The Structure of Many-body Entanglement

by - ARCHIVES

Brian Gordon Swingle
B.S., Georgia Institute of Technology (2005)

Submitted to the Department of Physics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2011
© Brian Gordon Swingle, MMXI. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document
in whole or in part.

Y

Author .......... e T
[T / .
ﬁepartment of Physics

/ ) , August 30, 2011

Certified by..” _ N

) \ // 6 Xiao-Gang Wen

Pr?essor of Physics

/) / \ / A hesis Supervisor
A *{% —
/ %rié&ma Rajagopal

Professor of Physics
Associate Department Head for Education

Accepted by ...l






The Structure of Many-body Entanglement
by

Brian Gordon Swingle

Submitted to the Department of Physics
on August 30, 2011, in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis we discuss the general spatial structure of quantum entanglement in
local many-body systems. A central theme is the organizing power of the renormal-
ization group for thinking about many-body entanglement. We argue that the coarse
structure of entanglement across of wide variety of systems, from gapped topologi-
cal phases to gapless Fermi liquids in a variety of dimensions, can all be understood
within a unified framework. We discuss tensor network states inspired by entangle-
ment considerations, probe the limits of the boundary law for entanglement entropy,
speculate about connections between entanglement renormalization and holography,
and develop the formalism of mutual information in quantum field theory. We pro-
ceed from general considerations about entanglement in lattice models of many-body
physics to specific attempts to isolate the low energy structure of entanglement in
quantum field theories. We conclude by describing some major open questions in the
subject of many-body entanglement that we find particularly interesting.
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Chapter 1

Quantum Many-body Physics

1.1 Introduction

In this thesis we will explore the physics of many interacting quantum objects. From
its first clear appearance in the spectra of atoms over one hundred years ago, the
quantum physics of few degrees of freedom is by now relatively well understood.
Nevertheless, we have long known that the transition to many degrees of freedom
represents a conceptual leap to a new realm of quantum physics, a realm we are
aware exists but which we are not yet fully able to understand. There is a richness
in the physics of many interacting quantum particles that rivals that of the great
ecosystems of the world, each phase of matter a unique form of life, suited to its own
environment, with its own unique dynamics. Like the theory of evolution, we seek to
know the principles that underlie the formidable complexity of quantum many-body
physics.

Like the great catalogs of living forms, we too have many forms of matter to study
and the promise of many more not yet imagined. Insulators like diamond and metals
like sodium were some of the first phases of matter from this catalog to be understood.
These materials illustrate well the concepts of quantum many-body physics from the
first one hundred years [1]. More recently, physicists have been interested in the
layered copper oxide materials better known as high temperature superconductors.

These materials display an incredible diversity manifesting essentially every kind of
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symmetry breaking order imaginable, and there are even hints of exotic fractionalized
degrees of freedom. The physics here is totally unlike that of a superconductor like
aluminum, for in the cuprates superconductivity emerges from an insulating state of
effectively two dimensional electrons [2]. If we take these same electrons confined in
two dimensions, perhaps in a semiconductor device, and apply a strong magnetic field,
we discover a new kind of quantum organization known as the fractional quantum
hall effect [3]. In such a phase of quantum matter, electrons literally break apart
into fractionally charged pieces and a new kind of topological robustness appears.
Analogous to the deconfinement that occurs in electronic quantum hall systems, we
can consider many-body systems like the strongly interacting quark gluon plasma.
This plasma was last seen thirteen billion years ago until it was recreated recently by
colliding ultra-relativistic nuclei [4]. Here the problem is to understand the quantum

dynamics of thermally liberated quarks and gluons.

These examples represent only the tiniest fraction of the catalog quantum phases,
but it should already be clear that providing a common framework to organize the
physics of these various systems is a mammoth task. Indeed, an entirely new kind of
inquiry is available, a way of thinking where we are more focused on understanding
the space of possibilities than on any particular example. In this way of thinking we
might seek to explain why certain phases of matter are common experimentally while
others seem never to occur. We can also ask about the limits of nature, trying to
understand what are the most extreme possibilities for electrons in a solid. Related to
all these questions is the need for a general method for determining the macroscopic
physics of a collection of quantum objects in terms of their microscopic properties. In
this thesis we will explore some of these issues by asking about the general structure
of quantum correlation or entanglement in large quantum systems. To begin our

journey, let us first recall the physics of small quantum systems.

A key feature of finite quantum systems is their linearity: all physical properties of
interest can be obtained from the diagonalization of finite dimensional matrices. From
the computation of energy levels to exact time evolution, everything is computable

in terms of a few simple ingredients with the aid of a modern (classical) computer.
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These theoretical advances are mirrored by an increasingly precise agreement with
experimental probes of relatively simple quantum systems. But while this beautiful
theory is supremely successful for small quantum systems, already at the size of small

molecules we begin to discover the complexity of many-body quantum physics.

The formal complexity of simulating a quantum mechanical system with a D
dimensional Hilbert space grows only polynomial in the dimension D. In other words,
the behavior of the system can be fully specified to any desired accuracy with resources
- space, time, etc. - that grow only polynomially in D. For example, to store the
Hamiltonian of a D dimensional quantum system we need only remember roughly
D? numbers. But now the thorn: the dimension D of a many-body systems grows
exponentially with the number of constituents in that system. For example, a system
of N electrons sitting at fixed positions in space has D = 2V because each electron
can be either spin up or spin down. Thus the formal complexity of simulating or
describing a quantum many-body system grow exponentially with the number of

components and physical size.

In truth, the 2 dimensional Hilbert space of a many-body system is a convenient
illusion. Most of the states in this space are never realized in nature. They would
take a time longer than the age of the universe to prepare even for a modest number
like N ~ 100 spins! Similarly, it would take more space than the Hubble volume of
our universe to store classically the quantum state of N ~ 100 spins. We might have
dared to say that many-body quantum mechanics is trivial, after all we just have to
diagonalize a big matrix, but this is totally wrong. Because the many-body Hilbert
space is an illusion we never truly face the linear problem of matrix diagonalization.
Instead, we are faced with the nonlinear problem of motion within a tiny constrained
corner of the massive many-body Hilbert space. Whether we ask for the ground state
or quantum dynamics, we must try to optimize over or move within the space of
physical states. This nonlinear problem is the basic challenge of many-body quantum
physics.

This problem is an old one and much is known about it. For example, we know how

to find the ground state of bosons interacting via two body interactions because we
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understand the space of physical states well enough to solve the nonlinear problem and
give a simple physical picture for the possible phases of matter and their dynamics.
These simple pictures are then augmented by powerful numerical techniques like
quantum Monte Carlo that permit us to answer many questions both qualitatively

and quantitatively.

However, most many-body quantum problems are not of this type. Some kinds
of dynamical questions about our bosons above cannot be answered. Similarly, if the
~ bosons have more complicated interactions then we have little room to maneuver.
Replacing the bosons by fermions, like the electrons that are responsible for chemical
bonds, takes the problem beyond our abilities. This is not to say that we understand

nothing about such systems, only that our knowledge is fragmented and incomplete.

Both the defining feature of our endeavor and our greatest resource is the avail-
ability of experimental data. Experiments have shown us the ubiquity of quantum
many-body physics, helped us add innumerable examples to the catalog of quan-
tum phases, and given us a wealth of non-perturbative information about interacting
quantum systems. However, experiments also need an interpretative framework, so
the development of quantum many-body physics inescapably binds theory and exper-
iment. At the level of theoretical abstraction we contemplate here, the single most
important experimental fact is the diversity of quantum many-body systems. We wish
to provide a theoretical framework for this diversity as a first step towards developing
universal computational tools, and an understanding of quantum entanglement is a

necessary part of this framework.

These then are the problems of quantum many-body physics: to enumerate the
general principles that govern the quantum diversity of such systems, to characterize
the physical space of quantum states, to map the landscape of possible phases of
quantum matter, to develop qualitative pictures for the dynamics of complex quan-
tum systems, and to back it all up with general computational and experimental

“techniques. This thesis is a small step towards realizing this dream.
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1.2 Quantum many-body physics

1.2.1 Locality and renormalization

We are interested in quantum systems of many degrees of freedom, but we do not
study completely generic 2V x 2V matrices. Our many-body quantum system will be
made of many simple pieces interacting locally with one another. We speak generically
of spins or qubits, elementary quantum degrees of freedom from which more complex
systems can be built. The qubit is the simplest quantum system, a two level system,
described by the Hilbert space C2. Experimentally, a qubit could be an electron
spin sitting on a a crystal defect or it could be a two level atomic system. We
will usually abstract away the details of the qubit, so we are free to imagine whatever
particular two level physical system we like as forming the qubit. We can always build
more complicated systems out of multiple qubits, or more formally, we can efficiently
simulate the dynamics of any other quantum system using a collection of qubits [5, 6].
Thus thinking in terms of qubits as the basic building blocks is sufficient. We will
meet a wide variety of specific physical systems - Fermi liquids, large N critical gauge
theories, topological liquids, and conventional magnetic critical points, but the reader
is encouraged to think in terms of their own favorite quantum many-body system.

Having defined the basic ingredients, we now turn to a description of their local
organization. Locality in its most primitive form means that the Hamiltonian of
the system is a sum of many terms, the number of terms growing with the number
of qubits, but with each term coupling a bounded number of qubits together. For
example, the Heisenberg interaction Sy - S, between spins 1 and 2 is local but the
interaction Hl]\;l S7 between N spins is not. If every spin or qubit interacts directly
with every other via local interactions then the system is naturally regarded as an
infinite dimensional system or a lattice system on a complete graph.

In fact, we want an even stronger kind of locality, geometric locality, where qubits
are arranged in a more or less regular way in space of a given dimensionality. For
example, we might arrange qubits on a hyper-cubic lattice in d dimensions or a

kagome lattice in 2 dimensions. Thus for us locality means qubits arranged in space
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of a given dimensionality interacting with a bounded number of other qubits in their
general vicinity. We are interested exclusively in quantum systems of this type in
this thesis. A few comments are in order. Systems with long range interactions do
occur in nature, and we can sometimes consider them without seriously modifying
the structure of the theory. We can also always regard them as lower diménsional
systems. For example, a one dimensional qubit chain with long range interactions
can just be thought of as a qubit system on the complete graph. Also, although we
required that the qubits be arranged in a semi-regular way, we do not necessarily
require translation invariance. Disorder as well as confining potentials and other non-
translation invariant features can be accommodated. Henceforth, we should have in
mind the picture of a large array of spins arranged in a space of fixed dimension
interacting locally. This is our basic theoretical model of electrons in a solid, atoms
in optical traps, quarks in the quark-gluon plasma, quantum gravity (via holographic
duality), and basically any other local quantum system defined in the continuum or

on a lattice.

Within the context of local many-body physics we can ask many questions of the
system. Since all systems eventually behave classically at sufficiently high temper-
ature, we are often interested in the low temperature (relative to a typical energy
scale in the quantum Hamiltonian) or zero temperature physics of local many-body
systems'. Here we will focus exclusively on zero temperature quantum many-body
physics and adjacent low temperature quantum thermal physics. Thus we focus on
the long wavelength and low energy parts of the many-body spectrum in order to
describe physics associated with the quantum ground state. The low energy physics
of quantum many-body systems displays many universal features independent of the
precise details of the microscopic theory, be it electrons hopping on a lattice, cold
atoms in an optical lattice, or quarks in a neutron star. We are interested in all these
systems, but to be concrete we will usually choose to imagine that the low energy
physics we are interested in comes from some lattice model at high energy. The re-
sulting low energy physics is inevitably described by an effective quantum field theory

with a given microscopic cutoff where it is “completed” into a regulated microscopic
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theory.

Thus we want to separate the non-universal aspects of the high energy regulator
from the universal aspects of the low energy physics. Let us emphasize that we are
not saying that the high energy physics is uninteresting, only that we want to extract
the universal features of the low energy physics for our purposes here. The process of
flowing from a given high energy microscopic theory to a low energy effective theory
is known as renormalization. The concepts and techniques of renormalization will
play an essential role in this thesis. We always try to understand the physics of our
many-body system “scale by scale”, that is, by building up the low energy physics by
successively integrating high energy degrees of freedom. We will recall the detailed

theory of renormalization as we need it.

1.2.2 Quantum ground states

At last we come to our main interest in this thesis, namely, ground states of quantum
many-body systems. Gazing out at the enormously rich spectrum of quantum phases,
we see everything from traditional symmetry breaking phases, through gapless metal-
lic states, to exotic topological liquids that support fractionalized excitations. Given
this quantum diversity, we want to understand the general rules that guide these
systems and the arena on which quantum many-body physics unfolds. Of course,
quantum ground states are only a part of the story, but they play a very important
role. Although formally the ground state is only a single eigenstate of the many-body
Hamiltonian, it typically displays a pattern that governs the low energy physics as
well. A few examples follow. In a system with Lorentz invariance, equal time correla-
tors computed from the ground state also tell us about unequal time correlators and
hence dynamics. The presence of localization in the ground state signals insulating
charge dynamics. A ground state that breaks a continuous symmetry also signals
information about collective dynamical modes via the presence of Goldstone bosons.
Even more interesting is the recent idea that the spectrum of the reduced density
matrix for a sub-region in the bulk is actually related to the spectrum of a thermal

state of a real boundary. This connection provides information about non-trivial ex-
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citations in topological phases and much more just from a knowledge of the ground
state wavefunction.

Although ground states are not the whole story by any means, the patterns present
in these states often tell us a great deal about the dynamics of the many-body system.
There is no better illustration of this idea than Kitaev’s construction of a quantum
ground state that encodes the result of an arbitrary local time evolution (time evo-
lution under a local Hamiltonian). These states, called history states, are ground
states of local Hamiltonians that encode the entire dynamical history of a quantum
system in a series of superpositions [7|. Ultimately we are also interested in thermal
properties and dynamics of excited states, but the ground state problem is already
so rich that it deserves its own exposition. In this thesis we focus on the properties

of quantum ground states.

1.2.3 Aims of this work

We are primarily aiming to establish a broad theoretical framework for thinking about
entanglement in quantum many-body systems. More than the simple confrontation
of experimental data with theoretical calculations, our purpose is to understand the
physical systems we study. Suppose we were given a black box that could produce
the answer to any experimental probe, would we be satisfied? We would still ask
how the box itself produces the answers, why the answers are what they are, and
what patterns exist among the answers. We want a physical picture of quantum
many-body entanglement because there is one overwhelming experimental fact that
we must contend with: we live in a quantum many-body world, and we do not yet
understand the richness of that world. For example, there exist phases of matter,
experimentally realized in electronic quantum hall systems, that are defined by the
existence of long range entanglement. Until we have a physical picture of quantum
entanglement, we cannot truly understand such a phase of matter. Alternatively,
consider the quest to build a quantum computer, a device not unlike the black box
mentioned above. Such a computer could, in principle, efficiently simulate the result

of any experiment we could carry out so long as the world is a quantum many-
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body system, but to understand how the computer itself works, we must understand

quantum entanglement.

We consider ourselves explorers struggling to understand the structure of entangle-
ment in the still unfamiliar land of many-body quantum physics. We will not generally
be computing neutron scattering cross sections, or RF spectra, or I-V curves, although
some of our results could be directly measured. However, one of the major long term
goals of the study we are undertaking is the development of theoretical machinery
to perform just such calculations in a controlled way. As we said above, experiment
plays the role of understated muse. We draw our inspiration from the wide diver-
sity of phenomena displayed by quantum many-body systems. The work described
in this thesis makes also contact with numerical approaches to many-body systems.
Whether we deal with experimental data or numerical data, we seek to answer the
exquisitely complex question of how a given low energy phase of matter arises from
some particular microscopic ingredients. This question is especially challenging for
more exotic quantum phases that have been discovered in recent years, as exemplified
by the fractional quantum hall effect [3], because the low energy degrees of freedom in
these systems do not resemble the microscopic variables e.g. electrons. By studying
the structure of many-body entanglement, we hope to better understand the space of
physical states. This understanding will in turn lead to new numerical and heuristic

approaches for theoretical calculation of experimentally relevant quantities.

There is hope that we will succeed. We have experienced a revolution in our
understanding of the physics of one dimensional quantum systems thanks in part
to a revolution in our understanding of quantum entanglement in one dimension.
Although history did not unfold this way, the powerful method of density matrix
renormalization group (DMRG) [8] and its many time dependent variations [9] can
be viewed as part of the larger entanglement based effort to understand the physics of
quantum many-body systems. These methods work exceedingly well in one dimension
and have also contributed much to the study of higher dimensional systems. In fact,
they work so well that we can regard DMRG as essentially like the black box we

described above. We would also emphasize that entanglement is not the end of the
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story, for example at finite temperature quantum and classical correlations are both
important, but it does seem to be ‘the right place to start in one dimension. Our goal
is to achieve a similar level of understanding of entanglement in higher dimensional
| quantum many-body systems and to develop the powerful calculational tools that
Wbuld‘inevitable accompany such an understanding. |

What does the future hold for this program of research? An increasingly coop-
erative effort involving researchers from quantum information science and quantum
many-body physics. An increased emphasis on understanding the functioning and
capabilities of quantum computers.‘ Perhaps even contact with holographic ideas
originating in quantum gravity and string theory. Most importantly, a growing con-
tact with laboratory experiments, giving us new calculational tools to address the full
spectrum of strongly interacting quantum many-body systems, from ground states to

finite temperature dynamics.

1.3 Outline and results

1.3.1 Overview of results

Let us now give an overview of the main results in this thesis. This sectioh contains
a brief description of the model systems we will consider as well as our principle
results. The next section describes in more detail the structure of the thesis. We
wish to emphasize that this section functions as an overview, we will not try (yet)
to convey in any detail the deeper connections and importance of these results. In
addition to the unique renormalization based perspective we take on the traditional

aspects of many-body entanglement, our core results include:
e a tensor network description of non-chiral topological phases,

e a preliminary method to extract topological properties from tensor network

states,

e an intuitive picture of entanglement in Fermi liquids for which no analytic cal-

20



culation exists,
e a physical justification of the (mathematically unproven) Widom conjecture,

e a complete characterization of the leading contribution to mutual information

in Fermi liquids,

e a proposal connecting “holographic” tensor network states to holographic mod-

els of quantum gravity,

e and an elucidation of the universal physics contained in the mutual information

in quantum field theories.

The material in this thesis is largely adapted from work reported in [10, 11, 12,
13, 14, 15, 16, 17], as well as considerable additional unpublished work.

By the end of this thesis, we will have a comprehensive picture of entanglement
in local quantum systems. This picture is not the end of the story, but we will argue
that the renormalization group perspective is the right rough guide for further inves-
tigations of many-body entanglement. As we make future refinements of the rough
outline of quantum entanglement presented here, as we understand the microstruc-
ture of quantum entanglement, we should gain in computational power and continue

to realize some of hopes expressed above for experimental contact.

1.3.2 Guide to the thesis

The logical structure of the thesis is as follows. First, we describe the basic con-
text and goals of quantum many-body physics in Chapter 1. Second, we introduce
the basic structure of many-body entanglement, including the boundary law, from a
renormalization group perspective in Chapter 2. In Chapter 3, we discuss a very gen-
eral class of variational states that flow from the basic existence of a boundary law.
Fourth, we explore the limits of the boundary law for entanglement entropy in Chap-
ter 4. Having explored the general physics of the boundary law and its limitations,

we enrich the description in Chapter 5 by making a connection between entanglement
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renormalization and holography. In Chapter 6, we try to further refine and isolate
the low energy features of entanglement in quantum field theory, the coarse grained
description of any many-body system. We conclude in Chapter 7 with a summary
and a dream for the future.

The presentation will not be completely general, and the interested reader can
consult the original literature for details. Instead, we want to convey a unified vision of
many-body entanglement that we have helped develop in the last few years. Although
there is plenty of room for doubt about the usefulness of new entanglement based
approaches to many-body physics, this thesis is fundamentally optimistic about the
future. Throughout we try to give an informal assessment of the prospects and

problems facing the field as we see them.
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Chapter 2

Many-body Entanglement

2.1 Overview

In this chapter we introduce the context surrounding entanglement in many-body
systems. The development will be in keeping with a point of view emphasizing the
role of renormalization. We begin by formalizing some of the structures described in
Chapter 1. We will also discuss entanglement in ground states, give numerous per-
spectives on the boundary law for entanglement entropy, and give a scaling argument

that encapsulates the basic structure of many-body entanglement.

2.2 What is entanglement?

As we said in Chapter 1, quantum many-body systems are defined as local aggregates
of many small quantum systems. To introduce the idea of entanglement formally, we
group those local degrees of freedom into two clusters. Thus consider a quantum
system that is composed of two subsystems, H, and Hp, so that the full Hilbert
space is Hap = Ha ® Hp. A basis for Hyy is provided by the states {|n)4 ® |m)g}
where |n) 4 and |m) g are basis states for H 4 and H . However, a general state in Hap
cannot be written as a product |¢p)4 ® |¢)p of states in H4 and Hp. Whenever no
product decomposition exists we say that systems H 4 and Hp are entangled. Loosely

speaking, systems are entangled when neither component has its own independent
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state, that is when the states are two subsystems are tied together.

Entanglement is a consequence of the superposition principle of quantum physics
because we can supérpose product states in H 45 to produce states that are entangled.
As a quantum effect, entanglement can be viewed as a quantum resource. It enables
us to engage in quantum communication, perform quantum computations, and is the
raw material from which quantum many-body‘systems are built. We want to quantify

and understand the role of this resource in local quantum systems.

2.2.1 Quantum ground states

We may measure the entanglement of quantum ground states in many ways. In this
thesis we focus on entanglement between two spatial partitions in a many-body sys-
tem. This kind of partitioning is particularly natural given the local structure of
many-body systems, but other kinds of partitions are certainly possible e.g. momen-
tum space partitions. Thus we consider a total system in its ground state |(2) and
bipartition the system into two pieces that we call A and B. The entanglement en-
tropy of A is S(A) = —tr(palogpa), and it is equal to S(B) since the total system
is in a pure state. Other measures are also possible, specifically the Renyi entropies
Sn(A) = ﬁ log tr(p%) which generalize the von Neumann or entanglement entropy.
We would like to just mention that the assumption that |Q)) is pure is important
because the characterization of entanglement in mixed states is a much more subtle
endeavor.

What should we expect from the entanglement entopy? If the full quantum state
factorizes into |2) 4 ® |Q2)p then S(A) =0. On the other hand, if we select a state at
random (with respect to the Haar measure) from the many-body Hilbert space, then
we typically find S(A) =~ logdim(V,4) with V, the Hilbert space of the A subregion
[18]. In a local many-body system the log of the dimension of this space scales as
the volume of the region, and we say the entanglement entropy satisfies a “volume
law”. Indeed, log dim(V,) is a sharp upper bound for S(A) and hence we may say
that random many-body states are nearly maximally entangled. We shall see that

random many-body states are actually far from what we want to describe ground
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states. Another place where such a volume law for entanglement appears comes by
considering highly excited energy eigenstates of a many-body system. Following the
logic of eigenstate thermalization, for any region A occupying less than half the system
size, S(A) will look thermal with a temperature set by the average energy density
determined from the energy eigenstate in question. Here again we find a volume
law since thermal entropy is extensive, but there is no thermal ensemble, instead
entanglement along with the typicality of energy eigenstates produces thermal physics

locally.

2.2.2 Measuring entanglement

There is currently no universal way to measure entanglement experimentally, although
there have been many isolated proposals. For certain kinds of non-interacting systems
it has been shown that number fluctuations, of electrons, say, are related in a definite
way to entanglement entropy [19]. It is possible to compute entanglement numerically
in some cases, for example, in one dimensional critical systems using density matrix
renormalization group and in some higher dimensional systems without a sign prob-
lem using quantum Monte Carlo. We have experimental procedures to determine if
entanglement is present at all, a kind of yes-no question, but it is currently not known
how to measure entanglement precisely in many-body systems and whether such a
measurement is even feasible. Indeed, given that entanglement entropy is such a non-
local quantity, it might be quite hard to measure experimentally or even numerically
in the general case.

If we had a quantum computer that could, given some local Hamiltonian H, re-
liably prepare ground states of that Hamiltonian, then we can give a procedure to
measure entanglement in one dimensional systems using a quantum computer. We
proceed as follows. To measure the second Renyi entropy Si(A4) = —logtr(p%) we
prepare two copies of the ground state restricted to region A and introduce an auxil-
lary qubit initialized in the state |0) +|1). Next we apply a controlled swap operation
in region A to the two copies of the ground state. This operation can be understood

as a transformation on three inputs. Conditioned on the value of one of the inputs
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we swap the states of the other two inputs. If we now look at the state of the control
qubit, it has become mixed since the circuit implemented a coherent superposition
of swapping and not swapping thus entanglement the control qubit with the other

inputs. In fact, the reduced density matrix for the qubit has the form

it = 3 (100001 + 1) {11+ tr(o3)10) (1] + tx(23) 1) (0]

and measurements in the |+) = |0) & |1) basis give 4+ with probability (1 + tr(p?))/2
and — with probability (1 — tr(p?%))/2.

This means we have access to a biased coin that encodes tr(p?%), and by flipping
that coin enough times, we can learn the bias as precisely as desired. There is one
very important subtlety, namely that tr(p%) can be quite small for gapless systems,
going like an inverse power of system size. Thus we may need to flip the coin many
times to see the bias clearly, but the procedure given here is sensible in the formal
sense that it wouldn’t take longer than a time that grows polynomial with system
size. However, this subtlety is more serious in higher dimensions where we expect
tr(p%) to be exponentially small. In this case, the method presented here would take
a time that grows exponentially with system size and hence is formally inefficient.
It is important to note that these formal statements don’t preclude the possibility
- of applying this procedure successfully for smaller system sizes in higher dimensions.
We merely state that the procedure is not efficient in a formal asymptotic sense. As
an additional complication, one must also face potential errors in the preparation of

our state so that the coin bias may fluctuate slightly from trial to trial.

Thus it remains an open question to provide efficient methods to measure or
‘compute the entanglement Renyi entropies for a generic many-body éystem. We
believe this problem may be hard even for a quantum computer in the worst case, on
the other hand, it seems that sensible one dimensional ground states are within reach.
Similarly, recent calculations of the Renyi entropy using quantum Monte Carlo seem
to suggest that accurate calculations may be possible for a restricted class of problems

(those that have all negative off diagonal elements of the Hamiltonian in some basis)
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[20, 21]. However, we note that one still has to contend with the exponentially small
nature of tr(p%). The power of a quantum computer to compute entropies of ground
states of more general Hamiltonians is simply not known. There are a few scattered
proposals to measurc entanglement using fluctuations of various conserved quantities
[19] or via quantum quenches [22], but here again we have very little information.
Especially outside of one dimension, entanglement entropy remains poorly connected

to numerics and experiment.

2.2.3 Basic structure of entanglement in local quantum sys-

tems

The basic behavior of entanglement entropy in ground states of many-body systems
is encapsulated in the boundary law [23]. The boundary law states that the entan-
glement entropy of a region of linear size L in d dimensions scales as L?"! like the
boundary of the spatial region considered. There are several exceptions to this scal-
ing including critical or gapless systems in one dimension, infinite randomness fixed
points in one dimension, and Fermi liquids in higher dimensions with a codimension
one Fermi surface. In all these cases the boundary law is weakly violated with a log-
arithmic correction going like L 'log L. There are additional constructions in the
context of quantum information science that have higher entanglement, for example,
one dimensional systems with entanglement scaling like L* with o < 1. However,
these constructions are typically pathological or unnatural from the point of view of
generic local systems. These pathologies include long range interactions, highly fine
tuned couplings, many nearly degenerate ground states, and so forth.

The boundary law for entanglement entropy is a nearly universal feature of quan-
tum ground state. It can be translated into an extremely general and useful class
of variation states known collectively as tensor network states. However, it should
also be emphasized that the value of the entanglement entropy is not itself universal.
For example, two systems with different microscopic Hamiltonians which nevertheless

exist in the same phase may have different values of entanglement entropy. In the
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language of quantum field theory, entanglement entropy is a divergent quantity that
is sensitive to the details of the high energy regulator. On the othef hand, there are
subleading in L terms in the entanglement entropy that are believed to be universal.
In one dimension such terms can even dominate the boundary law contribution as in
conformal field theories where there exists a logarithmic correction with a coefficient

given by the central charge.

2.3 Understanding the boundary law for entangle-

ment entropy

Because the boundary law for entanglement entropy is of foundational importance, we
now review a large number of points of view justifying the boundary law. Very little
of what we will say constitutes a complete proof, but we can amass a large amount of
physical intuition concerning the origin of the boundary law. Following these notes
we will present a very general and simple set of ideas we have developed based on
the renormalization group that correctly capture all known forms of entanglement in

sensible many-body ground states.

2.3.1 Model calculations

The most elementary evidence comes from calculations in model systems. Free gapless
bosons in more than one spatial dimension obey a boundary law as do free fermions
without a Fermi surface. As we have mentioned, gapless bosons or fermions in one
dimension and Fermi surfaces in higher dimensions are all associated with weak uni-
versal violations of the boundary law. Model calculations for free gapped bosons’wand
fermions indicate a boundary law in all dimensions. Various model wavefunctions
for topological phases can be shown, either numerically or analytically, to satisfy a
boundary law for entanglement entropy. There is also recent numerical evidence for
the boundary law in non-trivial interacting theories via sophisticated quantum Monte

Carlo calculations. So we have some evidence that both gapless and gapped phases
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of matter satisfy a boundary law with some notable (but understood) logarithmic

corrections. How general can this conclusion be?

2.3.2 Gapped phases

Gapped phases of matter with a finite correlation length ¢ might be expected to obey
an boundary law because of the short range nature of correlations in such a phase. We
might expect that the entanglement entropy could be no more than a constant times
£L% ! since regions more than £ away from each other are essentially uncorrelated.
Hence we should enclose the boundary of our region of interest with a shell of thickness
€. If the region of interest and the shell are in a combined pure state, then the
entanglement entropy of the region of interest is equal to the entanglement entropy of
the shell, but the latter is boundary above by log dim. shell Hilbert space ~ £L471.
We note also that in one dimension it can be rigorously proven that a gap implies
the boundary law [24], but rather such a result is true in higher dimensions is not yet

known, although we believe it is true.

2.3.3 Imaginary time evolution

Another way to approach the boundary law is to imagine preparing the quantum
ground state of interest by imaginary time evolution. Suppose we take as our initial
state an unentangled state v). As long as this state has some overlap with the true
ground state, we know that limg_,, ¢%¢*%H |psiy) will be proportional to the ground
state of H. To understand the boundary law from this point of view we need to
understand how big § needs to be in practice and how much entanglement imaginary
time evolution can generate. Once again, if the true ground state has a gap to all
excitations then we might expect that for § > 1/A the imaginary time evolution
of the product state will produce a state in the same universality class as the true
ground state. For example, if the first excited state consists of a single spin flip that
can occur at any one of N sites, then take f ~ 1/Alog N will provide a very good

approximation to the ground state (the log accounts for the degeneracy associated
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with the first excited state). More generally, we would like to argue to that 8> 1/A
independent of system size produces a wavefunction in the same phase as the true

ground state of H. If this is so, then so long as e=#H

doesn’t generate too much
entanglement, the boundary law will follow. In the same way that ordinary time
evolution cannot establish correlations between arbitrarily distant regions arbitrarily
fast (a result known as the Lieb-Robinson bound), imaginary time evolution for a
finite imaginary time (i.e. not growihg with system size) can be expected to correlate
regions up to a given finite distance ¢ away where ¢ ~ v ~ vpr/A ~ €. Thus
we recover the intuition of the previous paragraph for gapped phases. Although
imaginary time evolution can also often be fruitfully applied to produce approximate

gapless ground states, we cannot with the same degree of confidence use this method

to assert a boundary law for such states.

2.3.4 Twist fields

Still another perspective comes from the technology of twist fields. We will have much
more to say about these objects later in the thesis. For now, let us say that they are
operators defined so that their expectation values give various of powers of a reduced
density matrix: (K,[R]) = trg(p%). The important property of these operators for
our current purposes is that they are extended, like Wilson lines in gauge theory.
In particular, they are extended along the boundary of the region of interest, here
called R. In addition, they sit at a particular point in time, the time at which we
would like to compute the trace. For example, in one spatial dimension they are point
like operators and in two spatial dimensions they are line operators. Taking the case
of two dimensions as an example, analogous to the physics of Wilson lines in gauge
theory, the expectation of these operators will depend on certain geometrical features
of the region R in question. The boundary law corresponds to the statement that
(K,[R])) ~ ef™IPRI This is a very natural result if the different local “sections” of
the twist field along OR have decaying correlations with each other (either sufficiently
fast power law or exponential decay). In other words, we would like to claim the

boundary law is essentially a consequence of locality. We will see that this is so later
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on.

2.3.5 Gluing of regions

We can also form the state of the full system by “gluing” the regions together using
the interaction Hamiltonian. Write the Hamiltonian as H = Hy + Hp + Vsp where
Vag is localized along the boundary between A and B. Importantly, this operator
acts on a Hilbert space of dimension roughly exp c|0A| where c is some constant and
|0A| is the size of the boundary of A (and also of B). Even more importantly, this
does not imply that the entropy due to the coupling induced by V4p is bounded by
|0A|. One dimensional critical systems are an exception, as are fermion systems with
a Fermi surface. Nevertheless, the boundary law is the statement that this intuition is
often correct. The important question is, how far does the influence of V45 penetrate
into the bulk of A and B when we restrict to low lying states of H4 and Hp?

If the spectra of H4 and Hpg are gapped, or more generally, if the gapless states in
the spectrum are restricted to the boundary (to allow for edge states), then we expect
that the influence of Vg doesn’t propagate too far into the bulk and the resulting
entanglement entropy obeys a boundary law. In the case of a gapless bulk spectrum,
the influence of Vg obviously extends into the bulk, but this does not imply that
the boundary law is violated. We must balance the entangling power of V45 on low
lying states with its decaying influence in the bulk. In fact, the renormalization group

argument given below makes this tradeoft explicit.

2.3.6 Adiabatic continuity

We have already seen that some free theories, both gapless and gapped, may be shown
to have a boundary law. Assuming the qualitative structure of entanglement doesn’t
change as various interactions are turned on (free theories already seem to show most
entanglement phenomena), then we should expect any phase that is adiabatically
connected to a non-interacting phase to have a boundary law. This applies to both

gapless and gapped phases. We should caution, however, that is important that the
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free theory be “generic in some sense”. As an example of the danger is provided by the
Mott insulating phase of the Bose Hubbard model. If we consider bosons at integer
filling and turn the hopping matrix element completely off, then the resulting state is
unentangled and is adiabatically connected the finite hopping Mott insulating phase
which does have an boundary law scaling for its entanglement entropy. Thus we must
insure that the solvable point we consider has generic entanglement behavior in order
to draw conclusions about the whole phase. Statements of adiabatic continuity can
be checked using perturbation theory for the entanglement entropy or more generally

for the Renyi entropies.

2.3.7 Conformal mapping

For a class of gapless systems known as conformal field theories that typically describe
critical points, a non-perturbative mapping of the entanglement entropy of a d dimen-
sional ball to the thermal entropy of a d dimensional hyperbolic space guarantees that
at least the ball satisfies a boundary law [25]. This is because the curved geometry of
hyperbolic space insures that “areas” and “volumes” scale the same way. Thus the
thermal entropy on the hyperbolic space, which is extensive and scales as the volume,
also scales as the area. This in turn implies that the entanglement entropy satisfies a
boundary law in the flat geometry. This argument is powerful despite its restricted
applicability bgcause it gives us complete confidence in the boundary law for certain

gapless phases in more than one dimension.

2.3.8 Holographic calculations

Along these lines, the powerful technology of holographic duality can be used to
compute the entanglement entropy in certain very special theories, for example, large
N (number of colors) non-Abelian gauge theories. These model systems are not
easily found in the laboratory, but we can nevertheless determine that they satisfy
a boundary law using the tools of holographic duality. We emphasize that this is a

non-trivial class of gapped and gapless theories that demonstrably have boundary law
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scaling of entanglement. Along the lines of the adiabatic continuity argument given
earlier, if any of the exotic models are in the same phase as a more realistic model,
we expect those realistic models to share the same leading scaling for entanglement

entropy.

2.3.9 Finite T mutual information

A quantity we shall consider in much greater detail later is the quantum mutual in-
formation Z(A, B) = S(A) + S(B) — S(AB) between two regions A and B. If AB
is a pure, then S(AB) = 0 and Z(A, B) = 25(A) = 25(B). Thus if the mutual
information obeys a boundary law then so does the entanglement entropy, at least
we the total system is pure. We can generalize this construction to finite tempera-
ture where the subtraction in the definition of the mutual information removes the
extensive part of the entropy. As a result, one can prove quite rigorously that the
mutual information obeys a boundary law at finite temperature [26]. To the extent
that this behavior persists to zero temperature, the entanglement entropy also obeys
a boundary law. However, we are only able to prove that the mutual information at
finite temperature obeys a boundary law with a coeflicient that diverges as T' — 0,
so boundary law violations are still possible at zero temperature. Nevertheless, there
is often a deep connection between thermal entropy and entanglement entropy since

the same low energy degrees of freedom are responsible for both.

2.3.10 Limitations

Despite all these heuristic arguments, there are known limitations to the boundary
law. Gapless states in one dimension are known violate the boundary law logarith-
mically [27, 28]. Random systems in one dimension are also known the violate the
boundary law. Here the violation comes from the presence of long range singlets in
the ground state of the random system. Fermi liquids with a codimension one Fermi
surface also violate the boundary law for entanglement entropy in more than dimen-

sion. Another way to violate the boundary law for entanglement entropy is to study
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quantum systems on curved spaces. Hyperbolic space has the property that areas
and volumes scale in the same way with linear size, hence although the entangle-
ment entropy of a region may still be proportional to the area of the region, the area
and the volume may be indistinguishable in terms of scaling. Many of these seem-
ing anomalies are actually perfectly sensible once we understand the renormalization

group perspective on entanglement in local quantum systems.

2.4 Entanglement and renormalization

There is a simple scaling picture which captures much of the variety of possible
entanglement behavior. Consider a local lattice model or quantum field theory in d
space dimensions. We wish to analyze the behavior of entanglement as a function
of energy scale. To this end, let us introduce a variable r which encodes the length
scale of interest. 7 = € corresponds to the high energy cutoff where the field theory
is superseded by some high energy completion, perhaps a lattice model. r — oo
corresponds to the low energy limit of the quantum field theory, and if the field
theory is gapped then this limit gives a trivial theory. As in standard renormalization
group treatments, r changes as we move along the renormalization group flow, and

the appropriate measure for changes in r is the logarithmic measure dr/r.

We wish to make a hypothesis about the entanglement at a scale r in order to
recover the familiar boundary law scaling of entanglement entropy. To motivate the
coming assumption, consider the coarse grained Hamiltonian H(r) as a function of
T )At each scale r, this Hamiltonian is local at scales lqnger than r, for example,
the microscopic Hamiltonian H(e€) is local at the lattice scale. Thus, considering a
region of size L and its complement, the coarse grained Hamiltonian at scale r only
entangles the region with its environment along the boundary of the region. Now,
the rough number of degrees of freedom at the boundary of the region of size L at
scale 7 is (—f—)d_l in d space dimensions. If we assume that each degree of freedom

contributes roughly one “ebit” to the entanglement entropy, then the contribution to
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the entanglement entropy at scale r is

4S(r) = <£)d_lﬂ. (2.1)

T

To obtain the full entanglement entropy we simply integrate this contribution from

the high energy cutoff down to an appropriate low energy cutoff:

TIR d-1
5= / (5) dr. (2.2)
roUv T T

The high energy or UV cutoff is simply 7yy = ¢, but the low energy or infrared cutoft
depends on the nature of the theory. For a conformal field theory, the only scale is
the region size L, so the infrared cutoff is the region size rp = L. This naturally
reproduces the boundary law in dimension d > 1 and the logarithmic violation in
d = 1. This scaling ansatz also shows that corners in a conformal field theory can
be associated with logarithmic corrections because corners can contribute a fixed
amount of entanglement at every scale giving [ dr/r ~ log L. Keeping subleading
terms in L/r gives rise to subleading corrections to the boundary law for smooth
regions including some universal logarithmic terms in odd spatial dimensions. On the
other hand, if the theory has a finite correlation length, then the infrared cutoff is
given by r;p = min (L, &) where £ is the correlation length. In this case one always
obtains a boundary law for sufficiently large L. Note that the “entanglement per
scale” in the one dimensional conformal case is a quantity of some interest, namely
the central charge of the conformal field theory. We would like to say that in any
conformal field theory in any dimension, the notion of “entanglement per scale” is a
well defined and universal quantity. However, the entanglement entropy as it stands is
bound up with non-universal cutoff scale physics and cannot provide a clean definition

of “entanglement per scale”.
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2.5 Summary of results: Chapter 2

We have shown in this chapter that we can summarize and encode the diversity of
many-body entanglement, including the leading behavior and the structure of sub-
leading terms, into a simple scaling form. We have also reviewed the basic structure of
many-body entanglement and given several heuristic justifications for the boundary
law. Based on the renormalization group argument, any violations of the boundary
law must be due to low energy degrees of freedom, and in general we should look to low
energy degrees of freedom for universal contributions to entanglement. Ultimately,
we believe the renormalization group perspective is the most general and powerful,

and in later chapters we will explore in more detail this scaling picture.
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Chapter 3

Tensor Network States

3.1 Overview

This chapter focuses on tensor network states for many-body simulation. First, we de-
scribe how these states arise naturally from the considerations in Chapter 2. Then we
show that a large variety of interesting quantum states can be cast in this framework.
Then we discuss some of the physical properties that can be extracted from tensor
network states. Finally, we address in broad terms the challenges and prospects for

this method.

3.2 The physical corner of Hilbert space

As we have already described, the physical region of Hilbert is a complicated non-
linearly defined region within a much larger many-body Hilbert space. One useful
definition of this space is the following: give a quantum computer acting with ar-
bitrary local operations (gates) on a many-body quantum system, the states such
a computer could reach in time polynomial in the system size are physical. More
simply, if a quantum computer can prepare a state in a reasonable amount of time
then that state is physical. This definition is useful, but given our limited under-
standing of quantum computers at this time, we would like to have an alternative

way to characterize this space of physical states.
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The area law for entanglement entropy that we encountered in the last chapter is
precisely such a principle. Since ground states of local Hamiltonians often satisfy a
boundary law, we should on very general grounds look for parameterizations of the
physical space that naturally encbde this feature. Tensor network states satisfy this

purpose.

3.3 Tensor network states

Tensor network states are a class of variational states that are defined in terms of a
network of auxillary degrees of freedom and linear mappings (the tensors). Let us
begin by imagining a linear chain of spins. We would like to give a recipe for com-
puting the amplitude 1)(m;, ma, ..., my) for N spins to have the values {my, ..., my}.
Knowledge of all the amplitudes requires 2 complex numbers (modulo a trivial over-
all normalization), but we want to express this complicated set of data in terms of a
smaller number of physical parameters. This leads to matrix product states for one
dimensional spin chains. In the simplest case we pick two matrices A™ (m = 0,1 or

up and down) of size D x D and write the amplitude as
Y(my,...,my) = tr(A™.. A™N).

For example, if we want to know the amplitude of 001 for an N = 3 chain, we simply
take two of the m = 0 matrices A® and one of the m = 1 matrices and compute the
trace tr(A°A°A'). We should not confuse the m-label on A™ as powers of a single
matrix A.

Matrix product states are useful for a number of purposes. First, they underlie
the functioning of the density matrix renormalization group algorithm which has
had a profound impact on physics in one dimension [§8]. Second, they are known
to accurately represent quantum ground states of gapped Hamiltonians [24]. Thus
the problem we outlined in the introduction, of characterizing the space of physical

states, has largely been achieved for gapped phases of matter in one spatial dimension.
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(2)

Figure 3-1: A schematic illustration of matrix product states for a one dimensional
spin chain and tensor network states for a two dimensional square lattice.

Third, these variational states are useful for studying dynamics of one dimensional
systems [9)].

Tensor network states represent a broad class of variational states for quantum
many-body systems that generalize the ideas of matrix product states to higher di-
mensions. Imagine now a square lattice instead of a spin chain. Now instead of
associating matrices A™ with each site we will associate tensors T™ to each site.
Where the matrix had two indices or “legs” (one for each neighbor) that were con-
tracted in the spin chain, the tensor will have more indices (each running from 1 to
D) that we will contact together in one large network. In principle, we calculate am-
plitudes in a precisely analagous fashion. Namely, for a given configuration of spins,
we contract together a particular choice of N tensors in a way specified by the lattice
geometry. This is illustrated in Fig. 3.3 Note that any state in the Hilbert space
can be represented as a tensor network state as long as we take D of order exp (N),
but in practice we want to capture the universal physics of phases of matter using an

internal dimension D of order one.

3.3.1 Examples

The simplest example of a tensor network state is any mean field state. In such a
mean field state, the quantum state factorizes in real space into a pure state on each
lattice site. The tensors in the tensor network representation may then be chosen with
D = 1 yielding a simple number 7™ for each choice m. The contraction is trivial

and T™ is simply the amplitude for state m on a given site. Thus all of mean field
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theory fits within the framework of tensor network states, at least as long as we allow
general tensors, for example, relaxing translation invariance to describe spontaneous
symmetry breaking.

The simplest non-trivial tensor network state (and indeed the origin of the con-
cept) may the AKLT state of an s = 1 spin chain [29]. This state is the exact solution
of a certain deformation of the antiferromagnetic Heisenberg chain that describes a
gapped ground state with interesting edge states. Indeed, at each end of a finite
chain there is a dangling s = 1/2 spin. Since we are describing the spin chain our
tensors will have one physical index and two internal indices (for the two neighbors
of each site) and thus may be described as matrices as above. Labeling each site by
eigenstates of S, = +1, 0 we have three matrices: A™ =¢7, A° =07 and A ' =0".
We we contract together a long chain of these matrices and perform a final trace we
obtain the amplitudes for the AKLT state on a circle. This representation also repro-
duces in a simple way well known features of the AKLT states, for example, that we
can never have two adjacent sites with .S, = 1. Here this follows because (¢7)? = 0.

Recent efforts at classification of phases in one dimension have led to a belief that
such matrix product states are a completely general description of gapped phases of
matter [30, 31]. In fact, it has been rigorously proven that matrix product states can
accurately approximate gapped ground states in one dimension [24]. In higher di-
mensions the situation is less clear. We can still certainly capture symmetry breaking
phases of matter as well as short range entangled phases of matter such as gener-
alizations of AKLT. We can even described critical points in some cases in higher
dimensions, although the analogous construction in one dimension requires a mild
extension of matrix product states [?]. We will return to this point later. For the mo-
ment, we wish to focus on a particularly interesting class of phases in two dimensions,

namely those phases that are described by topological order.

3.3.2 Topological Phases

Topological order describes gapped phases of matter in two (or more) dimensions

which possess interesting properties related to the topology of space [32, 33]. For
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example, a system on a sphere will have a unique ground state, but the same system
on a torus will have a ground state degeneracy. Furthermore, this degeneracy is not
protected by any symmetry, it has its origin in the topology of the underlying space.
Such phases of matter also possess interesting quasiparticle excitations known as
anyons that generalize the notion of fermions and bosons and can even be non-abelian.
Non-abelian anyons have the property that to a given configuration of anyons we
assign a space of states, and motions of the anyons can realize unitary transformations
on this space. Like ground state degeneracy on a torus, these braiding operations
have a topological character and are insensitive to local perturbations. For these
reasons, topological phases of matter have been proposed as a useful substrate for

doing quantum computation, a scheme known as topological quantum computation

34, 35].

Here we show that a large class of such topologically ordered phases can be written
exactly as tensor network states at a special point in their parameter space. Hence
tensor network states can capture the physics of topological order, a feat that is
beyond conventional mean field theory. We can also use the tensor network represen-
tation to calculate physical properties of a given topological phase. However, we also

face some challenges that will be described below.

The simplest example of a topologically ordered phase is provided by Kitaev’s
toric code [34]. We will work on the honeycomb lattice. The Hilbert space consists
of a spin half degree of freedom on each edge of the honeycomb lattice. We focus on
two kinds of structure: stars s which include the three spins adjacent to a site and
plaquettes p which include the six spins in one hexagon of the honeycomb lattice.

The toric code Hamiltonian is
H= ——UZHJZ”— KZHof.
s 1€s p i€Ep

Every term commutes with every other and hence the toric code is exactly solvable.
If we interpret the the state ¢ = —1 as an empty link and the state ¢® = 1 as

string, then the ground state may be described as a superposition of all closed string
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configurations. The first term in the Hamiltonian enforces the closed string constraint
at each vertex, and the second term forces us to sum over all closed string states (it

creates elementary closed string states around plaquettes).

On the plane the above Hamiltonian has a unique ground state, but the same
Hamiltonian on a torus has a ground state degeneracy. The four degenerate states are
topologically protected, hence the description topological order, and are robust to any
local perturbation. The ground state wavefunction on the plane possesses long range
entanglement as quantified by the topological entanglement entropy which is here
log 2. Any gapped phase of matter adiabatically connected to a product state always
has zero topological entanglement entropy, hence product states cannot capture even
qualitatively the physics of topological phases. Now we show that tensor network

states can capture such phases.

We introduce two kinds of tensors, 7. living on the sites of the sites of the
honeycomb lattice and G7; living on the links of the honeycomb lattice. a,b, ... are
internal indices running from 0,1, ..., D — 1 while m is a physical index running over
0,1 corresponding to the absence/presence of strings (eigenvalue of (1 + 0%)/2). We
will only need D = 2 for an exact representation. Set G = 6784, and Tppe = (a+b+
¢)mod 2. Then the tensor contraction the honeycomb network formed from G and T’
give exactly the ground state wavefunction of the toric code. This is because G maps
the physical index directly into the internal index and then 7" simply expresses the
closed string constraint. When we sum over internal indices we recover a superposition

of all closed string states.

This construction can be generalized to a large class of topologically ordered states
known as string-net models [11, 36]. These are exactly solvable lattice models of
non-chiral topological phases primarily in two dimensions. Exact representations of
string-net states are always possible using an internal dimension D = N3 where N
is the number of string types. N = 2 in the toric code (no string and string). The
construction is algebraically cumbersome, but the basic intuition is the same as for
the toric code. We map the physical index onto the internal index via a “triple

line construction” and implement a certain set of constraints. We can also extract
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topological data from the tensors defining the tensor network representation of a

topologically ordered phase.

3.4 Challenges and prospects

There remain many challenges going forward with tensor network states. While the
contraction of tensor networks in one dimension is an efficient process, contraction
of higher dimensional tensor networks require approximations. Even with these ap-
proximations, the numerical cost of tensor network algorithms in higher dimensions
typically scale as a high power of D. Unlike in one dimension where one can easily
achieve D ~ 103, D ~ 10 is already challenging in higher dimensions. Because D is
the naive refinement parameter of the tensor network class of states, we are somewhat
limited at the present time in higher dimensions. However, this limitation is not fun-
damental, instead we must understand better the detailed structure of entanglement
in such states to make better use of our limited resources.

Part of the reason why the detailed structure of entanglement is murky in tensor
network states is that these states suffer from an ambiguity known as gauge sym-
metry. Gauge symmetry or gauge redundancy means many tensors give the same
physical wavefunction. For example, along any tensor contraction insert identity as
1= MM~! for any invertible matrix M. Now absorb M and M ! into the adjacent
tensors being contracted to define new tensors. These new tensors give the same
state by construction, but they can appear quite different. Thus characterizing what
is physical about a given tensor is non-trivial, just as extracting the physics of a gauge
field requires one to look for gauge invariant observables. There are two immediate
consequences of this gauge redundancy. First, symmetries present in the physical
wavefunction need not appear at the level of the tensors because we can always jum-
ble these tensors up with gauge artifacts. Second, attempts to minimize the energy
of a system as a function of the tensors may encounter many flat or gauge directions
in the energy landscape that complicate numerical cfforts.

Besides using tensor network states as variational states for local Hamiltonians,
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we can also find local a local Hamiltonian for which a given tensor network state
is the exact ground state. This procedure is possible because the Schmidt rank
of the reduced density of a subregion of linear size L in d dimensions is bounded
by c¢L? ! where ¢ depends only on the internal dimension and connectivity. Thus
the reduced density matrix of a sufficiently large block always has a non-trivial null
space since the dimension of the block Hilbert space scales as L%. By summing
many such projectors onto null spaces of large blocks, we can build a non-trivial
Hamiltonian that is guaranteed to have the tensor network state as an exact ground
state. Furthermore, while projectors for overlapping blocks may not commute in
general, the tensor network state is nevertheless a frustration free ground state of this
parent Hamiltonian. This means that it is separately a ground state of every local
term in the Hamiltonian (the ground state space of a projector is simply the set of
of states annihilated by the projector). The non-trivial fact about this Hamiltonian
that we cannot guarantee in general is the presence of a gap, in other words, the
Hamiltonian may have many degenerate ground states or low lying states. Of course,
if we want to represent gapless phases using a tensor network state we certainly
should not be able to prove a gap, nevertheless, we should keep in mind that the
parent Hamiltonian coming from a tensor network state may be very fine tuned or

singular.

If we believe that every phase of matter satisfying a boundary law for entangle-
ment can be captured by a tensor network state, then every phase of matter has a
frustration free Hamiltonian with a ground state that captures the qualitative low
energy properties of the phase. This is by no means certain, and as we will explore in
the next chapter, there are also states that explicitly violate the boundary law. How-
ever, there are many interesting gapped phases that are known to be ground states of
Hamiltonians that are sums of non-commuting projectors. These include string net
models as well as ideal Hamiltonians for fractional quantum hall states. However, it
is also appropriate to mention a danger of the parent Hamiltonian approach. Tt is
possible to make small changes in the tensors forming a tensor network state that

drastically change the parent Hamiltonian. For example, the toric code is provably
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absolutely stable to all local perturbations, nevertheless, we can easily introduce a
string breaking term in the tensor 7" defined above that immediately causes us to flow
out of the topological phase under renormalization. Thus the parent Hamiltonian for
this string breaking tensor network must be drastically different from that of the true
topological phase. By requiring certain symmetries to be present, these unphysical

modifications can be avoided [37], but there is still much to understand here.

We mention one final point of confusion regarding tensor network states and the
boundary law. While matrix product states and density matrix renormalization group
in one dimension seem to capture the physics of one dimensional phases very well, we
can be sure there is more to the story in higher dimensions beyond the boundary law.
This follows from the simple observation that systems we consider computationally
“easy”, like the bosonic Hubbard model, and systems we consider computationally
“hard”, like the fermionic Hubbard model, may both have satisfy a boundary law
for entanglement entropy. What exactly we mean by computational hardness is not
clear, but one candidate is the viability of using quantum Monte Carlo, and of course
the fermionic system may have a Fermi surface in which it would be more highly
entangled. But the general point remains that the boundary law is too universal or
too coarse a measure and hence there must be additional structure, perhaps in the
finer details of entanglement, that distinguish easy from hard. Of course, we would
also hope that some problems that appear hard for quantum Monte Carlo would
actually be easier for tensor network based approaches, but we do not yet have a

good idea about how entanglement cuts through the space of hard problems.

Let us end on a point of optimism by noting that tensor network states in one
dimension have revolutionized the study of one dimensional phases of matter. They
have been used to find ground states, to simualate dynamics, and to classify phases
of matter. There are tantalizing hints that tensor network states will open up new
vistas in higher dimensional systems as well. They are already playing an important
role in quantum information studies of Hamiltonian complexity and in description of
topological phases of matter. We are at an early stage and tensor network states have

yet to prove their worth in higher dimensions, but we believe the future is promising.
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3.5 Summary of results: Chapter 3

In this chapter we have focused on the leading boundary law term in the entanglement
entropy of spatial regions. We have reviewed how the existence of the boundary
law leads to a suggestive class of variational states that automatically incorporate
boundary law scaling for entanglement entropy. Our main results here include an
exact tensor network description of a variety of interesting topological phases [11] as
well as an approach to extracting universal topological data from tensor networks
[12]. The tensor network approach to general many-body quantum systems is still in
its infancy, but building on the success of DMRG in one dimension and other recent
results in higher dimensions, we believe it will mature into a useful tool for local
quantum physics. Tensor network states are certainly part of the broader theoretical

picture we are trying to develop for quantum many-body systems.
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Chapter 4

Boundary Law Violations

4.1 Overview

In Chapter 3 we described a class of variational states suited to simulation of many-
body systems with a boundary law. In this chapter, to probe the limits of this
formalism, we develop an understanding of systems known to violate the boundary
law in more than one dimension. This includes the Fermi gas, Fermi liquids, exotic
spin liquids, and much more. The unifying theme is the existence of an effectively

one dimensional description of the gapless excitations in the system.

4.2 One dimension and beyond

Recall that one dimensional gapless systems are known to violate the boundary law
for entanglement entropy [27, 28]. Conformal field theories describe a special subset
of these theories where the low energy scale and Lorentz symmetry is enhanced to
the full 141 dimensional conformal group. These theories are partially characterized
by a central charge ¢ which controls many important properties including thermal
entropy, density of states, the trace anomaly, and most important for our purposes,

the leading behavior of entanglement entropy. In a conformal field theory with central
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charge ¢ the entanglement entropy of a region of linear size L is

S(L) = Sin (%)

with € an ultraviolet cutoff. The simplest example of such a CFT is given by the
interacting electron gas in one dimension, the Luttinger liquid, which has ¢ = 1.
However, while these one dimensional theories violate the boundary law, we argue
that they are not actually anomalous in the sense that they conform to the basic

scaling intuition outlined at the end of Chapter 2.

There are systems in higher spatial dimensions that also violate the boundary
law, but here the scaling intuition is not adequate to explain the anomaly. In fact,
we will show that the solution to all known anomalies of this type actually stems
from the physics of one dimension. That is, all systems that violate the boundary
law for entanglement entropy actually contain many gapless one dimensional degrees
of freedom. This leads to the general expectation that they will have an additional
logarithmic term in their entanglement entropy, an expectation we will clarify and

refine now.

4.3 Free fermion gas

Consider spinless fermions hopping on a square lattice in two dimensions. The lat-
tice provides an ultraviolet regulator for the theory. It is possible to add spin and
consider more generic lattices in different dimensions without any serious difficulties.
The physics is completely specified by giving the fermion dispersion relation ¢, as a
function of the pseudomomentum k lying in the 1st Brillouin zone. In particular, the
ground state is a Fermi sea where all states with energy less than the chemical poten-
tial y are filled. For fermions at half filling there is one fermion per two lattice sites
and hence the Fermi sea will occupy half the Brillouin zone. Generic filling fractions
and dispersion relations lead to a Fermi surface with codimension 1. This means that

the surface separating occupied and unoccupied regions in momentum space is a d—1
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dimensional subspace of the the d dimensional Brillouin zone. The generic presence
of a finite density of states at the Fermi surface is responsible for many of the unusual

properties of the Fermi gas.

As an example of such an unusual property, the Fermi gas has a heat capacity
linear in T in any dimension d. This result may be contrasted with the strongly
dimension dependent result for superfluid bosons C' ~ T¢. My interest here is in
the anomalous entanglement entropy of the Fermi gas. Many bosonic and gapped
fermionic systems in d > 1 spatial dimensions have an entanglement entropy scaling as
L4 for a region of size L, but free fermions with a codimension 1 Fermi surface have
the anomalous scaling L~ !In L. Remarkably, a precise formula for the logarithmic

term in the entropy was conjectured and verified numerically [38, 39, 40]. This formula

d—l
S= - k’gL / / Iny - | d A, dAs, (4.1)

27Td1

reads

where n, and n; are unit normals for the real space boundary and the Fermi surface
respectively. The integrals are over a scaled version of the real space boundary (hence
the overall L4~ factor) and the Fermi surface, and the whole expression is written in
units where the volume of the Fermi sea is one. I would like to understand how this

anomaly arises from the presence of the Fermi surface.

Because of the finite density of states at the Fermi surface it is useful to reinterpret
the low energy modes in terms of a large number of decoupled “radial” excitations.
The word radial is used because the Fermi velocity v, = Viex is normal to the Fermi
surface. Thus we can assign to each point on the Fermi surface a radial fermionic
mode with approximately linear dispersion and velocity given by the local Fermi
velocity. These modes are effectively relativistic and 1 + 1 dimensional traveling in
the local radial direction as a function of time. They are also chiral because the
direction of propagation is fixed by the local Fermi velocity. Modes traveling in the
opposite direction are typically on the other side of the Fermi surface. Chirality is
equivalent to the statement that there are no holes above the Fermi surface. This

kind of patching procedure is the first step towards a higher dimensional analog of
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bosonization, but we will not need anything more than the heuristic picture of many
chiral excitations. This point of view is also visible in various renormalization group

treatments of Fermi liquid systems [41, 42, 43].

4.3.1 Entanglement entropy

The presence of a large number of chiral one-dimensional excitations at low energy
strongly suggests a violation of the boundary law. To make this precise we need
some way to count the effective number of such chiral modes. This counting can be
performed using some intuition from the study of entanglement entropy, namely that
the imaginary partitions introduced to compute the entanglement entropy behave
very much like real physical boundaries. Tracing out degrees of freedom outside a
region of characteristic size L should coarse grain the Fermi surface into patches
of typical size 1/L%! exactly as in a finite size system. Each patch contributes a
factor of log L to the entanglement entropy because of the presence of a gapless one
dimensional mode. The total contribution from the Fermi surface should therefore
scale as L% 'log L with the Fermi momentum making up the units where necessary.
This simple argument is made more precise below, but it already captures the basic
intuition behind the violation of the boundary law.

Consider the case of half filling with dispersion €, = —2¢ cos kya arising from a
strongly anisotropic lattice model where fermions are unable to hop in the z direction.
The Fermi surface is nested and has two disconnected components given by the lines
ky = m/2a and k, = —n/2a where a is the lattice spacing. Let the subsystem of
interest be a box-like region of dimensions L x L aligned with the =z and y axes. The
mode density on the Fermi surface is L/27 and the length of the Fermi surface is
2n/a + 2w /a = 4w /a for a total of 2L/a modes. Each mode is chiral with left and
right central charges given by ¢; = 1 and cg = 0. Left and right are defined locally
on each patch relative to Fermi velocity, but the important point is only that one
of the central charges is one while the other is zero. The entanglement entropy of a
one dimensional conformal field theory on an interval of length L is 5’% log (L/¢)

[27, 28]. Putting everything together I find a total entropy of = log L. In order to

50



Figure 4-1: A sketch of the two model systems considered. Box A shows the Fermi
sea (in gray) of the strongly anisotropic model. The relative orientation of the Fermi
velocity and the chosen real space region (in black) is shown. Box B shows the Fermi
sea (in gray) at half filling for a fermion hopping on a square lattice. Again, the
relative orientation of the Fermi velocity and the chosen real space region (in black)
is shown.
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compare with previous work I use units where the volume of the Fermi sea is one.
This requirement is 472/(2a%) = 1 (the 2 is for half filling) giving a = v/2x. 1 find a
total entropy of S = g\/l—;;Llog L in agreement with the Widom formula.

Another simple situation is the case of equal hopping with dispersion ¢, = —2¢ cos k,a—
2¢g cos kya. At half filling the Fermi surface consists of a square rotated by 45 de-
grees occupying half the Brillouin zone. To again make things simple consider an
L x L region rotated by 45 degrees so that it is oriented identically to the Fermi sur-
face. Similar mode counting arguments now give 24/2L/a modes. Using units where
a = v/2m, 1 find a total entropy of S = 3—17rL log L again in agreement with the Widom
formula.

After these examples an understanding of the general Widom formula can be
obtained by breaking the real space boundary into small segments. We focus on the
two dimensional case to make the notation as simple as possible. Consider a segment
AA, of the real space boundary and a segment AA; of the Fermi surface. With a
mode density of AA,/27 the patch AA; contributes

2m

(4.2)

modes. The flux factor |n, - ng| counts the number of modes perpendicular to the real
space boundary. In d dimensions the above formula is modified by replacing 27 with
(2m)4-1 since AS, is now a general d — 1 dimensional surface element. Each of these

modes is chiral and contributes

AS ~ logL, = ~logL (4.3)

to the entanglement entropy on an interval of length L. Note that the precise choice
of linear size L in the logarithm is not critical as differences can be absorbed into the
non-universal boundary law piece of the entanglement entropy.

The total entanglement entropy is given by integrating the contributions from
all patches of the real space boundary and the Fermi surface. This result must be

multiplied by an additional factor of 1/2 because intervals are double counted in the
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Figure 4-2: Box A shows a spherical real space region of linear size L along with
a chosen real space patch on the boundary. The size of the patch (bold black bar)
has been exaggerated for clarity. Box B shows a local piece of the Fermi sea with
filled states in gray. The dots are an exaggerated representation of the effective mode
quantization coming from the real space patch. The relative orientation of the Fermi
velocity o ny and the real space patch normal n, is the origin of the “flux factor”
|ng - nx| counting the effective number of modes that propagate perpendicular to the
real space patch normal n,. Here the angle between n, and ny is m/4.
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integration. Equivalently, each end of a one dimensional interval can be thought of

as contrlbutmg LR Jog (L/€) to the entropy [28]. The full result is

1 L1 AydA
et //d Gl i, (4.4)

and this is the Widom formula before rescaling the real space integral.

We have shown in some simple cases that the entanglement entropy for free
fermions can be obtained using counting arguments and intuition from one dimen-
sional systems. We also argued that an explicit formula based on the Widom con-
jecture is the correct generalization to arbitrary Fermi surface shape and region ge-
ometry. These arguments naturally reproduce the fully one dimensional case exactly.
It is remarkable that the central charges of the chiral fermion are just right to make
the Widom formula true. Nevertheless, the value of the present point of view is not
that it provides a rigorous derivation but that it gives intuition to search for other

violations of the boundary law.

The theory described here predicts a violation of the boundary law in any system
with a large number of gapless 1 + 1d modes. Fermi liquids certainly qualify. The
recently proposed d-wave Bose liquid phase should also violate the boundary law [44].
Similarly, non-Fermi liquids with a sharp Fermi surface but no Landau quasiparticle
should violate the boundary law [45]. Gauge/gravity duality has recently provided an
interesting example of such a strongly correlated non-Fermi liquid phase [46]. Frus-
trated quantum magnets where the low energy description is in terms of deconfined
spinons with a Fermi surface should also violate the boundary law [47]. In fact, this
violation may be a useful numerical test for the existence of such a spinon phase. This
is because the logarithmic correction to the boundary law is a low energy phenomenon

that grows faster with region size than the non-universal boundary law term.
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4.4 Other highly entangled systems

Recall again that many systems, gapless or not, satisfy a boundary law for entangle-
ment entropy in higher dimensions [23]. This boundary law means that the entangle-
ment entropy of a region of linear size L in d spatial dimensions scales as L*~!. The
simplest exception in more than one dimension is provided by free fermions which
violate the boundary with an extra logarithmic correction [48, 38, 39, 49, 40]. It can
also be argued that Fermi liquids violate the boundary law in a universal way [14].
This argument is a refinement of the connection we just made between the boundary
law violation of free fermions and the gapless one dimensional nature of excitations
on the Fermi surface[13]. We will return to it later in this chapter.

For the moment we want to use similar intuition to argue for boundary law viola-
tions in a variety of systems in higher dimensions. We will compute the entanglement
entropy for three systems: a Weyl fermion in a magnetic field, a holographic sys-
tem of many interacting Weyl fermions in a magnetic field [50], and some topological
insulators with finite dislocation density [51, 52, 53, 54, 55, 56, 57]. These systems
all share a common feature which unifies the discussion, namely the appearance of
a large number of gapless one dimensional modes at low energies. It is these one

dimensional modes which are responsible for the violations of the boundary law.

4.4.1 Weyl fermion in a magnetic field

Consider a single Weyl fermion v/ charged under a gauge field A with charge ¢in 3+1
dimensions. The equation of motion for this fermion is ¥*D,t = 0 with y5¢ = —¢
where D,, = 0, — iqA, is the covariant derivative. Let there be a finite magnetic
field, say in the z direction: Fijp = 0,4y — ;A1 = B. The magnetic field defines
a length scale called the magnetic length ¢4 = 1/B (the units are made up by the
flux quantum). On length scales much less than ¢p the theory looks like a 3 + 1
dimensional conformal field theory. On length scales much bigger than ¢5 the theory
becomes effectively 1+ 1 dimensional. Indeed, the Weyl fermion is special because it

possesses zero modes that avoid being gapped by the magnetic field.
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Let us take the gamma matrices to satisfy {v*,7”} = 2n*” with 7*¥ mostly minus.
The chiral gamma matrix is defined to be ® = i7%4!'v%2y3 and we work in the chiral

T
basis where Dirac spinors decompose as ¢ = ( v Yr ) with

-1, 0
v = : (4.5)
0 1

The Weyl equation for a left handed spinor is
(10 — 10" D;)pr, = 0, (4.6)

with ¢* the usual Pauli matrices. The vector potential in Landau gauge is A, = Bx
for a constant magnetic field B in the z direction. Most solutions of the Weyl equation
in a finite magnetic field have a gap coming from the cyclotron motion, but there are
also zero mode solutions. These solutions may be heuristically understood as arising

from a balance between the Zeeman energy and the orbital cyclotron energy.

Zero mode solutions may be found by putting d;1; = 9,71, = 0 to obtain
001 + 0¥(8, — igBx)yL = 0. (4.7)

Landau gauge maintains translation invariance in the y direction, so I try a solution

of the form v (z,y) = ¥ (z)e*¥. The Weyl equation reduces to
Op = —0°(qBzx — k)yr (4.8)

with solution

Yr(z) = exp (——2212 (x - 5%) az) ¥1(0). (4.9)

In order for this solution to be normalizable we must have %41 (0) = 11 (0) (assuming
gB > 0) leaving only one degree of freedom. The spacing of k is determined by the
length of the system in the y direction to be Ak = %—’; We have one zero for each

value of k such that ¢ (z) sits inside the system in the x direction. The degeneracy g
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. L.L .
of zero modes is thus g = qgi’ = %;—y. More generally, these zero modes and their

degeneracy are protected by an index theorem relating the number of zero modes to

the magnetic flux penetrating the system: N,o.o modes = 3 J Fizdzdy.

So far we have ignored the z direction, but these zero modes actually disperse
in the z direction. Assuming a more general solution of the form ¢ (z,y,z2,t) =

eP=2+iPyy—iBly, () the full Weyl equation becomes
Eyy — p,o*yy — i(6%0, + 0¥(9y — i¢Bx))yr = 0. (4.10)

The second half of this equation is solved with the same zero mode profile as above.
The first half reduces to the equation E = p, using the fact that o%y;, = v, following
from the normalization condition. Thus each zero mode is actually relativistic chiral
fermion in one spatial dimension. The low energy physics is controlled entirely by

these zero modes as all other modes are gapped by the cyclotron motion.

Using the one dimensional structure we can compute the entanglement entropy
of the Weyl fermion. Consider a box of linear size L. The entanglement entropy S,
is defined as the von Neumann entropy of the reduced density matrix corresponding
to the box: Sy = —Tr(prlnpr). For one dimensional conformal field theories the

entanglement entropy is known to have the form

5, = LR (5) (4.11)

6 €

where c;, and cg are the left and right central charges and € is an ultraviolet cutoff
[28]. Weyl fermions in a magnetic field may be described by a large number of
one dimensional gapless modes, and these modes are each equivalent to a chiral 1+ 1
dimensional conformal field theory, the dimensions being z and ¢. Each chiral fermion
mode has ¢, = 1 and cg = 0 and hence contributes (1/6)In L to the entanglement

entropy. For a cube of side length L aligned with the 2 direction we have ¢ BL?/(2)
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zero modes for a total entanglement entropy

Sy = (ﬂ;}?) %ln (%) (4.12)

This formula may be checked using the generalization of one dimensional entangle-

ment entropy to finite temperature

S = cLt Cr In (ﬁ sinh %) (4.13)

6 e

The thermal entropy of these zero modes in a cube of size L is thus

gBL*\ nLT

which agrees with the direct thermodynamic calculation.

Before moving on, let us note that a single charged Weyl fermion does not give a
consistent quantum theory. This is due to the presence of a gauge anomaly propor-
tional to Tr(Q®) where @ is the charge matrix. There is also a gravitational anomaly
proportional to Tr(Q). Both of these anomalies must vanish for a completely well
defined chiral gauge theory, but this can be accomplished by adding Weyl fermions
with compensating charges. The boundary law violating behavior remains, and thus
there are consistent configurations of Weyl fermions that violate the boundary law

for entanglement entropy.

4.4.2 Holographic generalization

We have computed the entanglement entropy for a single free Weyl fermion and found
a term that violates the boundary law for entanglement entropy. A useful choice for
incorporating interactions is N' = 4 SU(N) Yang-Mills theory which includes 4N?
Wey! fermions as part of the field content. These fermions sit in the adjoint of
the non-Abelian gauge group SU(N), while the magnetic field B corresponds to a
weakly gauged U(1) subgroup of the R-symmetry. In zero magnetic field this theory

is conformal at all values of the t’'Hooft coupling A = ¢&,,N, but it is particularly
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amenable to study at strong coupling because of holographic duality. This duality
relates the N/ = 4 theory to a theory of quantum gravity, IIB string theory, in an
asymptotically five dimensional anti-de-Sitter spacetime (AdSs). The limit A — oo
and N — oo in the field theory gives classical supergravity in anti-de-Sitter space on

the gravity side.

In this strong coupling limit, configurations of the super Yang-Mills theory have
an emergent geometric interpretation in terms of classical gravitational field config-
urations. The ground state of the field theory is dual to pure anti-de-Sitter space,
and the field theory at finite temperature is accessed via a bulk black hole. The
field theory in a background magnetic field at zero temperature is obtained from
a magnetically charged extremal black hole in the bulk. Given the bulk geometric
configuration, the leading large N contribution to the entanglement entropy can be
determined holographically by computing the area of certain minimal surfaces in the

bulk [58, 59).

Consider extremal magnetic brane solutions in Einstein-Maxwell theory with nega-
tive cosmological constant in five dimensions [50]. These solutions interpolate between
an asymptotically AdSs region and a near horizon AdSs x T? region (assuming the xy
plane is compactified). The asymptotic AdSs region corresponds to the unperturbed
N = 4 theory at high energies. The near horizon region appears as a result of turning
on a magnetic field in the gauge theory. The radial evolotion represents a renormal-
ization group flow from a 3 + 1 dimensional conformal field theory at high energies
to an effectively 1 + 1 dimensional conformal field theory at low energies. This is
qualitatively similar to the physics of free Weyl fermions, and even at strong coupling
the cross-over scale is determined by the magnetic length. At zero temperature the

metric may be written in the form

dr?

U(r)

ds? = —U(r) dt*> + + U(r) dz* + €2V (dz? + dy?), (4.15)

with 7 the radial coordinate (r — oo is the boundary) and z the direction of the

magnetic field on the boundary [50]. We use bulk units with the AdS radius set to
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one. In addition to the metric, the gauge field has a profile given by F = Bdx A dy.
The asymptotic AdSs region is described by U = €2 = 12 while the near horizon
AdS3 x T? region corresponds to U = 3r? and €2V = B/3. Notice that in the near
horizon region the xy plane has decoupled from the radial coordinate and has fixed

size given by the magnetic length.

The entanglement entropy of a region in the dual field theory is determined by the
area of the minimal surface in the bulk that terminates on the boundary of the region
in the field theory. The entanglement entropy is just this minimal area divided by
4G§3). I will focus on the entanglement entropy of a rectangular region in boundary
theory of size L x L x L,. Assuming L > L, gives approximate translation invariance
in the xy plane. The minimal surface calculation reduces to a two dimensional problem
involving only the variables z and r. The zero temperature geometry is only known
numerically, and the minimal surface calculation can also only be done numerically.
However, the important physics can be extracted without the numerical details. For
cubic regions with all dimensions less than the magnetic length, the minimal surface
only probes the AdSs region and gives the usual ultraviolet divergent boundary law

for entanglement entropy.

For boundary regions of linear size much larger than the magnetic length, the
minimal surface passes right through the asymptotic AdSs region towards the near
horizon region. Once in the near horizon region, the x and y directions freeze out, and
the minimal surface behaves exactly as in AdSs. In particular, we find the character-
istic In (L,/#) dependence familiar from 1+ 1 dimensional conformal field theory with
the magnetic length providing the cutoff. The entanglement entropy thus consists of
two pieces, a non-universal boundary law contribution from the asymptotically AdSs
region and a universal low energy piece S;, ~ N2BL%In(L,/¢g). The appearance of
the magnetic field can be understood because the effective 1 + 1 dimensional central
charge is related to 1/ Gf,') which is enhanced relative to 1/ G§3) by a factor of BL?
from the freeze out of the xy plane. This strong coupling version of the free Weyl
fermion system thus also violates the boundary law for entanglement entropy at low

energies.
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4.4.3 Topological insulators

In both the cases considered above, the appearance of many gapless one dimensional
modes was responsible for the highly entangled nature of the quantum state. This
intuition can be applied to more experimentally relevant systems known as strong
topological insulators. These systems are time reversal invariant electronic band
insulators that are not smoothly connected to trivial band insulators. In particular,
they possess interesting topological structure that gives rise to protected edge modes.
These edge modes are robust so long as time reversal invariance is preserved [51, 53,
57]. Topological insulators in three spatial dimensions have gapless surface states
living in two spatial dimensions, but these modes do not lead to a violation of the
boundary law for entanglement entropy. Similarly, the bulk of a topological insulator
is gapped in a perfect crystal and certainly satisfies a boundary law for entanglement

entropy.

However, experimentally realized topological insulators are not perfect crystals,
they possess topological defects including dislocations in the crystalline bulk. Re-
markably, for certain kinds of topological insulators and dislocation types, the dislo-
cations have been shown to support gapless fermionic modes [60]. These effectively
one dimensional modes make the dislocations into gapless quantum wires threading
the otherwise gapped bulk. The one dimensional modes in the quantum wires are
analogous to the Weyl zero modes considered above, with the dislocations playing the
role of magnetic field lines. In the presence of a finite density of dislocations support-
ing gapless modes, the bulk of a strong topological insulator violates the boundary

law for entanglement entropy.

To estimate the size of the violation, consider the artificial situation of a dilute
array of topologically non-trivial dislocations all aligned. Let these dislocations have
an areal density p (a typical value of p might be 10> m~2 [60]). A region in the bulk of
size L x L x L,, with the z axis chosen parallel to the dislocations, effectively contains
pL? gapless one dimensional fermionic modes. These modes should each contribute

roughly In (L,/€) to the entanglement entropy. The boundary law violating compo-
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nent of the entanglement entropy is thus of order S ~ pL?In (L,/¢). This estimate
is crude, but it should suffice for a reasonably uniform and collimated set of disloca-
tions. Note that despite the enhanced L dependence relative to the usual boundary
law, this term may be much smaller than the boundary law term for experimentally
accessible system sizes and dislocation densities. We also wish to emphasize that this
is a statement about the zero temperature quantum state. The helical modes modes
are protected from elastic scattering (such scattering might otherwise localize a one
dimensional gapless mode), but at finite temperature or in the presence of inelastic

processes, the boundary law violating behavior will be disrupted.

4.5 Beyond entanglement entropy

We have been discussing a variety of systems in higher dimensions that violate the
boundary law for the entanglement entropy. This class includes free fermions [48,
38, 39, 49, 40, 61, 13], Fermi liquids [14], Weyl fermions in a magnetic field [15], and
more exotic systems including critical Fermi surfaces and Bose metals. The apparent
unifying theme is the existence of many gapless one dimensional degrees of freedom
in all these systems. Fermi liquids with a codimension one Fermi surface have long
been known to be equivalent to a set of nearly decoupled one dimensional gapless
modes [43, 42, 41].

We now return to this case to to compute Rényi entropies, defined again below, for
a free Fermi gas and for interacting fermions in a Fermi liquid state. These quantities
are interesting because they give in principle complete knowledge of the spectrum of
the reduced density matrix, although we will only compute them in the low energy
limit. We also describe the form of the entanglement entropy of more general regions
(non-convex or even disjoint) using the same one dimensional formulation. This per-
mits a calculation of the mutual information between two distant regions in a Fermi
liquid. All of these information theoretic quantities turn out to provide direct access
to the geometry of the interacting Fermi surface. They are universal in the sense that

they depend only on the geometry of the interacting Fermi surface and not on any
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other details of the Fermi liquid fixed point. Additionally, we compute the fermion
number fluctuations in a region of size L in a Fermi liquid and give general finite tem-
perature crossover forms for both the entropy and the number fluctuations. Together
these results provide a very complete characterization of the quantum information

theoretic content of Fermi liquids in terms of the geometry of low energy excitations.

4.5.1 One dimensional framework

The low energy physics of a system of free fermions is given in terms of the geometry
of the free Fermi surface. For example, the heat capacity of such a free fermion system
is simply proportional to the density of states times temperature, and the density of
states may be written as an integral of 1/vr over the Fermi surface. Each patch of
the Fermi surface contributes to physical quantities like a chiral 1 4+ 1 dimensional

free fermion.

Including interactions is possible at the free Fermi fixed point because phase space
restrictions reduce the effects of interactions to certain forward scattering terms la-
beled by an infinite set of Landau parameters. Each Landau parameter corresponds
to a single exactly marginal deformation of the free Fermi fixed point which preserves
all scaling dimensions. These forward scattering interactions preserve the fermion
number on each patch of the Fermi surface, and the Fermi liquid has a very large
symmetry group: U(1)*® [62, 63]. This one dimensional framework permits computa-
tion of the usual physical observables of Fermi liquids, observables like heat capacity
and compressibility. In addition, it provides simple access to many of the anomalous

entanglement and fluctuation properties of Fermi liquids.

These anomalous properties characterize the reduced density matrix of a region
of linear size L inside the Fermi liquid, and they represent non-traditional global
observables as opposed to local correlations functions. These observables include
entanglement entropy, defined as the von Neumann entropy of the reduced density
matrix of the region, and fermion number fluctuations, defined as the variance of

the fermion density integrated over the region. The entanglement entropy can be
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generalized to the Rényi entropy defined as

So = 11 In(tr(p2)). (4.16)

—

The von Neumann entropy S,N = —tr(p.Inpr) is recovered from S, in the limit
o — 1. Fermionic systems without a codimension one Fermi surface and most bosonic
systems have a Rényi entropy which scales with the boundary L?~! of the region con-
sidered. This leading scaling behavior is sensitive to the cutoff of the low energy effec-
tive theory and does not define a universal low energy observable. Other sub-leading
terms in the entanglement entropy may provide universal numbers characterizing

different phases, but these terms are in general hard to calculate and interpret.

Fluctuations of conserved quantities also behave similarly to the entanglement
entropy. Consider a system of fermions with a conserved fermion number obtained by
integrating the density n(x) over the entire system. Given access to only a subregion
of linear size L we may ask about the observable N; = fze ran(z). The average
(NL) = tr(prNr) is simply the average density times the volume of the subregion for
a translation invariant system. The fluctuations AN? = (N —(N.))?) = tr(pL(Np—
(N1))?) are generically non-zero and typically scale as the boundary of the subregion.
However, there are exceptions to this scaling, for example, it receives a logarithmic
correction, like the entanglement entropy, for critical one dimensional systems. Also,
symmetry breaking states have fluctuations in conserved quantities that scale as the
volume of the subregion; these fluctuations are due to the zero mode of the order

parameter.

Note that the presence of fluctuations in fermion number within a subregion is
not in conflict with a fixed total fermion number for the entire system as we always
study small subsystems of a larger system. Like the entanglement entropy of Fermi
liquids, the number fluctuations in a metal with codimension one Fermi surface are
anomalously large. One finds that AN% ~ L4 1In L with a multiplicative logarithmic
correction [64, 38, 65, 14]. We will later determine the precise form of this leading

logarithmic term.

64



These results are not restricted to zero temperature; indeed, there are universal
crossover functions that determine how the entanglement entropy and ground state
number fluctuations go over into the corresponding thermal quantities as the tempera-
ture is raised. For example, consider a circular region in a two dimensional spherically
symmetric Fermi liquid. The reduced density matrix for this region displays crossover
behavior at finite temperature from the zero temperature anomalous entanglement
regime to the finite temperature thermal regime. This crossover is captured by a

universal scaling function

mL fF
S(L, =5-7 2// dAgdAz|n, - ng|ln <—51 h(ﬁ)), (4.17)

where Lg is the chordal distance across the circle. This crossover function de-
pends only on the geometry of the Fermi surface and the real space region; the
physical Fermi velocity v appears simply as a unit conversion. It is the only trace
of interactions in this remarkably universal formula. We will discuss and generalize
this formula later in the paper. A similar formula exists for the number fluctuations

which we will derive below.

4.5.2 Rényi entropy

We turn first to the calculation of the Rényi entropy of the Fermi liquid. Like the
entanglement entropy, the Rényi entropy is a cutoff sensitive quantity. It typically
satisfies a boundary law, but we will find that Fermi liquids have a universal bound-
ary law violating piece tied to the geometry of the Fermi surface. The Rényi entropy
is of interest for several reasons. It is often easier to compute, both in field theory
and numerically, for example, by quantum Monte Carlo [66]. It can also be used to
characterize phases of matter, for example in topological phases, conformal field the-
ories, and holographic theories [67, 28, 68]. From a quantum information perspective,
the notion of single copy entanglement [69], given by the limit @ — oo of S,, deter-

mines the maximal deterministically distillable entanglement from the bipartition of
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a single copy of a quantum state. The entanglement entropy only gives the distillable
entanglement in the unphysical limit of many copies of the quantum state. I find
that the single copy entanglement is, for large L, simply one half the entanglement
entropy, similar to the one dimensional conformal result [70]. We will now use the

one dimensional framework to compute the Rényi entropy of a Fermi liquid.

Restricting first to the non-interacting case, each patch on the Fermi surface is
equivalent to the chiral half of one dimensional free fermion. The Rényi entropy S, of
such a one dimensional chiral fermion is known from conformal field theory. In fact,
it is simply proportional to the entanglement entropy with an o dependent prefactor.

The precise result is

1 1 L
Sa(1+l) = 5 (]. + “) ‘L -g R In (-), (418)

(87 €

where L is the length of the one dimensional interval and € is a short distance cutoff.
Returning to the Fermi surface problem, each patch contributes such a term to the
entanglement entropy with ¢, = 1 and cg = 0. The resulting Rényi entropy of the
Fermi liquid is remarkably simple; the universal part controlled by the low energy
theory is simply

1 1
Sa=3 (1 + E) S, (4.19)

where again, S; is the usual entanglement entropy in two dimensions given by

S1 = =5 12//dAde |ng - nklln( ) (4.20)

This isn’t the end of the story. Using the finite temperature crossover form for the
von Neumann entropy of the reduced density matrix we obtain a finite temperature

crossover form for the Rényi entropy. The result for two dimensions is

Se = % (1 + é) S(L,T), (4.21)

and in any spatial dimension with a codimension one Fermi surface
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We want to note that since the Fermi surface system has a cutoff, this formula
cannot truly be valid for all a. For example, the o — 0 limit of the Rényi entropy al-
ways produces the Schmidt rank of the reduced density matrix under study. However,
the @ — 0 limit of the conformal field theory result diverges corresponding to the
statement that a theory which is truly conformal to arbitrarily high energy must have
an infinite number of local degrees of freedom. At finite temperature we must keep
T/a < Tr or @ > T/Tr in order not to probe high energy physics, and similarly, at
zero temperature we must keep a > 1/(krL) to avoid the influence of non-universal

physics away from the Fermi surface.

Now at last restoring the interactions, the complete finite temperature crossover
function remains correct even in the presence of interactions because of the nature
of the Fermi liquid fixed point (more properly, fixed manifold). The counting of low
energy degrees of freedom remains the same. There are two possible modifications
of this formula when including interactions. First, the interactions may change the
geometry of the low energy Fermi surface. Spherical symmetry can prevent such
a modification, but in a solid state metal the crystal lattice breaks the rotational
symmetry. Nevertheless, the interacting Fermi surface in this less symmetric systems
continues to control the Rényi entropy. Second, the Fermi velocity must be replaced

by the renormalized physical Fermi velocity.

There are several checks of this formula. First, it correctly reproduces the one
dimensional result that must occur for non-interacting systems with nested Fermi
surfaces. Second, it reproduces the finite temperature Rényi entropy of the free Fermi
gas; this follows by a direct computation. Third, it reproduces the thermal Rényi

entropy of an interacting Fermi liquid. At finite temperature the Rényi entropy is

1 ay 1 Z(ap)
Sa——1~aln(tr(p(T) ))“1—-aln(Z(ﬂ)a) (4.23)
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where Z(f) is the partition function. The partition function of the Fermi liquid is
—InZ ~ T for small T compared to Ep, and this permits us to write Z(af8) =
Z(B)~. The final result is that the Rényi entropy for an interacting Fermi liquid
is the same universal function of « times the thermal entropy as predicted by the

formula above.

4.5.3 Entanglement entropy of disjoint regions

Having described in detail the leading behavior of the Rényi entropy for a single
convex region, we now turn to the problem of describing the entanglement entropy
for more complicated subregion geometries. Perhaps the most important motivation
for this study is the calculation of the quantum mutual information I(A, B) between

two regions A and B. The mutual information is
I(A,B) =SA+SB_SAUB; (424)

and this definition requires knowledge of the entanglement entropy of disjoint regions
to compute. We will see that the entropy of disjoint regions can be computed in a
manner similar to that of convex regions via a more general formula that can handle
arbitrary region geometry. The basic strategy remains the same: express all quantities
in terms of sums over one dimensional modes on the Fermi surface. Because these one
dimensional modes are conformal and, in fact, essentially free fermions, much can be
calculated. In particular, the main information we need is the entanglement entropy of
a one dimensional conformal field theory when the one dimensional subregion consists
of multiple regions.

This quantity, the entanglement entropy of multiple regions in a conformal field
theory, is not a simple quantity to compute in general. Despite some early claims in
the literature it is not as universal as the single region entanglement entropy which
depends only on the central charge of the conformal field theory. The multi-interval
entanglement entropy depends on the entire operator content of the theory as it

requires evaluating higher point correlation functions of twist fields. However, the
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Figure 4-3: Geometry of the entanglement entropy for a non-convex real space region.
The shaded grey region surrounded by the thick black line represents a particular non-
convex real space region. Dotted lines labeled V; (2 = 1, 2, 3) represent particular one
dimensional cuts experienced by a patch of the Fermi surface with vertical Fermi
velocity. Similarly, dashed lines labeled H; (¢ = 1, 2) represent particular one dimen-
sional cuts experienced by a patch of the Fermi surface with horizontal Fermi velocity.
Notice how the vertically moving fermion switches from an effectively single interval
geometry in V; to a two interval geometry in V, and back to a single interval in V.
On the other hand, H; and H, are both effectively single interval geometries.

relative simplicity of the Fermi liquid is a boon: the multiple interval result for a one
dimensional free fermion is known. We will see shortly how this information permits
calculation of the entanglement entropy of arbitrary regions in a Fermi liquid.

Let us briefly recall the one dimensional result. We consider a subsystem con-
sisting of several disjoint intervals labeled [a;,b;] i = 1,...,m with m the number of
intervals. As we said before, the entanglement entropy of such a subregion is in gen-
eral complicated, but for free fermions the answer is remarkably simple. The result

is

cr + Cr
B = B2 . (Zln|a1— —b;| =Y Inja; —a;| = > In|b - bj]) : (4.25)
ij i<j i<j
with the implicit presence of cutoffs in the logarithms is understood. This formula
reduces to the usual result in 1 dimension in the case of a single interval. Note
that when computing the mutual information, the number of logs being added and

subtracted is equal giving a result independent of the cutoff.
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How do we use this formula to compute the entanglement entropy of a Fermi liquid
in an arbitrary geometry? The procedure is illustrated in Fig. 1 and goes as follows.
First, we choose a point on the Fermi surface; this point defines a direction in space
via the local Fermi velocity. Second, we choose a point on the real space boundary
and draw a line through this point with direction determined by the Fermi velocity
from step one. Third, we determine the intersections of this line with the boundary
of the real space region; these intersection points are grouped into effectively one
dimensional intervals. The contribution to the entropy of such a configuration is
given by a slightly modified version of the one dimensional result above (4.25). To
each logarithm in the one dimensional result we append geometrical “flux factors”
|ng - ng| times a differential area element dA, where ny is the direction determined by

the Fermi velocity and n, is a real space normal vector. In detail, each logarithmic

ng|dA ni|dA
n| ";'"”"hl v where ng

term of the form In|z — y| is multiplied by a factor of [
and n, are the local real space boundary normals. As illustrated in Fig. 2, the flux
factors and differential area elements satisfy |n, - ng|dA, = |n, - ng|dA,. Finally,
the contribution of this configuration of intervals must be divided by the number
intersection points to avoid over-counting and integrated over all such points on the
real space boundary and the Fermi surface. This geometrical calculation gives the

leading boundary law violating contribution to the entanglement entropy of a Fermi

liquid for arbitrary Fermi surface shape and real space geometry.

This formula is well defined but complex. There are a number of simple checks that
can be performed. For two or more well separated convex regions, the formula above
reduces to a sum of terms corresponding to the entanglement entropy of each region
taken separately. For free fermions with a nested Fermi surface one immediately
recovers the one dimensional result as all the flux factors become trivial. At finite
temperature, all the logarithms In L are replaced by crossover functions of the form
In (sinh (7 LT'/v)) leading to a simple form at high temperature that is extensive in
the total real space region size. This one dimensional crossover form is well known for
single intervals in one dimensional conformal field theory, but it is nontrivial for the

multiple interval case. It comes from evaluating higher point correlations functions of
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twist fields on a Euclidean torus in the free fermion conformal field theory. As before,
the simple form depends crucially on the fact that we are dealing with free fermions;

this result does not hold in a general conformal field theory.

The absence of Landau parameters is reasonable given the fact that the entangle-
ment entropy (at least for a single interval) doesn’t depend on interaction strength
even for a Luttinger liquid in one dimension. I cannot completely rule out the pos-
sibility that there is a prefactor f in the crossover function which is a function only
of LT: f = f(LT) with the limits f(x — oo) — 1 and f(x — 0) — constant, but
such a prefactor seems unlikely. Given the absence of Landau parameters at high
temperature and the large U(1)® symmetry, I believe the Fermi liquid entanglement

entropy is universal as I have described.

There are also some subtleties in the evaluation of this formula. The most basic
subtlety is that the number of intervals is subject to change depending on the point on
the real space boundary chosen. These weak singularities are nevertheless completely
harmless and do not render the integral ill defined. It is best to illustrate the formula
by a simple example; further results of this nature will be presented elsewhere. Take
a d dimensional spherically symmetric Fermi liquid, and consider a real space region
consisting of two spheres A; and A, of radius R separated by a center-to-center
distance £. A very interesting quantity is the mutual information between the two
spheres defined as I(R,f) = S4, + Sa, — Sa,ua,- This quantity is quite powerful as
it bounds normalized connected correlation functions between operators localized in
the two spheres. We now evaluate this quantity for the two sphere geometry in the

limit £ > R thus bounding the long distance decay of correlations in the Fermi liquid.

Because we subtract the entropy of each region separately, the only contribution
to the mutual information comes from configurations that involve both spheres. As
shown in Fig. 2, each pair consisting of a Fermi surface point and a point on the real
space boundary only contributes if the line drawn from the real space point parallel
to the local Fermi velocity intersects both spheres. The fraction of pairs of points
satisfying this constraint vanishes in the limit £/R — oo which is the statement that

the mutual information vanishes for infinite sphere separation. Qur task is to estimate
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Figure 4-4: Multiple interval geometry and flux factors. A sequence of intervals
similar to the situation shown in Fig. 1 V5 with the local Fermi velocity vertical. The
dashed grey line encloses the real space boundary segments of interest; the segments
themselves are the black lines which continue into dotted lines outside the dashed
grey enclosing line. The dark grey shaded regions are interior regions of the real
space region, while arrows at the surfaces of the these regions indicate local normals
to the real space boundary.
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how this fraction vanishes in said limit. Let one sphere sit at z = 0 and the other
sit at z = ¢; both spheres sit at z; = 0 for ¢ = 1...d — 1 with 24 = 2. Since I have
assumed spherical symmetry, the Fermi surface is sphere of radius kr in momentum
space with kp fixed by density. Now the Fermi surface points with 7 = *vrZ always
gives lines connecting the two spheres, but as £/R — 0o, only a small neighborhood
around these points continue to generate lines connecting the two spheres. We can
estimate the linear size 6k of this neighborhood as 6k ~ kr (%). For £/R — oo,
the difference of logarithms appearing the mutual information nearly cancels with
a residual (R/¢)? falloff. Putting everything together, I find that roughly (R6k)4!
patches on the Fermi surface each contribute (R/£)? to the mutual information for a

total mutual information going like

I({,R) ~ (Rkp)®™! (%)dﬂ. (4.26)

As we have already indicated, the mutual information provides a bound on con-
nected correlation functions. The precise statement is that the square of the con-
nected correlation function of any two operators, normalized by the operator norms,
is bounded by the mutual information. Thus we learn that connected correlation
functions of local operators in a Fermi liquid must decay at least as =% as 7 — oo.
Calculations are trivially possible for free fermions, and one can directly verify that
all two point functions of bosonic composite operators do indeed decay fast enough
to satisfy the bound. The bound is saturated by the two point function of fermions
which decays as =% times an oscillating function of krx. This is not completely
trivial since the fermion creation operator is not strictly speaking a local operator i.e.
in the Jordan-Wigner representation, but this mild non-locality does not to spoil the
utility of the mutual information. The exact coefficient is calculable by performing
the geometrical integrals outlined above. On the other hand, nested Fermi surfaces
give a mutual information that only decays as 1/¢? indicating the possible presence
of slowly decaying correlations. Indeed, this bound is again saturated by the fermion

two point function which decays as 1/z for a nested Fermi surface with z parallel to

73



Figure 4-5: Geometry of the mutual information for disconnected real space regions.
The three one dimensional cuts labeled A, B, and C represent three different patches
on the Fermi surface for different angles of the Fermi velocity. Cut A comes from
a mode with vertical Fermi velocity; it always cuts both spheres and hence always
contributes to the mutual information in this geometry. Cut B also connects both
spheres, at least for some choices of real space boundary point. However, cut C never
intersects both spheres simultaneously and hence does not contribute to the mutual
information. For the sphere geometry shown here, there is always a maximum angle
from vertical such that cuts beyond that angle never intersect both spheres. As
described in the text, this maximum angle approaches zero as the spheres are taken
far apart relative to their size.

74



the nesting vector.

We can also numerically compute the mutual information between two rectangular
blocks in a two dimensional free fermion system with a nearly spherical Fermi surface.
The geometrical integrals can be done in the limit R > W with the result

krRW?2R

1 6r L3

(4.27)

where W is the box width, R is the box length, and L is the separation between the
boxes. This expression agrees with the numerical result to within a few percent with
the deviation due mostly to corrections in W/R and R/L; additionally, the qualitative

1/L? dependence also agrees with the numerical results.

4.5.4 Number fluctuations

Finally, we turn to a description of the number fluctuations. Here at last Fermi liquid
parameters will make an appearance. Recall that the basic result on the number
fluctuations is that they scale as L 'In L in a Fermi liquid for a real space region
of linear size L. For free fermions the precise prefactor is known both from opera-
tor methods and from the conformal field theory approach advocated here. Unlike
the result for entanglement entropy, the number fluctuations do depend on Landau
parameters as interactions are turned on. To see this note that the same connected
correlation function used to determine the number fluctuations is also related to the
compressibility at finite temperature. This compressibility does depend on a Landau
parameter in addition to the effective mass through the density of states. Thus we
can already say that the number fluctuations ANZ(L,T) must depend on the Lan-
dau parameters in the limit T — oo (always keeping T' < EF.) In fact, we can say
much more because in Fermi liquid theory the interacting density-density correlation
function is related to the free correlation function by a series of forward scatting dia-
grams that can be summed to give 1/(1 + Fp) where Fp is the familiar £ = 0 Landau

parameter for spin-less fermions. The number fluctuations in a d dimensional Fermi
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liquid at zero temperature take the asymptotic form

1 1 InL

with L the linear size of the convex region considered.

In the presence of interactions at finite temperature we find the familiar crossover

form

! 1 1 Bur . T Lo
ANz L T - _ e
(L, T) ¥ Fy (@) 4 /k/z dAgdAz|ng - ng|In (—M smh< oo ) )

(1.29)

where the In L term has been replaced by its finite T generalization In (sinh (7 LT /v)).
As before, one can check that in the limit of high temperature one recovers the usual
number fluctuations proportional to region size and depending on Fj, and the physical

Fermi velocity vp.

The generalization to non-convex regions or multiple regions is also possible in
line with the generalization of the entanglement entropy discussed above. Indeed, the
structure of logarithms in (4.25) also appears for the number fluctuations in a one

dimensional Fermi liquid. The density-density correlation function is

(n(z)n(y))c ~ (4.30)

(x —y)¥

and upon integrating z and y over different intervals we find exactly the structure
of sums of logarithms appearing in (4.25). This means that the same geometrical
integral that gave the multiregion entanglement entropy in the higher dimensional
Fermi liquid also appears in the calculation of the number fluctuations. Indeed, these
two quantities only differ in the prefactor of the geometrical integral describing the
interplay of real space and Fermi surface geometries. To be precise, in the limit
of large L with a fixed high energy cutoff, we find that ANZ/S; = "2 T +1F0 In
fact, given the essentially identical forms of the postulated finite temperature scaling

functions for entropy and number fluctuations, this ratio is actually valid even at

finite temperature.
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4.5.5 Discussion

We have described the calculation of Rényi entropy, mutual information, and number
fluctuations in Fermi liquids in any dimension for arbitrary codimension one Fermi
surface and sub-region geometry. These results give a very complete description of
the low energy structure of quantum information in a Fermi liquid. This basic Fermi
liquid state which underlies so many materials is a truly highly entangled quantum
phase of matter. Remarkably, the entire structure of quantum information in these
systems is controlled by a beautiful interplay between the geometry of the Fermi

surface and the structure of one dimensional conformal field theory.

There is one subtlety which deserves a more careful discussion, namely the issue
of singularities on the Fermi surface. The methods described above apply directly
to smooth Fermi surfaces, but the formalism is strong enough to handle aspects of
singular situations as well. To give a simple example, consider spinless fermions
hopping on a square lattice at half filling. The Fermi surface consists of four straight
lines running diagonally between the midpoints of the Brillouin zone boundary. There
are singularities on the Fermi surface at (&,0) and (0, £), points where the Fermi
velocity vanishes leading to well known singularities in the density of states. As an
example of the subtleties that may arise, consider the mutual information between
two regions separated by a large distance compared to their size along the y-axis. A
little thought reveals that the leading contribution to the mutual information from
the Fermi surface, in the form presented above, vanishes in this geometry. In fact,
the mutual information is not totally zero; indeed, it cannot be since the fermion
correlation function doesn’t vanish in the limit of large y. However, the fermion
correlation function does decay faster (1/y?) than the result for a non-singular Fermi
surface (1/y%/?). In this sense, the vanishing of the leading “Fermi surface” part
of the mutual information is physical, telling us that there are no extremely long
ranged correlations such as would come from a non-singular Fermi surface. When
the Fermi surface geometry does lead to extremely long ranged correlations, such as

along the nesting vector (7, 7) in the half filled example, then the mutual information
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formalism above perfectly captures the requisite decay. The simple lesson is that
there are always subleading terms in all quantities which can become visible if the
Fermi surface contribution happens to vanish. We must simply always remember
that the formalism developed in this paper captures only the leading Fermi surface

contribution to the physics.

It should be clear by now that there are other quantities of interest that can be cal-
culated for Fermi liquids using the one dimensional approach. Particularly interesting
would be to study the behavior of entropy and other quantities in a non-equilibrium
situation, following a quench of some type, for example. Powerful techniques from
one dimensional conformal field should give a great deal of control over the non-
equilibrium structure of entanglement in Fermi liquids. There is still the question of
experimental observation of the effects described here. The number fluctuations are
in principle easy to observe, we simply need to prepare a clean Fermi liquid, perhaps
in an optical lattice, and repeatedly count the number of fermions in a given subsys-
tem to evaluate AN?2. If the subregion can be made large enough we have a quite

precise prediction for AN2.

Given their experimental ubiquity, it is gratifying to have control of the quantum
information content of Fermi liquids. Of course, in the case of Fermi liquids in the
solid state, the logarithms will be cutoff by the mean free path in the presence of
disorder. Still, any clean Fermi liquid system with a long mean free path will dis-
play the anomalous quantum information theoretic properties described here. In the
larger framework of many-body entanglement, Fermi liquids have taught us how to
produce one class of highly entangled quantum states. However, much remains to
be understood about the role of entanglement in deeply quantum mechanical phases,
especially gapless phases like those explored here [46, 45, 71, 72, 44]. Like Fermi
liquids, these phases should violate the boundary law for entanglement entropy. And

the search continues for other highly entangled phases of quantum matter.
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4.6 Summary of results: Chapter 4

In Chapter 3 we argued that tensor network states may provide a useful starting
point for local quantum systems that obey a boundary law for entanglement entropy.
In this chapter we explored a variety of systems that weakly violate the boundary
for entanglement entropy. In every case, we gave a simple heuristic picture of the
violation in terms of many gapless one dimensional degrees of freedom [13, 14, ?].
The fact that gapless one dimensional systems violate the boundary law follows from
the renormalization group argument in Chapter 2. We used holographic duality
to show that this intuition is not restricted to weakly coupled theories and Fermi
liquids, but also holds in a strongly coupled version of the Weyl fermion system [15].
Here again we see a valuable role for holographic duality in studying entanglement
properties of generic local quantum systems. We also studied in much greater depth
the physics of quantum information in Fermi liquids [16], including calculations of

the Renyi entropy, mutual information, and number fluctuations.
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Chapter 5

Entanglement Renormalization and

Holography

5.1 Overview

In this chapter we develop a connection between the ideas of entanglement renormal-
ization and holography. The phases of matter we will consider will typically obey
the boundary so we seek instead to refine the crude characterization provided by the
boundary law. We will devise a speculative framework for distinguishing between
gapped and gapless phases of matter which both have a boundary law for entangle-

ment in higher dimensions.

5.2 Basic idea

Entanglement renormalization [73] is a combination real space renormalization group
techniques and ideas from quantum information theory that grew out of attempts to
describe quantum critical points. The key message of entanglement renormalization
is that the removal of local entanglement is essential for defining a proper real space
renormalization group transformation for quantum states. This realization has per-
mitted a compact description of some quantum critical points [74, 75]. Holographic

duality [76, 77, 78] is the proposal that certain quantum field theories without grav-
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ity are dual to theories of quantum gravity in a curved higher dimensional “bulk”
geometry. We have already met holography in Chapter 4 when we computed the
entanglerrient entropy a certain strongly coupled conforrhal field theory in a mag-
netic field. Holography provides a way to compute field theory observables from a
completely different point of view using a small amount of information encoded geo-
metrically. Real space renormalization is also important in the holographic framework
[79, 80, 81, 82], thus hinting at a possible connection between holography and entan-
glement renormalization. We will begin with entanglement renormalization and build

up to the full holographic picture.

Recall again the scaling argument from Chapter 2 for the entanglement entropy
of a region A in the ground state. We partition the degrees of freedom by scale
into groups labeled by a scale parameter r, and furthermore, we take these groups
to be equally spaced in logr. The appropriate measure for r is dlogr = dr/r [83].
Degrees of freedom at each scale can be entangled with the region A, which we take
to have linear size L in d spatial dimensions. Because the Hamiltonian is local, the
contribution to the entropy of A from scale r should be proportional to the size of
the boundary JA in units of the coarse grained scale r. This factor simply counts
the degrees of freedom at scale r that are local to the boundary JA. The number of
entangled degrees of freedom at scale r is also proportional to the measure dr/r and
hence the entropy should scale as

L&l dr
~ .
rd-1 p

ds (5.1)

The total entanglement entropy is obtained by integrating this formula from the
ultraviolet cutoff € to some larger length £g. &g is the length scale beyond which
there is no entanglement in the quantum state, and at a quantum critical point this
length will diverge. In one dimension the entropy also diverges with g, and cutting
this divergence off with region size L naturally gives a weak violation of the boundary
law. Here we ask if we can interpret this integral geometrically, that is can we find

some geometrical space to that dS? = ds*?
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5.3 Lattice implementation

To obtain a more concrete formulation of entanglement as a function of scale, we
will focus on a concrete lattice system where entanglement renormalization can be
carried out numerically [74]. The quantum Ising model in one spatial dimension is
a convenient model system, but the basic story applies to more general systems in

higher dimensions. The quantum Ising model has a Hamiltonian

H=-JY oio;—g]) of, (5.2)
<ij> i
where J sets the overall energy scale and ¢ is a dimensionless parameter we can tune.
The Hamiltonian consists of two competing pieces, and this competition gives rise to
a quantum phase transition at g = 1 between an ordered ferromagnetic phase and a

disordered paramagnetic phase.

Following the prescription of entanglement renormalization, one can implement a
renormalization group transformation on the Ising ground state using unitary opera-
tors called disentanglers to remove local entanglement and isometries to coarse grain
as shown in Figure 1. Note that information can be lost during the coarse grain-
ing steps since the isometries typically contain projectors. The resulting network of
unitary and isometric tensors approximately encodes the ground state wavefunction
using a multi-layered structure [84]. Each layer corresponds to a different scale in the
full theory, and the quantum state is effectively extended into an emergent dimension

representing scale. The network depends on g because the ground state does.

Inspired by holography and the connection between entropy and geometry encoded
in the ordinary boundary law, we will define a geometry from the entanglement
structure of the quantum state. Imagine drawing boxes or cells around all the sites
in the tensor network representing the quantum state as in Figure 2. We view these
cells as units filling out a higher dimensional “bulk” geometry where the size of each
cell is defined to be proportional to the entanglement entropy Sgite of the site in the

cell. The connectivity of the geometry is determined by the wiring of the quantum
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depth (increasingly
coarse grained)

Figure 5-1: The tensor network structure of entanglement renormalization. Circles
are lattice sites at various coarse grained scales. Squares with four lines are unitary
disentaglers and triangles with three lines are isometric coarse graining transforma-
tions. The network shown here represents a 2 — 1 coarse graining scheme and has a
characteristic fractal structure. In principle, each tensor can be different, but trans-
lation and scale invariance can provide strong constraints. This network implements
a renormalization group transformation that is local in space and scale. This trans-
formation has the important property that it coarse grains local operators into local
operators.
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Figure 5-2: Curved boxes represent primitive “cells” of the higher dimensional bulk
geometry.

circuit represented by the tensor network in Figure 2. The geometry ends whenever
the coarse grained state completely factorizes. Now why is such a definition useful

from the point of view of entanglement?

To compute the entropy of a block of sites in the original ultraviolet lattice we
must know the reduced density matrix of the block, but what determines this density
matrix? The causal cone [84] of a block of sites in the ultraviolet is defined as the set
of sites, disentanglers, and isometries that can affect the chosen block. The causal
cone should not to be confused with ordinary causality in time. For the causal cone of
a large block, the number of sites in a given layer shrinks exponentially, as in Figure
3, as we coarse grain. Note that for a small block, say two sites, the causal cone will

actually grow slightly.

We start with the density matrix for a small number of sites deep in the causal
cone of the block. The goal is to reach the ultraviolet by following the renormalization
group flow backwards. This is possible because we have recorded the entire renor-
malization “history” of the state in the network, but subtleties remain because of
the possible loss of information. In practice, the truncation error may be quite small

with the proper use of disentanglers. More properly, the tensor network defines a
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Figure 5-3: Causal cones of different blocks after a single layer of disentanglers and
isometries. The causal cone of a large block decreases by roughly a factor of two in
width (30 sites to 16 sites) after one coarse graining. On the other hand, causal cones
for small blocks may grow slightly. Once the causal cone of a large block has reached
a width of order one, it stops shrinking.

large variational class of states for which the entanglement entropy can be computed

by reversing the flow [84].

Beginning with the density matrix for a small number of sites deep in the causal
cone, we reverse the isometries and disentanglers to produce the density matrix of
a larger number of sites at a less coarse grained scale. Any site at this new scale
which is not in the causal cone of the block of interest can immediately be traced out
as shown in Figure 4. Tracing out a site can increase the entropy of the remainder,
but the increase is no more than the entropy of the traced out site. This procedure
is repeated until the ultraviolet is reached. Looking at the whole process, sites that
are traced out occur on the outside boundary of the causal cone and form a kind of
curve in the bulk geometry. The length of this curve is by definition the sum of the
entropies of all the traced out sites. Thus the length of a curve in the bulk, including
a deep “cap” coming from the sites we began with, provides an upper bound for the

entropy of a block in the ultraviolet.

This entropy calculation is a complicated process which depends on the details
of the scheme, but we can extract at least two general lessons. First, the intuitive
picture of distinct entropy contributions from each scale is realized concretely in the
lattice framework. Second, subadditivity of the entropy permits us to give an upper
bound for the entropy of a block of sites in the ultraviolet. From the cell model

given above we can say that the entropy of a block of sites in the ultraviolet lattice
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Figure 5-4: Upper left: a piece of the causal cone of a small block. Upper right:
reversing the flow to proceed from three sites to six sites. Lower left: shaded sites
are outside the causal cone of the two site block and can be traced out. Lower right:
four sites remain and we can now apply the next layer of disentanglers to reach the
two site block of interest.

is bounded by the length of a curve in a higher dimensional discrete geometry. This
curve is precisely a holographic screen that hides information (85, 86]. It is natural
to view the boundary of the causal cone as a minimal curve since it represents the
minimal number of sites that must be traced out, and this agrees with the geometrical
definition. As an aside, when the number of local degrees of freedom is large, similar
to a thermodynamic limit, subadditivity is expected to be replaced by approximate

additivity.

5.4 Geometry from entanglement

What geometries do these definitions give for the Ising model? In the large g limit,
the Ising Hamiltonian is dominated by the transverse field, and the ground state is
a product state. Each site is in a pure state and we find no geometry. Away from
large g, the system possesses an energy gap to excited states and a finite correlation
length. The size of cells is initially non-zero due to the presence of entanglement.
However, as the quantum state is coarse grained using entanglement renormalization
the correlation length should grow smaller. Similarly, after a finite number of coarse

graining steps the entanglement will be completely removed. At this “factorization”

87



scale, which is the analog of £g, the coarse grained quantum state factorizes, and we
can conclude that the geometry ends. The entanglement entropy of a block in the
ultraviolet lattice receives contributions from a finite range of scales corresponding to
a minimal curve hanging down from the cutoff scale to the factorization scale. Note
also that the length of this minimal curve isn’t affected by the end of the geometry

since the spatial length is zero there.

The geometrical picture becomes more interesting when the quantum Ising model
is at its quantum critical point ¢ = 1. Scale invariance forces each coarse grained
layer to be identical, and the geometry continues forever. Coarse grained sites are
equivalent and have the same size. It has been verified numerically that each coarse
grained layer in the network gives an equivalent contribution to the entropy of a block,
which means that the entropy is actually proportional to the length of a minimal
curve [74]. Because of the fractal nature of the network and the equivalence of sites,
the distance between points also shrinks after each coarse graining. Entanglement
renormalization is crucial for this result. Without it we would have to keep many
more states when coarse graining or otherwise settle for a poor approximation to the

quantum state.

The discrete geometry that appears at the critical point is nothing but a discrete
version of anti de Sitter space (AdS). The smooth version of two dimensional anti de
Sitter space has the metric

dz? + dx?
22

ds* = R? ( ) = R (dw® + exp (—2w) dz?) (5.3)
where R is some constant and w = logz. The analog of logz in the lattice setup
is simply the layer number or depth which counts how many coarse grainings have
been performed. The second form of the metric makes explicit the change in proper
length in the spatial direction as a function of depth in the tensor network. The
appearance of AdS is perhaps not surprising from the point of view of holography,

but it is gratifying to see it emerge from the definitions.

The entropy of a block in the ultraviolet is indeed bounded by the length of a
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minimal curve in discrete AdS because this curve counts the minimal number of
entangled sites over all scales that must be traced out. For example, we could also
bound the entropy of the block by the sum of the entropies of the sites in the block, or
in other words, by the length of a curve which doesn’t dip into the bulk. The length
of this curve is of order n S,;. where n is the number of sites in the block, but the
length of the minimal curve is of order logn S giving a significantly better upper
bound. These bounds are similar to holographic bounds in gauge/gravity duality
coming from counting degrees of freedom [87]. It is also interesting to note that the
minimal curve in an optimized network seems to directly control the entropy, rather

than providing just an upper bound, as was confirmed in the critical case.

5.4.1 Finite temperature and correlation functions

Extending the picture above to finite temperature requires a shift in thinking due to
the presence of classical correlations in addition to quantum entanglement at finite
temperature. The entanglement entropy now has an extensive component due to
thermal effects. However, the mutual information I(A, B) = S(A) + S(B) — S(AB)
between two regions A and B subtracts out this extensive piece and obeys a bound-
ary law at finite temperature [26]. The appropriate generalization of entanglement
renormalization, though it may not be as numerically tractable, is still be useful in
removing local entanglement and correlations. The coarse grained Hilbert space will
typically grow if we insist on keeping all eigenvalues of the reduced density matrix of
a block up to some fixed cutoff.

Despite some peculiarities associated with hydrodynamics in quantum critical sys-
tems in one spatial dimension, we continue to focus on the quantum Ising model in
one spatial dimension. At the quantum critical point we initially find a region of
discrete AdS geometry corresponding to energy scales much greater than the tem-
perature. However, the temperature grows as we renormalize since it represents a
relevant perturbation to the quantum critical point. Thermal effects gradually be-
come important, and the size of coarse grained sites must begin to grow to incorporate

thermalized degrees of freedom.
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Eventually we reach a scale where low energy modes live. Note that for the critical
one dimensional Ising model, there is no hydrodynamic behavior for conserved cur-
rents, but the order parameter displays low energy “quantum relaxational” dynamics
[88]. What would be the “hydrodynamic” scale is characterized by a renormalized
temperature greater than the energy scale of interest but still less than the lattice
scale. If the temperature continues to grow under further renormalization then it
may exceed even the lattice scale, a result familiar from the real space renormaliza-

tion group of the classical one dimensional Ising model.

At this final scale the reduced density matrix of any site is proportional to the
identity and the coarse grained density matrix completely factorizes. I interpret this
situation as corresponding to a black hole horizon for at least three reasons. First,
the geometry ends from the point of view of an observer “hovering” at fixed scale.
Second, the completely mixed state is like an infinite temperature state, and the local
temperature measured by a hovering observer diverges at simple black hole horizons.
Third, the final layer possesses finite entropy/size because the coarse grained sites
are in mixed states. In particular, the entropy of a large block in the ultraviolet now
consists of two pieces: the usual boundary contribution plus an extensive piece due

to the horizon as shown in Figure 5.

Equal time correlation functions are also interesting when viewed geometrically.
In the entanglement renormalization scheme, two operators can be correlated if the
sites at which they are inserted have overlapping causal cones. The causal cone of a
single site is a “thickened” line in the bulk geometry with a lattice scale width of a few
sites. Consider a simple gapped system. Sites separated by less than a correlation
length have overlapping causal cones, but distant sites have causal cones that end
at the factorization scale before touching. Thus distant sites cannot be correlated,
and this is precisely the exponential fall off in correlations characteristic of a gapped

phase.

In the case of the critical geometry, the causal cones of distant sites always touch.
For conformal primary operators, which have a simple scaling behavior under renor-

malization, the correlation functions have an additional geometrical interpretation.
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Figure 5-5: Sketch of minimal curves for the zero temperature gapped and finite
temperature critical geometries. The curve, defined by the boundary of the causal
cone of a large block, quickly falls to the factorization scale and then runs along it.
In the gapped case, the length is zero at the factorization scale, and the entropy has
only a boundary contribution which saturates for large blocks. However, in the finite
temperature case, the horizon scale has finite size and gives an extensive contribution
to the entropy of a large block in the ultraviolet.

The two point function, for example, is proportional to exp (—A£) where A is the
operator dimension and £ is the length of a minimal curve. This is identical to the
holographic result in the conformal case. At finite temperature, the horizon is a
source of decaying correlations because the causal cones of distant sites can end at
the horizon before touching. This is nothing but thermal screening, with a screening
length set by the temperature. In each case, the structure of correlation functions is

determined by the basic geometry of the extra scale dimension.

5.4.2 Holographic duality

The appearance of higher dimensional black holes to describe thermal states of gauge
theories is precisely the content of holographic gauge/gravity duality. The best known
example of this correspondence is the duality between a certain supersymmetric quan-
tum gauge theory in four dimensions, N' = 4 SU(N) Yang-Mills theory, and a theory
of quantum gravity, type IIB string theory, in a fluctuating spacetime that is asym-
potically five dimensional anti de Sitter space times a five sphere, AdSsxS®. This
duality is simplest from the gravity point of view when the field theory is strongly
coupled and when the number of “colors” tends to infinity, the large N limit. In this

limit quantum gravity reduces to classical gravity in a weakly curved space.

The gauge theory in infinite volume is dual to anti de Sitter space in the Poincare
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patch with metric
dz*  —dt® + dx?

ds* = R? (— + ————) , (5.4)

22 22
where again 2 represents something like length scale in the dual gauge theory. Finite
temperature effects in the gauge theory map to black hole mechanics in AdS, and in
particular, thermal screening has an interpretation in terms of geodesics falling into
the horizon. In the classical gravity limit, the entanglement entropy of a region A in
the field theory is given by the area in Planck units of a minimal three dimensional

surface which hangs from the two dimensional boundary of A into the bulk [58, 59].

From the point of view advocated here that entanglement defines geometry, we
are free to reverse this logic and define the higher dimensional geometry in terms of
entanglement entropy in the field theory. This formulation exactly reproduces anti
de Sitter space and makes the minimal surface prescription true by definition, but it
may be more general since it applies to fairly generic local quantum systems. Further
evidence for the connection between entanglement renormalization and holography
comes from the holographic interpretation of the extra gravitational dimension in
terms of energy scale in the gauge theory. However, this interpretation is heuristic
and non-trivial because defining a real space quantum renormalization group is not
straightforward. It is tempting to regard something like entanglement renormalization
as an important ingredient for making precise the real space renormalization group

structure in holography.

We have seen how a geometry can be defined from entanglement, but this scheme
is ultimately too simple from the point of view of gauge/gravity duality. The dual
gravitational theory typically contains other fields in addition to the metric which
we must also in principle define from field theory quantities. Consistent with the
interpretation of the extra dimension in terms of scale, we can attempt to define
the higher dimensional bulk fields in terms of renormalized couplings in the dual
field theory. The equations of motion for the bulk fields should be taken to be the
renormalization group equations for the dual field theory [81]. These couplings are

typically fixed at the ultraviolet cutoff and flow under the renormalization group, but
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this running depends on which couplings are present and on the quantum state being
renormalized [89]. One can check, for example, that relevant and irrelevant couplings
in the Hamiltonian grow or decay as expected under entanglement renormalization

[90].

Away from large N this definition is ambiguous since the bulk fields should fluc-
tuate (the concept of a local field may even be ambiguous). The correct prescription
may be that the renormalized couplings define the expectation values of fluctuating
fields which are actually quantum mechanical, a kind of quantized renormalization
group. Because entanglement renormalization permits us to address many kinds of
states, it is natural to consider the renormalized couplings as dynamical variables.
This point of view is also natural in string theory. For example, in the world sheet
formulation, couplings on the string world sheet have a dual interpretation in terms
of expectation values of quantum fields in the target space. The renormalization
group equations expressing conformal invariance on the worldsheet are the equations

of motion for the target space fields.

One further interesting feature of gauge/gravity duality at finite temperature is
that the geometry is not always equivalent to a black hole. This understandable
in our scheme because we are not guaranteed to reach a completely mixed state
under a generic renormalization group flow at finite temperature. For example, the
entanglement structure of gapped states should not change dramatically due to the
presence of a small temperature. Alternatively, a conformal theory on a compact
space can give at least two generic renormalization group behaviors based on whether
one reaches zero spatial size or infinite temperature first. Something similar occurs
in gauge/gravity duality in the form of the Hawking-Page transition for the N' = 4
theory on the space 5% [91]. When a black hole does exist in the holographic geometry,
the stretched horizon appears to be interpretable as the “hydrodynamic” scale in our

construction, which is naturally distinct from the “true” (null surface) horizon.
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5.5 Current status

We have described a framework for thinking about entanglement and correlation based
on higher dimensional geometry. We can literally construct an emergent holographic
space from the entanglement properties of a large class of many-body states includ-
ing free bosons and fermions, quantum critical points, topological phases, frustrated
quantum magnets, superconductors, and more. The gross features of entanglement
and equal time correlation functions are encoded geometrically. This geometrical
picture of entanglement is realized both in a concrete lattice setup based on entan-
glement renormalization and in the context of gauge/gravity duality, thus connecting
these two beautiful ideas. The theory also incorporates black hole-like objects at finite
temperature that seem to share many properties with more conventional black holes
in semi-classical general relativity. What we have not done is give a detailed proposal
for the gravity dual of, say, the Ising model, and if such a dual exists, it seems likely
to be very complicated. Remarkably, much of this complexity seems irrelevant for

the simple geometrical ideas explored here.

There are additional features as well as many open questions. For simplicity, we
worked primarily with the quantum Ising model in one spatial dimension, but every-
thing applies to more generic systems in higher dimensions with minor modifications.
It is also possible to include time evolution within the geometrical framework. For
example, one can determine the time component of the metric from the renormaliza-
tion of the Hamiltonian. Other interesting geometries also exist, including situations
where the effective spatial dimension changes as a function of scale or where the dy-
namical critical exponent flows. We are also not restricted to looking solely at ground
states and thermal states, although the “geometry” of a highly entangled state may
not be anything very simple. There are issues of non-uniqueness in the construction
of the renormalization group and redundant descriptions should be interpretable in
terms of bulk diffeomorphisms [92], but beyond identifying diffeomorphisms it must
be possible to understand in what sense the geometry truly fluctuates away from large

N.
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We briefly comment on future directions and work in progress. Perhaps the most
pressing issue for condensed matter applications is the need for a better understand-
ing of what lies between gauge/gravity duality as inspiration and actually having the
N = 4 plasma in the lab. The general framework outlined here seems well suited
to attacking this question. For example, our construction should certainly apply to
quantum O(N) vector models, which are known to show hints of a holographic de-
scription [93]. Perhaps one can make progress in understanding the dual gravitational
theory.

The notion of a quantized renormalization group including gravity can be made
more precise, particularly with regard to fluctuations in the bulk fields. A certain class
of topological “string-net” phases realize exact versions of entanglement renormaliza-
tion [36, 11] and provide a useful exactly solvable testing ground. More speculatively,
it would be amusing to carry out this program for lattice systems defined on some
nearly translation invariant fractal, perhaps realizing a holographic dual of the ep-
silon expansion and giving some kind of non-integer dimension version of anti de
Sitter space. Finally, from the perspective of entanglement renormalization, varia-
tional principles for the higher dimensional geometry may help simplify the search

for quantum circuits to describe interesting many-body states.

5.6 Summary of results: Chapter 5

In this chapter we presented a novel link between entangelement renormalization and
tensor networks and holographic duality and quantum gravity. We also argued that
both holography and entanglement renormalization realize in a very concrete way
the renormalization group argument of Chapter 2. The material here is somewhat
speculative. This is not surprising given the early stage of our search described in
Chapter 1 for the basic principles and unifying themes of quantum many-body physics.
Nevertheless, there is a concrete connection between entanglement renormalization
and holography, a connection that has already born fruit in the form of the twist

operator formalism to be developed in the next chapter. We believe this general area
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is a rich source of intuition and suggestive physical pictures that should be developed

further.
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Chapter 6

Entanglement and Mutual

Information

6.1 Overview

The connection between entanglement renormalization and holography is real but we
do not yet know how far it will take us. It has inspired the more concrete investigations
described below. In this chapter we continue our attempt to formulate a general
framework for the description of low energy universal entanglement properties of
many-body phases. Thus we finally turn to the study of quantum field theories and
investigate their entanglement properties. The mutual information will now play a
crucial and we will use a novel operator technique to organize information about

entanglement in quantum field theory.

6.2 Entanglement in field theory

6.2.1 Motivation

Entanglement entropy does suffer from at least one defect: it is a cutoff or high energy
sensitive quantity [23]. In an unregulated quantum field theory, the entanglement en-

tropy is formally divergent due to the presence of high energy singularities associated
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with the boundary law behavior. To render the entropy finite, we must regulate the
quantum field theory by providing a high energy completion such as a quantum lat-
tice theory. In the context of quantum field theoretic studies, therefore, the focus has
been on special contributions to the entanglement entropy that can be argued to be
universal. Examples of such contributions include the logarithmic term in 1 + 1 di-
mensional conformal field theories [27, 28] and the topological entanglement entropy
in 2+1 dimensional topological phases [94, 95]. This situation is unsatisfactory: while
a great deal of intuition now exists for the behavior of the entanglement entropy, such
intuition is often bound up with non-universal lattice scale physics. This is not to
say that the lattice scale physics isn’t of interest, only that a complete understanding
of many-body entanglement should contain a clear separation between the physics of

low and high energies to the extent possible.

There is a quantity, called the quantum mutual information, that shares some
of the features of the entanglement entropy and remains finite in a quantum field
theory. We already met this quantity in Chapter 4 in connection with our extended
study of quantum information in Fermi liquids. To define the mutual information, we
consider two spatial subsystems, A and B, of a larger many-body system. The mutual
information is Z(A, B) = S(A) + S(B) — S(AB), where S(R) is the entanglement
entropy of region R. The mutual information is positive and symmetric in A and B
and, for separate regions, the subtraction insures that non-universal boundary law
contributions cancel. On the other hand, if we take A and B to form the entire system
(assumed to be in a pure state) then Saup = 0 and Z(4, B) = 25(A) = 25(B). Note
that this requires regions A and B to come together and touch, so new divergences may
appear from this procedure. At the very least, the mutual information is interesting
because it captures some of the physics of entanglement, because it bounds normalized
correlation functions [?], and because it is well defined property of a quantum field
theory. However, we also hasten to emphasize that the mutual information knows

about more than just entanglement.

In field theoretic studies, the entanglement entropy is often computed using the

replica trick: a partition function involving n copies of the field theory is developed
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to compute the quantity Zg(n) = tr(p}) from which the entanglement entropy of
region R can be obtained. In 1+ 1 dimensional conformal field theories this partition
function may be computed with the help of interesting operators called twist operators
[28, 27]. These operators turn out to be primary with conformal dimension related
to the central charge of the conformal field theory. The mutual information is a finite
quantity in the conformal field theory that accesses the properties of these interesting
operators. In higher dimensions, the analog of twist operators are no longer point
like, becoming instead line operators in 2 + 1 dimensions and surface operators in
3 + 1 dimensions. These line and surface operators are also twist operators of a
sort, and the mutual information is a finite quantity which accesses the properties
of these operators. Thus a careful study of the mutual information might reveal
some information about these mysterious extended operators in higher dimensional
quantum field theory.

One additional motivation for studying entanglement via the mutual informa-
tion comes from the application of holographic duality to condensed matter systems
[?, 77, 78, 96]. In the last chapter we made a connection between holographic du-
ality and entanglement renormalization in condensed matter physics, but it remains
unclear how general and useful this connection is. It is thus important to try to
validate the new insights coming from holographic duality in the context of more
ordinary quantum field theories. We want to establish as clearly as possible exactly
what physical quantities are properly captured, at least in a qualitative sense, by
holographic duality even in the large N and strong coupling limits. As a foundational
element of all many-body quantum systems, the structure of entanglement seems an
ideal place to begin such a systematic comparison. And there is growing evidence
that holographic duality does indeed capture the structure of entanglement in generic

quantum field theories.

6.2.2 Background

Before proceeding let us recall some background about the mutual information. The

mutual information between two regions A and B is defined as Z(A, B) = S(4) +
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S(B) — S(AB). Subadditivity of the von Neumann entropy guarantees that the
mutual information is a positive quantity, and the mutual information is manifestly
symmetric in A and B. It measures in a uniform way the degree of correlation
between regions A and B. If the density matrix p4p factorizes into p4 ® pg then the
mutual information vanishes. The converse is also true. The mutual information also
gives more than just a yes/no answer to the question of correlations: it bounds the
connected correlation functions of operators localized in A and B. In particular, we
have (O40g)2 < ||04|*||OB|[>Z(A, B) [26]. As an aside, we note that although the
mutual information bounds connected correlations functions, it doesn’t necessarily
have to decay with separation, for example, the mutual information between distant
regions doesn’t decay at all in a “cat state” like [ 1 ... 1) +| { ... ). Ultimately, the
crucial property of the mutual information that makes it useful for our purposes is its
cutoff independence. Indeed, the boundary law terms containing information about
physics of the cutoff cancel in the subtraction that defines the mutual information.
From another point of view, this independence from the cutoff can arise because we
necessarily introduce additional length scales when considering multiple regions. We
now turn to reformulating the scaling intuition for entanglement entropy described

in Chapter 2 and 5 in terms of the mutual information.

We also wish to emphasize one final point. Mutual information measures both
classical and quantum correlations. In principle, two regions can have no entangle-
ment and still have finite mutual information due to purely classical correlations. We
can say that if the state of AB is pure, then Z(A, B) is simply 25(A) and thus Z(A, B)
does measure entanglement. Despite this ambiguity, the short distance properties of
the mutual information do reflect entanglement (essentially because these singular-
ities mirror those in the entanglement entropy). Nevertheless, we must be cautious
not to over-interpret results concerning mutual information in terms of quantum en-

tanglement.
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6.3 Universal singularities

6.3.1 1+ 1 dimensions

We begin with the case of one dimensional conformal field theory, in particular, the
case of free fermions. In general, knowledge of the entanglement entropy for multiple
regions, as required to compute Z(A, B), is not trivially related to the single region
result. The single region entanglement entropy in any conformal field theory in one
dimension contains a universal logarithmic term depending only on the central charge.
but the multi-region entanglement entropy is known to depend on the entire field
content of the conformal field theory. However, for free fermions the result is actually
known even for multiple intervals [97]. We will use only the result for two intervals

specified by [a;, b;] with ¢ = 1,2. The entanglement entropy is

53 region = (Zl (Iaz |) log (‘“1—;—“2—'> ~log ('bl—;bﬂ» (6.1)

For simplicity we consider the case of two intervals of equal size L separated by
a distance z defined as the nearest distance between the two lines. The two interval

entanglement entropy becomes

1 L 2L+ L+
SQregi0n=§(2log<—€—>+log( )—!—log( - )—2log( ex)) (6.2)

To obtain the mutual information between the two intervals, the two interval result

is subtracted from the sum of the entanglement entropy of each region separately:

I(L,3) = (2 log (%)) ~ ) region- (6.3)

There are many cancelations in this equation, and in particular, the cutoff dependence
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completely disappears as promised. The final result is

(L +2)" ) (6.4)

I(L, l‘) = llog <m

3

Something remarkable happens as as x goes to zero, that is, as the two regions
approach each other: the mutual information contains a universal divergence going
as log . Moreover, the coeflicient of this divergence is precisely the central charge of
the free fermion CFT that we wanted to interpret as the entanglement per scale in a
conformal field theory. Now we recall a more general result: in any conformal field
theory, the leading singularity in the mutual information as two regions approach
each other is universal and given by the central charge of the conformal field theory
[28]. Thus, despite the complicated nature of the mutual information in general,
the singularity structure as regions collide is highly constrained. This result follows
from the short distance properties of the twist operators that define the entanglement
entropy in the replica version of the original CFT. These twist fields are primary with
a dimension related to the central charge of the original CFT, and the leading term

in their OPE is a fusion to the identity.

6.3.2 Higher dimensions

We will return to the subject of twist operators later, but for now, let us try to
generalize this result to CFTs in higher dimensions. We will not try to directly
compute the full mutual information in a conformal field theory in higher dimensions.
Although this calculation may be possible in some cases, we are in this section only
interested in certain universal divergences that appear as regions are brought together.
Now, a natural question in higher dimensions, which does not arise in one dimension,
is the precise nature of this collision process. There are several ways in which one
can imagine performing this procedure. First, if regions A and B have a flat d — 1
dimensional surface, then we can bring the regions together along this surface. More
generically, if the boundaries of the two regions are smooth, they will typically only

touch at a single point with finite radius of curvature. A final interesting possibility
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is the case of sharp corners approaching each other or another smooth interface. We

will address all three situations below.

Consider first the case of a collision of flat d — 1 dimensional surfaces. We want to
know how the mutual information behaves as a function of z, the separation between
the two flat sections of the boundary. The flat sections are taken to have equal d — 1
dimensional size Vy_;. Based on the boundary law for entanglement entropy, and
because we expect to recover part of the divergent entanglement entropy when the
regions touch, the mutual information should diverge as x — 0. By analogy with the

boundary law, we find that
|7
prm

I(z) =k (6.5)

where ... indicates subleading terms in 1/x. The coefficient k in this expression should
be a universal quantity that effectively counts the number of degrees of freedom in
the conformal field theory (in terms of how much entanglement they contribute to
the ground state). In a sense, this is the boundary law but with the non-universal
cutoff € replaced by a definite continuum quantity z, the separation between the d —1
dimensional surfaces. Indeed, if we assume that the divergence must be proportional
to the size of the colliding regions then the dependence on z is fixed by dimensional
analysis up to logarithmic corrections. Of course, such a logarithmic correction is
realized in one dimension where we already found the result Z(z) ~ log z, and there

the constant k is proportional to the central charge.

But what happens in the more generic situation where the regions A and B collide
only at a single point. The mutual information will still diverge, but with a weaker
power of z. Suppose the two regions touch at a single point and that in the neighbor-
hood of each point the boundary may be described as a parabolic surface rotationally
invariant about the z axis with radius of curvature R. The mutual information should
be a universal function of R/z. We will now give a scaling argument to determine this
function. Consider two parabolic surfaces separated by a distance x parameterized
by a radial coordinate p. The length of the line parallel to the z axis connecting the

two surfaces at radial coordinate r is x + %. Let us now apply the form deduced
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above for the scaling form of the mutual information in the case of flat regions to a
small shell with inner radius r and outer radius r + dr. The approximate size V,_;
of this shell is p?~2dp, and the distance between the shells along the z axis is z + %.
We now integrate the mutual information obtained above from p = 0 to some cutoff

value p,:
d—2

pe P
Z(R,x) ~ /0 dp(x T AR (6.6)

This formula is divergent as z goes to zero, and to determine the scaling form we

simply p = v Rzu to find

Uc d/2-1, d-2
T~ / Rz R (6.7)
0

l’d_l(]. + u2)d—1 ’

Collecting all the powers of z and R, we find that

I(R,z) =K (g) T (6.8)

Thus, the mutual information still diverges but with a different power of z owing to

the quadratic nature of the boundaries near the collision point.

Finally, one can consider the singular situation of a corner approaching a smooth
surface. This case is similar to that of colliding quadratic surfaces except that the
distance along the z axis between shells depends linearly on p. Carrying out the
same integral as above with = + p?/R replaced by a linear function x + mp (m is
a function of the opening angle) gives a logarithmic divergence Z = k”logz + ... in
any dimension d. Not only do d — 1 dimensional flat surfaces replicate the boundary
law, colliding corners also replicate the logarithmic term in the entanglement entropy

associated with corners in any dimension.

We have argued on general grounds that the mutual information in a confor-
mal field theory should contain certain universal divergent pieces when the regions
involved collide. Depending on the geometry of the collision, one obtains different
scaling forms with universal prefactors that measure the number of degrees of freedom

contributing to ground state entanglement. However, it is desirable to check these
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Figure 6-1: Sketch of the prescription for computing the entanglement entropy in a
1 + 1 dimensional CFT via holographic duality. The horizontal axis is the spatial
coordinate in the CFT while the r—axis is the bulk radial coordinate (the bulk is
shown in gray). The time coordinate is suppressed. The region of interest in the field
theory is shown as a thick red bar while the minimal surface of interest in the bulk is
the red dotted line. The minimal surface is required to terminate at the boundary of
the region in the field theory.

scaling relations in specific cases to explore the validity of the arguments just given.
Thus, we now turn to class of theories for which the above conjectured scaling forms

can be explicitly verified.

6.3.3 Holographic computation

The simplest setting in which these ideas can be tested is provided by holographic du-
ality. Holographic duality relates quantum field theories in d+1 spacetime dimensions
to theories of quantum gravity in curved higher dimensional spaces [?, 77, 78, 96].
The classic statement of the duality is between N' = 4 super Yang-Mills theory in
four dimensions and type 11 B string theory on asymptotically AdSs x S spacetimes.
The high energy limit of the field theory is in some sense located at the conformal
boundary of AdSs, and the extra radial dimension of AdS; is associated with energy
scale in the field theory. The duality becomes particularly simple on the gravity side
when we take the limit of large N and large A = g, N in the field theory. In this
limit, the string theory becomes well approximated by classical (coming from large
N) supergravity (coming from large A). Many interesting quantities in this strong
coupling limit of the field theory become expressible as simple geometric objects in a

higher dimensional spacetime with gravity.
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> X |« +
Figure 6-2: Strip geometry for the calculation of mutual information in the translation
invariant case. We assume the L > w > x so that the minimal surface problem

reduces to a single variable problem. A singularity in the mutual information develops
as x approaches zero.

In particular, the entanglement entropy in the field theory is related to minimal
surfaces in the higher dimensional gravitational geometry [58, 59]. The detailed pre-
scription is as follows. As we said, the high energy limit of the field theory lives at the
conformal boundary of AdS. To compute the entanglement entropy holographically,
we must study surfaces in the bulk gravitational geometry that asymptote at the
conformal boundary of AdS to the boundary of the region in the field theory we are
interested in. The entanglement entropy is then the area in units of the Planck length
of the minimal area surface satisfying the boundary conditions. The prescription is
illustrated in Fig. 1 for the case of a 1 + 1 dimensional conformal field theory dual
to an AdS3 geometry. Using this prescription we can reduce the computation of the
mutual information in holographic theories to a certain minimization problem in a
curved higher dimensional geometry.

Let us first consider the case of colliding d — 1 dimensional surfaces in a d + 1
dimensional conformal field theory (d is the dimension of space). We will focus on the
case of d = 2 for ease of presentation, but the results are quite general. The metric
of AdSs3,, is

12
ds® = T—é‘ (—dt? + dr* + do® + dy?) (6.9)
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where L, is the AdS radius and r is the radial coordinate. Let the field theory regions
A and B be strips of length L in the y direction with width w in the x direction. The
strips are assumed to be separated by a distance z as illustrated in Fig. 2. Assuming
L >> w, we have translation invariance in the y direction. This greatly simplifies the
minimal surface problem, allowing us to parameterize the minimal surface by r(z)
independent of y. Focusing first on a single strip, the area of the surface in the bulk
is

w/2 1 +

/ (6.10)
w/2

The result of the minimization procedure is an area of the form
L L
L (kl— - kz—) , (6.11)
€ w

where the constants k; and k, are calculable and € is a high energy cutoff. The
entanglement entropy of the single strip is simply this area multiplied by 1/(4G N),

that is, the area in Planck units.

As usual, the entanglement entropy is non-universal, depending on the high energy
cutoff €. To remove this defect we return now to the two strip geometry and compute
the mutual information for the two strips. We need two quantities: the entropy of a
single strip and the entropy of both strips together. We have already obtained the
single strip entropy, so let us focus on the two strip problem. There are two cases that
must be considered depending on the ratio of the strip width and the strip separation.
These two cases correspond to two possible choices for the two strip minimal surface.
The first choice corresponds to two disconnected surfaces, one for each strip, and each
identical to the single strip minimal surface. This situation occurs when the strips
are widely separated and gives zero mutual information. However, for the purposes
of calculating universal divergences in the mutual information we are interested in
the opposite limit of two very close strips. In this case, the minimal surface actually
connects the two strips in the bulk. The near edges of the strips are connected by one

component of the bulk minimal surface while the far edges are connected by another
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Figure 6-3: A sketch of the two bulk minimal surfaces relevant for the calculation of
the mutual information. The translation invariant spatial coordinate is suppressed
along with the time. In the top panel, the minimal surface for two widely separated
strips is simply two copies of the minimal surface for a single strip. In the bottom
panel, when the two regions come close, a new minimal surface appears which connects
the inner and outer boundaries of the two regions. In this case, there is a non-zero
holographic mutual information.

component. This geometry is illustrated in Fig. 3.

Repeating the analysis above for the minimal surface, we find that the entangle-

ment entropy of the two strips taken together is

_ L L , L b o &
59 strips = 45 ((klz - L22w +:r) 4 (k1? . kz;)) ; (6.12)

Now, the mutual information is Z = 257 strip — Sy strips which gives

2 (L L L
= — -2—]. 13
EiLs wim) k24GN (x * 2w+ w) (6:13)

Note again that the mutual information is manifestly cutoff independent. The factor
L3 /Gy is related to the total number of local degrees of freedom in the field theory,
for example, it may be related to the dimension of the gauge group (~ N? for SU(N)).
As promised, the mutual information has a universal divergence as x — 0, and this
divergence is proportional to the size of the colliding region, here the length L, and
to the total number of degrees of freedom.

We can also ask what happens when the colliding regions are not flat surfaces but
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points with finite radius of curvature or corners. Of course, the minimal surfaces in
this case which connect the two regions will be much more complicated, but we will
argue that we do not need the full minimal surface to verify the scaling form proposed
above. Consider first the case of two long strips, but now with the colliding side of
each strip curved into a portion of a circle with a very large radius of curvature L as
shown in Fig. 4. Now the two regions collide only at a single point, but nevertheless,
the minimal surface will be approximately translation invariant in the y direction.
Let us now parameterize the minimal surface as r = r(z, y) but with the expectation
that d,r < 0,1 except possibly deep in the bulk, in other words, we suppose the

surface varies slowly with y. The full expression for the minimal surface area is

L2 /d gy YA F G2+ @) (6.14)

r2

and we want to be in a regime where J,r < m for all x and y. In this
regime, there is a separation of scales between the fast variable x and the slow variable
y and we can approximately solve the fast problem treating the slow variable as fixed.
This means we obtain the same sort of minimal surface as we found above for the
infinite strip except that the strip width is a local quantity determine by the slow
variable y. Only in the case where the strip width was independent of y were we able

to perform the y integral exactly to yield L, the strip length.

Thus a segment y to y + dy contributes an infinitesimal mutual information given

approximately by

dZ(w(y), z(y)) = ks

2 (d d d
A (—9+ Y —2—y), (6.15)

4G N 2w+ w
where z(y) and w(y) are the width and separation of the slightly curved strips as a
function of y, the coordinate along the long length of the curved strips. In the limit
of large radius of curvature L we may approximate the width as constant, w(y) = wo,
while the separation is approximated by a quadratic function, z(y) ~ z¢ + y?/L, so

that only the point y = 0 at the middle of the curved strip actually collides in the
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x(Y)

Figure 6-4: The analog of the strip geometry, but with one flat side of each strip
replaced by an arc of a circle with large radius of curvature. The resulting regions are
now nearly translation invariant in the y direction, but also only collide at a point as
z(y) approaches 0.

limit zp — 0. Focusing now on the leading divergence in the mutual information,
we find that we must determine the singularity in the integral [ dym as T
goes to zero, but this is precisely the integral we considered above where we found
that it diverges as m as xg goes to zero. Thus the holographic prescription
for entanglement entropy reproduces the intuitive scaling we argued for above, at
least in the nearly translation invariant limit. A completely analogous argument also
shows that corners in the holographic case give a logarithmic singularity log zo simply

because the separation z(y) is in that case a linear function of y.

All the explicit computations up to this point have been for a holographic field
theory with 2 spatial dimensions. Of course, we can generalize these results to higher
dimensions. The geometry is more complicated, but the results are unchanged, so
we do not include the details here. Note also that we relied entirely on the spatial
geometry of AdS for these computations, and this implies that the scaling we obtained
for the universal divergences in the mutual information are identical in form for
holographic z # 1 scale invariant theories with spatial AdS slices [98, 99]. There
is also a connection between the minimal surface calculations described here and the

structure of the multiscale entanglement renormalization ansatz (MERA), a class
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of variation quantum states [10]. The minimal surfaces described here all have an
interpretation on the MERA side in terms of the number of disentanglers cut by the
tracing procedure, and in particular, the crossover between the short distance and
long distance behavior of the mutual information is evident in terms of whether the
regions entering the mutual information are renormalized to the lattice scale before

or after they are merged together in the MERA.

6.3.4 Fermi liquids

So far we have considered mostly relativistic conformal field theories in any dimension,
although the holographic results above also applied to non-relativistic scale invariant
theories with dynamical exponent z # 1. However, once one is willing to consider
non-relativistic situations, there are a number of interesting renormalization group
fixed points to investigate. The simplest such fixed point (really fixed manifold) is
the Fermi liquid fixed point in d > 1 spatial dimensions (in d = 1 we have the usual
Luttinger liquid fixed line). This fixed point is applicable for fermions at finite density
with short range interactions and is characterized by scaling towards a surface, the
Fermi surface, in momentum space, rather than scaling towards a single point in
momentum space [43, 42, 41]. The Fermi liquid fixed point is quite interesting for my
purposes because its entanglement structure is controlled by the 1 + 1 dimensional
nature of the “radial” excitation near the Fermi surface [13, 14, 16].

Thus the result for two colliding d — 1 dimensional surfaces of size V; ; in a
Fermi liquid differs from the d + 1 dimensional conformal case. In fact, it resembles
the 1 + 1 dimensional conformal result because the Fermi surface can be thought
of as a collection of 1 + 1 dimensional conformal field theories, namely the local
radial fermionic excitations which propogate with Fermi velocity normal to the Fermi
surface. The result for the mutual information, using the prescription given in [16],
is

I~ K5y loga + ... (6.16)

Note that this result must be interpreted somewhat carefully because of the presence
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of the extra scale kp. Indeed, if z < k' then the mutual information will begin
to probe the higher energy theory from which the Fermi liquid descends, perhaps a
lattice theory or some relativistic conformal field theory perturbed by a finite chemical
potential. Thus there is a scaling regime where z is small but not so small that
krx ~ 1, and in this scaling regime the dominant term in the mutual information
does behave like log x. Note that if there are other gapped bosonic modes in the Fermi
liquid then the mutual information will also contain contributions from these modes,
and such a mode contributes a divergence of the type described above for ordinary
scale invariant theories once the separation x becomes less than the correlation length
€ (or inverse mass, in the relativstic language) of the bosonic mode.

Of course, this is a relatively weak singularity. In fact, the entanglement structure
is such that the mutual information only diverges if flat d — 1 dimensional segments
collide. The case of a point with finite radius of curvature colliding produces only a
non-divergent cusp-like behavior in the mutual information. This result follows from
the prescription for the mutual information given in [16] upon taking into account
the geometry of the colliding regions. We expect similar behavior for the mutual
information in a critical Fermi surface [45], although there is a complication mentioned
above of additional massless degrees of freedom, perhaps a gauge field, a particular

angular momentum channel density fluctuation, or a z = oo low energy CFT [71, 72,

46).

6.4 Higher dimensional twist operators

6.4.1 Definition of twist operators

We have now described the basic scaling intuition for the mutual information and
confirmed this intuition in the framework of holographic duality. Additionally, we
have described how the story changes for other kinds of non-relativistic fixed points
such as Fermi liquids. We are now ready to discuss the concept of higher dimensional

operators, but first a review the situation in one dimension in appropriate. Twist
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operators are often invoked in the calculation of entanglement entropy in one dimen-
sional conformal field theory where the entanglement entropy is written as a path

integral on a multi-sheeted Riemann surface via the replica trick:
Sgp = 7111311 —Ontr(pR)- (6.17)

Let us first consider the case of a single interval. The path integral of the original 1+1
dimensional conformal field theory on this multi-sheeted surface is traded for a path
integral in a new conformal field theory, the symmetric product of n copies of the
original conformal field theory. The relevant path integral in this symmetric product
CFT is not quite the free path integral, however, as certain point-like fields called
twist operators must be inserted at the two boundary points of the interval for which
we are interested in the entanglement entropy [28]. These twist fields account for the

conical singularity that was present in the original multi-sheeted surface formulation.

For a field ¥ in the original CFT, let ¥, denote the n copies of ¥ in the symmetric
product theory. The role of the twist operators is to produce a shift ¥, — V.1, as
a field ¥, encircles the twist operator in spacetime. This shifting operation is the
analog in the original multi-sheeted formulation of moving from one sheet ¥, to the
next ¥,,1. One may compute the entanglement entropy in the original conformal
field theory in terms of correlation functions of these twist operators. Thus it is
valuable to know the properties of these operators for the purposes of computing
entanglement entropy, and vice versa, a knowledge of the entanglement entropy for

general regions provides a handle on the properties of these operators.

Having argued that the quantum mutual information contains certain universal
singularities, we would like to know how to translate this into the language of higher
dimensional twist operators. The twist operators in 1+ 1 dimensional conformal field
theory are actually primary operators with dimension related to the central charge of
the CFT and the number of replica fields n. What is the analog of this statement in
higher dimensions? Before we investigate the properties of higher dimensional twist

operators, we must attempt to give a clearer definition of these operators. As in the

113



Figure 6-5: An example of the replica method with n = 4 copies. The region whose
entanglement entropy we are calculating is in blue while the rest of the system is in
red. The t axis is imaginary time. The copies are glued together so that one passes
from copy a to copy @ + 1 when passing through ¢ = 0 from below in a blue region,
while in the red regions no such transition occurs. The blue region at ¢ = 0 is thus
a “branch surface” that terminates on a spacetime codimension 2 conical singularity
given by the boundary between red and blue at ¢ = 0. The twist operator lies along
this 1 dimensional locus in spacetime.

1 + 1 dimensional case, the entanglement entropy is related to a path integral over a
multi-sheeted higher dimensional spacetime as illustrated in Fig. 5. The spacetime
looks locally unexceptional except at the boundary of the region for which one is
computing the entropy, and on this boundary, there is a conical singularity in the
spacetime associated with the joining of the n copies of the path integral. Like in
the 1 + 1 dimensional case, where the boundary of a set of intervals was a set of
points having codimension 2 in spacetime, in higher dimensions the boundary also
has codimension 2 in spacetime.

To formalize these notions, consider a region R with boundary OR in d spatial
dimensions. We will focus on the case of a relativistic conformal field theory, but my
considerations are generalizable, for example, to Fermi liquids. Following the usual

replica trick methods, the entanglement entropy of this region is related to a multi-
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sheeted path integral with a conical singularity along the boundary OR. Alternatively,
we may define an operator K,[R] in the n-fold symmetric product theory by the
equation (K,[R]), = tr(pk). It follows from the definition that in the limit n — 1
and in the absence of other operator insertions, the operator K,, becomes trivial since
tr(pr) = 1. We also assume that this operator is localized along the boundary OR of

the region R at a fixed imaginary time.

6.4.2 Twist field ansatz

We want to make a guess as to the form this operator by analogy with the one
dimensional conformal case. The key realization is that the twist field in 1 + 1
dimensional CFT shares many properties with the exponential of a massless field,
in other words, it behaves much like a vertex operator in a free boson CFT. Thus,
let us assume that the twist field in higher dimensions can also be thought of as an
exponential of a massless field of some type. Let us make the following ansatz for the

form of the twist field:

Kn[R] = exp (wn /6 . ¢<d—1>>, (6.18)

where ¢4~V is taken to be a massless spatial (d — 1)-form field of scaling dimension
d — 1. Alternatively, one may trade this (d — 1)-form for a spatial vector using the

fixed background metric

K,[R] = exp (mn /6 Rﬁ : q‘s’), (6.19)

where 7 is the unit normal to the boundary OR. A knowledge of the correlators of
¢ in a given conformal field theory would be sufficient to compute the entanglement
entropy for any region.

Our ansatz for the twist fields can already reproduce all the scaling features dis-
cussed above under the particular assumption that ¢ has gaussian correlations. In

fact, this assumption is equivalent to an assumption of “extensivity” of the mutual
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information [100], and our results here provide another point of view on the nice
ideas in [100]. Of course, this assumption cannot be correct in most cases, but it does
capture the short distance singularity structure nicely. This is not so unreasonable,
since the short distance structure in 1+ 1 dimensions also depended on the two point
function. What follows is a sketch of the structure of these twist operators, but it is
certainly not the complete story and much remains to be understood. For example,
possible complications due to phase transitions in the replicated theory as a function
of n are not captured in the sketch below [101].

To begin, observe that the field ¢* (¢ = 1 to d is a spatial vector index) has a shift
symmetry ¢* — ¢'+a’ for any constant vector a’. The twist operators K, are invariant
under this symmetry because the boundary 9R is closed so that [#-d@ = 0. This
shift symmmetry is a specific example of a more general symmetry, namely the ability
to shift ¢* by any vector field with zero divergence. In the form language, this is the
statement that the form field (¢~ has a “gauge symmetry” ¢(@=1 — @(d-1) 4 gf(d-2)
with f(4=2) an arbitrary smooth spatial d — 2 form. There is clearly a strong analogy
between these twist operators and the Wilson and 't Hooft lines of gauge theories,
or more generally, between the twist operators and surface operators in p form gauge
theories.

As Gaussian massless fields of dimension d — 1, the correlation functions of the ¢
are determined by the basic two point function

.

@@ O0) = T (6.20)
where ... denotes additional terms like £°#7 which are not essential for our purposes.
As a warmup, let me compute the entanglement entropy of a circular region in d = 2
spatial dimensions using the twist field. One must evaluate (K, ), but the assumption

of Gaussian correlations for ¢ gives

(Kn) = exp (——/6R /{m A (i) ) (6.21)

What is the meaning of this double integral over the circular boundary in d = 27
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First, it is certainly divergent and depends on the cutoff, but this is exactly what we
expect for the bare entanglement entropy. Second, we must assume that while the
limit of o, as n goes to 1 is zero, the combination a? has a finite first derivative at
n = 1. This is reasonable in light of one dimensional conformal field theory. In that
case, a, is roughly the square root of the dimension A, of the twist field, and A,
does indeed have a non-zero derivative at n = 1.

From (K,) one can compute the entanglement entropy via S = —0,tr(p")|n=1 =

~On(Kn)|n=1. We find

2)'" 1 A A
S = ./zm /3R I {ps;). (6.22)

To evaluate the divergent double integral over R we use the fact that no special
point is selected on the circle. Take the normal 7, of the first copy of the circle to
point vertically and call § the angle between the vertical and second normal f,. This
gives the distance |z| = 2Rsinf/2 where R is the radius of the circle. The double

integral may then be written

" cosd
(27I'R)2 l/R Rdgm, (623)

where € is the spatial cutoff (so that €/R is the smallest angle available) and where we
have kept only the 6% piece of the ¢¢ correlator. This integral is divergent as ¢ — 0

as the entanglement entropy should be and for finite ¢ behaves like
R
Szcl—e—+02+... (624)

with ... containing only positive powers of e. Note that there is no logarithmic term.

Let us repeat the same calculation for a spherical region of radius R in d = 3
dimensions. Let us drop all unnecessary constant factors. The integral has a very

similar structure with # now a polar angle

cos

S~R2/ﬂ R%dfsinf— 27
s e )

(6.25)
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We still recover the divergent boundary law term going like R?/€2, but now there is a
pleasant surprise, namely the presence of a logarithmic term log R/¢. Precisely such
a universal logarithmic correction has been found in conformal field theories in odd
spatial dimensions. One can verify that our ansatz for the twist fields reproduces
the pattern of logarithmic corrections for smooth regions in odd spatial dimensions
[102, 103, 104]. Since the coefficient of this term is related to the derivative of al,
we expect that this derivative at n = 1 is a universal quantity counting the number
of degrees of freedom in the theory. Of course, in a more general formulation we
would expect n dependence not just from «, but also from the nontrivial higher

point correlation functions of ¢.

Along the same lines, one can check that the ansatz above predicts that regions
with sharp corners in any dimension have universal logarithmic corrections in their
entanglement entropy related to the deficit angle at the corner. The integral for a
semi-infinite V shaped region of opening angle 7 — 6 can be done exactly. If we
keep only the 6 term in the correlation function (the other term doesn’t change the

qualitative structure), then the coefficient of the logarithmic term is given by

(1 - 00089) : (6.26)

sin 6

with —7 < 6 < 7 and where the overall coefficient is undetermined (it is related to
0p02|n=1). This result has a quadratic zero at # = 0 and a linear divergence at § = =
in agreement with previous results in a variety of systems [105]. In fact, this formula
even does well in a semi-quantitative comparison with previous results provided the
normalization is fixed appropriately. To understand the quadratic zero, consider the
situation where the region A under study and its complement form a pure state. Then
Sa = Sz, but if A has a sharp corner with angle § then A has a sharp corner with
angle —0, and hence the coefficient of the logarithmic term must be even in 4 in this

case.
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6.4.3 Mutual information from twist fields

Still, everything thus far is in some sense a warmup, especially since the entanglement
entropy contains non-universal cutoff dependence. To study the mutual information
in this twist operator formalism additional regions must be introduced. The mutual
information between two regions R; and R, is related to the twist fields K,[R,] and
K, [R,] via

T = 8, (KalRa)) (Kn[Ral) — (Kl Ra) Kn[Ra])) oy - (6.27)

In other words, one needs the n derivative of the connected correlation function

between K,[R4] and K,[R2).

The connected correlation function ensures that after the n derivative the “self
entanglement” terms 0R10R, and OR,0R, cancel. One is left only with an inte-
gral over 9R19R, that is not divergent so long as the two regions do not touch. Of
course, we were originally interested in the singularities that develop in the mutual
information precisely when the regions are brought close together. Let me first con-
sider the standard case of two colliding flat strips in d = 2 dimensions. Following the

calculations above, the mutual information takes the schematic form

L/2 L/2 1
IN/ dy dy , 6.28
—L/2 ! —L/2 (1 — y2)? + a2 (6.28)

where as before the y coordinates run along the length of the strips and z is the
separation between the strips with L > x. Note that in this case the product of the
surface normals is independent of y; and y,. The integral is done by switching to

center of mass and relative coordinates with the now familiar result Z ~ L/xz.

The cases of points with finite radius of curvature and corners can be treated in
a similar manner, and we obtain the scaling forms described in detail above. Thus
our ansatz for the twist fields reproduces the singularity structure of the mutual
information in any dimension and in any of the collision scenarios considered above.
It also naturally accounts for the divergent structure of the bare entanglement entropy

including the presence of various kinds of universal logarithmic terms. Although we
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have focused on the entanglement entropy and the mutual information, the ansatz
above predicts very similar behavior for the more general Renyi entropy and Renyi
mutual information. It is also possible, by introducing a length scale into the ¢i¢’
correlator, to see the cross over structure of the entanglement entropy and mutual
information in a theory with a finite correlation length. Of course, we have not
derived this prescription from any particular conformal field theory, but this is a very
tempting target for future calculation, especially in free conformal field theories such

as the Lifshitz theory or free Dirac fermions.

We should note one unsatisfactory feature of the discussion above. The mutual
information should bound the square of the connected correlation functions between
any two local operators. Considering the limit where the regions R, and R; are far
apart, the assumption of gaussian correlations gives a decay for the mutual informa-
tion going like 1/x2¢. For free Dirac fermions, for example, this does indeed exactly
bound the square of the free fermion correlation function. However, for massless
bosons, the square of the equal time correlation function decays as 1/z%%~V and the
bound appears to fail in our setup. This is not totally unexpected. In 1+1 dimensions
the boson correlation function actually grows logarithmically, a behavior clearly not

in line with the decay of the mutual information.

One way out of this issue for lattice bosons is the observation that the operator
norm of the lattice boson field ¢; ~ (a; + a;) actually diverges, or in other words, g;
is an unbounded operator. If the operator norm is infinite then the bound provided
by the mutual information is vacuous. On the other hand, there do exist systems,
for example certain magnetically ordered spin systems, where the relevant operators
have bounded norm and the correlation function still decays like a free boson. What
this appears to be telling us is that the long distance properties of the twist opera-
tors are considerably more variable than is captured in our assumption of Gaussian
correlations. In particular, while the second cumulant may suffice for capturing short
distance singularities, one must consider higher order cumulants when evaluating (K,,)
in order to correctly capture the long distance behavior. Consider a simple example.

The mutual information of free fermions in one dimension decays as 1/z? precisely in
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line with the fermion-fermion correlation function. However, this system is equivalent
to an XX ferromagnetic spin chain via a Jordan-Wigner transformation. In the spin
formalism we find that the spin-spin correlation function decays as z~1/2. This decay
does not violate the bound from mutual information in the fermion language since

the spin operator is non-local in the fermion language.

6.4.4 A simple example: Dirac fermions

There remains the possibility that the story we have sketched above may be close
to exact for a particular system, and a good candidate for that system seems to be
Dirac fermions in any dimension. We can argue as follows. Consider a set of n replica
fields 1),, each corresponding to a free Dirac fermion. We work in 3 4+ 1 dimensions
for concreteness. These fields carry a representation of the symmetric group S,, and
hence a representation of the Z, subgroup generated by the twist 7% : 1, — ¥p41.
One can make a unitary transformation to a new set of fields 1, that are eigenstates
of T* with eigenvalue \,. These fields will pick up a phase shift as they encircle
the twist operators K, in spacetime (remember, this makes sense because the twist
fields live in a codimension 2 locus in spacetime) in a fashion reminiscent of the
Aharonov-Bohm effect. Indeed, since A, satisfies |A\;| = 1, one can introduce gauge
fields A, that couple to the 1), to implement the phase ;. These gauge fields are
pure gauge everywhere except along the locus of definition of the twist operator. In
3+1 dimensions, this locus is a closed two dimensional spatial surface that is a spatial
analogue of the more familiar spacetime worldsheet of a flux tube or solenoid loop
in 3 + 1 dimensions. A similar approach has been used for Dirac fermions in 1+ 1

dimensions [97].

Because the Z,, subgroup acts on the 1, just like the global U(1) charge symmetry,
we can use the U(1) current to couple to the gauge fields A,. Indeed, the Lagrangian
in the terms of 1, is identical in form to the Lagrangian in terms of the 1), since the

theory is free and the transformation from 1, to v, is unitary. The twist operators
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thus take the schematic form

K,[R] ~ exp <z Z/Aq : Jq), (6.29)

where the A, depend on R and encode the flux needed to produce a phase shift of A,.
Now introduce a new field by writing J* = e**?8,¢,, for each current J,. Integrating
by parts produces an integral of a 2-form field ¢,, over the surface OR exactly as
above. Since the surface is purely spatial, the spacetime 2-form descends to a spatial
2-form and can be converted to a spatial vector using the spatial 3-metric. This is
the setup described above. For example, the scaling dimension of J is 3 and thus
the dimension of ¢,, is 2. Also, ¢,, by definition has the gauge freedom mentioned
above. However, unlike in 1+ 1 dimensions, the field ¢, is not Gaussian, so the story
is not as simple. There are also additional subtleties associated with fermion minus

signs. We leave to future work more detailed calculations in this case.

6.4.5 Advantages of the twist field formalism

We have introduced the idea of twist fields as non-local operators used to compute the
entanglement entropy in quantum field theory. Non-trivial information is available
about these fields in 1 + 1 dimensions because they can be identified as conformal
primaries. Much less is known in higher dimensions, although we should point out
that it is possible to study the operator produce expansion of local fields with the twist
operators. One route to attacking this problem is provided by the identification, in
higher dimensional conformal field theories, of the reduced density operator of a disk
with the exponential of a certain special operator known as a modular Hamiltonian
[25]. In the recent language of condensed matter physics, one has an exact expression
for the “entanglement hamiltonian” K, defined via ps = exp (—K4). In the above,
we have made use of a mixture of general properties and the special approximation
of gaussian correlations. As we have repeatedly stated, gaussian correlations are not
sufficiently general. However, we argue that the twist field formalism, even in the

gaussian approximation, already captures a great deal of useful information about

122



many-body entanglement.

The twist field formalism

encodes the boundary law (and its violations) for entanglement entropy,
e guarantees the finiteness of the mutual information,
e gives a model of the special contributions of corners,

e makes sense of the pattern of logarithmic corrections to the entanglement en-

tropy,

e can be easily generalized (by summing images around the imaginary time circle)

to finite temperature,

e and in general seems to encode most of the generic behavior of entanglement

entropy in quantum field theories.

For all these reasons, and because of the ease of calculation in the gaussian approxima-
tion, we believe the twist field formalism is a very powerful perspective on many-body
entanglement. It will be very interesting to go beyond the gaussian approximation

and explore the complete richness of many-body entanglement using this formalism.

6.5 Possibility of a generalized c-theorem

Having investigated in some detail the singularity structure of the mutual informa-
tion in various settings, let us now turn to a concrete potential application of the
results described above. There is the interesting possibility of identifying quantities
in quantum field theory that are monotonic under a renormalization group flow. Of
course, such quantities need not exist in general. However, the c-theorem of 1 + 1
dimensional conformal field theory states that there is such a quantity in 1+ 1 di-
mensions. The quantity is the central charge of the conformal field theory, which can
be defined via the two point function of the stress-energy tensor. This quantity is

guaranteed to be monotone under RG flow in any unitary conformal field theory in
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1+ 1 dimensions. Remarkably, it is precisely this quantity which controls the size of
the universal logarithmic divergence in the mutual information in 1 4+ 1 dimensions.
Thus we may phrase the 1 + 1 c-theorem in the following way: for any two CFTs C;
and C; such that C; flows to C; under some relevant deformation, the “entanglement
per scale” k as encoded in the short distance divergence of the mutual information,
satisfies k3 < k;. But now this opens the possibility that this result could be true for

CFTs in any dimension.

There is some evidence for this claim beyond the 1 + 1 dimensional setting. For
example, it is known that holographic theories with a bulk consisting of Einstein
gravity coupled to matter satisfying the null energy condition possess an analogous
monotone quantity [106, 107, 108]. Moreover, this quantity is also interpretable as
the number of degrees of freedom in the dual field theory, and it is, up to irrelevant
numerical factors, precisely what appears in front of various universal divergences
in the mutual information. Of course, this is not the first quantity that has been
proposed to satisfy a higher dimensional c-theorem. Previous work has focused on
the anomaly coefficients @ and ¢ in 3 + 1 dimensions which control the trace of the
stress-energy tensor in curved backgrounds. In the holographic setup, these quantities
are known to be all related to my proposal in terms of mutual information, at least in
1+1 and 3+ 1 dimensions. One advantage of the mutual information based proposal
is that it applies also in even spatial dimensions for which the usual anomalies are

absent.

More generally there are counter-examples showing that c in 341 dimensions is not
monotone under RG flow, but the a anomaly coefficient is still a viable candidate.
Indeed, precisely this coefficient has recently been shown to satisfy a holographic
c-theorem in a more general class of holographic theories [109]. It is also related
to a certain universal term in the entanglement entropy and hence to the mutual
information. One can try to establish this relationship more directly by considering
the operator product expansion of the stress tensor with the twist field we defined
above. However, we must also be careful since it known that some random systems

in one dimension do not satisfy the c-theorem, so it appears that a strictly quantum
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information theoretic proof of the monotonicity of mutual information may not be

possible.

There is an even more immediate objection to this proposal, namely the possibility
of flowing outside the class of relativistic CF'Ts. For example, by perturbing the 3+ 1
dimensional Dirac fermion CFT with a finite chemical potential, one flows to a new
non-relativistic fixed point in the Fermi liquid class. Both such theories do have
universal divergences in mutual information, but now even the most basic form of
the scaling relation is different. It is true that the low energy theory has, in a sense,
a much weaker singularity than the high energy theory. Perhaps this is the form of
the mutual information c-theorem in this case, but we do not yet know if this can be
made completely unambiguous. An interesting holographic version of this flow comes
perturbing a holographic CFT3,; by a finite chemical potential for some conserved
U(1). This is described on the gravity side as an extremal black hole in AdSsy4
with a near horizon AdS;,; region dual to a low energy 0 + 1 dimensional conformal
field theory. The low energy 0+ 1 dimensional CFT has finite entropy due to a local
ground state degeneracy but no entanglement as measured by the holographic mutual
information. Thus the scaling form of the mutual information is also changed and

again to a weaker sort of singularity (none at all).

Thus we conclude that in general the story is complicated, nevertheless, we sus-
pect that quantum information ideas will be useful in finally elucidating the nature
of higher dimensional c-theorems. As motivation, we prove a monotonicity theorem
for the coeflicient of the mutual information in 1 + 1 dimensional theories possessing
translation invariance and scale invariance (but not necessarily full conformal invari-
ance). Another proof using different techniques and focusing on the entanglement
entropy directly has been given in 1 + 1 dimensions [110]. Our main advantage is
fewer assumptions (we do not need full conformal invariance). Consider a CFT on
a circle of circumference L. Let us study the mutual information Z(z) between the
regions [z/2,L/2 — /2] and [L/2+ x/2, L — z/2] as a function of z. For z < L, the
mutual information behaves as Z(x) = % 1n (£) +... (2c because of the two collisions)

as we established above. Now suppose the same CFT is perturbed by a relevant oper-
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ator so that it flows to another CFT in the infrared. Let the central charges of these
two theories be ¢, (ultraviolet) and c¢;. (infrared). The relevant operator determines
a scale £ so that the physics at length scales much less than £ is controlled by the
UV CFT and the physics at length scales much greater than £ is controlled by the IR
CFT. For the UV theory perturbed by the relevant operator, the mutual information
isZ(z) ~ %2 In (£) for z > € and I(x) ~ %= In (&) for ¢ < €. Fix a number M > 1
so that x = M€ is deep inside the IR CFT and x = 1/M¢ is deep inside the UV CFT.
We do not detemine M explicitly except to say that it independent of system size.
Now we are ready for the proof.

The mutual information is a monotone decreasing function of z because of the
quantum data processing inequality. Thus we must have AZ = Z(1/M§&)—-Z(M¢E) > 0.
Using the results stated above we find AZ = (cy, —cir) In (%) +(Ccupt+cir) In M+0O(1).
Since M and £ are independent of system size, we can simply take L — oo to conclude
that c,, — c;r > 0. Although we used the properties of conformal field theory to
write down the mutual information, the form we used actually follows from fewer
assumptions. Using the scaling argument of Chapter 2, all we need is translation
invariance, scale invariance, and a few technical assumptions. More generally, we can
ask how this argument fails for random systems where it is known that the effective
central as measured by the entanglement entropy can actually increase. An analogous
argument in higher dimensions shows that the coefficient of the mutual information
between two nearly touching hemispheres of a sphere cannot increase too much under

RG flow. Extending these ideas to actually prove a c-theorem in higher dimensions

is an ongoing work.

6.6 Summary of results: Chapter 6

In this chapter we have investigated the low energy structure of entanglement in
quantum field theories. Viewed as effective field theories, these systems describe the
low energy continuum limit of lattice models of many-body physics. Our goal in

this chapter was to understand the universal aspects of entanglement in quantum

126



field theory. We argued that the mutual information in a quantum field theory is
a cutoff independent quantity that probes the physics of entanglement and classical
correlation in a unified way. We have computed the mutual information in a wide
variety of models [16, 17] and seen how interesting physical quantities like the geom-
etry of the Fermi surface geometry or trace anomalies are encoded in this quantity.
We also developed the twist field approach to computing entanglement entropy in
quantum field theory [17]. This approach offers a physical picture to underlie a wide
variety of entanglement phenomena, including the contributions of corners, the area
law, the presence or absence of subleading logarithmic terms, the crossover to finite

temperature, and much more.
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Chapter 7

The Big Picture

7.1 What have we learned?

In this thesis we developed many novel results pertaining to the physics of entan-
glement in local quantum systems. Although we freely blended background material
with our own results for the sake of the narrative, much of the material presented
here is original. In addition to the unique renormalization based perspective we have

taken on the traditional aspects of many-body entanglement, our core results include:
e a tensor network description of non-chiral topological phases,

e a preliminary method to extract topological properties from tensor network

states,

e an intuitive picture of entanglement in Fermi liquids for which no analytic cal-

culation exists,
e a physical justification of the (mathematically unproven) Widom conjecture,

e a complete characterization of the leading contribution to mutual information

in Fermi liquids,

e a proposal connecting “holographic” tensor network states to holographic mod-

els of quantum gravity,
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¢ and an elucidation of the universal physics contained in the mutual information

in quantum field theories.

We have seen how the area law for entanglement entropy naturally leads to variational
states that can capture topological phases of matter, and we have explored the limits
of the boundary law as we searched for highly entangled phases of matter. We have
made a novel connection between holographic duality in string theory and entangle-
ment and renormalization in field theory leading to the idea that entanglement is the
fabric of spacetime. Finally, we have understood how to extract more detailed cutoff
independent information about entanglement in many-body systems using the tool
of mutual information. Taken together, we have provided a comprehensive picture
of many-body including several exciting new points of view, like the idea of entan-
glement as geometry. This broad and intuitive framework should serve as a useful

starting point for further investigations into many-body entanglement.

7.2 Connections

We have explored many-body entanglement primarily through the lens and language
of theoretical condensed matter physics, but we have also emphasized the many con-
nections to other areas of physics. The most important connection we might make
is to experiments in solid state and cold atoms systems. However, the potential con-
nections to ideas coming from quantum information science and string theory is also

very interesting. We comment on all three of these points below.

7.2.1 Experiments

As we said at the beginning, there are very few direct experimental probes of many-
body entanglement. We can relatively easily tell if entanglement is present, but
quantifying and manipulating many-body entanglement experimentally is well beyond
our current abilities. However, even if we cannot directly manipulate entanglement,

the broad hope permeating this thesis is the idea that we can significantly enhance
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our theoretical capabilities by thinking about entanglement. In our most optimistic
moments we might dream of a powerful quantum simulator running on a classical
computer that can answer otherwise intractable questions, for example, the ground
state of the fermionic Hubbard model. We might even dream about classical simula-
tion of quantum dynamics. While we are confident that a completely general classical
simulator of quantum systems will not be found, we have very little understanding
of where the boundary is. We can hope that many condensed matter systems of
interest would be accessible. Of course, we will one day have the ultimate quantum
simulator in the form of a quantum computer, and we will clearly have to understand
the physics of entanglement to make sense of such a device.

So returning at last to experiments, what could we do with such a tool? We
could imagine taking the parameters of a given Hamiltonian from measurements at
high temperature and then predicting from scratch the ground state properties of
the system. This ambitious goal is currently generally possible only for very weakly
correlated materials and perhaps in one dimension. Thus while the content of this
thesis has very little to do with immediate experimental realities, we do believe it is
one small step towards realizing the dream outlined above.

More immediately, there is much to be done to try and make more direct contact
between experimental probes and entanglement. Entanglement is a non-local thing,
so to probe it we must learn to understand non-local probes of many-body systems.
The earliest examples of such probes include large scale charge fluctuations [19] and
behavior after quantum quenches [22], but there is much more to explore. For ex-
ample, suppose we took a many-body system of cold atoms in an optical lattice and
simply by hand suddenly removed half the degrees of freedom. Does anything in the

subsequent non-equilibrium dynamics know about the entanglement entropy?

7.2.2 Holographic duality

It is very exciting from a theoretical point of view to imagine that ideas from string
theory may have a use in condensed matter physics, or more broadly, in quantum

many-body physics. Indeed, string theory is a kind of many-body physics, so perhaps
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such a connection is not so surprising. However, the specific prospect that holographic
duality has something profound to teach us about many-body physics in general
is most exciting. Of course, this is by no means given. The connection between
holographic systems and real world systems appears closest so far in the context
of the quark-gluon plasma. Here perhaps the difference between supersymmetric
Yang-Mills theory and QCD is not so great, but the relation to electronic or atomic
condensed matter systems remains quite elusive. We speculate that the ultimate
use of holographic duality in condensed matter physics will derive from its ability
to suggest new physical pictures in general, rather than any particular calculation of
properties in some mock theory. Certainly holographic duality has seriously impacted
the physical picture we now have of many-body entanglement. Whether there is more
to learn, about dynamics, for example, we do not know. But there is a great deal of

room to explore.

7.2.3 Quantum information

There is also an exciting exchange developing between condensed matter physics
and quantum information science. Of course, there is an obvious connection in the
sense that many solid state systems are candidates for realizing the first scalable
quantum computers. But more than this, we believe that the concepts, intuition,
and questions arising from the abstract study of quantum information processing will
be increasingly valuable as we explore more and more essentially quantum phases of
matter. Given that quantum computers can serve as universal simulators for many-
body dynamics, we would like to ask the conceptual question: how does a quantum
computer see the world? Certainly such a computer would not “think” in terms
of a wavefunction, instead states would be defined by their construction in terms
of quantum circuits, that is in terms of quantum dynamics. Indeed, although it is
exponentially hard to simulate quantum dynamics on a classical computer, we would
obtain exponentially more information (the entire wavefunction) than a quantum
computer could provide. Thus there is something profound to understand about the

information that a quantum computer can manipulate, and whatever insights we gain
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should help us better understand local quantum physics.

7.3 Where to go from here?

We want to end by describing some of the most interesting big questions that we are
pursuing and that we believe are of fundamental importance. In addition to this list
of big questions, there are many smaller open problems in the theory of many-body
entanglement and room for a wide variety of approaches. We want to emphasize one
last time that the framework we have described here should be seen as a beginning,

not an end.

7.3.1 Big questions

e What does an approximate knowledge of the ground state tell us about a phase
of matter? The ground state is only one state out of 2V for an N spin Hamilto-
nian. If we do not require locality, then we obviously know nothing. Similarly,
we may need to require that the Hamiltonian is generic. But if we grant these
conditions, what can we say? From symmetry breaking and localization to
topological entanglement entropy and the entanglement spectrum, the ground
state seems to contain much dynamical information. How should we quantify
this information without speaking about unphysical lists of 2 complex num-
bers. How do we extract the “shape” or “pattern” that determines the physics

from the ground state?

e We have considered almost exclusively entanglement in real space, but entan-
glement in momentum space should also play a profound role in the study of
renormalization in local quantum systems. There are a few preliminary calcu-
lations in this case, but currently the field is wide open. What is the connection
between entanglement and mutual information in momentum space and the

renormalization group?

e Can we significantly elaborate the connection between entanglement renormal-
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ization and holographic duality? Can we use the connection to make a heuristic
proof of holographic duality in some special cases? We have already argued that
entanglement renormalization captures well the renormalization group structure
of real space entanglement in the ground state, but holographic duality also
very naturally includes real time dynamics. Given the difficulty of extracting
real time dynamics in complicated many-body systems, can holographic duality
provide a clue to formulating dynamics in the context of holographic tensor

networks?

What can the structure of entanglement tell us about the physics of quantum
gravity via holographic duality? Can we prove the various conjectures for holo-
graphic entanglement entropy in higher dimensions using field theory tools like
twist operators by relating them to objects on the gravity side? Is entanglement

the fabric of spacetime?

How generic are tensor network states? In what sense can they capture the
universal physics of phases of matter obeying a boundary law for entanglement
entropy. What hidden structure distinguishes problems that are hard in the
tensor network language? Is the gauge redundancy a curiosity or an impor-
tant feature/limitation of the method? Can we capture the physics of chiral

topological phases using tensor networks? What about gapless phases?

Entanglement based methods of classification have been very successful in one
dimension and for topological phases in higher dimensions. The idea of adiabatic
transformations is very important. Can we use entanglement ideas to partially
classify gapless phases? Are there analogs of adiabatic transformations in the
gapless case? Can we use entanglement to give evidence for the stability of
certain fractionalized gapless phases of matter? Does entanglement or quantum

information decrease under RG flow?

Geometry has repeatedly played a critical role in understand the physics of

many-body entanglement, from the geometry of the Fermi surface to the geom-
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etry of anti de Sitter space. Is this the best way to think about entanglement?
We are also tempted to think of entanglement in terms of a fluid model, with
the links of a tensor network providing “pipes” through which entanglement can
flow. Does such a picture make sense, and if so, can we use it manipulate the
“flow” of entanglement to design better algorithms? Is there a hydrodynamics

of entanglement?

7.3.2 Final words

Our little story ends here, but the larger story is just beginning to unfold. As Hamlet
remind us, ” There are more things in heaven and earth, Horatio, Than are dreamt of in
your philosophy.” There are countless mysteries left to explore, fundamental principles
to uncover, bizarre and delightful phases to discover, dynamical behaviors to unravel,
and quantum computers to build. The future of entanglement and quantum many-

body physics is wide open.
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