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Abstract

In this thesis, we perform the measurement of the production of W and Z bosons in

proton-proton collisions at fi = 7 TeVwith the Large Hadron Collider (LHC). In the

LHC, W and Z bosons are produced at a high rate, providing for large yields, which

along with the clean signature of W boson decay into a muon and neutrino and the

Z boson decay into two muons, allow for precision measurement of their production

within the first year of operation. Deviation of these values from standard model

predictions gives a clear indication of new physics interactions occurring at the LHC.

We present the measurement of the inclusive W-± pu and Z-+ p+p- cross sections

along with the W boson charge ratio (W+/W-) and the W/Z production ratio in

the muon channel using the first data corresponding to 35.9 pb-1 of proton proton

collisions at Vs = 7 TeV. Measured values of

o (pp - W -+ pv) 10.30 ± 0.03(stat) ± 0.15(sys) ± 0.41(lumi) nb

or (pp - W+ P+

or (pp - W+ [ -) 1.433 ± 0.008(stat) ± 0.034(sys)

o (pp -± Z -± pl-) = 972 i 11(stat) ± 23(sys) i 39(lumi) pb

or (pp ---+ W - jw)_

o (pp - - p) - 10.59 ± 0.12(stat) ± 0.13(sys)

(1)

are in agreement with the most advanced NNLO predictions. These are currently the

most precise Electroweak measurements at the LHC.

Thesis Supervisor: Steven Nahn
Title: Associate Professor
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Chapter 1

Introduction

A guy walks into a bar with a dog. He goes over to the bartender and says "my
dog can talk." The bartender, in a discouraged mood, says "there is no way that
is possible." So the guy says "well if you give me a beer I will show you." As the
bartender slides the beer over, the guy asks the dog "so what's above our head?"
The dog says "roof." Putting his hands on his hips, the bartender exclaims "that's
not very convincing." So the guy goes to the dog and asks who's the most famous
baseball player of all time. The dog turns around and says "Ruth." Irritated at this
point, the bartender kicks the guy and his dog out of the bar. Upon leaving, the dog
turns over to the man and says "do you think I should have said DiMaggio?"

Had the bartender been more discerning, he would have understood the nature
of the dog's remarks. They confirmed the man's assertion. However, the questions
were, perhaps, not the most appropriate to determine the dog's abilities. Physics has
long been a journey of questions and understanding. In some cases, people have had
a clear confirmation of their claim and in others, they have had clear rejection. The
most difficult cases are the answers in between confirmation and rejection, which is
what happened to the bartender.

The only way to ameliorate a predicament of such uncertainty is to rephrase the
question. For example, the bartender could have asked is there any reason the dog
cannot speak.

In this document, we present a set of measurements, which lead to the assessment
of the W and Z boson cross sections in the muon channel at the Large Hadron Collider
(LHC). This measurement is currently the most precise electroweak measurement
performed at the LHC. Throughout this document, we emphasize not just how to
measure the W boson cross section, but what questions are necessary to measure it

precisely.

1.1 Overview

The Large Hadron Collider (LHC) consists of a ring of super conducting magnets
containing high energy circulating protons. These protons collide at an approximate
rate of 40 million times a second. Each collision does not actually consist of full

11



proton colliding with another proton. It actually consists of a small fraction of the
proton colliding with another small fraction of the other proton, with the resulting
constituents of the protons typically dispersed along the beamline. In a small number
of cases, an additional process can occur during the collision process resulting in a
myriad of possibilities including the production of a W or Z boson.

W boson production is the largest single source of high energy leptons (electrons,
its heavier partner muons, and even heavier parter tauons). There are also concrete
precision calculations that predict its expected properties at the Large Hadron Col-
lider. In this document, we present the results of the first detailed study of the W
boson in the new energy regime of the LHC in the muon decay channel. Deviations
in the properties of the W boson with respect to the predictions are one of the first
and most powerful indications of new physics at the LHC [1].

Z boson production occurs at smaller rate compared to that of W boson produc-
tion, but it leaves a very clear signature of two high energy leptons. This combination
make measurements of its properties nearly as sensitive to new physics and W boson
production. The combination of the two channels, single leptons and double leptons,
comprise more than 80 percent of the physics measurements at the Large Hadron
Collider all of which are studies of specific regions of W and Z boson production.
This thesis sets the ground work for all of these measurements and provides the first
test of new physics involving high energy leptons.

To understand the importance of these measurements, we must first develop the
intuition that leads to the modern description of W boson and Z boson production.
We will start with the very basic questions and build up to the cross section mea-
surements. The most basic question starts with the nature of particle interactions,
which may be described through the concept of gauges. The formalism for these sorts
of calculations is known as gauge field theory. Calculations of interactions of gauge
fields are performed with the path integral formalism. These calculations are applied
to the proton and its constituents to determine W and Z boson production. Once
the W and Z bosons are produced, their properties determine how they decay. The
decays of the W boson into a muon and neutrino and the Z boson into two oppositely
charged muons is where the measurement starts. In the sections below, we build the
intuition leading to the modern concept of W and Z boson production, setting up the
path to perform the measurement.

1.1.1 Gauge field theories

To understand boson production, we must first consider the origin of all the forces.
At the most basic level, all processes start with a Lagrangian [2],

L = (60) 2 -m 2 2 , (1.1)

formulated in terms of a generic field #. The left term 6#, the kinetic term, is
equivalent to the momentum and represents the kinetic energy in the field. When
the geometry of the field changes, the motion in the space is modified. In curved
space-time, an additional term originating from the modified geometry is added. The

12



modifications change the kinetic term by adding an additional force on the field #, this
takes the form of a Christoffel symbol [3] 6 -+ 5+17, where F4 is the Christoffel symbol
originating from the modified space-time. Extending beyond curved space time, we
may modify the kinetic term in the exact same manner with additional generalized
forces. A generalized force of this form is equal to a rotation in some abstract space.
Thus, the differential operators that manifest the force itself is written in terms of Lie
algebras. The most general form of such a Lagrangian, the Yang-Mills Lagrangian,
is written as

L = ((6 + gtaAa)#) 2 - m 2 0 2 , (1.2)

where ta is the generator of the Lie Algebra and Aa is a new force field acting on
# with a coupling of g. This Lagrangian describes all known physical interactions
including all of the sub processes needed for W and Z boson production. These type
of forces are known as gauge field theories, with the ta as the gauge group element.

1.1.2 Path integral in perturbative theory

In order to perform calculations in gauge field theory, it is necessary to first consider
the formalism of calculations using quantum mechanics. The most general of such
formalisms starts with the Feynman path integral [4] expressed here as

{#a le-iHT 1b) Do exp [f d 41 , (1.3)
0.

where the left side in brackets denotes the interaction probability of two fields #a and

#b with any possible Hamiltonian H over a time T. The right side of the equation,
denotes the integral over all paths # of the integral over space of the Lagrangian
L, known as the action. This equation defines the probability of interaction for any
Lagrangian L

To perform a calculation with an interaction of a field A and a coupling g in the
Lagrangian (equation 1.2), we expand the action in terms of g. This leads to an
expression of the form

{#a e-iHT Ib) JD exp [ IT d4xo1 + gJ 4 xaAa#02 + g2 J 4X....

(1.4)
where each term on the right (ie 1, g, g2) defines a calculable interaction which may
be written as a Feynman diagram, one such diagram is shown in figure 1-4. For a
coupling g < 1, the higher order terms in g are suppressed, allowing for a perturbation
calculation term by term in powers of g. Such perturbative calculations define a large
fraction of calculable interactions in the high energy physics. Terms of the order g
are known as leading order (LO) calculations, terms of the order g2 are referred to as
next to leading order (NLO) and so on. The W and Z boson cross section calculation
is presently known to next to next to leading order (NNLO).
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1.1.3 Forces at the LHC

In the LHC, the production of W and Z bosons critically involves two sets of forces,
the strong force and the electroweak force. The strong force binds the quarks and
the gluons together through interaction of the gauge group elements t" E SU(3).
The weak force, for which the W and Z bosons are constituents, couples to the fields
through the elements t" in the gauge group SU(2). For each force, the interactions
occur within their respective Lie algebra. This implies there is no known mixing of
the strong and the weak force.

However, because the weak and strong force both interact through SU(N) gauge
groups, there are certain properties that apply to both the weak and strong force.
For all SU(N) gauge groups the renormalization of the coupling is written as [4]

g2 g2 (1 + _ ( N - -n log(p2) , (1.5)9' P) g 167r2 3 N-3 f(15

where pu is the energy scale of the coupling, N is the order of the SU group (ie two for
SU(2)) and nf is the number of fermions. The term in front of nf is negative, which
for a small enough number of fermions (as is true in reality) implies the coupling g
gets weaker with higher energy. This is known as asymptotic freedom.

In the case of the strong force where the coupling g is large, there exists a region of
small energy p where the strong coupling g > 1. Thus, at low energies the coupling is
too strong to permit perturbative calculations. The energy scale for which the strong
coupling exceeds 1 is near the mass of the proton, at which point the quarks and
gluons condense into proton form. The weak force coupling g is small enough such
that perturbative calculations are permissible for all ranges.

Now, this brief introduction may appear somewhat arbitrary. Why show yang-
mills theory? Why present asymptotic freedom? This, in some respects, is the crux of
modern particle physics. Why is it that two random gauge groups, SU(2) and SU(3)
describe most of the standard model of particle physics? The only answer to this is
that we do not know why, but experiments over the past 40 years have continually
led to a clearer understanding of why it is this way. With time we may be able to
answer all of these questions.

1.1.4 Quarks

All collisions in the LHC start with protons interacting through the strong force.
The only carriers of the strong force charge, known as color, are quarks and gluons.
Gluons, the A field in equation 1.2 for t" E SU(3), mediate the strong interactions,
which occur between quarks and gluons or gluons and gluons.

In the "standard model" of particle physics (standard model), three couplets of
quarks are known to exist (green columns in figure 1-2). The lightest couplet, the
up and down quarks, are known to be stable and constitute protons, neutrons, and
presumably all stable baryonic (strong coupled matter) matter in the universe. The
additional couplets, the strange and charm, and the top and bottom, both constitute

14



higher states of matter, which decay eventually through the weak force to matter
consisting of up and down quarks. The existence of three couplets of quarks is at
present considered to be arbitrary. There is no fundamental reason why a fourth fam-
ily should not exist. Additionally, the theory underlying the mass distribution of the
quarks is presently unknown. The masses themselves span five orders of magnitude
arranged over this spectrum with no clear systematic pattern.

1.1.5 The proton

Production of W and Z bosons starts with collisions of quarks inside the proton. The
proton consists of three "valence" quarks, two up quarks and a down quark bound
together by gluons. Looking at the proton in more detail, it is apparent that the
proton consists of more quarks and gluons. The evolution from the three valence
quarks to the detailed view consisting of a large amalgam of quarks and gluons is
characterized by the energy scale with which the proton is probed. The relative
fractions of each quark in the proton as a function of the momentum fraction x of the
proton are known as parton distribution functions (PDF), f(x). PDFs are used to
describe the fraction all components in the proton including the valence quarks, the
gluons, heavier quarks, and the anti-quarks. Heavy quarks and anti-quarks inside the
proton originate from processes where a quark and its anti-quark partner are produced
from a gluon, quarks produced in such a manner are known as "sea quarks".

The parametrization of each quark contribution in the PDF is performed empir-
ically given a basic assumption of the quark gluon interactions. An example of such
is written below as [5].

q(x, po) = aoXa(1 X)a2 exp (a 3 X+ a4 x2 + a5 vX) , (1.6)

g(x, po) = q(x, po) exp (-a 6 -a7) , (1.7)

where here q(x, po) represents the form of the parton distribution function for the
quarks and g(x, po) represents the parton distribution function for the gluons at a
specific energy scale po. The parameters ai are determined empirically from fits to
data.

The evolution of the PDFs as a function of energy scale follows from predictions
of gluon splitting and gluon radiation. This occurs inside the proton more frequently
at smaller and smaller length scales, or equivalently at higher and higher energy
scales. This evolution of the parton distribution as a function of PO is calculated and
commonly referred to as DGLAP evolution [6, 7, 8].

For LHC energies, the distribution functions for the up quark and the gluon are
shown in figure 1-1. The distributions are taken from the MSTW collaboration [9]
and shown for fits to data using either the LO, NLO, or NNLO calculations. The up
quark distribution shows a small ridge near log(x) = -1 from the contribution due to
valence quarks. At low x, a large amount of quark and gluon splitting leads to large
contribution to the total momentum of the proton from gluons. As one pregresses
to high x, the gluon contribution rapidly falls to zero. The effect of the higher
orders (LO- NNLO) leads to a small change in the distributions at small values of
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x. The effect between the orders is important for best approximating the true data
distributions at each order because the LO PDFs are determined from fits to data
using LO calcuations. For NLO, one must use NLO pdfs, likewise NNLO PDFs for
NNLO calculations. Studies have shown that this rule is is not completely true [101.
However, violations of this rule will not be further investigated in this Thesis.

3. 50
2.5 -L 45 LO

40-

2- NLO 35 NLO
30

1.5 --- NNLO 25 NNLO
1 20

17 15

0.5 10L
5

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
log(x) log(x)

Figure 1-1: Distribution functions xf(x) for the up quark (left) and the gluons (right)
for V/s = 7 TeV using the MSTW parton distribution functions.

1.1.6 Electroweak force

The weak force, like the strong force, follows directly from the Yang-Mills Lagrangian,
where in this case the theory is governed by the SU(2) Lie algebra. It is found from
experiment that the weak force interacts with left handed doublet fields. Namely, the
fields # in equation 1.2 must be necessarily paired with another field into a doublet.
It turns out again, by happenstance, that the doublets are ordered into specific quark
doublets and lepton and neutrino doublets given by the vertical green or blue pairs
in figure 1-2.

The W and Z bosons originate from three of the field elements Aa, which couple
with the four group elements of ta C SU(2) (expressed as the Pauli matrices) to
form the SU(2) extension of the Lagrangian. Expanding the terms in the differential
component of Lagrangian we find the kinetic term of the Lagrangian is written as

Lkin = (6 +g (Alt + A 2 t2 + A3 t3 + Aoto)) (1.8)

E4 in ( 6+ W+ +W- t+ +A(tl -- t _ o (1.9)

where in the last line we have rewritten the Lagrangian into the three possible charge
eigenstates. The separation into charged eigenstates is further interpreted as bosons.
The two charged eigenstates W, = Wp(tl T- it2) /'2 denote the two charged elec-
troweak bosons, the W bosons [11]. The other two bosons A' and A' have no charge.
These second chargless bosons do not exist in the real world because another force is
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THE STANDARD MODEL

Fnmla0w Bosona

I

Figure 1-2: Summary of the all the particles in the standard model

present, the electromagnetic force, which is entangled with these bosons introducing
terms which modify the lagrangian giving two different bosons. The additional force
results from a modification of the identity element t0 , which contains the complete
Lie group U(l). U(l) describes all electromagnetic interactions. The entanglement
follows by modifying the differential, A = 6 + Ait' = 6o, to

A = 60 + g'Bto , (1.10)

to preserve the group structure t0 + ta on one of the fields (this keeps it massless
discussed below) and incorporate the B field, we re-write A0 as A, with a coupling
given by the electric charge e:

eA, (ta + t0 ) = (gAo + g'B) t0 + A3 t3 (1.11)

Taking the rest of the terms and combining them into one particle, Z, [12], we rewrite
the A component expanded out as

A 6-i 9 (W+ + W-) -i Z' (t 3 - sin2 6w (tI + t3 ))V2/-I cos Ow

-ieA (t + t0) , (1.12)

where the electron charge is given by

e = gsinw= 99 .
292 + g12

(1.13)
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The additional parameter Ow is known as the weak mixing angle. The combination
of the weak interactions SU(2), with U(1), give what is known as the electroweak
theory.

The above theory predicts four massless bosons Aa. In reality it is found that the
W and Z bosons have mass. To impose mass on the bosons, the mass symmetry of
the massless Aa bosons of the Lagrangian must be broken [13]. The most well known
symmetry breaking mechanism, which is widely believed to explain this phenomenon,
is known as the Higgs mechanism [14]. The breaking follows by introducing an isospin
doublet scalar field h to the Lagrangian. In addition to the kinetic term and the mass
term, we also introduce a self interaction term, the simplest possible, which preserves
# -+ -# symmetry is the quartic term. The full Lagrangian including the quartic
interaction term is written as:

1 = ((6 + gtaAa)h)2 + P 2 h 2 + Ah4 . (1.14)

For a quartic Lagrangian of the above form the minimum energy is found to be ho =
-pu 2/2|A|. For a non-zero minimum energy ho, known as the vacuum expectation

energy, the minimum must have p2 < 0. Introducing a non-zero vacuum expectation

ho into the standard model, we write this in doublet form as

ho = V (1.15)

where v = A-p2/|Al is known as the Higgs vacuum expectation value (vev). The
expansion of this non-zero doublet in equation 1.14 gives the Lagrangian, we write as

L = ((6 + gt" Aa) (h' + ho) )2 _ P2 (h + ho )2 + A (h + ho )4. (1.16)

Isolating the ho terms and expanding using the definition of ho 1.15 and the definition
the differential A 1.12:

ig (tl - it2) ig (W + t2)
'Co = (6 f- W/ -\2 ho - v'-W/1v2 ho

-i 9 Z, (t 3 - sin 2 0w (t0 + t3)) ho
cos Ow

-ieA, (t0 + t3) ho) 2 + p2 (1.17)

Lo = (6+ V(W+ + W- + 1 Z (1.18)

where the last line of the above equation is obtained by considering the zero charge
eigenstate, which is written into two combinations, a combination which multiplied
by ho (equation 1.15) is non-zero (massive combination)

tz = (2 - 1s9
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and a combination which multiplied by ho is zero (massless combination)

t' = I(t + t( i 0 0 (1.20)

Multiplying these two combinations with the Higgs doublet ho gives zero for the
photon and gives i for the Z boson. The terms from equation 1.18 for W and Z are
equivalent to the basic Lagrangian m# 2 terms, where # is replaced by the W or Z
boson. This defines a mass for the W and Z boson, which is given by:

Mw - , (1.21)

Mz M w (1.22)
cos w

The additional field h is known as the Higgs field. Its interacts with other particles
through the scalar boson known as the Higgs boson. Its existence is the "simplest"
explanation that gives the W and Z boson mass. The mass of the Higgs is given by

1 from the equation 1.14.
Under precision tests [15], modern electroweak theory is very robust, however the.

theory itself remains incomplete, since no confirmation of the Higgs boson has been
performed [16, 17]. The only limit comes indirectly from WW production (figure 1-3),
where a Higgs boson is requried to avoid divergence of the cross section through a
theorem which bounds all wave collisionsthe optical theorem. In the case of WW
production, this limits the Higgs mass to y < 1.2 TeV [18].

Summary The electroweak theory follows from an SU(2) Yang-Mills algebra. It
predicts four distinct bosons, which are entangled with an additional U(1) gauge that
is responsible for the electromagnetic force, giving rise to mixed state bosons, the
photon and Z boson. It is found from experiment that the additional bosons interact
through the weak force with left handed leptonic or quark doublets. Additionally, it
is found from experiment that three of these bosons are massive. In its simplest form,
the masses of these additional bosons are generated by adding an additional boson,
the Higgs boson, with non-zero vacuum expectation v. At present, the Higgs model
for mass generation in the electroweak theory is confirmed only indirectly by WW
boson production. Other models may exist, which give the W and Z bosons mass.

In light of the Higgs boson being a doublet, left handed doublets couple with
right handed leptonic or quark singlets and the Higgs, this produces a mass term [4].
Thus, it has also been surmised for simplicity's sake that the Higgs boson couples to
fermions giving them mass. If we are to believe the Higgs couples to fermions, for
which there is no evidence, then tighter constraints on the Higgs from the top quark
mass and the W boson mass constrain the mass to be below 200 GeV/c2 [16]. A lower
bound on the Higgs mass of 114 GeV/c2 is determined by previous searches for the
Higgs particle at the large electron positron collider (LEP) [15]. New regions between
these two have been recently excluded by the Tevatron and both the ATLAS and
CMS detectors at the LHC [20, 21, 22].
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Figure 1-3: WW boson production in the large electron-positron (LEP) collider using
the L3 detector [19]. The two red lines indicate the behavior of WW scattering if
the W boson did not couple to Z bosons (dashed line) and if WW boson production
through a neutrino exchange were not present

1.1.7 Implications of Electroweak theory

The electroweak doublet structure of the theory impose rules on the production and
decay of the W boson. The W boson decays into either the quark doublets ud or
c9, or the three lepton doublets eve, pvl, and Tv. The third quark doublet is not
kinematically allowed because the mass of the top quark is heavier than the mass of
the W boson. The two quark pairs have a degeneracy of three arising from the three
possible colors (from the strong theory), which amount to a total of 3 + 3+1±1+1 = 9
possible decay states. Thus, the W decays ~ 2/3 of the time to quarks and ~ 1/9 of
the time to a specific lepton and its corresponding neutrino.

Figure 1-4 shows the leading order diagram of W production at the LHC. The
Lagrangian requires that either the lepton or the neutrino in the decay must be an
anti-particle.

Further details follow from experiment, where it is found that the photon is a
vector (spin 1) boson [4], consequently the W and Z bosons have spin 1. This implies
that the W and Z bosons may exist in three different polarization states. The possible
states are left handed, longitudinal and right handed. If the boson had no mass a lon-
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gitudinal polarization would not be possible. This is why longitudinal photons exist
only indirectly through interactions (virtually). In lepton decays, polarized W bosons
decay to a lepton and a nearly massless neutrino [23]. The nearly massless neutrino
constrains the lepton to be polarized on or against the W boson. If the neutrino
were massive the helicity of the lepton would be less constrained and the polarization
would decouple from that of the W boson. This defines specific characteristics on
the shape of the decay kinematics, most notably in the lepton transverse momentum
(PT) [24].

W+

q v(v)

Figure 1-4: W boson production Feynman diagram at leading order

1.1.8 Proton collisions in the LHC

In the LHC, protons collide at 7 TeV, high enough to allow interactions with objects
that exist with low probability inside the proton. Such interactions do occur on
an everyday basis in household objects (such as smoke detectors), but at such an
extremely low rate that it is impossible to study them. An example of an everyday
low probability event occurs through W boson production when a quark interacts
weakly by decaying to a lighter quark through a virtual W boson leading to nuclear
# decay. At higher energies such as in collisions in the LHC, the increased energy
allotment per interaction allows for real W and Z boson production at a very a high
rate.

W and Z boson production at the LHC is, in essence, a method to probe quark
distributions at small momentum fraction, x. The production itself typically arises
from the interaction of a valence quark and a virtual "sea" quark that results from
gluon splitting at low x. This asymmetry of this effect, one quark at high x colliding
with one quark at low x, enables the W or Z boson to be produced in regions of
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phase space ranging from nearly parallel to orthognal collision beamline. The latter
occuring when x is nearly the same in both colliding protons.

W and Z bosons have a clean signature and the physics behind them is well under-
stood. Modern measurements of W and Z boson production are thus, fundamentally
a measurement of QCD physics and substructure of the proton. In particular, the
ratio of charged W bosons and Z bosons, W+/W- and W/Z, put tight constraints
on predictions of the parton distribution functions.

1.2 Impact of W and Z boson cross section mea-
surements on the LHC

The measurement of the W cross section is a baseline for all high energy hadron
collider experiments. Due to the fact that the W boson decays into leptons and has
a cross section ten times larger than that of the Z boson, it is the largest source of
leptons without additional neaby deposits from other particles (isolated leptons) in the
CMS detector. Thus, it serves as a baseline for all other isolated lepton measurements
at the LHC. These other studies include all electroweak physics measurements and a
large number of searches for new physics. The W boson cross section measurement
also tests both the parton distribution functions and precision QCD calculations.

The Z boson cross section measurement contributes more isolated leptons and
provides a second region for which to search for new physics. The selection of Z
bosons by requiring two leptons has almost no background; allowing for precision
tests of the cross section production models.

1.2.1 CMS detector performance

Identifying the W boson requires two components: a lepton and a neutrino. Each
component leaves a clear signature, which we use to calibrate and constrain the perfor-
mance of the CMS detector. The high rate of W production and solid understanding
of the underlying physics make it an excellent calibration source to understand the
detector behavior.

A neutrino has a very small probability of interaction inside the CMS detector,
consequently its existence is inferred from the sum of the other components in the
event. Each parton-parton collision consists of a random fraction of the proton from
x - (0, 1) with another different undetermined partonic fraction x; thus, the collision
center of mass frame is unknown. However, the momentum transverse to the beam-
line of the colliding partons is close to zero allowing for conservation of transverse
momentum before and after the collision. Conservation of transverse momentum is
therefore used to infer the missing transverse energy (FT) defined as the negative
vector sum of the transverse momentum of all particles emanating from the collision.
In a detector, in place of taking the vector sum of all particle the various deposits each
particle leaves behind are combined into objects representing the original particle and
the negative vector sum of these combined deposits defines the 1T as measured in
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the detector. A real neutrino, as is produced in a W decay, leaves a clear signature
for which we use to calibrate the expected _T compared with the measured -V.

In addition to improving our understanding of the performance of each detector
component, the VT provides a sensitive tool to study the remnants from other parts of
the proton not involved during W or Z boson production (so-called underlying event)
and additional collisions occurring at the same time of the W boson collision (so-called
pileup collisions). The measurement of both of these collisions and its comparison
with simulation improve the understanding of the simulation and calculations of the
soft QCD interactions.

The lepton resulting from the W boson decay has a few distinct properties, which
make it excellent to understand lepton reconstruction. The most defining character-
istic is that the lepton is produced alone with no other particles nearby. This defines
an isolated muon or electron with a transverse momentum near Mwc/2 40 GeV/c.

1.2.2 Higher order QCD effects

The distinctive signature and the low background make the W and Z boson cross
sections excellent tests of high order QCD calculations. The existing knowledge of
W and Z boson production, originating from both our knowledge of QCD and also
from our continual study of W and Z boson production at the Tevatron and LEP
colliders provides an external constraint to difficult QCD physics calculations, which
need further improvement.

Present knowledge of W and Z production is known to the Next to Next to Lead-
ing Order (NNLO) [25]. The fully differential NNLO calculation in terms of boson
rapidity and PT was completed in 2006 [26, 27]. For the LHC, unlike at the Tevatron,
predictions for W and Z boson production are very sensitive to this highest order
calculation.

At small values of PT NNLO calculations of the W and Z boson cross section
break down because this part of the distribution is sensitive to non-perturbative
QCD effects. The parametrization of these non perturbative effects are still not well
known theoretically and are presently being pursued in hopes of understanding low
energy QCD interactions. This measurement will provide new constraints on low PT

measurements.

1.2.3 Parton distribution functions

The W boson is produced from the interaction of a valence quark with a sea quark.
Furthermore, the production of a specifically charged boson (W+ or W-) probes a
specific valence quark proton distribution. The W+ is most sensitive to the up quark
distribution u(x) and the W- boson is sensitive to the down quark distribution d(x).
Because collisions at the LHC are at a larger energy than ever before, the regions of
the PDFs probed reaches very low momentum fractions x, where large uncertainties
remain.

In the measurement of a cross section ratio the term with the largest uncertainty
cancels out completely. This maximizes sensitivity to the PDFs. Different PDFs vary
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as a function of rapidity, thus the most sensitive and constraining measurement of
the PDFs are the differential W+/W- and W/Z ratio for which the inclusive ratio of
both serve as a basis.

1.2.4 Sensitivity to new physics

In addition to providing insight into QCD calculations, the W and Z boson cross
section and the resulting kinematic distributions, such as the ET and the boson
PT serve as cornerstones for searches for new physical processes. A large discrepancy
from the standard model predicted distributions would indicate new physics processes.
Several models for supersymmetric particles as well as more exotic models, such as
the W' predict a production of a new particle which would lead to missing energy,
an isolated lepton and potentially jets [281. Such a production would show up in one
of the differential distributions for W boson production. In this thesis, we shall not
explore limits on new physics, however hints or absences thereof can be interpreted
from the results in this thesis.

In addition to these processes, one of the most important discovery channels of
the Higgs boson involves W pair production (Higgs -± W+W-). Studies involving
one W boson establish a baseline for the search for the Higgs boson.

1.3 Outline of the measurement

The cross section, o-, is determined by counting the number of events, N, for a total
integrated beam luminosity, L:

N
(1.23)

To account for the fact that in a detector there is a physical limitation to the fiducial
size of the detector we must apply a correction defined as

a = Nfiducial (1.24)
Ntotai

This term is known as the acceptance. The correction itself is determined by making
an assumption that the standard model describes W production to within an uncer-
tainty. The value shown above is determined by an event based simulation (Monte
Carlo simulation). The number Nfiducial is then defined as the number of simulated
events where the muon is within the fiducial region of the detector. The number Ntotal

is the total number of events generated. At this point, we note the two different uses
of simulation and generation. Generation denotes sampling events from a standard
model calculation. Simulation denotes passing a generated event through a simula-
tion of the CMS detector. Inserting the acceptance in the cross section, the formula
is now written as

N Nfiducial

L- (1.25)
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A series of identification selections are applied to the event to select out and re-
construct well identified muons from W bosons and remove backgrounds from other
processes. The number of muons reconstructed and identified, Nselected, over the total
number of muons simulated in the fiducial region is deemed the efficiency, this is
defined as

e Nselected (1.26)
Nfiducial

The efficiency in data is determined by tagging events, where a muon is known to
be present and ascertaining whether or not it is found by selection algorithms. This
method, known as the tag and probe method, is performed on Z-+ p+p-- events.
To ensure accurate reproduction of the efficiency of leptons from W bosons with the
efficiencies of leptons from Z bosons, the efficiency is calculated and compared on
Z events in both data and simulation. The comparison, performed in a well defined
context, is used to correct the simulation of W events to reflect the true data efficiency.

The simulated efficiency is absorbed into the acceptance, such that for the scale
corrected acceptance (we denote now as a') and the efficiency from simulation (de-
noted as cMG) the acceptance may be written as

a' emca (1.27)

We thus have the master cross section formula, which we write out as in terms of the
acceptance a and a'

N _ Nfiducial _ Nselected (1.28)
L aI aEDataC

(1.29)a /EDataL

Each term in the rightmost term of equation 1.28 defines a chapter of this thesis.
The luminosity L is discussed in chapter 3. It is performed by two methods, which
measure the beam geometry of the large hadron collider.

The efficiency, discussed in chapter 6, is determined through the tag and probe
method. The acceptance, discussed in chapter 8, is determined through comparisons
of several simulations, which incorporate the most up to date knowledge of W boson
production.

The number of events is written as

Nw/z = Nselected - NQCD - NEWK , (1.30)

where Ntotal is the total events passing the muon selection and identification (chap-
ter 5), NQCD is the number of predicted QCD events in the selected region (chapter 10)
and NEWK is the number of non-QCD and non-W boson events in the selected region
(chapter 11).
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1.4 Reliance on the Z boson

It is important to emphasize the reliance of the Z boson in this W boson measurement.
The Z boson cross section parallels the W boson cross section in almost every aspect.
The only difference is that the neutrino resulting from the W-± ftv decay is replaced
with a lepton of the same flavor. The second lepton allows for the determination
of the mass, providing a means for an extremely clean signature, for which we use
as a source of leptons to calibrate the W boson performance. The clean signature
enables the calibration of the detector, namely the FT, the lepton efficiencies and
our present theoretical understanding. In the course of the W boson measurement,
we will perform a simple counting cross section of the Z boson and we will end by
additionally presenting the W/Z boson cross section ratio.

1.5 Outline of the rest of the thesis

In the rest of the dissertation we will present the details involved in the W and Z bo-
son cross section measurement. We will start with a discussion of the CMS detector,
the LHC accelerator (chapter 2) and the luminosity measurement (chapter 3). We
will follow this with a presentation on the lepton reconstruction (chapter 4), selec-
tion and optimization (chapter 5). This is continued with the determination of the
lepton energy scale (chapter 7) and the lepton efficiency (chapter 6), followed by an
in-depth discussion of the theory behind the W boson cross section calculation (chap-
ter 8). Then we will continue with a discussion of several techniques to model the _VT

(chapter 9), followed by the full extraction of the W and Z boson yields (chapters 10
and 11). We finish with a presentation of all the results followed by the conclusion
(chapter 12).
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Chapter 2

Experimental Apparatus

To measure the W and Z boson production cross sections, collisions from the Large
Hadron Collider (LHC) are recorded with the Compact Muon Solenoid (CMS) detec-
tor. The LHC is a particle accelerator that can perform proton-proton collisions at a
number of different collider energies and instantaneous luminosities, ranging from col-
lision energies of s=980 GeV to 14 TeV. In this document, the first set of collisions
at an energy run of V/s = 7 TeV are used.

Around the LHC are four different detectors, ATLAS, CMS, LHCb, and ALICE
(figure 2-1). The two detectors, CMS and ATLAS, are considered to be "all-purpose"
detectors which are designed to measure all production mechanisms that may occur
in the LHC.

2.1 The Large Hadron Collider

The LHC accelerator complex, shown in figure 2-1, consists of a series of different
accelerators which increase the proton energy stepwise per ring going up to the highest
energy ring. A diagram of the acceleration chain is shown in figure 2-2. The beam
starts with a bottle of hydrogen. Exiting the bottle, electrons are stripped from the
hydrogen atom leaving protons, which are directed to a linear accelerator (LINAC)
that accelerates the protons up to 50 MeV. The protons from the LINAC are then
put into a booster, which accelerates the protons up to 1.4 GeV kinetic energy and
inserts them into the Proton Synchrotron (PS). The protons leave the PS at an energy
of 25 GeV and are then inserted into the Super Proton Synchrotron (SPS). The SPS
finally injects beams at 450 GeV into the LHC ring. It is in the LHC ring, where
the final acceleration of the beam up to the desired energy is performed.

The accelerator complex is capable of accelerating both protons and heavy ions
through a lead linear accelerator and ion collector which are attached to the PS. The
intended design of the LHC will reach s = 5.5 TeV /nucleon in heavy ion colli-
sions and V = 14 TeV in proton collisions. Stability in the tuning of the magnets
of the LHC has descoped the intended energy of the LHC, thus it is expected that
the LHC magnets will attain an final energy below 14 TeV , but above 10 TeV .
Presently, the LHC accelerator is capable of accelerating protons up to a center of
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mass energy of V/s = 7 TeV and heavy ions up to an energy of V/s = 2.2 TeV/nucleon.

At nominal running, the LHC ring needs to be filled by 12 cycles of the SPS. Each
cycle of the SPS requires 3-4 cycles of the PS. For a cycling time of 21.6 seconds and
3.6 seconds for the SPS and PS respectively, the filling time of the LHC ring is about
four minutes per beam [29]. Taking into account time for analysis the accelerator can
be completely filled in a minimum time of 16 minutes. Following the filling of the
beam, the energy of the beam is accelerated up to the desired energy. The ramping
of the magnets typically takes 20 minutes to go either up or down. Consequently,
the total time to fill the beam and accelerate it is on the order of 70 minutes (with
additional checks). Successfully filling the beam is not gauranteed, failures of the
filling can lead to delays which may extend the 70 minutes to 6 hours, depending on
the characteristics of the beam.

The magnets that compose the LHC are superconducting NbTi wire magnets,
which operate at a temperature of the formation of the helium super-fluid, 1.7 K.
In the LHC there are eight completely connected super cooled sectors. Each sector
alone is the world's largest super cooled volume. The combined eight sectors span
a ring of circumference 26.7 km, where on one side are the Jura mountains and the
other side is the Geneva airport. The depth of the ring ranges from 50 m near the
Geneva airport to 175 m along the Jura mountains. Before and after the collision
points along the beam are straight sections. There are eight straight sections in total,
allowing eight possible interaction points.

Point 5

Point CMS
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Point 3.2Pon6

Point 7

Point 2

SPS Point 8

Figur 2- 1 C.s Point 
c

Figure 2-1: LHC and its different collider halls
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Figure 2-2: LHC Accelerator complex [30]

The two crucial parameters of the accelerator are the beam energy and the in-
stantaneous luminosity. These two parameters drive the capability of physics studies
at the LHC. The beam energy is determined by the magnetic field of the ring. The
magnets in the LHC are designed to reach a magnitude of 8.33 T. This yields an
energy of 7 TeV per beam. The other crucial factor, the instantaneous luminosity,
is determined by the initial amount of protons injected into the beam and by the
separation of this beam into separate clusters of protons, known as bunches. The
collisions of an two bunches is referred to as a bunch crossing. The instantaneous
luminosity of all of the bunches, L, is expressed as

_ N 2 nrev rF
47ren#*'

(2.1)

where,

" nb is the number of bunches per beam,

" Nb is the number of particles per bunch (assumed to be equal per bunch),

* vrev is revolution frequency,

" }r is the energy of the beam,

* En is the beam emittance,

e #* is the beta function at the collision point, and
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* F is a geometrical factor arising from the crossing angle at interaction.

The formula for F is written as [29]:

) -1/2F = (1± (+ u \0 \ 1/2 (2.2)
\ 2o* )_

where Oc is the crossing angle, oz is the RMS length in z of the proton bunch, and a*
is the RMS width of the beam.

The beam size emittance En is the width of the beam in the collision region. This
combined with the bunch shape profile along the beam (beta function #*) determine
the collision size. The interaction region is adjusted by the magnets nearby the colli-
sion hall. Specific configurations of the magnets lead to resonances, which lead to a
blow up of the emittance. Careful tuning of these parameters leads to an emittance
around tens of microns and a #* function of 0.5 m [31]. The most important compo-
nent in the instantaneous luminosity is Nb, the number of particles per bunch, this
combined with the collision area 47q define the collision density.

In the LHC, the bunches are separated by a minimum of 25 ns [29]. This yields
2808 bunches per beam. In the 2010 running the full 2808 bunches were not utilized,
instead the inter bunch spacing was separated by more than 100 ns.

The number of particles is limited by the electrostatic repulsion inside the beam.
This limitation is written as a limit on the density of the protons[29]

Nb< 0.27F~, (2.3)

where rb is the Bohr radius of the proton. The lifetime of the beam follows predom-
inantly from the rate of non-linear collisions, the rate of collisions with residual gas
in the beam, and scattering due to interacting beams (IBS). The maximum number
of protons per beam Nb is determined to be 1.15 x 1011 [29].

In optimal conditions, the instantaneous lifetime of the beam is written:

_Nb

T = (2.4)

where the term k is the number of interaction points in the LHC, 2 through 4.
Inserting the instantaneous luminosity and solving for the set of equations we obtain
the lifetime from non-linear collisions Tbeam as

Tbeam -(V/ - 1) T - (2.5)

When all additional effects are taken into account the beam lifetime is estimated at
Tbeam = 14.9 h. This combined with the turn around time to deliver the beam, renders
the length of a typical running period of the LHC (known as a fill) to about one day.

Overall the combination of the high density of protons, the 15 h/day rate of
running, the carefully tuned beam parameters and the high energy YE, lead to a proton
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collider that is unparalleled by any other machine. The instantaneous luminosity is
the highest of any proton collider in the world. The design energy is the highest by
nearly an order of magnitude.

2.2 Compact Muon Solenoid detector

The acronym, CMS, stands for Compact Muon Solenoid. The word compact desig-
nates the high detector density combined with its small detector size. At 21 m by 15
m, the detector size is not very small compared to a human, but small in compari-
son to its competitor experiment ATLAS. The words muon solenoid designate that
a distinct characteristic of CMS, the extremely large solenoid, which gives excellent
measurements of muon momenta.

The CMS detector is an onion-like cylindrical structure with each layer extending
concentrically about the previous layer. Several basic variables are used to describe
the orientation of the CMS detector. The axis for which the beam runs along is known
as the beam axis or the z axis. The angle around the z axis is known as #. The zenith
angle (starting from horizontal in the direction of the Jura mountains and progressing
towards the zenith counter-clockwise ) is denoted 0. However, it is written in terms
of the variable j = - log (tan (0)), known as the pseudorapidity. The variable q is
used in lieu of 0 because it approximates a variable rapidity, which describes well the
distribution of particles in protons, where the center of mass is ill-defined. In such
collisions rapidity differences between particles are lorentz invariant [4]. Rapidity is
defined as

y = log ( + pZ , (2.6)
(E - pz

where E and pz are the energy and z-momentum of the particle. For low mass
particles, such as the muon or the pion, the difference between q and rapidity is
typically below one thousandth. Proton collisions remnants are produced uniformly
in ij; this motivates much of the design of CMS. Closer to the beam line at high TI,

the detector components are smaller so their respective A71 sizes are similar to those
transverse to the beam (T=0).

One of the most distinctive features of CMS is the world's largest superconducting
solenoid. The solenoid cylinder runs parallel to the beam axis, at an inner radius
of r = 3 m around the beam line. The solenoid generates a field of 3.8 T. It is
calibrated through a series of NMR sensors located throughout the solenoid. The
B field is known to be uniform to an accuracy of 10-- [32]. The solenoid allows for
extremely precise measurements of the transverse momenta of particles. The shape of
the solenoid constrains the rest of the design of CMS to be cylindrical. Each detector
is a concentric cylinder, consisting of a barrel region at low q, which is tube like and
a set of circular discs on either end of the cylinder (at high rI) known as the endcaps.

The full fiduciality of the CMS detector is 100% in # from -7r < # < 7 and covers
a range in 7j of |r| < 5 (or 0.013 < 101 < w - 0.013). The range in ij is extended out
to Iq| < 6.6 (or 0.003 < 101 < 7 - 0.003) if the zero-degree calorimeter is used.
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2.2.1 Muons in the CMS detector

To illustrate how the general CMS detector functions, consider the passage of muon
through the CMS detector. A muon has a sufficiently long lifetime and low interaction
rate with matter (so called minimum ionizing particle) such that for muons with a
momentum > 3 GeV/c pass through the whole CMS detector, thereby interacting
with each sub component of the CMS detector. To aid in visualizing this passage
consider figure 2-3 which shows a slice of CMS with its different sub-components. A
muon passing through the detector is indicated by the blue line evident throughout
the whole slice.

Key 2 4 5 m

Muon
-Electron

Charged Hadron (e.g. Pion)
-Neutral Hadron (e.g. Neutron)
Photon

TTnv r cke r

Figure 2-3: Transverse slice of the CMS detector depicting the various sub detectors.
Different particle types will pass through these different components leaving deposi-
tions in each component. The behavior of the five standard particle types: muons,
electrons, photons, charged hadrons, and neutral hadrons is shown in the figure. Iden-
tification of the individual particles is performed by combining the deposits in all of
the different detectors and classifying given the measured deposits.

Muon production starts at the collision vertex of CMS, a region that is about
5 cm along the z axis and within a few hundred microns of the defined origin in the
r - # plane. From the collision vertex, the muon continues through the CMS detector
curving along its path. This curving is caused by the large solenoid. Inside the
solenoid a nearly uniform 3.8 T magnetic field propagates along the z axis allowing
for the curving of charged particles transverse to the z axis. Outside the solenoid,
inside a series of steel layers that are attached to the muon chambers, the magnet
provides a nearly uniform 2 T return field. The return field is in the opposite direction
of the B field in the solenoid. Thus, inducing the muons to curve inside the steel, in
the opposite # direction it curved inside the solenoid.

The muon first enters the inner most tracking detector known as the silicon pixel
detector. This detector consists of three layers of tiny 100 micron by 150 micron
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silicon rectangles which record ionized depositions originating from charged particles.
Following the silicon pixel detector, the muon will pass through up to 14 additional
layers of silicon arranged in long strips (3-4 cm long) with a width (pitch) of 80-
220 pm. The strips record the location and energy of the ionized deposit. These
pixels and strips comprise the CMS tracker, which is the single largest precision
silicon imaging device. By comparison, the silicon detector on ATLAS has a surface
area of roughly one quarter that of CMS.

Abaft the CMS tracker, the muon enters the electromagnetic calorimeter (ECAL).
The electromagnetic calorimeter consists of a clear Lead-Tungstenate (PbWO4) crys-
tal. This material has an extremely high density and small Moliere radius providing
percent level resolution of electromagnetic showers. The crystals are speicially de-
signed to have a high level of radiation hardness.

After the CMS electromagnetic calorimeter, the muon will pass through the hadronic
calorimeter (HCAL), a sub detector consisting of a series of layers of brass sandwiched
between scintillation panels. The high density of brass combined with scintillation
counters are used to infer energy deposits coming from nuclear interactions of neutral
and charged hadrons, and the minimum ionization signal from muons.

By the end of the hadronic calorimeter, the only remaining standard model parti-
cles originating from the collision which have not decayed are muons and neutrinos.
Both pass through a series of gas chambers with spatial resolution of 300 Pm. These
chambers, known as the muon chambers, allow for both a clear identification of a
muon (separating it from all other particles) in addition to information on the muon
direction and transverse momentum (PT). These chambers are responsible for "trig-
gering" events with muons, or in other words notifying the data acquisition system
to record the event for further data analysis.

A triggered event goes through two filtering steps before it is sent to the CMS
storage manager. The CMS storage manager acts as a buffer finally forwarding the
data to be reconstructed in a series of computing systems. It is only after full recon-
struction that an analysis of a physical process, such as the W boson cross section,
is performed. Data taking and decisions performed at the moment where the data
taking rate may still be modified by the detector readout is referred to as the on-
line environment. This occurs before the CMS storage manager. Decisions and data
taking afterward are performed in the offline environment.

2.3 Tracks

Track reconstruction is crucial to nearly all physics analyses in CMS. A track is
defined as an aligned set of individual deposits in any detector, know as hits. Hits,
when combined into a track, correspond to a single charged particle. Reconstruction
of tracks starts by considering the Lorentz force imposed on a charged particle in a
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B-field with momentum p [33].

djp
= qv x $(r) , (2.7)

m = -qvxBd|xty , (2.8)

P Cos OV = -qvXBZ , (2.9)
r

1 _ q
- q Bz ,(2.10)

r pcos8

- BZ. (2.11)
PT

Here, r is the radial distance about the z axis (1/r is the curvature) , q is the charge,
t the time and V' the velocity or a particle of mass m. On the second line we have
replaced the formula to correspond with a B-field completely oriented in the z di-
rection. On the third line we have written this in terms of the transverse projection
of the momentum PT = p cos 0 in the r - # plane. From equation 2.7 one obtains
five independent parameters, which completely describe the helical B-field trajec-
tory x, y, z, 0, and q/p. A minimum of three hits is necessary to determine a helix
parametrization.

The dominant factor controlling the momentum resolution stems from the deter-
mination of the curvature in the transverse plane (the PT). The total momentum
resolution is then determined by rescaling the PT measurement by the angle 0. The
resolution in an ideal form is written as [34]:

17PT1 UN OxPT (.2
~PT O.3Bzg 2 ,(2.12)

where N is the number of hits and R is the radial distance from the first hit to
the last hit and oex is the transverse resolution. The two key components in this
formula are the transverse resolution ax and the radial distance R. The resolution,
o-PT improves by minimizing o-x. Silicon detectors have an extremely small transverse
x resolution o-x of near 50 pm . This factor was the main motivation for the choice of
building a large silicon tracking detector. Resolution is further reduced by increasing
the radial distance R away from the first hit to the last hit, which is done for muons
by incorporating both hits from the tracker and the muon chambers.

Additional effects which modify a track trajectory in the course of its propagation
result from energy loss and multiple scattering of the particle. Particle energy loss and
multiple scattering induces a smearing of the angle of the particle and additionally
an increase in the curvature of the particle. The energy loss for a charged particle
heavier than electrons is written by the Bethe-Bloch formula as [35, 36]

dE- C (log -2MeC2 2 I #32 - (#) (2.13)
dx #2 g (1 _3 2)
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where C is a constant, # is the speed of the particle, -y is the boost of the particle,
I is the mean excitation energy and 6 (/) is a density correlated effect. For a muon
or pion with a momentum of 10 GeV/c, this induces an energy loss over density of
1.5 MeV cm 2 /g. The multiple scattering of particles occurs by coulombic scattering,
which distributes the angles as a Gaussian with a width 00 defined as

00 13.6 MeVq/x/Xo (1 + 0.038 log (x/X 0 )) , (2.14)
VP

where 13.6 MeVis the constant (Rydberg energy), v is the velocity of the particle, p
is the momentum of the particle, q the charge of particle passing through, x/X 0 the
length of the passage of a particle x in terms of a measure of the interaction density
known as the radiation length, X0

2.4 Silicon tracker

2.4.1 Overview of the tracker

The silicon tracker is designed to measure and reconstruct all charged tracks emanat-
ing from the collision vertex [37] . The CMS silicon strip tracker consists of an array
of finely granulated silicon-strip pitch on top of a silicon bulk. The pitch of the strips
varies from 80 pm for the central region of the tracker, where the track density is high,
up to a width of 200 pum for the outer regions of the tracker. The variation in the
width is designed to minimize costs while preserving good track resolution. The CMS
pixel detector consists of 100x150 pm pixels [37] . The use of pixels in the detector
enhances the momentum resolution (resolution in the transverse plane), reduces the
allowed track hit combinations, and improves the track direction determination. The
latter improves the z reconstruction resolution of the tracks. Improved z resolution
enhances the ability to combine track intersections into interaction vertices, leading
to improved vertex reconstruction. The improved vertex reconstruction enables the
separation of displaced vertices from long lived particles and the separation of two
collisions occurring at the same time (so called pileup events). An overview of the
different track layers inside the tracker is shown in figure 2-4.

2.4.2 Silicon particle detection in the tracker

The silicon detection system in both the pixel and strips works through a p-n junction.
Figure 2-5 schematizes the two layouts used for measuring an ionized deposit. The
p-n junction is reversed biased ie a voltage applied to it against the direction of flow
of charge in the p-n junction. The voltage is large enough such that no free holes or
electrons are present in the silicon (fully depleted). When a charged particle passes
through the silicon it leaves a trail of ionized holes and electrons that drift to sensors
where the silicon is readout.

The junction is designed by placing p+ (SiO 2 ) doped strips on a n doped bulk
or with n+ doped pixels on p doped bulk[37], both are signified by the dark lines on
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Figure 2-4: Overview of the CMS tracker. The beamline goes through the r = 0
coordinate, interactions occur approximately at the center of the detector indicated
by a black dot. The five different sub components of the CMS tracker are shown in
the figure.

top of 2-5. The differences in junction design result from the necessity for increased
sensitivity in the pixels because of the small size of the pixels [37] . Along the strips
and pixels are thin aluminum sensors, which read in the ionization deposits, and pass
it to an amplifier and a readout system. On the opposite end is an aluminum plate
(bottom of figure 2-5), which produces the voltage bias necessary to generate the
depletion region.

Over years, particles originating from the proton collisions will cause the silicon to
deteriorate. This occurs through two types of effects: ionization damage, which leads
to oxide deposits, and non-ionization damage, which lead to defects in the silicon.
Both these effects reduce the signal significance either by increasing the noise current
or reducing the size of the depletion region.

To counter these effects the silicon is doped in such a way that the depletion voltage
deceases over time (beneficial annealing), causing an improved signal by reducing the
noise level [37, 39] . After more radiation damage, the depletion voltage increases until
no depletion region exists (reverse annealing). Due to its proximity to the beamline
the radiation fluence is highest near the pixel detector leading to a shortend lifetime.
Radiation damage is limited by decreasing the temperature on the silicon device. In
the CMS detector, the temperature of the silicon will progressively be lowered down to
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Figure 2-5: Example of the silicon design for the CMS Pixels (top) and the CMS
silicon detector (bottom). Charge tracks go through the depletion region leaving
electron hole pairs which drift to the (n+) junction for negatively charge components
and the (p+) junction for positively charge components [37, 38]

-10 degrees centigrade. With the planned lowering of the temperature, the expected
lifetime of the silicon strips in the LHC environment is nearly 10 years. The lifetime
of the pixel detectors is smaller due to the sensitivity of the design and its proximity
to the collision vertex. The expected lifetime of the pixels is only a few years [37]

2.4.3 Tracker design

The pixel detector is divided into barrel pixels, consisting of three layers running
parallel along the interaction direction, and forward pixels, consisting of two layers
on both ends of the barrel oriented transversely from the beamline axis. The barrel
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pixels cover a range of 0 < lT| < 1.5. The forward pixels cover the range of 1.5 <
ly| < 2.5. The radii of the barrel pixels extend from 6 cm to 15 cm from the collision
vertex. The forward pixels range from z = t34.5 cm to z + i46.5 cm for each layer
respectively [37] .

The silicon strip tracker, shown in figure 2-4, is divided into four regions: the
tracker inner barrel (TIB), tracker inner disks (TID), tracker outer barrel (TOB),
and the tracker endcaps (TEC). The TIB, red part of figure 2-4, consists of four
concentric cylindrical layers of modules ranging from a radii of 25 to 50 cm, the first
and second of these layers are double layered. The double layering provides for the
determination of the z coordinate. This follows from the fact that the second layer
lies on top of the first and is arranged with an angle relative to the other layer of
100 prad [37] . The TID, blue part 2-4, consists of three layers extending out to 70
cm in z, each layer is divided into three concentric rings of which the first two are
double sided. The TOB, green in 2-4, consists of six layers of concentric cylinders
of less finely granulated silicon extending from a radius of 56 cm to 116 cm. As with
the TIB, the first two layers of TOB are double sided. The TECs, purple in 2-4,
each consist of 9 disks extending from a region of t 124 cm to ± 280 cm along the
z direction [37] . Like the TID, each TEC disk is divided into concentric wheels, of
which two inner wheels are double sided. The combination of all subdetectors allows
for track reconstruction out to |7| < 2.4.

In general, silicon detectors reconstruct hits with an efficiency near 90 percent.
In order to be able to reconstruct tracks with an efficiency beyond 99.9 percent, a
minimum of three hits for the five parameters of the helix plus an additional four
hits to account for the approximate 90 percent hit efficiency is necessary. Thus,
an expected minimum number of seven hits is necessary to maintain high efficiency.
Figure 2-6 show the expected number of layers where at least one or two hits can be
reconstructed. The expected number of layers is on the order of ten, for nearly the
whole range of the CMS tracker, ensuring high track reconstruction efficiency.

The large number of silicon layers leads to a large amount of material. This
material induces energy loss, and a higher probability of photon conversions into
e+e~. The rate of energy loss is significant enough to shift the measured energy scale
of the calorimeters by more than 10 percent [40] . The expected amount of energy
loss due to the material as a function of q is shown in figure 2-6. At maximum, the
energy loss from material is nearly two radiation lengths.

2.4.4 Data Flow in the tracker

Figure 2-7 shows the required detector electronics to send data recorded from a deposit
on a silicon wafer to the a data collection device, known as the front end driver (FED).
After the FED, the signal is sent to a large computing cluster where data is combined
with the rest of the CMS detector to eventually form a fully reconstructed event.
The flow of this data is similar for both the pixel and strip detectors. The difference
between the two systems is that the pixel detector signals are zero suppressed, ie
signals are only sent if they are above a designated threshold [37] .
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Figure 2-6: The expected number of measurement points (number of hits) as a func-
tion of q of the silicon strips (top). The open points are the double sided hits and the
closed points are the total amount of measurements. Overview of the total tracker
material thickness in units of radiation length Xo over the whole 17 range of the CMS
detector (bottom).

Tracker data flow

The signal starts from a deposit on the silicon detector, this is processed through a
chip, known as the APV. The APV chip is capable of storing an analog pulse shape
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Figure 2-7: Schematic view of the flow of tracker readout and control electronics. [37].
The actual CMS detector is located in the top right of the diagram. Data flows from
the detector through the APV to the Front End Driver located on the bottom right.

from 128 strips of silicon for 200 separate bunch crossings [41]. These are processed
along a chain, amplifying them and deconvoluting the readout effects so that a sharp
signal is obtained. The difficulty of reading out the CMS tracker results from its size,
which is composed of 80,000 APV chips. This in turn equates to 128 x 80, 000 ~ 9 x 106
strips which must be read out at the interaction rate of 40MHz. To perform the
readout several signals from an APV are concatenated together passed into a fiber,
which is bundled with 96 other fibers and delivered to the FED [39].

Most of the information in the tracker is not relevant for physics reconstruction.
A single minimum ionizing particle will only be sampled by ~80 of the 9x 106 strips.
The 80 strip signals summed over at maximum several hundred particles emanating
from the collision produce a per event occupancy of 0.5-3.0% (depending on the
instantaneous luminosity). The reduction of data from that of the whole tracker to
the few hits above a threshold is performed by the FED (zero suppression). Following
zero suppression the pixel and strip data is concatenated and delivered to CMS DAQ
for further filtering and eventual storage.

To control the tracker, a series of tiered systems exist (figure 2-7), which are used
to synchronize the timing of the tracker, deliver settings to the readout, monitor
detector behavior, and send trigger commands to induce data taking [39]. The tiered
systems consists of a controlling device, known as the front end controller (FEC orange
in 2-7), which delivers signals to a digital optical hybrid (DOH), that processes the
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signal and delivers the processed signal to control modules known as the CCU (red in

figure 2-7). The time synchronization is done through a series of phase locked loops

(PLLs orange located on the blue in figure 2-7). The monitoring of the devices is

done through special readout components on each device known as detector control

units (DCUs).
This system, the tracker control system, is designed to instigate data taking if

an event is determined to be studied. This occurs when a level one trigger fires and

notifies the tracker. Upon receiving a level one trigger, the trigger signal, and a global

clock are passed to the FEC [39] , which subsequently transmits the ordered signal

of the two components to the DOHs. The DOHs then distribute this clock along the

CCU chain. Each CCU then distributes this to the PLL where it is properly delayed

and delivered to the APV chip.

The APV chip is capable of transmitting 10 signals per every 200 events. When

the 10 signal buffer is exceeded the APV chip goes into an error state. In order to

prevent this from happening the detector is equipped with an APV emulator (APVe)

that simulates the trigger occupancy and throttles the rate of data taking based on

the APV occupancy [39] .

Calibration In order to synchronize the behavior of the tracking system a series

of calibration tests are performed. These tests consists of voltage scans and syn-

chronizations of the different components of the tracker. Figure 2-8 shows one such

calibration test. In this instance, the individual signal response times from the APV

chips are recorded. The recorded times are read out and delays are adjusted to deliver

triggers on time. To fully calibrate the tracker for collision data taking, a minimum of

five more tests are required [42] . These tests are responsible for measuring the noise

of the silicon and other components, calibration of the optical signal transmission,
calibration of the APV chip, and synchronization with the rest of the CMS detec-

tor. As with the timing calibration, each test requires a per module (single point in

figure 2-8) measurement of its individual properties.

Tracker alignment

In order to optimize the momentum resolution of the reconstructed tracks, the exact

positions of the various detector sub components must be measured. To measure the

positions and monitor movement a laser alignment system is used [43] . Following the

laser alignment, the exact positions are determined by an alignment algorithm, which

minimizes the track x2 by reconstructing a large collection of tracks and individually

adjusting each of the 15,000 modules in the tracker so the the global track x 2 is

minimized.

Tracker performance

The individual ionization deposits of a charged particle in the silicon layers of the

tracker are combined into tracks. The -100 pum size of the silicon in the tracker leads

to a precise measurement of the track momentum resolution. Figure 2-9 shows the
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Figure 2-8: Performance of the timing of the TEC plus sub detector of the CMS
tracker. The individual color indicate the different layers within the TEC plus de-
tector. The individual points correspond to a specific tracker silicon readout module
(blue in figure 2-7).

track resolution for muons reconstructed in different sub detectors. The track recon-
structed in the tracker is indicated by the dotted-dashed blue line. The reconstructed
resolution for muons with a PT < 50 GeV/c is below one percent.

A futher example of the performenace comes from tracks that cluster about an
interaction point at the center of the detector producing an interaction vertex. Due
to their small size in two dimensions, the pixel detectors allow for a very precise
determination of the interaction vertex. For W boson events, the uncertainty on the
resolution measurement is typically around 20 pum.

2.4.5 Electromagnetic calorimeter

The electromagnetic calorimeter (ECAL) consists of a set of PbWO4 crystals. These
crystals are arranged concentrically about the vertex with an inner boundary defined
by the end of the tracker. The crystals are used to measure the the energy of the
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Figure 2-9: Track reconstruction resolution in terms of transverse momentum fraction
defined as R(q/pr) using the silicon tracker (blue), the muon chambers (red) and the
combined muon chambers and silicon tracker [44]

electrons and photons impinging on the detector by simultaneously inducing electro-
magnetic showers and reading out the resulting light output produced in the shower.
The showers are induced due to high density (8.28 g/cm2) and short radiation length
(2.1 cm) of the PbWO4 material [34]. As the shower propagates along the detector,
a large number of low energy photons are produced (on the order of 105). Because
the ECAL crystal is transparent, these photons travel to one end of the crystal where
they are amplified by an avalanche photo diode [37]. A series of crystals is shown in
figure 2-10.

Figure 2-11 shows the layout of the ECAL as a function of i9. The ECAL is split
into two regions, the barrel and endcap. The ECAL barrel runs from 0 <; ly|
1.479 [37]. The endcaps run from 1.479 < Ig < 3.0 [37]. The region between the end-
cap and barrel, although covered, has a degraded resolution and lower reconstruction
efficiency due to the fact that the coverage is split between the barrel and endcaps. In
the barrel, each crystal is designed to cover a region approximately 0.0174x 0.0 174 in
r - 4 space. In the endcap, the covered region goes from 0.0174x0.0174 to 0.05x0.05
in ig-# space. Due to the different physical size of oij at high and low values, the
crystals at high a have a worse resolution.

The typical size of the crystals is about 2.5 cm by 2.5cm by 23 cm. The transverse
size, 2.5 cm, is on the order of 1 Moliere radius [34], thus a single electromagnetic
shower originating from an electron or photon is contained primarily within one crys-
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Figure 2-10: Series of CMS electromagnetic calorimeter crystals. Crystals are 23cm
in length, 2.5 cm in height, and 2.5cm in width [45]. The wires on the far end are
attached to the APD.

tal. Separation of small showers is more difficult; the separation becomes even more
difficult at high Tj where the phase space density makes it difficult to separate pho-
tons that are nearby each other. In order to differentiate photons that are nearby
one another, an additional series of layers of lead and silicon strips are installed di-
rectly in front of the endcap crystals. These layers are known as the CMS silicon
preshower[46]. The additional lead induces the start of electromagnetic shower and
the silicon strips measure the shower energy deposits and their position. The silicon
strips resolve showered photons separated by a minimum of 2 mm.

y

-~ -- --Endcap
3.0 ECAL (EE)z

Figure 2-11: Cross section of the CMS ECAL as a function of positive |'| for a fixed
<. The crystals are arranged projectively about the collision vertex. A transition
region between barrel and endcap occurs at q = 1.5.
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The ECAL resolution is determined from test beam studies to be [47].

o-(E) _ 2.8% 12%
_ 2. 8 e e 0.3% (2.15)

E VE(GeV) E(GeV)

where the first term is the stochastic (nominal) energy term, which is determined
by the number of photons produced per shower. The second term results from noise
from the detector readout and photon excitations in the crystal. The third term is
the constant term caused by limitations in the detection. This implies sub-percentage
resolution from energies beyond 20 GeV. In the CMS detector, however, the test
beam level precision is not obtained because of several effects. The largest effect
results from a gradual decrease in the gain as function of radiation damage. With
radiation, the ECAL crystals lose their transparency, thereby leading to a reduced
signal. Continual monitoring of the transparency is performed through a laser. The
variation in the transparency is then translated to a per-crystal correction, which
approximates the variation. The second largest effect results from the variation in
resolution and transparency from crystal to crystal. These variations result from
impurities during production. A third, smaller, effect results from variations in gain
due to temperature variations throughout the detector.

In order to correct for the effect of mis-modeling an inter-calibration of detector
components is performed by requiring a well tagged r0 decay leaving deposits in two
separate crystals. At present, the inter-calibration is capable of giving 1% energy
resolution accuracy in the ECAL barrel and 3% in the ECAL endcaps[47].

2.4.6 Hadron calorimeter

The CMS hadron calorimeter (HCAL) is designed to measure the neutral and charged
hadronic showers originating from quark and gluon fragmentation and hadronization.
It is designed to be almost completely hermetic, such that all showers within the
HCAL dimensions are well contained. The HCAL is arranged in towers of dimension
0.087x0.087 in 77 - c with radial length of 1.2m. Bounding the inner end of the HCAL
is the ECAL. On the outer end the HCAL straddles the solenoid (figure 2-12).

The HCAL is divided into four different regions: the barrel (HB), 0 < rj| < 1.3, the
endcap (HE) from 1.3 < Iy| < 3.0 , the forward calorimeters (HF) from 3 < Ig| < 5

and the outer calorimeters (HO) from 0 < I,| < 0.8 [37]. The HB and the HE
consist of layers of brass interlaced with scintillator. The HF consists of quartz fibers
embedded within steel absorbers. The HF utilizes two sets of fibers of length 165 cm
and 143 cm to separate electromagnetic and hadronic showers respectively [37]. The

electromagnetic fiber is used to compensate for the fact that there is no ECAL beyond
the region of 3 < ITl. The outer calorimeter, the HO, is an additional scintillating
calorimeter located outside the solenoid. It is used to capture energy from the tail of
showers which pass through the solenoid. Each scintillator is attached to a hexagonal
array of hybrid photo diodes (HPD) [48] through a wavelength shifting fiber.

In the HB, HE, and HO, the readout of each scintillator is combined to produce
either a single or double energy readout for each hadronic tower. The sampling
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Figure 2-12: Diagram of the CMS HCAL, the blue layers designate the HB and the
HE. Upwards from the HB is the solenoid followed by the HO. The HF is located in
the far right.

fraction is such that a single photo electron is read from the hybrid photo diode
for a 0.7 MeV energy deposit. Poisson statistics determine the resolution yielding a
non-linear energy response for deposits less that 20 GeV(right of figure 2-13). The
calibration of the HCAL response is done through two methods. One method uses
single pions, which leave a single well measured track in the silicon tracker and then
stop in the HCAL through a hadronic shower. The result of the single pion barrel
calibration is shown in figure 2-13. The second method clusters energy deposits from
the HCAL with the ECAL and the tracks to form a jet. The combination of the
different sub components enhances the energy resolution by using each sub detector
deposit. Jets are calibrated by balancing jets with other jets and photons.

The resolution shape depends strongly on the type of particle showering in the
detector. The measured energy response of neutral hadrons is different from that of
charged hadrons; thus, the resolution shape of a jet measured in the HCAL depends
on the relative charged and neutral composition [34]. Different resolutions exist for
the different calorimetry in the endcaps, barrel, and forward region. To quote a
more appropriate number for the scale of the resolution shape and its uncertainty,
we consider the calorimeter jet resolution. A calorimeter jet clusters the deposits
in the HCAL and ECAL by a specific algorithm (chapter 5). This leads to a single
object, which represents a high energy quark or gluon and its resulting quark and
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Figure 2-13: Single Charged Pion response distribution for a given pion energy range
(left) and average response per energy over the whole range (right) [49]

gluon fragmentation. The overall PT resolution for such a jet is written as [50].

=/sign (N) -
INN 2

1-+ S2. p-1 C2.
PTP

The term N is known as the noise term, it dominates the resolution for low energy
deposits. The value of N is on the order of 4 GeV for HB and HE and -4 GeV for
HF. The term S is the stochastic term, which scales by the Poisson uncertainty of the
energy deposit. It is found to be on the order of 0.7- 1.1 going from small 71 to high 1.

The term M is a correction to the stochastic term. It ranges from -0.1 -+ 0.2. The
final term, C, the constant term represents the intrinsic resolution limit originating
mainly from effects of imperfect calibrations. This term is found to be close to zero.

The resulting resolution is depicted figure 2-14. Typical resolutions of jets with a
PT > 50 GeV/c are near 10% of the total jet energy.

2.4.7 Muon chambers

As with the tracker, the CMS muon chambers are designed to reconstruct tracks
of ionizing particles. Because of their location on the exterior of CMS, the muon
chambers only detect ionizing particles which escape the rest of the CMS detector.
This is almost exclusively muons. Muon chambers are clustered together into a set
of muon chambers known as a station. Four stations of chambers are layered around
CMS in a similar configuration to the layers of the silicon tracker.

Within each station is an arrangement of tracking detectors. Consisting of up
to 12 layers utilizing one of two different detector technologies, either cathode strip
chambers or a drift tubes. Resistive plate chambers are placed on either end of the
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Figure 2-14: Calorimeter Jet Resolution as a function of jet PT [50]. The dotted
red line shows the prediction if no constant C term (equation 2.16) is present in the
simulation. The solid red line shows the prediction if a C term is present. The black
points correspond to the measured jet resolution from jet balancing. The yellow band
is the systematic uncertainty from jet balancing.

first two muon stations and on the near end of the last two stations. Figure 2-15
shows a cross section of muon chambers. The low 17 region, lq| < 1.04, is composed of
drift tubes (DT green in figure 2-15 ). The endcap region of the muons is composed
of cathode strip chambers (CSC blue in figure 2-15 ). The RPCs (red in figure 2-15

) extend from a range of Ig| < 1.6.

Drift Tubes

The drift tubes consist of a wire inside a tube-like structure filled with 85% Ar and
15% CO2. A muon going through the detector will leave an ionization trail, which
will then drift to the wire and avalanche inducing a voltage. Figure 2-16 shows
an example of a single drift tube element [37]. The drift time and the position of
each wire constrain the location of the closest ionization deposit to an annulus of
distance R from the center of the detector wire. Depeding on the wire orientation,
this corresponds to either a coordinate in # or 6. Figure 2-17 shows a DT station

(referred to as a "super layer"). In each station are eight layers of wires oriented
along the # plane and four layers of wires oriented along the 0 plane. Hits on the #
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Figure 2-15: Cross section of the muon chambers in the r - z plane [51]. The three
different detection technologies RPC, DT, and CSC are denoted respectively by the
red, green, and blue colors on outside of the muon chambers. Each colored object of
the CSC or DT chambers denote a station. Stations are oriented in layers labelled as
MB for the DT region and ME for the CSC regions.

and 0 planes are reconstructed independently and then connected together to form
a short track known as a "segment". An ambiguity arises in the position of the hit
about the annulus of the wire, because the drift constrains a hit to an annulus about
the wire. This ambiguity is resolved by taking the point which minimizes the y2 of
the segment. With four separate stations of drift tubes, up to four reconstructed
segments per muon are possible.

Cathode Strip Chambers

The second tracking elements of the muon chambers are the cathode strip chambers.
Ionized particles of a muon passing through the detector drift field get amplified
through an avalanche along a wire inducing a voltage on both the wire and a series
of strips located near by the wire. Figure 2-18 shows an example of a cathode strip
operation [37]. The resulting positive ion drift from the avalanche along the wire
induce a charge on a set of negatively charged strips know as the cathode. The
induced charge distribution determines a position (the r - # coordinate) in the form
of a four bit Gatti function [52]. The centroid of the Gatti is unfolded and converted
into a hit. The wires run orthogonally to the strips, thus avalanches along the wires
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Figure 2-16: Example of a single drift tube element. The red line indicates the passage
of a muon through this drift tube element.

inside the cathode strip chambers determine a position in the r - 0 coordinate. The
combination of the wire position and the strip position determine a three dimensional
hit position. Figure 2-19 illustrates the passage of a muon through one CSC station.
In one station there are three strip layers and three wire layers. The combination of
these positions into a short track form a three dimensional muon segment. Up to 4
reconstructed segments per muon are possible because there are four stations of CSC
chambers.

Resistive Plate Chambers

The resistive plate chambers consist of two layers of a highly resistive material known
as Bakelite separated by a 2 mm gap. In a RPC, a large voltage differential (typically
5 kV) is placed across the gap in order to induce a semi-proportional discharge from
the passing of an ionizing muon. This large discharge develops rapidly leaving a clear
signal. This discharge is significantly larger than a proportional avalanche in the drift
chambers, imposing a limitation on the position resolution to a few cm. The time for
the discharge to develop is a few ns, much faster than the O(10ns) it takes for a DT or
CSC signal. Figure 2-20 illustrates the passage of a muon through a RPC chamber.
In each RPC chamber, the r position and the # position are recorded leaving the
third dimension 0 unconstratined. There are up to six r - # hits possible in the barrel
and four in the endcaps.
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Figure 2-17: Illustration of DT station. DT chambers are separated into three clusters
of chambers the top and bottom clusters are oriented in the r - # plane and the middle
cluster is oriented in the r - z plane.

Muon reconstruction

The combination of segments from individual stations to a single muon is performed
through an iterative tracking algorithm discussed in chapter 4. The final result is
determined by a simultaneous fit of all hits in each muon station to a helical shape
given an assumed energy loss model. The muon resolution that results from the final
fit is shown in figure 2-21.

2.5 Data flow

Data which is read out of the CMS detector must be filtered and eventually stored.
This is performed through a series of data fileters known as the trigger.

2.5.1 Trigger

Perhaps the most vital component of any hadron collider detector is the trigger. With
a 40 MHz rate of collisions, the data output of the whole CMS detector is nearly 50
TB/s. In order to filter the events to a sustainable level, and keep events of great
interest, events are partially read out and selected. This process of partially reading
out events and selecting interesting events is known as the trigger. The CMS trigger
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Figure 2-18: Illustration of the CSC detector operation. A muon passing through the
CSC chambers leaves ionization which is amplified along the wire through an electron

avalanche. Following the avalanche, drifting positive ions from the avalanche induce
a position on the cathode strips.

is divided into two levels, a hardware level trigger, known as the level one trigger,
and a software level trigger, known as the high level trigger (HLT).

Level one trigger

The level one trigger is implemented through a custom set of hardwired electronics
which use programmable logic to assess the degree to which the event contains inter-
esting physics. It is compartmentalized into individual detector triggers, a fast muon
track reconstruction trigger (level one Muon trigger), an electromagnetic deposit trig-
ger (the e/-y trigger), a fast jet reconstruction trigger (level one Jet), a vector sum of
calorimeter deposits trigger (level one FT trigger), and a scalar sum of calorimeter
deposits trigger (HT trigger). These triggers can be used individually or in concert

with other components to select events which are passed to the high level trigger.
The level one trigger is designed to make a decision within 4 pus of an event

occurring. This is limited by the total amount of data the readout buffers can store
at any given time (200 events). This small latency forces the design of extremely high
speed custom electronics, which are capable of partial event reconstruction at the yis

level.

High level trigger

Events that are accepted by the level one trigger are then passed to the HLT. The
high level trigger is completely implemented in software and run on a large computer

farm. In the HLT, a complete, although cursory, event reconstruction is performed.
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Figure 2-19: CSC layer and online readout system. The black line indicates a muon,
which leaves a track identified by three layers of strips and three wire layers.

The high level trigger is designed to make a decision within one second of an event
occurring. The final decision rate for recording events is 100 Hz.

The requirement to reconstruct an event and determine it is useful within one
second imposes limits on the amount of reconstruction. This is most evident in the
track reconstruction, which is performed by selecting hits near locations seeded by
pixel hits, muon hits, or ECAL deposits and not performed on all hits in the event
as it is done later on in the final reconstruction.

2.5.2 Simulation

To enhance understanding of the data a detailed simulation is constructed so as to
replicate as precise as possible the behavior of physics events in CMS. The simulation
is performed by a Monte Carlo generator (MC), which constructs a simulated event
by randomly sampling event kinematics from the matrix element of a specified "hard
scatter". The produced constituents typically consists of a collection of leptons, pho-
tons, quarks, and gluons. The strong interacting components (quarks and gluons) are
further "hadronized" to form mesons and baryons [54, 55]. These hadronized particles
along with the leptons yield the final products of the "generated" event. These are
passed into a simulation of the CMS detector, which simulates the interaction of par-
ticles produced by the generator in the detector, leading to energy depositions. These
simulated energy deposits are then passed through standard data reconstruction so
as to closely mimic true proton proton collisions. The final product of the simulation
is a data set specifying the Monte Carlo simulated process as it is expected to apper
in the CMS detector. Details about the simulation of W and Z boson processes are
discussed further in chapter 8.

53

I



current

Ionizin9 / Detecting strips
narticleI

Figure 2-20: Individual RPC layer, The graph at the top right denotes the fast rise
time of the RPC signal. The strips are arranged along the 0 axis, yielding r - #
spatial resolution.

2.6 Summary

In this section, a description of the CMS detector and the LHC are presented. The
LHC is the highest energy proton proton collider in the world. The CMS detector is a
precision hadron collider detector with excellent tracking and calorimetry. Its design
will motivate the choice of event selections, which allow for the precision measurement
of the W and Z boson cross section.
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Figure 2-21: Comparison of the resolution of a muon reconstructed in the muon
chambers between data (points) and Monte Carlo simulation (red band) as function
of PT. [53]

55



56



Chapter 3

Luminosity

A precise measurement of the instantaneous luminosity is critical for determining the

W and Z boson cross section. It contributes the single largest uncertainty to the cross

section measurement. In order to measure the instantaneous luminosity one must:

" Measure the rate of collisions rc

" Normalize the collision rate to an absolute cross section o1umi

The rate of collisions, rc, is used to determine the total amount of collected data.

The normalization of the collisions is used to translate the rate into a physically mean-

ingful value. Normalizing effectively measures the cross section of the process used

in the rate determination. Following normalization, the rate rc which is measured in

events/second, is expressed as the instantaneous luminosity

f - rc/07lumi , (3.1)

in units of pb-1/s.

Instantaneous luminosity of a beam is written using the formula in equation 2.1.

The unit pb stands for pico barn, a barn is a unit of area comparable to the size

of heavy atomic nucleus, 10-28 cm 2. Collision rates are typically measured by the

minimum effective area probed per set of collision or in other words the minimum

cross section probed. The minimum size probed goes down with each collision. For a

single collision this is about one mb-' for N collisions this is about N- mb-'. Rather

than storing instantaneous luminosity in terms of collisions per second. Instantaneous

luminosity is quoted by the effective area probed per second pb-1.

Collision rates are determined by counting the rates of any process which have

a known cross section, this includes W and Z boson production. In this section we

present the instantaneous luminosity measurement as determined by the rate of soft

inelastic collisions. If no new physics is present in the W or Z production channels,
comparison of the W and Z boson cross section measurements with the predicted

measurement will act as a cross check of this instantaneous luminosity measurement.
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3.1 Rate of collisions

The rate of collisions is determined by four methods, three of which utilize the for-
ward HCAL calorimeters (HF). Use of the HF maximizes the total fraction of all
recorded collisions used in the instantaneous luminosity measurement. Two of the
HF techniques are run "online" and two are run "offline". The offline measurements
are treated as a cross check of the final instantaneous luminosity measurement. Fi-
nally, due to non-linearities in the HF energy response only the regions 3.5 < |r/I < 4.2
are used.

The first of the four methods, the so called "zero-counting" technique, is performed
in the online environment. This technique calculates the mean number of interactions
given the fraction of HF towers where zero interactions occur. For a Poisson distri-
bution with mean, y, the probability distribution of the expected number of events
p(n) is given by

p (n) = (3.2)
n!

Thus, by determining the probability of zero interactions p(O) the average number of
interactions is found to be

yP log (p()) .(3.3)

To perform this method p(O) is calculated from the fraction of 864 HF towers that are
empty [56]. This determines the value of pt per recorded event, which thus determines
rc. This technique has the advantage that it does not rely directly on energy scale
calibrations of the HF; it requires only the act of triggering a recorded deposit above a
threshold. This is the default method used to determine the instantaneous luminosity.

The second method exploits the linear relationship of the average transverse en-
ergy (ET) per tower with the total instantaneous luminosity by recording the total
energy deposit per HF tower [56]. This method leads to a straightforward and simple
calculation of the instantaneous luminosity, however it suffers from mis-calibrations
and non-linearities in the response of the HF. Nonetheless, both methods produce a
consistent total instantaneous luminosity measurement (within four percent).

The third method, performed offline on a small, well understood dataset, is used
as cross check of the first default method. This method is performed by measuring
the incidence of deposits per tower in the HF detector. Unlike the first method,
the deposits are cleaned by requiring them to be > 1 GeV and within 8 ns of
the proton-proton collision time. These two selections remove noise effects in the HF
further improving the measurement. The difference between the online and offline HF
incidence based measurements is within 0.9 percent [57]. This implies an accurancy
of the default method to within one percent.

The fourth method, also performed offline, is determined by counting the number
of events with at least one reconstructed vertex with two tracks associated to it. For
low instantaneous luminosities where multiple collisions per bunch are not expected,
this technique provides a non HF based cross check of the other HF techniques. The
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final result is found to differ from the default instantaneous luminosity by 3.7 per-
cent [58]. This result is a final independent cross check of the HF counting technique.
Deviations between this method and the default method define a conservative uncer-
tainty band for which instantaneous luminosity measurements is compared to.

Figure 3-1 shows a comparison of the instantaneous luminosity for the third tech-
nique and the fourth technique. The instantaneous luminosity calculation is linear
over the four orders of magnitude shown. The slope of a fit of the two instanta-
neous luminosities compared to one another is 1.027 indicating a deviation in the
instantaneous luminosity readings of 2.7 percent between the two techniques [56].

Lumi from Offline (/110A27 cmA2 a)

Figure 3-1: Comparison of the instantaneous luminosity rate using the two offline
techniques. The y-axis indicates the instantaneous luminosity measuring the rate of
vertex reconstruction (fourth technique) and the x-axis indicates the instantaneous
luminosity measurement using the offline HF technique (third technique).

3.2 Absolute normalization

The absolute normalization determines a value alumi which translates the rate of
collisions to the physically meaningful definition of instantaneous luminosity given
in inverse barns per second. The absolute normalization, o1umi of the collision rate
requires a measurement of the cross section of the process used in the default instan-
taneous luminosity method. To measure the true cross section, a Van De Meer scan is
utilized. It is performed by scanning over the x and y distributions of the two beams,
moving the position of each beam in a stepwise manner and recording the rate. The
instantaneous luminosity is obtained from equation 3.1 and the widths of each beam
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distribution using the general instantaneous luminosity formula:

L = T(3.4)Olumi

= N1N 2 vrev P1(x)p 2 (x - Ax)dx J p1(y)p2(y - Ay)dy, (3.5)

where in the top case we have written L in terms of the parameters that define the
instantaneous luminosity measurement in CMS. In the bottom equation, we have
written L in terms of the number of particles per beam Ni, the revolution frequency
vrev and an integral over the two beam density distributions, pi, in the two coordinates
transverse to the beam: x and y. The separations of Ax and Ay define a offset
between the central points of the two beams. Integrating over Ax and Ay of both
equations 3.4 and 3.5:

1 f
dAxdAyL = dAzdAy (rc (Ax, Ay))) , (3.6)

Olumi
= N1N2vorb , (3.7)

and solving for the absolute normalization, Oiumi, by inverting equation 3.6

Ulumi f dAx (rc (Ax, Ayo)) f dAy (rc (Axo, Ay)) (3.8)
vNIN 2rc (Axo.Ayo)

This implies that oiumi may be determined by measuring the number of protons
per bunch Ni, the frequency of the collisions, v, and the beam width distribution
defined by the measured rate of collisions for a specific beam separation Ax and Ay
, rc(AX, Ay).

To obtain rc(Ax, Ay) a scan of the beam profiles is performed by incrementally
adjusting the current on the beam magnets around the collision points, so that one
or both beams move some distance Ax or Ay, and then measuring the collision rate.
The distance Ax or Ay of each incremental adjustment is determined utilizing two
different methods:

1. Take Ax and Ay from calculations based on the magnet adjustments

2. Take Ax and Ay by reconstructing the interaction vertex position of each col-
lision

The individual methods are presented in the sections below.

3.2.1 Magnet adjustments method

In this method several assumptions are made [57]

1. The central position of the two beams is known ( Axo, Ayo = 0,0).

2. The beam profiles of the two colliding beams are the same
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3. The length scale of Ax is linearly correlated with the magnet current readings.

4. The convolution of the two displaced beam distributions is a double Gaussian

(sum of two Gaussian with mean zero)

This third assumption is checked in a specific region by the vertex reconstruction and

found to be within 1 percent of the true length scale [57].

The scan is performed by adjusting the magnet current and measuring the collision

rate. Translation of the magnet current to the length scale Ax yields a distribution

of the rate of the convolutions of the two beams as a function of Ax. Fitting the com-

bined distribution to a double Gaussian gives a set parameters describing rc(Ax, Ay).

For double Gaussians normalized to one, the integral terms in equation 3.8 are re-

moved giving olumi as

1
07lumi(3.9)

Ulum -vN 1 N 2 rc (0, 0) '

V'_2 _-F(3.10)
vN1 N2 (f o,- + Or2 (1-M)

where o1 and r2 denote the two widths of the beam and f is the relative fraction of

one of the Gaussians within the double Gaussian. A fit of the double Gaussians to

the rate as a function of Ax is shown in figure 3-2.

3.2.2 Vertex reconstruction method

In place of relying on magnetic current measurements to determine the positions Ax or

Ay, the reconstructed vertex position is used. Use of the vertex position removes the

assumptions that the position adjustments are distributed about zero, the colliding

beams have the same profile, and the magnetic adjustments of the beams vary the

separation of the beams by a known amount.

To perform this measurement a second scan is performed where one beam is

moved at a time. First the beam in +z (beam 1) is moved and then the beam in -z

(beam 2) is moved. Moving the beams separately allows for the determination of the

beam density profiles p(x) separately for the +z and -z beams. To see how this is

obtained consider first the distribution of the rate along the x axis given a measured

vertex position x for a fixed separation Ax :

rc (xlures) = pi (x - Ax) p 2 (x) 9 G (x,, res) , (3.11)

where we have convolved the beam profile distributions P1P2 with a Gaussian G(x, ares)

with resolution given by the vertex reconstruction resolution Ores. Uniformly adjust-

ing beam 1 stepwise over a values Axi and measuring the rate versus reconstructed
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position x gives:

rc (XI7res) = P (X - AXi) p 2 (x) 9 G (X, o-res) , (3.12)

p2 (x) G (x, o-res) , (3.13)

where we have noted that f p1 (x) dx 1. For a sufficient number of steps the ap-
proximation in equation 3.13 is within 0.5% of equality [58]. Assuming the x and
y coordinates are not correlated (p1 (x, y) = pi (x) p1 (y) ), this method is used to
obtain the x and y profiles of both beam 1 and beam 2. The true beam shape is
then determined by a two dimensional fit to the collision rate rc (Xao-res) where one
axis is the reconstructed vertex position (ie beam position) and the other axis is the
vertex position resolution ores. This two dimensional fit assumes a double Gaussian
convolved with a Gaussian with resolution ores determined by its position on the sec-
ond axis. Figure 3-2 shows the result of the fit to the x axis of both tz beams. The
fit model describes the beam profile shape well. This allows for the determination of
the instantaneous luminosity normalization from equation 3.9 by integrating over the
two beam profiles

rc (0, 0) = ddyp1(X,y)P 2 (X,y) (3.14)

1
0-1umi =1(-5olmi =vN1 N2rc (0, 0) .(.5

3.2.3 Comparison

Comparing the two methods yields a value of the instantaneous luminosity consistent
within 2.5 percent[58]. This difference is quoted as a systematic uncertainty on the
instantaneous luminosity measurement. The second largest uncertainty, 1.7 percent,
results from the uncertainty of the measurement of the bunch densities N1 and N2
obtained from dedicated bunch current devices (known as the fast BCT and the DC
BCT). Combining the 2.5 percent difference with the 1.7 percent uncertainty and ad-
ditional smaller uncertainties yields a total systematic uncertainty of 3.6 percent [59].
The final systematic uncertainty is conservatively quoted as four percent.

3.3 Instantaneous luminosityin 2010

The data used in this thesis was performed with the complete 2010 dataset. Over
the course of the 2010 running LHC delivered 47 pb-1 of integrated luminosity. CMS
recorded 43 pb-1 of this data yielding a 92% efficient data taking rate [57]. Some
fraction of the instantaneous luminosity was further flagged as bad due to noisy
detectors, missing detector components, or mis-calibrations in the CMS detector.
This yielded 35.9 pb- 1 of physics quality data used in this analysis. Figure 3.3 shows
the history of instantaneous luminosity over 2010 [57]. The instantaneous luminosity
rate ranged over three orders of magnitude.
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Figure 3-2: Fit to the beam shape to a double Gaussian model using the magnet
current position method (top) for the horizontal (top left) and vertical (top right)
planes using a double Gaussian model. Projected two dimensional fit of of the rate
per vertex position versus the vertex position resolution on the vertex position plane,
where the beam 1 position is moved (bottom left) and beam 2 position is moved
(bottom right). [59]

3.4 Summary

The instantaneous luminosity in the CMS is determined by reading out the number of
hits in the HCAL forward detector (HF). Absolute normalization of the instanteous
luminosity is performed by measuring the beam widths of a Van De Meer scan using
two different techniques. The final integrated luminosity after a good runs selection
is quoted in the cross section measurement to be

E= 35.9 ± 1.44 pb-' (3.16)
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Chapter 4

Event Reconstruction

Event selection, triggering and reconstruction are the cornerstones of any hadron

collider analysis. Reconstruction starts with hits in the detector (chapter 2), which get

reconstructed into basic physics objects. For the W and Z cross section measurements,
we require well isolated muons and missing transverse energy YT. The reconstruction

of these two objects will be the focus of this chapter.

4.1 Reconstruction overview

The sub-detectors of CMS each play a different, but critical role in reconstruction the

fundamental physics objects. The main objects are:

1. Photon

2. Electron

3. Charged Particle

4. Jet

5. FT

6. Muon

We describe the reconstruction of these objects in the following sections.

4.2 Photons

A photon is reconstructed by selecting an electromagnetic deposit and requiring the

deposit to be absent of a nearby track. If a track were matched to the deposit, this

would indicate with high likelihood an electron. This is made more difficult because

the large amount of silicon material induces, with high probability, the photon to

convert into and electron and positron pair. In this instance, tracks exist nearby

ECAL deposits. The inclusion of the these events is performed through a series of

techniques after basic photon reconstruction [60].
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4.3 Electron

Electron reconstruction is similar to track reconstruction (described below), however,
in this case the electrons are seeded by an ECAL deposit with a transverse energy
>4 GeV known as a super cluster [61]. From the seed, a search for a matching pair
of hits in the pixel chambers is performed. If a match is found, additional hits along
the probable path of the electrons are incorporated into a track. Because of the high
rate of bremstrahlung radiation emanating from an electron, hits are matched to a
track given a set of possible energy loss models. The energy loss models are added in
weights (a "Gaussian sum filter" algorithm) and fitted with the super cluster energy
to determine an electron.

4.4 Track reconstruction

Track reconstruction is performed by combining hits deposited on the silicon tracker
in a pattern so that a full track is reconstructed. This is done through five iterative
steps. Each iteration is designed to incorporate increasingly less likely hit patterns
into reconstructed tracks by utilizing hits not previously assigned to a track. The
final two iterations remove the vertex constraint allowing for tracks resulting from
long lived particles such as A baryons and Ks mesons to be reconstructed.

The seeding of the first iteration is performed by looking for a triplet or pair of
hits in the pixel detector. The hit combinations are required to roughly point to the
vertex. At high |J|, where the pixel detector is not present, seeding is modified to
incorporate tracker hits. This extends the tracking out to a region of I| < 2.5.

Following the seeding, the trajectory from the seed is used to propagate the track
to each subsequent layer. An illustration of this procedure is described in figure 4.4.
At each layer, the compatible hits are incorporated into the track when the incremen-
tal X2 is below the threshold. With each new included hit, a Kalman filter is used
to modify the track parameters. The modified track is subsequently propagated to
the next silicon layer. In the case of multiple hits, multiple tracks are propagated
through to the last layers. Ambiguities, between two tracks with shared hits greater
than 50%, are resolved after the full track reconstruction [62].

Following propagation through tracker, fully propagated tracks are refit along
the whole path yielding the final set of helical parameters. A significant fraction of
reconstructed tracks do not correspond to any particle passing through the detector.
These tracks are removed by basic requirements on:

* X 2 /NDF of the fitted track,

" transverse distance do (known as impact parameter) to the mean collision point
(known as the beamspot),

" Az to the closest primary vertex,

" significance do/3do of do given a fitted uncertainty odo with respect to the beam
spot, and
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* significance Az/6z of Az with respect to the closest primary vertex given a
fitted uncertainty 6dz.

Table 4.4 lists example quality requirements of track reconstruction. At each step
of the iteration of the track reconstruction, the listed parameters are loosened with
each step. In order improve track reconstruction efficiency, a propagator taking

Parameter Requirement

X2 /NDF < 0.9n
do to the beamspot < (0.3n) 4udo(pT)

Az to closest primary vertex < (0.35n) 4uzo (PT, TI)

do/6do to the beamspot < (0.4n) 4

Az/6z to the beamspot < (0.4n) 4

Table 4.1: Track selection requirements for all tracks with a given PT, 'q, and n
matched layers. Here udo (PT) and UZo(PT, q) are resolution functions, which describe
the impact parameter, do, and the z positions of the vertex, Zo, respectively

No compatible
measurement
found: STOP

High Chi2 for the trajectory
after the last measurement

is added: STOP

M M MLli
4

Figure 4-1: Example of the iterative Kalman filter procedure on track reconstruc-
tion [63]

into account a parametrized material distribution of the CMS detector is used to
predict the energy loss. The energy loss of propagating particles is predicted on
the assumption that each track corresponds to a 7r meson. In the tracking fit, this
is implemented with the aid of the Runge-Kutta based iterative propagator [64].
The Runge-Kutta propagator incorporates both the detector material model and the
variation in the magnetic field at high |7l. The track reconstruction produces tracks
with one percent transverse momentum resolution for PT < 100 GeV/c.
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4.4.1 Vertex reconstruction

In addition to the basic track reconstruction, a crucial aspect to CMS tracking is
the clustering of tracks at the origin into a set of vertices. Vertex reconstruction is
performed through an annealing algorithm whereby each track is assigned to every
vertex with a probability determined by the distance to each vertex. This is iterated
several times recomputing weights for each vertex with each iteration. Vertices with
at least two tracks with a final weight probability above 90% are kept for further
analysis. The vertex resolution in CMS is capable of reaching a precision of 20 pm in
the transverse plane and 100 pm in the z-plane [65, 66].

4.5 Particle Flow (VT reconstruction)

Missing transverse energy reconstruction in the CMS detector takes advantage of an
all inclusive form of reconstruction known as particle flow reconstruction. Particle
flow reconstruction takes into account information from both tracks and calorimeter
deposits. The tracks and calorimeter deposits are combined into a single object,
incorporating the optimal resolutions for both tracking and calorimetry. In order to
comprehensively understand particle flow ET reconstruction, we first describe the
steps to form particle flow objects in the CMS detector.

4.5.1 Particle Flow calorimeter clustering

Particle flow reconstruction is designed to augment the energy measurements deter-
mined by the tracks. In order to do this, one must cleanly ascribe tracks to calorime-
ter deposits. For this to happen, particle flow relies on a custom technique for the
clustering of calorimeter deposits. The clustering proceeds by

1. Treating all deposits above a specified threshold as a seed

2. Allowing seeds to grow by adding adjacent clusters above a lowered threshold

3. Clusters which merged are separated

The last step, separating two merged clusters is determined by applying a weight fac-
tor to the energy of a specific cluster to each of the merged clusters and separating the
total energy in the deposit by the relative fraction of the weight factors. The weight
factor is given by E exp (-d'/2R2 ) where E is the energy, R is a pre-determined dis-
tance, which depends on the detector, and du is the distance from the center of the
specified cluster to the deposit. The center is determined iteratively by first taking
the seed cluster, then computing the energy-weighted geometrical center, and finally
iterating so as to define a clear distribution for each particle flow cluster.
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4.5.2 Particle Flow linking

Following the clustering, the tracks and the clusters are linked together into one
object. This step is the most critical step of particle flow reconstruction because it
removes double counting of deposits which creates an artificial energy imbalance.

The linking is performed by propagating tracks through the CMS detector, start-
ing from the last hit in the tracker, through the ECAL Pre-Shower, the ECAL and
then to the HCAL. In the ECAL this propagation is performed until the track position
reaches the average longitudinal position of a expected electron shower. In the HCAL,
this is propagated to a position of one nuclear interaction length A, in the shower. In
the instance where the propagated track goes through an existing calorimeter cluster
in rj and #, the components are linked together. When the propagation goes through
a crack or gap in the calorimeter window, the cluster size is enlarged up to twice its
existing size.

4.5.3 Particle Flow identification

The identification of each particle starts with the most evident objects and progres-
sively goes down to the more ambiguous objects. Following the identification of each
particle the deposits associated with that particle are removed, thereby simplifying
further identification of other particles. The particle identification order is:

1. Muons

2. Electrons

3. Charged Particles

4. Neutral Particles

Muon identification follows directly by classifying particles which match the global
muon reconstruction (section 4.6). The electron identification is determined from a
modified electron reconstruction where seeding requirements are loosened to incor-
porate tracks with bremstrahlung-like deposits in the ECAL. After electron recon-
struction, the remaining deposits with a track link are classified as charged hadronic
deposits and in some occasions refit to incorporate both calorimeter and track de-
posits. For rare instances where there is a small calorimeter deposit compared to that
of the track PT, the track is classified as a muon. (provided the PT fit uncertainty is
< 25%). In the instance where the associated track PT to calorimeter energy deposit
E satisfies PT < E - o( where o is the calorimeter energy resolution), the candidate
is classified as either a neutral particle or photon depending on whether the deposit
is in the HCAL or ECAL respectively.

Figure 4-2 shows a jet with PT = 65 GeV/c. In this jet are 4 particles [67], two
charged pions, one KL meson, and one 7ro meson. This results in two tracks, 3 ECAL
deposits and two HCAL deposits. From the linking algorithm, the two charged tracks
are linked to both HCAL deposits and one track is linked to an ECAL deposit. The
iterative procedure of identifying follows as
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1. K0 meson produces one ECAL deposit with no overlap -+ classify this as a
particle

2. ECAL cluster from r0 meson not linked to a track -> classify this as a particle

3. Both HCAL deposits linked to both tracks -4 remove link to farthest track

4. One ECAL deposit linked to charged track -± classify track plus ECAL plus
HCAL as one particle

5. Classify remaining track plus HCAL as a particle

From this iterative example, we are able to decompose jets and other complicated
objects into all of the individual particles. This method is capable of consistently
classifying more than 95 percent of the total energy deposits in the event[67]. The
classified particles will be referred to as particle flow candidates.

4.5.4 Particle Flow energy calibration

Energy scale calibration of the ECAL and HCAL particle flow deposits is performed
in data. For the ECAL, each crystal is inter-calibrated by requiring two photons from
a7ro meson decay to have a combined mass consistent with that of the -r0 [47]. For the
HCAL, the calibration of the particle flow clusters is determined by selecting objects
with a set of well reconstructed tracks associated to it. The sum of the track PT is
then compared to the sum of the calorimeter ET and tuned to correspond to a one
to one PT to ET ratio (figure 4-3) [67].

4.5.5 Particle Flow gT

Following the reconstruction of the particle flow candidates, jet and $T reconstruction
is performed on the particle flow candidates. In the case of the FT this is performed
by taking the negative vector sum of all of the particle flow candidates,

T= pT. (4.1)
candidates

This has the advantage of excluding calorimeter spikes or additional noise, which may
be read in with one detector, but does not cluster to create a particle. Figure 4-4 shows
a comparison of the particle flow FT resolution with the FT resolution defined by
two more traditional methods, summing calorimeter deposits (calo FT) and summing
calorimeter deposits corrected with track deposits (tc FT). Comparing with these
two methods, we observe first that correction by track deposits reduces the resolution
by a factor of two and going to particle flow gT reduces the FT resolution further by
20 percent.
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4.5.6 Particle Flow jet reconstruction

Jet reconstruction takes advantage of particle flow candidates, by clustering candi-

dates in place of typical calorimeter deposits. Jet reconstruction is performed with

the anti-kT algorithm which clusters Jets within a distance dij of the hardest particle,
where dij is defined as [69]

dij = min(1/kTi, 1/kTj) 2 ,Ai2  (4.2)
R

and R = 0.4 is the cone size for which all deposits with VA? 2 + A0 2 less than R are

clustered to form the jet. This reconstruction retains infrared and collinear safety and

in the instance of hard jets is nearly equivalent to more traditional jet reconstruction

performed by counting all energy deposits within a specified cone [69].

4.6 Muon reconstruction

The muon reconstruction is essentially track reconstruction with a matching to the

muon chambers. This is made difficult by the rather complicated material and B-field

variation between the muon chambers and the tracker. To seed the reconstruction of

a muon, deposits in either the tracker or the muon chambers are utilized. Seeding

in the separate detectors defines two types of muons, those seeded by deposits in the

tracker and propagated outwards (tracker muons) and those seeded by deposits in

the muon chambers and propagated inwards (global muons).

4.6.1 Muon propagators

In CMS, there are three methods of trajectory propagation. The three propagators

use different material models of the CMS detector. For each step of the propagation,
the material induces an energy loss given by equation 2.13 (Bethe-Bloch). This is

used to adjust the curvature r, in the B field by iteratively recalculating K through

the two steps below:

d E
d = f (E), (4.3)
dx

/ = F (B/PT) . (4.4)

This is performed with a Runge-Kutta iterative method, which allows for modification

of the expected trajectory parameters. For tracks inside the tracker volume the

material is introduced at each layer, with stepwise propagation occurring from layer

to layer. Outside of the tracker volume a special propagator known as the stepping-

helix propagator is used, this propagator incorporates an energy loss model given by

either energy loss in the iron of the magnetic yoke, or a value which approximates

the energy loss in the support material between the iron (5.3% that of iron) [70]. The
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energy loss function in the iron is given for momentum p by

dE (11.4 + 0.96| log(2.8p)| + 0.033p (1 - p-1/3)) MeV/cm. (4.5)
dx -

The permissible fluctuations in the energy loss model for which a hit may still be
incorporated into a track are determined from MC simulation in iron. The value used
is (AE) 2 /X (1 + p -10-) where AE is the predicted energy loss, x the propagated
distance from the last incorporated hit and p the momentum. Multiple scattering
effects are accounted for in a similar manner to the energy loss using the standard
scattering formula [34] given by

13.6MeV
00 = /z/Xo (1 + 0.38 log (x/Xo)) . (4.6)p

4.6.2 Reconstruction in the muon chambers

Muon reconstruction is seeded from either a level one trigger firing (discussed in sec-
tion 4.7) or hit pattern in the muon chambers. The hit pattern in the muon chambers
starts first with segment reconstruction in the local muon chambers (chapter 2.4.7).
The seeding is performed by clustering one or more segments together based on geo-
metrical criteria. The initial PT of the reconstructed segment is taken to be

PT- A - B (4.7)

where A and B are constants depending on the position of the segment. The angle
A# is defined as either the closest hit on the segment with respect to the collision
vertex position or in the endcap as the difference in angles of two segments in two of
the three closest chambers.

Following the seeding, the track is propagated through the muon chambers using
the stepping-helix propagator. Hits, which when included into the track give an
additional x 2 below a specified value, are incorporated into the track and the track
parameters are updated through a Kalman filter. The final track fit is performed
using the hits within the muon chambers where a tighter X2 cut is imposed. All
tracks with at least two measurements, for which one must be a segment in the DT
or CSCs, yields a reconstructed muon in the muon chambers, known as a Stand-Alone
Muon.

4.6.3 Global muon reconstruction

A global or tracker muon involves the combination of both a track in the tracker and
a Stand-Alone muon in the muon chambers.

Global Muon reconstruction starts with a Stand-Alone muon and then determines
a set of tracks for which a possible track muon link may exist. To obtain the set of
possible tracks, all tracks in the tracker that are compatible in a rectangular region
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in rj - # space and which pass a criteria selection of seven different parameters given

by:

" Distance of closest approach to the collision point

" Az of the muon and the track near the region of origin

" AR (in r and #) of the track to the muon near the region of origin

" Direction of the two tracks at the origin

" A# of the track and the muon as determined given the uncertainty of # in the

Stand-Alone muon fit.

" ATI of the track and the muon as determined given the uncertainty of 77 in the

Stand-Alone muon fit.

" minimum allowable PT of tracks

The matching of track to Stand-Alone muon is performed by first propagating

the selected tracks to the front surface of the muon chambers and then matching by
iteratively comparing several quantities:

" x2 of the two tracks as defined by:

x 2 -(t _ -)T (C1 + C2)(Pi-1P2), (4.8)

where j is the momentum of the track or muon and Ci is its respective covari-

ance matrix.

" Track position along the surface of the muon d= (x, y) with respect to the

track

d = (xi - Hx2 + (y1 - y2) (4.9)

Distance requirements range from 2 - 15 cm depending on the quality of the

muon.

" Local position x2 < 20 where

x d 2 (Cd i + Cd2) (d1 - d2 ) (4.10)

" Angular matching AR < 0.1 - 1.0 of the position vectors between the track and

muon
AR= Ar 2 + A#2 . (4.11)

" Angular matching AR of the momentum vectors between the track and the

muon, when propagated back to the closest approach of the primary vertex.
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Tracks sufficiently well matched are promoted to the final step of the global muon
reconstruction, the global muon fit.

The global muon fit is performed by refitting all of the hits along the path of the
linked track muon system. This fit, like the other track fits, is performed through an
iterative propagation and Kalman filter of the associated hits. Hits which increase the
x2 of the track, are removed from the track. In the instance where multiple tracks are
matched to the muon, all track plus muon combinations are fit and the combination
with the lowest x2 is chosen.

4.6.4 Tracker muon reconstruction

In tracker muon reconstruction, the seeding starts in the tracker by selecting all
tracks with a momentum p > 2.5 GeV. The seed tracks are propagated into the
muon chambers. All tracks with a hit in the muon chambers associated to the track
are considered tracker muons. The association is defined as a hit (or segment) within
3 cm or 4o- of the projected track surface, where o- incorporates both the segment
and energy loss uncertainty. In the instance where multiple tracks are compatible
with a hit in the muon chambers (as is the case in jets), the closest track in Ax of
the local coordinates is chosen. This requirement is relatively loose and leads to high
reconstruction efficiency of muons at the expense of a high fake muon reconstruction
rate. The fake muon reconstruction rate is compensated by identification cuts after
muon reconstruction.

4.7 Muon level one trigger

The level one trigger performs the same action as Stand-Alone muon reconstruction;
however, due to the fact that the level one trigger must be able to reconstruct and
identify muons within a period of 200 bunch crossings (4ps), the reconstruction is per-
formed in an extremely optimized way. In order to perform such a fast reconstruction,
custom application specific integrated circuits (ASICs) and field programmable gate
arrays (FPGAs) are utilized extensively to enable the decision making.

Figure 4-5 shows the reconstruction chain of the level one trigger. Reconstruction
starts with local segment reconstruction performed independently in each station of
the three different muon sub-detectors (DT, RPC, and CSC). Segment reconstruction
is followed by track finding where segments in a specific sub detector from each station
are combined to produce a track. The best tracks are promoted to the global muon
trigger, which combines and sorts the tracks yielding the four best muon candidates.

Figure 4-6 shows the measured cross sections of muons in the level one and high
level trigger. Current 2011 running corresponds to 3000 nb- 1/h of integrated lumi-
nosity per hour. This is approximately 1 nb'/s, which from figure 4-6 translates to
a trigger rate of 5000Hz for muons with momentum > 10 GeV/c.
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DT Level one reconstruction

Local reconstruction is performed by dividing a DT muon station into three parts,
the two r - # oriented layers of detectors and the one r - 0 oriented detector layer

(figure 2-18). In each of the thee parts a set of three or more hits in four of the

individual DT layers is required. In r - #, this forms a segment which is paired with

a segment from the other r - # part of the DT layer through a look up table. This

segment in r - 0 is then combined with the r - # segment producing a segment in

the whole muon chamber. Segments which point closest to the vertex are promoted

to the track finding step.

A schematic of the DT track finder is shown in figure 4-7. The DT track finder

takes as input all segments within a given 300 angle in the r - # plane. The segments

are then sorted and combined through a look up table, which takes into account the

approximate motion of a muon given the magnetic field, PT, and # coordinates of

the segment. Segments which loosely match in A# are promoted. The two highest

PT muons that pass a quality requirement on the segment alignment are promoted
to the global muon trigger. The PT determination is performed discretely through a

look up table. Selection requirements on the PT are tuned to correspond with 90%

efficiency rate above a specified PT threshold (se 90 percent of all muons with true

PT > 10 GeV/chave Li trigger PT > 10 GeV/c).

CSC level one reconstruction

The local reconstruction in a CSC is similar to that of the DT chamber. In the CSC,
the timing of the muons is driven by the anode wires. The cathode strips are used,
in situ, to constrain the # coordinate. As with the DT level one trigger, hits are

compared to templated hit patterns and the two best segments are promoted to the

CSC track finder. The CSC track finder combines all segments within a division of six

600 wedges on either end of the interaction point. The segments in each individual

wedge are combined through the help of look up tables. Candidates which pass

requirements specified through the look up tables are promoted to tracks. The two

best tracks in each 600 wedge are passed to the global muon trigger.

RPC level one reconstruction

A schematic of the RPC trigger is found in figure 4-8. In the RPCs, there are ei-

ther one or two detector layers per DT or CSC station. Hits from these detectors

are passed to an RPC track finder, which combines the hits in a designated hour-

glass shaped region (gray region in figure 4-8), one hit per layer. The resulting hit

configurations with at least 3 hits are then matched to one of the ~80 possible hit

patterns by the Pattern Comparator Trigger (PACT), yielding an RPC muon. Fol-

lowing reconstruction, muons reconstructed twice in overlapping hourglass regions are

removed (known as ghost busting), the best 4 muon candidates are delivered to the

global muon trigger.
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Global muon trigger

The global muon trigger matches the different muon candidates by performing a
matching in Ty and #. Where two systems cover the detector, muon candidates which
are reconstructed in two of the three systems are considered good candidates and
promoted to the final level one trigger. Before promotion, the global muon trigger
removes muons multiply reconstructed in the transition region between the DT and
CSCs. In some instances, lower quality muons reconstructed poorly may be selected;
however in this analysis these trigger objects are not selected. Finally, a calorimeter
bit corresponding to a minimum ionizing equivalence is matched to the level one
muon.

4.8 Muon high level trigger

The muon high level trigger is separated into two separate components: level two (L2)
muon reconstruction and level three (L3) muon reconstruction. Level two muon recon-
struction is performed with only the muon chambers. Level three muon reconstruction
combines track and muon information. The seeding for both these components comes
from the results of the level one muon trigger, thereby avoiding any instance of trigger
volunteer originating from either the muon or the other components in the event.

4.8.1 Level two muons

The level two reconstruction is seeded by level one trigger candidates. Candidates
identified as halo muons originating from beam interactions outside of the interaction
point are removed from the seeding. The remaining candidates are then propagated
to the innermost surface of the muon chambers.

Level two reconstruction starts by performing offline segment reconstruction on
all hits in the muon chambers. Reconstruction of level two muons is then performed
by propagating the seeded candidates through the muon chambers incorporating any
segments with an incremental x2 < 1000 on the modified track parameters. Segments
with an incremental x2 < 25 on the modified track parameters are deemed compatible
and incorporated into the fit using the same Kalman filtering and propagation used
in offline Stand-Alone muon reconstruction. A muon with at least one compatible DT
or CSC segment and an additional hit or segment is declared a successful candidate.
Successful candidates are refit from outwards to inward replacing the segments with
the muon hits. All hits with an incremental x 2 < 25 on the muon track are used in
final fit to determined the track parameters.

Concurrently with the level 2 muon reconstruction, calorimeter deposits are clus-
tered forming calorimeter towers. In the ECAL, unpacking and clustering is per-
formed for a region of (0.3, 0.3) in (Ay, A#) about the level one muon seed, while
in the HCAL the full deposits are unpacked and clustered. Deposits within a cone
AR = /A 2 ± A# 2 < 0.24 with respect to the level two muon are summed together.
This defines a variable known as isolation, which is used to reject muons resulting
from decays in jets.
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4.8.2 Level three muon seeding

The level three reconstruction follows a similar procedure to global muon reconstruc-

tion. In global muon reconstruction, Stand-Alone muons are used to seed a muon in

both the muon chambers and ther tracker. In level three reconstruction, muons are

seeded by level two muons and combined with a track in the silicon tracker. In order

to perform the seeding three different techniques are used:

" Outside-in state based seeding

* Outside-in hit based seeding

" Inside-out hit based seeding

The three techniques are applied sequentially following the order above. In the

instance where a candidate passes the selection, the next stage of the seeding is not

performed. This method of seeding and reconstructing is known as the Cascade

Algorithm [71].
The first seeding technique, the outside in state based seeding, relies on the di-

rection and PT of the level two muon propagated to the outer surface of the tracker

(defined to be the first module with an incremental x 2 < 20 when added with the

level two track). The projected momentum and direction ("state") at the surface of

the tracker are used as a seed to look for compatible track hits.

The second seeding technique, the outside in hit based seeding, is performed by

modifying the level two muon track with hits in the tracker that are compatible with

the propagated muons. Hits are deemed compatible when the incrementalX2 of the

track with respect to the hit is within 15. Once a compatible hit is found on a layer,
the algorithm stops searching for hits beyond that layer.

The third seeding technique is performed by matching muons to pixel triplets and

pixel pair plus primary vertex tracklets. Reconstruction of these tracklets, unlike

track reconstruction, can be performed within the time constraint of the high level

trigger. The matching with the tracklets is determined by requirements on

" Az: difference of the z coordinate at the distance of closet approach to the

primary vetex of the the two tracks

* AR: difference in the minimum distance to the primary vertex

* Track direction

* AO: difference in # at the distrance of closet approach to the primary vetex of

the two tracks

" Aq: difference in rj at the distrance of closet approach to the primary vetex of

the two tracks

Candidates that pass the selection requirement are then filtered to remove dupli-

cate matches and passed on to full level three muon reconstruction.
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During the 2010 running, different seeding algorithms on level three muons were
employed. The algorithm shown here (cascade seeding) was only used for the last 33
pb- 1 of data. Before that a different seeding configuration four percent less efficient
was used.

4.8.3 Level three muon reconstruction

Level three muon reconstruction is essentially track reconstruction with a specified
seed. This track reconstruction is performed in the high level trigger environment,
thus access to all of the silicon hits is not readily available and a dynamic unpacking
of hits is performed. A selected good level three muon must have five hits where an
incremental x2 on the modified track parameters including the hit is < 30 and a good
level three muon must be matched to a level two muon.

Isolation on level three muons is calculated by taking the calorimeter based isola-
tion from level two muons and combining it with a the sum of the PT of pixel based
tracks where for each track compared to the muon:

* the vertex 6r < 0.1 cm,

e the vertex Az < 0.2 cm,

* distance 0.01 < / 2 -+ A#52 < 0.24,

" track PT > 2 GeV/c, and

" distance with respect to the vertex is 6r < 250 pm.

4.9 Muon PT resolution

The reconstruction in either the muon chambers or the tracker lead to different res-
olution in both the track parameters and the vertexing. From equation 2.12, the un-
certainty on the transverse momentum is determined from measuring the resolution
of the sagitta s. Additionally, the resolution is degraded by the amount of medium
for which the muon has scattered through and improved by both the resolution and
number of hits in the reconstruction.

At extremely high PT, muon tracks in the tracker are essentially straight, making
a measurement of the muon PT particularly difficult. The measurement of these
muons is thus optimal if one relies on the larger distance (lever arm) provided by
the muon chambers to measure the momentum. For muons with a PT < 200 GeV/c,
the momentum resolution is dominated by the measurements in the tracker, where
multiple scattering outside of the tracking volume is large enough (x/X 0 ~ 40) such
that the additional smearing imposed on the muon outside of the volume is larger
than the resolution of the measured PT.

Figure 4-9 shows the reconstructed resolution for muons as a function of the
type of muon and PT of the muon. The transition region where tracker plus muon
combined fit improves resolution is visible in the plots at 200 GeV/c. In this analysis,
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we choose to exclusively use track PT for which we expect less that 1% of events

above PT > 200 GeV/c. Modifying the PT choice to incorporate the track plus muon

chamber fits leads to inconsistencies further on in the analysis.

4.10 Summary

In this section, the reconstruction of muon objects and the PT has been presented.

These two objects are used to select both W and Z boson events. The muon will be

used to trigger events and select out isolated well identified muons coming from W

and Z boson events. The -T will be used in the final separation of W boson events

from other backgrounds.
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Figure 4-2: Example of a jet with PT = 65GeV/c. The top diagram is an overview
of the event in the r-# plane. The concentric rings denote the ECAL (inner) and the
HCAL (outer). The gray components denote the ECAL (light gray) and the HCAL
(dark gray) deposits. The colored lines denote the particle flow clustering, green for
ECAL, blue for tracks, purple for HCAL. The second from top plot shows the linking
between the HCAL and the ECAL. The bottom left shows the linking between tracks
and ECAL. The bottom right plot shows the linking between the tracks and the
HCAL.
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Figure 4-3: Calibration of particle flow reconstructed calorimeter energy for Barrel
(top) and Endcaps (bottom). Calibration is performed by matching the momentum
of a track with the measured deposits.
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Figure 4-4: Comparison of the resolutions using three different FT calculations for
both simulation (MC) and data as a function of the total energy seen in the event,
assessed with the particle flow algorithm. The black components denote Calo 'T,
which is obtained by the vector sum over calorimeter deposits in equation 4.1. The
red line (tc fT) is obtained by correcting calo VT with track deposits. The blue line
is the default particle flow g$ [68]

Figure 4-5: Schematic flow for Muon Level One reconstruction. Muon reconstruction
is performed in separate chambers and combined when the individual segments arrive
to the global muon trigger.
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Figure 4-7: Schematic flow for fast muon track reconstruction in the drift tubes
using the DT track finder. Hits are individually reconstructed on the left and then
connected through a series of look up tables using the angles #1 and 02 shown in
the diagram. Tracks are then combined in the assembler (center) and assigned track
parameters in the assignment unit (right).
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Figure 4-8: Diagram illustrating the reconstruction of level one RPC muons. Muons
are seeded by hits in station two and then allowed to follow hit configurations within
the the gray hourglass region determined by a look up table.
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CSCs.
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Chapter 5

Selection

The separation of W and Z boson events from backgrounds is performed by require-
ments on the quality of the muons. The selection removes a large faction of back-
ground events with minimal loss of W and Z boson events. In this section we present
a muon selection optimized for the cross section measurement. The final selection
amounts to a remaining signal and background yield such that, after selection, the
W boson yield is extracted with minimal uncertainty.

5.1 Muon trigger selection

The muon trigger filters events to a sustainble data recording rate for further event
analysis. This is performed by apply PT threshold on the muon trigger objects. Events
that fall below this threshold are recorded at a fraction of their total rate (known
as prescaling). The maximum sustainable trigger PT thresholds during data taking
were 10 GeV/c for the level one trigger and 15 GeV/c for the high level trigger[72].
Each trigger used in these measurements has a well defined name in the CMS trigger
nomenclature. The level one trigger used is known as

LiSingleMulO

and the high level trigger is given by

HLT_Mu15

The high level trigger leads to a rate of online reconstruction smaller than 7 Hz in
2010 data. This trigger did not exist throughout the course of 2010 running. In place
of this trigger was a high level trigger with a nine GeV/c threshold. This trigger was
seeded by a seven GeV/c level one trigger. In order to minimize the variation in the
yield as a function of the trigger thresholds, an offline selection of PT > 15 GeV/c was
imposed on all HLT level three triggered muons. A final PT cut of 25 GeV/c is imposed
on the fully recontructed muon PT, thus keeping the influence of PT mis-reconstruction

to a minimum.
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5.2 Muon event selection

In this analysis, two kinematic cuts are imposed: an ?7 cut on the muon, selecting all
events with a muon having jq| < 2.1, and PT cut on the muon requiring the muon to
have a PT > 2 5 GeV/c.

The choice of the T) range is determined by the trigger quality value. For |rA > 2.1,
the CSC triggers have a reduced effieincy (algorithmic redundancy) resulting from the
wiring of the CSC chambers. To minimize the effect of this wiring issue a requirement
of |r| < 2.1 is imposed on the muon.

In this analysis, the cut is raised from the 15 GeV/c threshold to require muons
with PT > 25 GeV/c so that both systematic uncertainties originating from theoretical
acceptance uncertainties and background mis-modeling uncertainties are minimized
(discussed further in chapters 8 and 10).

Muons from W boson decays comprise 10 percent of the total amount of muons
passing the trigger and kinematic selection. Figure 5-1 shows the predicted composi-
tions of all muons passing the HLTMul5 trigger with 20 GeV/c < PT . The majority
of muons coming in on the muon trigger originate from heavy quark decays. Other
sources include light quark "decays in flight", punch through hadrons, and cosmic ray
muons. With the exception of cosmic ray muons all of these events are classified as
QCD background. In order to remove contamination of these backgrounds specific W
boson identification cuts are required. The choice of the cuts is determined through
an optimization metric.

2 35C CMS Preliminary 0 Id =M Prlmnaynhthr 31 p
light =1- light

E 30 charm
b+(ccasek) M b4(c cascade)

M W Nd idW (+Jeta)
M Z (J*)Z(+Net)25- M eei

20-

15c

10 -2

5 10

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 20 40 60 80 100 120 140 160 180 200
p, (GeV/c)

Figure 5-1: Comparison of data with expected composition of all reconstructed muons
with PT > 20 GeV/c. The red, yellow, gray, and cyan colors result from muons
decaying from QCD processes simulated with Pythia. The QCD processes are tagged
by the quark responsible for the decay of the muon. The magenta and gray are from
Powheg W/Z boson simulation. The discrepancy in the q distribution (left plot) at
central q results from the uncertainty in the QCD production cross section, which is
near ten percent.
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Selection optimization technique

The core optimization metric, also known as figure of merit, used in this analysis is

the significance of the selection defined as

S 
(5.1)

/S+B

where S is the W boson signal events and B is number of events stemming from

background processes. The denominator of the metric is obtained from an S + B

sample. This corresponds to the final selected signal sample (signal and background).

Thus, for the optimization, the denominator sample is taken from the same single

muon dataset used to select W bosons. The numerator samples are intended to

consist of good "W-like" muons. Such a sample in data is obtained from muons

resulting from Z boson decays to p+p--. Selection of Z bosons, outlined below, yields

a background contamination less than three percent, thereby providing a clean source

of isolated high PT "W-like" muons.

Additional Metrics

In addition to the default metric, we consider optimization with two additional metrics

defined to be

S
72 - S + B + U2B 1 5 + U2S 1 5  (5.2)

S
3 = S+B+O2B2 +O2S2  (5.3)

where Ob is defined as the systematic uncertainty on the background measurement

and os to be the systematic uncertainty on the signal. For this study we take 0s

to be one percent and 0 b to be 10 percent. These are motivated by the expected

final systematic uncertainties in the cross section analysis. Where, with 36 pb-1 of

data, we expect ~ 105 W boson events. This implies a statistical uncertainty of

1//N ~ 0.3%. Systematic uncertainties for this measurement are expected to be

near 0.5 percent or even higher making a statistical based optimization ( /S + B)

not necessarily optimal.
In order to utilize these metrics, we mus separate S and B in denominator. To

obtain S and B separation, we rescale Z boson events, roughly, to the expected

W boson yield in data, this gives S. To determine B, we subtract the rescaled S

distribution from the S + B sample. These metrics and the original significance

metric a 1 , shall be denoted by their name ui in the ensuing plots.

Z boson selection Well isolated muons similar to W boson decays are obtained

by selection of muons from well identified Z boson events. This requires the Z boson

event pass:

e the muon trigger (HLTMul5),
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* isolation of one muon such that for all deposits within a cone /A 2 + L2A 2 <
0.3,

>tracks PT + ZECAL+HCAL deposits ET

PT
< 0.15 , (5.4)

" impact parameter (distance of closest approach to the vertex), do, of one muon
do < 0.2 cm,

" two muons with PT > 20 GeV/c (muons may be either tracker or global muons),
and

" combined mass of the two muons mee such that 60 GeV/c 2 < m < 120 GeV/c2.

In order to make the selection optimal for W bosons, the selected muons from Z
boson events are reweighted by the kinematics of the W boson selection using the
weight factors shown in figure 5-2. The weighting factor is determined by taking the
two dimensional rj and PT distribution for simulated muons from W boson decays and
dividing it by the simulated Z boson distribution of the non-isolated muon for the
selection described above. These muon will further be referred to as the Reweightd
Z -+ pp sample.
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Figure 5-2: Kinematic weight factor in terms of n and PT of an isolated muon for
simulated W-+ pu compared to an isolated muon from Z-+ p+tc decays. The weight
factor is obtained by dividing the two dimensional , PT distribution of the simulated
muon from W boson decays by the non-isolated muon from the Z boson selection on
simulated Z boons decays.

Optimization procedure

The optimization of each cut is performed with the most basic significance metric
o1. To perform the optimization, each cut is separately optimized by applying the
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previously determined optimal selection excluding the cut being optimized (so called

N-1 selection). The optimization is applied iteratively, starting from no cut selection

and continuing until modification of any cut reduces the value of CI. For muon re-

construction, where individual parameters are loosely correlated, convergence results

within two iterations on each cut optimization.

5.3 Final selection

In the following sections, we present the optimized selection using the metric defined in

equation 5.1. Optimization on the other two metrics are shown as a cross check of the

optimal selection, these metrics are scaled to correpsond with the same value for the

cut varaible at zero. Additionally, in each variable, we present the receiver operating

characteristic (ROC) curve [73], which shows the efficiency of the background versus

the signal efficiency.

5.3.1 Global Muon

In light of the similarity of the high level trigger with global muon reconstruction, all

muons are required to pass global muon reconstruction. Loosening the cut to allow

both tracker and global muons increases both the signal and background yield by one

percent [70].

5.3.2 Number of pixel hits

A cut on the number of pixel hits removes backgrounds coming from light flavors

(decays in flight) and cosmic ray muons. A light flavor decay occurs when a r or K

meson decays into a muon. This occurs in the outer layers of the tracker causing a

displaced track with no hits in the pixel detector. Cosmic ray muons are removed

because the small size of the pixel detector decreases the incidence of cosmic rays

impinging on the detector. In the pixel endcaps, the probability of a reconstructed

muon from a cosmic ray is reduced even more because of a reduced cross section due

to the vertical orientaiton of the endcap detectors.

Figure 5-3 shows the optimization of the number of pixel hits given the defined

metrics. The optimum point varies for the three different metrics. In light of increas-

ing signal efficiency, the optimal value of

e > 0 pixel hits

is chosen.

5.3.3 Number of tracker hits

As with the selection on the number of pixel hits, requiring hits in the inner sili-

con tracker is an excellent way of removing poorly reconstructed muons, typically

resulting from decays in flight. A large number of hits further ensure muons are well
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Figure 5-3: Comparison of number of pixel hits for muons from the single muon data
set with all optimized cuts applied except for the specified variable. Signal and signal
plus background contributions are plotted on the top left, efficiency of the signal is
compared with that of the background (top right) and the optimization metric is
shown on the bottom. The red dot shown in the middle and right plots indicates the
optimal cut choice. Three optimization metrics o,, o2 , and o3 are defined in equations
5.1,5.2, and 5.3 respectively.

92

- Reweighted Z ->ps

- Single Lepton(OCD+W)

-G1

-C 2
-03



reconstructed and prompt. Due mainly to the variation in the number of hits over
muon r, the final optimum (figure 5-4) is found to be very loose at:

* > 10 tracker hits

From figure 5-4, we find approximately
a hit multiplicity below 10 hits.

a)

w

0.1 percent of signal events are recorded with
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Figure 5-4: Comparison of number of tracker hits from the single muon data set
with all optimized cuts applied except for the specified variable. Signal and signal
plus background contributions are plotted on the top left, efficiency of the signal is
compared with that of the background (top right) and the optimization metric is
shown on the bottom. The excess of background events for number of hits near 25
is a result of the poor reconsturction of QCD events. The leftwards motion in the
last point of the efficiency plot on the top right results from imperfect normalization
of the signal sample, when performing the signal subtraction from the signal plus
background sample. The red dot shown in the middle and right plots indicates the
optimal cut choice. Three optimization metrics o,, U2 , and o3 are defined in equations
5.1, 5.2, and 5.3 respectively.

5.3.4 Tracker fit quality

In order to select a muon track from a converged fit a requirement on the X2 /NDF
is imposed on the track fit. This cut has a significant inefficiency on muons with PT
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near 8 GeV/c; however, for leptons with PT > 25 GeV/c, this cut has little impact.
Figure 5-5 shows comparison and optimization of the cut. The optimal cut value is
found to be near X2 /NDF < 2.5; however, because of the small impact of this cut,
we require

* x 2 /NDF < 10

consistent with the selection of muons for other analyses performed in CMS [72].
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Figure 5-5: Comparison of number of tracker hits from the single muon data set
with all optimized cuts applied except for the specified variable. Signal and signal
plus background contributions are plotted on the top left, efficiency of the signal
is compared with that of the background (top right) and the optimization metric
(bottom). The red dot shown in the middle and right plots indicates the optimal cut
choice. Three optimization metrics o, o2 , and o-3 are defined in equations 5.1, 5.2,
and 5.3 respectively.

5.3.5 Number of valid hits

A valid hit is a muon hit which, when fit with the global muon fitter, is included into
the final fit for the momentum parameters. By virtue of having gone through global
muon reconstruction, it is unlikely for a muon to not have a valid hit. The instance
where this may occur is for a muon reconstruced near a gap in the muon chambers.
The optimal cut value is found to be (figure 5-6)
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Figure 5-6: Comparison of number of valid hits in the global muon fit from the single
muon data set with all optimized cuts applied except for the specified variable. Signal
and signal plus background contributions are plotted on the top left, efficiency of the
signal is compared with that of the background (top right) and the optimization
metric is shown on the bottom. The red dot shown in the middle and right plots
indicates the optimal cut choice. Three optimization metrics o, o-2, and o-3 are
defined in equations 5.1, 5.2, and 5.3 respectively.

5.3.6 Number of segments

Number of segments refers to the number of matched segments associated to a muon.
Requiring the number of segments be > 1 has a small impact on the analysis, given
that the level one trigger requires the muon to have two matched layers of muon
chambers where a segment is reconstructed. Instances where there are less than
two matched segments typically occur when pions "punch through" the calorimeters
leaving a low energy track in the muon chambers [72]. This cut also removes kaons
and pions decaying in the calorimeters, because the PT of the muons from the kaon
or pion decay will be different from the full K/ir PT measured in the tracker thereby
reducing the matching quality. Figure 5-7 shows the optimization over the number
of segments. The final result indicates an optimal point of:
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* number of matched segments > 1,

consistent with the constraint of the level one trigger.
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Figure 5-7: Comparison of the number of matched segments to a muon from the single
muon data set with all optimized cuts applied except for the specified variable. Signal
and signal plus background contributions are plotted on the top left, efficiency of the
signal is compared with that of the background (top right) and the optimization
metric is shown on the bottom. The red dot shown in the middle and right plots
indicates the optimal cut choice. Three optimization metrics o1 , o-2 , and o 3 are
defined in equations 5.1, 5.2, and 5.3 respectively.

5.3.7 Impact parameter

With the exception of isolation, the second most powerful discriminating variable to
select W bosons is impact parameter (do). Impact parameter is defined as the distance
of the closest point of approach of a track with respect to the primary interaction
vertex. Muons with high impact parameter originate from two different processes:
cosmic ray muons and heavy flavor decays.

The first background, cosmic ray muons, is completely removed by cutting on do.
This is because the impact parameter position is known to ~~ 20 pm, thus a loose
cut of 300 pm would give an allowable area of one mm 2 for which a cosmic ray muon
must pass through to be selected. The likelihood of such an occurrence is about 5
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Figure 5-8: Plot of the impact parameter of muons from the single muon data set with
all optimized cuts applied except for the specified variable. The red line indicates a
fit to the data of a flat line. The blue indicates the impact parameter cut.

events per year . Figure 5-8 illustrates the cosmic ray muon contamination in terms
of the muon do. For do > 0.2 cm there is a flat trend in muon events coming from
cosmic ray muons (indicated by the red line). This trend is extrapolated into the
signal region to yield a predicted contamination of cosmic ray muons at 10-4. To
ensure that no cosmic ray muons with large impact parameter are in the sample a
selection of |dol < 0.2 cm is applied.

Background muons with large impact parameters originate from heavy flavor, b
and c quark decays. Due to Cabibbo suppression, b and c quarks have a long lifetime

(10-12 s) and will decay away from the primary vertex. This produces muons displaced
from the primary vertex. These displaced muons provide the largest single background
contribution to W boson decays.. This variable is used later as a way of enhancing
and reducing the heavy flavor contribution in control regions. Optimization of this
cut is performed in a similar manner to other variables and is shown in figure 5-9. The
optimization, however, is biased due to the difference in impact parameter between Z
boson events and W bosons originating from the presence of a second lepton, which
modifies the position of the primary vertex. Optimization yields a value near 0.007
cm. This value is treated as an upper bound for an optimal cut due to the existing
bias. The ROC curve is not shown in figure 5-9 because of a necessity to rescale the
Z boson yields to obtain coherent results.

5.3.8 Isolation

The most effective variable to separate out muons from QCD decays with those from
W boson decays is isolation. The optimal isolation variable, determined through
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Figure 5-9: Comparison of the impact parameter do of muons from the single muon
data set with all optimized cuts applied except for the specified variable. Signal
and signal plus background contributions are plotted on the left and the optimization
metric is shown on the right. The red dot shown in the right plot indicates the optimal
cut choice. Three optimization metrics a1, 0 2 , and o3 are defined in equations 5.1,
5.2, and 5.3 respectively.

simulation, is found to be the sum of all of the track, HCAL, and ECAL deposits
within a cone of AR = VAr 2 + &A#2 < 0.3 divided by the PT of the reconstructed
lepton. Dividing the isolation by PT loosens the cut at high PT where the majority of
muons originate from W boson decays. The full isolation variable, Xiso is written as

_o = A<O. (p7 racks + E CAL + E 4 CAL 5.5xiso - A<. -T (5.)
pT

In order to remove effects from final state radiation emanating from the lepton, de-
posits are not included in the isolation calculation if they are within a veto cone of
AR < 0.1 for the HCAL, AR < 0.08 for the ECAL, and AR < 0.01 for the tracker.
The veto cone size is determined from studies on final state radiation in simulation.

The isolation variable is effective at removing muons from decays of heavy fla-
vored quarks. Muons originating from heavy flavor decays result from a cascaded set
of decays down from heavy flavors to light flavors, leaving additional light flavored
mesons along the same direction as the muon. This causes muons from heavy flavor
decays to be typically less isolated. Other QCD backgrounds originating from decays
in flight do not necessarily result from cascades down to lighter flavor and thus are
typically more isolated than heavy flavor decays.

The optimization for the isolation variable is shown in figure 5-10. When con-
sidering the other optimization metrics U1, 9 2 , the optimal cut choice appears to be
close to zero. Such a strong cut would make the residual QCD background impossible
to remove in the final extraction. The optimal choice with the default metric, o- is
found to be:

xiso < 0.1
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5.3.9 Di-muon veto

In order to separate Z boson events from W boson events, events where a second
muon with PT > 10 GeV/c is present are removed. In light of removing as many
events as possible, the second muon is not required to be isolated or to pass any of
the previous selection requirements. After this requirement, the remaining Z events
in the W boson selection predominantly consist of events where the second lepton
falls outside muon chamber diucial region, 1r/| > 2.4.

5.4 Selection summary

An optimization is performed to determine the baseline selection for muons from W
and Z boson production. The baseline selection rejects poorly reconstructed muons
originating from cosmic ray muons, QCD decays in flight, and heavy flavor decays.
This baseline selection fo a sigle muon is outlined below:

" muon is a global muon,

* number per track of pixel hits > 0,

* track X2 < 10,

* number of hits in the tracker > 10,

" number of valid hits in the muon chamber > 1,

" number of segments in the muon chamber > 1,

" impact parameter do < 0.2 cm, and

* Xiso < 0.1.

To further remove Z boson events from the W boson event selection, all events with
a second muon with PT > 10 GeV/c are removed from the selection.

The final efficiency of this selection, excluding trigger, is near 95%. The QCD
contamination is close to 10%.
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Chapter 6

Muon Efficiency

Once a selection on the lepton is applied, the efficiency of the selection on W and

Z boson events is required to perform the cross section measurement. As with the

tuning of the selection variables in chapter 5, Z bosons are treated as a clean source of

"W-like" muons used to determine the muon reconstruction and selection efficiency.

6.1 Z boson selection

Z boson candidates are selected by requiring the event to pass the lowest unprescaled

single muon trigger (HLTMul5). Events are further selected by requiring a well

identified isolated muon (chapter 5) with one exception; the PT cut on the muons is

lowered to include more events:

0 PT > 20 GeV/c .

This muon selection is different than the Z boson selection presented in chapter 5

in that a well identified muon selection is established and used in this section whereas

previously looser more general cuts were used. To identify the Z boson event, we

additionally require a second track with PT > 15 GeV/c reconstructed in either the

muon chambers or ther tracker, opposite charge with respect to the first lepton, and

combined lepton plus track mass > 30 GeV/c 2 . This second track requirement is

the minimal pre-selection required to identify Z bosons. In the following sections,
we determine the efficiencies by identifying the rate of Z boson reconstruction given

tighter selections on the second lepton.

6.2 Efficiency calculation

The efficiency is measured through the "tag and probe" method. In this method,
a Z boson event is "tagged" by requiring a well reconstructed, isolated lepton along

with a component of the second lepton (i. e. track in the tracker). The well identified

lepton and the second lepton component must have a combined mass compatible

with the Z boson mass. The tagged event is then used to "probe" for an additional
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component of the second lepton (i. e. track in the muon chambers). The efficiency
measurement in data is compared with that of Monte-Carlo simulation to determine
a set of correction factors to the simulated efficiency so that it corresponds with the
measured data efficiency.

The reconstruction efficiency of a muon is factorized into five separate steps,
" track reconstruction efficiency Etrack,

" Stand-Alone muon reconstruction efficiency ESA,

* global muon reconstruction efficiency EGB,

" isolation and identification efficiency EID, and

* trigger efficiency eTrigger.

The separation into different steps is performed to minimize the overall systematic
uncertainty. The total efficiency of the five separate steps is determined through the
multiplication of the separate efficiency measurements:

Etot EtrackESAEGBEIDETrigger - (6.1)

To perform the efficiency measurement the lepton which probes for the efficiency
must be either uncorrelated with the efficiency being measured or factorizible with
that efficiency. An example of an uncorrelated probe is a track for the Stand-Alone
muon efficiency. Track reconstruction is performed with hits in the tracker. The
measurment of the Stand-Alone muon efficiency is performed with hits in the muon
chambers, because these objects do not overlap, they are completely uncorrelated,
making their efficiencies uncorrelated. An example of a factorizable efficiency would
be the use of a global muon as a probe to measure the identification and isolation
efficiency given a global muon. In this case there is no bias, because the efficiency is
defined by the probe (the global muon). In table 6.2, we list the separate tags and
probes for the different efficiency measurements.

The separation of the tag and probe into different categories allows separate bin-
ning for each component of the efficiency measurement. Binning of the efficiencies
accounts for the difference in kinematics (namely the muon PT and r/) between W
and Z bosons. Large bin by bin variations in the efficiency will lead to a different
efficiencies in each sample. In table 6.2 we list the number of bins used for each ef-
ficiency measurement. The individual binning choices are determined by minimizing
the systematic uncertainty on each measurement. To minimize the systematic uncer-
tainty on the W+/W- ratio, all efficiency measurements are carried out separately
on positive and negative muon samples.

To perform each measurement a fit to the mass of the lepton plus probe system
is performed simultaneously on the passing and failing sample. The fit returns an
accurate estimate of the reconstruction efficiency in the presence of background. For
instances where the expected background is negligible or the difference in the dif-
ference in the efficiency between signal and background is small, counting events is
sufficient to determine the efficiency.
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Measurement(Probe) Tag #r bins # PT bins

Track Stand-Alone Muon 1 1

Stand-Alone Track 6 1

Global muon Track plus Stand-Alone Muon 1 1

Id and Isolation Global Muon 6 3

Trigger Global Muon passing Id and isolation cuts 6 3

Table 6.1: Tag and Probe efficiency measurement selection and binning overview

6.2.1 Efficiency calculation

The efficiency is performed by probing for the efficiency on an individual lepton. To

see how the efficiency is obtained consider measuring the efficiency for the positive

muon. Given that each Z boson event contains a positive muon, the efficiency of the

positive muon is defined as

total Passing N+as(

total Events N(t6.

Likewise the negative muon efficiency is written as

total Passing Npass (6.3)
total Events Nt

The total efficiency, which is the average of the two efficiencies above is written

as

avg Npass + Nass (6.4)

2N t N +
passpass passfails + N ailpass (6.5)

2Ntot'

where in the last step, we have separated out the events into their respective dilepton

categories. For instances where both leptons pass N+-spass, the event is used twice.

In the instance where there are more than two probes, we calculate the efficiency on

all objects, thus using the same event even more times. Calculating efficiency on each

of the leptons separately has the additional advantage that binning is determined by

the lepton for which the efficiency is being measured.

6.2.2 Fitting the efficiency

The fit for the efficiency is performed by simultaneously fitting the passing and failing

tagged Z mass to a signal plus background model of the Z mass using an un-binned

profile likelihood fit. Requiring a fit to the passing and failing samples allows for the

efficiency to be floated in the fit, yielding an uncertainty that reflects the likelihood
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profile variation in the parameters of the fit [74]. The fit range of the Z mass extends
from 60 GeV/c 2 to 150 GeV/c2 avoiding the low mass "turn-on" region where the yield
is suppressed by low PT cuts on the individual leptons (20 and 25 GeV/c). The upper
mass cut, 150 GeV/c 2 , is chosen to be the point where the background to signal ratio
is about to one.

Signal efficiency

In order to fit the Z data two parametrized models for the signal are used. The
different parametrizations reflect two approaches to modeling the Z mass. The first
fit function is chosen as the default parametrization and the second parametrization
is used to determine the systematic uncertainty on the efficiency measurement.

Parametrization one: Monte Carlo simulation convolved with a Gaussian
The first fitted function is defined as the Monte Carlo simulated predicted shape
fmc(mff) convolved with a Gaussian resolution (equation 6.6). The Monte Carlo gen-
erator used in this simulation is performed using Powheg [75] with Pythia [54] parton
showering passed through the full CMS detector simulation (discussed in chapter 8).
The simulated shape is obtained by reconstructing simulated detector deposits from
a Monte Carlo dataset of 106 events. The resulting shape is obtained by interpolating
the simulated dataset through a Gaussian kernel estimator, which treats each data
point as a Gaussian about its value of mtt [76] and performs the interpolation by the
density of the Gaussian points. Figure 6-1 shows a fit to a clean signal sample where
both legs pass the default muon identification and isolation requirements. In this
instance, we expect a background contamination fraction below one percent. The fit
function form is written as

f (mae) = fmc (mea) 0 exp - 2 , (6.6)

where xO is a floated paramater that determines the offset of the Gaussian in the con-
volution and a is the other floated parameter that determines the additional smearing
of the mass beyond the simulated resolution. The performed fit is an unbinned profile
likelihood fit, which determines directly the efficiency along with values for the signal
parameters (xo,u) and background paramters (discussed later). The choice of using
the simulated shape as a baseline incorporates all known simulation effects and the
existing knowledge of the Z mass line shape in proton-proton collisions. The inclusion
of the convolved Gaussian to the shape compensates for effects that are mis-modeled
in the simulation. This includes shifts in muon energy scale, which change the mean
xo of the Gaussian, and differences in the muon resolution, which change the width
or.

Parametrization two: Breit-Wigner convolved with a crystal ball The sec-
ond function is written as a Breit-Wigner (BW) distribution convolved with a crystal
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Figure 6-1: Fit to a Z boson signal sample. The signal sample is defined by requiring
two muons passing the default identification and isolation cuts. The fit in the top plot
is performed using a parameterization of the Monte Carlo simulation convolved with
a Gaussian model. The bottom plot is performed with a Breit-Wiegner convolved
with a crystal ball model.

ball function (CB):

f (ma) BW (mt) 9 CB (m~e)

BW (x) =- 2
?r (x -- m) 2 + F2

(6.7)

(6.8)

(6.9)
105

mass(GeV/c 2)

-2.1 < < 2.1
2500

2000

1500

1000

500

r~h



exp (-42 forx- > -a
CB (x) = N -2 - (6.10)
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01 01

A = ).exp(, (6.11)
alOZ 2

B al. (6.12)

The Breit-Wigner models the Z pole distribution before effects that modify the shape,
such as final state radiation or detector mis-modeling. For this reason, the mass, mz
of the Breit-Wigner and the width of the Breit-Wigner, l', are fixed to their measured
values [34]. The crystal ball function has been historically used to describe final state
radiation emission for either electrons or muons [77]. The function consists of a
Gaussian with a power law tail.

To determine the fit parameters of the combined convolved function, the full
unbinned distribution was fit to the full dataset, floating all parameters in the crystal
ball function. The resolution tail parameter n is then fixed and the fit is applied to
individual PT and rj bins. Fixing the tail parameter n for individual bins leads to
small biases, but also improved convergence on the limited data. The bias manifests
as a small increase in the systematic uncertainty because this function is only used
to determine a systematic uncertainty. In figure 6-1, a fit to the Z boson mass shape
where both leptons are required to pass the default muon selection is performed. As
with the previous model, the fit function models the data well.

Parametrization choice Parametrization one is chosen as the default method
because the simulation is capable of describing effects that are not well modeled by
the Breit-Wigner convolved with crystal ball model. This is most important when
determining the isolation efficiency, where at high PT, muons from Z boson decays with
high energy photons radiating off the muon fail the isolation cut. These failing muons,
shown in figure 6-2 induce an unphysical excess below the Z mass peak at 80 GeV/c2 .
This excess cannot be fit well by the Breit-Wigner convolved with Gaussian model,
but is fit using the Monte Carlo simulated model. To confirm this indeed is the
effect the bottom plot in figure 6-2 shows a fit to the isolation variable where the
ECAL deposit is not used in the isolation calculation, thereby removing the excess
at 80 GeV/c2

Background model

Before an isolation cut is applied on the probe lepton, backgrounds originating from
QCD and W plus jets comprise around five percent of the signal region. These
backgrounds have considerable differences in efficiency to that of the signal and thus
may bias the efficiency measurement. To remove the background from the efficiency
calculation a background model consisting of an exponential (equation 6.13) is fitted
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Figure 6-2: Fit to the full data set failing the default isolation cut. The top leftmost

plot is fitted with the Monte-Carlo convolved with Gaussian model, the top rightmost

plot is fitted with the Breit-Wigner convolved with crystal ball model. The bottom

plot is fitted with the Monte-Carlo convolved with Gaussian model where ECAL
isolation has been removed from the isolation cut. The dotted blue line denotes the

background contribution to the fit.

along with the signal. The form of the exponential is written as:

f (met) - A exp (-mee) , (6.13)

where the background fraction A and the decay constant r, are floated in the fit. The

choice of an exponential model is determined by fitting to two different background

samples:

e Monte Carlo simulation of a QCD and W plus jets sample with the same selec-

tion, and

* same-sign muon plus track distributions from data.

For a perfect simulation, the first model of the background would most closely describe

the true shape. However, due to inaccuracies of the QCD and W plus jets production

model and inconsistencies with data in the muon energy scale and resolution, the

shape may be different between simulation and data. To check the behavior of the

simulation, we fit the same-sign muon plus track distributions in data and simulation
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along with the opposite-sign simulated distribution shown in figure 6-3. The same-sign
simulated muon plus track distribution closely matches the opposite-sign simulated
QCD background distribution (opposite muon plus track). This implies, the same-
sign muon plus track distribution in data provides an excellent data driven cross
check of the fit model performance. From the fit results, we find that comparison of
the decay parameters between same-sign muon plus track data and simulation shows
agreement. Repeating this on opposite-signed muon and track pairs in simulation,
the same level of agrement between the model and data is preserved, with a deviation
in simulation of the fitted decay parameter between same-signed and opposite-signed
pairs of nearly five percent.

CD

LU

mass(GeV/c2)

0)

W

0)

1000

800

600

400

200

60 70 80 90 100 110 120 130 140 150

mass(GeV/c2)

mass(GeV/c 2)

Figure 6-3: Fit with an exponential function (equation 6.13) of the mass distribution
from same-sign muon plus track combinations in data (top left), Monte Carlo simu-
lation of QCD, W plus jets (top right) and opposite-sign muon plus track in Monte
Carlo simulation of QCD and W plus jets (bottom).

6.3 Efficiency scale factor

Each factorized efficiency measurement in data is fit or counted (where specified)
separately in each bin. The efficiency in simulation for each bin is determined by
counting events passing and failing the selection. These two measurements are then
combined to produce a data to simulation scale factor rK defined as the ratio of the
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data efficiency to the simulated efficiency.

= Data (6.14)

ESimulation

The binning for the efficiency measurement was chosen to minimize the scale

factor variation, separate out different sensitive regions of the detector, and allow the

fit to have sufficient freedom to describe the data. The most important separation

of the efficiencies was found to be between positively charged muons and negatively

charged muons. This results from an asymmetry in the energy scale of the muons as

a function of rj (chapter 7), which induces positive muons in positive rq to behave in

a similar way to negative muons in the negative rj coordinate. This further causes

dips in the postivie muon efficiency in the transition region betwen the CSCs and the

DTS q, that in turn, lead to excesses in the negative muon efficiency measurement.

When binning for the efficiency, we consistently use the same binning in 'q for

all efficiency measurements where a binned efficiency is calculated. This binning is

separated into six different regions. The first two regions, -0.8 < q < 0, 0 < 'q < 0.8,
consist of muons reconstructed in the muon barrel DT chambers. These typically

have a high efficiency and are well simulated. The second set of regions, -1.2 <

,q < -0.8, 0.8 < q < 1.2, consist of the transition region where muons are partially

reconstructed in the DT chambers and partially in the CSC chambers. This region

is the most difficult to simulate accurately. The final two regions , -2.1 < rj < -1.2,
1.2 < q < 2.1 consist of muons completely in the CSC chambers. The PT binning is

determined by the variation of the scale factor in each efficiency measurement so as

to minimize the bin per bin variation.
The fit quality is determined by the individual X2 of the fits and the fits are further

checked by eye. All fits are found to describe the shape well, instances where worse

agreement between data and the fit is present. The systematic uncertainty is checked

to span all allowed efficiencies.

6.3.1 Track efficiency

The track reconstruction efficiency is defined as the efficiency of a track to be recon-

structed given an expected track inferred from the existence of a Stand-Alone muon.

The track efficiency has been measured through several other techniques [78] that do

not use Stand-Alone muons. These other measurements result in efficiencies for well

isolated high PT tracks near 99.9 over the whole acceptance range.

To determine the efficiency, a well identified muon plus a Stand-Alone muon tag

is used to probe for a track matched within a cone of AR < 0.3, with a PT >

0.6pstand-Alone. Because of the lack of variation in the efficiency in PT and T, the

measurement is performed in one bin. The fit in one bin of the track efficiency

measurement is shown in figure 6-4. The largest limitation compared with the other

efficiency measurements is that the muon resolution from the Stand-Alone muon

reconstruction is significantly worse than that of global muons. This results in a Z

boson width more than twice that of the Z boson width reconstructed with global

muons. The resulting efficiency is found to be 0.9998-oo.0%. It compares well with
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the Monte-Carlo predicted value of 0.99968:2880, thus a scale factor of 1 + 0.001
(incorporating a 0.1% systematic uncertainty) is quoted.
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Figure 6-4: Track Efficiency measurement. Performed by using Stand-Alone muons
as the probe with the Monte Carlo convolved with Gaussian model. The solid red
line indicates the fit model of the combined signal and background. The dashed blue
line indicates the background contribution to the fit.

6.3.2 Stand-Alone muon efficiency

The Stand-Alone muon efficiency is defined to be the efficiency of a Stand-Alone
muon to be reconstructed given an expected Stand-Alone muon inferred from the
presecence of a track . The efficiency is determined by probing for a Stand-Alone
muon given a well identified muon plus track combination. This combination has the
largest background contribution from QCD and W plus jets of any of the factorized
efficiency measurements in this thesis. The large background contribution increases
the efficiency uncertainty through the limitation of the fit to describe both an accurate
signal and background model.

To minimize the effect, the efficiency measurement is performed in six T bins
(previously defined in 6.3) and one PT bin. The variation of the efficiency over the PT
of the lepton was checked and found to be 0.3 percent for the range of 25 GeV/c < PT to
45 < PT GeV/c. This leads to a variation in the scale factor of 0.001 over the whole
range in PT. The q variation, on the other hand, is found to be near 2 percent,
this necessitates binning in q. The q variation for the positive and negative muons
is shown in figure 6-5 using both fit parametrizations. The differences between the
fits result in an ambiguity in the background contribution leading to differences in
the efficiency measurement. The differences from the two fit models are used to
determine the systematic uncertainty (described later). The default (parametrization
one) values are found in tables 6.2 and 6.3.
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Figure 6-5: Stand-Alone efficiency and scale factors. The efficiency in data (black),
Monte Carlo simulation (blue) and the scale factor (red) are performed by using
a track as a probe for positive muons (left) and negative muons (right). The top
plots result from a fit with the default parametrization (Simulation convolved with a
Gaussian). The bottom plots result from fit using the second parametrization (Breit-
Wigner convolved with a crystal ball).

6.3.3 Global muon efficiency

The global muon efficiency is defined to be the efficiency of a global muon given a
track and a Stand-Alone muon are reconstructed. The measurement is performed
by probing to see if a global muon is reconstructed given a tagged sample consisting
of a well identified muon plus a track matched to a Stand-Alone muon by AR
/Ar/2 + A# 2 < 0.3.

Due to the loose matching of the events and the more stringent cuts imposed
during the course of Stand-Alone muon reconstruction, the efficiency in a sample of
5000 muons is found to be 100 percent. This compares well with the Monte Carlo
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Table 6.2: Scale factors for Stand-Alone muon
(left) and positive muons (right) with 25GeV/c <

reconstruction for negative muons
PT < 1000GeV/c.

Table 6.3: Efficiencies for Stand-Alone muon reconstruction for negative
and positive muons (right) with 25GeV/c < PT < 1000GeV/c.

muons (left)

simulated global muon efficiency of 99.99 percent. No additional scale factor is quoted
for this efficiency measurement.

6.3.4 Identification and isolation efficiency

The identification and isolation efficiency is defined to be the efficiency of a muon
to pass the identification and isolation cuts given that it is a global muon. This is
determined by tagging a well identified muon plus a global muon and then probing
to see if the global muon passes the identification and isolation cuts.

This efficiency measurement is particularly sensitive to the shape modeling uncer-
tainty (leading to the 80 GeV/c2 bump previously discussed). However, because the
baseline for this efficiency is a well identified muon plus a global muon, the background
contamination is small. Hence, it is possible to perform the efficiency measurement
in 36 separate bins, six 1 bins, three PT bins, and separately in positive and negative
charge. This is furthermore required to minimize the systematic uncertainty because
a variation in the efficiency scale factor is found to be several percent over both 77
and PT. Additionally, it is found that the failing mass shape changes with PT. Thus,
biases may be induced in the fit for a coarse PT binning. The optimal binning was
determined to be three bins in PT: 25 GeV/c < PT < 33 GeV/c, 33 GeV/c < PT <
40 GeV/c, and 40 GeV/c < PT. This PT binning has an overall variation in the scale
factor between bins of less than one percent.
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q negative scale factor positive scale factor
-2 - -1.2 0.9808±0.0070 0.9899+0.0052

-1.2 -- 0.8 0.9918+0.0075 0.9874±0.0089
-0.8 - 0.0 0.9955±0.0051 0.9983±0.0040
0.0 - 0.8 1.0043±0.0037 0.9899+0.0071
0.8 - 1.2 0.9831±0.0079 1.0017±0.0055
1.2 - 2.1 0.9924±0.0057 0.9899+0.0071

_____ negative E(data) ] positive E(data) negative E(simulation) ] positive c(simulation)
-2 -- 1.2 0.9763±0.0070 0.9854±0.0051 0.9954±0.0003 0.9955±0.0003

-1.2 - -0.8 0.9818±0.0074 0.9778+0.0088 0.9899±0.0006 0.9902+0.0006
-0.8 - 0.0 0.9852±0.0050 0.9877±0.0039 0.9896+0.0004 0.9894±0.0004
0.0 - 0.8 0.9930+0.0036 0.9902+0.0042 0.9887±0.0004 0.9891+0.0004
0.8 - 1.2 0.9731±0.0078 0.9918+0.0055 0.9898±0.0006 0.9901±0.0006
1.2 - 2.1 0.9875±0.0057 0.9848±0.0070 0.9951±0.0003 0.9948±0.0003



The results of the scale factor variation projected onto the PT axis using the two
different fit models is shown in figure 6-6. The increase in efficiency as a function of
PT originates mainly from the isolation definition, which becomes looser about the
muon as the PT is increased. The scale variation projected onto the 'q axis is shown in
figure 6-7. Comparing the positive and negative scale factors we see that the positive
scale factor is high for q < 0 and the negative scale factor is high for 71 > 0. This is
consistent with the energy scale variations discussed in chapter 7. This results in a
variation of the positive and negative charge ratio of about 0.5%. The efficiency and
scale factors obtained from the first parametrization are found in tables 6.4 to 6.9.
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Figure 6-6: Projection of identification and isolation efficiency and scale factor in bins
of PT. The efficiency is ploted for data (black), Monte Carlo simulation (blue), and
the scale factor (red) performed by using a global muon as a probe for positive muons
(left) and negative muons (right). The top plots result from a fit with the default
parametrization (Simulation convolved with a Gaussian). The bottom plots result
from fit using the second parametrization (Breit-Wigner convolved with a crystal
ball).
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Figure 6-7: Projection of identification and isolation efficiency in bins of r/ for data
(black), Monte Carlo simulation (blue), and the scale factor (red) performed by us-
ing a global muon as a probe. The top values result from a fit with the default
parametrization (Simulation convolved with a Gaussian). The bottom values result
from fit using the second parametrization (Breit-Wigner convolved with a crystal
ball).

Trigger Efficiency

The final factorization of the efficiency measurement is the trigger efficiency. This is
defined as the efficiency for a muon trigger to fire (both level one and HLT) within a
cone of AR < 0.5 of a well identified and isolated muon. The expected background,
determined by both a fit and by the simulated prediction, is less than 1% and the
difference in trigger efficiency between background and signal is determined from
simulation to be < 5%, thus we expect a variation < 0.1 % in the efficiency value
between counting all events that are in the mass window as opposed to a fit of events
that are in the mass window.
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[PT E 25.0-33.0 1 PT E 33.0-40.0 [PT c 40.0-1000.0

-2.1 - -1.2 1.0055±0.0152 0.9801±0.0107 0.9838±0.0052
-1.2 -- 0.8 0.9748±0.0406 0.9780±0.0159 0.9885±0.0068
-0.8 - 0.0 0.9531±0.0182 0.9638±0.0334 0.9837±0.0049
0.0 - 0.8 0.9699±0.0177 0.9811±0.0106 0.9973±0.0045
0.8 - 1.2 0.9816±0.0241 1.0108±0.0143 1.0030±0.0024
1.2 - 2.1 0.9868±0.0158 0.9763±0.0111 0.9914±0.0007

Table 6.4: Scale factors for muon identification for negative muons.

I PT E 25.0-33.0 [PT C 33.0-40.0 1 PT c 40.0-1000.0

-2.1 - -1.2 0.9460±0.0141 0.9451±0.0102 0.9721±0.0051
-1.2 -- 0.8 0.9027±0.0375 0.9393±0.0152 0.9697±0.0066
-0.8 - 0.0 0.8780±0.0166 0.9249±0.0320 0.9669±0.0048
0.0 - 0.8 0.8947±0.0162 0.9379±0.0100 0.9785±0.0043
0.8 - 1.2 0.9060±0.0219 0.9633±0.0134 0.9827±0.0021
1.2 - 2.1 0.9282±0.0147 0.9449±0.0107 0.9794±0.0003

Table 6.5: Muon identification efficiency in data for negative muons.

[PT E 25.0-33.0 1 PT C 33.0-40.0 [PT c 40.0-1000.0
-2.1 - -1.2 0.9408±0.0023 0.9643±0.0016 0.9881±0.0007
-1.2 -- 0.8 0.9260±0.0036 0.9604±0.0023 0.9809±0.0011
-0.8 - 0.0 0.9212±0.0025 0.9596±0.0015 0.9829±0.0007
0.0 - 0.8 0.9224±0.0025 0.9559±0.0015 0.9812±0.0007
0.8 - 1.2 0.9230±0.0038 0.9531±0.0025 0.9798±0.0011
1.2 - 2.1 0.9406±0.0024 0.9678±0.0016 0.9878±0.0007

Table 6.6: Muon identification efficiency in simulation for negative muons.

Tj PT C 25.0-33.0 [PT E 33.0-40.0 PT C 40.0-1000.0
-2.1 - -1.2 0.9459±0.0213 0.9813±0.0107 0.9939±0.0041
-1.2 -- 0.8 0.9680±0.0263 1.0056±0.0133 0.9925±0.0066
-0.8 - 0.0 1.0407±0.0166 0.9913±0.0099 0.9960±0.0007
0.0 - 0.8 0.9469±0.0214 0.9936±0.0097 0.9888±0.0051
0.8 - 1.2 0.9497±0.0268 0.9910±0.0145 0.9833±0.0074
1.2 - 2.1 0.9797±0.0167 0.9821±0.0093 0.9870±0.0056

Table 6.7: Scale factors for muon identification for positive muons.
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T PT E 25.0-33.0 PT E 33.0-40.0 1 PT E 40.0-1000.0
-2.1 - -1.2 0.8898+0.0199 0.9458+0.0101 0.9825+0.0040
-1.2 -- 0.8 0.8921+0.0239 0.9579+0.0124 0.9750+0.0064
-0.8 - 0.0 0.9550+0.0150 0.9461+0.0093 0.9779+0.0001
0.0 - 0.8 0.8687i0.0195 0.9485+0.0092 0.9705+0.0050
0.8 - 1.2 0.8800+0.0246 0.9460+0.0136 0.9641±0.0072
1.2 - 2.1 0.9221+0.0156 0.9492+0.0088 0.9747+0.0054

Table 6.8: Muon identification efficiency in data for positive muons.

_ 9 PT c 25.0-33.0 PT E 33.0-40.0 pT E 40.0-1000.0
-2.1 - -1.2 0.9407+0.0024 0.9638+0.0017 0.9885+0.0007
-1.2 -- 0.8 0.9216+0.0038 0.9526+0.0025 0.9823+0.0010
-0.8 - 0.0 0.9177±0.0025 0.9544+0.0015 0.9818+0.0007
0.0 - 0.8 0.9174+0.0025 0.9546+0.0015 0.9815+0.0007
0.8 - 1.2 0.9266+0.0037 0.9546+0.0025 0.9804+0.0011
1.2 - 2.1 0.9412+0.0023 0.9666+0.0016 0.9876±0.0007

Table 6.9: Muon identification efficiency in data for positive muons.

The efficiency is determined by counting events, an arbitrary binning is used to
determine the efficiencies without any loss of statistical power. The maximal binning
considered is 70 q bins for both positively and negatively charged leptons, which
correspond roughly to all of the different sub divisions of the CSC and DT chambers.
A comparison of the inclusive efficiency to that with the 36 efficiency bins used in the
identification and isolation efficiency measurement yields a change in the W efficiency
of 0.1 percent. Thus we utilize the same binning as that of the identification and
isolation efficiency measurement.

The projected efficiency measurements found in figures 6-8 and 6-9 show an in-
efficiency comparing data and Monte Carlo simulation for events in the negative 71
transition region. This is a result of a timing misalignment between the level one
trigger for the DT chambers and the level one trigger for the negative CSC chambers.
This misalignment was resolved after the end of 2010 running.

Pre-Firing inefficiency

A phenomenon resulting from poor timing resolution in the muon chambers leads to
an inefficiency caused by early firing of the muon chambers. A trigger which fires
early enough will trigger the previous crossing. The actual crossing with the event,
may have other triggers associated with it, but is not selected because consecutive
events are not allowed to trigger CMS readout. The event, that passes the trigger,
is then removed at the high level trigger because no track will be associated to the
triggered track in the muon chambers. This inefficiency is not accounted for through
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PT E 25.0-33.0 j PT E 33.0-40.0 [PT c 40.0-1000.0

-2.1 - -1.2 0.8960±0.0165 0.9000±0.0137 0.9011±0.0097
-1.2 -- 0.8 0.9050±0.0234 0.8273±0.0248 0.8408±0.0153
-0.8 - 0.0 0.9661±0.0097 0.9555±0.0086 0.9607±0.0055
0.0 - 0.8 0.9618±0.0105 0.9531±0.0085 0.9703±0.0048
0.8 - 1.2 0.8686±0.0269 0.8814±0.0221 0.8801±0.0135
1.2 - 2.1 0.8899±0.0176 0.9044±0.0140 0.8907±0.0100

Table 6.10: Trigger efficiency in data for negative muons.

PT C 25.0-33.0 [PT E 33.0-40.0 PT E 40.0-1000.0

-2.1 - -1.2 0.9344±0.0025 0.9372±0.0021 0.9345±0.0015
-1.2 -- 0.8 0.9276±0.0037 0.9235±0.0032 0.9204±0.0021
-0.8 - 0.0 0.9800±0.0014 0.9792±0.0011 0.9796±0.0007
0.0 - 0.8 0.9773±0.0014 0.9792±0.0011 0.9787±0.0008
0.8 - 1.2 0.9108±0.0042 0.9180±0.0033 0.9145±0.0022
1.2 - 2.1 0.9365±0.0025 0.9338±0.0022 0.9347±0.0015

Table 6.11: Trigger efficiency in simulation for negative muons.

25.0-33.0 33.0-40.0 40.0-1000.0

-2.1 - -1.2 0.9589±0.0178 0.9603±0.0147 0.9643±0.0105
-1.2 - -0.8 0.9757±0.0255 0.8959±0.0270 0.9136±0.0167
-0.8 - 0.0 0.9858±0.0100 0.9758±0.0088 0.9807±0.0057
0.0 - 0.8 0.9842±0.0108 0.9734±0.0088 0.9914±0.0049
0.8 - 1.2 0.9536±0.0298 0.9601±0.0243 0.9623±0.0149
1.2 - 2.1 0.9502±0.0190 0.9685±0.0151 0.9529±0.0108

Table 6.12: Scale factors for trigger efficiency of negative muons.

q1 ]PT E 25.0-33.0 [ PT C 33.0-40.0 ] PT C 40.0-1000.0

-2.1 - -1.2 0.8947±0.0169 0.9108±0.0137 0.9190±0.0087
-1.2 - -0.8 0.8963±0.0254 0.8635±0.0227 0.8528±0.0145
-0.8 - 0.0 0.9544±0.0113 0.9599±0.0082 0.9660±0.0050
0.0 - 0.8 0.9616±0.0102 0.9658±0.0075 0.9547±0.0059
0.8 - 1.2 0.8649±0.0264 0.9087±0.0188 0.8864±0.0130
1.2 - 2.1 0.8615±0.0179 0.8904±0.0155 0.8969±0.0101

Table 6.13: Trigger reconstruction efficiency in data for positive muons.
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Figure 6-8: Projection of Trigger efficiency and the scale factor in bins of PT. The ef-
ficiency for data (black), Monte Carlo simulation (blue), and the scale factor (red) for
positive muons (left) and negative muons (right) performed by using a well identified
and isolated global muon as a probe and counting events in the mass window.
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the tag and probe method.
To measure this effect we rely on 2011 data. In the 2011 data, prefired Z events

are removed by gating the muon trigger with the proton bunch trigger. This per-
mits a detailed calculation of the prefiring efficiency measurement by measuring the
trigger efficiency before and after the gating. In figure 6-10, we plot the efficiency
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'q I pT E 25.0-33.0 PT E 33.0-40.0 1 PT E 40.0-1000.0

-2.1 - -1.2 0.9309±0.0026 0.9341±0.0023 0.9318±0.0015
-1.2 - -0.8 0.9204±0.0040 0.9183±0.0033 0.9226±0.0021
-0.8 - 0.0 0.9788±0.0014 0.9780±0.0011 0.9782±0.0008
0.0 - 0.8 0.9783±0.0014 0.9792±0.0011 0.9779±0.0008
0.8 - 1.2 0.9163±0.0040 0.9231±0.0032 0.9213±0.0021
1.2 - 2.1 0.9328±0.0025 0.9281±0.0023 0.9315±0.0016

Table 6.14: Trigger efficiency in simulation for positive muons.

PT E 25.0-33.0 PT c 33.0-40.0 1PT C 40.0-1000.0

-2.1 - -1.2 0.9612±0.0183 0.9751±0.0149 0.9863±0.0095
-1.2 -- 0.8 0.9738±0.0279 0.9403±0.0249 0.9243±0.0158
-0.8 - 0.0 0.9751±0.0116 0.9816±0.0085 .0.9875±0.0052
0.0 - 0.8 0.9829±0.0105 0.9862±0.0077 0.9763±0.0061
0.8 - 1.2 0.9439±0.0291 0.9844±0.0206 0.9621±0.0143
1.2 - 2.1 0.9235±0.0194 0.9594±0.0169 0.9629±0.0110

Table 6.15: Scale factors for the trigger efficiency in positive muons.

as a function of T] for a high level triggered muon with PT > 25 GeV/c before and
after the gating with the proton bunch trigger. A small increase in the efficiency
measurement is present in the barrel consistent with the onset of pre-firing of muons
in the barrel. The overall difference in the efficiency between gating and not gating

with the beam coincidence, rescaled to W kinematics by applying the PT-' weighting
scheme performed in chapter 5, determines AEW to be

Epre-gate = 0.8817 ± 0.0027

Egate - 0.8873 ± 0.0008
Ae = 0.0055 ± 0.28 - Acw = 0.0028 ± 0.0014

(6.15)

(6.16)

(6.17)

Thus, a change in the trigger efficiency before and after pre-firing is found to 0.0028.
In light of changes occurring from the timing of the muon chambers between 2011

data and 2010 an overall efficiency scale factor of 0.995 (consistent with the 2010

measurement of the prefiring [79]) is applied to the data with a systematic uncertainty

of 0.005.

6.3.5 Secondary muon veto

The final selection requirement for the W boson is that no second muon with PT >

10 GeV/c is present in the event (di-muon veto). In simulation, this selection removes

0.2% of true W boson events. To confirm this value in data, muons from Z bosons are

tagged and found to have an additional muon 0.1 ± 0.1 percent of the time, consistent
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Figure 6-10: Efficiency of the 2011 Single Muon trigger with PT >

24 GeV/c (HLTMu24) as function of r/ for separate datasets before and after the
gating with the beam coincidence trigger.

with the Monte Carlo prediction for Z bosons of 0.15 %. Thus, this effect introduces
an additional systematic uncertainty of 0.1 percent due to the Di-muon veto.

6.4 Systematic uncertainties

Systematic uncertainties on the efficiency measurement originate predominantly from
model assumptions in the efficiency fits. For efficiency measurements based on event
counts, the trigger and global muon efficiencies, systematic uncertainties result from
the per bin scale variation of events and from differences between background and sig-
nal efficiency. These effects have been determined to be less than 0.1%. Comparison
of the track efficiency with several techniques leads to differences in the measured effi-
ciency between the techniques below 0.1%. Hence, we quote a systematic uncertainty
of 0.1% on all three of these efficiencies.

The other two efficiencies, the Stand-Alone muon efficiency and the identification
and isolation efficiency are determined through fits. Systematic uncertainties on the
efficiency measurement result from potential biases due to small data modeling in-
adequencies with the chosen functional form. Because both the mean and widths of
the fit functions are floated, uncertainties resulting from mis-modeling of the resolu-
tion and energy scale are absorbed into the fit. However, effects resulting from the
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inability of the functional forms to model the signal shape remain important. The

systematic uncertainty for these two measurements are factorized into three separate

effects, fitting bias, background modeling and signal shape modeling.

6.4.1 Fitting bias

In order to validate the fitting procedure, a series of toy data samples are generated

by sampling a simulated "fake" data distribution. The "fake" data distribution is

determined by sampling and generating toy data from a Monte Carlo simulated QCD
shape combined with a Monte Carlo signal shape using the per-bin yields predicted

from the fit.
The toy data samples are then fitted in each bin utilizing the same fitting tech-

nique used to determine the efficiency in data. The true efficiency of the fake signal

sample, as determined by the per-bin yields from the fit, is then compared with the

average fitted efficiency over all the toy samples. From the comparison, we deduce

the behavior of the uncertainties on the fit and the resulting bias on the efficiency.

This test, known as the closure test, validates the choice of the fitting technique.

From a series of 5000 toy samples, the mean of the fitted Stand-Alone efficiency

is found to be

EStand-Alone _ Stand-Alone _ 0.14% ± 0.01 (6.18)
predicted true

Id -CId - 0.07% ±0.01%,(.9
edicted Etrue

for the Stand-Alone, and identification and isolation efficiency respectively.

The pull distributions from toy experiments, defined by

x -x
Pull(x) = (6.20)

where X is the true efficiency, x is efficiency determined by the fit, and or is the

uncertainty on the efficiency determined by the fit, results in a unit Gaussian with a

mean given by the bias reported above. This indicates well behaved fits.

6.4.2 Background systematic uncertainty

The QCD and W plus jets background in both simulation and data is modeled well

with an exponential. This is demonstrated by figure 6-3 which shows the fit of an

exponential to same-sign and opposite-sign events in data and MC simulation. The

same-sign models in both data and simulation have parameters consistent with each

other.
To see this more clearly, figure 6-11 shows the decomposition of the simulated

background into W plus jets events and QCD events. The red line is the simu-

lated same-sign shape, which agrees well with same-sign data points. The difference

between the same-sign and opposite-sign simulation is of similar order to the un-

certainty bars of the data. This effect is shown in terms of relative fraction versus

mff in figure 6-12. From the figure, we determine the relative fractions of the two
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backgrounds change by 10% between same-sign and opposite-sign events, yielding the
small difference in shape.
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Figure 6-11: Simulated QCD and W plus jets background (blue shades) compared
with same-sign data (yellow points) and simulation (red line) for the Stand-Alone
muon efficiency (top) and the identification and isolation efficiency (bottom). The
bump in the middle of the bottom plot corresponds to Z boson events failing the
isolation requirement, where the charge is mis-reconstructed.

To calculate the systematic uncertainty we use the same-sign well identified muon
plus track events from data as a template background shape from which we sample to
make toy data. The advantage of using the data is that the overall trend in shape as
a function of r is implicitly built in by selecting events with the desired kinematics.
Additionally, using the data eliminates the potential for systematic biases due to mis-
matched between simulation and data and mis-modeling using analytic functions.
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Figure 6-12: Relative bin by bin fraction of W plus jets to QCD for muon plus track
events in Monte Carlo simulation. On the x axis is the combined mass of the muon
plus track system. The left plot is for opposite-sign events, the right side is for same-
sign events (note the change in the slope and fraction of W plus jets which yields a
change in the overall shape)

Table 6.16: Background systematic uncertainty for Stand-Alone Muon efficiency mea-
surements of negative muons (left) and positive muons (right).

When calculating the systematic uncertainty on the background estimate, a set of
5000 toy data samples are generated per bin using the same-sign data as a background
model and the best fit signal shape as the signal model. The toy data samples
are individually fitted determining a pull distribution for each bin. The systematic
uncertainty is determined from the bias of the fit pulls. The results of the systematic
uncertainties is found in tables 6.16 to 6.18. Typical bin by bin uncertainties are
about 0.4% for the Stand-Alone muon efficiency and less for the identification and
isolation efficiency.

As a final check of the exponential model figure 6-13 plots the fitted decay pa-
rameters for same-sign and opposite-sign events as a function of 'q of the lepton.
The figure demonstrates agreement between the simulation and the same-sign events
in data. The dis-agreement for opposite-signed events is larger between data and
simulation. This results from a bias due to the presence of Z boson events in the
fit. The bias is accounted for by the procedure outlined to determine the systematic
uncertainty for the fitting bias (section 6.4.1).
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I Negative (%) Positive (%)
-2.1 -- 1.2 0.0841 0.1994
-1.2 - -0.8 0.2174 -0.6008
-0.8 - 0.0 -0.3854 -0.4158
0.0 - 0.8 -0.4362 -0.7455
0.8 - 1.2 -0.4431 -0.1147
1.2 - 2.1 -0.8250 -0.6018



17 PT C 25.0-33.0 (%) PTE 33.0-40.0 (%) PT E 40.0-1000.0 (%)
-2.1 -- 1.2 -0.2013 0.0377 0.0555
-1.2 -- 0.8 -0.5199 -0.2114 -0.0963
-0.8 - 0.0 -0.6333 0.0787 0.0159
0.0 - 0.8 -0.5691 -0.1760 -0.2363
0.8 - 1.2 0.5452 -0.0730 0.1027
1.2 - 2.1 2.5840 -0.1266 -0.0508

Table 6.17: Background modeling systematic uncertainty in % for identification ef-
ficiency measurements of negative muons. As a comparison with the systematic un-
certainty, the per-bin uncertainty on th efficiency is near 2% for the lowest PT bin.

TI PT C 25.0-33.0 (%) PT E 33.0-40.0 (%) pT E 40.0-1000.0 (%)
-2.1 -- 1.2 -0.1105 -0.1038 -0.0293
-1.2 -- 0.8 0.0410 0.3464 0.0500
-0.8 - 0.0 -0.3690 -0.0732 -0.0059
0.0 - 0.8 -0.8468 -0.2450 -0.1763
0.8 - 1.2 -1.2401 0.1795 0.0625
1.2 - 2.1 -0.5070 0.0739 -0.0697

Table 6.18: Background modeling systematic uncertainty in % for identification effi-
ciency measurements of positive muons.
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Figure 6-13: Trend in decay parameter as a function of probe 'q for simulation and
data using both same-sign (solid line) and opposite-sign (dashed line) events.

6.4.3 Muon signal systematic uncertainty

The muon signal shape systematic uncertainty is determined by using the Breit-
Wigner convolved with crystal ball model (parametrization two of the signal). The
choice of the Breit-Wigner model accounts for two effects. First, in some regions of
muon i the resolution in Monte-Carlo simulation is larger than the resolution in data.
To account for differences in resolution the default fit model uses a convolution of a
Gaussian with varying width. Unfortunately, a convolution only leads to a larger
resolution, thus it cannot model effects where the resolution is better in data. With
the Breit-Wigner based model, all possible resolutions are possible, thus allowing for
instances where the simulated resolution is worse than in data. The effect of smaller
resolution in data than in Monte-Carlo simulation will bias the default efficiency
measurement low, and leave the Breit-Wigner based parametrization unbiased.

The second effect originates from the mis-modeling of the radiation of photons
off of the muon (known as FSR) in simulation, which is known to be imperfect for
particular regions of lepton PT In these instances, the FSR from the muon leaks out
of the ECAL isolation veto cone causing a secondary bump in the failing sample of the
signal. With the Breit-Wigner basedmodel, the FSR will be fitted by a tail that goes
through the mean of the failed sample. This results in an upward bias in the efficiency
measurement. The effect of this FSR mismodelling motivates the factorization of the
Stand-Alone muon efficiency from the identification and isolation efficiency.

Both of these effects force the predicted efficiency from the Breit-Wigner based
parametrization to be biased high compared to that of the default parametrization,
thus it is sufficient to use this second model to account for both effects. A confirmation
of this was verified with fits of toy data.
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_____ Negative (%) I Positive (%)
-2.1 - -1.2 -0.3343 -0.3352
-1.2 -- 0.8 -0.4282 -0.4505
-0.8 - 0.0 -0.1632 -0.1651
0.0 - 0.8 -0.2904 -0.2864
0.8 - 1.2 0.3735 0.3860
1.2 - 2.1 0.0348 0.0393

Table 6.19: Systematic uncertainty on the signal model Stand-Alone muon efficiency
measurements of negative muons (left) and positive muons (right)

[PT C 25.0-33.0 (%) PT C 33.0-40.0 (%) ]pT C 40.0-1000.0 (%)
-2.1 -- 1.2 -0.3865 0.5456 -0.0056
-1.2 -- 0.8 2.6734 0.2047 0.6537
-0.8 - 0.0 0.0506 0.2477 0.1203
0.0 - 0.8 0.9843 0.1831 -0.0888
0.8 - 1.2 2.1322 -0.0398 0.2201
1.2 - 2.1 -0.2168 0.3213 0.0559

Table 6.20: Signal model systematic uncertainty in % for identification efficiency
measurements of negative muons. The large systematic uncertainty in the control
region results from difficulty in the describing the true Z boson shape in data in this
region.

To calculate this systematic uncertainty, we fit the Breit-Wigner convolved with a
crystal ball model to data and generate toy data off the shape fitted to data. The toy
data is then fit with the default parametrization. The resulting bias on the efficiency
is quoted as a systematic uncertainty. The values are found in tables 6.19 to 6.21.
Systematic uncertainties on the signal shape modeling are smaller for the Stand-Alone
efficiency than for the identification efficiency because the failing signal shape for the
Stand-Alone efficiency is very similar to the passing signal shape and well fit by both
models. The overall systematic uncertainty is roughly 0.5%.

6.4.4 Systematic uncertainties propagation

The systematic uncertainties are propagated into the efficiency measurement assum-
ing full positive bin by bin correlation (ie we re-calculate the efficiency by adding
+|osys| to each of the bins). This maximizes the result of systematic uncertainty on
the final result, ensuring coverage over final efficiency measurement. For an efficiency
measurement cj where each index denotes a bin i C I, j C PT, and per bin systematic
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Table 6.21: Signal model systematic
measurements of positive muons.

uncertainty in % for identification efficiency

Efficiency Type Scale Factor Signal uncertainty (%)I Background uncertainty (%)
Track 1.0±0.001 0.1 0.00

Stand-Alone 0.9945±0.0024 0.34 0.17
Global 1.0±0.001 0.1 0.00

Identification 0.9842±0.0052 0.24 0.45
Trigger 0.9677±0.0060 0.00 0.00

Combined 0.9426±0.0080 0.40 0.46

Table 6.22: Summary of scale factors and systematic uncertainties for Positive Muons

uncertainty oij, the total systematic uncertainty, atet, is written as

(6.21)01tot ~3fij %i

where fij is the relative fraction of W boson events per each bin. In the case where

multiple un-correlated uncertainties exist for a given bin ( 11nj and u2 ij) the uncertainty

in each bin is given by adding in quadrature all of the uncertainties in each bin, and

then summing over the uncertainty assuming full correlations.

(6.22)07tot = [ fho-ij ( o2ij .
ij

This contrasts with statistical uncertainties, which are uncorrelated between bins,
thus requiring one add them in quadrature.

The final results of the systematic uncertainty weighted to W boson kinematics (fA
for W bosons) are shown in tables 6.22 and 6.23. The overall systematic uncertainties

are slightly less than one percent, which is comparable with the theory and signal

extraction uncertainties.
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rq PT E 25.0-33.0 (%) FPT E 33.0-40.0 (%) pT e 40.0-1000.0 (%)
-2.1 -- 1.2 -0.5845 0.6560 -0.1177
-1.2 - -0.8 0.4175 0.8423 0.0473
-0.8 - 0.0 -1.4898 0.4660 -0.0458
0.0 - 0.8 1.5943 0.1792 -0.0017
0.8 - 1.2 0.6179 0.7178 0.1162
1.2 - 2.1 -0.7247 0.1313 -0.0714



Efficiency Type Scale Factor Signal uncertainty (%) Background uncertainty (%)
Track 1.0±0.001 0.1 0.00

Stand-Alone 0.9923±0.0024 0.23 0.27
Global 1.0±0.001 0.1 0.00

Identification 0.982310.0059 0.24 0.41
Trigger 0.9654±0.0056 0.00 0.00

Combined 0.9364±0.0083 0.32 0.46

Table 6.23: Summary of scale factors and systematic uncertainties for Negative Muons

6.5 Summary

The efficiency for the muon selection defined in chapter 5 is measured here. We divide
the efficiency into five separate components and perform the "tag and probe" method
on all five efficiencies using Z boson events. Two efficiency measurements drive the
systematic uncertainty: the Stand-Alone muon and the identification and isolation
efficiency. The Stand-Alone muon efficiency has a large background contamination,
which leads to a large systematic uncertainty on the background contribution. The
identification and isolation efficiency is sensitive to poorly simulated events, which
fail the identification and isolation cuts. This leads to a large systematic uncertainty
on the signal modeling. The final efficiency is quoted as a scale factor to the Monte
Carlo simulated efficiency K for positive and negative muons:

K+ = 0.9426 ± 0.0080(stat) ± 0.0064(sys) , (6.23)
K_ = 0.9364 ± 0.0083(stat) ± 0.0066(sys) . (6.24)
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Chapter 7

Muon Energy Scale and Resolution

The W and Z boson selections require the lepton PT to be above a specified threshold,
thus knowledge of the true scale of the reconstructed PT and its resolution directly

impact the final cross section measurement.

The muon PT and resolution is determined from hits in the tracker. Any deviation

in the recorded position versus the true position of the tracker hit on the silicon module

leads to a degraded resolution of the PT measurement. In order to minimize the effect

of a misplaced silicon module, a technique to align tracker modules is performed. The

technique relies on minimizing the x2 for a given track by modifying the momentum

and the silicon positions within a tolerance level [80]. The combination of many

track measurements determine a minimization that is either fit globally for all tracker

modules and track parameters (Millipede II algorithm [81]) or iteratively through

updates on the global positions with a Kalman filter (HIP algorithm [82]). Both

methods have been found to be very effective at eliminating large deviations between

the expected and true position of the silicon modules. However, pathological modes

can form whereby systematic shifts in the modules yield zero change in x 2 of the

fitted track. Such variations (where AX2 = 0) are called weak modes.

Weak modes consist of shifts of a large group of silicon modules, such as a rotation

in # of all modules in positive q (twist mode). Weak modes in the tracker are very

difficult to eliminate with the current alignment algorithms. The only known way is to

adjust modules by informed guessing. To understand the energy scale and resolution

of the existing tracker alignment, a strategy was developed to measure and correct

the weak mode effects on the final muon kinematics. As with tag and probe, the

strategy relies strongly on the fitting the Z boson mass line shape over specified muon

,q and # regions to deduce the variations in the energy scale and resolution.

In this chapter, two muons are selected which match the criteria of a well identified,
isolated muon as used in the W-- pv signal selection. The mass of the two leptons is

required to be 60 GeV/c 2 < ma < 120 GeV/c 2 ensuring good selection of Z bosons.

This selection is chosen to enable a reliable determination of the muon energy scale

and resolution for W boson events.
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7.1 Fitting Z boson mass

In chapter 6, we presented two fit models, which describe the Z mass line shape well.
In this section, two models similar to the previous fit models are used to determine the
energy scale and resolution. The functions are slightly different so that two necessary
parameters, the energy scale and the resolution can be extracted dexterously and
applied to Monte Carlo simulation to assess systematic uncertainties from the scale
and resolution. Each fit assumes that both the energy scale is roughly independent
of PT and the muon resolution is modeled by a Gaussian. Both these assumption are
well motivated by studies with Monte Carlo simulation and fits to the data [53].

7.1.1 Parametrization one: Voigtian with a crystal ball tail

The default fit function is similar to the Breit-Wigner convolved with crystal ball pa-
rameterization used previously in chapter 6. The Breit-Wigner convolved with crystal
ball parametrization models the data well; however, the convolution, which is per-
formed through a numerical Fourier transform, is too computationally intensive to be
used in a fit of the energy scale. In place of using a crystal ball convolved with a Breit-
Wigner, we subdivide the crystal ball into its two separate components: a Gaussian,
and a polynomial. This gives two functions a Gaussian convolved with a Breit-Wigner
and a polynomial convolved with Breit-Wigner. The Gaussian convolved with a Breit-
Wigner is replaced by an analytic Gaussian convolved with Breit-Wigner known as a
Voigtian distribution. This is written as

Re e- z21 - erf (z) Met + if
V (metuI?) = ,wherez= . (7.1)

o-v,2 o- v '

The second component, a decaying polynomial convolved with a Breit-Wigner is
approximated as a polynomial. This follows by considering the convolution, C (ma)
of the crystal ball polynomial with a Breit-Wigner,

C (mnu) = dx' , . (7.2)
-1 7r ((x -X') 2 + 12) (K - X-m)(

The convolution of the two components is dominated by the instances where one of
the denominator components is near zero. This is well approximated by a polynomial
(when n in the crystal ball is > 1).

A
C (mu) (B (7.3)

Taking this approximation, we stitch the Voigtian together with C (ma) to make a
simplified model of Z boson mass line shape consisting of Voigtian with a crystal ball
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like tail,

f (mef) N N V (me; o, F) for > -a (74)
A (B - .) for XX < -a

A = -)exp (a) (7.5)

n
B =(7.6)

where a is a floated parameter that describes the introduction of the polynomial in
units of the width, -, from the peak of the voigtian distribution.

The choice of this fit function allows for fast convergence over likelihood fits of
many variables. Figure 7-1 shows a fit to the inclusive Z mass line shape in data
using the Voigtian with a crystal ball function. The fit describes the data well over
the whole mass range.

In order to perform the fit in smaller bins of il the two tail parameters a and n
are fixed to the inclusive measurement. Fixing the tail parameters describes the Z
line shape well for 1r| < 1.5. Further out in q a small disagreement in the tail is
present. This disagreement is a consequence of both fixing the tail parameters and
non-Gaussian tails in the PT resolution. To determine the scale of this effect 2500
toy data samples using the simulated Z mass line shape at different energy scales and
resolutions were generated and fit. The resulting bias for energy scale variations of
both one and two percent was found to be within 0.04 percent the true energy scale
and 0.2 GeV/c2 in the resolution for additional smearing of up to 5 GeV/c.
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Figure 7-1: Fit of Voigtian with crystal ball tail to Z boson data
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7.1.2 Parametrization two: Monte Carlo simulation convolved
with a Gaussian

As a cross check to the previous fit function (parametrization one) we consider a
Gaussian convolved with Monte Carlo simulation :

f (m) = fmc (Amj) 0 G (0, o-) , (7.7)

where in this case fmc is the predicted Monte Carlo simulated shape of the mass, A
is the energy scale of the reconstructed leptons, and o is the additional smearing to
the Monte Carlo simulated mass shpe. This function differs from the Monte Carlo
simulated mass shape convolved with Gaussian function used in section 6 in that
a re-scaling, A, is applied to the mass function as opposed to a linear shift in the
mean of the Gaussian, G. Use of A in the fit is more physical than a shift in the
Gaussian mean because a mismeasurement causes the PT to scale incorrectly. A fit
to the inclusive data using this function is shown in figure 7-2. The fit over all data
yields an additional smearing on the PT of 0.1 GeV/c 2 and a scale of 1.001, indicating
good agreement between the inclusive data line shape and the simulated line shape.
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Figure 7-2: Fit of the Monte Carlo simulatied mass shape convolved with a Gaussian
to Z boson data

7.2 Weak modes in the tracker

Figures 7-1 and 7-2 both indicate that the fitted Z mass is within 0.1 percent of the
world averaged value. This is not surprising because the alignment of the tracker
yields excellent overall energy scale resolution. However, summing over the # and q
coordinates of the leptons minimizes the effect of weak modes. To separate out these
effects, we consider the energy scale variation over T, #, and charge. This is performed
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by fitting for the combined mass of the two muons for all events where the negative
or positive muon within a designated q or # range (ie 0.8 < 7j < 1.2) is binned and
fitted.

Figure 7-3 shows the results for the mass variation as a function of # of the positive
and negative lepton. Both fit methods show a clear sinusoidal variation in #. This
variation has been determined to be a result of a global twist of modules about the z
axis of the detector [72].
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Figure 7-3: Energy scale variation as a function of # obtained from fits using a
Voigtian with a crystal ball tail (left) and Monte Carlo convolved with a Gaussian
(right).

The q variation of the leptons is found in figure 7-4. The energy scale varies
one percent over the whole range of q. This variation roughly follows a third order
polynomial, where the scale deviates either high or low depending on the sign of the
muon and the sign of 71. The cause of the q variations in the data is at present
unknown.
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Figure 7-4: Energy scale variation as a function of ' obtained from fits using a Voigtian
with a crystal ball tail (left) and Monte Carlo convolved with a Gaussian (right).

In addition to the energy scales, the resolutions, and additional smearing for the
two fit models are shown in figure 7-5. The resolutions are found to be near 1.5 GeV/c2.
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This poses a problem for the Monte Carlo simulation convolved with Gaussian fit,
because the resolution in Monte Carlo simulation is found to be about 0.1 GeV/c 2

higher at 1.6 GeV/c 2. The convergence of the resolution parameter in the Monte
Carlo simulation convolved with Gaussian fit model is thus ill defined. From figure 7-
5, we find the muon resolution variation in 7 gets worse with 77 due to the increased
scattering caused by additional material in the tracker at high r7. The variation is
roughly flat until rj ~ 1.5 and then increases to near 2.5 GeV/c 2 in the endcaps. The
resolution between positive and negative muons is within one standard deviation over
the whole range. Hence, for the rest of this thesis we assume the resolution to be the
same in both charges.
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Figure 7-5: Resolution as a function of q obtained from fits using a Voigtian with a
crystal ball tail (left) and Monte Carlo convolved with a Gaussian (right).

7.3 Fit to energy scale corrections

To determine the energy scale, we simultaneously fit the mass distribution over the
coordinates of both the positive and negative muon. The fit is performed simultane-
ously on the scale of both leptons so as to eliminate biases in the mass distribution
that are caused by correlations in the kinematics. To understand this effect consider
the binned plots in figure 7-3. The energy scale for a specific bin #i is a combination
of negative muons with a specified # E #i and some distribution of positive muons
with # E -7r, 7r. The distribution in the second lepton shifts the mass of the Z boson
up or down depending on which values of # the positive muons have.

Although integration over the second lepton's coordinates lead to biases, we as-
sume no bias between # and q scale variations. Thus, we fit separately for the #, 77
scale, and resolution variations. The fit of the two functions are thus performed over
three dimensions: the mass distribution, and either q or # of the positive and negative
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muon. This is written as:

F (mul#+, # ) = V ma f+ (#)f (#_ ),u) , (7.8)

F (mule+, 7_, o) = V (mu /f+ (7+) f- (q-), o (+, -) , (7.9)

where fi are the energy scale functions of the lepton with charge i and V is the

modified Voigtian fit parametrization. The two functions F (m Ila+, a_, o) describe

the the Z mass line shape conditional on the value of the parameters #i or 7j, and

the resolution o. The choice of using a conditional parametrization as oppose to a

full 3-dimensional parametrization in the fit removes the necessity for a probability

distribution over the conditional parameters. The final likelihood minimization in the

fit is performed using an unbinned maximum likelihood estimator.

In addition to the energy scale f, the resolution o is also floated when fitting over

j. The form of the function is given by

(77+,r )O = o +y) +uorj 71) (7.10)

Floating the resolution simultaneously with the energy scale removes any systematic

biases, which are present if they are fit independently.

In light of making the simulation as realistic as possible weak modes are inserted

in both the r, and # scale variation of the simulation. Corrections for the energy scale

mis-alignments in simulated events is performed with the same fit used on data. In the

following sections, we discuss the choice of parametrization and the ensuing results.

The results are shown for both the data and Monte Carlo simulated corrections.

Following the determination of the energy scale, the resulting fit parameters are

then be used to determine the corrected lepton PT by rescaling the corresponding

energy,

corrected (7.11)
PT -PT/fi (/i, 00

7.3.1 Scale variation in #
The # scale variation fit is performed for the Z boson mass distribution over the two

coordinates #+ and #_ of the charged muons resulting from the Z boson decay. To

fit for the # variations, the resolutions are held fixed to a value o determined by a fit

to the inclusive data sample. The fit is then performed over the data for the function

in 7.8 using a mass function given by

mu(#+,#_ ) =mz ff+ (0+) f- (0-) + c (7.12)

ma (#+, 4- mz I1 + a+ sin (#+ + b+)) (1 + a_ sin (0_ + b )) + c (7.13)

where mz is the world averaged Z boson mass, a, b, c are floated parameters, and the

underscores correspond with the respective charge of each lepton performed in the

fit. The choice of a sinusoidal form for the energy scale functions f is motivated by
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the large weak mode observed in # (figure 7-3)
Figure 7-6 shows the energy scale functions f+ and f_ in #+, #- (lines) from the

simultaneous fit over the two variables compared to fits binned over a single lepton
# (data points discussed section 7.2). The binned fits are expected to be different
from the simultaneous fits because binning and fitting induces a bias resulting from
kinematic correlations from the binned muon with the second muon in the Z boson
decay.

Binned fits to the Z boson mass with energy scale corrections from the fit applied,
are shown in the bottom of figure 7-6. Once the corrections are applied, the energy
scale variation is found to be flat over the whole # range in both data and Monte
Carlo simulation. In order to span the residual variations after corrections are applied
an overall energy scale systematic uncertainty is taken to be 0.004 (green band).

The fitted parameters are shown in table 7.1. The parameters, determined from
fits to simulation, are nearly symmetric between positive and negative leptons. This
is most clear in the angular shift parameter b, which is ~ 1.3 for both charges.
The parameters determined from fits to data, on the other hand, are found to be
asymmetric, with a scale variation much larger for the positive muon.
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Figure 7-6: Energy scale shift as a function of # obtained from the fit of the two
charged leptons (line) compared with the fits binned in a single lepton #. The fits
are plotted for the data (top left) simulation (top right). The bottom plots show the
binned fit results after the application of the energy scale corrections.
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name Simulation Data

a+ -0.0109±0.002 -0.0055±0.0015
a_ 0.0094±0.0018 0.0094±0.0015
b+ -1.279±0.27 -0.540±0.28
b_ -1.362±0.25 0.806±0.17

c (GeV/c 2 ) 0.28±0.02 0.37±0.02

Table 7.1: Best fit parameters to data and simulation following the parameter naming

scheme used in equation 7.12.

7.3.2 Scale variation in r

The variation in the energy scale as function of ij is determined by fitting simultane-

ously the energy scale and the resolution of each lepton. To model the energy scale, a

third order polynomial in r is chosen. This is motivated by the shape of the variation

in figure 7-4. The form of the energy scale variation of the Z mass in equation 7.9 is

thus written as

mnj (+,I _ ) = m f+(rl+))f- (j-) + c (7.14)

m' (V+, /_ ) =m'z(1+ar + b+2 + c+r,3) (1 + a_ + b_ /2 +c r 3 )
+C (7.15)

where a, b, c are the parameters floated in the fit. The ij fit is performed after the

fit to the # scale and the corrections to the mass based on the # scale are applied;

this is designated by mz in place of mz. Applying the # corrections minimizes the

correlation between q and # by ensuring the scale variation in # is nearly constant. In

the fit, the resolution of the two leptons is floated along with the energy scale over rj,
utilizing the form given in equation 7.17. The results of the resolution are discussed

in section 7.3.3. Also in the fit, the tail parameters a and or2 are fixed to a fit over the

whole dataset. Fixing of parameters in the fit induces biases in the resulting energy

scale measurement. Biases on the energy scale from fixing these tail parameters was

determined from fits to toy data samples to be less than 0.1%.

Figure 7-7 shows the comparison of the binned fits (points) with the fits performed

simultaneously in r/+, __ (line). The binned fit deviates more from the full two variable

fit than in the # case because the Z kinematics in the detector acceptance window

force an asymmetry in the correlated r/+, r_ distribution by requiring one lepton to

be at lower r/. The corrections, shown on the bottom of figure 7-7, show that for I/| >

2.1, the third order polynomial description of the energy scale variation breaks down.

This region in r is outside the kinematic acceptance used for the W boson selection,
thus it is safely ignored. After corrections, the final scale variation in the selected

region of Ir/1 < 2.1 is found to be well within the ±0.004 scale uncertainty band.

The fit parameters are shown in table 7.2. The final results have a strong depen-

dence on the odd order polynomials, making the scale variation for positive muons

high at positive rj and low at negative 1.

137



a) . - - : ) -- _
1.02 1.02

1.015- 1.015
S1.01 1.01

C
W 1.005- 1.005-----

0.995- 0.995
0.99 0.9970.9 - - Fitted plus trend 9 9- -- Fitted plus trend

0.985 - Fitted minus trend 0.985 Fitted minus trend

0.98 positive muon 0.98 * positive muon
negative muon -+-- negative muon

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

T1 Ti

* 1.025 0 1.025
1.02 1.02

1.015 1.015

* 1.01- 1.01
r~ Cu 1.005 Us 1.005:-

0.995 0.995

0.99 0.99-
0.985 positive muon 0.985 positive muon

0.98 negative muon 0.98 negative muon

0.975... [~.. uncertainty band 0.975 [] uncertainty band
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Figure 7-7: Energy scale variation as a function of j obtained from the fit simultaneous
on the postive and negative leptons (line) compared with the fits binned in one of the
lepton coordinates (point). The lines do not follow the points (binned) exactly due to
a kinematic bias in the binned fits. This is performed for data (top left) simulation
(top right).

7.3.3 Fit to resolutions

The resolution is determined simultaneously with the 17 energy scale variation. To
model the resolution a fourth order polynomial is used while fixing the resolution
functions of both the positive and negative leptons to be the same. The form of the
fitted resolution function used in the fit function 7.9 is given by:

or () = o-o + a± + by2 + cqs + d" , (7.16)

S(+, -) = C (7+) 2 + 7 (7_ )2 (7.17)

where the parameters a, b, c, d are floated.

In figure 7-8, the fitted resolutions to Monte Carlo simulation and data are com-
pared (along with the binned fits). The fitted resolutions are both very close in shape
and follow the trend of the binned fits well. To gauge the level of agreement a band
corresponding to adding or removing 0.5 GeV/c 2 of smearing around the simulated
resolution is plotted. This band covers both the fitted points and the data function
for lj| < 2.0. This band is used as the systematic uncertainty on the resolution
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name Simulation Data
a+ 0.0014±0.0005 -0.0093±0.0018
a_ -0.0019±0.0000 0.0098±0.0019
b+ 0.00012±0.00034 -0.00064±0.00012
b_ 0.00042±0.00036 0.00022±0.00005
c+ -0.0019±0.0004 0.0016±0.0003
c_ 0.0020±0.0004 -0.0018±0.0003

c (GeV/c 2  0.27±0.06 0.05±0.02

Table 7.2: Best fit parameters to and simulation following the parameter naming
scheme used in 7.14.

name Simulation Data
ao (GeV/c 2 ) 1.40±0.02 1.30±0.02

a 0.0854±0.0171 0.0035±0.0163
b -0.091±0.018 -0.012±0.011
c -0.047±0.009 -0.014±0.006
d 0.057±0.0011 0.037±0.007

Table 7.3: Best fit parameters to data and simulation following the parameter naming
scheme used in 7.17.

measurement.

Results of the fit parameters are presented in table 7.3; because the resolution
appears to be sign independent, the odd polynomial terms, a and c are small. The
resolution at q = 0, o-O, is 1.40 GeV/c 2 in simulation and 1.30 GeV/c2 in data. Thus,
to obtain the same resolution in data and simulation, one must smear the generator
level lepton PT. Smearing the generator lepton PT with a Gaussian poses a difficulty
because non-Gaussian tails of the resolution function, which are well simulated, will
not be modeled by smearing with a Gaussian. We do not apply any additional
smearing because the difference in the resolution between simulation and data is
within 0.5 GeV/c2

7.4 Systematic uncertainties

The systematic uncertainties on the energy scale fits result from assumptions on the

fit model to describe the mass distribution, the q and # variation, and the resolution
variation. The effectiveness of the mass distribution parametrization to measure the
proper energy scale and resolution is discussed in the fit validation section (7.4.1).
The systematic uncertainties of the parametrizations of the energy scale and the
resolution over # and q is discussed in section 7.4.2 and section 7.4.3 respectively.
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Figure 7-8: Comparison of the fitted resolutions between data (blue) and simulation

(red) using both the simultaneous fit in both lepton parameters (line) and the fit
binned in q of the specified lepton (points). The green band corresponds to adding
or removing a smearing of 0.5 GeV/c.

7.4.1 Fit validation

Before one considers the systematic uncertainty on the energy scale and the resolu-
tion, the measured energy scale and resolution using the Voigtian crystal ball model
needs to be consistent with the true energy scale and resolution. This is particularly
important for the resolution where biases in the resolution are induced due to fixing
the tail parameters in the fit.

To validate the energy scale variation a series of 5000 toy data samples were
generated from the simulated Z boson mass distribution where the energy was scaled
up and down by either 1 or 2 percent. Each toy data set is then fit with the Voigtian
crystal ball tail model and the energy scale and resolutions are extracted from the fit.
The resulting central value of the fit parameters averaged over all the fits to the toy
data samples shows a bias of < 0.05 percent on the energy scale returned from the
fit.

The resolution was tested by generating and fitting 5000 toy data samples of the
simulated Z boson mass with additional Gaussian smearing applied. The mean of the
resulting resolution parameter is compared with the true smearing in figure 7-9. The
predicted smearing follows the simulated smearing to within a few percent.
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Figure 7-9: Comparison of the true smearing of toy data samples with the mean over
5000 toy data samples of additional smearing determined from the fit.

7.4.2 Scale uncertainty

The systematic uncertainty on the muon energy scale arises from two places: the
fit uncertainty, effectiveness of the model to describe the data. The fit uncertainty
for the the r/ and # scale is determined from the uncertainties on the parameters of
the fit model. It contributes to scale variations less than 0.001. The effectiveness of
energy scale models (a sinusoid in # and a cubic in rq) to describe the true variation
is difficult to assess. Typically, this is addressed by adding additional terms to the
fitted model or trying alternative fit models. In this case, the uncertainty is assessed
by looking at the binned fit variation over the range of rq and # of the two charged
leptons after corrections are applied. The mass variations after corrections are shown
in figures 7-6 and 7-7. After corrections the bin per bin variations are less than 0.002
in scale variation. Hence, we determine the systematic uncertainty by placing a band
which covers all variations, we conservatively use an overall scale variation of 0.004.

7.4.3 Resolution uncertainty

The affect of the resolution on the acceptance and data is determined with the reso-
lution in Monte-Carlo simulation. Thus, the resolution uncertainty is determined by
considering a band around the Monte-Carlo simulation, which spans the fitted resolu-
tion in data. This is found to correspond with an additional 0.5 GeV/c 2 of smearing.
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The uncertainty band for the resolution if shown in 7-8.

7.5 Extrapolation of corrections

The final fit to the energy scale and resolutions are propagated to the W boson
by applying the energy scale corrections lepton per lepton (equation 7.11). The
systematic uncertainties are taken by rescaling the corrected lepton energy by t0.004.
The resolution uncertainty is done in the same manner by additionally smearing the
simulation, or when the resolution in data is better than simulation, by smearing the
generator level boson PT-

As a final cross check of the energy scale, in figure 7-10 we plot the Z mass
shape before and after corrections on data and simulation. The final corrections are
noticeably better when both leptons have 17 < 1. This plot is not the most effective
because the effects of the scale variation is small on Z bosons due to a cancellation of
the energy scale when positive and negative muons are combined.

7.6 Summary

In conclusion, we have developed a fully analytic parametrization of the Z mass line
shape, which enables a three dimensional fit of the line shape as a function of either
the T or # coordinate of each charged lepton. The resulting fit parameters yield a
correction to the energy scale and resolution, which eliminate energy scale variations
beyond 0.004. The final systematic uncertainty on energy scale and resolution after
corrections is found to be:

0-scale 0.004 , (7.18)
O-res 0.5 GeV/c. (7.19)
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Chapter 8

Theoretical Modeling

The theoretical modeling of the W and Z bosons plays an important role in the

cross section calculation. First of all, the limited coverage of the detector implies

certain regions of phase space are inaccessible to muon reconstruction. Thus, an

extrapolation from the reconstructed region to the full region is necessary. This

extrapolation is performed with the acceptance measurement. Secondly, the cross

section measurement relies on a shape, determined from theoretical modeling of an

event simulated in the CMS detector. Uncertainties in the theoretical modeling of the

shape increase the uncertainties in the final measurement. In this chapter we address

the impact of the uncertainty of the theoretical calculations on the impact of these

measurements on the final cross section result.

8.1 Acceptance

The acceptance is used to extrapolate the cross section in the fiducial detector region

to the fully inclusive value. It is defined as the fraction of kinematic phase space of

the final observables over the total allowable region. This is written as:

1do-
a dp dqt  (8.1)

0- allowed region dpT dqj

For the W analysis, a cut on final kinematic observables is typically performed on

either FT, the lepton kinematics pfr, 1f or a combination of these parameters. For

this analysis, the kinematic cuts on the leptons is determined by minimizing the

theoretical uncertainty on the acceptance. The uncertainty on the differential cross

section originates from three sets of effects.

" QCD effects

" Electroweak effects

" Parton distribution effects
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The optimal acceptance cut is determined, in part, by minimizing our theory
uncertainty modelling, is found to be:

PT > 25 GeV/c and |r/| < 2.1 (8.2)

A cut on the $T increases the acceptance uncertainty by an additional percent because
of the inclusion of the uncertainty on the $T modeling and the additional theoretical
uncertainty from a second lepton cut, thus it is not used in this thesis. The value
for the acceptance is determined with the W boson Monte Carlo generator known as
Powheg [75]. Applying equation 8.1, we find for W+:

aw+ = 0.4109 + 0.0004 (8.3)
aw- = 0.4004 i 0.0004 (8.4)

where the uncertainty is the statistical uncertainty from the Monte Carlo simulation.
In the past decade, due to the inclusion of higher order calculations, the theo-

retical understanding of W and Z boson production has improved considerably. In
the following sections, we outline the impact of the higher order corrections by first
presenting the leading order cross section formula and then progressively adding in
corrections coming from the higher order perturbative calculations. By progressively
adding in the different contributions to the final cross section, we mean to build up the
intuition in use of the theoretical framework. This intuition leads to an assessment
of the uncertainties on of the acceptance calculation and the differential distributions
of the boson decay.

8.1.1 Leading order W cross section

W boson production is a Drell-Yan process. Drell-Yan production is an s-channel
process, whose interaction proabaility is that of a Breit-Wigner form mass resonance
about the mass of the boson. This is then convolved with the parton density functions
in the proton over the varibles x1 and x2 , which describe momentum fraction xi of
a proton. To give the differential cross section in terms of the energy of production,
doatot
dQ I

ori (Xi, X2, Q2) 79w v 2 2 (8.5)~(x , 2) 12x2  Q 2 - MS) 2 ± pFw/M(

do dzdx 2fq (Xi, Q2) f' (x 2,Q 2 ) ou (i, X 2 ,Q2 ) (8.6)

where g, is the weak coupling constant, Vqq, is the CKM matrix term of the two quarks
q and q', Mw is the mass of the W, Fw is the width of the W boson decay, fi are
the parton distribution functions with proton momentum fractions x, Q2 the energy
scale of the interaction, and s is the center of mass energy defined as S sbeam (XlX 2)
(Sbeam =7 TeV). A diagram of the leading order production is shown in figure 8-1.

The leading order formula has a linear dependence on the parton distribution
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Figure 8-1: Leading order Feynman diagram for W boson production

functions, this dependence translates directly to prediction of the boson rapidity. To

obtain the rapidity distribution we have for xi and x 2 the two momentum fractions

of the proton:

Pz = V; (XI - X 2 ) , (8.7)

E = vs (X1 + X 2 ) , (8.8)

E + p,
y = - log (,pz) (8.9)

- log . (8.10)

Thus, the rapidity is defined by the distributions of the PDFs fql(X2)fq(Xi). Reinter-
preting this in the context of the cross section, yields the differential cross section as

a function of the rapidity:

da
= zi dxdX26 (Y - Y (X, X 2 )) fq (X1)fq'(X2)i , (8.11)

dy
du
d = dX2 fq(x2)fq (2exp (-y)) ai . (8.12)

In terms of the W boson, the dominant production in a proton proton collider is

determined by collision of one of the valence quarks with a sea quark. For W+, the

dominant parton distribution function combinations are fu (xi) fa (x 2), while for W-

the dominant combination comes from fd (XI) fa (X 2). Rewriting the previous cross
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section equation for W+ we have, writing Mw (Q2), to be a Breit-Wigner about Mw,

S =MW' (Q) ~Mw , (8.13)
SbeamXlX2 , (8.14)

2 Mw
= SbeamXi exp (-y) - x1 = (s) exp (y/2) , (8.15)

Sbeam

do.+
d = dx 2 fu(x 2 )fd (x 2 exp (-ly)) -i (8.16)

do + d2f u (MW exp (lyJ/2)) fd Mw exp (-ly/2)) o-i . (8.17)
dy JSbeam Sbeam

Now knowing the that the forms of fi are all similar for small x with a dominant term
given by fi ~ Xa, we expect the the production of W bosons to be flat in the central
region.

This derivation implies that with the leading order cross section formula, one
can already calculate a rapidity distribution from the parton distribution functions.
Other aspects that contribute to boson production are missing at leading order, most
notably the boson PT, which at leading order is zero. From data, it is known that
the boson PT extends out to several 100 GeV/c. Contributions to the cross section
calculation which give a non-zero W boson PT distribution are introduced at NLO.
Thus, we must consider higher order corrections to predict the boson PT distribution.

8.2 Higher order QCD corrections

Higher order QCD corrections contribute to the cross section measurement in several
different ways. One way is through the production of an additional quark or gluon
(figure 8-2). Contributions of this form come in at the next to leading order QCD
calculation and contribute to W boson production at high PT.

\W+

Figure 8-2: W boson production with a gluon jet at next-to-leading order, the red
indicates the NLO correction to the LO diagram

The second contribution comes from loop corrections to the cross section (fig-
ure 8-3). These modify the production by regulatingthe total cross section at low PT
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where quark and gluon production, such as the process in figure 8-2, have a divergent
contribution to the total cross section.

Figure 8-3: Next to leading order loop diagram for W boson production.

The third contribution originates when soft gluons produced during W boson
production are radiated collinearly off the quarks involved in the production. This
occurs in this regime near a gluon PTr~ 1 GeV/c(the red component in 8-2). The
effect is the QCD analog to QED infrared divergence [83, 84]. The effect is described
through the theoretical formalism known as resummation. An example of such a
process is shown in figure 8-4.

q

Figure 8-4: Resummed quark diagram for W boson production. The resummation
integrated over an infinite amount of collinear quarks and gluons (given by the red
blob).

The three QCD contributions desribed above constitute higher order QCD effects,
the first two give corrections involving a finite amount of additional quarks or gluons;
the third component yield corrections involving an infinite set of radiative quarks and
gluons at low energy.

8.2.1 Extending to higher orders

The cross section at higher orders follows from an extension of the leading order form
to incorporate infrared radiation. This starts with the matrix element for a general
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next to leading order process consisting of a boson plus quark or gluon production
pp -± Vq or pp -+ Vg. The cross section we write as [85, 86]

dor as (- f dx1 [ d2f K\q M

dQ 2dydQ2 = 7 CF 1 f M2, , (8.18)

where here, we have summed over the possible quark and gluon contributions q or
q' with M2 , the square of the respective matrix element describing qq' -+ Vq . The
simplest of such matrix elements, pp -+ Vg (figure 8-2) is written as

Mqq ((- Q2/(XX2s)) 2 + 2Q2  2 (8.19)
q ziz2sq xi2 2s

Integrating over the appropriate kinematic regime (namely the allowed region for
which the gluon to radiate) 8.18 becomes

do- as CF (3 (Q2/Q2) f 1

dQ 2dQTdy 27 Q2 2Qr Qf i (Pab a

+ I4f2(x2) (Pab 0 fa (Xi)) , (8.20)

where the convolution terms, P 0 f are defined by the probability of the quark or
gluon, a, to radiate becoming a new quark b. Additionaly, in the equation above we
have implicitly imposed a standardized Q2 for the PDFs:

Pab 0 fa (X) Pa-+b (-) fa(X) , (8.21)

fi(X) fi(X, Q2) . (8.22)

Intuitively, equation 8.20 is envisaged as the probability of the original quarks in the
PDF to fragment into quarks and gluons (the last two terms) combined with the
cross section of soft gluon fragmentation in the hard event (the log and 3/2 terms on
the left hand of 8.20). The log and 3/2 terms are divergent as QT -+ 0, thus giving
the largest contribution to the differential cross section calculation. The cross section
itself does not diverge due to regulation of the divergent terms [87]. In this instance
for small values of QT, it is possible for a large number of soft gluon emissions, thus
the form of the cross section follows by considering an expansion in the dominant log
terms

do- 2 2 2
T_ - 1 + aso-hard + as ohard - (8.23)

- 1 + asCF (log (Q2/Q2) - 3/2Q2) + ... , (8.24)

- exp (asCF (log(Q 2 /Q2) - 3/2Q2)) . (8.25)
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The exponent term is known as the Sudakov form factor. The method of absorbing the

expansion of the all terms into a Sudakov form factor is known as QCD resummation.

In order to incorporate PT conservation, the cross section is performed in the two

dimensional Fourier transform of PT, known as the impact parameter, b. Transverse

momentum conservation is ensured by inserting a delta function:

62 Ti - T 4 d2be- T ekTi (8.26)

This yields the final cross section formula, given by

do- Q 0 1 u D dbbJo (bQT) exp (-S(b, Q2)) (qiq 2) , (8.27)dQ2dQ2 2 Jo

where Jo is the Bessel function of zeroth order, qiq 2 is the integral over the PDFs,
and the modified Sudakov is written as

S(bQ,C1 ,C2) c2Q2 d ( as(p), C) log C2 + B (as(p), C1, C2 )
C 2/b2 Y 22

(8.28)

A (as(p), C1) = A(n) (C1) , (8.29)
n=o
n0

B (as(p), C1 ) = ( B(n) (C1 ) , (8.30)
n=o

where we have now generalized the coefficients A and B to be expressed in orders

of as. This form extends the cross section to incorporate terms from higher order

calculations. This is known as the CSS formalism [88].

8.2.2 Generalized cross section to all orders

The generalized form of the cross section out to all orders is written in terms of three

different components, a non-perturbative component, a perturbative component, and

a resummed component. The combination of the terms is written as

dcr 1 Q2
dQ 2dydQ2 96Ir2 S (Q2 - MV)2 + Q4F/M?2

Ij 2beiZT [W p() WiJNP(...) + Y(...) (8.31)
j,k

where the resummed component is written as WP, the non-perturbative component

is written as NP and the perturbative component is written as Y. The overall Q2

distribution is a standard Breit-Wigner with a vector boson (either W or Z) mass of
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Mv and a vector boson width of Tv. The perturbative Y component is determined
from the expansion of 0 (QT) terms, which were ignored earlier in equation 8.20 when
considering only the divergent terms.

Each of these components contribute to a different region of the calculation. This
is interpreted in figure 8-5 within the context of the theoretical impact parameter b
and in more practical terms of the PT of the vector boson.
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Figure 8-5: Plot of the W boson PT (top) and the W boson theoretical impact param-
eter (bottom). The red, yellow, and green define qualitatively the different perturba-
tive regimes of the W boson. The PDF uncetainty band is shown here to show the
importantce on the PDF parameterization in terms of the three pretrubative QCD
regions. [89]

Resummed component The form of the resummed component is determined from
the previous derivation of the Sudakov exponent. It is written as

W4; =exp (S) j|k2 ((Cja 0 fa) (Xi) (Ckb ® fA) (X2) + (j k)) (8.32)
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In this notation, we have the Sudakov exp (S) is written as in 8.28 and the C terms

are the generalized expansions of P 0 f described in equation 8.20.

In the framework of Collins Soper Sterman formalism (CSS formalism), it has

been shown that the values of A and B are derived by the renormalization group

equations [88]. This enables the extensions of the resummed formulae out to the

higher order by just expanding the QCD renormalization group equations.

At first order, the value for A is CF and for B is 3/2. This values are obtained

from the W gluon production cross section (equation 8.20). The extension of these

terms is presently known to third order in A and to second order in B. In terms of

the resummation, expansion out to three orders in the logorithmic terms is written

as Next to Next to Next to Leading Log or NNNLL.
In addition to the parameters A and B, the terms that modify the parton distri-

bution function qi and q2 must also be expanded in terms of the strong coupling. The

full calculation yields Ckb (the Wilson coefficients), which follows from a generaliza-

tion of the DGLAP evolved q(x). This term is additionally dependent on the order

of the as expansion and presently is calculated out to first order.

Non-perturbative component The non-perturbative component of the cross sec-

tion formula is needed for regions of small PT where the strong coupling a, > 1. It is

inserted into the resummed calculation by imposing a transition as one goes dowon

to low PT form the resummed calculation into the non-pertrubative regime through

an effective impact parameter cutoff, give by b*. The transition is induced by the

parametrization given by

ot Wj(b)WP(b*) , (8.33)
b

b* = 1(8.34)
1 + (b/bmax)2

whereby the perturbative component is a function of b*, which cuts off at bmax. The

CTEQ best fit value for this parameter, using Tevatron data is b* = 1.5 GeV.

A number of different parametrizations exist for the non-perturbative component.

All of them are similar to a Gaussian distribution centered around zero. This imposes

a so-called "intrinsic kT" smearing of events at low PT. The model used is this analysis

is the BLNY [90], which has been tuned to Tevatron data [91, 92]. The general form

of the BLNY distribution is given by

W/ =P exp -gi 2 2 2Q -1ig log(100x1 x 2 )) (8.35)(igkb -92blo ( 2Qo / 99

Perturbative component The final component in the cross section is the com-

pletely perturbative non-divergent term, known as the Y component. The Y com-

ponent consists of the nearly complete NNLO differential calculation matched to the

resummed component. It modifies the final shape by correcting the production at

high PT. The Y correction is written as the matrix element component, where the
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divergent asymptotic cross section component at low PT is removed.

y dQ2ddQ2r NNLO -
2 dyo asymptotic (8-36)

The matching of this cross section with the resummed component is unclear. The
fixed order and the resummed cross section have components that are calculated at

different orders in a5 , thus a direct matching would not be consistent [93]. In order to
overcome this difference in matching, the cross sections are matched by their values
for dQ in the region 20 GeV< QT < 50 GeV where both calculations are accurate [94].dQt

Cross section implementation: Resbos

The combination of the full differential and matched resummed cross section is imple-
mented in the software program Resbos [95, 96]. The calculation is performed in two

steps. The first part of the calculation produces the differential cross section, doQdQ2dydQT

The second step samples from the differential cross section, producing a Monte Carlo

dataset consisting of a W boson, a lepton, and a neutrino. An infinite sum over the

quarks ans gluons is are implicitly integrated over in the calculation, thus none of

the quarks and gluons are produced, making simulation of events impossible. The

Y components are determined by an additional grid, which is added to the existing
resummed calculation and samples after the original grid.

To examine the effects of the resummation on the boson distributions, a compar-
ison of the W boson NLO y and PT distributions with and without resummation is
presented in figure 8-6. The inclusion of the resummation increases the PT of the

boson and flattens out of the rapidity distribution.
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Figure 8-6: Comparison of PT and rapidity (y) distribution using Resbos with

(red, Resbos NNLL plus NLO) and without (blue, NLO) resummation terms us-

ing CTEQ 6.1. A PT cutoff on quark and gluon effects for PT > 1.4GeV/c, applied to
both samples

The uncertainty on the resummed distribution is comparable to the addition of
the highest order correction to the resummed calculation. To assess the scale of
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the effect going from second to third order in the expansion of A, we plot the PT
distributions of the second and thirder ordersin figure 8-7. The effect shown yields a
small increase in boson production at low PT. This effect translates to a difference in
sample acceptance of 0.05%.
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Figure 8-7: Comparison of Resbos NLO pT distribution having NNNLL order expan-
sion in the A coefficient (321) and PDF set with Resbos NNLL NLO

The shift from leading order to higher orders in the the perturbative calculation
mainly affects the high PT region of the boson. The scale of this effect is demonstrated
in figure 8-8. As one transitions from LO to NLO the PT tail beyond 50 GeV/c in-
creases significantly. Transitioning to the NNLO corrections, the effect on the PT
distribution leads to a ten percent change in the tail near 100 GeV/c.

8.2.3 Parton shower Monte Carlo simulation

Resbos contains all of the elements of the full cross section calculation. However, it
is not capable of simulating the individual quarks and gluons. For an accurate simu-
lation of all of the physics processes, these components are a necessity in simulation.

To simulate the quark and gluon production in the event, we instead create a
parton shower. This is performed by simulating the splitting of partons into mul-
tiple partons, using the branchings q -+ qg, g --+ gg, and g -+ qq (known as the
splitting functions). The evolution of these splitting functions at a virtuality scale
Q2 is performed with the DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) equa-
tion [6, 7, 8]. The final shower of quarks and gluons results through the repeated
iterative splitting of partons. The resulting quarks and gluons produced are passed
into simulation, where they are hadronized producing mesons and baryons, which are
reconstructed into jets. When W and Z bosons are produced, these showers recoil of
the W and Z bosons giving the bosons a PT distribution.
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Figure 8-8: Comparison of the Resbos PT distribution with different orders of pertur-

bative corrections using CTEQ 6.6. The distributions are normalized to their absolute

cross sections.

The main disadvantage of the parton shower is its limited accuracy in the descrip-

tion the quark and gluon showering. The showering terms are determined from the

leading order quark and gluon splittings, resulting in leading-log (LL) accuracy [97].

To go beyond the LL shower approximation, branchings going from one hadron to

three or more additional particles are necessary. In an attempt to improve the genera-

tion of parton showers, some effects beyond LL are incorporated through momentum

conservation, showering by angular or PT ordering, and optimally choosing a scale for

as.

Two parton shower Monte Carlo simulations are in common use, Pythia [54] and

Herwig [55]. The ordering of the shower simulation in Pythia is done in PT. This is

performed by showering the highest PT splitted quark first and then proceeding to the

lower PT components. The ordering in Herwig is performed by the angle of the partons

which have branched off the shower. Herwig starts from largest angle with respect to

the original parton and works inwards. This performed because the highest pT(angle)

particles are not modified by decays originating from lower pT(angle) particles.

In addition to the parton shower, Pythia models the non-pertrubative component

by introducing a proton intrinsic kT for quarks and gluons in the proton. It also

models the hadronization of the quarks and the gluons, the leading order matrix

element of many processes, and a number of other effects. In many instances, these

effects are not completely modeled, but parametrized so that they are tuned to the

data. The tuning of the parton shower in Pythia is performed on low energy QCD

collisions. Tuning was performed in CMS on collisions at 7 TeV yielding a tune known

as the Z2 tune [98]. This tune is used in all Pythia related studies in this document.
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Powheg

Next to leading order cross section calculations have negative valued contributions
originating from loop diagrams (figure 8-3). Inclusion of these negative valued cal-
culations would require negative weighted Monte Carlo events. The Monte Carlo W
boson generator Powheg (Positive Weight Hardest Emission Generator) tries to ad-
dress the issue of the negative weighted events by constraining the kinemati region
requiring negative weighted events to a small area of phase space and then relying on
the LO calculation to generate the kinematic distribution in that region.

In Powheg, a vector boson event is generated first by sampling differential cross
section generating a parton, boson, and lepton. The boson, the leptons and the parton
are then passed to Pythia to perform the parton showering. In Pythia, the hard parton
produced by Powheg is treated as the hardest parton emission when parton showering
is performed. To avoid complications in the resummed regime, the parton produced
by Powheg is only passed onto Pythia if it is a above tunable threshold, which by
default is set to one GeV. Additionally, to improve the accuracy of the showering
step Powheg uses the NLO strong coupling value in the Sudakov coefficient. This
causes the parton shower to act more like an NLL resummed calculator.

Through this prescription, Powheg coincides at large PT with the correct NLO
calculation and at low PT with the standard shower Monte Carlo Pythia (or LL
resummed distribution). Figure 8-9 compares the Powheg distribution with the pre-
dicted resummed distribution from Resbos. The PT distribution of Powheg is close
to Resbos making corrections to Powheg small (on the order of a few percent). The
major difference originates in a larger fraction of events in the tail and a shift peak
of the PT distribution at ~ 5 GeV/c.
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Figure 8-9: Comparison of Powheg Monte Carlo Simulation with Resbos.
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8.2.4 Differential NNLO calculation

The resumined calculation used in Resbos included a Y component, with contributions
from the NNLO calculation for the perturbative high PT region. The fully differential
NNLO cross section do-/dpTdydQ2 was only completed in 2006 [26]. It is implemented
through a program called FEWZ (Fully Exclusive W,Z production through NNLO in
pQCD) [26]. At each order of perturbation, the differential cross section incorporates
more initial states summarized by

* qq production at LO,

* qg production at NLO, and

" gg and qq production at NNLO.

The core idea of this calculation relies on an automated extraction of the infrared sin-
gularities from real radiation matrix elements and a numerical cancellation of these
singularities with virtual corrections. The final calculation includes the spin correla-
tions of boson with all of the initial state products as well as the finite width effects
coming from the boson width.

Although FEWZ has the full NNLO differential cross section, it does not contain
any resummed or parton shower based calculation. This makes it valid for only the
yellow region in figure 8-5. A comparison of FEWZ with Resbos is found in figure 8-10.
The result shows excellent agreement between the two calculations for PT > 20 GeV/c.
This validates the hard matrix element component of Resbos (the Y component) and
determines the region where full NNLO calculation is important.

The advantage of the fully differential cross section is the computation of the
differential distribution with a modified strong coupling constant as. Modifying the
as effectively probes higher order (beyond NNLO) calculations [99]. Thus, FEWZ is
used to check the effects of beyond NNLO corrections to the boson, by comparing
the behavior of the NNLO differential cross section for modified as.

8.2.5 Comparison with data

To test the performance of the various differential calculations, we rely on Z boson
differential distributions in data. The two leptons in the Z boson allow for complete
determination of the Z boson four vector, providing a check of both the Z PT differ-
ential distribution and the Z rapidity distribution. To perform the comparison we
require a parton shower Monte Carlo simulation so that cuts may be performed on
simulated detector effects, such as trigger and isolation. Corrections to this Monte
Carlo simulation are then performed through one of two means: the Monte Carlo
parameters are either tuned to data, or the Monte Carlo is reweighted with Resbos.

The Z boson selection is obtained by requiring two muons with the identification
selection presented in chapter 5. To capture the most inclusive distribution, we require
a low mass cut on the combined di lepton system of mfe > 40 GeV/c 2 .
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Figure 8-10: Comparison of generated Resbos PT distribution with FEWZ. Normal-
ization is to the PT = 20 GeV/c bin

Powheg Performance with data The comparison of the boson PT distribution
between data and Powheg is presented in figure 8-11. At low PT, a small disagree-
ment is visible between Powheg and data. The disagreement is comparable to the
additional resummed terms shown in figure 8-7. Additionally, the low PT component
missing contributions from the non-perturbative region may further broaden the PT
distribution [100]. At high PT a large deficit between Powheg and the data is visible.
In this region, it is expected that the hard matrix element coming from higher order
corrections leaves a large contribution. This contribution increases the yield at high
PT by 15 to 20 percent.

N

0Z
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0
Z
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Figure 8-11: Comparison of the Z boson PT distribution of Powheg with data. Both
data and Monte Carlo simulation are normalized to area. The result is shown for low
PT (left) and for a high PT binning (right).

The agreement of Powheg between data and simulation at low PT is improved by
tuning the minimum threshold for hard parton inclusion. Increasing the threshold
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increases the contribution at low PT coming from the tuned Pythia showering and
reduces the influence of the hard matrix element contribution from Powheg. This
tuning is the equivalent of moving the threshold between yellow (resummed) and green
(perturbative) in figure 8-5. We consider moving the threshold up through that region
and comparing the resulting PT distribution because the resummed contribution has
a significant effect for a PT up to a region of around 20 GeV/c,

To perform the comparison, we utilize the newest version of Powheg, known as
the Powheg Box (the default presented above is with the previous version of Powheg,
Powheg 1.1). The x2 per number of degrees of freedom of the PT distribution between
data and Monte Carlo simulation is minimized with respect to the variation of the
minimum hard scatter parameter. Figure 8-12 shows the result of x2 minimization
and the resulting PT distributions of the Z boson. The red histogram, which is the PT

distribution with the minimum x2 shows a considerable improvement with respect to
the default Powheg (the blue line). The optimal value of the minimum hard scatter is
found to be PT = 30 GeV/c. This indicates, from the left plot showing the variations
in tune, that the resummed contribution originating from the Pythia parton shower
improves the PT description for PT < 15 GeV/c
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Figure 8-12: Comparison of different predicted PT distributions with the data (left).
The blue line represents the default Powheg Monte Carlo simulation used to determine
the acceptance. The green line is the default Powheg Box simulation, used to tune the

PT distribution. The red line is tuned the Powheg box PT distribution corresponding
to the minimal x2 as determined by the right plot. The right plot shows the X2 /NDF
variation between data and tuned Powbeg as a function of the minimal PT for the
inclusion of the hard parton (here called min PT for radiation).

Resbos performance with data The comparison of Resbos with data is per-
formed by re-weighting the Z boson differential distributions produced with Powheg
Monte Carlo simulation to correspond with the Z boson differential distributions pro-
duced by Resbos. To perform the reweighting each event in the Powheg simulation
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is assigned a weight determined by

PResbos (PT, YZ)

PPowheg (PT Yz)(

where P is the probability of a Z boson event to be within a specified region of PT
and rapidity, y. The reweighting is done in terms of the generated PT and rapidity in
both Powheg and Resbos, because no simulation effects are present in Resbos. For
the distributions going beyond PT > 100 GeV/c one bin in rapidity is used so as to
minimize the effect of statistical fluctuations.

In figure 8-13, we present the low and high PT distributions of the Powheg Monte
Carlo simulation reweighted by Resbos. Comparison with figure 8-11 shows consid-
erable improvement in the overall agreement between the data and the Monte Carlo
simulated PT distribution. At low PT, the width of the distribution is increased im-
proving the overall agreement in shape. At high PT, the additional matrix element
corrections push PT distribution up with respect to Powheg, yielding a much improved
data simulation agreement.

Following the reweighting, some residual disagreement between data and Resbos
still exist. The disagreement at low PT occurs in two regions. The first region, near
PT= 5 GeV/c, is influenced from uncertainties in the non-perturbative component
of the differential distribution. The second region, near PT=20 GeV/c, occurs at
the transition region between the matrix element (Y component) and the resummed
calculation. This region is particularly difficult to model because it involves matching
the resummed calculation, performed out to all orders in the strong coupling, with
the hard matrix element, which is calculated out to finite order. Similar discrepancies
has previously been observed at the Tevatron [92].
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Figure 8-13: Comparison of the Z boson PT of Powheg rescaled by Resbos PT dis-
tribution with data. Both data and Monte Carlo simulation are normalized to area.
The result is shown for low PT (left) and for a high PT binning (right).
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QCD systematic uncertainty

The knowledge of the highest order QCD corrections are utilized to determine an un-
certainty on the acceptance measurement. The acceptance measurement is performed
with Powheg (version 1.1), which is a partial NLL, and NLO cross section measure-
ment. The logical extension in resummed order is to go from NLL to NNLL or higher.
The difference between the two determines the scale for the additional higher order
resummed corrections. The extension of the pertrubative order of Powheg would be
to utilize the NNLO matrix element. Again, the difference between the NLO and the
NNLO bound the scale of corrections at NNLO and beyond.

We determine the uncertainty from the higher order resummed terms and the
higher order matrix element corrections, simultaneosly with Resbos NNLO. The use of
both sets of corrections minimizes the acceptance uncertainty because it incorporates
the correlated effects of going to higher orders in both resummed and perturbative
QCD. The effects do not cancel with each other because they both push the acceptance
in the same direction (the signs on a- are the same for both calculations). The
expected PT distribution is additionally predicted to be very close to the Resbos
PT distribution, which was further confirmed by figure 8-13. The two effects not
incorporated into Resbos are the matching between the resummed, Y component,
and the low PT non perturbative uncertainty. To assess the order of these effects, the
Z boson data/simulation weight wi defined by

Wi (PT) P , (8.38)
PResbos (PT

is used to reweight the acceptance measurement by fitting a fifth order polynomial to
Wi(PT) and correcting the acceptance to get acorr:

1 fdcr
acorr = dp djew (PT (i)) . (8.39)

-O od p f d ?7 f

This correction to the acceptance is performed by either integrating over the kine-
matics of the Powheg or Resbos generated kinematics. For comparison purposes, we
consider both possibilities. These data corrected acceptance values are used as cross
checks to systematic uncertainty on the acceptance.

The systematic uncertainty is determined by taking the difference in acceptance
between Resbos and Powheg at the generator level. To make the generator kinematic
distributions from Powheg and Resbos match the data, the lepton, and the neutrino
are smeared with their respective PT and FT resolutions and uncertainty fluctuated
resolutions. Figure 8-14 demonstrates the difference in acceptance as a function of PT
of the lepton. As a cross check, the data weighted acceptance is found to be within
0.3% of the Resbos Powheg difference.

This systematic uncertainty recipe is repeated on the Z boson for a sample consist-
ing of two muons passing the W selection whose combined mass is within 60 GeV/c2 <
mfe < 120 GeV/c 2 . The individual W and Z boson systematic uncertainties for the
default acceptance cuts are reported in table 8.1.
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Figure 8-14: Change in the acceptance between Resbos, Powheg, data reweighted
(equation 8.39) Powheg(red), data reweighted Resbos (green) as a function Of Pr for
W+ bosons (left) and W- bosons(right). The various ±res correspond to the change
in the acceptance if Powheg and Resbos are both smeared by the up and low bands
of the detector resolution.

Quantity AA/A
W+ acceptance (p) (-0.72 t 0.11)%
W- acceptance (p) (-0.50 t 0.09)%
W acceptance (p) (-0.65 t 0.07)%
Z acceptance (p) (-1.19 ±0.18)%
W+/W- ratio () (-0.23 t 0.14)%
W/Z ratio (p) (+0.53 t 0.20)%

Table 8.1: Changes in acceptance from resummation and NNLO QCD effects.

Higher order QCD correction systematic uncertainty

The higher order QCD uncertainties are determined with the complete NNLO differ-
ential cross section calculator FEWZ. Fixed order QCD calculations bound the higher
order perturbative calculations (beyond NNLO) by varying the scale y for as(p) and
recalculating the acceptance. The choice of scale variation is conventionally chosen to
be either y = 2Mw, Mw(default value), or Mw/2, a choice of scales, which is known
to span more than 90 percent of all hard interactions [99]. The systematic uncer-
tainty is determined from the conventional scale choice by taking the half maximum
difference of the acceptance calculation over the three different energy scales.

1
2scale = - .max {|AM - AM/21, |AM - A2MI, |A2M - AM/21- (8.40)

Due to the difficulty in calculating the differential W boson cross section, the calcu-
lation was performed over several hundred computer processors for a period of one
day. The resulting systematic uncertainties are summarized in table 8.2.
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Quantity 6 scale

W+ acceptance (p) (0.49 t 0.35)%
W- acceptance (p) (0.37 t 0.37)%
W acceptance (p) (0.44 ± 0.21)%
Z acceptance (p) (0.09 i 0.20)%
W+/W- ratio (p) (0.36 ± 0.61)%
W/Z ratio (p) (0.38 ± 0.29)%

Table 8.2: Systematic uncertainty on the acceptance from missing higher order cor-
rections.

8.3 Electroweak corrections

The Electroweak corrections include all QED radiative effects beyond leading order in
a. These effects lead to the production of one or more photons. The corrections mod-
ify the differential cross section in a similar manner as the QCD corrections; however,
the coupling a is more than ten times smaller than as making the contribution of
these effects significantly smaller. As with the QCD corrections, the photon radiative
corrections come in two flavors. The first flavor, final state radiation (FSR), consists
of a radiative photon originating from the final state muon as depicted in the right
of figure 8-15. The second flavor of radiative corrections come from the order a Elec-
troweak corrections. These corrections consist of a set of radiative loop corrections
and order a radiative photons originating from radiative W bosons. An example of
such an effect is shown in the left of figure 8-15, which shows a photon radiated from
a W boson.

Generator level simulation is not sufficient to determine the affect on the accep-
tance becausethe Electroweak corrections introduce photons, which are not accounted
for at generator level. To incorporate photon effects into the acceptance calculation
simulation of the photon's path in the CMS detector is necessary, so that the isolation
about the muon is recalculated.

W± W±

q v(v) q " v(v)7

Figure 8-15: Diagrams showing the corrections from final state radiation (right) and
from a radiative photon originating from the W boson(left).
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8.3.1 Final state radiation(FSR)

Final state radiation consists photon radiation from the muon during production for

the W boson event. Muons radiate photons with energies down to several tens of

MeV, which summed over all photons leads to an average drop in the PT distribution

by four percent. As with gluons at low energy, calculation of the radiation leads

a divergenc the collinear limit of radiative photons. This divergence is expanded

yielding a QED Sudakov form factor of the form [4].

exp (-a log (Q2 /[ 2 )) (8.41)

The simulated effect out to leading log is thus performed through a parton shower

equivalent technique on the photon radiation. This is performed by iterative sampling

of the probability distribution for lepton radiation P(E - fdy), for each radiated

photon and lepton down to a infrared cutoff energy.

To incorporate the final state radiation three separate implementations are con-

sidered: Pythia [54], Horace [101], and Photos [102]. Each implementation utilizes a

different photon energy cut off and a different approximation of the probability dis-

tribution of photon radiation. Pythia is the baseline FSR implementation, because

it is interfaced with the rest of Pythia and is called by default following the parton

shower. The Horace generator is capable of simulating both final state radiation and

additional O(a) Electroweak corrections [101]. Unlike Pythia, The FSR generator

for Horace has the full leading log matrix element.The final FSR generator, Photos,
like Horace utilizes a different parameterization of the full matrix element to deter-

mine final state radiation. Due to a limitation in previous versions of the simulation,
Photos could not be extended down to radiative photon energyies below roughly one

GeV. Thus it is only used as a cross check.

A comparison of the highest energy photon PT and distance AR with respect to

the lepton is shown in figure 8-16. The comparison is performed by applying the three

different FSR models on the exact same kinematic events produced by a leading order

matrix element generator implemented in Horace and interfaced with Pythia QCD

showering. Excluding the low PT region of Photos, which is not simulated, the highest

energy photon PT, distributions, shown in figure 8-16, are all similar. However, the

AR between the photon and the lepton vary with each generator. The overall effect

of this on the final acceptance is small.

8.3.2 Electroweak corrections of O(a)

O(a) corrections to W and Z boson production contribute additional photons in

the event. The Monte Carlo generator, Horace, incorporates the complete set of

Electroweak corrections. The corrections is turned on and off to separately compare

the effects of final state radiation and the 0(a) Electroweak corrections. Figure 8-

16 shows the photon PT spectrum originating from the combined Electroweak and

final state radiation corrections (red) with the FSR corrections alone (blue). The

Electroweak corrections result in an additional contribution of photons at large AR
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Figure 8-16: Comparison of different FSR models on the maximum photon PT (left)
and the distance AR = Ar/2 + Ad 2 of all photons from the lepton. The Horace
generator is shown twice: only the FSR model applied (blue line) and also with the
FSR and EWK corrections applied (red line).

originating mainly from the W radiative photons.

8.3.3 Systematic uncertainty

The final state radiation and the Electroweak corrections both contribute a systematic
uncertainty on the final W boson acceptance. The final state radiation uncertainty
is determined by difference in the acceptance between the Horace FSR model and
the Pythia FSR model because Horace has a more complete FSR model compared
to Pythia,. The O(ac) Electroweak corrections are missing from the baseline Pythia
simulation. To determine the effect of these missing corrections the systematic un-
certainty is taken from the difference in the acceptance between Horace where the
Electroweak corrections are turned on and off.

In determining the systematic uncertainty, the same generator level lepton and
boson kinematics from the leading order Horace matrix element are passed to the
different FSR programs, thereby isolating the effect of the FSR. The difference in the
acceptance with respect to the baseline Pythia simulation is shown in figure 8-17. For
both W+ and W- the effect of the final state radiation is below 0.5% for lepton PT >
25 GeV/c. The electroweak corrections increase the acceptance for W- boson decays
and decrease the acceptance slightly by W+ boson decays. The cross check FSR
model (Photos) additionally differs from the default FSR model by < 0.5 percent,
further justifying the choice of the systematic uncertainty. The full results are given
in table 8.3.
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Figure 8-17: Change in the acceptance with a PT cut defined by the x-axis
different FSR models in W+ bosons (left) and W- bosons (right).

Table 8.3:
rections

for several

Quantity FSR EWK
W+ acceptance (p) (+0.34 ± 0.14)% (-0.04 ± 0.14)%
W- acceptance (p) (+0.02 ± 0.16)% (+0.39 ± 0.17)%
W acceptance (p) (+0.21 ± 0.10)% (+0.13 ± 0.11)%
Z acceptance (p) (+0.36 ± 0.25)% (-0.45 ± 0.23)%
W+/W- ratio (p) (+0.31 ± 0.21)% (-0.43 + 0.22)%
W/Z ratio (p) (-0.01 ± 0.27)% (-0.58 ± 0.26)%

Acceptance differences from FSR modeling and missing Electroweak cor-

8.4 Parton distribution function uncertainties

The last input into cross section is determined by the parton distribution functions.
This has a large effect on the boson rapidity distribution (as shown for leading order
in section 8.1.1), but not on the boson PT distribution, where PDFs contribute at
0 (a) to the Wilson coefficient terms in equation 8.32.

The parton distribution functions are parametrized in terms of a general poly-
nomial form (for CTEQ the parametrization in equation 1.6 is used). The resulting
parametrization is then fit to a large amount of different datasets, this yields a set
of uncertainties on each fitted parameter for each specified quark parton distribution
function. The uncertainties on each parameter is propagated through, by decompos-
ing the uncertainties in terms of the independent eigenvectors of the Hessian matrix
and propagating the diagonalized uncertainties into parton distribution function [103].
This yields a set of 2N modified PDF sets, corresponding to the propagation of the
+o and -o uncertainties for all N independent eigenvectors of the parton distribution
function parametrization.

The propagation of the uncertainties is then performed by iterating over all parton
distribution functions and calculating the desired observable. The spread in the
observables yields an uncertainty band on the predicted W and Z boson, muon, and
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neutrino distributions. Figure 8-18 shows the maximum spread in the boson rapidity
and PT distributions obtained by running over all of the 2N PDFs (using CTEQ 6.6)
and calculating the fully resummed NNLO plus NNNLL distribution each each set.
The uncertainty uncertainty band is near two percent over the whole range of the
rapidity distribution and below one percent over the PT distribution. The effect of
this variation translates to 0(1) percent uncertainty on the muon rapidity distribution
and 0(0.1) percent uncertainty on the muon PT distribution.

To determine the systematic uncertainty on the acceptance from PDFs, we recal-
culate the acceptance for events reweighted event by event to match the kinematic
distribution of a specific PDF [103]. The change in the acceptance, summed up over
all of the PDFs in the uncertainty set following the desired recipe of each set, deter-
mines the systematic uncertainty. For each event, the event weight wi is determined
by the ratio of the desired PDF with respect to the default PDF. The form of the
weight is written as

fa+,(zi)fb+,(X2) (8.42)
fa(Xi)fb(X 2 )

where fa(Xi)fb(X2) are the default parton distribution functions used in the cross
section calculation and fa+a (XI) fb+, (X 2 ) are the PDFs fluctuated by the chosen
uncertainty eigenvector.

For the event weighting to match the true kinematic distributions obtained by
performing the full cross section calculation with the desired PDF set, the cross sec-
tion must scale linearly in the parton distribution functions fa(Xi)fb(X 2 ). A linear
dependence is not completely evident from the cross section calculation because the
cross section calculation, equation 8.32, has non linear contributions coming from
the parton distribution functions. To check the linearity, samples were generated
with Resbos performing the full cross section calculation on each PDF uncertainty
set. The acceptance calculation using each of these samples are compared with a
generated Resbos sample using the default reweighting method. The resulting differ-
ence in the acceptance between the two was found to be within 0.2 percent on each
uncertainty fluctuated set. Propagating the uncertainty through to the systematic un-
certainty calculation, the missing terms lead to an additional systematic uncertainty
contribution below 0.1 percent.

8.4.1 Systematic uncertainty

To determine the systematic uncertainty on the acceptance originating from the par-
ton distribution functions, we follow the PDF4LHC recommendation [104]. The rec-
ommendation stipulates that we take the maximum uncertainty band on the accep-
tance from the uncertainty predictions using the three PDF sets CT10, MSTW2008,
and NNPDF2.0. The uncertainty on each prediction must incorporate both the PDF
uncertainties and the 's uncertainties following the specified recipe as defined by each
PDF set group.
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Figure 8-18: Uncertainty band spanning the PDF
rapidity normalized by the central value (top right)
value (bottom).

8.4.2 Uncertainty with CT10

variations for rapidity (top left)
and PT normalized by the central

The PDF uncertainty calculation recommended by the CTEQ
as [105],

Aa+

Aa-

N

= [max (at - a- - ao, 0)]2,

N

=[max (ao -- at, ao - a,-, 0)] 2,

group given below

(8.43)

(8.44)

where ao is the acceptance for the default (central value) PDF set, i runs over the
uncertainty eigenvectors, and also at and ai denote respectively the acceptances
for the ith positive and negative PDF uncertainty, the total number of uncertainty
eigenvectors for CT1O is 26 (52 error PDFs).

The as uncertainty is obtained by calculation the Aa+ (equation 8.43) for an
uncertainty set given a central value PDF sets where a, is varied from 0.116-0.120,
a range which spans the 68% confidence level(CL) around the central value of 0.118.
These sets are provided in the complementary CT1Oas PDF set [5].
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The PDF and a, uncertainties are added in quadrature yielding the final uncer-
tainty values Aa±rio. The uncertainty PDFs for CT1O consider 90% CL variations,
hence the uncertainty computed from equation 8.43 is scaled down by 1.645 to obtain
the 68% CL uncertainty.

8.4.3 Uncertainty with MSTW2008

For MSTW, the full PDF and as combined uncertainty is obtained by calculating
Aa+(Equation 8.43) over the five PDF sets (40 error PDFs each) corresponding to
as = ao , a i 0.5-, ao ± -, where o is the 68% CL uncertainty on ao, the nominal
value in MSTW. The combined uncertainty is given by comparing the max and min
acceptance over all as (equations (9) and (10) from [9]),

Aa+ = max {a, + Aas} - ao, (8.45)

Aa- = aO - max{aas - Aae,}, (8.46)
ats

where ao is computed with the central value PDF with nominal as .

8.4.4 Uncertainty with NNPDF2.0

For NNPDF [106], uncertainty sets corresponding the eigenvectors of the Hessian
matrix are not provided for the PDFs. Instead a set of PDFs that sample over
the uncertainties of the covariance matrix at a number of different as points are
provided. The PDF plus a, uncertainty is obtained by running over all PDF sets
Gaussian distributed around the central value as = 0.119 ± 0.001. The breakdown of
the sampling is shown in Table 8.4.4.

as 0.116 0.117 0.118 0.119 0.120 0.121 0.122
Nrep 5 27 72 100 72 27 5

Table 8.4: Number of replicas used for each as value to compute PDF plus a uncer-
tainty with NNPDF.

The uncertainty from the PDF sets is computed by calculating the standard de-
viation over all events with Aa > 0 or Aa < 0. The resulting uncertainty follows:

,Aa+ =Z1 N+ a)2 (8.47)
N Z(ai-ao 

2

Aao - aj 2
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where ao is computed with the central value PDF at as = 0.119, i runs over the N+
PDF sets where ai > ao, and j runs over the N- PDF sets where aj < ao.

8.4.5 Results

To combine the three separate PDF sets and quote an uncertainty, the envelope
spanning all allowable acceptances a ± Aa is first computed, the resulting uncertainty
is the size of the envelope divided by two. This is written as

A max =max (ai + Aat),

Amin = min (ai - Aa),

PDF+as uncertainty =
1
- (Amax - Amin) ,2

(8.49)

(8.50)

where i runs over the three different PDF sets CT10, MSTW2008, and NNPDF2.0.
This method encompasses the central value and 68% CL uncertainty for all three
PDF sets. Table 8.5 lists the acceptances with PDF and as uncertainties for each
PDF set considered, as well as the final systematic uncertainties in each channel.

Quantity ACTIo AMSTW ANNPDF Syst

W+ acceptance (p) 0.4109it:{8 0.41038:8?8 -0.022 1.00%

W acceptance (p) 0.4004+28 01 0.4047+827 0.3983188 1.56%
W-acceptance W004-0.0024 0.00224

W (p) 0.4055±0:0030 0.4068+8:8818 0.406500022 0.69%

Z acceptance (p) 0.3191+8_804 0.3195+8089 0.318300023 1.37%

W+/W- ratio (p) 1.0262+8:0122 1.0137+8 05 1.03950809 2.02%

W/Z ratio (p) 1.2709+08:- 1.2735182 1.2772188 1.0%

Table 8.5: Acceptances with PDF plus as uncertainties and the resulting systematic

uncertainties.

8.5 Summary

In this section, a detailed outline of the most accurate theoretical Drell Yan calcula-

tions are presented. The theoretical calculations and their uncertainty directly affect
the W and Z boson cross sections through the acceptance and indirectly by their
shape uncertainties.

The most accurate QCD corrected simulation is determined with Resbos. Com-

parison of the Z boson PT distribution between data and Resbos reveal agreement in
the prediction with data along most of the PT range, motivating the choice of using it
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as a baseline to determine the QCD modeling uncertainties. In view of reducing the
acceptance uncertainty in future analyses, we determined an optimal tune of Powheg
simulation which describes the Z boson PT well for pT < 50 GeV/c.

The largest contribution to the acceptance uncertainty comes from the parton
distribution function. This is determined using the official pdf4LHC recommenda-
tion [1041. Other contributions to the systematic uncertainty originating from FSR
and higher order corrections have a small effect on the acceptance uncertainty.
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Chapter 9

Model of VT

The W boson cross section is extracted by fitting the JT distribution of the single

lepton selection. To extract the W boson yield, we utilize a template for the W boson

$T shape derived from simulation with resolutions corrected to match the resolutions

in data. In this section, a method to derive both the corrections and the uncertainties

on the YT is presented.

The W boson event has three decay constituents: the lepton, the neutrino, and

the hadronic recoil. The two visible components, the lepton, and the hadronic recoil,
are summed vectorial to yield the YT. The term "recoil" evokes the hadronic activity

that balances the PT of the bosons; however because ET is defined as the negative

vector sum of all detector deposits, the recoil includes deposits from the underlying

event and pile-up.

9.1 Definitions

The recoil U is defined as the vector sum of all components excluding the leptons.

This is written in terms of the 9T

U -T - ip r() - (9.1)

The recoil is a two dimensional vector which we define by the axes oriented par-

allel (U1 ) and perpendicular (U2) to the true boson PT direction. This convention

provides maximal separation between contributions to U from the hadronic radia-

tion accompanying boson production (along U1 ) with addition hadronic effects in the

event. Figure 9-1 illustrates the decomposition of U for W boson events.

Z bosons are selected without significant background and gjT is accurately recon-

structed in data from the two final state leptons. This permits the decomposition

of U into U1 and U2 components in terms of their projection on #T. Both the mean

values of U1 and U2 , and resolutions vary with pz. The variation is parametrized into

a function with parameters determined by a fit to Z boson events in data and Monte

Carlo simulation. Comparison of the behavior of the parametrized recoil functions of

U with respect to PT between data and Monte Carlo simulation defines a scale factor,
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U
UT

Figure 9-1: The transverse recoil vector U is split into components U1 and U2 that
respectively lie parallel and perpendicular to the direction of boson PT.

I'i which is used to correct simulation to match the data.

U~z (PT Vdata)
si (PT) = U (TIdt)(9.2)

Uiz (PT Isimulation)

where UZ is taken from the parametrization for a defined pz
The scale factor is used to correct the simulated W boson recoil to match the

expected W boson recoil in data. This is performed by first fitting for the parametrized
functions which describe U1 and U2 in W Monte Carlo simulation and then correcting
the fitted parameters by multiplying with the appropriate Z boson scale factors ii.

Application of a scale factor incorporates the kinematic differences between W and Z
boson which lead to different values of U1 and U2. To minimize the effect of kinematic
biases between W+ and W- bosons. The scale factors are applied to separate fitted
parameterizations of the W+ and W- bosons. In light of being succinct, we describe
the application generally to the W boson, with the implicit assumption that this is
done separately on both positive and negative bosons.

9.2 Samples and selections

The same event selections described previously for the Z boson in chapter 7 and for
W bosons in chapter 5 are used. The W and Z simulation samples must be produced
using the same generator, underlying event model, and reconstruction conditions to
ensure consistency in the determination and application of the recoil scale factors.
For this thesis Powheg with the Z2 tune is utilized for both the W and Z boson
simulations.

9.3 Recoil parametrization

To determine the hadronic recoil, the mean and shape of U1 and U2 are fitted as
a function of boson PT. Several techniques have been developed to fit U1 and U2 .
The simplest technique relies on the assumption that the resolution of the recoil has
a Gaussian shape. The more complicated models rely on the assumption that the
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resoluion is described by a double Gaussian. In this section, we first present the
simplest model followed by progressively more complicated models leading to the
final model used to determine the W boson cross section.

9.3.1 Gaussian recoil parametrization

The parametrization of U1 and U2 as functions of pz follow a multi-step procedure:

1. Bin Ui in units of pz

2. Fit the distribution of Uj in each bin with a Gaussian

3. Fit a polynomial fi(pz) to the distribution of Gaussian means. This produces
a response curve.

4. Fit a polynomial o-i(pz) to the distribution of Gaussian widths. This produces
a resolution curve.

Binning and fitting

The fits performed per bin to U1 and U2 are binned maximum likelihood fits of
Gaussian probability distribution functions. The Gaussian model was used in previous
Tevatron studies[107, 1081. The Gaussian fits are not particularly sensitive to the U1
and U2 bin widths. A width of 2 GeV/c per pT bin ensures there are at least 50 events
in each bin, yet it is not too coarse to resolve the resolution and response curves. The
fit is performed in a region of PT < 60 GeV/c. Figure 9-2 is an example of a Gaussian
fit in data and Monte Carlo simulation for a single pz bin.

> 240 > 8000-
220 t
200 e 7000

180 6000
10 U1 5000

120 / \ 4000
100
1 3000
60 2000:

40 4- 1000
20 4 0

-30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30
U2 (GeV) 6 < pT < 8 GeV/c U2 (GeV) 6 < pT < 8 GeV/c

Figure 9-2: Example Gaussian fits to U1 in data (left) and MC (right) for the
8 GeV/c < pz < 10 GeV/c bin.

In the following sections, the response and resolution curves are shown. In each
curve, two different uncertainty bands are plotted. In the first uncertainty band,
we assume maximal (anti-)correlation between recoil model parameters, in this sce-
nario the errors are propagated by adding the individual uncertainties linearly (as
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oppose to in quadrature, if they were not correlated). This "worst-case" assumption
gives the conservative uncertainty bands shown in red. Model uncertainties are more
appropriately propagated using the full covariance matrix (yellow band).

Response parametrization

In the case of U1, the evolution of the Gaussian mean should closely track the boson

PT. By design, U2 should be largely independent of boson PT (pv). The results below
confirm this expected behavior.

U1 response parametrization The U1 response shown in figure 9-3 is linear and
modeled by linear function: a + b pv. For low pv, recoil is dominated by low energy
particles that are not well reconstructed. This leads to a slight, non-linear turn-on
in the response curve before the curve assumes a constant slope. The constant term
in the linear model (a) takes on a small, positive value to accommodate this effect.
Figure 9-3 shows the result of the linear fit to U1. The fit to data gives a X2 /NDF
of 0.74 while the fit to Monte Carlo simulation yields X2 /NDF = 0.51.

( 0 0-

-10 - -10
0 0

a -20.a 
-20 -

-307 -30-

-40 -40

-50- -50 -

0 10 20 30 40 50 60 0 10 20 30 40 50 60

Z pT (GeV) Z pT (GeV)

Figure 9-3: Fit of the Ui response to Z boson data (left) and Z boson simulation
(right). The yellow band represents one o uncertainty from propagation of the full
covariance matrix. The red band is the one o uncertainty adding the uncertainties
linearly (maximal correlation)

U2 response parametrization The mean of U2 is expected to be zero, independent
of pz. Figure 9-4 shows the result of the linear fit to U2. We find U2 is consistent
with zero in both data and Monte Carlo simulation.

Resolution parametrization

The resolution of U1 and U2 behave as different functions of pTV. The U1 resolution

increases with the PT of the boson, consistent with the increase in hadronic activity
produced in the U1 direction. By contrast, the U2 resolution does not vary as much
with boson PT.
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Figure 9-4: Fit of the U2 response to Z boson data (left) and Z boson simulation
(right). The yellow band represents the one o- uncertainty from propagation of the
full covariance matrix. The red band is the one o- uncertainty assuming maximal
correlation.

U1 resolution parametrization U1 resolution receives contributions from two
components. The first contribution comes from the underlying event and is indepen-
dent of boson PT. The second contribution is due to hadronic recoil. This component
does not contribute when the boson PT is zero, but increases as the boson PT grows.

A quadratic model for U1 resolution is utilized based on empirical evidence and
guidance from[107]. Figure 9-5 presents the results of a quadratic fit to data and
simulation. The quadratic function describes both data and simulation well. Adding
an additional cubic term to the resolution function, the cubic term is found to be
consistent with zero and the X2 /NDF for the fit increases. Thus, a quadratic is
determined to be a sufficient description of U1 resolution in both data and simulation.

U) 18
CD -( 1

16 .. 10-
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128 8

606
7

0 10 20 30 40 50 60 0 10 20 30 40 50 60
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Figure 9-5: Fit of U1 resolution to Z boson data (left) and Z boson simulation (right).
The yellow band represents the one o- uncertainty from propagation of the full covari-
ance matrix. The red band is the one o- uncertainty assuming maximal correlation.
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U2 resolution parametrization The U2 resolution depends mainly on the under-
lying event and pile-up. Soft transverse radiation from the hadronic products recoiling
against the Z boson will also leave a small contribution to the resolution. Therefore,
as with U1, a quadratic model is used to describe the U2 resolution. In simulation,
the p variation for U2 over a range of 0 GeV/c< PT < 50 GeV/cis 75 percent less
that of the variation over U1, however in data, the variation of U2 is 30 percent less
the variation of U1. The difference between data and Monte Carlo simulation results
from the different parton shower composition in data and Monte Carlo simulation.

Figure 9-6 plots the results of the U2 resolution fits in data and MC simulation.
Both show a linear rise in resolution as a function of pz, which can be fitted with the
quadratic model. For PT ~ 0, the fitted values for U1 and U2 are within one standard
deviation of each other, as expected, because there is no hadronic recoil originating
from the boson.
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Figure 9-6: Fit of U2 resolution to Z data (left) and Z simulation (right). The yellow
band represents the one o uncertainty from propagation of the full covariance matrix.
The red band is the one o uncertainty assuming maximal correlation.

9.3.2 Unbinned method

In lieu of binning in PT and fitting a Gaussian for the response mean and resolution,
the unbinned method employs a linear fit of the U1 and U2 distributions versus PT.
This results in a fit with a similar mean to the binned fit with reduced uncertainties
and without bias from the choice of binning. This procedure also has the advantage
that a linear fit of points has an analytic solution, thus fit convergence is guaranteed.
On the other hand, skipping the individual Gaussian fits produces a result that is
less intuitive. To describe the behavior of the resolutions in the unbinned method, we
utilize the polynomial models developed from parametrized fits of the binned method.

Unbinned response

Figure 9-7 shows the unbinned fit to the response data. Each point signifieds a Z
boson event in data. The uncertainties compared to those resulting from the binned
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fit are smaller.
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Figure 9-7: Unbinned fit of the U1 response to both Z Data. The yellow represents the
error set resulting from the fully propagated covariance matrix. The red set represents
the maximally correlated error set.

Unbinned Resolution

To perform an unbinned measurement of the resolution, in place of fitting for a
Gaussian in a specified PT bin, we assume that for any infinitesimal region of boson

PT, dp, the resolution is distributed as a Gaussian. Under this assumption, we
consider the absolute value of the difference of all points x' with respect to the mean
X, this we write as |X - X'|. For Gaussian distributed points x' about a mean x with
resolution a, the expectation of the value |x - x'l is written as (equation 9.3).

((X/x)2)
Joc - exp - 2o-

(IX -- ') = d ' ' 2- 2  2| (9.3)

Consequently, consider the distribution |Ui - Umea" (p) | versus boson PT, where

UPe"' (p4) is the fitted response. The mean of this value (|Ui - Uf'|) is the resolution o

multiplied by 2/ 2w. Thus, by fitting a polynomial to the |U - Ui (PT) distribution
versus PT we can extract the resolution as a function of boson U(PT) by scaling the
polynomial fit result by 2/ 2w. The detailed procedure to perform this follows as:

1. For each event plot a point where Ui is the y-axis and Pz is on the x-axis

2. Fit this plot to a linear polynomial. This is the response Uimean(Pz
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3. For each event plot a point where the y-axis is |U, - Ui"e"(pe)| and the x-axis

is p

4. Fit this plot to a quadratic polynomial. This fit function is the resolution scaled
by a constant: 2o(pz)/v 2.

5. Multiply this modified resolution by the constant v2ir/2 and extract the reso-
lution o-(pT)

As before, the procedure involves fitting a polynomial to a set of point. Thus, this fit
has an analytic solution and thus is guaranteed to converge.

Figure 9-8 shows the fitted polynomial and the extracted resolution function in
Z boson data. Comparing the value at zero PT of the resolution function in data
between U1 and U2, the values are found to be within one half standard deviation
of each other. When comparing the unbinned method with the binned method, the
variation in the resolutions of the binned method are found to be systematically larger
to the unbinned method by 10%. This systematic bias is a result of the binning (the
fitted width of U1 will be larger than the true width because of the shifting mean).
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Figure 9-8: Unbinned fit for the U1 resolution to Z boson data. The yellow represents
the uncertainty band resulting from the fully propagated covariance matrix. The red
band represents the maximally correlated uncertainty band. The black line is the
result of the unbinned fit to |Ui - Ui(PT)|. The shift of the resolution parameter up
with respect to the black line results from the vx/7F/2 scaling.

9.3.3 Non-Gaussian resolution

The previous fits make the assumption that the resolution for U1 and U2 is described
well by a Gaussian. This assumption is not a valid description of the resolution over
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the whole range. In figure 9-9, we plot fits to the pull variable, which defined from
the fits for the response Ui (pu) and Gaussian resolution or (p 2) is written as

Ui - Uimean(pY)
ai = (

o-mean(PVT)
(9.4)

The red line in the fit is the result of a Gaussian fit to the pull distribution. It
demonstrates that a Gaussian fit is capable of describing a similar resolution shape,
but it does not describe the tails and the peak well.

The actual shape of the resolution stems from the fact that the resolution is
Gaussian for specific value of the total transverse energy deposit in the detector,
Z ET; however, it varies over the whole range of E_ ET. This variation is quite large
making the option of constructing a Gaussian description of the recoil in bins of E ET
difficult .

In order to describe the non-Gaussian resolution, we model the resolution with a
sum of two Gaussians having the same mean ( a double Gaussian). A fit to the pull
variable using a double Gaussian is the blue line shown in figure 9-9. This model
describes the shape of ai well.

0

LU

1000

800

600

400

200

(U,1(Z )-x, )/a, (Z P )

Figure 9-9: Fit to the pull variable ai of the recoil U1 the red is the best fit of a
Gaussian model the blue is the best fit of a double Gaussian model.

9.3.4 Double Gaussian method

The double Gaussian method is a direct extension of the unbinned method, where
the assumption is now taken that the unbinned fit previously used to determine the
resolution o, instead determines the mean of a double Gaussian.The fitted mean is
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Figure 9-10: Fit to the residuals of the recoil with a double Gaussian on 35.9 pb- 1 of
data for U1 (top) and U2 (bottom)

written as:

ormean(P') = fOi(p) + (1 - f)O 2(p') , (9.5)

where o-1 is the small Gaussian width, ( 2 is the large Gaussian width, f is the fraction
of o1 and consequently 1 - f is the fraction of U2 . To obtain the two widths of the
double Gaussian, a fit for -mean is performed by applying the unbinned fit and rescaling
the fit result by v 2r/2. The two widths of the Gaussian are then determined from a
unbinned profile likelihood fit to the the pull variable ai.

A fit to the pull variable in ai is shown in figure 9-10. This distribution has a
clear double Gaussian resolution. Taking the two resolution parameters -1 and U2
from this fit to ai and the average of the two Gaussians, omean(PT), we determine the
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double Gaussian parameters oip), 0 2 (p), f(pz) through equation 9.5.

9.3.5 Application

Once a parametrization for the Z boson recoil is determined we apply a data/simulation

correction to the W Monte Carlo simulated U1 and U2 distributions (section 9.4) and

recalculate the YT distribution (using equation 9.1). Figure 9-11 shows the corrected

W boson -T distribution after data/simulation corrections comparing a single Gaus-

sian parametric model of U1 and U2 to a double Gaussian parametric model of U1

and U2 . From the figure, the double Gaussian resolution model determines a ET

distribution less wide and models the distribution beyond 40 GeV better. The un-

certainty band given by the red and the blue distributions covers the data along the

whole range of $T beyond 30 GeV. The bottom plot in figure 9-11 represents the

closure test whereby the extrapolation to the gT distribution is performed using the

recoil parameters from fitting Monte Carlo simulation. Following the extrapolation

all points are within 2% of the true distribution. The difference below the plot is

defined as the fractional difference and is given by

Frac. Difference- = Ndata - Nprediction
Nprediction

9.3.6 Shape PT Variation Uncertainty

In fitting the pull variable ai for events over the whole PT range , we have implicitly

made the assumption that the same double Gaussian resolution shape describes the

resolution over the whole range of boson PT. In reality, this resolution function can

change with boson PT. To account for variations of the double Guassian shape we

apply a small correction.
To apply the correction, we a select events in the region > 2cxmean. This creates

a sample where the contribution from 0 2 is more than 50 percent. By selecting all

events > 2Umean and fitting a polynomial to |Ui - U (PT) in this region, we determine

a correction factor corr(pTV) to U2 , which modifies 92 by

Corr (pZ )
02-corr(PTr) corr(P 2 - (9.7)

cor p(mean))

Figure 9-12 illustrates the resulting fit.

To correct the full distribution, first note that three parameters describe a double

Gaussian resolution. These are constrained by a single equation (equation 9.5) leav-

ing two free parameters. The correction corr(pv) modifies only one of the two free

parameters, thus to solve for the corrected shape, we make one of two assumptions:

1. The resolution ai is held constant with respect to omean and the fraction of f
is recalculated following the correction to 7 2
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Figure 9-11: Extrapolation of the KT distribution using Gaussian resolution function
(top left) and a double Gaussian resolution function (top right). On the bottom is
the Monte Carlo simulated T compared to the simulation predicted T using the
double Gaussian recoil model. The black points below is the residual data/Monte
Carlo simulation disagreement.

2. The fraction f is held constant and o-1 is recalculated following the correction
to o 2

The first assumption yields a model description closer to the predicted truth in sim-
ulation and is thus used. A systematic uncertainty, a is assigned on the value of a-1
given by the maximum variation of oI/omean for pT < 50 GeV when f is held con-
stant. This systematic uncertainty is propagated into the high and low uncertainty
templates of the final double Gaussian shape. The variation of U1 /Umean is found to
be 5% in data and 2 % in simulation.

Applying corr(pT) of this on the final _T shape gives an effect on a the final KT that
is negligible; however the systematic uncertainties corresponding to this assumption
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Figure 9-12: Fit to the pull ai for events > 2omean

are not. These are thus propagated in with the uncertainties from the fit to determine

high and low fluctuated -T templates.

Figure 9-13, shows the .T distributions given the application of corr(pv) under

two possible assumptions, either fixing f or fixing o-. The uncertainty band of both

methods cover fluctuations in the data. Also shown is a third correction, where

the parameters are not corrected given one of the previous assumptions. The large

uncertainty bands in this third plot reflects the large uncertainty from limited sample

of events > 2 o-mean.

9.4 Calculation of the scale factors

The fits described in the preceding section provide response and resolution curves for

U1 and U2 in Z boson data and simulation. These curves are utilized to determine

data/simulation scale factors that are applied to the results of the same recoil fit to

W boson simulation. The form of the scale factors is shown in equation 9.4. The

application of the scale factors is written as:

i = (Pw) MC W (9.8)
c (P~w)I-W(P

The correction is performed on the small resolution o-1, the large resolution o-2 , the

mean of the two resolutions o'mean, the correction corr to o-2, and the response pa-

rameters Ui(pT) (i E 1, 2). This avoids corrections to the relative fraction f, which is

recalculated using equation 9.5.

In addition to generating corrected o-i and Uj, the uncertainties, both statistical
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Figure 9-13: Extrapolation of the $T distribution using a double Gaussian where 0 2 is
corrected by fixing a1 (top left) fixing f (top right) or not further correcting (bottom).
The black points below show the residual data/Corrected MC disagreement.

and systematic, are propagated through all of the fit parameters to generate high and
low uncertainty templates. The contribution to the uncertainties come fifty percent
from the fits to double Gaussian and the resolution parameter Umean, and fifty percent
from the correction of 9 2 .

The full recipe of correction and application to recalculate the FT distribution
follows as:

1. Calculate the scale factors data/simulation on all parameters Ui,02,mean, and
corr

2. Rescale the W simulation fit parameters 9i,02,Umean, and corr by multiplying
through the scale factors

3. Build the high and low uncertainty templates by propagating the uncertainties
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through to get ± modified W boson fit parameters

4. Apply the correction on o2 given by equation 9.7

5. Calculate the relative fraction f given oi/Unean is constant

6. For each Ui randomly sample double Gaussian distribution dictated by the
rescaled W fit parameters to determine the recoil U

7. Combine the recoil U and the lepton I back to determine the YT

The fits to determine the resolution in data use the reconstructed pv in Z boson
data, but generated pv in W and Z boson simulation. Thus, the data/simulation
scale factor implicitly includes the resolutions of the lepton reconstructed PT in the

fits. The effect of this on the total YT resolution increases it by about 0.15 GeV, a
value well within uncertainties. However, to minimize this effect when calculating the
W boson $T distribution by adding the lepton p- with the corrected recoil U, we use
the generator level lepton p- with the energy scale corrections applied (chapter 7).

In figures 9-14 to 9-18 the various resolution functions and scale factors for Z boson

data, W boson simulation, and Z boson simulation are shown. The uncertainties on

these plots come from the propagation of the covariance matrix to all polynomial fits

combined with the uncertainty from the double Gaussian fit. With the additional
pileup simulation inserted in the most recent simulation, the scale factors are all close
to unity. Deviations from unity in the scale factor are predominantly a result of the

deviations between the Z2 tune and data.

9.4.1 Scale factor variation

An additional systematic uncertainty results from the fact that the scale factor from

Z bosons between data and simulation may not be the exact same as the scale factor
between W boson data and simulation.

The W and Z bosons have small differences in their production mechanisms. These
differences result from differences in the quark composition and the mass difference
of the two bosons. In figure 9-14 we plot the resolution parameters for Z boson
simulation, W boson simulation, and Z boson data. The resolutions have a 10%
discrepancy between W and Z boson simulation. This discrepancy is a direct result
of the differences in the W and Z boson production mechanisms. Such a difference
in the production mechanisms also leads to a different E ET distribution, plotted in
figure 9-19.

In order to mitigate this difference and determine a systematic uncertainty on the

scale factor, both the Z boson data and Z boson simulation are reweighted by the

ratio of the W boson data E ET distribution to Z boson data E ET distribution.
The reweighted data is then fit with the full recoil fit framework determining the

resolution parameters and the scale factors. The results of the fit on U1 are plotted

in figure 9-16. The reweighting modifies -mean to lie on top of the W boson fit

parameters. After the reweighting the two double Gaussian resolutions o, and or2
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Figure 9-14: Recoil distributions for the various resolutions and correction of U1

the band on each parameter corresponds to the propagated polynomial and double
Gaussian fit uncertainties.

are nearly identical to the respective W boson resolutions. In figures 9-17 and 9-18
the data/simulation scale factors of the reweighted Z boson fits are compared to the
original Z boson fits. In order to ensure agreement between the reweighted and the
unweighted scale factors the uncertainties are increased on the parameters o1 , o-2, and

omean by a factor of three. This increase is performed in both figures 9-17 and 9-18
leading to the observed agreement. The increase in the uncertainties in these three
parameters is taken as an additional systematic uncertainty propagated into the high
and low uncertainty templates.

9.5 Corrections at NNLO

In addition to the aforementioned corrections, an additional correction to the $T dis-
tribution is applied to account for the higher order NNLO and NNNLL resummation
terms. The correction is determined by calculating the ratio of the boson PT distribu-
tion of Resbos to generator level Powheg where both have the appropriate acceptance
cuts applied (in the same manner as as done in chapter 8). In figure 9-20, the W
boson T distribution in Powheg, and Resbos reweighted Powheg are shown. The
reweighted distribution improves the data simulation agreement for VT > 70 GeV.

In light of the fact that the Z boson sample is independent to the W boson sample,
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to the propagated polynomial and double

an additional "data" correction to the sample is performed. To perform this correction
the PT dependent weight given by data/(Resbos corrected simulation) scale factor of
Z bosons is fit with a fifth order polynomial (shown figure 9-21) determining a weight
function in terms of boson PT. This weight function is applied to Resbos reweighted
W boson simulation. The result of this distribution is shown in the right of figure 9-
20; the change between the Resbos reweighted Powheg $T distribution and the data
reweighted gT distribution is below one percent over the whole range.

9.6 Additional theoretical uncertainties

The final FT shape must also incorporate additional uncertainties coming from the
theoretical mismodeling of neutrino PT distribution. The two largest contributions
originate from the parton distribution function uncertainties and from the uncertainty
on the boson PT model.

To determine the uncertainty from the parton distribution functions, the ET
distribution is reweighted by the full CT1O PDF uncertainty sets using the procedure
outlined in chapter 8. The sum over all of the PDF uncertainty sets determine an
uncertainty band on ET distribution. The result of this band normalized to the
default rT shape is shown in figure 9-22. The effect of the PDF uncertainties are
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Figure 9-16: Recoil distributions for the various resolutions and correction of U1
after reweighting the Z boson data E E distribution to the W boson data E Er
distribution. The uncertainty bands on each parameter are artificially suppressed due
to the reweighting procedure.

bounded by the $T uncertainties, thus no additional systematic uncertainties on FT

model are quoted.
The uncertainty on higher order QCD corrections, both NNNLL and NNLO, is

determined by performing the cross section measurement before and after the NNLO
weighted correction is applied. The overall difference in the cross section measurement
is found to be less than 0.08 percent.

9.7 Modified cumulant fit

A final cross check was performed by expanding the moment defined by IU-U{" "" (pV) "

in orders of n. These additional moments in n is written as

In ) J dlx - Xilnp(X) , (9-9)

where p(x) is the probability distribution function of the resolution of Uj. For p(x)

a double Gaussian resolution, an integral over x fixes In to be a function of the

resolution parameters ui, 0 2 , f, and additional constants. Expanding out to three
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orders in the moment n, gives a set of three equations which is used to solve for all
the parameters of the double Gaussian. This defines another method for which to
determine the double Gaussian parameters.

1. Fit a polynomial to the three forms |Uj - Umean(pV)|n where n E 1, 2, 3

2. Solve for the double Gaussian resolution given the system of equations defining
In
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reweighted by E ET to better approximate W boson data. Excluding the correction

parameter (bottom right), the uncertainties on the green band have been inflated by
a factor of three to force agreement between the two scale factors

3. Apply the corrected resolution model to simulation.

This form of expansion is very similar to a cumulant expansion, thus we denote this a

modified cumulant expansion. With this method the $V distribution was reproduced
to within three percent for $T < 70 GeV. The uncertainties were not determined
with this method due to the complexity of the uncertainty propagation.

9.8 Calculation flow

The full calculation proceeds by

1. Use the unbinned method to calculate the mean of the two resolutions -mean (PVT)

2. Fit the pull of the residuals (x - xi)/ormean(p ) integrated over pV to a double

Gaussian

3. Plot the absolute value of the residual Jail =X - Xil/Umean(pT) for all values
where Jail > 2
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Figure 9-19: W and Z boson EET distributions in data

4. Fit the absolute value of the residuals, where lail > 2, to a second order poly-
nomial to determine the function corr(pV)

5. Calculate the corrected o2-corr(Pi )

6. Calculate the corrected Oi-corr(p ) where the fraction oi/o-mean is held constant

7. Perform this method for both U1 and U2 on Z boson data, Z boson simulation,
and W boson simulation

8. Apply the scale factor corrections to the W boson recoil fit parameters

9. Sample from the double Gaussian to construct the modified recoil Ui

10. Recalculate the W boson FT distribution by adding the modified Ui and the
lepton together

The final step, where we recalculate the &1 distribution, the lepton energy scale is
modified to match the fitted energy scale in data. Uncertainties on the lepton energy
scale can further be propagated into the FT distribution, by modifying this lepton
energy scale with the assigned uncertainties.

In each method where a fit is applied, an uncertainty associated with that value
is propagated through. The uncertainties in the double Gaussian method originate
from three different sources.

1. The uncertainties on the polynomial fits of the resolution Umean and corr

2. The uncertainties on the double Gaussian o-1 and o2

3. Systematic uncertainties

193



103

F. (GeV)

02

OJ50

z! -02.

cc)

C

a)

102

Cj

a)

50 60 70 80 90 10

1 (GeV)

0.05

-0 os
-01-

-0
Z .112
fr
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Corrections, and after data PT corrections (bottom). The black points below show
the residual data/Corrected MC disagreement.

In the first set of uncertainties listed above, we apply a polynomial fit to a series of

points. The uncertainties that result from the polynomial fits are propagated through

using the full covariance matrix. The second set of uncertainties, those of the double

Gaussian fit on ai and o-2 are obtained from the fit of the double Gaussian to the

pull a1 . The final set of uncertainties, the systematic uncertainties, are determined

from two different contributions. The first systematic uncertainty comes from the

uncertainty on o-1 given that or1 /omean is assumed constant (section 9.3.6). The second

systematic uncertainty comes from the difference in the scale factors when Z boson

E ET distribution is reweighted to the W boson E ET distribution (discussed in

section 9.4.1). This systematic uncertainty requires us to inflate the uncertainties

on the three resolution parameters a 1 -2 , and Umean by a factor of three. The final

resulting ET distribution compared with the predicted T distribution is shown
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Figure 9-2 1: Z-+ ppt data/Resbos reweighted Powheg simulation pT distribution. The
line is a fit to a fifth order polynomial

in figure 9-23 . The deviation from the simulated prediction results mainly from
the higher U1 and U2 resolutions in data. The uncertainty band on the template is
maximized along the falling edge of the W boson $T distribution near $1 = 60 GeV/c.
The difference parameter x below the plots is defined to be

Ncentrai - Nfluctuated
X - ~ sNcentral 9.0

where Ncentrai is the number of events expected in 35.9 pb--1 per bin for the central
value W boson template and Nfluctated are the high and low uncertainties.

9.9 Summary

In this section we have described a fitting framework that determines the two recoil
parameters U1 and U2. This fitting framework is then applied to Z boson data,
Z boson simulation and W boson simulation. The ratio of the fit results on the
Z boson data and simulation are applied to the W boson fit results to come up
with a set of corrected recoil parameters which determine the true W boson $ET
distribution. The ,ET distribution is determined by: taking boson pT kinematics
from simulation, determining the recoil distributions for that pT, sampling the recoil
distributions, and then adding the sampled recoil distribution to the lepton pT from
simulation. Following the ST determination, a weight factor incorporating Resbos and
Z boson data is applied to the W boson pT distribution to determine a corrected $T
distribution. Uncertainties, both systematic and statistical, are propagated through,
yielding high and low uncertainty templates.

195



10 20 30 40 50 60 70 80 90 100

E (GeV)

Figure 9-22: Comparison of high (red) and low (blue) uncertainty templates from
the recoil prediction normalized per bin by default recoil corrected KT distribution
template with high (purple) and low (green) PDF reweighted uncertainty templates
normalized by the default -T distribution template

60

-0
E

0
0

C
0
0
0
0

.0
E
C

5
S0

-0

F/- [GeV]

.. . .. .. .. .... .. ..

i-- 1 . M - ......... 1
20 40 60

% [GeV]
80 100

Figure 9-23: Left: Comparison of the recoil corrected
default simulation (black). Right: Comparison of the

(red) and low (blue) predicted uncertainties from the

gT template (purple) with the
default template with the high
recoil model.

196

1.31

E
0z
CU
=,

0Z

1.2

1.1 k

1

0.9

0.8

0.7

- I (GeV) +o
- T (GeV) -a
- pdf+a
- pdf- a

0



Chapter 10

Backgrounds

The separation of events in the signal selection into QCD, Electroweak, top, and W
boson events is performed by fitting the FT distribution. This observable is chosen
because of its excellent separation power and simplicity in modeling (discussed more
in section 10.1.3). The W boson, Electroweak, and top $T shapes are modeled well by
Monte Carlo simulation following corrections to the boson recoil (chapter 9). Thus,
we fix the Electroweak and top backgrounds to the W signal template using their
predicted NNLO cross section ratios. The QCD background is not modeled well by
a Monte Carlo simulation. To model the fT shape of the QCD, an extrapolation of
the non-isolated QCD events into the isolated sample is performed by fitting the KT

distribution to an empirical function and determining the trend in isolation of the
function's parameters.

Another observable, transverse mass (mT), is used as a cross check to the ET
distribution. It is defined as the combined lepton plus ET mass in the transverse
plane:

mT = (T| + | $1|)2 - EC +ST) - (E + ~ , (10.1)

Transverse mass also has excellent separation power between the W boson signal and
the QCD background; however it requires an accurate description of the fT, the angle
between the _T and the lepton, and the lepton kinematics.

10.1 Background composition of QCD

A QCD background process is any process, with the exception of tt production, where
the main interaction is performed with the strong force. This includes jet production,
minimum bias production, and heavy flavor quark production. QCD processes that
yield an isolated muon are classified into several specific types of decays:

9 Heavy flavor decays: a heavy flavored hadron with either a charm or b quark
cascades down to a lighter flavor, producing a muon, neutrino, and lighter
flavored hadron (figure 10-2)
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" Decays in flight: a light meson with a relatively long lifetime (typically a pion
or a kaon) decays into an isolated muon

" Punch through: a very high energy meson (typically a pion) passes through the
inner detector, the solenoid, and partially into the muon chambers.

The first two decays comprise the largest source of QCD background. The third
process, punch through mesons, are completely eliminated from the selection because
of the requirement that each muon have at least two well reconstructed segments [72].
The quark composition of the signal region (isolation < 0.1) and regions of slightly
more isolation are shown in figure 10-1. For regions where the muon is non-isolated,
the heavy flavor fraction contributes to 90 percent of the QCD background events.
For isolated muons in the signal region the heavy flavor contribution decreases to
80 percent that of the total QCD background. The variation in the heavy flavor
fractional contribution and the ability to model it in data contributes most to the
systematic uncertainty on the QCD event yield.

1.2
0.8 0. <Iso<O.1 0. < Iso < o.1

0.7 0.1 <Iso< 0.25 1 .1 <Iso <0.25

S 0.6 0.25 <Iso< 0.40 08 0.25<Iso<0.40

0.5

0.4' 0.6

0.3- 0.4

0.2.
0.2

0.1

00 1 2 3 4 5 6 7 8 08

Particle Flavor Particle Flavor

Figure 10-1: Composition of muon decays from tagged QCD events (left) and relative
per bin contribution (right) of muon decays from the tagged QCD events passing
all muon identification cuts and split into several regions of isolation. The integer
on the x-axis denotes the particle composition of the muon decay, which consist of
0-unidentified, 1-up quark, 2-down quark, 3-strange quark, 4-charm quark, 5-bottom
quark. 6-top quark

10.1.1 Heavy flavor decays

A typical diagram of a heavy flavor decay that produces muons is shown in figure 10-
2. The decay consists of a three body decay of a heavy flavored meson yielding a
neutrino, a meson, and a muon. In order for the muon to pass the tight isolation
criteria in the signal region (Xiso < 0.1), the energy of the decaying meson must
be low or far away from the muon. In heavy flavor decays, the FT varies by large
amounts; however, it is biased by the isolation selection to be larger so that the energy
deposits from the meson resulting from the heavy flavor decay are small. Due to the
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long lifetime of b quarks, heavy flavor muons will, in some instances, decay far away
from the primary vertex collision. Thus, further separation of heavy flavor events is
performed by cutting on impact parameter. Additionally, heavy flavor production
typically appears in bb or cE pairs, implying the activity of the b(c) quark decaying
into a muon is mirrored by another b(c) decay.

qV
b,c

W±

Figure 10-2: Typical heavy flavor decay. The red circles imply the quark (q) and the
heavy flavor quark (b, c) are confined together to form a meson

Figure 10-3 shows the variation of the FT and E ET as a function of isolation
for both the full QCD region and a b decay enhanced region applying do > 0.01 cm.
A linear dependence in both E ET and ET is present; however, for the region of
high impact parameter the variation in the T is larger than the equivalent E Er
variation. This is because the E ET variation reflects the increased event activity
in the b events, whereas the fT variation reflects both the increased event activity
(increasing the resolution) and the increase in missing transverse energy contribution
from the neutrino in the heavy flavor decay. This is further justified by figure 10-11,
where an increase in the real neutrino energy (simulation level fT) is observed as
function of isolation.

10.1.2 Light flavor decays

Muons from light flavor decays result from light mesons (typically 7r or K mesons)
decaying "in flight" to muons. An example decay is shown in figure 10-4. The prod-
ucts of this decay are the exact same as the products of W boson production, which
makes it more difficult to separate these events from W boson decays. Separation
with W events is originates results from the decay of the light meason, which occurs
in the calorimeters. This causes the light meson to be reconstructed in tracker, which
implies that the VT is not from the neutrino in the meson decay, making it small (fig-
ure 10-6) and far away from the lepton. This effect causes the mT to be on average
larger than the mT distribution of heavy flavor decays (figure 10-5 and figure 10-8) .
Light flavor decay muons are additionally found to be prompt, and be non-isolated
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Figure 10-3: Mean E Er (top) and VT variation as function of isolation for all well
identified muons (left) and for muons with do > 0.01 cm (right). The boxed off values
are the result of a fit of listed form to either data (black) or Monte Carlo simulation

(MC)

when selecting on high impact parameter (figure 10-7). The fraction of non-isolated
events also differs with that of heavy flavor events, thus using non-isolated events to

describe isolated QCD events is made more difficult in that one must account for the
differences in the light and heavy flavor shapes.

10.1.3 Comparison in real -9T

To understand the ST trend we separate the QCD background by its generator level

TT where the generator level ET is defined by the vector sum of the generated

neutrinos. This does not include all of the neutrinos coming from K and r mesons,
where the neutrino is produced after ther generation step, during simulation.

The composition of large generator level missing energy is dominated by events

with heavy flavor decays (figure 10-15) where the neutrino is along the direction of the

muon leading to low mT (figures 10-16 and 10-19). Additionally, large reconstructed

PT is strongly correlated with large generator level rT, implying these same heavy
flavor decays at low mT contribute to the majority of the large values of the ET

distribution (figure 10-17).
All of these observations imply that the events with large -T, in the region where
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Figure 10-4: Typical light flavor decay. The red circle implies confinement between
the quark(q) and the anti quark (q).
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Figure 10-5: Variation in
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heavy flavor (b,c) tagged

the transverse mass mT(left) and per bin fractional content
the signal selection originating from light flavor (u,d,s) and
QCD events

W boson signal is known to be large, result from high energy heavy flavor quark
decays. This observation, strongly motivates the choice of using FT as a selection
variable, because heavy flavor decayed muons are both non-isolated and isolated.
Thus, it is possible to constrain the large gT tail by looking at the VT tail shape in
non-isolated events where no W boson signal is present. Inverting the isolation cut
for other variables, such as mT, leads to less cerntainty on the shape because the light
flavor composition varies with isolation in the critical region where both W boson
signal and QCD background is present.
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Figure 10-7: Variation in the impact parameter do (left) and per bin fractional content
(right) of muon events in the signal selection originating from light flavor (u,d,s) and
heavy flavor (b,c) tagged QCD events

10.2 Modeling of the ST

To model the missing transverse energy, we utilize an expression constructed to de-
scribe events with a small non zero neutrino fT, a, with probability P(a), which are
smeared by a Gaussian resolution function G (-VT, a). The observed fT is written as

P (fT) = G (OT, a) 0 P(a) (10.2)

Typical simulated distributions of P(a) are similar to a Gaussian with a mean of
2-3 GeV. The full convolution gives a complicated form, which closely approximates
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events in the signal selection originating from light flavor (u,d,s) and heavy flavor
(b,c) tagged QCD events

a Gaussian with a modified resolution

P(fT) = erf (.gT- xo)exp (-b(gT) 2 )

e\ 2u2 + a' fT'

(10.3)

(10.4)

where xO denotes a constant depending on other terms and b is a constant depending
on the magnitude of the non zero $T distribution. The final a' is a modified constant
that shifts the large ET contribution to the distribution outward to correspond to
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Figure 10-10: Variation in the transverse mass mT (left) and per bin fractional con-
tent (right) of muon events in the signal selection originating from QCD events with
different levels of isolation
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Figure 10-11: Variation in the ET (left) and per bin fractional content (right) of
muon events in the signal selection originating from QCD events with different levels
of isolation

events with $e from neutrinos . Projecting the x and y $T onto r = x2 ± y2 gives:

f ()- (f (1x) 0 P(a)dx) (f (VrY) 0 P(a)dy) , (10.5)

= Sf (g) 0 P(a)dr, (10.6)

N gexp 2 2  _T )d fT, (10.7)
2o2 + a'$

where N is a normalization factor. The projection onto dr space is known as a
Rayleigh distribution and describes any quadratic sum of two Gaussians. In order
to fully describe the QCD distribution, the resolution o is modified to have the form
a -+ o- + b $T, this follows from the fact that the missing energy resolution o scales
with V/ ET, thus one expects an increase in $T resolution with more p7T. Effects
consisting of decays of events with non-zero 1T are additionally accounted for by
the b term. The full combination yields the generalized QCD probability distribution
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function defined as

f (FT) = N Texp T (10.8)
(c + bST + a $f /

This is sufficient to describe the shape of the missing energy for all regions of
isolation, i. A fit to this distribution in both Monte Carlo simulation and data is
shown in the figure 10-21. In this figure, a control region defined by 0.3 < isolation <
0.5 and a signal region (defined by isolation < 0.1) for the Monte Carlo simulation
are fit. In all cases, the fit describes the shape of the QCD background well, with
no systematic deviations of the shape over the range of 0 GeV<VT < 60 GeV. The
parameters a and b are constrained by the high values of the T distribution beyond
~ 20 GeV. These two parameters will be referred to as the tail parameters. The
parameter c is constrained by the bulk of the ST distribution for values of $1 below
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level neutrinos). The integer on the x-axis denotes the originating particle compo-
sition of the decayed muon, which consist of (0-unidentified),(1-up quark),(2-down
quark),(3-strange quark),(4-charm quark),(5-bottom quark).

20 GeV.

10.3 Extrapolation from non-isolated region

To extrapolate the shape of the QCD $T into the signal region, defined to be the region
where 0 < Xiso < 0.1, a fit of the FT is performed for different regions of isolation.
The evolution of the fit parameters is used to extrapolate the fit parameters into the
signal region. The extrapolation is determined through both a binned and unbinned
fit. The binned fit is performed by selecting eight separate regions of isolation and
fitting for the fT shape in each individual bin. The trend in the resulting parameters
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Figure 10-17: Variation in the ET(left) and per bin fractional content (right) of
muon events in the signal selection originating from muon decays of QCD events with
different levels of generator gT

is fitted and used to extrapolate the parameters in the signal region. The unbinned
method fits the two dimensional fT distribution versus isolation. The unbinned fit
function that is minimized is written as (for i the isolation observable)

NgT exp (T 2) d T
(c(i) + b(i') VT + ai)S /

(10.9)
(10.10)

(10.11)

(10.12)

The choice of the cubic terms to describe the trend is motivated by the fact that the
binned extrapolations follow a quadratic trend. A cubic variation, thus would cover
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any additional small corrections. This choice leads to values consistent with zero in
the cubic terms of the fit. The fit is determined by fitting a range in isolation defined
by 0.3 < isolation < 1.0. The choice of this range is motivated by figure 10-3 where
a clear upward trend in the mean of the ST is visible for isolation < 0.3. This trend
stems from the onset of high -T events from W boson signal contamination.

Figure 10-22 shows the trend in the parameters for the binned and the unbinned
fit. The bands on the unbinned fit correspond to the one o uncertainties obtained by
sampling Gaussians about the eigenvectors of the covariance matrix. The overall trend
in the parameters between the binned and unbinned are within one standard deviation
in the region of isolation below 0.8. At isolation below 0.3 there is disagreement
between the binned and ubinned fits to the data, resulting from signal contamination,
which bias the tail parameters a and b high.

208

0Z

1.2[

C
0

LL

0.1

0.

0.01

do(cm)

0 Gen iy < 5 GeV

Gen 5- GeV



N

0z

0.2
0.18
0.16
0.14
0.12

0.1
0.08
0.06
0.04
0.02

SG.n < 5 GeV

Gen 51OGeVL EGe VlOG.V

0ff

0

C5

LL

1 Gen* 5 GeV

.Gn 510 GeV

Gen ||i 10 GeV

0.

40 45 50

pT (GeV) pT (GeV)

Figure 10-20: Variation in the PT (left) and per bin fractional content (right) of muon
events in the signal selection originating from muon decays QCD events with different
levels of generator KT

N

0z

0.1

0.08

0.c

0.c

0.c

6

4

2

0( 10 15 20 25 30 35

fr(GeV/c2)
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10.3.1 Charge dependence

Muons from QCD processes primarily originate from heavy flavor decays produced
in bb or cd pairs, the yields, and the shapes of the QCD are therefore expected to be
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Figure 10-22: Comparison of the three parameters of the QCD $T fit function (equa-
tion 10.8 ) for data (blue) and Monte Carlo simulation (red). The fit is performed in
bins of isolation (points) and in two dimensions: $T versus isolation (bands) where a
parametric form for a,b,c is used (equation 10.12). For the two dimensional data fit,
the fit was performed for 0.3 < Xiso < 1.0 and extrapolated to the signal region. The
bands are expected to be consistent with the points of the same color. Correlations
between the tail parameters a,b lead to small differences between the points and the
bands.
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symmetric in charge. This is not true where, in the data, the charge dependent r/
variation in energy scale modifies the shapes and yields of these events.

To determine the difference in the ET shape between charges, fits are applied

separately to the positive and negative QCD samples. Figure 10-23 shows the fit
parameter trends for the different charges. In data and simulation, the two tail

parameters a and b are within uncertainties of each other and additionally within
uncertainties of the neutral charge value. The resolution parameter, c is shifted higher

for negative leptons in data and slightly lower for negative leptons in simulation.

10.4 Systematic uncertainty

The uncertainty of the QCD model for muons in the signal region results from the
uncertainty in the extrapolation of the parameters into the signal region. To compare
this, the unbinned fit is performed in the simulation for isolation C 0.3-1.0 and
isolation C 0-1.0 The main difference in the fits result from the fraction of light flavor
to heavy flavor decays, which increase from around 10 percent for the non-isolated
region to 20 percent in the signal region.

To observe a comparable change in the fit, the unbinned fit is performed on the
events with Idol < 0.003 cm. This region has a larger componeision of light flavor

QCD events and biases both tail parameters, a and b, low. This bias low in the tail
parameters is a result of removing long lived b decays with a large amount of real

missing energy coming from a high energy neutrino. The bias low is of similar order
to the bias high in the tail parameters a and b when the fit over the whole isolation

range is performed. Thus, we take the difference from the fits over two do regions as a

systematic uncertainty. This combined with the envelope covering the variation band

of the parameters in the signal region (0 < Xis, < 0.1) determines the systematic
uncertainty.

Figure 10-24 shows the fitted trends of the simulation for three different Idol se-
lections (Idol < 0.003 cm, Idol < 0.2 cm, 0.01 cm < Idol < 0.2 cm) over two different

isolation ranges (0-1,0.3-1). The resulting fits have the expected trend in that the
difference in the fit where isolation is C 0.3-1.0, compared with where isolation is C
0.0-1.0 is small and occurs at the region of low isolation. The difference biases the tail
parameter a to be slightly higher. Fitting on the region of low impact parameter do <
0.003 cm decreases the tail contribution and lowers the resolution c. The systematic

uncertainty band (defined above) spans the fitted values over the whole range. The

high impact parameter selection, do > 0.010 cm, is used as a cross check to generate
the opposite behavior of the low impact parameter selection, its sensitivity is limited

due to the low event yield for do > 0.010 cm .
For separate charges, we add the systematic uncertainty band determined from

the inclusive fit to the fit uncertainty bands from the individual positive and negative
lepton fits. Using the inclusive fit to determine the systematic uncertainty is sufficient
for either charge because the choice of systematic uncertainty was determined to cover
a physical effect present in both the positive and negative QCD background events.

Figure 10-25 shows the predicted fT shape along with its systematic uncertainty
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compared to the true fT shape from simulation. In the figure, the simulated data

is on the edge of the uncertainty band. This ensures coverage by the systematic

uncertainties, but may indicate a bias in the fit. The origin of this bias stems mainly
from the ten percent variation in the resolution parameter c within the isolation

selection. In order to minimize the bias, we float the resolution parameter c and fix

the two tail parameters to their predicted values. Figure 10-25 shows the result of

floating the c parameter in the fit. We observe that the overall uncertainty band is

both reduced, due to fitting, and centered about the QCD background shape.

. 6000 u 1000u
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T < 600-
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Figure 10-25: Comparison of the true shape (points) versus the predicted band from

the two dimensional extrapolation where the band is taken from the systematic un-

certainties from all of the variables (left) and for the two tail parameters a and b

allowing the bulk resolution c to be floated (right)

This method of floating c and fixing a and b is the fit method used for the W

boson yield extraction discussed in chapter 11. For W boson extraction, an additional

systematic uncertainty contributes due to the bias on floating c when W boson signal

is present. This bias is determined from fits of toy data generated from a W boson

and QCD combined shape (discussed later).

10.5 Electroweak backgrounds

The Electroweak backgrounds have two main contributions: W boson tau produc-

tion decaying to a muon and neutrinos, W-+ ry, --+ puvv, and Z boson muon

production Z-+ p. The Z boson background originates from Z events where one

muon falls out of the acceptance of the detector. This does not happen frequently

because an event is vetoed in the presence of a second muon with PT > 10 GeV/c and

Ir/| < 2.4. In both the W--+ Tv, and Z-+ pp case, their contribution in the selection
region is determined from simulated templates fixed to a W boson signal template by
their predicted cross sections in the signal region. The uncertainties on the individual
backgrounds are discussed below.
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10.5.1 W-* Tv background

The tau background is determined by fixing the shape predicted by simulation to the
W boson template. The uncertainty on the -VT shape is determined by applying the
recoil $T corrections for the W-+ pul to the W- TV simulated sample. The corrections
compared with the simulated prediction are shown in figure 10-26. Use of the recoil
corrections and the uncertainty fluctuated templates in the cross section measurement
modifies the cross section by less than 0.1%, thus allowing for the simulated sample
to be used without modifying the cross section by more than 0.1%.

Additional uncertainties originaties from the tau branching ratio uncertainty and
the tau decay simulation. The branching ratio is known to 0.22 % [34]; this value
multiplied by the three percent fraction of W-+ Tv events in the signal region yield a
negligible uncertainty for this analysis. The tau decay simulation uncertainty modifies
the W boson yield. The kinematic simulation of T decays has been tuned to the
percent level using measurments of LEP processes [109]. This equates to a systematic
uncertainty below 0.1 percent.
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Figure 10-26: Comparison of the recoil corrected high and low ET distributions
compared with the simulated true prediction for W-* TV(left) and Z-+ bp events
(right). The difference plot below reports the values x defined in equation 11.53

10.5.2 Z-- p+- background

The Z boson background originates from events where the second lepton either falls
out of the acceptance range or fails the second lepton veto, leading to a distinctive
shape in the missing energy distribution shown in figure 10-26. The low $T component
originates from events where a muon fails the second muon veto, but the missing
energy picks up the muon as a track or cluster of tracks. Due to the difficulty of
calculating the correct ui and u 2 from muon like tracks which may originate from the
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Z boson, the rT correction is imperfect in this low region. Thus, the Monte Carlo
simulated shape is taken.

The effect of the -T uncertainty is evaluated from the uncertainty bands on the
corrected shape (which nearly span the Monte Carlo simulation). The uncertainty is
found to be < 0.1%.

In addition to the uncertainty on the ET model, another uncertatinty results
from the predicted yield ratio of Z--+ pp events to the W boson events in the fixed
signal prediction. The combination of the FT uncertainty and the predicted ratio
uncertainty yield a systematic uncertainty of 0.1 percent.

10.5.3 Other backgrounds

In addition to the QCD, W-+ T and Z-± pp backgrounds, additional backgrounds
from top pair production and diboson production contribute. The contribution of
these events to the cross section is below 0.3 percent. The $T shape for these events
is determined from simulation and fixed to the W FT template.

10.6 Summary

Table 10.1 summarizes the expected contributions from all of the backgrounds. The
overall contribution of the backgrounds in the signal region is on the order of 15 per-
cent. With the exception of the QCD background, the uncertainty on the background
shape is on the order of 0.1 percent.

The results from table 10.1 combined with QCD background yield are floated
along with the c parameter to determine the individual contributions of the W boson
signal and each background.
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Background [Acceptance Cross section (nb-1) Fractional Contribution

(W+ T TV)+ 0.0122 6.15 0.0296
(W--± TV)_ 0.0127 4.29 0.0318
(Z a p )+ 0.0513 1.633 0.0332
(Z -+ pip-) 0.0450 1.633 0.0423

(Z r+TT )+ 0.0085 1.633 0.0055
(Z r+T-)_ 0.0072 1.633 0.0067

(tt)+ 0.0473 0.157 0.0029
(tt)_ 0.0465 0.157 0.0043

(W+W-)+ 0.0679 0.043 0.0012
(W+W-)_ 0.0393 0.043 0.0010

(WZ)+ 0.0572 0.0182 0.0004
(WZ)_ 0.0035 0.0182 0.0000
(ZZ)± 0.011 0.059 0.0002

QCD+ N/A N/A 0.0850
QCD_ N/A N/A 0.132

Table 10.1: Acceptances, total cross section and contributions of all backgrounds in

W events. The underscore denotes the charge for which this background contributes.
The large difference between charge in the QCD background fractional contribution
results from the different W+ and W- cross sections compared to the nearly equal
QCD+ and QCD_ cross sections
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Chapter 11

Cross Section and Ratio
Measurements

The W boson cross section is determined by fitting the ET distributions. Fitting
determines the yield N, the Electroweak yield NEWK, and the QCD background yield
NQCD. This completes the determination of the cross section:

N - NEWK - NQCD
acL

The acceptance, a, efficiency, c, and integrated luminosity, L, were previously dis-
cussed in chapters 6, 8, and 2 respectively.

In performing the fit over ET, we rely on the studies of modeling the T dis-
tribution (chapter 9) to determine the W boson signal shape and its uncertainties.
Additionally, uncertainties on the the energy scale model (chapter 7) are propagated
into corrections to the $T shape yielding another set of systematic uncertainties. The
QCD and Electroweak background models and their uncertainties are presented in
chapter 10.

In this chapter, we combine the individual studies into the final cross section
measurements.

11.1 W boson yield extraction

The choice of fitting the observable, FT, is presented in chapter 10 as a means of
minimizing the effects of mis-modeling the QCD background. The final form for
the QCD background shape is found to be well modeled by a modified Rayleigh
distribution. With the exception of the c parameter, the parameters for the Rayleigh
distribution are determined by a two dimensional extrapolation from an non-isolated
muon sample into the signal region. The c parameter modifies the QCD shape in
the region where the W boson contribution is small, thus it is floated in the fit of

FT. This is performed separately for single lepton selections of positive and negative
muons.

The result of the final fits is shown in figure 11-1. The -V distributions are well
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Contribution Yield

W+ g+v 84723±309
W- p-tvP 57346±255

QCD+ 7597±162
QCD- 7553±149
EWK+ 6072±22
EWK- 4922±22
W- PV 142068±361
EWK 10994±31
QCD 15150±220

Table 11.1: Raw yields from the rT fit for the different components in the signal
region. The uncertainties are the statistical uncertainties extracted from the fit. The
EWK rows designate the contribution from all background processes excluding QCD
(listed in chapter 10). The charge indicates the total yields for positive and negative
leptons separately. The absence of a charge indicates the yield for both charges
combined.

modeled over the whole range. This is indicated by x2 probability between data and
the prediction of 0.927 for W+ bosons and 1.000 for W- bosons as well as Kolmogorov-
Smirnov test value between the data and the prediction of 0.981 for W+ bosons and
0.985 for W- bosons. The result of the floated c parameter gives a value of

c+ = 69.4 ± 3.3 and (11.2)
c- = 76.1 ± 3.3 , (11.3)

which agrees well with the predicted values for the positive and negative QCD back-
ground shapes given by the extrapolation:

predicted 0 -1 )
+ 0.52 (14

cpredicted 174.71+8. (11.5)

The agreement between predicted and fitted validate the choice of using separate fits
for the positive and negative QCD extrapolation; moreover, the data confirms the
trended predictions correctly model the QCD shape.

The composition of the results are summarized in table 11.1. The QCD yields
between positive and negative muons are found to be within one percent of each
other, which confirms the prediction that both QCD backgrounds is roughly the
same.
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Figure 11-1: ET distribution taking into account the QCD model, floating the c
parameter for positive muons (left) negative muons (right) and extended out to
200 GeV(bottom). The difference plot on the bottom is defined in equation 11.53.

11.2 Uncertainties

The uncertainties that result in the cross sections shape follow directly from the terms
in the cross section formula. These are be separated out into

e Luminosity,

* Acceptance (Theoretical uncertainties),

* Efficiency,

" Energy Scale and Resolution,

" FT modeling,

" QCD modeling, and

* Electroweak and top backgrounds.

Such items are further classified into uncertainties that affect the extraction (i.e
FVT fit), and uncertainties which correct the W boson cross section. The uncertainties
that correct the W boson cross section: the luminosity, acceptance, and efficiency are
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propagated through the total cross section calculation. These uncertainties, discussed
in the previous chapters, are summarized in table 11.2.2.

11.2.1 Signal extraction uncertainties

The uncertainties on the extraction are determined by propagating the uncertainties
into the fit through the Neyman construction[ 110]. This is performed by generating
and fitting a large number of toy data sets to observe trends in the fit bias and fit
uncertainties.

An example of the simplest test of the signal extraction uncertainty is the closure
test of the fit. To perform this test we

" Fit the data with default model

" Generate toy data with the same yields produced from the fit with the same
signal and QCD shapes determined from the fit

" Fit the toy data and extract the predicted yields and uncertainties

" Repeat this procedure 5000 times (a sufficient number to observe trends)

The results of these "pseudo experiments" determine if there are any biases in the
fit. The closure test is particularly important because both the QCD yield and the
c parameter are floated in the fit. An average bias in the W boson yield over all
the 5000 pseudo experiments would indicate the c parameter over extends or under
extends into the W signal region. Figure 11-2 shows the results of the bias in W+,
W-, and W+/W- expressed in terms of the pull variable, p, which is defined for an
observable x with fitted central value z, and uncertainty o- as

p = . (11.6)

A deviation of the mean of the pull distribution from zero indicates a bias. The shape
of the pull distribution determines the true uncertainties of the extracted observable.
The fit uncertainty distribution reported assumes a Gaussian. Thus, in this case,
the pull distribution is expected to follow a Gaussian distribution with width one.
From figure 11-2, we find the three observables have biases less than 0.001 standard
deviations less than 0.001 percent of the total cross section. Additionally, the pull
distribution is found to be Gaussian with a width consistent with one.

Systematic uncertainty procedure

To extract the systematic uncertainty through the Neyman construction, an uncer-
tainty fluctuated shape (ie _r plus - corrected shape) is treated as the true shape.
This shape is then used to generate toy data with yields specified by table 11.1. The
resulting toy data is fit with the default fit model. The average bias from the true
sampled yield over all of the fits to toy data is quoted as a systematic uncertainty.
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Figure 11-2: Pull distributions for the three observables of the W+ production (top
left), W- production (top right), and W+/W- ratio (bottom). Each distribution
is fitted with a Gaussian (red line). The resulting central value of the Gaussian is
quoted as the bias and the width of the Gaussian confirms Gaussian uncertainties in
the fit procedure.

?T systematic uncertainty The FT uncertainty is determined from templates
where the ± uncertainty on the hadronic recoil is propagated into the corrected VT

distribution to create a high and low uncertainty templates. These templates are
treated as truth and used to perform toy data. The bias is determined from fits to
the each of the 5000 toy data samples. The systematic uncertainty is found to be:

W+ 0.20 (11.
qW-0.19 '. (1-7

w- 0.20
T7r -- 0.19% (11.8)

W 0.0 q/(11.9)

W+/W~ 0.016 (11.10)
-r -0.009(

Lepton energy scale and resolution uncertainty The lepton energy scale is
found by recalculating the $V distribution with corrected leptons fluctuated by sys-
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tematic energy scale band, t0.4% (chapter 7). The result of this gives:

- 0.11%,(1.)

- 080
9E 0.24W( ) (11.12)

-w- 084-
O-ES -0.26% (11.13)

o- w+/w- 0.ES-0 0.08 (11.14)

Additionally, the full cross section measurement starting from the PT cut through to
the reconstruction of the templates is repeated given the uncertainty on the muon
energy scale is fluctuated high or low by the systematic uncertainty. The resulting
differences in the cross section amount to:

o-E 0.107% , (11.15)
W-_ 0.0/oE- -0.04% (11.16)
aES -0.06 (11-17)

w+/w- 0.18 %. (11.18)

These uncertainties are added in quadrature with the previous energy scale systematic
uncertainty measurement. The systematic uncertainty on the energy resolution is
determined by smearing the lepton by an additional 0.5 GeV. The result of these
uncertainties are below 0.15% (listed below):

-e = -0.12% , (11.19)

-w -0.07% ,(11.20)

~Res - --
-~e -0.10% ,(11.21)

orw+/w = -0.05% . (11.22)

QCD model systematic uncertainty The QCD uncertainty is determined by
generating pseudo data with parameters a, b and c modified by their high and low
systematic uncertainties to- determined in chapter 10. The systematic uncertainty
through this method is found to be

_+ 0.21% (11.23)O-QCD -0.25-
W- 0.32 (1.4o-QCD 0.32%

w 0.26%q (11.25)O-QCD -0.28/-

w+/w- 0.068 -1-CrQCD -0.109%(1126

(11.27)

As a cross check to this analysis, toy data is generated with the simulated "truth"
QCD distribution. The fit is performed with the default fit function, fixing the
parameters a, b from the simulated predictions. The resulting biases are found to
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Table 11.2: Systematic Uncertainties
surements

on the W boson cross section and related mea-

be

W+

0.05%

0.12%

0.08%

- -0.07%.

These are well within the systematic uncertainties quoted above.

11.2.2 Combined systematic uncertainties

The systematic uncertainties are summarized in table 11.2.2. Included are the sys-

tematic uncertainties on the efficiency measurement, the integrated luminosity and
the acceptance, which were previously determined. From the reported high and low

uncertainty values in section 11.2.1, the largest of either the high or the low uncer-

tainties are taken and quoted below.
At four percent, the luminosity contributes the largest single uncertainty. The

overall uncertainty, excluding the luminosity uncertainty, is near two percent. Of
the two percent, the largest uncertainty in all cases comes from the theoretical uncer-

tainty on the acceptance. The second largest uncertainty originates from the efficiency

measurement, which is dominated by the statistical uncertainty. The theoretical cal-

culations on the total cross section are known to four percent, thus with slightly

improved cross section measurements it is possible to constrain the integrated lumi-

nosity measurement beyond its present uncertainty.

11.3 W boson cross section

The predicted value from the NNLO theoretical cross section[79] is determined using
FEWZ NNLO with MSTW 2008 NNLO PDF sets. The uncertainties on the cross
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Source W+ ' - pv(%) W- a pv(%) W-+ P(%) W+/W- (%)

9T modeling 0.2 0.2 0.2 0.0
Energy Scale and Resolution 0.3 0.2 0.3 0.2

QCD modeling 0.3 0.3 0.3 0.1
Total extraction uncertainty 0.4 0.4 0.4 0.2

Efficiency 1.0 1.0 1.0 1.1
Acceptance (Theory) 1.3 1.7 1.1 2.1

Total Before Luminosity 1.7 2.0 1.5 2.4

Luminosity 4.0 4.0 4.0 -

(11.28)

(11.29)

(11.30)

(11.31)



section are determined by combining the high order correction (aZ) uncertainties with
the PDF variation uncertainties.

Combining the integrated luminosity measurement with the efficiency measure-
ment and the total yield through equation 11.1, the final cross section for W+ is

or (pp -± W+) x B (W+ +v) = 6.07 t 0.02(stat) ± 0.10(sys) ± 0.24(lumi) nb,
NNLO prediction = 6.15± 0.17 nb, (11.32)

in excellent agreement with the predicted value. The W- cross section is

or (pp -- W-) x B (W- a p-v) = 4.23 ± 0.02(stat) t 0.08(sys) t 0.17(lumi) nb,
NNLO prediction = 4.29 + 0.11 nb, (11.33)

which is again in very close agreement with the NNLO prediction.
Combining the two charged cross section values gives:

o (pp -* W) x B (W - 1tv) = 10.30 t 0.03(stat) ± 0.15(sys) ± 0.41(lumi) nb,
NNLO prediction = 10.44 i 0.27 nb. (11.34)

The ratio of the two cross sections is written as

o+ Nw+ E_ aw . (11.35)
o_ Nw- ESaw+

From the values above, adding in the appropriate systematic uncertainties, we
find the cross section ratio to be

0 (pp- W+) x B (W+ - P+v)
or (pp- W-) x B (W - - ) 1.433 ± 0.008(stat) i 0.016(sys) ± 0.030(th.)

NNLO prediction = 1.430 ± 0.010 , (11.36)

close to the predicted ratio. Here, the theory uncertainty, (textrmth), is separated
out because it is very sensitive to the PDFs and quite large. This result provides
a new constraint on the theory calculation which will allow this uncertainty to be
further reduced.

11.4 Z boson cross section

In order to compute the W/Z boson cross section ratio, we first determine the Z
boson cross section. To determine the Z boson cross section, we select two well
identified muons with PT > 25 GeV/c and |r/| < 2.1 using the same quality cuts
used for muons from the W boson decays (chapter 5). The mass of the combined
leptons is required to be within a window of 60 GeV/c 2 < ma < 120 GeV/c 2 . The
second lepton selection nearly eliminates the background, thereby allowing the signal
extraction to be performed by counting events in the signal region. The full cross
section is determined through the procedure:
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* Select two leptons with the same identifications used for the single lepton selec-
tion in W boson decays (so as to reuse the efficiency measurement)

" Count the total number of events inside the Z mass window

" Subtract the predicted background from the total number of events.

" Correct the efficiency by the scale factors using the same measurement as in the
W boson (so that the W/Z ratio cancels out)

" Correct for the acceptance

The choice of using the same kinematic and identification cuts as that of the W
boson cancels out the efficiency systematic uncertainty in the W/Z ratio measure-
ment. These kinematic requirements are slightly tighter than optimal for exclusively
determining the Z boson cross section.

11.4.1 Selection of events

The total amount of events found in the data with the Z boson selection is found to
be 10598±103. The composition of the dilepton selection within the mass window is
summarized in table 11.4.1. The total background composition is expected to con-
tribute to 0.36% of the total events in the signal region. The main background comes
from tt, which is well modeled in simulations of this kinematic selection. The next
largest background Z-+ T+r- and the subsequent diboson production are also well
modeled in simualtion; thus, we consider a systematic uncertainty on the background
of 50% the total contribution, making the background systematic uncertainty 0.18%.

The uncertainty on the acceptance is determined in the same manner as the W
boson uncertainty (chapter 8), where the best resummed, FSR, and NNLO models
are compared with the default Powheg Monte Carlo simulation. The uncertainty on
the acceptance is found to be

a, = 0.3191 ± 0.0039(ISR+NNLO) ±0.0042(PDF) ± 0.0018(EWK,)(11.37)

az = 0.3191 ± 0.0060(sys.) (11.38)

The largest difference of these uncertainties when compared with the W boson accep-
tance uncertainty originates from from the Electroweak (EWK) uncertainties; where
different 0(a-) corrections contribute in the Z boson channel.

11.4.2 Z boson efficiency correction

The efficiency correction of the muon identification and isolation, track reconstruction,
and Stand-Alone muon reconstruction is performed through a scale factor applied to
both legs in the event. The correction is written by summing over all bins used in
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Table 11.3: Acceptances, total cross section and contributions
dimuon events with a both PT > 25 GeV/c, and a mass window
120.

of all backgrounds in
given by 60 < m, <

calculating the efficiencies given as:

Edata WZEsimulation ,

Wz = Z i ([+) wj (I-) Pij,
ij

(11-39)

(11.40)

where wz is the overall scale factor on Z events, wi (Pa) is the binned scale factor,
and pij is the probability that a given event has a positive muon in the ith bin and
a negative muon in the jth bin. This is determined from the tag and probe dataset
for a muon in the ith kinematic bin with charge pa. The uncertainties on the scale
factors are propagated through considering the bin by bin scale factor variations.
This follows as

+ E Yz
j ( i

2

o- o-iwjpij

2

o-j wipij )
(11.41)

The systematic uncertainties are taken from the bin by bin systematic uncertainties
determined in chapter 6. Taking into account the full bin by bin correlations, these
uncertainties are added together giving

(11.42)O-sys = ZPij (-iY" + 
ij

Summing over all efficiencies with the exception of the trigger, the final result for the
scale factor (r) is

K = 0.9522 t 0.0049(stat) ± 0.0143(sys.) (11.43)

The trigger efficiency correction is determined by considering the probability that
both leptons will not fire a trigger. Summing over the positive and negative muon
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Background Expected yield Acceptance ] Cross section (pb-1)] Fractional contribution
Za 11111 0.3191 970 0.9963

tt 13 0.0024 158 0.0012
Z- T+- 10 0.0002 1666 0.0009

WZ 9 0.0133 18.2 0.0008
ZZ 5 0.025 5.9 0.0005

WW 3 0.0021 43 0.0003
W-+ pv + Jets 0 0 6152 0.0000
W c- ev + Jets 0 0 4286 0.0000



bins i and j respectively, this is written as

e= (1 - (1- Ei) (1- Ej)) pij , (11.44)
ij

where in this instance ci is the trigger efficiency for the ith lepton. Propagating the

uncertainties in the same way previously done we have the trigger scale factor

Ktrig = 0.9961 i 0.0005 . (11.45)

The combined efficiency includes an additional systematic uncertainty of 0.5%

originating from the uncertainty on trigger prefire correction. Adding in this uncer-

tainty with the other terms gives:

KZ = 0.9485 ± 0.0049(stat) ± 0.0143(sys) . (11.46)

To determine the W/Z boson ratio, all of the efficiencies for one of the muon legs in

the Z boson decay, excluding the trigger efficiency, cancel out (ie for W+ production

the efficiency on the positive muon cancels and for W- the negative muon efficiency

cancels out). Propagating the uncertainties for the two legs, an efficiency uncertainty

for the W/Z boson ratio is given by

O-w+ UW- +0- " e -r + (11.47)

c-W/Z 0.26(stat) ± 0.67(sys) . (11.48)

11.4.3 Energy scale uncertainty on Z boson selection

An additional uncertainty comes from the PT cut threshold on the energy scale. Mod-

ifying the energy scale on each leg by its respective uncertainties and recalculating

the cross section yields an additional systematic uncertainty of

o1scale 0.15% (11.49)

11.4.4 Z boson cross section

The Z boson cross section is determined by applying the scale factor Kz to the sim-

ulated acceptance and efficiency. The predicted background yield is subtracted from

the total yield. Taking the yield and combining all of the uncertainties with the

integrated luminosity, using equation 11.1, gives the cross section:

o- (pp -> Z) x BR (Z -e p+C ) - 972 ± 11(stat) i 14(sys) ± 18(th) t 39(lumi) pb,

NNLO prediction = 970 ± 30 pb, (11.50)

which agrees well with the NNLO prediction from FEWZ.
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11.5 W/Z boson ratio

The W/Z boson ratio is defined as the ratio of W boson production to Z boson
production.

w = Nw aw (11.51)
crz Nz Ew/zaz

Taking the uncertainty from equation 11.48, the additional uncertainties on the W
boson cross section measurement, plus the theoretical systematic uncertainties, and
combining them to give the W/Z production ratio yields:

o-(pp-* W) x B(W-9 pv)_
ar (pp -Z) x B3 ( -PV = 10.59 ± 0.12(stat) i 0.08(sys) ± 0.13(th)

or (pp Z) x B (Z --- p+P-)
NNLO prediction = 10.74 ± 0.14 . (11.52)

This measured value is slightly lower than the NNLO prediction, but still within
uncertainties of the prediction.

11.6 Differential W boson distributions

To check the performance of the cross section measurement, we plot several W boson
differential distributions. In these distributions, the QCD distributions are taken from
the Monte Carlo simulation normalized to the yields determined by the cross section
measurement. This leads to a slightly inaccurate measurement due to the fact that the
QCD background shape is only modeled in the .T variable. To mitigate the influence
of the QCD background contribution, we plot both the differential cross sections with
the standard acceptance cuts as well as an additional cut of -T > 20 GeV. The signal
template has been corrected for the binned variation in the efficiency scale factors and
the modified FT after recoil corrections. Each of the plots shows the ± uncertainty
band determined by taking the W boson signal templates where the 'ET and the
lepton energy scale is fluctuated up or down. Below each plot is the difference x
defined from the statistical uncertainty as

Ndata - Nsimulation (11.53)
vNdata

Figure 11-3 shows the lepton PT distributions. After the ,T cut is applied, the
PT distribution shows excellent agreement along the whole PT range. Before the PT

cut is applied, small disagreement at low PT is present due to the mis-modeling of the
QCD background.

Figure 11-4 shows the angle between the PT and the lepton. This variable reflects
the accuracy of the ET resolution, which is well reproduced by the recoil model.
Figure 11-5 shows the mT distribution. The mT is a combination of the three variables
the PT, the lepton PT, and the angle between the VT and the lepton. The excellent
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agreement between the three variables is reflected in the mT variable.
We end this section by presenting the W boson PT distribution in figure 11-6. The

W boson PT distribution is very sensitive to the theoretical modeling, the $T model
and the of the predicted QCD yield. The signal template used is corrected to Resbos
and then further corrected by a data/simulation weight determined by Z bosons.
The final PT demonstrates excellent agreement to boson PT beyond 200 GeV/c . In
figure 11-6, the performance of the PT shape before Resbos and data/simulation scale
factors are applied. Here, a large disagreement is visible for PT > 80 GeV/c. This is
a reflection of the necessity of NNLO differential calculations in describing the full
boson PT shape.
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Figure 11-3: PT distribution for positive (left) and negative (right) muons for
,ET > 20 GeV(top) and inclusive (bottom). Below the plot (purple) is x, defined
in equation 11.53. The black line indicates the values x = ±3.
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Figure 11-4: Angle between -T and the muon for positive muons (left) and negative
muons (right). Below the plot (purple) is x, defined in equation 11.53. The black line
indicates the values X = i3.
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Figure 11-5: mT distribution for positive muons (left) and negative muons (right).
Below the plot (purple) is y, defined in equation 11.53. The black line indicates the
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Figure 11-6: W boson PT distribution for positive muons (left) and negative muons
(right) with default PT reweighting from data (top two) and without reweighting (ex-
clusively Powheg) (bottom). Below the plot (purple) is x, defined in equation 11.53.
The black line indicates the values X = t3.
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Chapter 12

Conclusions

The precision measurement of the

1. W+ boson cross section

2. W- boson cross section

3. W boson cross section

4. Z boson cross section

5. W+/W- cross section ratio

6. W/Z cross section ratio

in the muon channel is performed. The results are summarized graphically in fig-
ure 12-1.

Events are selected using a quality muon selection requiring tight isolation crite-
ria to remove QCD background. One muon is required for W boson measurements
and two muons are required for the Z boson measurements. The efficiency of this
selection, determined with tag and probe on Z-+ p+p- events, is found to be near 85
percent with the largest inefficiency originating from the trigger. The final extraction
of the efficiency is determined by fitting the FT observable with a signal template
constructed from corrected simulation, a QCD template constructed from a modi-
fied Rayleigh distribution, and an Electroweak shape from simulation. Corrections
and uncertainties on the simulation of the W boson template and the Electroweak
template are performed to incorporate the energy scale variation, the hadronic recoil
model, and the boson PT distribution; all of which are determined from Z bosons. The
QCD background templates for each charge are constrained by a two dimensional fit
to the $T as a function of the isolation. The final result is corrected by the acceptance
back to the full kinematic phase space. Uncertainties on the extrapolation result from
missing NNLO, NNNLL, FSR, and Electroweak corrections in the extrapolation.

Results are summarized in figure 12-1. They are found to be in agreement with
the standard model predictions. The largest deviation is in the W/Z cross section
ratio, which is still within the one standard deviation of the theoretical prediction.
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This measurement establishes a baseline for understanding muon efficiencies, the VT

behavior, energy scale uncertainties, and QCD shape modeling. Deviations in the
theoretical modeling have been minimized and a detailed prescription of obtaining
these uncertainties has been established.

This measurement is currently the most precise single Electroweak measurement
at the LHC.

CMS preliminary 36 pb-1 at\ s = 7 TeV

I I lumi. u certainty: ±4/

axB(W)

aYxB(W')

axB(W~)

aTxB(Z)

Rw/z

1

0.987 ±0.011exp 0.050 theo

0.987 ±0.010 exp 0.047 theo

0.986 ±0.010 exp 0.054 theo

A 1 1.000 ±0.010 ± 0.047MWexp -theo

0.986 ±0.013 exp 0.013theo

1.002 ±0.013 exp 0.035theo

1.1 1.2
Ratio (CMS/Theory)

Figure 12-1: Results of the six measurements performed in this thesis compared with
the standard model predictions
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