and ¢qi can then be found
by minimizing the energy <\II|I:I|\I/> — E, (U|¥) under the constraint | (¥|¥)|? =
2 k>k 2
leol” + quki lql” =1
Minimizing with respect to ¢ and ¢4 leads us to the following set of coupled

equations:

Eigo = ewdo+ gvo Z <¢0 + Z ¢qk> (3.25)

q<kp k>kp

Eipqe = ¢aqxlex — €q +€k'+q—kg—‘; > (¢o + Y ¢qk”)) (3.26)

g<kp k'">kp

1This treatment is identical to the 1 /N expansion and setting N = 1 at the end of the calculation,
where N — 1 is the number of different spin states involved. Hence, the binding energy yields the
same result as in [86].
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Elimination of ¢y and ¢qx finally yields a self-consistent equation for the energy
E 1-

1 1

El = €+ — I I I (327)
4 q<kp 90 + Vv Zk>kF ek—€ater q_k—F

= €/ + E(Gk/, El—) (328)
which can be cast into the more convenient form, using gio = o — \l, Dk ﬁ [23]

El , 1 2
6_¢:€L_2/ dy A (3.29)

€ ™
F F 0 1_2k:pa_I<e_pl*’y)

with the definition for the integral I(e,y)

© x 212 4 27y — €
I = de{ —In{ ———7—) -1 3.30
() /1 x(2y n(2w2—2wy—6> ) (330
In summary, we get for the self-energy (e, E|) = E,:
E 1 2
Ao / dy A (3.31)
F 0 1_2k7;a_1(_e—p%’y)

In order to get the quasiparticle residue Z and the effective mass m*, one can
combine equations 3.31, 3.28 and 3.29. The results will be discussed in the section of
the experimental results 3.7.2 and 3.7.3.

3.4.1 Radiofrequency Spectroscopy of a Fermi Liquid

From the discussion following equation 3.7, it can readily be seen that the spectral
function has a central meaning in radiofrequency spectroscopy: The radiofrequency
photon “asks” the system for its transition probability given an energy fuww. Since the
radiofrequency photon induces a transition to the final state regardless of a particles
initial momentum, the total transition probability will be a sum over all momentum

states weighted by the distribution of particles:

I(w) = 27hQ% Y~ A(k, 6 — p— hw)np (e — p — hw) (3.32)
k

where Qp is the Rabi frequency, w := wrr — wyr the energy of radiofrequency
photon relative to the hyperfine transition energy and ng(fw) = 1/(1 + exp(Shw)).

Using equation 3.11, we can immediately see the structure of the radiofrequency
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spectrum for a single quasiparticle at k = 0:

I(w) = ZﬂhQ%Z(s(hN + Ei) + Iinc(w) (333)

and is given by a sharp peak plus an incoherent background. Using the definition

3.7 for the spectral function we obtain:

Line(w) = 27RO% Z |oxal” S(hw + B} — e + €q — €q-x) (3.34)

q<kp
k>kp

which can be solved analytically, see appendix C.

3.5 Generalization of the Impurity Problem

The treatment of the previous section is, of course, an idealized one. Two important
generalizations will be discussed in this section:

e We have only considered a single particle in an otherwise non-interacting Fermi
sea, a situation which can not be realized in our physical system. Hence, the
above treatment has to be generalized to the N + M-body case. For finite impu-
rity concentration, effects of the presence of the minority Fermi sea have to be
taken into account. Also, residual mediated interactions between the quasiparti-
cles will exist, similar to the case of interacting lattice polarons discussed above.
By construction of Chevy’s wavefunction it does not contain quasiparticle in-
teractions. The quasiparticle interactions should in principle be computable
in the T-matrix approximation. Another approach [88] has been a variational
approach of the N + M-body problem generalizing Chevy’s wavefunction. In
our case of an attractive interparticle potential, quasiparticle interactions also
raise the question of the range of applicability of Fermi Liquid Theory at very
low temperatures: At very low temperatures one might encounter the case of
pairing and condensation of polarons.

e If the binding energy of the Feshbach molecular state between the ||) and an
1) particle exceeds the Fermi energy of the |1) Fermi sea, we expect many-body
effects to be of less importance and we expect the formation of a molecule. At
this point the quasiparticle changes from a fermionic quasiparticle to a bosonic
quasiparticle. However, the energy and Fermi Liquid parameters of this quasi-
particle, sometimes called “Molaron” reminiscent of the term “Polaron”, are
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still strongly modified by the presence of the Fermi sea. Again by construction,
Chevy’s wavefunction does not capture this behavior. However, one can define
a generalized wavefunction taking molecule formation into account [76, 89, 90].

3.5.1 N+ M = M(any) Impurities

One step towards extending the variational wavefunction Ansatz has been made in
[88]:

%) = Gl FS)IFS) + Y batrOarechrcatclq i cril FS)IFS) (3.35)

el

r=kp
This Ansatz looks more intimidating than equation 3.23 but has a similarly simple
interpretation: The first term describes two non-interacting Fermi seas, the second
a particle-hole excitation in the majority Fermi sea by a minority particle at the
Fermi level. The stepfunction Oqur = © (Jr + q — k| — kF) ensures the restriction
|r + q — k| > kg, to satisfy Pauli exclusion. Therefore, the main difference be-
tween equations 3.23 and 3.35 is the decreased phase space available for the impurity
particles to scatter into. Intuitively, one might therefore expect less dressing of the
polarons by majority particles resulting in a decrease in binding energy. This would
imply an effective repulsive interaction between polarons. This Ansatz neglects scat-
tering of impurity particles inside the Fermi sea and can therefore be regarded as a
first step towards symmetrization of the treatment using a variational wavefunction.
Accordingly, the total energy of the system as a function of impurity concentration,
the zero-temperature equation of state, can be found in [88] and will not be shown
here. The results show good agreement with the Monte Carlo simulations of [73],

which are shown in figure 3-18.

3.5.2 Radiofrequency Spectroscopy for Finite Impurity Con-

centration

In this section we will consider the effect of finite impurity concentration on the
radiofrequency spectrum. We will neglect the effect of quasiparticle interactions as
this is still a topic of discussion and concentrate on the effect of an effective mass
m* that is different from the bare mass m. The cartoon picture is shown in figure
3-4a): As different momentum states are occupied for finite impurity concentrations,

the resonance frequency will depend on the momentum k.
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Figure 3-4: Effect of the effective mass on the minority radiofrequency spectrum. a)
Different momenta will respond at different frequencies. b) The result is a continuous
spectrum with a sudden drop, see equation 3.36.

The coherent part of the spectral function is thus A®"(k,w) = Z§(hw+ E(k)) with
E(k) = —h*k?/2m* = — ¢ relative to the impurity Fermi energy. The coherent

part of the spectrum then becomes

Toon.(w) = 27RO% Y~ Ak, e — E|, — hw)
k

where the sum extends up to the impurity Fermi momentum kp;. With the free,
3D density of states p(e), this is

2 L m
Ieon(w) = QTrﬁQH/O de p(€)Z6(e — E| — hw — ¢

2mh Q2 < p(ﬁw-{-Ei)x

m
Lr—

0 ((1 - %)E” iy E¢) (3.36)

This coherent part of the spectrum starts at the polaron ground state energy hw =

52



|Ey|, then grows like a square root and jumps to zero when hw — |E| = (1 — 2 )Ep,.
On resonance, where m* ~ 1.2, this occurs at iw — |E|| = 0.22%*Epy =~ 0.04E; for
z = 0.1. This is still smaller than the Fourier width of the radiofrequency pulse used
in the experiment of about 0.1ler. The size of the jump is given by Zﬂﬁﬂ?{ﬁ p(Ery)
and reflects the impurity Fermi surface in the radiofrequency spectrum. This behavior
of the coherent part of the spectrum was treated in [91] and was discussed recently
in [85]. Therefore, for an arbitrarily high spectral resolution the effective mass should

be revealed both by the maximum and the shape in the radiofrequency spectrum.

3.5.3 Polaron vs Molaron or Fermi Liquid vs Bose Liquid

The variational wavefunction for the polaron describes, by construction, a Fermi Lig-
uid. We expect, however, for a large bound state energy the formation of a composite
Boson, a molecule regardless of the presence of a Fermi sea. A rough estimate for the
corresponding critical interaction strength is given by comparing the Fermi energy ep
to the two-body binding energy E, = 5% resulting in (TFIaT ~ 0.7. For higher binding
energies, corresponding to smaller values of k%a’ the molecule will be similarly dressed
by particle-hole excitations of the majority Fermi sea. Due to the internal structure
of the molecule, however, the treatment shows a higher complexity and three-body
physics is needed. The according variational wavefunction in the spirit of equation
3.23 is [76, 89, 90]:

Wy =1 D &dlu + Y Gavadhwuouiud [ IFSY )y (337)
k>kp q<kp
k>kp
k'>kp

where d}; and uf( are the creation operators for a |]) particle and a |1) particle, re-
spectively. The interpretation is similar to equation 3.23: Instead of a free |]) particle,
a |)-|1) pair with zero center-of-mass momentum, a molecule, is created. The mo-
mentum, and spatial, distribution is determined by the function &. Note that the
sum over the momentum states contained in the molecule is restricted to the vol-
ume outside of the majority Fermi sea due to Pauli blocking. The second term in
equation 3.37 describes particle-hole excitations in the majority Fermi sea by way of
imparting the momentum g — k onto the molecule. This wavefunction can be shown

to reproduce the weakly interacting limit, in which the energy is given by:
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Figure 3-5: Energy of an impurity particle in a Fermi sea for various theories taken
from [76]. The Ansatz 3.37 is shown as red line with full squares. For comparison,
also shown are the diagrammatic Monte Carlo results (black/green diamonds) and
the Ansatz 3.23 (blue line).

B h? N 2h2 T gg
2ma® = 2/3m ™

where a is the scattering length, a,q¢ ~ 1.18 is the atom-molecule scattering length

B =

- g (3.38)

[79] and ny is the atom density. The first term is simply the two-body binding
energy, the second term the density dependent mean-field shift. The full variational
calculation has been done by the authors of [76, 89, 90] and is shown in Fig.3-5.

3.5.4 Finite Size Effects of the Impurity Problem

As one can see in figure 3-1, the energy of an impurity particle is significantly altered
as it 1s not only interacting with one but N particles. An interesting question arises
in an intermediate regime: How does the energy evolve for small numbers N? What
happens for N = 3, N = 10, N = 1007 This question might help understand the
discrepancy between [16] and [40] in the determination of the critical density imbal-
ance o, above which the superfluid state is quenched. For better comparison with
experiment, these calculations [88] have been performed for harmonic confinement.
In the spirit of Chevy’s wavefunction, a minority particle in an unperturbed harmonic

potential plus elementary excitations in the majority, one can determine the energy
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of the system [88]2. The energy is shown in Fig. 3-6. The energies for a few particular
values are €4 ~ —0.028%p, €10 =~ —0.135¢r, €1000 =~ —0.51€r and €190,000 =~ —0.5%F
in the case of an isotropic potential. For an anisotropic potential these mesoscopic
effects become more pronounced, e.g. for an aspect ratio of 35 €100,000 =~ —0.56¢F,
10% from its homogeneous value. Since the critical imbalance for the formation of
a superfluid phase directly depends on the energy of the normal phase compared to
that of the superfluid phase, the above results need to be borne in mind when ex-
perimental phase diagrams are compared to the homogeneous case using the local
density approximation. In the case of the experiments performed at BEC1 at MIT
the typical atom number is a few 10° and a typical aspect ratio a < 10 the expected
discrepancy is below 1% and therefore below our experimental resolution.
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Figure 3-6: Energy n(a, N) as a function of majority particle number N for various
aspect ratios o, compared to n = 0.607 for the uniform system [94] (horizontal lines).

2Pairing states beyond the variational Ansatz, such as the formation of trimers [92, 93], are
naturally not included in this treatment and might not provide an accurate measure for the true
ground state.

95



3.6 Applicability of Fermi Liquid Theory to the
N+1 Body System

The treatment of Fermi liquid theory in textbooks is usually restricted to:

1. Repulsive interactions, as attractive interactions result in the Cooper-instability

[5].

2. High enough temperatures such that the system does not undergo a phase tran-
sition into a superfluid or magnetic state, mediated by more subtle (attractive)
interaction mechanisms (eg. phonons).

3. Low enough temperatures such that Pauli blocking results in a long enough
quasiparticle lifetime for them to be treated as eigenstates of the system.

In metals this results in a temperature range of a few Kelvin up to thousands
of Kelvin. For He? the range of validity is typically a few mK up to 1K. In our
experimental system at hand, entering the superfluid phase is rendered impossible
due to the number imbalance of |]) particles and |1) particles, see [95, 96] and figure
2-5. In this case, the system is guaranteed to be in the normal phase even at zero
temperature. Typically, our experiments were performed at a normalized temperature
of T/Tr ~ 0.15 and a Fermi energy of er ~ 25kHz, resulting in a scattering rate of
(%)26 r =~ 1kHz much smaller than g, therefore validating a Fermi liquid approach.

It is worth noticing that our experiments constitute the first realization of a Fermi

liquid with attractive interactions.

3.7 Experimental Results:
Radiofrequency Spectroscopy of the Polaron

After the above theoretical preparations, let us now turn to the comparison with
experiment.

As can be seen from equation 1.9, radiofrequency spectroscopy probes the single-
particle excitation spectrum and is therefore ideally suited to determine the impurity
binding energy with the level of precision commonly achievable employing radiofre-
quency spectroscopy. Furthermore, by comparing majority and minority spectra we
can distinguish between the free part in equation 3.23 producing a J-peak in the

spectrum and the particle-hole excitations producing an incoherent background, see
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also section 3.4.1. This allows us to determine the probability of free propagation of
the minority particle, the quasiparticle residue |¢o|?> = Z. A direct result of this is
the possibility to identify a critical interaction strength, beyond which the minority

forms a molecule upon encounter with a majority particle and hence Z = 0.

3.7.1 Preparation and Parameters

The creation of a strongly interacting degenerate Fermi gas of 6Li has been described
in section 1.4. For the highly number imbalanced samples on the order of P =
% > 90% in this experiment we have used a two-photon Landau-Zener sweep
from state |1) to |3): Using a frequency splitter in reverse, two radiofrequencies are
fed into an antenna. One of the frequencies was red-detuned by 40kHz from the |1)-
|2) transition. The other frequency was swept over a range of 5kHz, centered around
the |2)-|3) transition frequency plus 40kHz. This gave a stability of the minority
number characterized by fluctuations smaller than 20%. In comparison, preparation
of the system using two subsequent single-photon Landau-Zener sweeps resulted in
fluctuations of the minority number by a factor of 2.

The high number imbalance of P > 90% resulted in less efficient thermalization
of the system than in a balanced system [19] and the temperatures we have achieved
range from T ~ 0.127TF to T ~ 0.17TF.

After evaporation, a radiofrequency pulse around the |1) — |2)(|3)— |2)) transition
frequency was applied for 500us, resulting in a spectral resolution of 2kHz or 0.1Ep;.
The power of the radiofrequency pulse was adjusted so that the maximum population
transfer was ~ 30%. An image was taken immediately after the radiofrequency pulse.

The two-dimensional density distribution was elliptically averaged and the three-
dimensional density profile was reconstructed using the inverse Abel transform?66.
The local response to the radiofrequency excitation was recorded as a function of
detuning from the bare hyperfine transition frequency.

Due to the inhomogeneous trapping profile the minority density varied from a
maximum density to zero for almost constant density of the majority atoms. There-
fore, we were able to determine the polaron energy and quasiparticle residue not only
approaching the limit of a single impurity but also for higher impurity concentrations.

Typical radiofrequency spectra for low impurity concentration are shown in figure
3-7 along with the spectra of the majority component. The bulk of the majority

dnzg(%Z)

b
yZ —x2

3The inverse Abel transform is given by f(z,z) = —% [ dy where nap is the column
™ JT

density.
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Figure 3-7: Radiofrequency spectroscopy of polarons. Shown are spatially resolved,
3D reconstructed radiofrequency spectra of the majority (blue, state |1)) and impu-
rity (red, state |3)) component in a highly imbalanced spin-mixture. a) Molecular
limit, b), ¢) Emergence of the polaron, a distinct peak exclusively in the minority
component. d) At unitarity, the polaron peak is the dominant feature in the impurity
spectrum, which becomes even more pronounced for 1/kpa < 0 (not shown). For the
spectra shown as dashed lines in d) the roles of states |1) and |3) are exchanged. The
local impurity concentration was x = 5(2)% for all spectra, the interaction strengths
1/kpa were a) 0.76(2) b) 0.43(1) c) 0.20(1), d) 0 (Unitarity).

spectrum is found at zero offset, corresponding to the free (Zeeman plus hyperfine)
energy splitting between states |1) and |2). However, interactions between impurity
and majority particles lead to a spectral contribution that is shifted: The radiofre-
quency photon must supply additional energy to transfer a particle out of its attrac-
tive environment into the final, non-interacting state [23]. In figure 3-7a, impurity
and majority spectra above zero offset exactly overlap, signalling two-body molecular
pairing. The steep threshold gives the binding energy, the high-frequency wings arise
from molecule dissociation into fragments with non-zero momentum [23, 10].

As the attractive interaction is reduced, however, a narrow peak appears in the
impurity spectrum that is not matched by the response of the majority particles
(figure 3-7b,c,d). This narrow peak, emerging from a broad incoherent background,
signals the formation of the Fermi polaron. The narrow width and long lifetime are
expected: At zero temperature the zero momentum polaron has no phase space for
decay and is stable. At finite kinetic energy or finite temperature 7" it may decay into
particle-hole excitations [87], but phase space restrictions due to the spin up Fermi
sea and conservation laws imply a decay rate o (T/TFr)? ~ 1% in units of the Fermi
energy. Indeed, the width of the polaron peak is consistent with a delta function
within the experimental resolution. The full width at half maximum (FWHM) is
shown in figure 3-8. On the molecular side the width of this fully incoherent disso-
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ciation spectrum is a measure of the molecule size [46], but in the unitary limit and
towards the BCS side of the Feshbach resonance the width of this peak approaches

the experimental resolution of the radiofrequency pulse.

1t

1.0

0.5+ }

FWHM / g of impurity spectrum

0.0+

1/kea

Figure 3-8: FWHM of spectra of the type shown in Fig.3-7 as a function of interaction
strength. The dashed line shows the Fourier limit of a 500us pulse.

In general, one might expect the width of the coherent polaron peak to increase
with increasing impurity concentration as the polarons might be rendered unstable
by interactions and have shorter lifetimes. Figure 3-9 shows a series of spectra for
various impurity concentrations. Therefore, if the broadening effect is present, it is
masked by our finite experimental resolution, see figure 3-8.

The incoherent background is perfectly matched by the radiofrequency spectrum
of the majority particles. This is expected at high radiofrequency energies hw > ep
that are probing high momenta k£ > kr and thus distances short compared to the
interparticle spacing. Here, an impurity particle will interact with only one majority
particle, leading to overlapping spectra. We will return to this point below in chapter
3.7.4, in which we will give an estimate of the contact coefficient C'.
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Figure 3-9: Normalized polaron spectra as a function of radiofrequency for various
impurity concentrations x = n/ns.

3.7.2 Results I:
Chemical Potential y| of the N + 1-body System

To measure the polaron energy E| = p, we determine the peak position of the impu-

rity spectrum as a function of the local interaction strength 1/kra. The data for an
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Figure 3-10: The averaged spectrum (black line) overlaps well with the individual
spectra from figure 3-9 (red lines).

impurity concentration of x = 5% are shown in figure 3-11, along with the variational
upper bound given by the wavefunction equation 3.23 and the diagrammatic Monte
Carlo calculation of [87]. As final state interactions are weak, they can be included as
a simple repulsive mean field shift 47rh2afen1 /m., with ag the scattering length between
the final state and the majority atoms [65]. Polaron energies have been predicted via
the variational Ansatz in equation 3.23 (78], the T-matrix approach [97, 91, 98, 99],
the 1/N expansion [86], fixed node Monte Carlo [74, 73] and diagrammatic Monte
Carlo [87]. With the exception of the 1/N expansion, these all agree with each other
and with the present experiment to within a few percent. In particular, in the unitary
limit where 1/kra = 0 we find a polaron energy of E, = —0.64(7)er (—0.72(9)er)
when state |3) (|1)) serves as the impurity. This agrees well with the diagrammatic
MC calculation, —0.615¢ [100], and the analytical result —0.6156(2)ex [98]. Analysis
of experimental density profiles yields a value of —0.58(5)er [101].

The relatively large value for E| directly implies that the normal state, modeled
as a Fermi sea of weakly interacting polarons, is favored over the superfluid state
up to a critical concentration (44%), much higher than that predicted by mean field
theories (4%) [70], see figures 2-1 and 2-2. These neglect interactions in the normal
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Figure 3-11: Peak position of the impurity spectrum as a measure of the polaron en-
ergy E| for various interaction strengths in the limit of low concentration z = 5(2)%
(solid circles). Open circle: Reversed roles of impurity and environment. Dotted
line: polaron energy from variational Ansatz equation 3.23 [78], the solid line includ-
ing weak final state interactions. Dashed line: Energy of a bare, isolated molecule
in vacuum. Blue dash-dotted line: Mean field limit for the energy of an impurity
atom. Solid (open) diamonds: Diagrammatic Monte Carlo energy of the polaron
(molecule) [87].

state and therefore imply a polaron binding energy of zero.

3.7.3 Results II: Quasiparticle Residue Z of the Polaron

The spectral weight of the polaron peak directly gives the quasiparticle residue Z.
Experimentally, we determine the area under the impurity peak that is not matched
by the majority’s response and divide by the total area under the impurity spectrum,
see figure 3-12.

Figure 3-13 presents Z as a function of interaction strength and impurity con-
centration z. Figure 3-14 shows Z for an impurity concentration of z = 5%. As
expected, Z approaches 100% for weak attractive interaction kra — 0~, where the
bare impurity only rarely recoils off majority atoms. As the mean free path shortens

and the bare impurity starts to surround itself with environment atoms Z decreases.
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Figure 3-12: Determination of the quasiparticle residue Z. Impurity spectrum
(red), majority spectrum (blue) and spectral response of non-interacting atoms (black
dashed), folded over from negative radiofrequency offsets.

On resonance, we find Z = 0.39(9) for r = 5%, with only a weak dependence on x
(figure 3-13). Theoretical values for Z vary: Ansatz Eq.(3.23) predicts Z = 0.78 for a
single impurity, while Ref. [86] predicts Z = 0.47 (0.30) for vanishing (5%) impurity
concentration. Our procedure might yield a lower bound on the actual value of Z, as
the incoherent part of the impurity spectrum might be depleted around threshold. We
have also determined an upper bound to the quasiparticle residue Z, which has been
extracted under the assumption that the incoherent part of the impurity spectrum is
completely depleted, see figure 3-14.

Eventually, for strong attraction between the impurity and the majority particles,
Z vanishes and we observe complete overlap of the impurity and environment spectra.
This signals the formation of a two-body bound state between the impurity and
exactly one majority atom. For a spin down concentration of x = 5% we determine the
critical interaction strength where the polaron peak vanishes to be 1/(kra). = 0.76(2).
This is in good agreement with the independently determined critical interaction
1/krpa = 0.74(4) beyond which one finds a superfluid even for the smallest impurity
concentration [80]. This is a multicritical point [102, 73, 87] where a Fermi liquid
of weakly interacting polarons undergoes a phase transition into a Bose liquid of
molecular impurities. Fixed-node Monte Carlo calculations place this transition at a
value of 1/kpa = 0.73 for x — 0 [73]. Our 1/(kra). is lower than the value 0.90(2)
from diagrammatic MC [87] for a single impurity. The Ansatz in equation 3.23 does
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Figure 3-13: Quasiparticle residue Z as a function of interaction strength and impurity
concentration. The color coding indicates the magnitude of Z and is an interpolation
of the data points shown in the graph. Open circles: Data points consistent with
zero (Z < 0.03), solid circles: Z > 0.03, the solid line marking the onset of Z. This
defines a line of critical concentration z. as a function of interaction strength. Blue
cross: Critical interaction strength for the Fermi liquid - molecular BEC transition
for x — 0 [73].

not predict a transition, as it does not test for the formation of molecules. In figure
3-13, the color coding reveals where molecular behavior is observed (yellow), and
where the spectra show polaronic behavior (red to black). It can be seen that the
critical interaction strength for the formation of molecules depends only weakly on
the impurity concentration x.

It is an interesting question what the effect of the finite temperature of T/Ty ~
0.15 is when we determine the critical interaction strength: If the polaron and the
molaron state were coupled, the polaron state would exist as a thermal excitation
of the molaron state for (1/kpa). > 0.76, and vice versa. The result would be an
overestimate of the critical interaction strength as there is no complete overlap if
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Figure 3-14: Quasiparticle residue Z as a function of interaction strength in the limit
of low impurity concentration z = 5(2)%. Solid black circles: State |3) impurity in
|1) majority Fermi sea. Open circle: Reversed roles, state |1)impurity in a |3) majority
Fermi sea. Solid grey circles: Upper limit of the quasiparticle residue determined by
a Gaussian fit to the polaron peak normalized by the spectral weight of the minority.
The red line is the quasiparticle residue as calculated from the variational Ansatz in
equation 3.23.

part of the minority is polaronic and therefore its wavefunction delocalized. A simple
estimate by much one would overestimate the critical interaction strength would
consist of a comparison of our temperature to the energy difference between the two
states, see the diamond data points from diagrammatic Monte Carlo calculations
in figure 3-11, and would shift the critical interaction strength down by ~ 0.2 to
(1/kpa). =~ 0.56, which is not consistent with theoretical and other experimental
predictions, see previous paragraph.

However, the thermal population of the excited polaron state might evolve on a
very slow time scale if the population requires breaking the molaron before formation
of a polaron. This picture is similar to an endothermic chemical reaction with a
large activation energy. In this case our temperature would have to be compared to

the binding energy of the molaron which is several e, see figure 3-11. Hence, the
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thermal population of the polaron state would be negligible and our determination
of the critical interaction strength (1/kra). > 0.76 unaffected by temperature.
Another caveat with respect to the determination of the critical interaction strength
is the finite impurity concentration. We have shown experimentally that there is only
a weak dependence on the impurity concentration. However, the phase transition
from the phase separated polarized superfluid phase to the fully polarized normal
phase is expected to be first order, see chapter 2.3 and figure 2-2. The minority den-
sity would therefore jump from a finite value to zero, making the true molaron phase

inaccessible for our experiments?.

The phase diagram revisited The black line of critical concentration x. as a
function of interaction strength has been added to figure 2-4 and validates the ex-
trapolation of our previous study of the phase diagram based on trapped density
distributions.

3.7.4 Results III: The Contact Coeflicient ('

After concentrating on the coherent quasiparticle peak, let us now investigate the in-
coherent background spectrum. At the end of chapter 3.7.1 we have given a physical
interpretation of why the majority and minority spectra overlap at high radiofre-
quency: High energy corresponds to the large momentum components and therefore
to short distances, where we expect one minority atom to interact with only one
majority atom.

It can be generally shown [103] for a Fermi system interacting through a zero-range
potential that the momentum distribution behaves like n, = k%, with the so-called
contact coefficient C' [104, 69]. This distribution at large momenta is independent of
the phase or temperature® and is completely determined by the contact coefficient C,
which is the same for both spin states, see also figure 3-3. Tan [104, 69] has derived
an “adiabatic sweep theorem” which relates the contact coefficient C to the derivative
of the energy of the system to the interaction strength:

RC _ du
drm  d(1/a)
with the energy density v = E//V. The fact that the energy of the ground state

(3.39)

4This argument is true only for zero temperature. In the experimentally relevant case of finite
temperature, a polarized superfluid probably exists even in the limit P — 1, see also figure 2-5
5The value of C does depend on the state of the system, of course.
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(and the excited states) is related to C highlights the importance of the contact
coefficient. The role of the contact coefficient can be further elucidated by calculating
the derivative of the energy density in equation 3.39. Let us consider the general form

of the Hamiltonian with contact interactions characterized by the coupling constant

g:

h2
H =3 5=Vl Vi + gyl v} ga v (3.40)

If we plug this Hamiltonian into the adiabatic sweep theorem in equation 3.39, we
arrive at the following relation for the contact coefficient C:

R? du
4rm ¢ = d(—1/a)
du

d(-1/g)
du
2 e
g dg

- 2 (4

= g (YIS ) (3.41)

where, in the second-to-last equation, we have used the Feynman-Hellman theorem
[105, 106, 107, 108]. From the above equation it is clear that C' can be interpreted
as as the probability that an |1) and a [|) particle are close to each other, which has
been formally shown by the authors of [109], hence the name contact coefficient. In
general it can be shown, see [110] and references therein, that C is related to the

short distance behavior of the pair correlation function Gﬁ)(r):

C 1
(4m)2 r2

From this one can calculate the total number of pairs of particles of opposite spin

GO (r — 0) (3.42)

which are separated by a distance smaller than r,:

Nouslry) = [ dr60)
r<rp

c
= =" (3.43)
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This way, one can connect the contact coefficient to the probability of Feshbach

molecules to be in the closed channel [111]. This probability has been determined by
the Rice group using photoassociation spectroscopy [112].
With relation 3.39 one can immediately determine the contact coefficient for the Fermi
polaron knowing the energy as a function interaction strength, see figure 3-11. As it
involves a derivative of experimental data, one might get a more accurate measure by
taking advantage of the high frequency wings of the polaron radiofrequency spectra,
which in linear response can be calculated using Fermi’s Golden Rule 1.10:

I{w — o0) — QWhQ%Z % O(hw — 2e, + 1) (3.44)
k

where Qg is the Rabi frequency for the radiofrequency transfer. A comment on
energy conservation in the formula above: One ¢; has to be “paid” for creating a
particle in the final state at momentum k. Since the radiofrequency radiation is
exciting the ground state of the system, see figure 3-2 for the polaron case, removing
a particle of momentum k out of its environment constitutes an excitation of energy
€ — W, where € is the free particle kinetic energy. This is true only for momenta
k> kp.

Now the spectrum can be readily calculated. In order to simplify the final re-
sult, we calculate the normalized spectrum as a function of the reduced frequency
hw — hw/er, as they are represented in figure 3-7. We have also defined the dimen-
sionless quantity s = C kpy k3. , and we measure the radiofrequency from the chemical
potential u, see also [113, 85, 114]:

I{w) V2 s

JIwde ~ 3 () (3.45)

The generic decay of the spectra as w=%/2 has already been encountered in the
derivation of equal density radiofrequency spectra in the BEC-BCS crossover, see
chapter 1.5.3. The normalized experimental spectra multiplied by (Aw)®? should
saturate at high momenta at the value of the dimensionless contact coefficient s. The
results for various interaction strengths are shown in figure 3-15.

In order to increase the signal-to-noise ratio in the wings of the radiofrequency
spectra we have taken advantage of the negligible change in the shape of the radiofre-
quency spectra as a function of position in the trap, see figure 3-10, and averaged
over the normalized local minority spectra corresponding to different minority con-

centrations. We were thus able to extract the contact coefficient from the plateau
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Figure 3-15: Spectra multiplied by w*? for various interaction strengths. The tails
are expected to decay as C/w™/2 with the contact coefficient C. A plateau at high
w therefore allows direct access to the contact coefficient C.

regions shown in figure 3-15 as a function of the interaction strength. The result is
shown in figure 3-16. These values for the contact coefficient can be compared to the
result from the model presented above 3.4. s can be readily calculated by inserting
equation 3.29 into equation 3.39. The result is also shown in figure 3-16.

Our experimental data appear to be systematically below the theoretical predic-
tion. A possible explanation is the small spectral weight in the high frequency wings,
e.g. at unitarity the signal-to-noise ratio beyond Aw/er = 3 is too small for a deter-
mination of C' and we have relied on the plateau ex < hw < 2.6¢p for a determination
of C. Figure 3-17 shows the comparison of the minority spectrum based on the Chevy
Ansatz and the asymptotic behavior of equation 3.45.

According to the Chevy Ansatz shown in figure 3-17 one would not expect the
asymptotic behavior below Aw/er ~ 4. The spectra in figure 3-7, however, indi-
cate perfect overlap between majority and minority components already at lower
radiofrequencies on the order of fuw/er ~ 1, which one would expect only in the high
momentum limit, see also figure 3-3.

We do not expect the finite temperature of T ~ 0.15T in the experiment to signifi-
cantly change our extracted value of the contact coefficient as it was shown to be only
weakly dependent on temperature for 7' < 0.3T due to the phonon contribution of

69



0.30

0.25+

0.20+

0.15-

0.10-

0.05+

0.00-

T T T

08 06 04 02 00 -02 -04
1/k a

Figure 3-16: Dimensionless contact coefficient s extracted from figure 3-15 as a func-
tion of interaction strength. Solid black circles: C extracted from the high frequency
wings of the minority spectra. Solid grey circles: C extracted from the high frequency
wings of the majority spectra. The signal-to-noise ratio does not allow for an extrac-
tion of s on the BCS side. Solid red line: prediction according to Ansatz 3.23. Dashed
red line: Contact coefficient in the BEC limit.

T* to the free energy [115].
It is interesting to consider the contact coefficient in the weakly interacting limits: In

the deep BCS limit the energy is simply given by the mean field Uyyr = 4”h2“nT. With

m

equation 3.39 the dimensionless contact coefficient can immediately be determined to

2

be s = 55 (kpa)®. In the deep BEC limit with the energy given by the two-body

binding energy U = 2 E, = 2 the dimensionless contact coefficient is s = i It
is also shown in figure 3-16. The predicted value for unitarity using the Chevy-Ansatz
is s = 0.072.

In the case of a balanced system at T = 0, in order to find the contact coefficient,
one might try to use the mean-field result for the energy as a function of the interaction
strength, see chapter 1.3, and use the adiabatic sweep theorem 3.39. The result is
5= %;—. In the BEC limit, one would expect the result to be identical to the impurity
scenario as the superfluid is composed of tightly bound dimers. In the BEC limit
A= %g—\/% and therefore s = -~ as in the impurity case above.

ykpa.
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Figure 3-17: The minority spectrum calculated from the variational Ansatz equation
3.23. The incoherent background can be seen to approach the w=*2 behavior at high
frequencies. One would expect this for frequencies higher than hw/ep ~ 4.

With the general expression for the contact coefficient above, one would expect
s to be exponentially small in the BCS limit. This, however, is an artefact of the
shortcomings of the mean-field theory, see chapters 1.3 and 4.1. The leading order
correction to this result yields s = 55 (kpa)? as in the impurity case.

At unitarity, the contact coefficient for a balanced superfluid at zero tempera-
ture is s ~ 0.1 [91][113]. This is a larger value than for the polaron system, where
s = 0.072, as the polaron has a delocalized component characterized by the quasipar-
ticle residue Z.

To date, there are few radiofrequency spectroscopy experiments from which one
could determine the contact coefficient. Early experiments using *°K [116] have stud-
ied the short-range correlation between Fermion pairs performing experiments in the
high frequency tails of radiofrequency spectra. In early radiofrequency experiments
using °Li [13, 20, 22], the high frequency tail was suppressed due to final state inter-
actions. It has been shown [117] that the high frequency tail of the spectrum in fact

—5/2

decays as w™°/? instead of w32, This behavior is also reflected in the average clock

shift [118, 91]
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where g; = %’l, the @ and a; are the scattering lengths for the initial and final
state, respectively, n is the density and where we have used the adiabatic sweep
theorem 3.39 and C = s - k} for the balanced system.

In atomic %Li, a system with a weakly interacting final state and therefore access to
the contact coefficient has only recently become available [46, 44, 119]. Since the final
state interactions are small but non-zero, the w5/ behavior of the high-frequency
tails in the radiofrequency spectrum will show up eventually at high enough energy.
We can estimate this energy by comparing the bound state energy of the initial state
E, with the bound state energy of the final state Ey. More precisely, based on the
Franck-Condon factor describing the wavefunction overlap, it has been shown [117]
that the dissociation spectrum in equation 1.11 must be modified to include the
energy dependent factor (Aw + Ej, — Ey)~!. This factor only alters the shape of the
dissociation spectrum if fw is on the order of £, — Ey. With Ey = mh—;, the bound
state energy of the final state of a |1)-|2) (|1)-|3)) molecule at 690G is on the order of
300kHz > 10er and therefore not relevant for the spectra shown in figure 3-15.
Recently [120], high-momentum transfer Bragg spectroscopy has been used to access
the contact coefficient from the structure factor.

3.7.5 Results IV: Effective Mass m* and Quasiparticle Inter-

actions

We have so far considered the limit of few impurities. By increasing their density, we
can study the effect of interactions between polarons. In figure 3-18 we show that the
quasiparticle peak position depends only weakly on the impurity concentration in the
unitarity limit, see also figure 3-9. Polarons are thus weakly interacting quasiparticles,
despite the strong interactions between the bare impurity and its environment.

The peak position could be modified due to the effective mass m* of polarons,
larger than the mass of the bare impurity. Transfer of a moving polaron into the

free final state then requires additional kinetic energy. This leads to an upshift and
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a broadening on the order of the Fermi energy difference between initial and final
state, £%/%ep (1 — mﬂ) On resonance, this is 0.04ex for z = 0.1. The effect could be

partially masked by the predicted weak repulsion between polarons 73] that would
downshift the resonance frequency by —0.02¢x for z = 0.1.
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Figure 3-18: Peak position at unitarity (1/kra = 0) as a function of impurity con-
centration (solid circles). The line shows the expected peak position (see equation
2.7), hwyfer = A+ (1 — %)12/3 = gF:r + %k;afe, using the Monte Carlo value
A = 0.615 [87], the analytic result m* = 1.2 [98], the weak repulsion between po-
larons with F' = 0.14 [73] and weak final state interactions with scattering length
Qfe.

3.8 Experimental Results: Collective Oscillations

As discussed at the end of chapter 3.5.2 and in previous chapter, the effect of the
effective mass m* on the radiofrequency spectrum is below our experimental resolution
and one has to resort to different methods of determining m*. Since the effective mass
is a kinetic property of the system, collective excitations are a natural choice to try
to experimentally access the effective mass of the polaron.

If the confining potential is harmonic V(r) = Zw?r?, in the local density approx-
imation the effective potential experienced by the minority particle is modified due

to the attraction from the majority particles:
W(r) = V(r)— Aep(r) (3.47)
= (1-A)V(r) (3.48)

with the local majority Fermi energy ep4(r) = u — V(r) and A = E| /er ~ —0.6.
The attractive van der Waals interaction increases the depth of the potential seen by
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the minority atom. In addition, the effective mass of the quasiparticle is modified due

to the dressing with majority particles. The effective potential can be written as:

*

W(r) = ’;wz(1+A)r2 (3.49)
= %w’zﬂ (3.50)

with the new oscillation frequency «' = w,y/Z(1 + A). At unitarity where one
expects A ~ 0.6 and m* ~ 1.17, the resulting effective dipole oscillation frequency
would deviate from the bare oscillation frequency w by about 20% and should ob-

servable in experiments. There are several ways to excite this dipole oscillation:

3.8.1 Optical Potential, 1

One might displace the majority cloud using a sheet of an attractive or repulsive
optical potential to excite a relative motion between majority and minority. This is
a relatively “violent” excitation and typically distorts the density distribution and

result in a non-harmonic potential experienced by the minority atoms.

3.8.2 Optical Potential, 11

One can circumvent the problem of exciting a relative motion between the two spin
states if the minority cloud is created already with relative momentum. This can
be done using Raman spectroscopy: Two laser beams far-detuned from the atomic
transition (~ 1GHz) intersect each other at the position of the atoms. The resonance
condition is now momentum dependent: Only if the detuning § between the Laser
beams is chosen such that hd = hwyr + E| + % (Ak being the difference of the
wavevectors of the lasers), atoms will be transferred into state |2). Therefore, minority
atoms are created in state |2)in momentum state Ak. The results are shown for the
weakly interacting limit in Fig.3-19. Even for weak interactions of kra =~ 0.05 strong
damping can be observed. This might point to too a high temperature resulting
in a decay of the polaron into particle-hole excitations. However, efficient cooling is
notoriously difficult in this scheme as there is only a short time window for evaporative

cooling after the creation of a minority cloud with momentum.
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Figure 3-19: Dipole oscillations of in the weakly interacting limit.

3.8.3 Magnetic Gradient, I

The external magnetic field can be ramped to a lower value where the magnetic
moments between states |1) and |3) are different enough, see figure 1-10, to initiate
a relative motion between majority and minority. This method does not distort the
density distribution and allows for evaporative cooling before the dipole excitation.
This method has been used recently to completely separate two atomic clouds and to
study the subsequent spin transport in strongly interacting Fermi systems [121]. The
result for a small relative displacement is shown in figure 3-20: The oscillation can be
seen to be overdamped, as the center-of-mass relaxation time is an order of magnitude
higher than the oscillation frequency. This, again, might be due to the temperature
of the sample being too high. We have observed that ramping the magnetic field
over too wide a range tends to heat up the clouds such that it is difficult to achieve
temperatures below T'/Tr =~ 0.2 even for equal spin mixtures.

There is an additional complication in this and the previous scheme: The majority
and minority atoms are on the repulsive branch of the Feshbach resonance, see figure 1-
6, and must decay into the metastable ground state first. This also presents a feature:
This system can be regarded as an excited state of the polaron and it is interesting
how this new state relates to the weakly interacting limits: On the molecular side,
the excited state should indeed consist of two free atoms. The energy is shifted by
the mean-field repulsion, see equation 3.38, of the molecules. Similarly, the energy
should be mean-field shifted above the Feshbach resonance.
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Figure 3-20: Overdamped spin dipole oscillation of an impurity particle strongly
interacting with a Fermi sea. a) Initial condition: Minority cloud ~ 130um displaced
from majority center-of-mass. b) After 1000ms the minority cloud has migrated to
the center. ¢) The center-of-mass difference of majority and minority clouds shows a
slow relaxation on the time scale of several hundred milliseconds [121].

3.8.4 Magnetic Gradient, II

The problem of ramping the magnetic field over too wide a range and the complica-
tion mentioned above of excited polarons can be overcome by associating molecules
by ramping the magnetic field below the Feshbach resonance and applying a mag-
netic field gradient. In the deep molecular limit all the minority atoms are bound in
molecules in the singlet state, with zero magnetic moment and therefore not sensitive
to the magnetic field gradient to first order. Dissociating the molecules by ramping
above the Feshbach resonance yields polarons with a finite momentum. A compli-
cation in this scheme is that in order for the magnetic moment of the molecules to
significantly differ from that of the free atoms, the molecules are so strongly bound
that three-body collision are no longer Pauli-blocked. This causes loss of atoms and
heating of the cloud. By completion of this thesis, we have not yet found a viable

window of parameters.

3.8.5 Magnetic Gradient, III

Another method has been used recently to experimentally determine the effective
mass m*: Exciting a quadrupole oscillation by suddenly changing the magnetic field
and its curvature [77]. The effect is twofold: The sudden change in the confinement,
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Figure 3-21: Aspect ratio of the minority cloud as a function of time after excitation
of the quadrupole oscillation mode. The excitation was created by suddenly changing
the scattering length

due to a change in curvature of the magnetic field, excites in an in-phase oscilla-
tion and the sudden change in the scattering length between majority and minority
excites out-of-phase oscillations. The in-phase excitation is overdamped and the mi-
nority cloud size slowly relaxes whereas the out-of-phase excitation shows oscillatory
behavior and allows to extract the effective mass. From the frequency of collective
oscillations, Nascimbene et al. were thus able to extrapolate to the limit of high
imbalance with a value for the effective mass of m* = 1.17(10)m. Recently, our
group has also realized these quadrupole oscillations, see figure 3-21. This method
overcomes all problems mentioned above: High temperature, excited polaronic state,

three-body relaxation.

3.8.6 Size Measurement

As is indicated in equation 3.50, the confining potential seen by the minority atoms is
affected by the presence of the majority atoms. The attractive interaction quenches
the minority cloud volume - the minority cloud is sucked into the center of the trap.
For a given particle number N, in an isotropic system at 7' = 0 the minority radius
is determined by e = hw(6N)® = Zw?R%. As a result:
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B <m* 1+_A> (3:51)

where R is the interacting minority Fermi radius and R, is the non-interacting
minority Fermi radius for a given atom number, the bare/effective mass is m/m* and
the bare/effective dipole oscillation frequency is w/w’ (see previous chapter).

As can be seen in equation 3.51 the size is not very sensitive to A, m* and therefore

not well suited for an accurate measurement.

78



Chapter 4

Quasiparticle Spectroscopy

4.1 Quantitative Studies of the BEC-BCS Crossover

We have already learned in chapter 1.3 that mean-field theories predict the correct
qualitative feature but fail when put to the test of quantitative comparison. Let us
briefly discuss the shortcomings of the mean-field treatment in chapter 1.3: The only
simplification’ that has been made consisted of neglecting interactions between pairs
of non-zero momentum by setting q = 0 in 1.2. This, however, has wide-ranging
results: As ¢ = 0, the magnitude and the phase of the gap are spatially homogeneous
and therefore do not allow for density fluctuations. It has been shown in the BCS
limit [122] that density fluctuations induce an interaction between the Fermions in
the medium, similar to the van-der Waals interaction between neutral atoms, in
which the fluctuating dipole moment of one atom can induce a dipole moment in
a nearby atom. The effect can be calculated to modify the interaction coefficient
Vot = Vo + VfN(O)%"(z) in the BCS Hamiltonian in equation 1.2. Since V5 < 0 in
the BCS regime, the effective interaction strength is reduced. This lowers the value
for the superfluid gap to A/Ep = (2/e)"/? exp(—n/2kpa). Compared to the BCS
value of A/Er = 8/e? exp(—m/2kra) the value is reduced by a factor of ~ 2.2 and is
known as the Gorkov Melik-Barkhudarov reduction [123] of BCS theory?. While the
validity of the Gorkov Melik-Barkhudarov theory was originally limited to the BCS
limit, when blindly applied to the unitary limit it yields a value for the superfluid gap

of A ~ 0.49r, surprisingly close to the recent theoretical and experimental values

1We have also assumed a variational wavefunction, see equation 1.1. It can be shown, however,
that this is the ground state wavefunction of the BCS Hamiltonian.

2In neutral superfluids the Gorkov Melik-Barkhudarov reduction of the superfluid gap can be
significant [122], in charged superfluids the frequency at which the correction becomes important is
pushed up to the Plasma frequency due to the strong Coulomb interaction [124].
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[30]. Recently, the Gorkov Melik-Barkhudarov theory has been extended throughout
the BEC-BCS crossover [125].

Also, in close connection to the previous point, interactions in the normal phase
are not captured by equation 1.2. This has important consequences for the discussion
of imbalanced Fermi gases in chapter 2 as mean-field theories overestimate the energy
of the normal state. As a result, the superfluid state becomes energetically more
favorable relative to the normal state and the system remains superfluid even for
high density imbalances.

In general, it remains a difficult challenge to theorists to produce a quantitatively
accurate model due to the absence of a small parameter in the unitary regime. The
above mentioned Gorkov Melik-Barkhudarov calculation presents the second term
in an expansion series that does not necessarily converge. In the unitary regime one
often has to resort to Monte Carlo techniques which however suffer from the infamous
sign-problem or convergence problems.

This highlights the importance of accurate quantitative experiments. In this chap-
ter we will present a method to determine the superfluid gap using radiofrequency
spectroscopy. To this end, we have identified and quantified the Hartree self-energy,
which plays a crucial role in the quantitative interpretation of radiofrequency spectra.
Finally, in this chapter we will make the connection between the normal polaronic

phase for high imbalance and the superfluid phase for zero imbalance.

4.2 Extracting the Superfluid Gap from Radiofre-

quency Spectra

In this chapter we present a quantitative analysis of the spectral peaks in the super-
fluid phase for small density imbalance. This will allow us to determine the superfluid
gap A at very low temperatures. Earlier work [13, 22] tried to determine the gap from
the onset of the pair dissociation spectrum. However, the radiofrequency spectra are
not only sensitive to final state interactions, see discussion in chapter 1.5.1, they are
also shifted by Hartree energies, as we show below. Furthermore, radiofrequency spec-
troscopy can excite all fermions, even deep in the Fermi sea, see eg. [23]. Therefore,
the onset of the pair dissociation spectrum occurs for atoms with momentum k£ = 0
and, in the BCS limit depends quadratically on the gap parameter (ws, = EA;::) The
excitation gap can be directly observed if quasiparticles near the dispersion minimum

are selectively excited, as in tunneling experiments.
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Since final state interactions and Hartree terms create line shifts, two peaks are
needed for the analysis, the dissociation peak and the quasiparticle peak in our case.
In essence, it is the separation between the peaks in spectra like fig. 4-4b, which
allows us to determine A.

4.3 BCS Theory: Quasiparticles

We have encountered the excitation spectrum of the generalized BCS state in chapter
1.3, see figure 1-9 and have called it the quasiparticle excitation spectrum. Let us
elucidate the role of quasiparticles by diagonalizing the Hamiltonian 1.2 instead of
using the variational wavefunction. We will start by simplifying the interaction term
and find the “best” two particle operator from the four particle operator (known as

incomplete Wick contraction):

o drchqanenn = Y (e dhar +(dhewen) dygae

Py Py
- Z (CLTCkw) CT—kLC—k’T - <Cf—k¢c—k’T> Cquck’l

k,k’
+ > (elyeliy) awiemion + (avsemon) dyely

k,k’

= Z U (c;r{TckT + chk 1)
k

+ Z (A C;f(TCT_ki + A* C—klckT) (4.1)
k

with U = (CLTckT) = <CL¢Ck¢> and A = %, <CLTCT-k’¢>' The first term is the
Hartree energy, usually absorbed into the chemical potential in condensed matter
systems. The second is the signature of the superfluid phase. The Fock term is
zero in our case as the energies of our states |1) and |3) are not degenerate. By
neglecting the quartic terms in the above contraction we have explicitly neglected
fluctuations and quasiparticle interactions and we have entered the realm of the mean-
field description®. Now the Hamiltonian is quadratic and the standard Bogoliubov

3 Actually, density fluctuations have already been neglected by choosing the simplified Hamilto-
nian 1.2, see discussion above 4.1.
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transform can be applied to diagonalize the Hamiltonian:

Tkt = “kaT_UkCT-u (42)
’YIJLJ, = ’LLkCT_kL-l-UkaT (43)

Where the u, vx must be chosen such that the 7y, 'yik | obey the usual fermionic

commutation rules, which results in the previous u} + vZ = 1. Now the Hamiltonian
takes the form (with U = Y~ Uy):

H—puN+UN =Y Bl (4.4)
k,o

It is indeed diagonal in the new basis {7, fyik 1}, where the 4" are quasiparticle

creation operators with the eigenenergy Ex = y/A? + (e, — (1 — U))2. It should be
noted that the superfluid ground state is the quasiparticle vacuum: ~4|BCS) =
Y| BCS) = 0 and that a single excess particle creates a quasiparticle:

wel,|BCS) = <ukcLT—vkc_k¢) IBCS) (4.5)
— AL1BCS) (46)

For very high momenta k£ > kr it can be seen from equation 1.5 that v, < 1
and the quasiparticle is essentially a free particle, unaffected by the pairing gap, as
is expected. For k < kr the opposite is true and the quasiparticle is essentially a
free hole. At k ~ kr, the quasiparticle is a coherent superposition of a particle and a
hole. At k = kp, the excitation energy has a minimum and assumes the value A. This
can be understood from a different angle: If a quasiparticle, or an excess Fermion,
occupies momentum state k, this momentum state is not available for Cooper pairing,
raising the energy of the system by A. For the same reason excess Fermions in an
imbalanced Fermion system in an inhomogeneous potential are expelled out of the
superfluid in the trap center. This leads to phase separation into a balanced superfluid
and a polarized normal phase, up to a critical polarization, see chapter 2.

4.3.1 Radiofrequency Spectroscopy of Quasiparticles

Let us revisit chapter 1.5.3 and consider the case of a single quasiparticle present in
a BCS superfluid in a homogeneous potential. In this case the BCS spectrum should
be essentially unaltered except for deviations on the order of 1/N. The quasiparticle
spectrum can be calculated easily. Energy conservation now requires Aiwgr = —Ej, +
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Figure 4-1: Radiofrequency spectrum with a quasiparticle at £ = kp. The RF spec-
trum consists of a quasiparticle peak at a negative frequency —A and the pair disso-
ciation spectrum at positive frequencies (red dotted line), see equation 4.7 and 1.11.
The Hartree contribution U acts as a momentum independent effective attraction
and hence shifts the entire spectrum into the positive direction (solid blue line), see
equation 4.9.

€x — p: The quasiparticle is immersed in the repulsive environment of the superfluid,
hence is its energy —FE) — pu measured relative to the Fermi energy. In addition a
free particle is created in the (non-interacting) final state with energy e,. The lowest
energy quasiparticle has a momentum of kr and its radiofrequency spectrum is given
by:

Igp(w) o 6(hw — (=4)) (4.7)

Therefore, in the limit of small quasiparticle population, the spectral peak should
directly reveal the superfluid gap A, see figure 4-1

Moreover, as quasiparticles are Fermions, a finite but small population of quasi-
particles should, in principle, allow to reconstruct the dispersion relation E) around
the minimum at kp for a given temperature?.

4For a given temperature T, the quasiparticle spectrum is given by (see equation 1.10)

Igp(w) = [k dk k2 n8F 8(w — wi)

f'(w)fA(w)
1+ expa (f*(w)—w—p+h)

where nkQP is the Fermi-Dirac distribution of the fermionic quasiparticles, f{=1(k) = wy is the
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Closing the Gap:
Tunneling vs Radiofrequency Spectroscopy

It is insightful to compare radiofrequency spectroscopy to tunneling experiments used
to study superconducting systems: In radiofrequency spectroscopy, by flipping the
spin of an atom it has been essentially removed from the system by transferring
it into a non-interacting state, therefore creating a quasiparticle, see equation 4.6.
In tunneling experiments, this corresponds to the transfer of an electron from the
superconducting region into the normal conductor at a sufficiently high voltage of A/e,
where e is the electron charge. As opposed to tunneling experiments the minimum
energy required for the radiofrequency transition process is not A, but rather A?/2Fg
in the BCS limit, see chapter 4.2 above®. Therefore, radiofrequency spectroscopy does
not measure the gap A directly but a more complicated quantity in the BEC-BCS
CrOsSover.

The opposite process of injecting a particle into the superfluid can not be done
easily in radiofrequency experiments since the final state is empty. However, in tun-
neling experiments an electron tunnels into the superconductor when a voltage of
—A/e is applied, again creating a quasiparticle. Performing radiofrequency spec-
troscopy of quasiparticles at low concentrations, however, allows us to close this gap
between tunneling and radiofrequency spectroscopy: We extract the gap not by cre-
ating a quasiparticle at kp (Stokes process), but by injecting a particle at kp and

subsequently removing it at the cost of —A (Anti-Stokes process).

4.3.2 “Cold Infusion” of Quasiparticles or:

The Importance of Being Imbalanced

As can be seen from the phase diagram in figure 2-5 and from the fact that the su-
perfluid ground state is the quasiparticle vacuum, no quasiparticles will be present at
T = 0. The quasiparticle population can be interpreted as a measure for the temper-
ature. One might therefore be tempted to increase the temperature until a spectral
signature of quasipartcles, see equation 4.7, can be observed. In a recent publication

of our group [46] low temperature (7'/Tr ~ 0.1) radiofrequency spectra did not show

inverse function of f and satisfies energy conservation f(~V(k) = —FEj + ¢; — (1 — h), with the
Zeeman field h, see chapter 2.1. This defines a highly non-linear differential equation for flw)
from which the quasiparticle dispersion Ej can, in principle, be deduced using the experimental
spectrum Igp(w). In practice, however, even a numerical solution is difficult to find for the current
experimental signal-to-noise.

5The reason is that the electrons of the metal in the normal state occupy all energy levels up to
the Fermi energy, in cold atom experiments the final state is typically empty.
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Figure 4-2: Local radiofrequency spectra of an equal spin mixture for various normal-
ized local temperatures T/Tr+ (solid black line). a) T/Tpy =~ 0.20, b) T/Tps ~ 0.22,
c) T/Tgs ~ 0.34, d) T/Tgy ~ 0.55. No local double peak spectrum can be resolved
in the radiofrequency spectrum. For comparison, the double peak spectrum of an
imbalanced mixture with 7'/Tr =~ 0.06 is added (red dashed line).

any signature of the presence of quasiparticles. Using BCS theory, we can give an
estimate of the temperature for which we expect a sizeable quasiparticle population:
For a thermal population of quasiparticles the temperature has to be on the order
of the gap A. In BCS theory, the temperature dependence of the gap is given by
%? = 1.74,/1 - Tlc, with Ap the superfluid gap at zero temperature. At unitarity,
Ao /T, ~ 3 (both for the mean-field treatment and Monte Carlo calculations). There-
fore, one would expect to populate quasiparticles only very close to the transition
temperature T/T, ~ 0.95, when the gap is only one third of its low-temperature
value. The experimental results in figure 4-2 show a decrease of the spectral gap with
increasing temperature, but no local double peak structures could be resolved for any
temperature.

Our solution to this problem was the creation of a density imbalanced Fermi
mixture at the lowest temperature we can achieve in the experiment 7'/7T¢ < 0.1.
The associated Zeeman field A results in a splitting of the dispersion relation into two
branches see equation 2.2 - the majority dispersion is given by: E(k) — E(k) — h,
see also figure 4-3. In this case the temperature needed for a sizeable quasiparticle
population is decreased from A to A — h. In our experiment, A — h < 0.1lep and
we have therefore created “cold” quasiparticles. Of course, the Zeeman field A must
be smaller than the critical field h. /¢ ~ 0.96 [74], beyond which the normal state
becomes energetically favorable over the superfluid state. This is called the Clogston-
Chandrasekhar limit [95, 96, 16] and in the BCS limit is given by A/v/2.
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Figure 4-3: Creation of “cold” quasiparticles. The population imbalance thermally
generates quasiparticles even at low temperatures on the order of A — h, where h is
the Zeeman field characterizing the number imbalance P. p is defined as u + h, see
equation 2.2.

4.3.3 Experimental Results and a Surprise in the Lab

Radiofrequency spectra for an imbalanced system are shown in figure 4-4. The inho-
mogeneous trapping profile allows us to probe the single-particle excitation spectrum
in different physical regimes within a single sample by recording the local response of
three-dimensional reconstructed density profiles in the final state immediately after
application of the radiofrequency pulse. The spectra in figure 4-4 reveal a gradual
change in the nature of the pairing correlations. The balanced superfluid is character-
ized by identical spectral responses of majority and minority particles and has been
the subject of previous studies, see chapter 1.5.1 and the review articles [23, 126, 127]
and references therein. In the polarized superfluid region [19, 70| (and references
therein) the minority spectrum perfectly matches the pairing peak of the majority
spectrum, locally coexisting with the quasiparticle spectral contribution, resulting in
a local double peak structure of the majority spectrum, see figures 4-4b and 4.3.1.
As the local imbalance is further increased beyond the superfluid to normal (SF-
N) transition [19], see figure 4-4d, the majority spectrum no longer shows a local
double-peak structure. This is consistent with theoretical work [99, 128] attributing
the double peak structure in the normal phase in previously reported radiofrequency

spectra [13, 20] to the inhomogeneous density distribution. For increasing spin polar-
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Figure 4-4: Tomographically reconstructed radiofrequency spectra for various regions
of the atomic sample at unitarity. a) Balanced superfluid, b) polarized superfluid, c)
moderately polarized transition region and d) highly polarized normal region. The
panel on the left shows a phase contrast image of the atomic cloud before radiofre-
quency excitation. The positions of the spectra a) to d) are marked in the phase
contrast image and by the arrows in figure 4-5. Red: Majority spectrum, blue: Mi-
nority spectrum. Local polarizations oy and local temperature 7/Tp, respectively:
a) -0.04(2), 0.05(1), b) 0.03(1), 0.06(1)c) 0.19(1), 0.06(2), d) 0.64(4), 0.10(2). The
negative value in a) implies that the local polarization as inferred from phase-contrast
imaging underestimates o, by up to 0.05.

ization the majority and minority pairing peaks lose spectral overlap. This missing
overlap can be interpreted as indication that the minority atoms are no longer bound
in pairs, each of them interacting with more than one majority atom. This is the
polaronic phase which has been investigated in chapter 3. At unitarity, within our
experimental resolution, the overlap starts to decrease at the superfluid-to-normal
interface, see figure 4-4c.

Even when the spectral overlap decreases, there is still equal response to the ra-
diofrequency excitation in the high frequency tails, see figure 4-4¢ and figure 4-4d.
These tails correspond to large momentum components in the interparticle wave func-
tion and hence address the short range physics. The magnitude and functional form
of the high-frequency tail are characterized by the contact coefficient C'. According
to the adiabatic sweep theorem, discussed in chapter 3.7.4, the contact coefficient C
carries much information about the many-body state of the system. From the wings
of the polaron spectra in chapter 3 we were able to estimate the contact coefficient. It
is predicted to be ~ 10% larger in the superfluid state as the polaron is characterized
by a delocalized component in the wavefunction, see equation 3.23. Unfortunately, in
this experiment we did not explore high enough frequencies to determine the contact
coefficient in the balanced superfluid the spectra multiplied by 7w?/? did not show a
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plateau as they do in the polaron spectra, see figure 3-15.
As can be seen in figures 4-4 and 4-5 these physically very different regimes are
smoothly connected across the critical density imbalance [22], see above.

A two-dimensional summary of all our results in the unitary limit is shown in

figure 4-5.

Minority Majority

RF offset/ gg4

1.0 0.5 0.0 0.5 1.0
r/ Ry

Figure 4-5: Spatially resolved RF spectra of an imbalanced Fermi gas at unitarity.
a) The right half shows the majority spectra as a function of position in the trap
expressed in terms of the majority Fermi radius Ry, the left half displays the minority
spectra. The superfluid to normal transition region is marked by the gray dashed
vertical lines. The local polarization oy, is given by the dashed red line. The error
bars are the standard deviation of the mean value. The arrows indicate the position
of the four spectra shown in figure 4-4. The image is a bilinear interpolation of 2500
data points, each plotted data point in the image is the average of three measured
data points. The spatial resolution of the image is 0.045- Ry

In figure 4-6a the position of the peaks of majority and minority spectra are plotted
normalized by ep4 as a function of position in the trap in the unitary limit. The peak
positions are proportional to the local Fermi energy inside the superfluid region within
our experimental resolution. In the polarized superfluid phase the spectra show local
double peaks. The position of the two peaks in the limit of small polarization is

depicted in figure 4-6b for various interaction strengths.
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Figure 4-6: a) Normalized peak positions of pairing peaks and quasiparticle peak at
unitarity as a function of position in the trap. The superfluid-to-normal boundary
(cusp in column density difference, see appendix D, is marked by the dashed verti-
cal lines. The arrow indicates the limit of low quasiparticle population relevant for
b). Majority: blue open squares (pairing peak) and solid black circles (quasiparticle
peak), Minority: solid red triangles. b) Pairing peak and quasiparticle peak posi-
tions as a function of the local interaction strength 1/kra in the limit of small local
imbalance (see arrow in a). Pairing peak: Solid circles, quasiparticles peaks: Open
circles.

One striking and initially unexpected feature of the data presented above is the
position of the quasiparticle peak at positive frequencies (relative to the atomic tran-
sition frequency) - instead of being repelled out of the superfluid they seem to be
attracted by it! This picture is, of course, wrong and is caused by the presence of
Hartree terms, resulting in an overall shift of the systems energy and the radiofre-
quency spectrum, see below in chapter 4.3.4. In the weakly interacting limits, the
Hartree term reduces to a simple mean field shift. In the strongly interacting regime

one has to resort to Monte Carlo calculations [129, 74, 42| for a numerical value of U.

4.3.4 Hartree: Cause and Effect

We have seen the origin of the Hartree energy U in chapter 4.3. Let us now show what
effect they have on the radiofrequency spectrum. The Hartree energy is momentum

independent and can be shown to simply result in an overall shift of the spectrum.
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The quasiparticle peak is located at Awgp = —FE) + ex — 11, see chapter 4.3.1, such
that the minimum is now at e, = pu — U. It follows that the minimum excitation
energy now occurs not at k = ——"2,;”" but rather at k = ___ﬂméu—U) such that:

IQP(UJ) X 6(7710 - (—A + U)) (48)

It is straightforward to show that with the modified dispersion the dissociation
spectrum retains its functional form (equation 1.11) with a frequency axis shifted by
U:

o — o /
1) [72—“‘ 1+ % + EMJ (4.9)

where w' = w+U, w,, = wy,+U and ¢ = p—U. The maximum of the dissociation

spectrum occurs at

af [, 15
= —_ —A2 - ! - 1
Pwmax 3 ( w2+ T u) U (4.10)
4
s gwth -U (4.11)

where ¢/ = p — U and wy, is the dissociation threshold (which is at momentum
k =0).

Determination of the Superfluid Gap and the Hartree Energy

We determined the superfluid gap A and the Hartree energy U from the peak positions
in the limit of small density imbalance (o ~ 0.03). At unitarity with the chemical
potential 1 = 0.42 ep4, we obtained:

Aynit = 0.44(3) ept
and

Uit = —0.43(3) epy (4.12)

in excellent agreement with the predicted values A; = 0.45 ¢4 and U, = —0.43 ey
from Quantum Monte Carlo calculations [41]. Our determined values for A and U
values suggest the minimum of the quasiparticle dispersion curve to occur at Ay, >~
0.9kr. Table 4.1 shows the gap and Hartree energy for various interaction strengths.

Away from unitarity we relied on Quantum Monte Carlo calculations for the chemical
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Table 4.1: Superfluid gap A, Hartree term U and final state interaction Egy, in terms
of the Fermi energy er; for various interaction strengths 1/kra.

1/kF(l A U Eﬁnal
-0.25 0.22 -0.22 0.22
0 0.44 -0.43 0.16
0.38 0.7 -0.59 0.14
0.68 0.99 -0.87 0.12

potential p [33].

For an accurate quantitative comparison final state interactions, also listed in
table 4.1, had to be taken into account. The effect of final state interactions is an
overall mean field shift of Fgna = %&n. This shift affects both the quasiparticle

peak and the pairing peak equally.

4.3.5 Why Should That Work?!

Above we have presented the extraction of the superfluid gap A and the Hartree
energy U based on two assumptions: a) The quasiparticle dispersion relation is given
by the mean-field result By = /A2 + (e — (1 — U))?, see 4.3.4, and b) the chemical
potential is given by the Monte Carlo result u = 0.42¢x [33]. This immediately raises

two questions:

e The above treatment is obviously non-self-consistent as we use the dispersion
from mean-field theory (which yields p = 0.59) but the chemical potential from
Monte Carlo calculations p = 0.42. We have, however, stressed before that
mean-field theory correctly produces qualitative features but fails for quantita-
tive comparison, 2.2. The formula Ey = /A% + (e, — (1 — U))? can therefore

be regarded as a valid parametrization of the quasiparticle dispersion relation

with the free parameters A and U.

e The exact value for the chemical potential is still under discussion and ranges
from 0.32¢r to 0.49¢r [30, 31, 32, 33, 34, 35, 38, 39, 14, 40, 36, 37] at zero tem-
perature . Moreover, this value is temperature dependent. How much does this
uncertainty affect the extraction of A and U7 Figure 4-7 shows the extracted
superfluid gap and Hartree energy as a function of the value used for the chem-

ical potential. Obviously, the dependence is weak and the variation with p is
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within the error bar. The reason for the robustness is that the value for the su-
perfluid gap is essentially determined by the distance between the quasiparticle
and the dissociation peak and does therefore not rely on the precise knowledge
of the chemical potential. Since the quasiparticle peak is located at —A — U,
the stability of —A makes U stable also.

0.4-
0.2-
'
w
> 0.0-
&
-0.2-
04+
0.3 0.4 0.5
n/ e

Figure 4-7: Dependence of the extracted values for A (red line) and U (blue line) on
the assumed value for the chemical potential u

In addition, it has to be mentioned that our determination of A and U is naturally
not for zero temperature but for the finite local normalized temperature of T'/TF ~
0.06. However, there is indication from finite temperature Quantum Monte Carlo
calculations [42] that A is only weakly temperature dependent for T/Tr < 0.15 and
that U is only weakly temperature dependent for T/TF < 0.3.

Comment: Resolution / Experimental broadening For an accurate determi-
nation of the peak positions, Fourier broadening of the spectra must be taken into
account: The peak of an asymmetric distribution is shifted upon convolution with the
pulse duration. For comparison with the theoretical spectrum, we have modeled the
radiofrequency pulse of T' = 200us length as a square pulse. This results in a FWHM
of the radiofrequency spectral power of Av = 2 5-1.39 2 ~ 4.4kHz. The theoretical
spectrum consists of the dissociation term including the Hartree energy, equation 4.9
and the quasiparticle peak modeled as a narrow (FWHM = 1 kHz) Lorentzian. This
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spectrum was convolved with the Fourier transform of a square pulse f(w) o .
Figure 4-8 shows that the theoretical spectrum reproduces our data quite well. 2The
deviation in 4-8b) might be attributed to additional broadening mechanisms like finite
quasiparticle lifetime, finite temperature and atomic diffusion during the duration of
the radiofrequency pulse. The convolution causes a shift of 0.05 €rt In the spectral
peak position of the dissociation spectrum and has been accounted for in the deter-
mination of A and U.

a)

spectral response / a.u.

v
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spectral response / a.u.
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Figure 4-8: Comparison of experimental (red) and theoretical (black) line shapes
for spectra a) and b) in figure 4-4. The theoretical curve is obtained from a BCS-
Leggett mean field description including the Hartree term and a convolution with the
experimental resolution of ~ 4.4kHz (the amplitude of the spectra have been left as
free fitting parameters). The values for A and U as calculated from the peak positions
lead to a reasonable agreement with the data.
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4.4 Connecting the Polaron Phase to the Super-
fluid Phase

So far we have focused on the balanced phase. However, the inhomogeneous trapping
profile presents a cut through the phase diagram and we realize different physical
regimes: Apart from the balanced superfluid core, we have realized a polarized su-
perfluid phase for various interaction strengths (bear in mind that the experiment is
not performed at zero temperature). We have identified the polarized normal region
with the limiting cases of the polaronic phase and the fully spin polarized regime of
an ideal Fermi gas.

One figure of merit that can be identified to distinguish the different phases is
the spectral overlap, see figure 4-4. In the previous chapter 3 we have presented the
quasiparticle residue Z of the polaron as a measure of the dressing of the minority
particles with its surroundings. We will generalize this concept to characterize the
pairing also in the moderately polarized normal region and the superfluid region and,
for lack of a better word, continue to refer to it as the quasiparticle residue.

The quasiparticle residue has been extracted in the same way as for the polaronic
phase, see figure 3-12 and is plotted in figure 4-9 as a function of the local polarization
o for various interaction strengths.

The two physical limits are smoothly connected. The quasiparticle residue does
not change appreciably until the polarization approaches its respective critical value,
suggesting that the theoretical description presented in chapter 3.4 remains accurate

even away from the highly polarized limit.

Determination of the Critical Imbalance Using the Quasiparticle Residue
In chapter 2.4 we have presented a method to determine the phase boundary separat-
ing the normal phase and the phase separated superfluid phase based on the density
distribution in an inhomogeneous potential. Here we will show that we can achieve
very similar results by considering the local polarization ¢ at which the quasiparti-
cle residue Z assume a finite value. The according data points based on the data
in figure 4-9 are added to figure 2-4 and can be seen to agree well with the density
profile analysis. Both of these methods yield a phase boundary at lower polarization
than the zero-temperature Monte Carlo calculations, see figure 2-2. The discrepancy
might be explained by the finite temperature in the experiment T/Tr ~ 0.1 and a
comparison should be made with finite temperature calculations, see also chapter 2.5.
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Figure 4-9: Generalized quasiparticle residue Z as a function of the local polarization
i = -((-EE%S for various interaction strengths. Solid black circles: Unitary limit.
Solid blue diamonds: —0.36 < 1/kra < —0.24 (BCS side). Solid red triangles: 0.34 <
1/kra < 0.43 (BEC side). The open symbols represent the limit of the polaronic phase
for comparable interactions strengths from the more accurate measurements of the
polaron energy and the quasiparticle residue, see chapter 3. The lines are a guide to
the eye and were used as a rough estimate for the critical polarizations &, shown

in figure 2-4.
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Chapter 5

The Equation of State of a
Strongly Interacting Fermi Gas at

Finite Temperature

5.1 Introduction: Equation of State of a Balanced

Fermi Mixture

As discussed in the previous chapters, reliable quantitative theories remain elusive in
the strongly interacting regime due to the absence of a small parameter when the gas
parameter na® diverges. However, a significant simplification arises in the unitary
regime: As the scattering length diverges, it is no longer a relevant quantity for the
system and all physical quantities show universal behavior, independent of the nature
of the interactions. At zero temperature, the only energy scale left in the system is the
chemical potential or Fermi energy er = ﬁ;—fsﬂ = %(677%)2/ 3, where n is the density
of a single component. In the universal regime energies scale as e, times scale as
1/er, velocities scale as kr and so forth. This is called the “universality hypothesis”
[130]. At finite temperature, two parameters completely describe the system, the
temperature 7' and the chemical potential p.

Therefore, the phase space density can be written as:

nA’ = f(Bu) (5.1)
with the thermal wavelength \ = ;Z—Z and 8 = 1/kgT describes any strongly
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interacting system! employing the universal function f(8u). Equation 5.1 represents
the equation of state relating the density n to the temperature 7' and the chemical
potential p. Starting from this equation many thermodynamic quantities can be
derived. For example the pressure can be obtained using the Gibbs-Duham relation
dP = ndu + sdT, which for constant temperature yields:

p(to) = /M ndp (5.2)

—00
In this chapter we will present an experimental study towards a high precision de-

termination of the Equation of State of a unitary Fermi gas at arbitrary temperature.

5.2 Inhomogeneous Potential

In the local density approximation the system can be described as locally homoge-
neous with a spatially dependent chemical potential poc = p—V(r) = p— >, Zwir}.
This provides the density distribution in a harmonic trap, given the temperature
T and the chemical potential u (for simplicity, let us assume an isotropic potential

W; = OJ)Z
n(r) = . (ﬂ - 5Ew2r2) (5.3)
e PR '
Equivalently, if the temperature, the chemical potential and the potential profile

are known, one can directly determine the equation of state f(z) by inversion of the

above relation:

flz)=Xn (\/52(;(# — kT x)) (5-4)

This looks more complicated than it is: Given the density distribution n(r), one
simply has to rescale the x-axis by finding the local £ = B, at position r and
multiply the y-axis by 3.

Using equation 5.2, similar relations hold for the local pressure of the unitary Fermi

gas:

1Tt has to be borne in mind, however, that this is only true for zero-range interactions, see also
chapter 3.7.4. In cold atom experiments the effective range reg is on the order of the range of the
van der Waals interaction ry, which for alkali atoms is on the order of 50 — 100a, and for STiit is
ro = 63 ag and therefore much smaller than any other length scale.
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kgT
p(r) = <5 F (Bu- Bwr?) (5.5)
with the universal function F(ﬁu) being related to the function f(8u) defined
above: F(z) = f d(x . The above equation yields the formula for F:

F(xz) kBT (\/— (u— kT z)) (5.6)

where the pressure follows from equation 5.22.

5.3 Temperature Measurement at Unitarity

In principle, the above determination of the equation of state is straightforward and
poses no problem. Experimentally, the main challenge consists of a reliable deter-
mination of the temperature and the chemical potential. Thermometry of strongly
interacting ultracold Fermi gases is a notoriously difficult problem in experiments.
Different approaches have been taken to solve this problem: In imbalanced Fermi
gases the shape of the non-interacting wings of the majority component have been
used to determine the temperature [16, 23]. This method is obviously not applicable
to the case of a balanced Fermi mixture. In balanced gases, the temperature has
been determined by thermal contact with a weakly interacting bosonic bath whose
temperature can be well characterized [131]. Another approach relied on fitting a
non-interacting density profile to the strongly interacting profiles and rescaling of the
resulting temperature. This quantity is a measure of the temperature but yields the
true temperature of the system only under a series of assumptions [14]. Yet another
method of temperature measurement relies on determination of the temperature in
the weakly interacting limit by fitting a non-interacting density profile before adiabat-
ically bringing the mixture into the unitary regime, see for instance [12]. Again, this
only yields a quantity characterizing the temperature but not the true temperature,
which changes during an adiabatic sweep. Here we will present a different approach
based on the virial expansion of the equation of state.

ZFor a harmonic potential, p = o — Zw?r?. The pressure then can be written as p(r) =
2,2 f:o dr2rn(r) and is basically given by the one-dimensional density distribution.
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5.3.1 Virial Expansion

At high temperatures 7' > p or Sp < 1, quantum statistics can be neglected and
every gas looks like an ideal gas. The phase space density is simply given by the
Boltzmann distribution e* and the equation of state is n(r) = e”#/A® independent
of statistics or interactions. This is the first term in an expansion in powers of the

fugacity e®#:

nA* = f(Bu) = (e’ +2by € + 3b3 ¥ + ) (5.7)

where the coefficients b; are the virial coefficients. Bear in mind that that the
phase space density is small at high temperatures nA*> < 1, and hence the chemical
potential negative u < 0. Therefore, the value of the fugacity for which the series
expansion in equation 5.7 converges, is restricted to 0 < e* < 1.

Similarly, for the pressure we have the expansion:
/\3

P = F(Bu) = (7 + 0 + by ™ 4 ) (5.8)
B

The virial coefficients for the unitary Fermi gas are b, = 248Q (132, 133] and
bz = 0.29095295 [134]. Therefore, equation 5.7 provides a robust method to fit the
wings of a balanced Fermi gas. Care has to be taken that the fitting range entails only
regions of a sufficiently negative chemical potential as the virial expansion up to third
order is expected to be valid only for Su.. < —0.8. At this point, the virial expansion
deviates from the diagrammatic Monte Carlo calculation [135] by more than 1%. For
the integrated density, yielding the pressure, see equation 5.2, it is expected to be
valid up to B < —0.4. The value of the local B, of course depends on the fit
yielding the global Su and Su has to be determined self-consistently.

5.3.2 Effects of the Trap: Harmonic vs Gauss

All data in cold atom experiments consist of projection images of an atom cloud.
The two-dimensional density distribution nap(z,z) is given by the integral of the
three-dimensional density nsp(z,y,z) along the imaging axis, here denoted as the

y-axis.

Harmonic Potential

In the case of a harmonic potential, the temperature determination using the virial

expansion 5.7 is a straightforward Gaussian integral:
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nop(z,2) = /_oo dy nsp(z,y, 2) (5.9)

_ ]. kBT kB H—_(W2 2+w2z2))
= Y, zk:bkx/Ee (5.10)
1 (kgT
nip(r) = ﬁ(ﬁfj )Zbk\/E ekB(n—Fuir?) (5.11)
. y k

The last equality holds for an elliptically averaged density distribution.

Gaussian Potential

Typically, see chapter 1.4, in order to access a Feshbach resonance to enter the unitary
regime, the atoms are radially trapped in the potential well created by a focussed laser
beam red-detuned from the dominant atomic transition. The laser beam emanates
from an optical fiber and is well characterized as a TEMy, mode. The potential well

experienced by the atoms can therefore be written as:

Viz,y) =V (1 - e‘zLJf—) (5.12)

where the trap depth V4 /kp is typically on the order of a few uK and in our setup
the waist® is w = 70.5um. Along the third axis, the atoms are trapped by a magnetic
curvature? characterized by a trapping frequency of w, = 27 - 22.83Hz. As a typical
Fermi energy is on the order of 1K, anharmonicities play a significant role for this
high precision study, see figure 5-1.

Since we typically operate at trap filling factors 0.2 < n < 0.5, we can not neglect
the effects of anharmonicity. Therefore, in order to determine the temperature and
the chemical potential from the virial expansion in equation 5.7, one has to do one of
the following:

3The power of the infrared laser beam was measured before entering the chamber through a penny
window and after leaving the chamber through the opposite penny window. The total power loss
was 13% so that the laser power at the position of the atoms was 93.3%. The waist was determined
using a beam profiler at the position of the image of the ODT focus outside the chamber, close to
the position of the CCD camera chip.

*In equation 5.12 we have neglected the confinement along the z-direction resulting from the

optical potential, which is given by V(z) = V(1 — 72_—) with the Rayleigh range 25 = ”—Q In

our case with a waist of wy = 70.5um and a wavelength of A = 1064nm, the Rayleigh range is
=~ 14mm, resulting in a typical trapping frequency of Wz, 0DT = 4/ jl—‘@ ~ 2m - 1Hz. This changes

the trapping frequency of the magnetic potential along the z-axis by less than one per mille.
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Figure 5-1: Comparison of the radial trapping potential to the harmonic approxima-
tion and the quartic correction.

Method I:

Integrate the virial expansion 5.7 along the imaging axis and use the
two-dimensional fitting function to nap(z, 2):

ngn(m,z)/\e’ = f dy na3p(z,y, 2)

o0

(5.13)
00 - —kBV; (ke =
- f dy Y kb ek uksgutste T

+
,Q‘WEL
Jwiz

—00

(5.14)
k
S kb ek Pek ORI 5 (5 o)
k

(5.15)
While this can be done, it has a few disadvantages. Two-dimensional fits are less

robust as the final fit tends to depend on the initial guess for the fitting parameters.

Also, the integral along the imaging direction Si(8, z) has to be done numerically in
each step of the fitting procedure, resulting in slow fitting routines.

Method II:

Reconstruct the three-dimensional density ngp(z,y, z) from the two-
dimensional density nep(7,z) using the inverse Abel transform®[66]. A potential

dnop(w.z)
1 00 _2‘5_
-2 )z %

disadvantage is the loss of signal-to-noise in the data since the inverse Abel transform
°If a function f(r, 2) is cylindrically symmetric, the inverse Abel transform is given by f(x,z) =
—\/ﬁ, where nsp

(y,2) is the column density.
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involves a derivative of experimental data. This can be alleviated by performing an

6

appropriate averaging procedure over equipotential lines®. One has to average all

pixels in an image belonging to the same three-dimensional potential, see figure 5-2.

1.

r4

Figure 5-2: Equipotential lines for a hybrid potential: Harmonic confinement along
the x-axis, Gaussian confinement along the z-axis.

We can thus “collapse” all pixels in the image into a one-dimensional form, whose
high-energy wings can be fit independently of the actual trapping potential by the
simple fitting function based on the virial expansion:

n(V) = Oloc +2bs 07 + 3b3 07 (5.16)

5

with the local fugacity o = e®##Y.

Method III: An improved signal-to-noise ratio can be obtained by an integration
over the density distribution, yielding the pressure p = &/%TF (Bu), see equations 5.2
and 5.8. One can now employ partial integration to avoid taking the derivative of
experimental data in the inverse Abel transform and instead take the derivative of
the potential [136]:

1 [ (y,2 y, z) ¥ (p, z)
p(po, 2) = ;/p dy nap(y, 2) [ % / dp )(?72) (5.17)

0

For the case of the Gaussian potential from equation 5.12, this equation becomes:

5This can not be done before the reconstruction procedure due to the Gaussian potential.
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14Vy (o7, [®
p(po, z) = ;—1—0—296( 25%)/0 dunsp (\/UQ +pg,z) (1 - 2\/§%D(\/§%)> (5.18)

with the definition D(z) = e~ f(fo due*” for the Dawson function and V, and w
characterizing the optical trapping potential’.

With the above equation for the two-dimensional pressure, one can now perform
the appropriate averaging procedure described above and depicted in figure 5-1 to
arrive at the one-dimensional pressure p(V'), whose high-energy wings can be fit by
the simple fitting function based on the virial expansion:

kgT

p(V)=— (G10c + b2 Tt + b3 O (5.19)

with the local fugacity o, = e®#8Y.

We have employed all three methods successfully to extract the temperature and
the chemical potential, with the second and third method being more robust and less
time consuming. The third method has the advantage of a higher signal-to-noise ratio
and the virial expansion being valid for higher values of Sy, see chapter 5.3.1. In the

following chapter we will present the results for a unitary Fermi gas.

5.3.3 Determination of the Temperature

Figure 5-3 shows a typical pressure curve p(V) as a function of the potential V,
see previous chapter. The zoom-in shows the region in which the virial expansion
equation 5.19 is valid.

The local value of Bpec(z) = B — BV depends on the fitted values for Bu and B.
Therefore, the fitting range has to be determined self-consistently. This is done by
performing the fit indiscriminately in each interval {n - Az, 2zjast }, 7 < Zena/Az. For
each of the (zenq — 1) fits we extract Su and B. The result for Bu as a function of
fitting range is shown in figure 5-4. The equivalent values of the temperature are not
shown here but show a similar behavior.

For a perfect signal-to-noise ratio of the data and a perfect characterization of
our experimental parameters, Su in figure 5-4b would be a flat line until the local

"The magnetic saddle potential results in an additional anticonfining term which has to be taken
into account in the analysis of experimental data. If this antitrapping potential is characterized by
the “trapping frequency” w4, one has to add the following term to the right hand side of equation

5.18: U = —Lmw? [;¥ dungp (\/u2+ pg,z)‘
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Figure 5-3: Pressure profile vs potential (solid red line). The profile demonstrates
typical signal-to-noise ratio in our data. Shown is also a zoom into the region, in
which the virial fit (solid blue line) is applicable. The fitting region is marked by the
dashed vertical line.

Bruosc(z) < —0.4, at which point the virial fit deviates from the theoretical calculations
by more than 1%. This can be verified in figure 5-4b: For values Bujoc(2) > —0.4, the
fitted value for Su becomes unreliable. Eventually, as the fitting region is restricted
to low density wings, where Sy, < —1 for the particular data from the profile shown
in figure 5-4a, the signal-to-noise ratio does not allow a reliable extraction of Su any
more. We therefore extract Su at the point where S, >~ —0.4. For this particular
profile, Bu = 1.37(3), T = 236(2)nK and pu = 325(7)nK. The error bars represent the
statistical uncertainty of the fit shown in the inset of figure 5-3 and do not include
potential systematic errors.

With this method we can assign values of S and T to each profile and determine
the equation of state from equation 5.6. This can be done for an arbitrary number
of density profiles, allowing us to suppress the statistical error and obtain a high
precision determination of the equation of state.
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Figure 5-4: Determination of Bu. Shown are a) the local value By as a function of
the fitting range, see text, and b) the value of Su as a function of the fitting range.
The dashed lines show the restriction of the valid fitting range.

5.4 Preparation: Equation of State of the Non-

Interacting Fermi gas

As the fit to the virial expansion in equation 5.19 requires precise knowledge of the
absolute value of the density at a certain potential V', it is crucial to carefully calibrate
the imaging system. Many factors determine the relation between the observed optical
density for absorption and the true atomic density, such as polarization of the imaging
light, linewidth of the imaging laser, off-resonant light in the imaging path, alignment
of magnetic fields, magnification factor of the imaging system, etc. Here we chose

a different route: We created a system for which we know the equation of state
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Figure 5-5: Equation of state of a non-interacting Fermi gas for calibration. Solid blue
line: Polylogarithm from equation 5.20. Solid red line: Experimental data, equation
of state from a single profile.

and adjusted the prefactor to calibrate imaging. Our calibration system is the non-
interacting Fermi gas.

A non-interacting Fermi gas can be easily produced experimentally as there is
a zero-crossing of the scattering length a at 534G [137]. An experimental compli-
cation arises from the fact that a non-interacting Fermi gas by definition does not
thermalize - the “true” density distribution will therefore never be reached. We can,
however, create a weakly interacting Fermi gas, whose density distribution should
closely resemble a non-interacting Fermi gas if the mean-field interaction energy is
much smaller than the Fermi energy. In the case discussed here, Uyr ~ €r/100, so
that interaction effects should be negligible.

The pressure of a non-interacting Fermi gas can be derived in the local density
approximation by setting pec(r) = & — V(r) and carrying out the integration of the
Fermi-Dirac distribution over the momentum components and g, resulting in [23]:

kT

p(V) = _—)\E—Lig,/g(—eﬁ(“*")) (5.20)
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where Lis/(2) = Y 22, Wﬁf; is polylogarithm of order 5/2. Based on this series

expansion, the virial coefficients, see equation 5.19, can be seen immediately: b; =

1,b2:—ﬁ _ﬁ

1
8 by = 27’64 — 32"
Figure 5-5 shows the non-interacting equation of state, see equation 5.20 with Sy,
T and a numerical prefactor characterizing the imaging system as fitting parameters.
The experimental data are well fit by the polylogarithm.

5.5 The Equation of State of the Unitary Fermi
Gas I

F(Bu) 3.5
3.0
2.5
2.0-
151

virial valid
-
1.0+ Bu <-04

0.5

0.0
-4 -3 -2 -1 0 1
Bu

Figure 5-6: Equation of state F'(8u) of a unitary Fermi gas. Solid black line: Diagram-
matic Monte Carlo calculation [135]. Dashed black line: Third order virial expansion,
valid for Su < —0.4. Solid red line: Experimental equation of state averaged over 10
profiles.

After these preparations, let us now turn to the equation of state F(fpu), see
equation 5.6, of a unitary Fermi gas.

The results are shown in figure 5-6. Also shown in the graph is the result of
diagrammatic Monte Carlo calculations [135].
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We can thus experimentally produce an equation of state from experimental data
with very high accuracy and can verify state-of-the-art Monte Carlo calculations. At
the time when this thesis was written, Diagrammatic Monte Carlo calculations [135]

were available up to fu = 1.

5.6 The Equation of State of the Unitary Fermi
Gas II (preliminary)

We can now use the equation of state in figure 5-6 to fit pressure profiles at lower
temperature since a wider fitting range is available. This will allow us to obtain the
equation of state for larger values of Bu. The result is shown in figure 5-7, in which
we determine the equation of state up to fu ~ 2.6.

12+
F(uB)
10
8 -
6_
eos from
4+ previous figure
-
ﬁu <0.5

Figure 5-7: Equation of state F'(u) of a unitary Fermi gas. Solid black line: Equation
of state from figure 5-6 used for fitting. Solid red line: Experimental equation of state
up to Bu =~ 2.6 averaged over 2 profiles. Dashed black line: Equation of state of the
non-interacting Fermi gas shown for comparison.

Future Work According to the universality hypothesis, see chapter 5.1, when ap-
proaching the limit of zero temperature (T < p or Su > 1), the equation of state
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is given by a Fermi-distribution with a renormalized chemical potential p = {ep ,

see chapter 4.3.5. Therefore, for a given atom number, and g(Bu) = %,
- 13/2 —€

limg, 00 g(Bu) = £7°/%. For the previously mentioned range in chapter 4.3.5 of the
chemical potential, this results in 2.7 < €732 < 5.5. Therefore, knowledge of the

-3/2

equation of state at low temperature will allow an accurate determination of the uni-
versal parameter £. From figure 5-7 it can be seen that g(Bu = 2.5) ~ 2. Since the
phase transition to the superfluid state is expected to occur at Bu =~ 3, it will be

interesting to determine g(8u) for lower temperatures using the above method.
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Chapter 6
Conclusion and Outlook

Experimental studies of ultracold atomic Fermi gases have matured over the years.
Testament is given to this by the questions addressed in experiments - until a few
years ago, many of the open questions were of qualitative nature. Nowadays, many
questions being addressed and waiting to be addressed are of quantitative nature,
such as the precise value of the chemical potential, the superfluid gap or the contact
coefficient, the critical interaction strength for phase transitions or the effective mass
of a polaron.

The temperature dependence of these parameters presents a challenging problem for
theory and experiments alike. In fact, even the equation of state of a balanced unitary
Fermi mixture has only recently been addressed in experiments, and a precise and
convincing experimental and theoretical determination of the critical temperature for
superfluidity remains elusive.

However, the results presented in this thesis dealt with the simplest non-trivial real-
ization of an ultracold atomic Fermi gas: A mixture of two Fermion species of equal
mass in a single potential well characterized by s-wave interactions. But the field
is moving forward fast and many new systems have recently been developed includ-
ing ultracold atoms in lower dimensions and optical lattices, particles with p-wave
or higher order angular momentum interactions, formation of dipolar bosonic and
fermionic molecules, three- and four-particle bound states, and Fermi mixtures with
unequal masses.

The following sentence can be found at the end of many a thesis in the field of ultra-

cold atoms and is still true: Exciting times lie ahead of us...
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Appendix A

Realization of a Strongly
Interacting Bose-Fermi Mixture

from a Two-Component Fermi Gas

This appendix contains a reprint of Ref. [80]: Yong-il Shin, André Schirotzek, Chris-
tian H. Schunck, and Wolfgang Ketterle, Realization of a Strongly Interacting Bose-
Fermi Mizture from a Two-Component Fermi Gas, Phys. Rev. Lett. 101, 070404
(2008).
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Realization of a Strongly Interacting Bose-Fermi Mixture from a Two-Component Fermi Gas

Yong-il Shin,* André Schirotzek, Christian H. Schunck, and Wolfgang Ketterle
Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
(Received 5 May 2008; published 14 August 2008)

We show the emergence of a strongly interacting Bose-Fermi mixture from a two-component Fermi
mixture with population imbalance. By analyzing in situ density profiles of SLi atoms in the BCS-BEC
crossover regime, we identify a critical interaction strength, beyond which all minority atoms pair up with
majority atoms and form a Bose condensate. This is the regime where the system can be effectively
described as a boson-fermion mixture. We determine the dimer-fermion and dimer-dimer scattering
lengths and beyond-mean-field contributions. Our study realizes a gedanken experiment of bosons
immersed in a Fermi sea of one of their constituents, revealing the composite nature of the bosons.

DOI: 10.1103/PhysRevLett.101.070404

Fermions are the fundamental building blocks of ordi-
nary matter, whereas bosons emerge as composite parti-
cles. One of the simplest physical systems to study the
emergence of bosonic behavior is a two-component fer-
mion mixture, where the composite boson is a dimer of the
two different fermions. A dramatic manifestation of bo-
sonic behavior is Bose-Einstein condensation, representing
the low-temperature phase of a gas of bosons. One way to
reveal the composite nature of the bosons is to immerse
such a Bose-Einstein condensate (BEC) into a Fermi sea of
one of its constituents. The degeneracy pressure due to the
Pauli exclusion principle affects the structure of the com-
posite boson, resulting in a zero-temperature quantum
phase transition to a normal state where Bose-Einstein
condensation is quenched.

In this Letter, we observe this transition experimentally.
We identify the regimes where a two-component Fermi gas
can be described as binary mixture of bosons and fermions,
and where the composite nature of the boson becomes
essential. The validity of a Bose-Fermi (BF) description
requires that all minority fermions become bound as bo-
sons and form a BEC. We determine the critical value of
1/kgpa for the onset of superfluid behavior in the limit of
large population imbalance. Here, a is the fermion-fermion
scattering length, and kg is the Fermi wave number char-
acterizing the depth of the majority Fermi sea. Of course,
for an equal mixture, the zero-temperature ground state is
always a superfluid in the BEC-BCS crossover. It has been
shown previously that a crossover superfluid can be
quenched by population imbalance, also called the
Chandrasekhar-Clogston (CC) limit of superfluidity [1,2].
In this work, we determine the critical point where super-
fluidity can no longer be quenched by population imbal-
ance; i.e., the CC limit becomes 100%.

In the limit of a BF mixture [3], we observe repulsive
interactions between the fermion dimers and unpaired
fermions. They are parameterized by an effective dimer-
fermion scattering length of ay; = 1.23(3)a. This value is
in reasonable agreement with the exact value a,; = 1.18a
which has been predicted over 50 years ago for the three-

0031-9007/08/101(7)/070404(4)
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fermion problem [4], but has never been experimentally
confirmed. The boson-boson interactions were found to be
stronger than the mean-field prediction in agreement with
the Lee-Huang-Yang prediction [5].

The system for this study is a variable spin mixture
of the two lowest hyperfine states |1} and |]) of °Li
atoms (corresponding to the |F = 1/2, mp = 1/2) and
|F =1/2, mr = —1/2) states at low magnetic field) in
an optical dipole trap as described in Refs. [1,2]. A broad
Feshbach resonance, located at 834 G [6], strongly en-
hances the interactions between the two spin states. The
final evaporative cooling was performed at 780 G by low-
ering the trap depth. Subsequently, the magnetic-bias field
B is adjusted to a target value with a ramp speed of
=0.4 G/ms, changing the interaction strength adiabati-
cally. At the end of the preparation, our sample was con-
fined in an effective three-dimensional harmonic trap with
cylindrical symmetry. The axial (radial) trap frequency was
w,/27 = 22.8 Hz (w,/27 = 140 Hz).

The phase diagram for the fermion mixture was obtained
from the analysis of irn situ density profiles of the majority
(spin 1) and minority (spin |) components. The profiles
were recorded using a phase-contrast imaging technique
[2]. Under the local density approximation (LDA), low-
noise column-density profiles were obtained by averaging
the optical signal along equipotential lines (refer to Ref. [2]
for a full description of the image processing). For typical
conditions, the temperature of a sample was T/Tpy <
0.05, determined from the outer region of the cloud [2],
where Try =~ 1.0 uK is the Fermi temperature of the ma-
jority component measured as kpTpy = mw?R?/2 (kg is
the Boltzmann’s constant, m is the atom mass, and Ry is the
axial radius of the majority cloud).

Figure 1 displays density profiles of imbalanced Fermi
mixtures for various magnetic fields, showing how the
spatial structure of a trapped sample evolves in the cross-
over regime. Near resonance, as reported in Ref. [2], three
distinctive spatial regions are identified: (I) a superfluid
core, (II) an intermediate region of a partially polarized
normal (V) phase, and (IIT) a fully-polarized, outer wing.

© 2008 The American Physical Society
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R)). The middle row (f)—(j) and the bot-
tom row (k)—(o) show the reconstructed
three-dimensional density distributions
and the spin polarizations obtained from
the profiles in the top row. The critical
polarizations o, at the phase boundary
r=R, are indicated by the right arrows.
The values for R; (in um), R./R;, and
R/ R; were respectively: for (a), (f), (k),
381, 0.33, 0.33; for (b), (g), (1), 380, 0.33,
0.33; for (c), (h), (m), 362, 0.35, 0.59; for
(d), (i), (n), 371, 0.44, 0.72; for (e), (),

T
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The core radius R. was determined as the peak position in
the column-density difference profile and the majority
(minority) radius R; (R|) was determined from the fit of
the outer region, r > R; (r > R,) of the majority (minority)
column-density profile to a zero-temperature Thomas-
Fermi distribution. The local spin polarization is defined
as o(r) = (n; — n))/(n; + ny), where n; and n; are the
local majority and minority density, respectively.

Further on the BEC side, the sample has a more com-
pressed superfluid core, a narrower intermediate normal
region (gray region in Fig. 1) and a higher critical spin
polarization at the phase boundary o, = o(R,.). Even-
tually, when B < 780 G, there is no noticeable intermedi-
ate region, implying that every minority atom pairs up with
a majority atom in the superfluid core. In Fig. 2, we de-
termine the critical point for the disappearance of the par-
tially polarized normal phase in two different ways. Fig-
ure 2(a) shows the phase diagram for the N, phase in the
plane of interaction strength 1/kxa and spin polarization
. An extrapolation of the critical line to o, = 1 yields
1/kpy .a = 0.74(4). Another implication of the absence of
an Ny, phase is that the size of the minority cloud R, ap-
proaches the radius R, of the superfluid core. This extrapo-
lation is conveniently done using the dimensionless pa-
rameter k = (R} — R?)/(R} — R?) 7], resulting in a value of
1/kp.a=0.71(5). These values are in good agreement
with recent quantum Monte Carlo (QMC) calculations
[10].

The critical point marks the onset of the emergence of a
BF mixture from the two-component Fermi system. One
may suspect that near the critical point, the equation of
state of the BF mixture is complex, but we show now that a
very simple equation of state is sufficient to quantitatively

(0), 367, 041, 0.76. T/Ty < 0.05, and
: Tro=~ 1.0 uK (see the text for defini-
tions).

o G R L

account for the observed profiles. Because of the external
trap potential, the local chemical potential varies form zero
at the edge of a cloud to a maximum value in the center.
Therefore, knowledge of the three-dimensional density
profiles of a single cloud is sufficient to obtain the equation
of state [2,3,8,9,11].

For a zero-temperature mixture of bosonic dimers with
density n, = n; and mass my, = 2m and unpaired fermions
with density ny = ny — n; and mass my = m, the energy
density £ can be decomposed as £ = &y, + &y + &5,
where Ey,(ny,) and Eys(ny, ne) are the boson-boson and
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FIG. 2 (color online). Emergence of a Bose-Fermi mixture in
the phase diagram for a two-component Fermi gas. (a) The
critical polarization o as a function of the interaction strength
1/kpya at the phase boundary. The open circle indicates the
previously measured critical value on resonance, o, = 0.36 [2].
(b) k = (R} — R})/(Rf — RZ). The solid (red) lines are (a) an
exponential fit and (b) a linear fit to the data points. o, = 1 and
k=1 (ie, R = R,) imply the absence of minority fermions in
the normal phase. Each data point consists of 9 to 23 indepen-
dent measurements, and the error bars indicate only the statis-
tical uncertainty.
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boson-fermion interaction energies, respectively, and £ =
3/ S)an?/ 3 is the kinetic energy of fermions [a =
(672)*3n2 /2m; and h is the Planck’s constant divided by
27r]. Here, we assume that the effective mass of a fermion
in a dilute mixture is the same as its bare mass [12]. Under
the LDA, the densities ny,(r) and n¢(r) in the harmonic trap
should satisfy

a& 1
Jhgpy = am%/3 + ——antf + Emfwgrz. (1)
dgbb aé'bf 1 2
=2 4 2 4 r, 2
Mbo dn, any zmba’z (2)

where g and wyg are the global chemical potentials of
fermions and bosons, respectively, referenced to the trap
bottom.

For the determination of the boson-fermion scattering
length ay;, we use a mean-field expression for the boson-
fermion interaction energy &y = (27h2/myg)aynyng
with My = mbe/(mb ~ mf) = (2/3)m Since Mgy =
mw3R} /2, Eq. (1) gives the relation, ay(r) = [ug(l —
r*/R?) — an?ﬂ]/(”T”znb). We obtained a value for ay
by averaging ay:(r) over a mixed region (r <R, with
nys > 0.1ng). Here, ng is the reference density defined as
no = (wgo/@)*?. In this analysis, the noninteracting outer
wing provides absolute density calibration [9].

The scattering length ratio a,¢/a turns out to be almost
constant over the whole range, 700 G < B < 780 G, where
we could study BF mixtures [Fig. 3(a)]. For even lower
magnetic fields, severe heating occurred, probably due to
molecular relaxation processes. By averaging a total of 89
measurements, we obtain ap; = 1.23(3)a, close to the ex-
act value au; = 1.18a calculated for the three-fermion
problem [4]. Our finding excludes the mean-field predic-
tion ap; = (8/3)a. The detailed behavior above 750 G
requires further investigation.
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FIG. 3 (color online). Characterization of a strongly interact-
ing Bose-Fermi mixture. (a) The scattering length for dimer-
fermion interactions ay and (b) for dimer-dimer interactions ay,
in units of the fermion-fermion scattering length a. Black solid
circles were determined using mean-field theory and open (red)
circles including the LHY correction for a strongly interacting
Bose gas. The dashed lines indicate the calculated values ay =
1.18a [4] and ay,, = 0.6a [13]. Each data point represents 7 to 17
measurements, and the error bars indicate only the statistical
uncertainty.

We now turn to the determination of the boson-boson
scattering length ay,, which parameterizes the boson-boson
mean-field energy Eu,m = (27h?/my)ap,ni. For a given
ays, the effective potential for bosons in the presence of
fermions is Vy(r) = mw?r® + (3wh?/m)ayne(r). Then,
Eq. (2) gives pyg — (27h /m)ay,ny(r) = Vy(r). By fitting
the data in the core region (0.1R; <r <R, and n, >
0.1np) to this equation with upy and ay, as two free
parameters, we obtained a value for a,. We used the value
ays determined from the corresponding profiles.

The effective mean-field values for ay,/a show a strong
increase by a factor of about 2, as the system approaches
the critical point [Fig. 3(b)]. We attribute this behavior to
strong boson-boson interactions causing non-negligible
quantum depletion in the BEC. In this regime, the equation
of state has to include beyond-mean-field corrections, with
the leading term given by Lee, Huang, and Yang (LHY) [5]

as
Eny = ——Zthabbng [1 + ﬁw/—a%}”nb} (3)
my, 15 T

Inclusion of the LHY correction leads to smaller fitted
values for ay,/a, which are now almost constant over the
whole range of magnetic fields with an average value of
ap, = 0.55(1)a. The exact value for weakly bound dimers
is ap, = 0.6a [13]. For kg a = 1, the LHY correction is
0.3E M, i.e., a 30% correction to the mean-field approxi-
mation. Here, ky, = (6772n,)'/?. Recently, the LHY cor-
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FIG. 4 (color online). Observed profiles of strongly interacting
Bose-Fermi mixtures compared to calculated profiles without
any adjustable parameter. (a)—(c) Density profiles of bosonic
dimers [dark gray (blue)] and unpaired excess fermions [gray
(green)] for various magnetic fields. The numerically obtained
density profiles (d)—(f) for bosons and (g)—(i) for fermion use
ap, = 0.6a and ay; = 1.18a (dashed line: mean-field descrip-
tion, solid line: including the LHY correction). The horizontal
dotted lines in (d)—(f) indicate the boson density corresponding
to 1/kpya = 1. The values for R; (in wm) and R./R; were
respectively: for (a), 393 and 0.29; for (b), 381 and 0.33; for (c),
366 and 0.35.
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(see Ref. [18]). The thick lines indicate the phase transitions
(solid line: first-order, dashed line: second-order). The thin lines
represent typical cuts through the phase diagram realized in our
trapped samples.

rections have been observed via the upshift of collective
oscillation frequencies for a strongly interacting BEC [14].
Our results show that a two-component Fermi mixture
beyond the critical point can be effectively described as a
strongly interacting BF mixture. In Fig. 4, we compare our
experimental data with numerically obtained density pro-
files [15] without any adjustable parameter, showing ex-
cellent agreement. After including the LHY correction,
small discrepancies are visible only at the highest boson
densities exceeding krpa = 1, where one would expect
unitarity corrections. It is surprising that we did not need
any beyond-mean-field corrections for the boson-fermion
interaction. Such corrections have been calculated for a
system of point bosons and fermions [16]. However, in-
cluding them into our fit function degraded the quality of
the fit. Recent QMC simulations have shown that the
equation of state of a polarized Fermi gas on the BEC
side is remarkably close to £ = &£y + Eypy + & with
ap, = 0.6a and ay,e = 1.18a down to 1/kpa > 0.5[10,17]
in agreement with our findings. It appears that the beyond-
mean-field term is offset by other corrections, possibly due
to the composite nature of the bosons. Further studies of
this rich system could address beyond-mean-field terms,
characterize the breakdown of the BF description close to
the critical point, and look for finite temperature effects.
One motivation for the realization of BF mixtures is to
extend studies of *He -*He mixtures. With tunable inter-
actions near Feshbach resonances, cold atom systems can
access a wider regime of the phase diagram. Predicted phe-
nomena include phase separation and miscibility [11,18],
boson-mediated, effective fermion-fermion coupling
[12,19], and novel collective excitations [20,21]. The den-
sity profiles in Fig. 4 show a sharper boundary for higher
magnetic fields. This is consistent with Fig. 5 which pre-
dicts that in the same magnetic field range, the transition
from full miscibility to phase separation has taken place.

An interacting BF system has been also realized in
%7Rb-*"K mixtures [22,23). The SLi system studied here
has the advantages of using a single atomic species and
much longer lifetimes of several seconds, but cannot access
attractive boson-fermion interactions.

In conclusion, a two-component Fermi gas with popu-
lation imbalance is a realization of a long-lived strongly
interacting BF mixture. This is a new BF system with
tunable interactions. Furthermore, it offers intriguing pos-
sibilities to study the emergence of bosonic behavior from
a mixture of fermions.
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Phase diagram of a two-component
Fermi gas with resonant

interactions

This appendix contains a reprint of Ref. [19]: Yong-il Shin, Christian H. Schunck,
Andre Schirotzek and Wolfgang Ketterle, Phase diagram of a two-component Fermi
gas with resonant interactions, Nature 451, 689 (2008).
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Phase diagram of a two-component Fermi gas with

resonant interactions

Yong-il Shin', Christian H. Schunck’, André Schirotzek' & Wolfgang Ketterle'

The pairing of fermions lies at the heart of superconductivity and
superfluidity. The stability of these pairs determines the robust-
ness of the superfluid state, and the quest for superconductors
with high critical temperature equates to a search for systems with
strong pairing mechanisms. Ultracold atomic Fermi gases present
a highly controllable model system for studying strongly interact-
ing fermions'. Tunable interactions (through Feshbach collisional
resonances) and the control of population or mass imbalance
among the spin components provide unique opportunities to
investigate the stability of pairing®*—and possibly to search for
exotic forms of superfluidity’®. A major controversy has sur-
rounded the stability of superfluidity against an imbalance
between the two spin components when the fermions interact
resonantly (that is, at unitarity). Here we present the phase dia-
gram of a spin-polarized Fermi gas of °Li atoms at unitarity,
experimentally mapping out the superfluid phases versus temper-
ature and density imbalance. Using tomographic techniques, we
reveal spatial discontinuities in the spin polarization; this is the
signature of a first-order superfluid-to-normal phase transition,
and disappears at a tricritical point where the nature of the phase
transition changes from first-order to second-order. At zero tem-
perature, there is a quantum phase transition from a fully paired
superfluid to a partially polarized normal gas. These observations
and the implementation of an in situ ideal gas thermometer pro-
vide quantitative tests of theoretical calculations on the stability of
resonant superfluidity.

When the two spin components resonantly interact, the behaviour
of the system becomes independent of the nature of the interactions.
This case of unitarity has become a benchmark for experimental and
theoretical studies over the last few years. However, there is an
ongoing debate about the stability of resonant superfluidity, reflected
in major discrepancies in predicted transition temperatures for the
balanced spin mixture’*, and an even more dramatic discrepancy
for the critical imbalance of the two spin components, called the
Chandrasekhar-Clogston limit of superfluidity**. Recent quantum
Monte Carlo calculations predicted that superfluidity would be
quenched by a density imbalance around 40% (ref. 10), whereas
other studies predicted a critical imbalance above 90% (refs 11—
16). Our earlier work'’'* suggested the lower limit but other experi-
ments***' were interpreted to be consistent with the absence of the
Chandrasekhar—Clogston limit. This huge discrepancy reveals that
even qualitative aspects, such as the role of interactions in the normal
phase, are still controversial. The lack of reliable thermometry for
strongly interacting systems limits the full interpretations of experi-
mental results.

Here we resolve this long-standing debate by presenting the phase
diagram of a spin-polarized Fermi gas at unitarity. We observe that
the normal-to-superfluid phase transition changes its nature. At low
temperature, the phase transition occurs with a jump in the spin

polarization as the imbalance increases, which we interpret as a
first-order phase transition. The local spin polarization or local den-
sity imbalance is defined as ¢ = (n; — n|)/(n; + n;), where | and |
refer to the two spin components with densities n; . At high tem-
perature, the phase transition is smooth and therefore of second
order. The two regimes are connected by a tricritical point*** and
we estimate its position to be (o, T\//T;) = (0.2,0.07), where
ky Ter = #*(67° ”1)2/ ?/2m is the Fermi energy of the majority com-
ponent of density n; (kg is the Boltzmann constant, # is the Planck
constant divided by 27 and m is the atomic mass of °Li). Our low-
temperature results confirm a zero-temperature quantum phase
transition at a critical polarization .y = 36%.

This work required the introduction of several techniques. A
tomographic reconstruction of local Fermi temperatures and spin
polarization allowed us to obtain the phase diagram for the homo-
geneous system, no longer affected by the inhomogeneous density of
the trapped samples. Furthermore, absolute temperatures were
obtained using in situ thermometry applied to the non-interacting
fully polarized Fermi gas in the outer part of the trapped samples,
an ideal thermometer with exactly known thermal properties.
Unlike previous work'*?, this is a direct measurement without any
approximations.

Our experiments are carried out in a trapping potential V(r). The
local chemical potential of each spin component is given as
M1 (T) = pro 1o — V(x), where g, ¢ are the global chemical potentials.
When g # 1), owing to imbalanced populations, the chemical
potential ratio #(r)= p, /u; varies spatially over the trapped sample
and so, under the local density approximation, the trapped inhomo-
geneous sample is represented by a line in the phase diagrams of the
homogeneous system. Figure 1 illustrates the spatial structure of a
strongly interacting Fermi mixture in a harmonic trap. In the inner
region, where # is closer to unity, a superfluid with zero (or small)
spin polarization will form at zero (or low) temperatures, having a
sharp phase boundary against the partially polarized normal gas in
the outer region. The spin polarization shows a discontinuity at the
boundary of the superfluid core at r= R,, a signature of the phase
separation of a superfluid and a normal gas*. The critical polariza-
tion .= lil:} a(r) represents the minimum spin polarization for a

=

stable normal gas; o= Iir‘{j a(r) represents the maximum spin
r—R-

polarization for a stable supérﬂuid gas. At higher temperatures, the
discontinuity in the density imbalance disappears. The main result of
this paper is the observation and quantitative analysis of such density
profiles. Because we have no experimental evidence, we are not dis-
cussing the exotic partially polarized phases® which could exist only
in the transition layer between the superfluid core and the normal
outer region.

We prepared a variable spin mixture of the two lowest hyperfine
states of °Li atoms, labelled |1) and ||}, at a magnetic field of 833 G. A
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broad Feshbach resonance at 834G enhances the interactions
between the two spin states. Our sample was confined in a three-
dimensional harmonic trap with cylindrical symmetry. The in situ
density distributions of the majority (spin T) and minority (spin |)
components were determined using a phase-contrast imaging tech-
nique’® (Fig. 2). We obtained the low-noise profiles 7i by averaging
the column density distribution along the equipotential line and
determined the three-dimensional density profiles n(r) using the
inverse Abel transformation of the column densities 7(r) (see
Methods Summary). Most of our measurements were performed at
a total population imbalance of é=50%, where 6 = (N; — N,)/
(N; + N)) refers to the total numbers of atoms in the sample, N;
and N of the spin T and | components, respectively.

Figure 3 displays the radial profiles of the densities ny,| (r) and the
corresponding spin polarization o(r) for various temperatures. The
discontinuity in the spin polarization, clearly shown at very low
temperatures, demonstrates the phase separation of the inner super-
fluid of low polarization and the outer normal gas of high polariza-
tion. At low temperature, the core radius R, is determined as the kink
(and/or peak) position in the column density difference profile. At
high temperature (but still in the superfluid regime), the discontinu-
ity in o(r) disappears. At our lowest temperature, the radii of the
minority cloud and the core region were measured as R, = 0.73(1) R,
and R. = 0.430(3)R; (at 6 = 44(4)%), respectively, and these values
agree with recent theoretical calculations'®* within the experimental
uncertainties due to the determination of 8. Here, R; is the radius of
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Figure 1| Schematic of spatial structure of a strongly interacting Fermi gas
in a harmonic trap. a, A two-component (spin T and |) Fermi mixture is
confined in an external potential V(r) oc r* with the chemical potential jt;,
of each spin component (5, is the shift for the spin | component owing to
interactions). b, Density distributions of the majority component n(r) (red
line) and the minority component n(r) (blue line). ¢, Spin polarization
a(r) = (ny — n)/(n; + n)). At zero temperature, the sample has a three-layer
radial structure: (I), the core region (0 =< r < R) of a fully paired superfluid
with ny = n; (II), the intermediate region (R, <r<R,) of a partially
polarized normal gas; and (III), the outer region (R <r< R;) of a fully
polarized normal gas. The critical polarization o, (or g,) is defined as the
minimum (or maximum) spin polarization of the normal (or superfluid)
region. The non-interacting case is shown in the insets. The insets have the
same axes as the main figure.
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the majority cloud, and the uncertainty of the final digit is indicated
by parentheses.

We determined temperature from the in situ majority wing pro-
files. The outer part of the majority component, forming a non-
interacting Fermi gas, fulfils the definition of an ideal thermometer,
namely a substance with exactly understood properties in contact
with the target sample. This new in situ method avoids the modifica-
tion of the ideal gas profile caused by the collision with the inner core
during ballistic expansion (ref. 18, see Supplementary Information).
The outer part of the averaged column density difference profile
(r> R)|) was fitted to a finite temperature Fermi-Dirac distribution
in a harmonic trap (Fig. 4) and the relative temperature T' =T/ Ty,
was determined, where kg Trg = #°(67° nﬂ)Z/ 3 /2m is the Fermi energy
of the non-interacting Fermi gas, which has the same density distri-
bution in the outer region as the majority cloud (ny is the central
density of the non-interacting Fermi gas at zero temperature). We
verified that anharmonicity of the trapping potential does not affect
the fitted temperature (see Methods).

The critical lines of the phase diagram of a homogeneous spin-
polarized Fermi gas were obtained by determining the local temper-
ature and spin polarization at the phase boundary. The local relative
temperature T}, = T/ Tg; was derived from the local density n; (R.)
according to T'(R.)= T/ Tro ¥ (ng/nT(Rc))?‘/Z'. Because we observe no
jump in the majority density within our resolution, Ty; is well-
defined at the boundary. The critical polarizations o, and a, were
measured as . = a(R.) and o, = a(R. — 0.05R;) (this criterion for &
was more robust than a fitting procedure, but excludes the possibility
that &, will be equal to o, at high temperature. Therefore, the mea-
sured o should be regarded as a lower bound for the polarization of

Column density (arbitrary units)

T T T T
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Axial position, z (um)

Linear density (arbitrary units)

1 T T T

T
-60 -30 0 30 60
Radial position, x (um)
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Figure 2 | Double in situ phase-contrast imaging of a trapped Fermi
mixture. Two phase-contrast images of one sample were taken using
different probe frequencies of the imaging beam, measuring the density
difference ng, = n; — n| (a) and the weighted density difference ny, = 0.76
n; — 1.43n, (b), respectively. The images show the two-dimensional
distribution of the column density difference, 711 2(x,2) = [ 14 2(r)dy,
owing to the line-of-sight integration. The field of view for each image is
150 pm X 820 pm. ¢, The distributions of the column density difference 7ig,
(black line) and fig, (red line) along the central line (the dashed lines in a and
b). The profiles of the integrated linear density difference,

gz = [ fa(x,2)dx (d) and g« = [ fai(x,2)dz (e), show the identical flat-
top feature except scaling. The aspect ratio of the trapping potential was
/.= 6.15, the majority atom number was N; = 5.9(5) X 10° the population
imbalance was 6 = 44(4)%, and the relative temperature was

T’ = T/Tge = 0.03(1) (see text for definitions).
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Figure 3 | Density profiles of trapped Fermi
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profiles for various temperatures (red, majority;
blue, minority; black, difference). The majority
radius R; was determined from the outer region
(r> R/, where R| is the radius of the minority
cloud) of the majority profiles using a fit to a
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the superfluid at the boundary). The discontinuity in the spin polar-
ization profile implies that there is a thermodynamically unstable
window, 0, <@ < g, leading to a first-order superfluid-to-normal
phase transition. As the temperature increases, the unstable region
reduces with decreasing o. and increasing .. For high temperature
when the bimodal feature in the spin polarization profile disappears,
we recorded the condensate fraction as an indicator of superfluidity,
using the rapid field-ramp technique'”. As the temperature decreases,
the condensate fraction gradually increases with a finite central
polarization'®. Such smooth variations of the density profile and
condensate fraction across the phase transition are characteristic of
a second-order phase transition.

The phase diagram is characterized by three distinct points: the
critical temperature T, for a balanced mixture, the critical polariza-
tion oo of a normal gas at zero temperature, and the tricritical point
(01> Tic) at which the nature of the phase transition changes. Owing
to the lack of a predicted functional form for the phase transition
line in the ¢-T plane, we apply a linear fit to the measured critical
points, suggesting T.o/ Ty; =0.15, 6,=0.36 and (o, T,/ Tgp) =
(0.20,0.07). The value for o, agrees well with the prediction (from
the quantum Monte Carlo calculation) of 0.39 (ref. 10). The extra-
polation of the phase diagram to ¢ = 0 is tentative, because the in situ
thermometry could not be applied to small population imbalances
owing to the narrowness of the non-interacting outer region.

The Chandrasekhar—Clogston limit reflects the energetic competi-
tion between a superfluid state and a partially polarized normal state,
and occurs at a critical value of 2A. for the chemical potential differ-
ence du=p; — . In Bardeen-Cooper-Schrieffer theory, which is
valid for weak interactions, h. = A4/+/2 (ref. 3). Here, 4 is the pairing
gap. With the assumption of no interactions in a normal gas,
quantum Monte Carlo studies predict h.=1.00(5)4 =1.2u at uni-
tarity'!, where pu=(u;+p;)/2. The condition p ,=p—h <0
requires 7, =0 for a non-interacting normal gas, implying the
absence of a partially polarized normal phase and consequently
0.0 = 100%. Mean-field approaches'’™'’, which cannot treat the
interactions in the normal phase accurately, also predict a high crit-
ical imbalance g, > 90%. Strong interactions in the normal phase,

fraction = 2(1)%), 398, 5.3(4) X 10°%, 54(4), 7.7.

however, have been observed through the compressed shape of
the minority cloud' and the shift in the radio frequency excitation
spectrum®. The data in Fig. 5 clearly establish a zero-temperature
Chandrasekhar-Clogston limit for g, in the range 30% to 40%. By
analysing the in situ density profiles*®*, we obtained h.=0.95 (see
Methods). Since theory clearly predicts u< A4 at unitarity®'!, we
have h.<A. If h. were larger than A, polarized quasi-particles
would have negative energies and would already form at zero tem-
perature. Therefore, up to our observed value of h,, the fully paired

-
1

Averaged column density difference (arbitrary units)
o

o
1

b gy ery,
200 b 00
Ry
Radial position (um)

o

Figure 4 | Temperature determination using in situ density profiles. The
relative temperature T' = T/ Ty, (see text for definition) was determined
from the outer region (r > R)) of the averaged column density difference
profile (black line) fitted to a finite temperature Fermi-Dirac distribution
(red line). The radius of the minority cloud R was determined from a fit of
the wing profile of the minority component (black dashed line) to a zero-
temperature Thomas—Fermi distribution (red dashed line). a, 7" = 0.03(1)
and 6 = 44(4)%. b, T' = 0.08(1) and & = 46(4)%.
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superfluid state is stable, and a polarized superfluid exists only at
finite temperature.

The interface between two immiscible fluids involves a surface
energy, leading to at least a small violation of the local density
approximation. However, the observed sharp interface along an
equipotential line and the flat-top structure of the linear density
difference profiles (Fig. 2d and e) imply that corrections to the local
density approximation are smaller than the resolution of our experi-
ment. These observations are inconsistent with the interpretations
given for the experimental results reported in refs 20 and 21, where it
has been shown that highly elongated small samples are deformed by
surface tension®®?, The scaling of those surface effects to our para-
meters predicted a deviation of the aspect ratio of the superfluid core
of about 15% from the trap aspect ratio®, whereas our data gives an
upper bound of 2%. We note that surface tension would add energy
in the phase-separated superfluid regime and would shift the
Chandrasekhar—Clogston limit to smaller values. Refs 20 and 21
concluded that the Chandrasekhar—Clogston limit should be
dc0 = 95%, which is ruled out by our observations. We are not aware
of any suggested effect that can reconcile the data of refs 20 and 21
with our phase diagram for a resonant superfluid. To identify this

M

0.2 <
ref. 23
Normal
=
g
2
g
g 0.1 Tricritical point
@

Unstable

0.0

T T T T T
0.0 0.1 0.2 0.3 0.4
Spin polarization

Figure 5 | The 6-T phase diagram for a homogeneous spin-polarized Fermi
gas with resonant interactions. The critical polarizations o, (black solid
circles and square) and o, (grey solid circles) are displayed along the local
T/Tg; at the phase boundary. The yellow area (o, < ¢ < 6,) represents a
thermodynamically unstable region, leading to the phase separation. Above
the tricritical point, the phase transition in the centre of the cloud was
observed by the onset of pair condensation. For this, a cloud was
evaporatively cooled, until it crossed the phase transition on a trajectory
almost perpendicular to the phase transition line (see Supplementary
Information). The critical spin polarization and temperature were obtained
by interpolating between points without and with small condensates (black
solid square). The linear fit to the o, values is shown as a guide to the eye for
the normal-to-superfluid phase transition line. Each data point consists of
five independent measurements and error bars indicate standard deviation.
The blue open symbols show theoretical predictions for the critical
temperature of a homogeneous equal mixture’ and the critical polarization
at zero temperature'’. The blue solid square is the measured critical
temperature of ref. 23, multiplied by /¢ with & = 0.42 (ref. 11) to obtain
local T/Tg at the centre. Finite temperature correction may increase the
effective value of &.
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finite size effect and to understand fully the nature of the normal
state’”, more work on imbalanced Fermi gases is needed.

In conclusion, we have established the phase diagram of a homo-
geneous spin-polarized Fermi gas with resonant interactions in the
o-T plane. This includes the identification of a tricritical point at
which the critical lines for first-order and second-order phase transi-
tions meet, and the final confirmation of a zero-temperature
quantum phase transition—the Chandrasekhar—Clogston limit of
superfluidity—for a gas at unitarity. So far, predicted exotic super-
fluid states such as the breached-pair state in a stronger coupling
regime (Bose-Einstein condensate side)'® and the Fulde-Ferrell-
Larkin—Ovchinnikov state in a weaker coupling regime (Bardeen—
Cooper-Schrieffer side)>®'*'%** have not been observed, but the
novel methods of tomography and thermometry will be important
tools in the search for those states.

METHODS SUMMARY

The experimental procedure has been described in our previous publica-
tions”’"?, A degenerate Fermi gas of °Li atoms was first ?repared in an optical
trap, using laser cooling and sympathetic cooling with ’Na atoms. A variable
spin mixture of the two lowest hyperfine states |T) and ||} (corresponding to the
|F=1/2, mp=1/2) and |[F=1/2, mp= —1/2) states at low magnetic field) was
created at a magnetic field B = 885 G. The final evaporative cooling was achieved
by lowering the trap depth and all measurements were performed at B= 833 G.
The temperature of the cloud was controlled by the lowest value of the trap depth
in the evaporative cooling process. The oscillation frequency in the axial dir-
ection was f; = 23 Hz. The two transverse oscillation frequencies f, are equal to
within less than 2%. Two phase-contrast images of the same sample were taken
consecutively with different probe frequencies, v, and v, (Fig. 2). The time
interval between the two images was 10 ps, and the pulse duration of each probe
beam was 15 ps. Because the probe beam was off-resonant, no heating effect of
the first pulse was observed in the second image. The trapped sample was
abserved to have an elliptical shell structure of the same aspect ratio 4 = f,/f;
as the trapping potential over our entire temperature range, and we obtained the
low-noise profiles 7 by averaging the column density distribution along the
equipotential line defined as A%x* +2% =17 for a given radial position r. The
region for averaging was restricted depending on the type of analysis.
Deviations from the trap aspect ratio were only found for the outer thermal
wings. Details of the phase-contrast imaging technique and the data analysis are
given in Methods and Supplementary Information.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

Phase-contrast imaging. The optical signal in the phase-contrast imaging is
proportional to the net phase shift of the imaging beam passing through a
Fermi mixture, that is, it is proportional to n; /(v — v?) —n/(v— v?), where v is
the probe frequency of the imaging beam, and v;° and v,° are the resonance
frequencies of the optical transition for the states |T) and ||}, respectively. When
the probe beam is tuned to the middle of the two transitions, that is, to
v=1p =(¥] +v])/2, the optical signal reflects the density difference ng = n; — n,.
In our experiment, two phase-contrast images of the same sample were taken
consecutively with different probe frequencies, v, and v; (Fig. 2). The two images
record the density difference ng; = n; — n) and the weighted density difference
gy = oep1y — ooy ). The first probe frequency v, was determined by zeroing the
optical signal with an equal mixture and o;,| was determined by the signal ratio
between the first and the second image for a highly imbalanced Fermi mixture
with |4 >95% (an almost fully polarized gas). Finally, we obtained
ny = (et na; — ngy)/(ee) — o) and ny = (eynay — ngx)/ () — o). The difference
between v, and v, was chosen to lie between 8 and 13 MHz.

Data analysis. Low-noise profiles were obtained by averaging the column den-
sity distribution of phase-contrast images along elliptical equipotential lines
(A*x* + 2% =r?). For the measurement of the critical spin polarization, the aver-
aging region was restricted to |x| < 12 um to preserve the sharp features at the
phase boundary. The diffraction limit for our imaging system was about 2 um.
For the determination of local quantities in the profiles, we averaged over +5 um
around a given position. For temperature determination, the averaging region
was restricted to an axial sector of +60° to avoid corrections due to transverse
anharmonicities (see below). The relative temperature T" is determined as
T= T/TFgc=(— 6Lis(—{)~ 153 where { is the fugacity obtained from the fit

(Ligs(z)= 2% /K¢ is the polylogarithmic function of order s).

Anharm:;i::ity of the trapping potential. For the determination of tempera-
tures from the spatial in situ profiles it was necessary to address the anharmo-
nicity of the trapping potential. Our trap is generated by a weakly focused (beam
waist w= 125 um) infrared gaussian laser beam (wavelength 1,064 nm) near the
saddle point of a magnetic potential. The total trapping potential is given as

208\ | m@2xf) [ p?
V(p.z):Unexp(—ﬁ) e T +2),
where p? =2 + y?. We note that gravity has been compensated by a magnetic
field gradient. The axial confinement comes mainly from the magnetic potential

nature

with oscillation frequency of f, = 23 Hz. The transverse magnetic potential is
anti-trapping and limits the trap depth according to:

U=%m{2nfp)zw"[l—%ln(zgf;g)] (1)

where f, is the transverse oscillation frequency in the central harmonic region.
When the trap depth is comparable to the Fermi energy of a sample, the trans-
verse anharmonicity will affect the shape of the cloud. Although in our experi-
ments the inner core and the outer cloud had the same aspect ratio as the
trapping potential, anharmonicities were not negligible in the spatial wings used
to determine the temperature.

This issue was addressed by adjusting the angular averaging region
(Supplementary Fig. 3). Because the trapping potential is only anharmonic for
large p, we could reduce the effect by decreasing the angle of the averaging sector
around the axial z-direction. Both the experimental data and an exact simulation
for an ideal Fermi gas show that the fitted temperature remains almost constant
up to a certain angle and then increases when the averaging sector includes more
of the transverse outer region. In our temperature determination, we chose the
averaging sector to be +60°, which was large enough to create low-noise profiles,
but kept the effect of the anharmonicities to below 10%. The one-dimensional fit
to angularly averaged profiles was computationally more efficient than a two-
dimensional fit to a selected region of the image. In a two-dimensional fit, one
could also include anharmonic terms in the fitting function.

Critical chemical potential ratio #.. In a harmonic trap, the chemical potential
of the majority and minority components are given as yt; (r) = pyo(1— P/ R%) and
()= pyo(ng — ? /’Rf), respectively. At unitarity, the global chemical potential
of a fully paired superfluid in the core is given as j = &g = G (67 n )/ /2m
where n = n; | (r=0) is the central density. The thermodynamic equilibrium
requires o =(uy+py)/2,  where =4 (61’ ng)*? [2m. From

I/ Hro =¢&(ng/ng)*?, we obtain the chemical potential ratio as:

fo— 12/ R} K Y31

In our coldest sample (0= 44%), the normalized central density and the
radius for the phase boundary were measured to be ny/n = 1.72(4) and
R./R; = 0.430(3), respectively, yielding the critical chemical potential ratio
ne=n(R)=0.03 with =042 (ref. 11). The critical difference is
he/pu=(1-n.)/(1+n.)=0.95.

+1
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Supplementary Figure 1: (Color online) Trajectory of the center of a cloud in the phase
diagram during the cooling process. Above the tricritical point, the normal-to-superfluid
phase transition was observed by the onset of pair condensation in the evaporative cooling
process. The local spin polarization and temperature at the center of the cloud was measured
(black solid (open) circles with (without) condensate fraction), and the critical point was
obtained by linearly interpolating with the condensate fraction. The dashed-dot line shows a
guide line for the trajectory of the cloud center. The population imbalance of the sample was
8 = 55%. A non-interacting mixture with this imbalance has a spin polarization ¢ =~ 30% at
the center at zero temperature.
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Supplementary Figure 2: (Color online) Expansion of a population-imbalanced Fermi
mixture. The absorption images of (a, d) the majority and (b, e) minority components were
taken along (a, b) the axial z and (d, e) transverse y directions after expansion. (c) The
azimuthally averaged column density profiles of the majority (red) and the minority (blue)
cloud are obtained from (a) and (b), respectively. The excess majority atoms in the outer
region interact with the core during expansion. The contour lines of the outer part of the
majority cloud (color inset) are not elliptical and have the shape of a horse-track. This shows
that the minority cloud pushes the outer majority atoms in the transverse direction, which is
also indicated by the hump of the majority profile at the edge of the minority cloud. The
population imbalance was & =~ 55%
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Supplementary Figure 3: (Color online) The temperature of the cloud was determined for
various angles 0 of the averaging sector. For a large angle, the large-x region is included in
the averaged profile, resulting in a broadening of the spatial wings and consequently higher
value of the fitted temperature. The red line shows the results of a simulation using the same
parameters as the experiment (A =f,/f,= 6.15, Tro = 1 pK and the trap depth U/ kg = 2 pK).
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Supplementary Discussion

Thermometry of ultracold Fermi gases

In our previous work'?, temperatures have been determined by fitting the spatial wings of the
majority component after expansion. However, we found that one can neglect collisions with
the minority atoms in the core only for large population imbalances. In a simplified picture,
one can regard collisions with the inner core as collisions with a moving wall, which moves
outward radially and inward axially (due to the magnetic trapping potential). This results in
different average kinetic energies (transversely and axially) of the free majority atoms in the
outer region. Figure S2 shows the density distribution of the majority and minority
components after expansion. Although the temperature has been overestimated by only 20%
for typical experimental conditions (3 = 60%) in refs "%, we do not regard this technique as
well-calibrated absolute thermometry.

One other concept for thermometry determines temperature as the derivative of entropy
with energy. So far, this concept could be implemented only for balanced fermion mixtures
with certain approximations, and due to the need of determining a derivative, could only be
used to obtain temperatures averaged over a certain range’.

Polarized superfluid at finite temperature
When the two spin components have a chemical potential difference 24, the BCS-type

superfluid has two branches of quasiparticles with excitation energies +/(¢, — 1)’ + A’ +h

where &, = h*k*/2m. At finite temperature, the superfluid is polarized due to the large

thermal population of the lower branch compared to the upper branch. An interesting
situation arises when 4 becomes larger than A, i.e. the lower branch has negative energy
quasiparticles, implying that even at zero temperature the superfluid state would have a finite
polarization. Our experiments show A. < A at very low temperature, suggesting that a
polarized superfluid state exists only at finite temperature. The breached-pair state with 4. >
A at zero temperature has been predicted in a stronger coupling regime (on the BEC side of
the Feshbach resonance). Since A gradually decreases with higher temperature, it might be
possible to have A > A at finite temperature, at least in the weakly-interacting BCS limit
where A smoothly approaches zero at a second order phase transition point. One interesting
problem is identifying this gapless region of / > A in the phase diagram for various coupling
regimes.
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Observation of Fermi Polarons in a Tunable Fermi Liquid of Ultracold Atoms
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We have observed Fermi polarons, dressed spin-down impurities in a spin-up Fermi sea of ultracold
atoms. The polaron manifests itself as a narrow peak in the impurities’ rf spectrum that emerges from a
broad incoherent background. We determine the polaron energy and the quasiparticle residue for various
interaction strengths around a Feshbach resonance. At a critical interaction, we observe the transition from
polaronic to molecular binding. Here, the imbalanced Fermi liquid undergoes a phase transition into a

Bose liquid, coexisting with a Fermi sea.

DOI: 10.1103/PhysRevLett.102.230402

The fate of a single impurity interacting with its environ-
ment determines the low-temperature behavior of many
condensed matter systems. A well-known example is given
by an electron moving in a crystal lattice, displacing
nearby ions and thus creating a localized polarization.
The electron, together with its surrounding cloud of lattice
distortions, phonons, forms the lattice polaron [1]. It is a
quasiparticle with an energy and mass that differ from that
of the bare electron. Polarons are central to the under-
standing of colossal magnetoresistance materials [2], and
they affect the spectral function of cuprates, the parent
material of high-T~ superconductors [3]. Another famous
impurity problem is the Kondo effect, where immobile spin
impurities give rise to an enhanced resistance in metals
below the Kondo temperature [4]. In contrast to the elec-
tron moving in a phonon bath, a bosonic environment, in
the latter case the impurity interacts with a fermionic
environment, the Fermi sea of electrons.

Here we study a small concentration of spin-down im-
purities immersed in a spin-up Fermi sea of ultracold
atoms. This system represents the limiting case of spin-
imbalanced Fermi gases and has been recognized to hold
the key to the quantitative understanding of the phase
diagram of imbalanced Fermi mixtures [5-16]. Unlike in
liquid *He, the s-wave interaction potential between the
impurities and the spin-up atoms in this novel spin-
imbalanced Fermi liquid is attractive. The vicinity of a
Feshbach resonance allows tuning of the interaction
strength at will, characterized by the ratio of the interpar-
ticle distance ~1/k to the scattering length a, where k. is
the spin-up Fermi wave vector [17]. Figure 1 depicts the
scenario for a single impurity: For weak attraction
(1/kra << —1) the impurity propagates freely in the
spin-up medium of density n; = k3/67 [Fig. 1(a)]. It
merely experiences the familiar attractive mean field en-
ergy shift E| = 41rh2an1/ m < (. However, as the attractive
interaction grows, the impurity can undergo momentum
changing collisions with environment atoms, and thus
starts to attract its surroundings. The impurity “dressed”
with the localized cloud of scattered fermions constitutes

0031-9007/09/102(23)/230402(4)
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the Fermi polaron [Fig. 1(b)]. Dressing becomes important
once the mean free path ~1/n;a® of the bare impurity in
the medium becomes comparable to the distance ~1/ky
between environment particles or when (kpa)> ~ 1.
Collisions then reduce the bare impurity’s probability of
free propagation, the quasiparticle residue Z, from unity.
The dressed impurity can instead move freely through the
environment, with an energy E| shifted away from the
simple mean field result. This polaronic state is stable until,
for strong attraction (1/kza ~ 1), equivalent to a deep
effective potential well, the spin-down impurity will bind
exactly one spin-up atom, thus forming a tightly bound
molecule [Fig. 1(c)]. This molecule is itself a dressed
impurity, albeit a bosonic one [13].

To prepare and observe Fermi polarons, we start with a
spin-polarized cloud of ®Li atoms in the lowest hyperfine
state |1) (spin-up), confined in a cylindrically symmetric
optical trap (125 pm waist, 145 Hz/22.3 Hz radial/axial
trapping frequency) at a magnetic field of 690 G [17]. A
two-photon Landau-Zener sweep transfers a small fraction
into state |3) (spin-down), and further cooling results in a
cloud containing 2% |3) impurities immersed in a degen-
erate Fermi gas of 5 X 10° |1) atoms at a temperature T =
0.14(3)T, where Ty is the Fermi temperature. A 100 G
wide Feshbach resonance for scattering between these
states is centered at 690 G. For various fields around the

> @ =) he @ 5@ )
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FIG. 1 (color online). From polarons to molecules. (a) For
weak attraction, an impurity (blue) experiences the mean field
of the medium (red). (b) For stronger attraction, the impurity
surrounds itself with a localized cloud of environment atoms,
forming a polaron. (c) For strong attraction, molecules of size a
form despite Pauli blocking of momenta hk < ik << h/a by the
environment.

© 2009 The American Physical Society
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resonance, we perform rf spectroscopy on the impurity
species |3) and on the environment particles in |1) by
transferring atoms into the empty state |2), accessible to
either hyperfine state. This state is sufficiently weakly
interacting with the initial states to allow a direct interpre-
tation of the resulting spectra [18]. As in previous work,
spectra are spatially resolved and tomographically 3D
reconstructed [19] via an inverse Abel transform, and are
thus local and free from broadening due to density inho-
mogeneities. In addition, phase contrast images yield the
in situ density distribution n;, n) and thus the local Fermi
energy € of the environment atoms and the local impurity
concentration x = %‘l The Rabi frequencies (1 for the

impurity and environment rf transitions are measured (on
fully polarized samples) to be identical to within 5%.
Figure 2 shows the observed spectra of the spin-down
impurities and that of the spin-up environment at low local
impurity concentration. The bulk of the environment spec-
trum is found at zero offset, corresponding to the free
(Zeeman plus hyperfine) energy splitting between states
[1) and |2). However, interactions between impurity and
spin-up particles lead to a spectral contribution that is
shifted: The rf photon must supply additional energy to
transfer a particle out of its attractive environment into the
final, noninteracting state [17]. In Fig. 2(a), impurity and
environment spectra above zero offset exactly overlap,
signaling two-body molecular pairing. The steep threshold
gives the binding energy, the high-frequency wings arise
from molecule dissociation into remnants with nonzero
momentum [17,20,21]. As the attractive interaction is re-
duced, however, a narrow peak appears in the impurity
spectrum that is not matched by the response of the envi-
ronment [Figs. 2(b)-2(d)]. This narrow peak, emerging
from a broad incoherent background, signals the formation
of the Fermi polaron, a long-lived quasiparticle. The nar-
row width and long lifetime are expected: At zero tem-
perature the zero momentum polaron has no phase space
for decay and is stable. At finite kinetic energy or finite
temperature 7" it may decay into particle-hole excitations
[13], but phase space restrictions due to the spin-up Fermi
sea and conservation laws imply a decay rate « (T/Tj)> ~

o
E=4

atom transfer / a.u.

L\mkc
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1% in units of the Fermi energy. Indeed, the width of the
polaron peak is consistent with a delta function within the
experimental resolution, as calibrated by the spectra of
fully polarized clouds. The background is perfectly
matched by the rf spectrum of the environment. This is
expected at high rf energies fiw >> €. that are probing high
momenta k 3> kj and thus distances short compared to the
interparticle spacing. Here, an impurity particle will inter-
act with only one environment particle, leading to over-
lapping spectra.

Chevy has provided an instructive variational wave
function [5,9] that captures the essential properties of the
polaron, even on a quantitative level [16] when compared
with Monte Carlo (MC) calculations [6,12,13]:

W)= @olOyIFSh+ Y oxqchicala—k)IFS) (1)

lql<kp<Ik]|

The first part describes a single impurity with a well-
defined wave vector (k; = 0) that is not localized and free
to propagate in the Fermi sea of up spins |[FS);. In the
second part the impurity particle recoils off environment
particles that are scattered out of the Fermi sea and leave
holes behind. This describes the dressing of the impurity
with particle-hole excitations. The probability of free
propagation is given by the first, unperturbed part, Z =
|@pl?. According to Fermi’s golden rule [11,15,17,22], the
two portions of | W) give rise to two distinct features of the
impurity rf spectrum I'(w) (w is the rf offset from the bare
atomic transition):

INw) = 27h03Z8(hw + E) + ['™(w). (2)
The first part in |¥) contributes a coherent narrow quasi-
particle peak to the minority spectrum. Its position is a
direct measure of the polaron energy E|, its integral gives
the quasiparticle residue Z. The particle-hole excitations in
the second part give rise to a broad, incoherent background
' (w) o Zq,ququlza(hw — €g-x — € + €+ E}): The
polaron energy E| is released as the impurity at momentum
q — k is transferred into the final state, leaving behind an

)f O)T"
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FIG. 2 (color online).

rf spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra of the environment

(blue, state |1)) and impurity (red, state |3)) component in a highly imbalanced spin-mixture. (a) Molecular limit; (b),(c) Emergence of
the polaron, a distinct peak exclusively in the minority component. (d) At unitarity, the polaron peak is the dominant feature in the
impurity spectrum, which becomes even more pronounced for 1/kra < 0 (not shown). For the spectra shown as dashed lines in (d) the
roles of states |1) and |3) are exchanged. The local impurity concentration was x = 5(2)% for all spectra, the interaction strengths
1/kra were (a) 0.76(2), (b) 0.43(1), (c) 0.20(1), and (d) O (unitarity).
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environment particle in k above and a hole within the
Fermi sea at q [22]. These two spectral features are recov-
ered in theoretical rf spectra for a finite number of impu-
rities, i.e., a Fermi liquid [15,23]. For our analysis we do
not rely on a theoretical fit to the spectra.

To measure the polaron energy Ej, we determine the
peak position of the impurity spectrum as a function of the
local interaction parameter 1/kpa. The data for 5% impu-
rity concentration are shown in Fig. 3(a), along with the
variational upper bound given by the wave function Eq. (1)
[22] and the diagrammatic MC calculation of [13]. As final
state interactions are weak, they can be included as a
simple repulsive mean field shift 4wh?agn;/m, with ag,
the scattering length between the final state and the envi-
ronment atoms [24]. Polaron energies have been predicted
via the variational ansatz [5], the T-matrix approach
[9,10,15,16], the 1/N expansion [11], fixed-node MC
[6,12] and diagrammatic MC calculations [13]. With the
exception of the 1/N expansion, these all agree with each
other and with the present experiment to within a few per-
cent. In particular, in the unitary limit where 1/kra = 0 we
find a polaron energy of E; = —0.64(7)ex (—0.72(9)er)
when state |3) (|1)) serves as the impurity [25]. This agrees
well with the diagrammatic MC calculation, —0.615¢,
[14], and the analytical result —0.6156(2)ey [16]. Analy-

3 o5 .
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FIG. 3 (color online). Peak position of the impurity spectrum
as a measure of the polaron energy E|. (a) peak position for
various interaction strengths in the limit of low concentration
x = 5(2)% (solid circles). Open circle: Reversed roles of impu-
rity and environment. Dotted line: polaron energy from varia-
tional ansatz Eq. (1) [5], the solid line including weak final state
interactions. Dashed line: Energy of a bare, isolated molecule in
vacuum. Blue dash-dotted line: Mean field limit for the energy of
an impurity atom. Solid (open) diamonds: Diagrammatic MC
energy of the polaron (molecule) [13]. (b) Peak position at
unitarity (1/kga = 0) as a function of impurity concentration
(solid circles). The line shows the expected peak position,
ho,/ep = A+ (1 — Z)x?? — $Fx + - kay,, using the MC
value A = 0.615 [13], the analytic result m™ = 1.2 [16], the
weak repulsion between polarons with F = 0.14 [12] and
weak final state interactions with scattering length ag,.

sis of experimental density profiles yields a value of
—0.58(5)€; [26].

The relatively large value for E| directly implies that the
normal state, modeled as a Fermi sea of weakly interacting
polarons, is favored over the superfluid state up to a critical
concentration (44%), much higher than that predicted by
mean field theories (4%) [27]. These neglect interactions in
the normal state and therefore imply a polaron binding
energy of zero.

We have so far considered the limit of few impurities. By
increasing their density, we can study the effect of inter-
actions between polarons. In Fig. 3(b) we show that the
quasiparticle peak position depends only weakly on the im-
purity concentration in the unitarity limit. Polarons are thus
weakly interacting quasiparticles, despite the strong inter-
actions between the bare impurity and its environment.

The peak position could be modified due to the effective
mass m" of polarons, larger than the mass of the bare
impurity. Transfer of a moving polaron into the free final
state then requires additional kinetic energy. This leads to
an upshift and a broadening on the order of the Fermi
energy difference between initial and final state,
x*3€g(1 = ). On resonance, this is 0.04€; for x = 0.1.
The effect could be partially masked by the predicted weak
repulsion between polarons [12] that would downshift the
resonance frequency by —0.02€ for x = 0.1.

The spectral weight of the polaron peak directly gives
the quasiparticle residue Z, a defining parameter of a Fermi
liquid. Experimentally, we determine the area under the
impurity peak that is not matched by the environment’s

1/kpa
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FIG. 4 (color online). Quasiparticle residue Z as a function of
interaction strength and impurity concentration. The color cod-
ing indicates the magnitude of Z and is an interpolation of the
data points shown in the graph. Open circles: Data points
consistent with zero (Z < 0.03), solid circles: Z > 0.03, the solid
line marking the onset of Z. Blue cross: Critical interaction
strength for the Fermi liquid—molecular BEC transition for x —
0[12]. Inset: Z as a function of interaction strength in the limit of
low impurity concentration x = 5(2)%. Open circle: Reversed
roles, |1) impurity in |3) environment. The spectrum in the inset
illustrates the determination of Z [22].
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response and divide by the total area under the impurity
spectrum (see spectrum in Fig. 4 and [22]). Figure 4
presents Z as a function of interaction strength and impu-
rity concentration x, the inset shows Z for x = 5%. As
expected, Z approaches 100% for weak attractive interac-
tion kra — 07, where the bare impurity only rarely recoils
off environment atoms. As the mean free path shortens and
the bare impurity starts to surround itself with environment
atoms Z decreases. On resonance, we find Z = 0.39(9) for
x = 5%, with only a weak dependence on x (Fig. 4).
Theoretical values for Z vary: ansatz Eq. (1) predicts Z =
0.78 for a single impurity, while Ref. [11] predicts Z =
0.47 (0.30) for vanishing (5%) impurity concentration. Our
procedure might yield a lower bound on the actual value of
Z, as the incoherent part of the impurity spectrum might be
depleted around threshold. Eventually, for strong attraction
between the impurity and particles of the medium, Z
vanishes and we observe complete overlap of the impurity
and environment spectra. This signals the formation of a
two-body bound state between the impurity and exactly
one environment atom. For a spin-down concentration of
5% we determine the critical interaction strength where the
polaron peak vanishes to be 1/(kra), = 0.76(2). This is in
good agreement with the independently determined critical
interaction 1/kpa = 0.74(4) beyond which one finds a
superfluid even for the smallest impurity concentration
[28]. This is a multicritical point [12,13,29] where a
Fermi liquid of weakly interacting polarons undergoes a
phase transition into a Bose liquid of molecular impurities.
Fixed-node MC calculations place this transition at a value
of 1/kpa = 0.73 for x — 0 [12]. Our 1/(kza), is lower
than the value 0.90(2) from diagrammatic MC [13] for a
single impurity. Ansatz Eq. (1) does not predict a transi-
tion, as it does not test for the formation of molecules. In
Fig. 4, the color coding reveals where molecular behavior
is observed (yellow), and where the spectra show polaronic
behavior (red to black). It can be seen that the critical
interaction strength for the formation of molecules depends
only weakly on the impurity concentration x.

In conclusion, we have observed Fermi polarons in a
novel, attractive Fermi liquid of spin-down impurity atoms
immersed in a spin-up Fermi sea. The energy and residue
of this quasiparticle was determined and interactions be-
tween quasiparticles were found to be weak. Polarons thus
emerge as the quasiparticles of a Landau Fermi liquid
description of this strongly interacting Fermi mixture. To
study first the impurity limit of N + 1 interacting particles
before dealing with the full N + M many-body system will
be a fruitful approach for other strongly correlated systems
realized with cold atoms. An intriguing question is how the
limit of a weakly interacting polaron liquid containing few
impurities connects to the physics of a hydrodynamic,
balanced Fermi gas containing Cooper pair fluctuations
above the critical temperature for superfluidity. In light
of our findings, fermion pair condensation could be viewed
as condensation of pairs of polarons with opposite spin.
This is also suggested by the large normal state interaction

measured by quasiparticle spectroscopy on the superfiuid
state [30].
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In this supplemental material we state, starting with the variational Ansatz by Chevy, key prop-
erties of the polaron, such as the energy F| and the quasiparticle residue Z, and we calculate its RF
spectrum using Fermi’s Golden Rule. We connect this approach and its implication for finite impu-
rity concentration to the results of Fermi liquid theory and the T-matrix formalism used in [1-4].
Furthermore, details are provided about the extraction of the quasiparticle residue Z.

Polaron wavefunction, energy and quasiparticle
residue

We start with the hamiltonian for a dilute two compo-
nent mixture of fermionic atoms interacting via the van-
der-Waals potential V (r) [5]. Thanks to the diluteness of
the system, the potential is of short range R compared
to the interparticle distance 1/kp, so krpR < 1. Its
Fourier transform V (k) is thus essentially constant, go,
below kg and rolls off to zero at a momentum on the or-
der of 1/R > kr. The many-body Hamiltonian for the
system is then

7 _ T 9o t t
H = Zekckdek"_'_v Z ck+grc—k+§1ck'+%lc*k’+§T
k,o k,k/,q
(1)

Here, the label o denotes the spin state 1,], e =
h2k%/2m, V is the volume of the system and the c}; »Cka
are the usual creation and annihilation operators for
fermions with momentum k and spin ¢. The trial wave-
function for the Fermi polaron with zero momentum pro-
posed by F. Chevy in [6] is

k>kp
V) = o |0>1 |FS>T + Z ‘quC{quT la - k>l |FS>T

q<kr
)
The energy is then minimized under variation of the pa-
rameters o and @iq, with the constraint of constant

norm (¥|¥) = |gol” + SgZif [0ia® = 1. That is,
the quantity to minimize is <\I/|I:I[\Il> — E (V|¥). The
derivation can be found in [6], here we quote the result for
the particle-hole excitation amplitudes ¢iq, the quasipar-

ticle weight |<po|2 = Z, and the energy F| due to addition
of the down spin impurity:

_ 1 f(lalvq)
sakq~wVEl_€k+€q_€qk 3
1 1
== = Z f(E,q) (4)
lpol?  Z 8qu<kp

E=E,

=5 Z f(Ey,q) (5)

¢1<kF

These all depend on the function f(F,q) with

fTNEBq) = —+— > o

(6)
VS E

eq+eq x —

It is a measure of the interaction strength between spin
up and spin down, modified by the presence of the spin up
Fermi sea. As usual, go can be replaced by the physically
observable scattering length a for collisions between spin
up and down via [5] L -5 ke e

go 4#52
I = g (g —1) + (7
’ 7T2fi2 2kpa
1 Z ( _L)
k>k eq+eq k—E 2¢

The integral in above expression is convergent and gives

oo (4o

_1 _
(B9 =5 212 \ 3%ra

o x 2r% + 22y — €
fev) /1 z<2y n<2m2~2xy—e) )
An analytic expression for the integral exists but does not
provide additional insight. The equation for £, becomes

——2/0 dyl_ L (EF»?/) 9

This implicit equation for E| can be easily solved nu-
merically. The result is shown as the dashed line in
Fig. 3 of the main paper. Clearly, E| is negative due
to the attractive interactions with the medium. In the
weakly interacting limit 1/kra — —oo, we can neglect
the integral in the denominator and immediately obtain
E| = 22kea B = 4nh2an; /m, which is the mean field
result [7].

The approach turns out to be equivalent to a T-Matrix
description, as shown in {7]. In that language, f(FE,q)




is (up to a constant) the scattering amplitude in the
medium (i.e. the vertex) for the scattering process with
total energy and momentum E and ¢ of the colliding
particles. $(0,E) = 3., ., f(EL + E, q) is the self-
energy at zero momentum and frequency E/A. It is real
in this approximation. The expression for the quasipar-
ticle residue Z of a single spin down impurity in Eq. 4
is immediately seen to be equivalent to the well-known
relation [3]

Zl_l = (l — B%Reﬁ(kpl,E)> (10)

E=0

for a spin down quasiparticle on top of a spin down Fermi
sea, in the limit of vanishing Fermi momentum kg .

RF spectrum from the variational Ansatz

Fermi’s Golden Rule allows us to directly predict the
shape of the impurity RF spectrum. This topic has been
studied in detail since the early days of RF spectrosocpy,
and for the problem of highly imbalanced Fermi gases
in [1-4], among others. Chevy’s wavefunction offers a
simple way of calculating the RF spectrum of a single
impurity.

The RF operator V= QR >, c;rc’fck,i + h.c. promotes
the impurity into the free final state | f) (energy Ey) with-
out momentum transfer [5]. In the experiment, the final
internal state is the second lowest hyperfine state of SLi.
Fermi’s Golden Rule for the impurity -starting in state
|¥) is

rw) = S| (5191w athe — (2 - E)) ()
f

Where w is the RF offset from the bare atomic transition
frequency between the internal states labeled by | and
f. One possible final state is [0) = |0);|FS);, ie. a
zero momentum particle in the final state plus a perfect
Fermi sea of up spins, with energy E|gy = 0 relative to the
Fermi energy Er of the environment. Other possible final
states are |q,k) = \q—k>fcI(chT |F'S); with ¢ < kr
and k > kp, i.e. a particle with momentum q — k in
the final state and a Fermi sea with a hole at q and
an excited environment particle above the Fermi sea at
k. The energy of these states is Ejqx) = €k — €q +€q-k
relative to the environment Fermi energy Er. The matrix
elements are

<0 M \I/> — hQg 90
<q,k ‘V‘ \11> = QR Pxq

This leaves us with two components in the RF spectrum:

Tw) = 27hQ% (Zd(hw +E)+ (12)

k>kp
> lokal® 5(hw + B — e + €q — 6q—k)>
a<kr

The first part is a delta-peak shifted by the quasiparticle
energy. As E| < 0, it is shifted to higher frequencies: The
RF photon has to supply additional energy to transfer the
impurity out of its attractive environment. The weight
of this peak is Z, the quasiparticle residue, allowing the
experimental determination of Z by simply integrating
the area under the prominent peak. Such a delta-peak
is typically called ”coherent”, as a broadband excitation
around this energy would not dephase over time. The
second part of the spectrum is incoherent, it consists of a
broad continuum of frequencies. Broadband excitations
of this continuum would rapidly dephase, over a timescale
given by the inverse width of the continuum.

RF spectrum in Fermi Liquid theory

This structure of the RF spectrum is a generic fea-
ture of quasiparticle spectra. In Fermi liquid theory, the
propagator of a quasiparticle is approximated as a pole
at energy E(k) > 0 (relative to the ground state energy),
lifetime 1/7(k) and residue Z plus an incoherent spec-
trum (3, 8]

GR(k,w) = Z

R,inc
= R T B i T O (W) (13)

function is given by A_(k,w) =
Zl hvy(k

T ToTEm e T+ Ak, w)

The spectral
—1ImGER(k,w) =
which tends to

A_(k,w) = Z6(hw + E(k)) + A™(k,w)  (14)

in the limit of small damping of the quasiparticle.
A_(k,w) measures the probability that removing a par-
ticle with momentum k will cost an energy —Aw. The
RF spectrum in linear response is given by [2]

D(w) = 2mhQ% > A_(k, 6 — p — hw)np (e — i — hw)
k

(15)
where y is the chemical potential of the quasiparticle and
np(z) = 1/(e*® + 1) is the Fermi function that tends to
f(—=z) at zero temperature. This is intuitively under-
stood: For a given momentum k, the RF photon with
energy fuw has to provide the energy ex — p (relative to
the initial chemical potential u) to create a free parti-
cle in the final state. The rest, Aw — ex + u, is used
to remove a particle from the initial state (probability
A_(k, ex — p — hw)) if there exists such a particle (factor



np(ex — p— Aw)). Eq. 15 is equivalent to Fermi’s Golden
Rule Eq. 11 [9]. In the case where the spectral func-
tion is dominated by a quasiparticle peak, the spectrum
becomes

T(w) = 2rhQ%Z Y S(ew + E(k) — p— hw)
k
x nplex — p— hw) + TP (W) (16)

Connecting to our case of a single quasiparticle with 4 =
E| and k = 0, this directly gives

INw) = 2rRQ%Z6(hw + E|) + I'™(w) (17)

identical to the prediction via the trial wavefunction.

Polaron spectral function

To connect the single particle and the Fermi liquid de-
scription, we calculate the propagator GF(k,w) for the
removal of a single spin down impurity from the wave-
function |¥). By definition,

iGR(k,t) = (U clye ™ haq (W0 (18)
Inserting a complete set of eigenstates, this gives

iGR(k,t) = Y [(flax )7 eErtg)  (19)
f

The state cx| |¥) is void of any spin down impurity and
has non-vanishing matrix elements only with either the
unperturbed spin up Fermi sea, |FS)T (if k = 0), or with
particle-hole excitations |q,k’) = c;r(,chT |[F'S); (in the
case k = q — k’). These matrix elements are ¢g = vV'Z
and @y q resp., the corresponding energies Ey = 0 and
Ef¢ = e — €q relative to Ep. So one has:

k' >kp
iGR(k,1) = (Zoo+ D Sia i lpwql® € ~<M)0 (1)
q<kr

Finally, Gf(k,w) = 500 + G2 (k,w) with in-
finitesimal n > 0. This is just the Fermi liquid form
of G but for a single quasiparticle with zero momentum
(E(0) = 0 in (13)), as described by [¥). The spectral
function is

A_(kw) = Z6(hw)dio +
k' >kp

D Sa-i lpwal’ S(Aw + 0 — €q)

g<kr

With Eq. 15 this exactly gives the RF spectrum of Eq. 12.

Calculation of the incoherent background

Using Eq. 3, we can write the incoherent part of the
spectrum as:

k>kp
(W) = 207, Y |¢kal® 6(hw + By — e + €q — €q-k)

q<kr

27T92 71 k>kp
= R S (B + By — et eq — cq )
a<kr

The integral over k exists in analytic form:

1
v Zk>kF d(hw + E| — ex + €q — €q—k) =
k hw+E
s K (g 75)
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with K(e,y) =

yi-1
Jy— fory. <1<ys,

0 for 1>y, .

and yizﬂ:%+\/y4—z+e (20)
The incoherent spectrum is then
K (")
~1(B))

One can check that the total spectrum obeys the sum
rule

21)

T
1- 2kra

. ZEp [*
Inc(w) = 702 / dy
( ) R Fuo? o (

oo
f dwT(w) = 2rhQ% (22)
— 0

and in particular that the total weight of the incoher-
ent background is proportional to 1 — Z, which is not
obvious from the form in Eq. 21. For RF frequencies
close to threshold fw + E| <« 2Ep, the hole momen-
tum q and the particle momentum k must be close to
each other to fulfill energy conservation, i.e. they have
to be close to the Fermi momentum. The double sum
over q and k thus gives a phase space suppression on
the order of (Aw + E|)?, i.e. the spectrum starts like
(hw + E|)?/w?. This is in contrast to the dissociation
spectrum of a molecule of binding energy Ep, where the
density of states above threshold gives a spectrum pro-
portional to v/Aw + Ep/w?. For large RF energies, large
particle momenta k are involved, the suppression due to
the Fermi sea becomes negligible and the spectrum be-
haves like \/Aw + E|/w?, as for a molecule of binding
energy E|. This is natural as for large momenta, we are
probing short-range physics which involves at most two
particles, a spin up environment atom and the impurity.
In particular, at RF energies hw > E|, we recover the
w™3/2 behavior of the RF spectrum that is universal for
short-range interactions.



RF Spectrum of a finite concentration of impurities

Since polarons are found to be weakly interacting, they
will form a Fermi sea filled up to the impurity Fermi mo-
mentum kr|. The fact that the dispersion of polarons
E(k) = e differs from that of a free particle due to
the effective mass m* # m leads to broadening of the RF
spectra. The RF photon has to supply the difference in
kinetic energies (1 — 2% )e, between the initial and the
final state, with a maximal shift (1— % )h?k}, /2m. The
spectral shape is easily obtained: The spectral function
at momentum k will be dominated by polarons that oc-
cupy that momentum state. The coherent part of the
spectral function is thus A*°%(k,w) = Zi(hw + E(k))
with E(k) = —h?k*/2m* = — e relative to the im-
purity Fermi energy. The coherent part of the spectrum
then becomes

" (w) = 2rh0% > A (k, ek — E| — hw)
k

where the sum extends up to the impurity Fermi momen-
tum kp;. With the free, 3D density of states p(e), this
is

Ep|
o (w) = 2wm§/ de p(e)Z8(e — E| — hw — —
0

m‘f)
ﬁuJ-JrEL) s

m
1-o%

2 h% Zm ,0(
1— 0%
m

9 ((1 — Z)Ery — hw - Ei) (23)

This coherent part of the spectrum starts at the polaron
ground state energy hw = |E||, then grows like a square
root and jumps to zero when hw — |E|| = (1 - ZL)Ep|.
On resonance, where m* = 1.2, this occurs at kw—|E|| =
0.22*3Ep; = 0.04Ep; for = 0.1. This is still smaller
than the Fourier width of the RF pulse used in the exper-
iment of about 0.1Er. The size of the jump is given by
Qﬁﬁﬂﬁﬁp(l‘?p 1) and reflects the impurity Fermi sur-
face in the RF spectrum. This behavior of the coherent
part of the spectrum was found in [1] and was discussed
recently in [4]. It is intriguing that the sharpness of the
Fermi surface and its discontinuity should, at least in

principle, be observable in the RF spectrum.

Determination of Z from experimental spectra

In order to extract the quasiparticle residue Z, we de-
termine the area under the peak that is not matched by
the environment’s response and divide by the total area
under the impurity spectrum (see spectrum in the inset
of Fig. 4 in the main body of the paper). Due to the
Fourier width of the probe pulse, the strong response of

the environment around zero RF offset (the resonance for

atom transfer / a.u.

0 1 2 3 4 5
rf offset/ €

FIG. 1: Determination of the quasiparticle residue Z. Impu-
rity spectrum (red), environment spectrum (blue) and spec-
tral response of non-interacting atoms (black dashed), folded
over from negative RI* offsets.

non-interacting atoms) adds some weight to the environ-
ment background at the position of the polaron peak. To
remove this effect in the determination of Z, the part of
the environment’s response at negative frequency offset
is folded towards the positive side (dashed line in Fig. 1)
and subtracted from the environment spectrum. As it
turns out, this procedure changes the value for Z by less
than 5% for all spectra in Fig. 2 of the main paper.
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Quasiparticle Spectroscopy

This appendix contains a reprint of Ref. [44]: Andre Schirotzek, Yong-il Shin, Chris-
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We present majority and minority radio frequency spectra of strongly interacting imbalanced Fermi
gases of SLi. We observed a smooth evolution in the nature of pairing correlations from pairing in the
superfluid region to polaron binding in the highly polarized normal region. The imbalance induces
quasiparticles in the superfluid region even at very low temperature. This leads to a local bimodal spectral
response, which allowed us to determine the superfluid gap A and the Hartree energy U.

DOI: 10.1103/PhysRevLett.101.140403

Pairing and superfluidity in fermionic systems are in-
tricately related phenomena. In BCS theory [1], describing
conventional superconductors, the emergence of superfiu-
idity is accompanied by the opening of a gap in the
excitation spectrum of the superfluid. This gap can be
interpreted as the minimum energy required to break a
Cooper pair or, equivalently, to create an elementary exci-
tation, a so-called quasiparticle, inside the superfluid.

However, strongly correlated systems show a more com-
plicated behavior. There are gapless fermionic superfluid
systems, e.g., high temperature superconductors [2] or for
superconductors with magnetic impurities [3]. On the other
hand, there are numerous examples of systems with an
excitation gap in the normal state, e.g., a high temperature
superconductor above its superfluid transition temperature
exhibiting a pseudogap [2].

Here, we use radio frequency (rf) spectroscopy to in-
vestigate the nature of pairing and the relation between
pairing and superfluidity in a strongly interacting system of
ultracold atomic Fermions.

We can spectroscopically distinguish the superfluid and
the polarized normal fluid by introducing excess fermions
into the system. In a superfluid phase described by BCS
theory, the excess particles can be accommodated only as
thermally excited quasiparticles. A local double-peaked
spectrum reflects the coexistence of pairs and unpaired
particles. In the normal phase, at large spin polarization,
the limit of a single minority particle immersed into a
Fermi sea is approached, which can be identified as a
polaron [4-7]. Here the system can be described in the
framework of Fermi liquid theory and no stable pairs exist.
We find that these different kinds of pairing correlations
are smoothly connected across the critical density imbal-
ance [8], also called the Clogston-Chandrasekhar limit of
superfluidity [9,10].

The rf spectrum of a superfiuid containing quasiparticles
shows two peaks, which, in the BCS limit, would be split
by A, the superfluid gap. Therefore, rf spectroscopy of
quasiparticles is a direct way to observe the superfluid
gap A in close analogy with tunneling experiments in
superconductors [11]. From the observed spectrum we
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can also determine a Hartree term, see Y. Castin in [12],
whose inclusion turned out to be crucial.

For this study, we have combined several recently de-
veloped experimental techniques: The realization of
superfluidity with population imbalance [13] leading to
phase separation [8,13,14], tomographic 1f spectroscopy
[15], in situ phase-contrast imaging with 3D reconstruc-
tion of the density distributions [8]. In order to minimize
final state effects [16] we have prepared an imbalanced
mixture of states |1) and |3) of SLi (corresponding to
|F=1/2,mg=1/2) and |F = 3/2, mp = —3/2) at low
field) in an optical dipole trap at a magnetic field of B =
690 G, at which there is a Feshbach scattering resonance
between the states |1) and |3) [16,17]. Evaporative cooling
at B = 730 G is performed by lowering the power of the
trapping light. After equilibration an rf pulse was applied
for 200 us selectively driving a hyperfine transition from
state |1) or |3) to state (|2)|F = 1/2, mp = —1/2) at low
field). Immediately after the rf pulse an absorption image
was taken of the atoms transferred into state |2).

The spectra were correlated to the local Fermi energy
€p = 2= (67ny)** of the majority density n; and to the
local polarization oy, = %::—:} which is a measure of the
local excess fermion population. As in a previous publica-
tion [8] the local densities were measured using phase-
contrast imaging and 3D reconstruction using the inverse
Abel transformation.

The rf spectra shown in Fig. 1 reveal a gradual change in
the nature of the pairing correlations. The balanced super-
fluid is characterized by identical spectral responses of
majority and minority particles and has been the subject
of previous studies, see Zwierlein, Grimm, and Regal in
[12] and references therein. In the polarized superfluid
region [8,18] (and references therein) the minority spec-
trum perfectly matches the pairing peak of the majority
spectrum, locally coexisting with the quasiparticle spectral
contribution, resulting in a local double-peak structure of
the majority spectrum, see Fig. 1(b). The spectrum sug-
gests that the majority population can be divided into two
distinct parts: One part consisting of pairs forming the
superfluid, the other part consisting of quasiparticle exci-

© 2008 The American Physical Society
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FIG. 1 (color online). Tomographically reconstructed rf spectra for various regions of the atomic sample at unitarity. (a) Balanced
superfluid, (b) polarized superfluid, (c) moderately polarized transition region, and (d) highly polarized normal region. The panel on
the left shows a phase-contrast image of the atomic cloud before rf excitation. The positions of the spectra (a) to (d) are marked in the
phase-contrast image and by the arrows in Fig. 2. Red: Majority spectrum, blue: Minority spectrum. Local polarizations o, and local
temperature T/T, respectively: (a) —0.04(2), 0.05(1); (b) 0.03(1), 0.06(1); () 0.19(1), 0.06(2); (d) 0.64(4), 0.10(2). The negative value
in (a) implies that the local polarization as inferred from phase-contrast imaging underestimates o, by up to 0.05.

tations in the form of excess fermions. Therefore, a natural
interpretation of the rf spectrum is to identify one peak as a
Stokes process (rf creates a quasiparticle excitation) giving
rise to the dissociation part of the rf spectrum and the other
as an anti-Stokes process (rf destroys a quasiparticle
excitation).

As the local imbalance is further increased beyond the
superfluid to normal (SF-N) transition [8,19], see Fig. 1(d),
the majority spectrum no longer shows a local double-peak
structure. This is consistent with theoretical work [20,21]
attributing the double-peak structure in the normal phase in
previously reported rf spectra [22,23] to the inhomogene-
ous density distribution. For increasing spin polarization
the majority and minority pairing peaks lose spectral over-
lap. We interpret the missing overlap as indication that the
minority atoms are no longer bound in pairs, each of them
interacting with more than one majority atom, a situation
we refer to as polaronic binding. We have seen [19] that on
the Bose-Einstein condensation (BEC) side of the
Feshbach resonance the overlap between minority and
majority spectra does not depend strongly on the presence
of excess fermions as is expected in a molecular picture. At
unitarity, within our experimental resolution, the overlap
starts to decrease at the SF-N interface, see Fig. 1(c).

Even when the spectral overlap decreases, there is still
equal response to the rf excitation in the high frequency
tails, see Figs. 1(c) and 1(d). These tails correspond to large
momentum components in the interparticle wave function
and hence address the short range physics. We expect this
part of the spectrum to be insensitive to changes in the
binding at large distances.

The direct comparison between majority and minority
spectra clarifies our previous experimental results on mi-
nority rf spectra in the |1) — |2) mixture [23], in which we
concluded that there is strong pairing in the normal phase.
Although the previous results suffered from final state
interactions [16], we confirm that the change in pairing
correlations is indiscernible in the minority spectrum

alone, but shows up in the spectral overlap with the ma-
jority spectrum. As a result, the observed spectral gap in
the normal phase should not be interpreted as a signature of
pairing but rather as strong pairing correlations in the form
of a polaron as suggested in [24-26]. Figure 2 summarizes
our data in the unitary regime.

_ Minority :  Majority

0.0

rf offset/

1.0 0.5 0.0 0.5 1.0
r/ R‘p

FIG. 2 (color online). Spatially resolved rf spectra of an im-
balanced Fermi gas at unitarity. (a) The right half shows the
majority spectra as a function of position in the trap expressed in
terms of the majority Fermi radius Ry, the left half displays the
minority spectra. The superfluid to normal transition region is
marked by the gray vertical lines. The local polarization o, is
given by the short-dashed red line. The error bars are the
standard deviation of the mean value. The arrows indicate the
position of the four spectra shown in Fig. 1. The image is a
bilinear interpolation of 2500 data points, each plotted data point
in the image is the average of three measured data points. The
spatial resolution of the image is 0.045 - R;.
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We now turn to a quantitative analysis of the spectral
peaks in the superfluid phase for small density imbalance,
and to the determination of the superfluid gap. Earlier work
[15,22] tried to determine the gap from the onset of the pair
dissociation spectrum. However, the rf spectrum is not only
sensitive to final state interactions, it is also shifted by
Hartree energies, as we show here. Furthermore, rf spec-
troscopy can excite all fermions, even deep in the Fermi
sea, see M. Zwierlein in [12]. Therefore, the onset of the
pair dissociation spectrum occurs for atoms with momen-
tum k = 0 and, in the BCS limit depends quadratically on
the gap parameter (wy, = ZA—:F). The excitation gap can be
directly observed if quasiparticles near the dispersion mini-
mum are selectively excited, as in tunneling experiments.

Our solution is to study not the ground state of a super-
fluid, but excited states where quasiparticles are present. In
a simple BCS description, quasiparticles are in pure mo-
mentum states, but increase the total energy of the system
because their momentum state is no longer available to the
other particles for pairing. Consequently, in an excitation
spectrum, quasiparticles appear at negative frequencies
relative to the bare atomic transition frequency. The lowest
energy quasiparticle appears at frequency —A, see Fig. 3.

Final state interactions and Hartree terms can also create
line shifts, and two peaks are needed for analysis, the
dissociation peak and the quasiparticle peak in our case.
In essence, it is the separation between the peaks in spectra
like Fig. 1(b), which allows us to determine A.

Thermal population of quasiparticles requires a tem-
perature on the order of the excitation gap A. At unitarity,
this temperature can be estimated to be 95% of the critical
temperature, away from the low temperature limit ad-
dressed in this Letter. Indeed, in samples of equal popula-
tion of the spin states we were not able to spectroscopically
resolve any local double-peak structures [19]. This prob-
lem can be overcome by introducing density imbalance
between the constituents: The chemical potential differ-
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FIG. 3 (color online). Creation and spectroscopy of quasipar-
ticles. (a) Population imbalance thermally generates quasipar-
ticles even at low temperatures comparable to A — ;. uy is the
chemical potential of the majority component. (b) The rf spec-
trum consists of a quasiparticle peak at negative frequencies and
the pair dissociation spectrum at positive frequencies (dotted
line). On resonance, the Hartree contribution U acts as an
effective attraction and hence shifts the entire spectrum into
the positive direction.

ence between majority and minority components (u; >
) forces a finite quasiparticle occupation into the super-
fluid region already at very low temperature [27]. This
allows us to selectively populate quasiparticles at the mini-
mum of the dispersion curve, see Fig. 3(a).

In Fig. 4(a) the position of the peaks of majority and
minority spectra are plotted normalized by €;; as a func-
tion of position in the trap in the unitary limit [19]. The
peak positions are proportional to the local Fermi energy
inside the superfluid region within our experimental reso-
lution. In the region of superfluidity with finite polarization
the spectra show local double peaks. The position of the
two peaks in the limit of small polarization is depicted in
Fig. 4(b) for various interaction strengths.

It was unexpected that the quasiparticles appear at posi-
tive frequencies (relative to the atomic transition fre-
quency). This is caused by the presence of Hartree
terms, resulting in an overall shift of the systems energy
and the rf spectrum [19]. In the weakly interacting limits,
the Hartree term reduces to a simple mean-field shift. In the
strongly interacting regime one has to resort to quantum
Monte Carlo (QMC) calculations [28-30] for a numerical
value of U.

In a mean-field description of the balanced superfluid
starting from the BCS-Leggett ansatz for the BEC-BCS
crossover, see Zwierlein in [12] taking into account the

Hartree term U, the dispersion relation of the quasiparticles
can be expressed as E; = /AZ + (g, + U — p)?, see
Y. Castin in [12] where €, = % is free particle kinetic
energy and u is the chemical potential. This mean-field
formalism gives the analytic expression for the two peak

positions. A quasiparticle at the minimum of the dispersion
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FIG. 4 (color online). (a) Normalized peak positions of pairing
peaks and quasiparticle peak at unitarity as a function of position
in the trap. The SF-N boundary (cusp in column density differ-
ence [19]) is marked by the dashed vertical lines. The arrow
indicates the limit of low quasiparticle population relevant for
(b). Majority: blue open squares (pairing peak) and solid black
circles (quasiparticle peak). Minority: solid red triangles.
(b) Pairing peak and quasiparticle peak positions as a function
of the local interaction strength 1/kxa in the limit of small local
imbalance [see arrow in (a)]. Pairing peak: solid circles; quasi-
particles peaks: open circles.
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TABLE 1. Superfluid gap A, Hartree term U, and final state
interaction Egp, in terms of the Fermi energy e for various
interaction strengths 1/kra.

]/kpa A U Eﬁnal
—0.25 022 —0.22 022
0 0.44 -0.43 0.16
0.38 0.7 —-0.59 0.14
0.68 0.99 —0.87 0.12
curve will respond at an rf offset of wy = —E,  — u +
€, = —A — U, and the maximum of the pair dissocia-

tion spectrum occurs at hwm,, = 3(yfu? + 3A2 — 4/) —
U=3%wy — U, where u' = u — U and wy, is the disso-
ciation threshold (which is at momentum k = Q).

We determined the superfluid gap A and the Hartree
energy U from the peak positions in the limit of small
density imbalance (o, = 0.03). At unitarity with the
chemical potential p = 0.42€p, confirmed in previous
experiments and theory, see [31] and references therein,
we obtained A = 0.44(3)efy and U = —0.43(3)€p, in ex-
cellent agreement with the predicted values A, = 0.45€p,
and U, = —0.43ep from QMC calculations [32]. Our
determined values for A and U values suggest the mini-
mum of the quasiparticle dispersion curve to occur at
kmin = 0.9kp. Table 1 shows the gap and Hartree energy
for various interaction strengths. Away from unitarity we
relied on QMC calculations for the chemical potential u
{33].

For an accurate quantitative comparison [19] final state
interactions, also listed in Table I, had to be taken into
account. The effect of final state interactions is an overall
mean-field shift of Eg,, = 4”,;’2“ n. This shift affects both
the quasiparticle peak and the pairing peak equally.

In conclusion, in crossing the superfluid to normal
boundary we observed a gradual crossover in the pairing
mechanism by comparing majority and minority spectra.
The majority spectrum shows a local double-peak spec-
trum in the polarized superfiuid region which allowed us to
determine the superfluid gap A and the Hartree terms U.
The spectra in the normal phase are consistent with a
polaron picture.
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Auxiliary Material: Determination of the Superfluid Gap in Atomic Fermi Gases by
Quasiparticle Spectroscopy

PACS numbers: 03.75.Ss, 32.30.Bv

Determination of the superfluid boundary

It has been shown previously [1] that at unitarity the
difference column density profiles serve as an indicator
for the SF-N boundary. The discontinuity of the minority
density results in a pronounced ”cusp” in the difference
profile nq(r) — ny(r), see fig. 1. In the main body of the
paper the phase boundary has been determined by this
peak position. Hence, "normal” refers to spatial regions
beyond the peak, ”superfluid” refers to spatial regions
inside.

The color coding in the graphs in fig. 1shows where the
spectral overlap (definition see below) between the ma-
jority and minority pairing peaks is lost. On resonance
(B = 690 G) this position shows excellent agreement with
the position of the cusp in the difference density profile
and can therefore serve as an alternative indicator for
the SF-N boundary. This coincidence breaks down away
from resonance: On the BCS side (B = 710 G) the spec-
tra are less "robust” against polarization and spectral
overlap is lost before the column density difference shows
a peak. The reverse situation occurs on the BEC side of
the resonance (B = 671 G). Note that on the BEC side
the minority cloud does not extend much further than
the peak position in the column density difference.

Quantification of spectral overlap

In order to calculate the spectral overlap of a spec-
trum, the quasiparticle peak was fitted by a gaussian and
subtracted from the majority spectrum. The overlap is
then defined as one minus the difference of the integrated
spectra normalized by the sum of the integrated spectra,
see fig. 2. As mentioned in the main text and above, on
the BEC side of the Feshbach resonance almost complete
spectral overlap can be observed into the normal region.
On the BCS side the reverse situation occurs.

Minority peak shift for high imbalance

Fig. 4 in the main body of the text shows the peak
positions normalized by the local majority Fermi energy
ert. Fig. 3 shows the bare peak positions as observed in
the experiment.

One unexpected finding in fig. 4a in the main body of
the text is the sudden increase of the minority peak po-
sition for high imbalances. This behavior can be traced
back to the data in fig. 3: The minority peak position

(red) shows a change in curvature as the SF-N bound-
ary is crossed, in contrast to the majority Fermi energy.
Therefore, the ratio of minority peak and majority Fermi
energy shows a sudden increase towards the edges of the
cloud. The value of the peak position of wpe ~ 0.9€py
(where final state interactions of Efinq =~ 0.05€71 have
been taken into account) is higher than the theoretically
calculated value of ~ 0.6 epy [2].

Quasiparticles in an equal mixture

In a previous publication [3] low temperature RF spec-
tra did not show any signatures of quasiparticles. We
have attempted to create thermally generated quasipar-
ticles in an equal density mixture for higher temperatures
T/Tr > 0.20. The experimental results in fig. 4 show a
decrease of the gap parameter, but no local double peak
structures could be resolved for any temperature.

We can estimate the temperature required to populate
quasiparticles, assuming that the temperature has to be
on the order of the gap and that A(T) is given by the BCS

relation %%2 =1.74,/1— Tlc [4]. At unitarity, Ag/T, ~
3. One would expect to populate quasiparticles only very

close to the transition temperature T'/7, ~ 0.95, when
the gap is only one third of its low-temperature value.

The theoretical dissociation spectrum including the
Hartree term U

Starting from a BCS-Leggett mean-field wavefunction
and applying Fermi’s Golden Rule, the RF spectrum can
be described by (neglecting the Hartree term):

Vw — [ 2
W w w

where wyp, = /A2 + p? — i is the dissociation thresh-
old and y is the chemical potential.
The corresponding quasiparticle dispersion relation is:

Er = /A% + (e — p)? (2)
€x being the free particle dispersion €, = 7‘;’::
Hartree terms U modify the quasiparticle excitation
spectrum [5, 6]:

Ep= /A2 + (e — (0 —U))? 3)
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FIG. 1: (Color online) The difference column density profile n;(r) — n,(r) (radially averaged). a) BCS side (B = 710G), b)
Unitary limit (B = 690G), ¢) BEC side (B = 671G). Each profile shown is the average of 10 individual profiles. Blue marks
the region of complete spectral overlap between majority and minority components, red marks the region where there is no
complete spectral overlap. The black arrows at the bottom indicate the radial size of the minority component.
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FIG. 2: (color online) Overlap of majority and minority pair-
ing peak as a function of position in the trap for various in-
teraction strengths. A power law was fitted to the curves as
a guide to the eye. Unitary limit (black circles): 1/kpta = 0,
phase boundary at r./R; =~ 0.46; BEC side (red triangles):
1/krra = 0.39(1), re/Ry =~ 0.45; and BCS side (blue dia-
monds): 1/kpra = —0.25(1), ro/R; =~ 0.35

resulting in an RF spectrum of

UJ’*UJ’ wn’ 2 !
S v 20
w w W

T (w') (4)
where w' = w+ U, w}, = wyp +U and p/ = p - U.
This demonstrates that the spectrum retains its func-
tional form but the entire spectrum is shifted by U.

Resolution / Experimental broadening

For comparison with the theoretical spectrum, we
model the RF pulse of T = 200 ps length as a square
pulse, in the frequency domain, resulting in a FWHM of
the RF spectral powgr of Av =2 -1.39 2 ~ 4.4 kHz.

peak position / kHz

FIG. 3: (color online) a) Local majority Fermi energy in kHZ,
the error bars are the standard deviation of the mean value.
b) Peak positions of majority and minority in kHz. Major-
ity (Blue): Pairing peak (higher frequencies, only discernible
in the SF region) and quasiparticle peak (lower frequencies).
Minority (red): The peak can be traced well into the normal
region.

The theoretical spectrum consists of two parts: 1) A dis-
sociation peak including the Hartree energy, described by
eqn. 1 with A and U as given in table I in the main text.
2) A quasiparticle peak modeled as a narrow (FWHM
= 1 kHz) Lorentzian with a peak height adjusted so that
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FIG. 4: (Color online) Local RF spectra of an equal spin mixture for various normalized local temperatures T/Tr;. a)
T/Trr = 0.20, b) T/Tr =~ 0.22, ¢) T/Tpr ~ 0.34, d) T/Tr; ~ 0.55. No local double peak spectrum can be resolved in the RF
spectrum. For comparison, the double peak spectrum of an imbalanced mixture with T'/Trt ~ 0.06 is added with a red dashed

line.
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FIG. 5: (color online) Comparison of experimental (red) and
theoretical (black) line shapes for spectra a) and b) of figure
1 of the main body of the paper. The theoretical curve is
obtained from a BCS-Leggett mean field description including
the Hartree term and a convolution with the experimental
resolution of ~ 4.4 kHz. The values for A and U as calculated
from the peak positions lead to a reasonable agreement with
the data.

it resembles our data. This spectrum was convolved with

sin? «T

(«F)"
Fig. 5 shows that the theoretical spectrum reproduces
our data quite well. The deviation in 5b) might be at-
tributed to additional broadening mechanisms like finite
quasiparticle lifetime, finite temperature and atomic dif-
fusion during the duration of the RF pulse. The convolu-
tion causes a small shift of 0.05ep; in the spectral peak
position due to the asymmetry of the theoretical spec-
trum and has been accounted for in the determination of
A and U.

the Fourier transform of a square pulse f(w) x

The value given above for the experimental resolution
is confirmed by looking at the blurring of the sharp onset
of pair dissociation. Equation 1 predicts that the thresh-
old and peak position in the strongly interacting regime
differ by less than 10% of the Fermi energy. Adjusting
the experimental resolution to ~ 4 kHz accounts for the
experimentally observed difference of threshold and peak
position of about 0.3 ¢py.
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