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Abstract

This work is dedicated to development of a first-principle approach to study electron-

vibration interactions on quantum transport properties. In the first part we discuss

a general implementation for inelastic transport calculations based on maximally lo-

calized Wannier functions and non-equilibrium Green's functions. Our approach is

designed to determine inelastic transport properties such as differential conductances,
inelastic tunneling spectroscopies and nonequilibrium vibrational populations. Our

approach is first applied to benzene molecular junctions connected to cumulene and

carbon nanotube electrodes. In these examples, we discuss the role of the multi-

channel effect and of parity selectrion rules on the polarity of conductance steps, and

the appearance of a non-monotonic behavior in the vibrational population. In the

second part, we extend our formalism to study the effect of the electron-vibration in-

teractions on the local current distribution. Using non-equilibrium Green's functions,
we derive an expression for the local distribution of the inelastic current. Applying

this to the benzene-cumulene junction, we show that the electron-vibration interac-

tion can lead to a locally inverted current direction and the formation of loop currents.

In the third part, we present a comprehensive study of the elastic and inelastic trans-

port properties of carbon nanotube-zigzag graphene nanoribbon junctions, as realized

in recent experiments, focusing on the local current distribution over the junctions.

We calculate the local distribution of the elastic current to visualize the current in-

jection pattern from the CNT electrodes to the ZGNRs and the current path inside

the ZGNRs. For inelastic transport properties, we find a similarity in the IETS peaks

and the corresponding vibrational configurations for the CNT/ZGNR/CNT junctions

with different widths. As observed in the benzene-cumulene junction, we find that the

inelastic current emerges from a complex network that includes loop currents. Our

method and implementation can be generalized to other types of interactions, and is

not limited to the electron-vibration interactions. Thus our work will be a starting

point to understand the role of different and diverse interaction effects on quantum

transport, using realistic predictive first-principle calculations.

3



Thesis Supervisor: Nicola Marzari
Title: Professor of Theory and Simulation of Materials
Ecole Polytechnique F6derale de Lausanne, Switzerland

Thesis Supervisor: John D. Joannopoulos
Title: Francis Wright Davis Professor of Physics

4



Acknowledgments

I would like to express my gratitude to my advisor, Nicola Marzari, for giving me a

chance to study an exciting research topic with which I could keep studying quantum

transport theory and learn first-principle calculations. I am deeply thankful to him for

keeping patience with my progress, cheering up me, and giving me a lot of confidence

all the time.

I am privileged to invite Prof. John Joannopoulos, Prof. Patrick Lee and Prof.

Pablo Jarillo-Herrero to my thesis committee. First, I would like to thank Prof. John

Joannopoulos for being my co-advisor and giving his valuable suggestions. Whenever

I met him, I was always impressed with his intuition and insight. I am also indebted

to Prof. Patrick Lee for his excellent lectures on condensed matter physics. Most of

my understanding and knowledge in the condensed matter physics has been acquired

through his lectures. In particular, his lecture on quantum coherent phenomena, such

as strong and weak localizations, stimulated my interest in mesoscopic physics and

quantum transport theory. I am deeply grateful to Prof. Pablo Jarillo-Herrero for

informing me of recent experimental results relevant to my research.

I would like to thank all of my group members. In particular, Dr. Nicola Bonini,

Dr. Davide Ceresoli, and Dr. Cheol-Hwan Park have shared their invaluable time

to discuss first-principle calculations and electron-phonon interactions. I am also

grateful to Dr. Nicolas Poilvert, Dr. Young-Su Lee, and Dr. Elise Li for helping

me do first-principle quantum transport calculations. I have enjoyed great time with

very good officemates, Dr. Nic6phore Bonnet and Dr. Dmitri Volja. I would also like

to thank Dr. Xiaofeng Qian, Dr. Jivtesh Garg, Dr. Boris Kozinsky, Dr. Nicholas

Singh-Miller, Dr. Oliviero Andreussi, and Kathryn Simons for their support.

I would like to express my gratitude to all Korean Physics graduate students in-

cluding Dr. Taehyun Kim, Dr. Seungeun Oh, Dr. Gyo-Boong Jo, Yeryoung Lee (with

Kyeong-Jae Lee), Dong-Hyun Kim, Daniel S. Park, Sungho Yoon, Yongsun Kim,

Seung-Ki Kwak, Jae-Hoon Lee, Jeewoo Park, Changmin Lee, and Paul Junghyun

Lee. I always enjoyed spending time with them, talking about various topics of

5



physics and many other interesting issues. In particular, I would like to express my

special thanks to Dr. Taehyun Kim and Seung-Ki Kwak for their warm cares in my

hard time.

I am indebted to POSTECH alumni in MIT/Harvard including, but not limited

to, Prof. Sunghwan Jung, Dr. Kwonmoo Lee, Dr. Eunseong Lee, Dr. Jeon-Woong

Kang, Dr. Byungsub Kim, Dr. Hyunjung Yi, Dr. Kyung-Sun Son, Sue-Kyung Suh,

Seung-Yong Park, Dong-Hoon Lee, Dong-Hoon Kim, and Grace Han. It is a privilege

to organize POSTECH alumni gatherings for four years, which gave me many chances

to become close to them. They always supported me and did not hesitate to share

their time to help and advise me in my hard time.

I am also thankful to all of my Korean friends in Korea and the United States:

Dr. Jong-Hoon Ahn, Seokchang Ryu, Dr. Choongik Kim, Joon-Hyuk Imm, Yongho

Lee, Dong-Hyun Kim, Seong-Wook Choi, Jae-Woo Chung, Seung-Min Han, Jungho

Jo, Haksun Kim, Jongmin Kim, Byung-Keun Na, and many other friends that I do

not mention here. They are always willing to listen to me and help me go through

my hardship.

I would like to show my gratitude to all of my former group members in POSTECH.

First of all, I am deeply indebted to Prof. Hyun-Woo Lee. He is one of the greatest

physicists that I respect most, and my role model of a physicist. He first introduced

mesoscopic physics, which is still my academic interest, to me. It is a honor of my life

to work with him on fantastic topics. I will never forget an ecstatic moment that we

worked on correlation-induced resonances. Without his heartful help and advice, I

would not complete my Ph.D. in MIT. I also thank the other members including Dr.

Soon-Wook Jung, Dr. Jae-Seung Jeong, Dr. Hyowon Park, Jae-Ho Han, Soo-Yong

Lee and Myung-Joong Hwang.

Last, but most importantly, I am very deeply thankful to my family. With their

endless love and supports, I have studied here and finished my Ph.D. without having

any worry. It is sad that I cannot personally tell to my maternal grandfather that

I finally get MIT Ph.D. degree, but I am so sure that he is also happy with me in

Heaven.

6



Contents

1 Introduction 19

1.1 Molecular Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Inelastic Transport in Molecular Junctions . . . . . . . . . . . . . . . 20

1.2.1 Experiments on inelastic transport . . . . . . . . . . . . . . . 21

1.2.2 Inelastic transport theory . . . . . . . . . . . . . . . . . . . . 23

1.3 O u tlin e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Electronic Structure Methods 27

2.1 Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . . . 28

2.2 Density-Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 Hohenberg-Kohn Theorems . . . . . . . . . . . . . . . . . . . 29

2.2.2 Kohn-Sham Equations . . . . . . . . . . . . . . . . . . . . . . 31

2.2.3 Exchange-Correlation Functionals . . . . . . . . . . . . . . . . 33

2.2.4 Planewave Basis Calculation . . . . . . . . . . . . . . . . . . . 34

2.2.5 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Linear Response Theory . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.1 Density Functional Perturbation Theory . . . . . . . . . . . . 38

2.3.2 Electron-Vibration Interaction . . . . . . . . . . . . . . . . . . 40

2.4 Wannier Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Keldysh Formalism

3.1 Contour-ordered Green's Functions . . . . . . . . . . . . . . . . . . .

3.2 Ensemble average in non-equilibrium . . . . . . . . . . . . . . . . . .

7

45

45

48



3.3 Perturbative Expansion . . . . . . . . . . . . . . . . . . . . .

3.4 Langreth's rules: from contour to real time . . . . . . . . . .

3.5 Kinetic Equation . . . . . . . . . . . . . . . . . . . . . . . .

4 Electron-Vibration Interactions in

4.1 Hamiltonian . . . . . . . . . . . .

4.2 Device Green's function . . . . .

Molecular Junctions

. . . . . . . . . . . . .

. . . . . . . . . . . . .

4.3 Self-energy

4.3.1

4.3.2

Lead Self-energy . . . . . . .

Electron-Vibration Self-energy

5 Quantum Transport with Electron-Vibration

5.1 Meir-Wingreen Transport Formalism . . . . .

5.1.1 D erivation . . . . . . . . . . . . . . . .

5.1.2 Non-interacting Case . . . . . . . . . .

5.1.3 Current Conservation . . . . . . . . . .

5.2 Non-Equilibrium Vibrational Occupations . .

5.2.1 Emission and Absorption Rates . . . .

5.2.2 Vibrational Decay Rates . . . . . . . .

6 Numerical Implementation

6.1 System Partitioning . . . . . . . . . . . . . . .

6.1.1 Device Region . . . . . . . . . . . . . .

6.1.2 Principal Layer . . . . . . . . . . . . .

6.1.3 Supercell Calculations . . . . . . . . .

6.2 Hamiltonian in a Wannier Basis . . . . . . . .

6.3 Lead Self-energy . . . . . . . . . . . . . . . . .

6.4 Green's function and Current Calculations . .

6.4.1 Discretizing Energy Space . . . . . . .

6.4.2 Self-consistent Calculation . . . . . . .

8

Interactions

50

53

54

57

57

59

. . . . . . . . . . . . . . . . . . . . 6 0

61

62

69

70

70

72

73

76

77

78

81

82

83

83

85

86

87

90

90

91



7 Application: Carbon-based molecular junction

7.1 Cumulene - C 6 H4 - Cumulene . . . . . . . . . .

7.1.1 System Details . . . . . . . . . . ...

7.1.2 Equilibrium Vibrations . . . . . . . . . .

7.1.3 Non-Equilibrium Vibrations . . . . . . .

7.2 CNT(3, 3) - C6 H4 - CNT(3, 3) . . . . . . . . . .

7.2.1 System Details . . . . . . . . . . . . . .

7.2.2 Decaying Rates . . . . . . . . . . . . . .

7.2.3 Non-Equilibrium Vibration Populations .

8 Inelastic Local Currents in Molecular Electronics

8.1 Local current operator . . . . . . . . . . . . . . . . . . . . . . . . .

8.2 Lowest-order Perturbation . . . . . . . . . . . . . . . . . . . . . . .

8.3 W ide-band lim it . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8.3.1 Example: Cumulene - C 6 H4 - Cumulene . . . . . . . . . . .

9 Transport properties of CNT-GNR junctions

9.1 CNT/ZGNR/CNT junction . . . . . . . . . . . . . . . . . . . . . .

9.2 E lastic C urrent . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.2.1 Edge current in ZGNR . . . . . . . . . . . . . . . . . . . . .

9.2.2 Current injection to edge states . . . . . . . . . . . . . . . .

9.3 Inelastic current . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9.3.1 Inelastic tunneling spectroscopy signal (IETS) . . . . . . . .

9.3.2 Local distribution of inelastic current . . . . . . . . . . . . .

10 Summary

A Vibrational Decaying Rates

A.1 The Hamiltonian of system in the presence of a heat bath . . . . . .

A .2 D ecay rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9

95

95

96

97

103

104

105

106

109

115

116

118

120

122

127

129

130

131

135

136

136

139

145

149

149

151



B Derivation of Eq.(8.17) 153

B.1 S-matrix expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

B.2 Equation-of-motion technique . . . . . . . . . . . . . . . . . . . . . . 155

10



List of Figures

1-1 Schematic explanation for the opening of inelastic conducting channels.

(a) When the applied bias eV is smaller than the vibrational energy hw,

the Pauli blocking effect prevents incident electrons from moving to the

right electrode by emitting vibrational quanta. (b) When eV > h,

the inelastic transport channel starts to open. . . . . . . . . . . . . . 21

1-2 Conductance measurement of a single hydrogen molecule between plat-

inum electrodes. (From Ref.[87]) A differential conductance drop sym-

metric with respect to bias polarity is observed. . . . . . . . . . . . . 22

3-1 Closed time contour c on which the contour-ordered Green's function

is defined. It consists of two branches: the forward time branch ci and

the backward time branch . . . . . . . . . . . . . . . . . . . . . . . 46

3-2 Closed time contour, starting at the reference time to, changing its

direction at t, and returning to to. . . . . . . . . . . . . . . . . . . . . 50

3-3 Extended contour ci including the imaginary time contour ca for ther-

m al statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3-4 The Schwinger-Keldysh contour extended to t = ±oo. . . . . . . . . . 52

4-1 Schematic geometry of a two-terminal set-up. The electron-vibration

interaction exists only inside the device region. . . . . . . . . . . . . . 58

4-2 Lowest-order electron-vibration diagrams: (a) Hartree and (b) Fock.

The arrowed line and wiggly line indicate electronic and vibrational

Green's functions. The black filled circle represents the vertex factor

of the electron-vibration interaction. . . . . . . . . . . . . . . . . . . 63

11



5-1 Local vibrations coupled to bulk phonons (heat bath) .. . . . . . . . .

6-1 Road map for ab initio inelastic transport calculation based on Wannier

functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6-2 An infinite electrode consisting of a repeated array of principal layers.

The principal layer interacts only with its nearest neighbor. . . . . . . 84

6-3 (a) Actual two-terminal geometry. The left and right electrodes do

not interact with each other. (b) Supercell geometry used in DFT

calculation. The principal layers for the left and right electrode interact

with each other in a periodic image. This interaction gives 'H10

6-4 Flowchart for SCBA. Here an equilibrium vibrational population is

assu m ed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6-5 Nested self-consistent calculation loop for non-equilibrium vibrational

occupation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7-1 Band structure of cumulene for a two-atom unit cell. (Red dots: direct

DFT calculation; black solid lines: Wannier interploted bands). (a)

p-type Wannier function at an atomic site (b) o-like Wannier function

at a m id-bond site. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7-2 The supercell used in the calculation. The coordinate system is indi-

cated in the right top. Only the benzene (C6 H4) is allowed to vibrate.

One principal layer contains six carbon atoms. The device region is

taken large enough to make sure that there is no electron-vibration

interaction outside the device region. . . . . . . . . . . . . . . . . . . 97

7-3 Wannier functions of the benzene molecule. (a) o-like Wannier function

between carbon and carbon atoms, (b) o-bond between carbon and

hydrogen atoms , and (c) 7r orbital at each carbon atomic site. . . . 97

12

78



7-4 Differential conductance G = dI/dV and its derivative dG/dV with

equilibrum vibrationi populations calculated using LOPT (black solid

line) and SCBA (red dashed line). At lower bias two differential con-

ductance increases are observed. At higher bias, two large conduc-

tance drops occur. These conductance changes correspond to peaks in

dG/dV. ....... .................................. 98

7-5 dG/dV in modewise calculation. Five active vibrational modes are

found. The corresponding vibrational configuration are illustrated.

While the first two active modes leading to conductance jumps are

out-of-plane motions, the three conductance-drop modes correspond

to in-plane vibrations. . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7-6 Schematic representation of inelastic scattering in the presence of electron-

vibration interactions. Solid arrows indicate transmission eigenchannels. 100

7-7 Cumulene-benzene-cumulene system has two transmission eigenchan-

nels. The major channel consists of p. orbitals on the cumulene elec-

trodes and the benzene molecule. py on the cumulene leads and o-

bonds on the benzene constitute the minor eigenchannel. . . . . . . 101

7-8 Inelastic transport calculations with nonequilibrium vibrational pop-

ulations (blue solid line: LOPT; red dashed line: SCBA; black dot-

dashed line: equilibrium case). (a) differential conductance, (b) second

derivative of the current, and (c) vibration populations.. . . . . . . . 103

7-9 Differential conductance for different decay rates (black solid line: hYA =

0.1 meV; red solid line: h-y1 = 1 meV; green solid line: hyA = 10 meV;

blue solid line: equilibrium case (h-yA -+ o)). . . . . . . . . . . . . . . 104

7-10 (3,3) CNT - Benzene - (3,3) CNT supercell geometry used in the decay

rate calculations. The vibrating region contains a benzene molecule

and three relaxed surface CNT layers. . . . . . . . . . . . . . . . . . . 105

7-11 Molecular region containing a benzene molecule, anchoring carbon

atoms, and hydrogen atoms saturating the CNT edge. . . . . . . . . . 106

13



7-12 (a) Decay rates for each vibrational mode of the (3, 3) CNT-Benzene-

(3, 3) CNT junction. (b) Decay rate vs. localization (see the text for

the definition). Decay rates are plotted in a logarithmic scale. . . . . 107

7-13 Nonequilibrium vibrational populations for the most excitable modes

as a function of a bias voltage. . . . . . . . . . . . . . . . . . . . . . 108

7-14 Vibrational configurations for the most excitable modes in Fig. 7-13. 109

7-15 Density of states for the device region. Close to the equilibrium Fermi

level, one resonance peak is found . . . . . . . . . . . . . . . . . . . . 110

7-16 Possible absorption (red arrow line) and emission (blue arrow line)

processes via the resonant peak as the bias voltage increases. . . . . .111

7-17 Absorption (red dashed line) and emission (blue solid line) rates for (a)

the vibrational mode 1 (low-energy mode) and (b) 156 (high-energy

m o d e) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7-18 Total vibrational energy stored in the vibrating region, as a function

of the mass of the electrode atom (black solid line: carbon; red dashed

line: silicon; blue dot-dahsed line: germanium). . . . . . . . . . . . . 113

8-1 Local profiles for elastic current and inelastic currents induced by five

active modes. Green and gray spheres indicate hydrogen and carbon

atoms. The arrow scale is arbitrary chosen for better illustration. . . 123

8-2 Local current profile for mode 11. r orbitals at carbon atoms and

o- orbitals at carbon-carbon and carbon-hydrogen mid-bond sites are

in d icated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

9-1 Classification of a zigzag nanoribbon by using the number of zigzag

carbon chains. The given nanoribbon has 6 zigzag carbon chains as

indicated. It is denoted by (N=6) ZGNR in this study. . . . . . . . . 128

9-2 Configurations of (4,4) CNT/ZGNR/(4, 4) CNT junctions. Starting

from a single carbon chain (polyacetylene), the zigzag nanoribbon in

the central region becomes wider by adding a carbon chain one by one. 129

14



9-3 The local distribution of elastic currents through (4, 4) CNT/ZGNR/(4, 4)

C N T junctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9-4 Local density of states for (a) (N=4) ZGNR and (b) (N=6) ZGNR

junctions. (a)-(1): high local density of states concentrated on the

outmost carbon chains of the (N=4) ZGNR junction. (a)-(2): local

density of states for a pristine (N=4) ZGNR. (a)-(3): local current

distribution for for a pristine (N=4) ZGNR. (b)-(1): local density of

states concentrated on the outmost carbon chains of the (N=6) ZGNR

junction. (b)-(2): local current distribution for for a pristine (N=6)

Z G N R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1

9-5 Local current distributions for the (N=4) ZGNR connected to (3, 3)

and (5, 5) CNT electrodes. . . . . . . . . . . . . . . . . . . . . . . . . 132

9-6 Local current distributions for (4,4) CNT/(N=4) ZGNR/(4,4) CNT

junction with different lengths. Iout and Ii, represent currents flowing

along the outmost carbon chain and the inner one respectively. . . . 133

9-7 Local current distribution in the interface between the CNT electrode

and the ZGNR. The elastic current from the CNT electrode converges

to the central region indicated by the blue box. The current is re-

distributed to the ZGNR edges. . . . . . . . . . . . . . . . . . . . . . 134

9-8 The ratio of the current in the lower region 'down to that in the upper

region 14,. Deep inside the CNT electrode 'down/Iap is unity. Before

entering the edges, Idown/Ip, gradually increases to 2.77. . . . . . . . 135

9-9 The derivative of the differential conductance dG/dV for the (a) poly-

acetylene and (b) polyacene junctions. The vibrational configurations

for major peaks in dG/dV of the polyacetylene and the polyacene are

indicated above and below the graph respectively . . . . . . . . . . . 137

9-10 The derivative of the differential conductance dG/dV for the (N=3)

to (N =7) ZGNR junctions. . . . . . . . . . . . . . . . . . . . . . . . 138

15



9-11 The examples of the vibrational modes for the (N=4) to (N=6) ZGNR

junctions. The left, center, and right panels correspond to regions

indicated by the red, blue, and green dashed lines in Fig. 9-10. . . . . 139

9-12 The local distributions of the inelastic current for the (N=1) to (N=4)

ZG N R junctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

9-13 The local distributions of the inelastic current for the (N=5) to (N=7)

ZG N R junctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9-14 Cross sections for the (N=3) to (N=7) ZGNR connected to (4, 4) CNT. 142

9-15 Cross sections for the (N=3) to (N=5) ZGNR connected to (3, 3) CNT. 142

9-16 The local distribution of elastic currents through the ZGNR-(3, 3) CNT

ju n ctions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9-17 The local distribution of inelastic currents through the (3, 3) CNT/(N=4)

ZGNR/(3, 3) CNT junctions . . . . . . . . . . . . . . . . . . . . . . . 143

A-1 Schematic diagram of system and heat bath Hamiltonians. Two parts

are coupled via 'HBS = . S. ........... . . . . . . . . . . . . . . 150

16



List of Tables

3.1 Several examples of Langreth's rules . . . . . . . . . . . . . . . . . . 53

17



18



Chapter 1

Introduction

1.1 Molecular Electronics

Semiconductor-based electronics manufacturers have been competing in order to pro-

duce smaller and faster devices, especially increasing the number of transistors on

integrated circuits. Gordon Moore, the co-founder of Intel predicted that the num-

ber of transistors placed on an integrated circuit would double approximately every

two years. This Moore's law has well described the history of computing electronic

devices for the past forty years. However, optical lithography used in manufacturing

is approaching its physical limits.

Molecular electronics, which is truly rooted at the nanometer scale, is one of the

candidates that can possibly replace current silicon-based electronics. The idea that

a single molecule could be used as an electronic device was theoretically proposed by

Aviram and Ratner in 1974 [3). They suggested the concept of a molecular rectifier

that can act as a diode. However, their pioneering idea was not readily realized in

experiments due to the limitations at this time in fabrication and measurement.

In the late twentieth century the first conductance measurement on a single

molecule appeared, and it stimulated scientists and device engineers to study molec-

ular electronics. In 1997 Reed et al. measured conductance through a molecular

junction of gold-sulfur-aryl-sulfur-gold using a mechanically controllable break junc-

tion (MCBJ) technique [80]. They also found a molecular junction that showed neg-
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ative differential resistance (NDR) [14]. For the last decade experimental techniques

have been advanced and many groups have been conducting experiments on single

molecular junctions intensively. Together with experimental achievements, physicists,

chemists, and device engineers have studied physical and chemical properties of single

molecular devices, and have designed new devices based on novel effects of quantum

mechanics. However, there are still many issues to be solved for the real molecular

devices from the organization and interconnection of single molecular transistors, to

room-temperature functionality, to long-term stability.

1.2 Inelastic Transport in Molecular Junctions

Electron-vibration interaction in molecular junctions is one of the most important

issues that should be investigated, since conduction electrons can transfer part of their

energy into local molecular vibrations. Due to this inelastic effect, the configuration

of the molecular junctions may change, and it can lead to malfunctions. In the worst

case the molecular junctions can even break down. In general, since the current

can be changed due to inelastic scattering with local vibrations, the operation and

performance of the molecular electronic device can be significantly affected.

The main feature of an inelastic effect appears as a change in current, or equiva-

lently a differential conductance at a threshold bias voltage which corresponds to the

molecular vibrational energy. In order to understand this feature qualitatively let us

consider a two-terminal geometry where the chemical potential of the left electrode

PL is larger than that of the right electrode PR. When the electron is injected from

the left electrode with energy E, the electron may lose its energy ,or not, depending

on this scattering that it experiences in the molecular junction. While elastically

scattered electrons will maintain their original energy E, electrons emitting (absorb-

ing) molecular vibrations hw will have a final energy e - hw (e + hw). In order that

the injected electrons can reach the right electrode, the right lead should have empty

states whose energy is the same as the final energy of these conducting electrons.

This is due to the Pauli exclusion principle: Let us focus on a vibrational emission

20



hwl cV'
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Figure 1-1: Schematic explanation for the opening of inelastic conducting channels.

(a) When the applied bias eV is smaller than the vibrational energy hw, the Pauli

blocking effect prevents incident electrons from moving to the right electrode by

emitting vibrational quanta. (b) When eV > hw, the inelastic transport channel

starts to open.

process, which is dominant at a low temperature which is the case of typical experi-

mental condition. When the bias voltage eV = PL - PR is smaller than a molecular

vibrational energy hw, there is no incoming electron that can find an empty state

in the right electrde to be occupied after emitting a vibrational quantum. Thus for

eV < hw, the current is purely elastic. In contrast, when the bias exceeds the vibra-

tional energy, the inelastically scattered electrons start to contribute to current. This

opening of inelastic conducting channels leads to a change in differential conductance.

The threshold bias voltage for opening the inelastic transport channels is equal to the

molecular vibrational quantum energy ho.

1.2.1 Experiments on inelastic transport

The inelastic transport signal explained above was first measured using a scanning

tunneling microscope (STM) in 1998. Stipe et al. measured the current through an

isolated acetylene absorbed on a copper (100) surface by changing the bias voltage

[911. They observed a small increase in the differential conductance at a bias voltage

of 358 mV. They identified this threshold as that of the C-H stretching mode of the

acetylene molecule. In order to verify that this conductance increase came truly from

inelastic scattering with the C-H stretching mode, they substituted the hydrogen

atom with a deuterium. The isotope substitution led to a shift in the threshold bias
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Figure 1-2: Conductance measurement of a single hydrogen molecule between plat-
inum electrodes. (From Ref.[87]) A differential conductance drop symmetric with
respect to bias polarity is observed.

voltage at which the inelastic transport signal was observed.

Vibration-induced conductance change was also observed in a two terminal geome-

try where a single molecule is directly connected to a source and a drain. In 2002 Smit

et al. attached a single hydrogen molecule between platinum electrodes formed by me-

chanically controllable break junctions (MCBJ) [87]. They found a single pronounced

resonance at 63.5 mV in the differential conductance and its derivative, symmetrically

for both plus and minus bias voltages. They also repeated the same measurement

using the isotopes HD and D2 . The resonance peaks observed in the experiments

were scaled by the square root of the mass ratio between the hydrogen molecule and

its isotopes. They argued that the longitudinal center of mass motion led to the drop

in the differential conductance. Later, in combination with density-functional theory

calculations, they re-interpreted the conductance drop as the transverse motion of

the hydrogen molecule [25].
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Inelastic transport signals were also reported for more complex organic molecules

such as alkanedithiol, benzenedithiol, phenylene ethynylene and phenylene vinylene

[54, 99, 35, 89, 36]. These experimental results show that one can use inelastic con-

ductance measurement as vibrational spectroscopies. As discussed above, since the

threshold bias voltages for differential conductance changes correspond to molecular

vibrational energies, one can obtain a molecular vibrational spectrum by perform-

ing inelastic current measurements. Specific molecular vibrations or typical chemical

bonding vibrations are known from other types of spectroscopies; for example, IR,

Raman, and high resolution electron energy loss (HREEL) spectroscopies. Com-

paring with these data, one can assign molecular vibration configurations to the

observed vibrational spectrum. Inelastic conductance measurement also provides

a chance to identify molecular vibrations that are not detected in other spectro-

scopies.Spectroscopy based on electron-vibration interactions is called the inelastic

electron tunneling spectroscopy (IETS).

1.2.2 Inelastic transport theory

In order to understand and analyze these experimental results a development in atom-

istic and quantitative theories is needed. Vibration-induced inelastic transport has

been investigated theoretically following two main directions. The first one is to use

a simple model Hamiltonian, e.g. a single electronic level coupled to a single phonon

mode, which is known as the Anderson-Holstein model. Including a charging effect

called Coulomb-blockade, this led to many novel and interesting transport properties

that have been predicted and investigated extensively [50, 49, 51, 19, 28]. However,

the model used in this approach is too simplified to give us a detailed and accurate

theoretic picture that can be used to verify experimental data. Only a quantitative

computational approach, e.g. based on density-functional theory (DFT), can offer a

chance to describe a real system accurately without any adjustable parameters. For

example, one can calculate vibrational spectra by changing molecular configurations,

especially attachment geometries to electrodes, and one could infer the configuration

appearing in the real experiment.
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However DFT itself cannot be used straightforwardly to determine inelastic trans-

port properties, although it can be used to provide accurate system parameters, such

as electronic Hamiltonians, vibrational spectra, and normal mode configurations to

transport theories. For this purpose several theoretical approaches have been pro-

posed. For example Chen et al. studied inelastic effects in atomic wires and simple

organic molecules based on a Fermi-golden-rule expression basedon DFT scattering

states [15, 16, 17]. Similarly Jiang et al. proposed a golden-rule-type method based on

a quantum chemical approach [40]. The non-equilibrium Green's Function (NEGF)

method in combination with DFT, which is commonly called DFT-NEGF, has been

the most widely used in ab-initio quantum transport problems. This approach is more

powerful than other methods in that it can be applied not just to electron-vibration

interactions, but also to other types of interactions. DFT-NEGF has been successfully

applied to elastic quantum transport for both zero-bias and finite-bias cases [93, 8],

and recently it has been extended to include interaction effects like electron-vibration

interactions [72, 27].

DFT-NEGF requires to use an atomic-like localized basis because in the method a

system should be spatially divided into two electrodes and a molecular conductor. For

this reason most of DFT-NEGF packages have been implemented using a localized

basis set. However, from a computational viewpoint, it is known that a planewave-

based DFT calculation can provide more accurate descriptions in comparison with a

localized basis. Furthermore, while basis functions used in the localized-basis calcu-

lation are determined depending on types of atoms and their configurations of the

system, a planewave basis can describe a given system without making any further

assumption. This is particularly relevant in low dimensional systems, where states

can be spatially extended in vacuum where there is no localized basis set to describe

them.

However, a planewave basis, which is uniform over space, is not suitable to DFT-

NEGF calculations. Maximally localized Wannier functions(MLWF), first proposed

by Marzari and Vanderbilt [64], provide a mathematical and numerical formulation

for a unitary transformaton between an delocalized Bloch states and localized states.
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Since the Wannier transformation is an exact unitary mapping, one can construct

a minimal set of atomic-like localized functions within an energy window of inter-

est without losing the accuray of the full planewave-based DFT calculation. The

MLWF approach to quantum transport has been very successfully applied to zero-

bias quantum conductance calculations [57, 56, 2]. The next step to develop the

MLWF approach to quantum transport is to include interaction effects on transport

properties. In this thesis we focus on extending the MLWF-based ab initio quantum

transport approach in order to investigate electron-vibration interaction effects on

molecular junctions.

1.3 Outline

This thesis is organized as follows. In Chapter 2 we first review the basic theory on

first-principles calculations that covers density-functional theory, density-functional

perturbation theory, and maximaly localized Wannier functions. In Chapter 3 non-

equilibrium statistical field theory, which is called the Keldysh formalism, is intro-

duced. Starting from the definition of the non-equilibrium Green's functions (NEGF),

the perturbative expansion of NEGFs and quantum kinetic equations to determine

NEGFs are discussed. In Chapter 4 we apply the Keldysh formalism to our main

problem, the electron-vibration interaction on molecular junctions. In particular we

discuss how to calculate two types of self-energies by using Feynman diagram rules:

the electrode self-energy and the electron-vibration self-energy. In Chapter 5 the

Meir-Wingreen transport formalism, a general transport theory that can include in-

teraction effects, is first explained. We also discuss how to calculate non-equilibrium

vibration populations excited by conducting electrons. Chapter 6 contains a practical

implementation based on the theories reviewed in the previous chapters. In Chapter

7 we demonstrate our implementation and benchmark calculation results. In Chapter

8 we extend the non-equilibrium Green's function method to derive a local current

distribution with the electron-vibration interaction inside a molecular conductor. By

revisiting examples in Chapter 7, we discuss how the electron-vibration interaction
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can change local-current patterns. The method developed is comprehensively used

in Chapter 9 to study transport properties of carbon nanotube - zigzag graphene

nanorribon junctions, which have been recently made [42, 41].
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Chapter 2

Electronic Structure Methods

A condensed matter system consisting of interacting electrons and nuclei is governed

by the Schr6dinger equation

Wq = (Re + n + ±ne) XF = E A, (2.1)

where We, Rn, and ine are the electron, nucleus, electron-nucleus Hamiltonians,

respectively. They are defined as

Ne 2 Ne 2

Ne = Te+Ve= _, 2 + (2.2)
2m, . ri - rj|

Nh 2 N, ZjZje2

-nta Tn +Vn=- 2  V2 + Z (2.3)
I=1 M I<J R -Rl

Ne Nn 1 2

ne Vne = - Z E " , (2.4)

where me, MI, and Z, are the electron mass, the nucleus mass, and the nucleus

charge respectively. The equation, which is written in a few lines, seems to be simple.

However, solving the Schr6dinger equation for the many-body system turns out to be

an extremely difficult task as the number of electrons and nuclei increase. Thus one

needs to use clever approximations to solve Eq.(2.1) efficiently and accurately.
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2.1 Born-Oppenheimer Approximation

The first approximation is based on the fact that the nuclear motion is much slower

than the electronic one due to their large mass difference. Regarding the nuclei to

be fixed at {R} in the time scale of the fast electronic motion, the instantaneous

Hamiltonian that the electrons feel is

e Ve Vn + Vne

Ne 2
- ZV2

Ne 2 Nn,

| : ri - rj| +

Z1 Zje2

|R1 - Rj|

Ne Nn

(2.5)

ZIe2

|R, - ri'

(2.6)

where the nuclear configuration {R} comes in as a parametric form. By solving the

time-independent Schr6dinger equation,

NHBo(R)Vi(r; R)= Ei(R)$i(r; R) (2.7)

one can have a complete set of eigenstates {$9i(r; R)} that depends parametrically on

the nuclear configuration R. The corresponding eigenvalues {E(R)} are called adia-

batic energy surfaces. The wavefunction for the coupled system 7N can be expanded

as a linear combination of {Vi(r; R)},

(2.8)

Let us insert this expansion into Eq.(2.1), multiply by 0* (r; R) on the left, and

integrate out the electronic states. Then one finds that

[Tn + Ej(R) - E] Xi(R) = - C X (R),
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where

Cij (R) = (i (r R)|Vi,@b(r; R))VI + 2M1 (0i(r; R)|Vhji (r; R)). (2.10)

When the off-diagonal term cigj(R) is ignored, Eq.(2.9) becomes a set of uncoupled

equations,

[Tn + E(R) + Cii - E] xj(R) = 0. (2.11)

Physically this approximation implies that the electrons in the electronic state $i(r; R)

adiabatically evolve and remain in the same state Oi(r; R) as the nuclei slowly move.

Thus the total wavefunction is given by

'T(r, R) = xi(R)@Oi(r; R). (2.12)

This is called the Born-Oppenheimer approximation [6]. The Born-Oppenheimer

approximation is valid when the adiabatic energy surfaces are well separated.

Using the adiabatic principle, one can decouple the equations for electronic states

and nuclear states. However this approximation still requires to solve the many-body

electronic system. since one still has Eq.(2.5), which includes the Coulomb interaction

between electrons.

2.2 Density-Functional Theory

2.2.1 Hohenberg-Kohn Theorems

A key alternative idea to address the many-body equation was suggested by Hohen-

berg and Kohn in 1964 [37]. Their simple but powerful theorem shows that charge

density alone can be a crucial quantity to address the many-body problem.

The first Hohenberg-Kohn theorem shows that there is a one-to-one correspon-

dence between an external potential Vet(r) and the ground state charge density n(r).

One can immediately understand that the external potential Vet(r) determines the
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ground state charge density n(r). That is simply because one can calculate the ground

state charge density by solving the Hamiltonian fixed by Vet(r). Hohenberg and Kohn

proved that the inverse statement also holds true, i.e. the ground state charge density

n(r) uniquely determines the external potential Vst(r). In other words, the exter-

nal potential Vet(r) is a unique functional of the ground state charge density n(r).

Furthermore, once the external potential is determined, then the ground state wave

function T is also in principle obtained. Hence one can conclude that the ground

state wavefunction I is also a unique functional of n(r).

The second Hohenberg-Kohn theorem enables to define the total energy functional

E[n(r)] and use the variational principle to determine the total energy and the corre-

sponding charge density n(r). Based on the fact that the ground state wavefunction

T is a unique functional of n(r), as discussed in the first theorem, one can define a

universal functional F[n] of n(r),

F[n] - (P[n]|Te + VeL[n]), (2.13)

where Te and V are kinetic energy and the electron-electron interaction energy op-

erators respectively. It is obvious that F[n] is independent of the external potential

Vet(r). For a given external potential Vet(r), the total energy functional is written

as

E[n] = F[n] + Jn(r)Vext (r)dr. (2.14)

This total energy functional has a minimum EO for the ground charge density n(r).

For any other charge density n'(r),

Eo = E[n] ; E[n']. (2.15)

Therefore ground state properties such as the ground state energy Eo and the ground

state charge density n(r) can be obtained by applying the variational principle to the

total energy functional E[n]. The Hohenberg-Kohn theorem provides a conceptual

foundation to simplify the problem of solving the many-body Schr6dinger equation
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to one of searching the 3-dimensional charge density to minimize the total energy

functional. However since the explicit form of the univerisal functional F[n] for the

interacting system is unknown, the Hohenberg-Kohn theorem cannot give us a prac-

tical way to solve the many-body system.

2.2.2 Kohn-Sham Equations

For a practical solution, Kohn and Sham proposed to use an auxiliary non-interacting

electron system with an effective potential, instead of dealing with the true interacting

electron system, where the universal functional F[n] is not known [52]. Their mapping

assumes that the ground state charge density of the original interacting system can

be represented by the auxiliary non-interacting system. The auxiliary non-interacting

system is described by a single-particle Schr6dinger-like equation known as the Kohn-

Sham equation,

'HKS i __V2 + vKS Oi = 6 i, (2.16)
2m

where VKS is an effective Kohn-Sham potential. The ground state wavefunction T

for this non-interacting system is expressed by the Slater determinant,

1
S= det [ ,(2.17)

and its ground state charge density is

N

n(r) = S Kj(r)|2 . (2.18)
i=1

Here {@Vi} are the N lowest eigenstates of the Kohn-Sham equations.

In this single particle picture, the universal functional F[n] is decomposed as

F[n] = To[n] + EH [n] + Ex,[n], (2.19)
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where To [n] is the kinetic energy for the non-interacting system,

To[n] = TO [{4j }] = -- i V2i), (2.20)

and EH [n] is the Hartree interaction energy,

e2 f r n('
EH n] = -1r /I drdr'. (2.21)

Exc[n], which is called an exchange-correlation functional, contains the remaining un-

known contributions. From the original definition of the universal function F[n], the

exchange-correlation functional can be re-written as

Excn] = ((ITe|IT) - To[n]) + ((IVe|T) - EH n]). (2.22)

As seen above, the exchange-correlation functional contains the difference between

the true kinetic energy and the auxiliary non-interacting kinetic energy, and the

difference between the original full many-body interaction energy and the classical

Hartree interaction energy.

Applying the variational principle to the total energy functional, the effective

Kohn-Sham potential VKS(r) can be obtained

VKS = Vxt (r) + VH (r) + v (r) = 1 xt (r) +/ n(r') d+SExc[n] (2.23)
|r - r 6n

Note that the Kohn-Sham potential depends on the charge density n(r). It implies

that the Kohn-Sham equation should be solved self-consistently.

The exact exchange-correlation functional is still unknown. However, once one can

make a reasonably good approximation on the exchange-correlation functional that is

much smaller than the entire density-functional, the Kohn-sham approach provides us

with a practical and often accurate way to solve the many-body Schr6dinger equation.
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2.2.3 Exchange-Correlation Functionals

The crucial part for any practical DFT calculation is to find a physically reasonable

and accurate approximation of the exchange-correlation functional. A simple but

widely used exchange-correlation functional is the local-density approximation (LDA)

[52]. In LDA, it is assumed that the exchange-correlation energy in a small volume

dr located at r can be replaced by that of the homogeneous electron gas with the

same charge density n(r):

E LDA (n] n(r)Exc[n(r)]dr, (2.24)

where Exc[n(r)] is the exchange-correlation energy density per electron of the homoge-

neous electron gas at the charge density n(r), a scalar quantity that was determined

by Ceperley and Alder using accurate quantum Monte Carlo calculations [13]. Thus

the LDA exchange-correlation potential is readily given by

6E LDA E [n dxc[n(r)]
vD _Lxc - Exc [n(r)] + n(r) (2.25)oJn dn

The LDA functional, which is accurate for a slowly varying charge density, has been

successfully applied to a variety of materials, especially weakly correlated materials.

It accurately describes structural and vibrational properties, even if it overestimates

the crystal cohesive and molecular binding energies, due to a comparatively poorer

description of atomic energies [4].

The LDA exchange-correlation functional can be improved by including the gra-

dient of the charge density Vn(r),

EGGA n(r)Exc[n(r), Vn(r)]dr, (2.26)

This approximation is called the genearlized gradient approximation (GGA) [741. The

GGA functional can generally provide a better description than LDA.
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2.2.4 Planewave Basis Calculation

For periodic bulk solids which contain an infinite number of electrons and ions, it

seems that it would be intractable to solve the Schr6dinger or Kohn-Sham equation.

However it turns out that using the translational symmetry of periodic systems makes

the problem simpler. According to Bloch theorem, when a system has a periodic

potential

74(r) = V2 + v(r) V)(r), (2.27)
.2m

where

v(r) = v(r + R) (for all R in a Bravais lattice), (2.28)

the eigenfunction 0 can be chosen to have the following form:

nk(r) = e ik.rUnk(r) (2.29)

unk (r) = ulk (r + R). (2.30)

which is expressed as a lattice-periodic function modulated by a plane-wave envo-

lope eri.r [731. The crystal momentum vector k runs over the first Brillouin zone

(BZ). Translational symmetry gives a set of decoupled Schr6dinger equations for all

k vectors in the BZ:

2( + ik)2 + v(r) unk(r) = Efkunk(r), (2.31)

where {@nk} satisfy the orthonormality conditions (@)nk |n'k) = on,n'6 k,k'. The prob-

lem of solving the Schr6dinger equation for the entire system is replaced by that of

solving a set of decoupled equations, which can then be solved within the primitive

unit cell. When Eq.(2.31) is solved for any k in the BZ, the energy eigenvalues {En}

provide the energy bands for the periodic system. Note that in this Kohn-Sham

formulation these correspond to the fictitious Kohn-Sham energies, rather than the

physically correct quasiparticle energies. The electron charge density, which is the
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most important physical quantity in DFT, can be computed as

1BZ occ

n(r) = | EIUnk|2 (232
k n

where the n index is summed over the occupied bands. In principle one has to solve

Eq. (2.31) for the infinite number of k points in BZ. However, in a practical calculation,

a finite number of k-points is used. The number of k-points sampled in the calculation

should be determined such that any physical quantity is well converged within the

desired accuracy.

Practically Eq.(2.31) can be solved by expanding wavefunctions with a chosen set

of basis functions. A planewave basis can be a natural choice because it is consistent

with the periodic boundary conditions used in the calculations and is suitable to

studying the crystalline structure of solids. The wavefunction expanded in planewaves

can be written as
Nye

V)nk~ E nk(G)ei(k+G)-r, (33)
G

where {G} are the reciprocal lattice vectors. In principle, the exact wavefunction

is expanded in terms of an infinite number of planewaves. However, any practical

calculation cannot deal with the total Hilbert space spanned by an infinite planewave

basis. Instead, the expansion is taken over a finite number of G vectors that satisfy

mk +G2 < Ecst, where Ect is a planewave energy cutoff. This truncation is

reasonable since contribution from larger kinetic-energy G vectors becomes less and

less important in expansion. The error caused by truncation of a planewave basis can

be reduced by increasing the energy cutoff Ecst. In a planewave basis, the Kohn-Sham

equations become algebraic equations in reciprocal space:

[ lk + G|2 +G,G' + KS(G - G') cn(k + G') = Enkc,(k + G). (2.34)
2mI

A planewave basis has several advantages, especially in comparison with a lo-

calized orbital basis. The accuracy of a calculation can be improved continuously
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and finely by tuning the single parameter Et. Furthermore, a planewave basis does

not depend on atomic positions or system structure. Therefore it can deal with all

parts of a inhomogeneous system and different atomic configurations on an equal

footing, without making any further assumption. From a computational viewpoint,

a planewave basis allows to use efficient algorithms like Fast Fourier Transformation

between real and reciprocal space. As a minus, the number of planewaves is larger

than that of localized orbitals, and so it requires larger computational resources and

time that are the prices to pay for accuracy and transferability.

2.2.5 Pseudopotentials

Another major part of a practical DFT calculation is a pseduopotential that effectively

replaces the true potential of the nucleus and the core electrons. If one tries to solve

the eigenfunctions for all the electrons in the presence of the nuclear potential, one

has to use a significant number of planewaves to describe the wavefunction near the

nuclei, considering the nature of the Coulomb potential. Fortunately one does not

have to solve all-electron wavefuctions because the core electrons are tightly bound

to the nuclei and they do not contribute to the physical and chemical properties.

The core electrons just play the role of a screening potential to the nuclei. Thus, in

combination of the nuclear potential and the screening potential of the core electrons,

one can construct a much smoother effective potential for valence electrons. This

is called a pseudopotential. From a computational viewpoint, the pseudopotential

gives us the following advantages: First, since the core electrons are treated as a

screening potential and one solves the many-body Schr6dinger equation only for the

valence electrons, one can reduce the number of electrons for the many-body system.

Second, because of its smoothness near the nuclei, the calculation requires a smaller

number of planewaves. As a result a computational speed can be boosted up and a

computational cost can be significantly saved.

One of the widely used approaches in pseudopotential theory is that of norm-

conserving pseudopotentials, where valence pseudopotentials {|f Is) } satisfy the or-

thonormal condition (Ksf S P)= 8. A norm-conserving pseudopotential is gener-
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ated by following the following conditions [31]:

1. All-electron and pseudo eigenvalues agree for the chosen atomic reference con-

figuration.

2. All-electron and pseudo atomic wavefunctions match outside a chosen cut-off

core radius rc.

3. The integrals of the charge density for each wavefunction inside rc agree (norm-

conservation).

4. The logarithmic derivatives of the all-electron and pseudo wavefunctions and

their first energy derivatives agree at r = rc.

However, the norm-conserving pseudopotential scheme does not reduce the cut-

off of the planewaves for valence states at the beginning of an atomic shell, such

as 2p, 3d, and 4f because there are no core states of the same angular momentum

to screen. To solve this issue, D. Vanderbilt introduced ultrasoft pseudopotential

by relaxing the norm-conserving condition [96]. While the all-electron and pseudo

wavefunctions match outside the cut-off core radius rc, the pseudo-wavefunction is

made to be smoother by introducing an augmented charge in the core region, which

is defined as

AQij (dr )jE*(r)/,<E(r) - US*(r),OUS(r)) , (2.35)

where @<E(r) and <S(r) represent the all-electron and pseudo wavefunctions. Then

the Schr6dinger equation for the ultrasoft wavefunction |@bvs) is formulated as a

generalized eigenvalue equation,

H1,s = JOUS) (2.36)

with a generalized orthonormal constraint (<s 5 %gSJs) = 63j. Here 5 is an overlap

operator defined as

Qj l )#jl, (2.37)
iJI
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where I denotes the ions, i, j are angular momentum quantum numbers, and |#f) is

a projection function of the ion I and ith angular momentum channel.

2.3 Linear Response Theory

When the ground-state charge density is obtained from a DFT calculation, linear

response properties of the system can also be calculated. This procedure is called

density-functional perturbation theory (DFPT). The key quantity to calculate linear-

response properties is the Kohn-Sham orbital variation, or equivalently the charge

density variation with respect to the external perturbation, and DFPT provides a

self-consistent calculation scheme to calculate the charge density variation. Here we

briefly discuss the basic formalism of DFPT and of electron-phonon interactions in

DFPT. For a complete discussion on DFPT see Ref. [4].

2.3.1 Density Functional Perturbation Theory

When the external potential is a differentiable function of a set of parameters A =

{ Ai}, the first and second derivatives of the ground state energy can be calculated by

using the Hellmann-Feynman theorem:

BE f____rOV x(r)dr 
(2.38)

J2E n2 V \(r) d f OVA(r) n(r)d (2.39)
aAiBAjaA J A nr +a dA r.

The second derivative of the total energy with respect to the perturbation parameters

{ Ai} can be computed with the first order response of the charge density. The charge

density variation can be linearized in terms of the Kohn-Sham orbital variation:

N

An(r) - 2ReZV)*(r)AVbn(r). (2.40)
,n-
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Here the finite-difference operation A is defined as

(2.41)

Applying standard first-oder perturbation theory, the Kohn-Sham orbital variation

AV),(r) can be determined by the solution of the following equation:

(WKS - En) A4a) = - (AVKS - AEn) 1n), (2.42)

where WKS is the unperturbed Kohn-Sham Hamiltonian (Eq.(2.16)),

J r') dr'
AUKS(r) = AV(r) + C2 j r-r/Id/ +

dn n (r)

is the first-order correction to the self-consistent potential and dEn = I is

the first-order energy correction to the Kohn-Sham energy eigenvalue En. Because the

derivative of the self-consistent potential AVKS includes the charge density variation

An(r), Eq.(2.40), (2.42), and (2.43) should be solved self-consistently.

In particular, for latticc dynamics, interatomic force constants can be computed

by calculating the second-order derivative of the Born-Oppenheimer energy surface

E(R) with respect to the nuclear configuration R = {R1:

BnR(r) 8Vne(R, r) dr +
BRj 8R1 I 82Ve(R,r)

nR(r) nR,r)
BR18Ra

where

VN= Z1Zje 2  (2.45)

is the electrostatic interaction energy between nuclei, and

Vne Ne Nn Z1 e2  (2.46)
R, - ri|

is the electron-nucleus interaction. The vibrational frequencies w of the nuclear system
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a2 E(R) _

OR18RJ I a 2V(R)
+

BR18RJ,
(2.44)

Af (r) - f A j.



can be calculated by solving the following eigenvalue equation:

dt 1 832E(R)det -R9RR W2 = 0 (2.47)
/_M1Mj OR18R j'

where the interatomic force constant is scaled by nuclear masses.

2.3.2 Electron-Vibration Interaction

The electron-vibration interaction Hamiltonian can be written in a second-quantized

form as

'el-ph Zv g4kc" kcn (bf , + bqv) , (2.48)
kqv mn

where c " (cn) is the creation (annhilation) operator for an electron with energy Enk.

Similarly bv (bqv) is the creation (annhilation) operator for a phonon in the vi-

brational mode v with energy Wq, at wave vector q. gq"/'mn is the electron-phonon

coupling matrix element. Once the linear response of the charge density is com-

puted from DFPT, the electron-phonon coupling matrix can be calculated from the

derivative of the self-consistent Kohn-Sham potential AVKS as follows:

- ( h 1/2
gk", 2wqv (Vk+q,mlAV 4S Ik,n), (2.49)

where @k,, is the nth Kohn-Sham orbital wavefunction at wavevector k. The self-

consistent Kohn-Sham potential is perturbed with respect to the phonon mode V at

wavevector q:

Avq"s (9VKZ Xqv(Ia), (2.50)

where Xq, is the eigenvector of the phonon normal mode v at wavevector q, and uJ1

is the atomic displacement of the nucleus I in the a direction.

As it will be discussed in detail later, a large supercell geometry containing two

electrodes and a conducting molecule is used in our quantum transport calculation.

For this large supercell geometry F-point sampling can be safely used. In addition lo-

cal vibrations of the conducting molecule are only considered. Therefore by dropping
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the wavevector indices for electrons and vibrations, the electron-phonon interaction

can be written in a simpler form:

?-el-ph L Z g"ct cn (bt + bw) , (2.51)
V' mn

where
gm n ( )1/ 2  'mIAVIs n). (2.52)

9V 2w,K

2.4 Wannier Functions

As discussed before, a planewave-based DFT calculation has many advantages from

technical and practical viewpoints. However, due to the spatially extended nature

of a planewave basis it is not suitable to the quantum transport formalism based

on Green's functions, which will be discussed later. This is because the Hamiltonian

should be written in terms of a localized atomic-like basis in order to spatially separate

the system into three parts: a left electrode, a right electrode, and a conductor.

For this reason one needs a mathematical formulation to transform to a localized

representation. In fact, this transformation was originally suggested by Wannier in

1937 [100]. The localized function in real-space, which is called the Wannier function,

is generated by taking the Fourier transform of the extended Bloch functions:

WnR) (n 1V)nk)e ik-Rdk, (2.53)
(27)3 sBZ

where V is a volume of a real-space primitive cell and R is a Bravais lattice vector.

Since this is an exact unitary transformation, Wannier functions span the same Hilbert

space of Bloch functions. One of the great advantages of Wannier functions is that

Wannier functions are orthonormal, i.e. (onRLonIRa) = nn'RR,. A basis of localized

orbitals can be directly used for the quantum transport calculation, but because

of its non-orthogonality one should include an overlapping matrix between localized

orbitals in the quantum transport formulation. In contrast, Wannier functions, which

are orthonormal by construction, can make calculation and formulation much easier.

41



However Wannier functions are not uniquely defined because Bloch function can

have an arbitrary phase,

IV'nk) -e ei nk Iln ), (2.54)

without changing all physical properties. Thus in order to construct well-defined

Wannier functions, some additional criterion is needed. In this work we adopt the

Wannier function construction proposed by Marzari and Vanderbilt first and known as

Maximally-Localized Wannier function (MLWF) [64]. The Wannier transformation

needs to be generalized by mixing Bloch functions within an isolated group of N

bands:
VN

WnR) 3 BZ SU mk)eikRdk, (2.55)

The construction criterion of MLWF needed to determine the arbitrary U2 is to

minimize the mean square spread of all Wannier functions, which is defined as

N N

= [(r2)n - (r)2] =E [(Wnolr 2 |wno) - (onolrlWoo)2 ] (2.56)

A difficulty arises in case of metallic systems where occupied and unoccupied

bands are connected together. In this entangled case a simple unitary transformation

between occupied bands would fail to localize meaningfully wavefunctions in real-

space. Souza et al. proposed a method to select out a maximally-connected subspace

that is composed of orbitals of a similar character out of the whole entangled manifold

[90]. Extracting the maximally-connected subspace is achieved by minimizing the

gauge-invariant part Qr of the spread functional Q:

Q = Q, +(2.57)

where

Q= [(r2)n - [ (Rmr|0n) 2 , (2.58)
n _ Rm
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and

n=Z (RmIr|0n) 2 . (2.59)
n Rmfon

The gauge-invariant part Q, can be written on a regular mesh of k-points:

Q= N WbTr [ k+b] , (2.60)
k,b

where {b} is a set of vectors pointing to the neighbors of a point k, W is a weighting

factor for the corresponding vector b, Nkp is the total number of k-points, Pk =

Unk KungkI and Qk+b = 1 - Pk. The gauge-invariant part Q, represents a measure

of the change of character across the BZ, and so one can obtain a subspace composed

of orbitals of similar character by minimizing it.

For the Nk-dimensional original Bloch space {|Unk)} at a given k point, the pro-

cedure of minimizing Q, determines the N-dimensional optimally connected subspace

{It)}:

-Un = U nk ), (2.61)
mENk

where Unfk) is a rectangular N x Nk matrix. Once the maximally connected subspace

is built, then MLWF can be constructed by minimizing n.
MLWFs, which are suitable to our quantum transport calculation, are nowadays

widely used for many reasons:

1. MLWFs provide a clear picture of chemical bonding.

2. The centers of MLWFs, and their displacement under polarizing field have a

close, formal connection to the macroscopic and microscopic polarization of an

insulating system.

3. The maximal localization can be exploited by diverse methods that rely on

real-space localized basis sets, such as O(N) methods.

For a detailed review of MLWF on implementatation and its application see Ref. [64]

and [90].
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Chapter 3

Keldysh Formalism

In this chapter we review a diagrammatic perturbation theory based on nonequilib-

rium Green's Functions (NEGFs), which is known as the Keldysh formalism. The

Keldysh formalism provides a general theoretical method to describe physics un-

der nonequilibrium. This theory is essential to our interests, in which a finite bias

large enough to excite local vibrations is applied to molecular conductors. This non-

equilibrium statistical field theory was originally formulated by Martin and Schwinger

[62], Kadanoff and Baym [44], and Keldysh [46]. For a detailed presentation and

derivation see Ref. [77] and [78], which we follow here.

3.1 Contour-ordered Green's Functions

Non-Equilibrium Green's functions are usually called contour-order Green's functions,

in which two time variables are defined on a contour in a complex plane. The need to

introduce the time contour can be understood by comparing a time-ordered Green's

function in equilibrium theory [76]. The time-ordered Green's function G (t, t') at

zero temperature is

G (t, t') =o <Tu(t))h (t') < D) (3.1)

where I<D) is a ground state of the system and T represents a time-ordering operation.

The field operator 4u(t) is written in the Heisenberg picture with respect to the sys-
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ct C1

Figure 3-1: Closed time contour c on which the contour-ordered Green's function is
defined. It consists of two branches: the forward time branch ci and the backward
time branch c2.

tem Hamiltonian 'W = Ho + V, where Ho is the free particle (quadratic) Hamiltonian

and V is the interaction Hamiltonian. Due to the interaction V we do not generally

know what the ground state |I ) is. The idea to solve for G(t, t') is to use what we

know very well, that is, information of the noninteracting system in which V = 0.

When the interaction V is adiabatically turned on and off, one can use the fact that

the full interacting ground state VI) can be smoothly connected to the free ground

state K@o) at t = ±oo via the time-evolution operator. In the interaction picture, the

time-ordered Green's function G(t, t') becomes

1 K@o TU(oo,-oo)4OHO(t>~t) V)'
G(t, t') = M(3.2)

in (@o 1U (oo, -oo)|1 N)'

where VHO evolves with respect to Ho [76]. According to the Gell-Mann-Low the-

orem [76], 1o) at t -+ -oc is different from 14o) at t -+ oc by a phase factor,

which appears as the denominator ((Do lU (oc, -oo) Io). The time-evolution operator

U (oo, -oc) in the interaction picture, which is called the S-matrix, is U (oc, -oc)

Te-in f" dtVHO 0 .

However, this idea cannot be applied to a nonequilibrium situation, where a per-

turbation driving the system out of equilibrium should be kept turned on. A clever

trick to resolve this situation is to introduce a closed time contour, which starts from

-oo, reaches a certain time t, and then goes back to -oc. The time contour c has

two branches: a forward branch ci from -oc to t, and a backward branch c2 from

t to -oo, as shown in Fig. 3-1. Along this closed time contour we can define the
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contour-ordered Green's function

G(T, T') = K (T) (')) . (3.3)

Here T, is the contour ordering operation, which means that the operator appearing

on the contour c earlier is placed to the right,

G> (r, -F') =j a )@u (T) t(r')) r >c r'
G(T, T') = 'R (3.4)

GC~~~r, r') =) t ) @ (r)) '>

where the upper (lower) sign is for fermions (bosons). G> and GC are named greater

and lesser Green's functions respectively. Depending on positions of T and T' on the

contour, G(T, r') can become four different Green's functions. When r and -r' are

located on the forward (backward) branch ci, the contour ordering is the same as

the time (anti-time) ordering. If T is on c1(c2 ) and T' is on c2 (ci), T always appears

earlier(later) than T' on the contour. Thus, for these four cases the contour-ordered

Green's function G(T, T') becomes

G'(T, T') TT' E Ci

G(r, r') GC(r, r') 7 E C1, T' E C2 (3.5)
G>(r, T) T E C2 , T' E C1

Gt(T, T') rTr'C2

where

Gt(T, T') = O6(r - -r')G(T, T') + 0(T' - r)G<(T, T') (3.6)

Gt(r, T') = 0(T - T')G<(T, T') + O(T' - T)G>(T, T'). (3.7)

One of the advantages of using contour-ordered Green's functions is that it can provide

information on the particle density in the non-equilibrium situation. This can be

obtained by taking t' -+ t in G<(t, t'),

(n(t)) = ($t(t)@bN(t)) = -ih lim G'(t, t') (3.8)
Vt'4t
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In equilibrium the energy-resolved electron density can be obtained from the Fermi-

Dirac equilibrium distribution nF(e) = (eO(E-p) + )-I and the spectral density A(E).

G'(E) = inF(E)A(E) (3.9)

Because the spectral density can be obtained from the retarded Green's functions,

A(E) = i [G (E) - G4(e)] , (3.10)

the lesser Green's function G< does not provide new information on the system in

equilibrium. In contrast, in the case of the nonequilibrium situation, which there is

no universal statistical distribution, the lesser Green's function G", which is natually

included in the contour-ordered Green's function formalism, is crucial in order to

know the electron density information.

3.2 Ensemble average in non-equilibrium

To proceed we need to obtain an ensemble average under non-equilibrium condition.

First the system Hamiltonian 7N can be divided as follows,

U(t) = H + H'(t) = Ho + Hi + H'(t), (3.11)

where H = Ho + Hi. Ho is the non-interacting (quadratic) free particle Hamiltonian,

and Hi indicates a possible interaction, for example, the electron-vibration interaction

of this study. H'(t) is the Hamiltonian that drives the system out of equilibrium. In

the transport problem, a finite bias corresponds to H'(t). We assume that the system

is in equilibrum for t < to. Thus the ensemble average for-an operator 0 is given by

(0) = Tr [p(H)O] , (3.12)

where p(H) = c-OH/Tr[e-H].
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Let us consider that H' is turned on at t = to and kept switched on for t > to.

From t = to the time evolution of the ensemble average is obtained by using the

time-evolved density operator p(t),

p(t) = U(t, to)p(H)UI (t, to), (3.13)

where U(t, to) = T exp[-T ft drh(r)] is the time evolution operator with respect to

the full Hamiltonian 7. Thus the ensemble average becomes

( =)(t) Tr [p(t)O] (3.14)

This can be readily written in the Heisenberg picture,

(0)(t) = Tr [p(H)OR(t)] . (3.15)

Furthermore OR can be transformed in the interaction picture with respect to H,

which is time-independent. For the reference time to, we have

(3.16)

where

V(t,to) = T (3.17)

Here HH(t) is the operator H'(t) written in the interaction picture with respect to

H. By introducing the closed path c in Fig.(3-2), Eq.(3.16) is equivalently rewritten

as follows [77],

O(t) = Tc exp OH (t) (3.18)

This formulation will be used for the perturbative expansion of the contour-ordered

Green's functions in the following section.
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Figure 3-2: Closed time contour, starting at the reference time to, changing its direc-

tion at t, and returning to to.

3.3 Perturbative Expansion

In the definition of the contour-ordered Green's functions Eq. (3.3), the time evolution

of the field operator @)(t) is governed by the full Hamiltonian R, which cannot be

exactly solved. The key strategy to obtain the contour-ordered Green's functions

is to rewrite the field operator in the interaction picture with respect to the free-

particle quadratic operator Ho, which is solvable. This transformation enables us to

take advantage of Wick's theorem and Feynman diagram rules [76].

As an intermediate step one can write the contour-ordered Green's function G(r, r')

in the interaction picture with respect to H by using the formulation discussed in the

previous section,

G(T, T') = K (exp dtH (t) H (r)@0(T')) (3.19)

We can separate the effect of the time-dependent term H'(t) in the form of the S-

operator, but the field operator is still written with respect to H, which contains

the interaction term Hi. By taking the transformation from the interaction picture

with respect to H to one with respect to Ho once again, one can readily write the

contour-ordered Green's functions in the following way,

G(T, T') (exp dtHh (t) + ) Ho(r (3.20)

1 Tr [e-3HT e(fdtHi o(t)+H'o(t))OHo(T)Ot O(T/)

ih Tr (e-3H)

The Boltzmann factor e-,H is also needed to be expressed in the interaction
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Ci = C Ccj

toc 7

Ca

Ca to - i,3

Figure 3-3: Extended contour ci including the imaginary time contour ca for thermal
statistics.

picture with respect to the free particle Hamiltonian Ho. When we introduce an

imaginary time path ca from to to to - i, the Boltzmann factor satisfies the following

relation,

e -0H __ - eHo X - 1 i dtH H0 (t)). (3.22)
hto

With this relation, known as the Dyson formula [771, all the operators in the contour-

ordered Green's functions are written in the interaction picture with respect to Ho.

In the numerator the two contour ordering operations T and T, can be merged by

combining the closed-time contour c and the imaginary-time contour ca and defining

a new contour ci as shown in Fig. 3-3. On the new contour ci, the contour-ordered

Green's function becomes

) Tr e-HoT (( ci dtH' (t)) H rHdtoH)

G(r, r') = - _ifto ' (3.23)
inTr [e-OHoT T H dtH (

The contribution of the contour ca, which contains only the interaction H , indicates

the initial correlation between particles via the interaction H'. If one is interested

only in the physics after the initial correlation is damped out, or in the steady state

situation, one may set to -* -oc and safely neglect the contribution of the contour ca

[78]. Exploiting the unitarity of the time-evolution operator, the closed-time contour

can be extended to t -+ oc. Thus the time contour to describe the steady state has

two time branches: the upper branch ci starting at t -+ -oc and ending at t -+ oc,
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C

Figure 3-4: The Schwingei'-Keldysh contour extended to t = too.

and the lower branch c2 starting at t -+ oc and moving back to t -+ -oo. This time

contour is called the Schwinger-Keldysh contour. To sum up, the contour-ordered

Green's functions for the steady state is

I 1 (6 - dHFt)e - ,d~G(7, ') -Tr Ip(Ho)T T (3.24) (t)) -j dH) o '

where p(Ho) OH.

Now, the contour-ordered Green's functions can be expanded in terms of the

unperturbed Green's functions Go as one did in equilibrium Green's function theory

[76]. The unperturbed Green's function is defined as

Go(T, T') = I\Tc)H. (T) V)HO(T), (3.25)

where -o = Tr [p(Ho) .-]. Because the contour-ordered Green's functions and

the equilibrium Green's functions are topologically equivalent except for time order-

ing, Wick's theorem and Feynman diagrammatic rules can be readily applied. Fur-

thermore, one can write down the Dyson equation for the contour-ordered Green's

functions,

G(r, r') = Go(T, T') + jdri jd2Go(T, )ri)E(i, 2)G(72 , r'), (3.26)

where E(i, r2) is the self-energy that contains all possible connected diagrams.
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Contour C Real Axis t

C=f AB C< = ft[AB< + A<Ba]
Cr = f ArBr

D = f ABC D< = f [A' BrC< + ArB<Ca + A<BaCa
Dr = f ArBrC'

C(T, T')= A(r, ')B(T, T') C<(t, t') A<(t, t')B<(t, t')
Cr (t, t') = A' (t, t')B (t, t') + A (t, t')B' (t, t')

+ A(t,t')Br (t,_t')

C(TT') = A(T,')B(T',T) C<(t,t') = A<(t,t')B>(t',t)

Cr(t,_t') = A<(t,_t')Ba (t',t) + A(t,t')B<(t',t)

Table 3.1: Several examples of Langreth's rules

3.4 Langreth's rules: from contour to real time

We have discussed the systematic perturbative expansion of the contour-ordered

Green's functions. However, since the time argument for the contour-ordered Green's

functions lies on the closed-path time contour, one needs to convert to real time in

order to get physical information desired. For example, to access the electron density

of the system, we need to extract the lesser Green's function G<(t, t') from G(T, T').

This conversion rule is known as Langreth's rule [33]. Let us consider the following

quantity, defined on the Schwinger-Keldysh contour c,

C(T, T') = jd7lA(r, Ti)B(Ti, T'). (3.27)

According to Langreth's rule, the lesser and retarded parts of C(T, T') can be calcu-

lated in the following way,

C< (t, t') = dti (Ar(t, ti)B<(ti, t') + A<(t, ti)B"a(ti1, t')) (3.28)

C,(t, t') = dt 1Ar(t, t 1 )Br (t1 , t'). (3.29)

Note that the contour integral is replaced by the time integral from -oc to 00. Table

(3.1) shows several examples of Langreth's rules.
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3.5 Kinetic Equation

Now we can derive kinetic equations for the retarded, advanced, lesser, and greater

Green's functions by applying Langreth's rule to the Dyson equation for the contour-

ordered Green's function Eq.(3.26).

For the retarded and the advanced Green's functions, one can obtain the usual

Dyson's equation that one may be familiar with in the equilibrium theory [76].

G-a'(t, t') = G'a(t, t') + dtidt2G'a(t, ti)E ''(ti, t2 )Gr'(t 2, t') (3.30)

Similary one can obtain the kinetic equation for the lesser and the greater Green's

functions, which is named the Keldysh equation. For the lesser Green's function,

G<(t,t') = G<(t,t')+ dtidt2 [Gr(t,t1)E'-(t1,tG'2,'

+ r G(t, t1)E'(t1, t2)G"(tt)+ 0(t)E"(t1,,t2)G"a(t2, t')]

= G<+GO-..-.G<+Gr-E<-G"a+ G< - E"-G"a

Here a shorthand notation for the integral is introduced:

A. B = j dtA(t, ti)B(ti, t') (3.31)

Iterating this equation for G< one can obtain the following closed equation,

G< = (1 + G' - Er) -G< -(1 + G -Ea) + Gr E< -Ga (3.32)

From the Dyson equation Eq.(3.30), (1 + Gr - Er) - G< = G- (G-)- 1 -G< holds. The

equation of motion for G< leads to (Gr)-1- G< = 0 plus a boundary term introduced

by the inverse of the integral operator. As pointed out in Ref. [24], the boundary

term contains the memory of the initial condition. In the steady state problem, this

initial memory can be neglected. Thus we reach the steady state Keldysh equation
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for the lesser Green's function

GC ,t' dtidt2Gr (t, t1) E<(ti, t2) G4a(t2, t'). (3.33)

For the greater one one can obtain the same form of the Keldysh equation

G>(t,t') = dt1 dt 2G(t,t1)E>(t1 ,t 2 )Ga(t 2 ,t'). (3.34)

In steady state the Green's function G(t, t') depends on a time difference t - t'.

Using Fourier tranformations and the convolution theorem, one can obtain the Dyson

equation and the Keldysh equation in energy space,

Gra(w) = G'a(w) + G'a(w)Era(w)Gr'(w) (3.35)

G>'<(w) Gr(w)E>'<(w)Ga(w) (3.36)

In the next Chapter we will apply this formalism to nanostructures coupled to two

electrodes and in the presence of electron-vibration interactions.
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Chapter 4

Electron-Vibration Interactions in

Molecular Junctions

In the previous Chapter we reviewed the general formulation for non-equilibrium

Green's functions, which enables us to calculate physical properties of interacting

system out of equilibrium. In this chapter we calculate the contour-ordered Green's

functions in the presence of electron-vibration interactions in a two-terminal geometry.

4.1 Hamiltonian

Our system consists of three sub-systems: a left electrode, a right electrode, and

a device region that contains the vibrating molecule. Conducting electrons are as-

sumed to be scattered off by molecular vibrations only inside the device region. In

contrast, electrons in the electrodes are described by non-interacting quasi-particles

with phonons, or between each other (In the latter case, they do, but are renormalized

by DFT). Each electrode plays the role of an electron reservoir in equilibrium. The

chemical potential difference PL - PR leads to the nonequilibrium state in the device

region. The corresponding Hamiltonian is expressed in terms of second quantized

operators as follows:
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' = HD + Head + HT (4.1)

HD = HO + Hel-vib + Hvib (4.2)

HO = ( e, d dj (4.3)
i~j

=~ Z2A(a~A~ (4.4)

Helvib = S MA d (at + a) (4.5)
A ij

Hiead = ( ZecC cak (4.6)
a=L,R k

Hr ( ( an~ct di + V,*k,d cak (4.7)HT S 5 [Vak,iCakd+ kcccj(47
a=L,R k i

Here di and dt in HD are annihilation and creation operators for electrons in the

device region. In this study we choose localized Wannier functions as basis. cak and

Ck in Hlead are annihilation and creation operators for the non-interacting Kohn-

Sham electrons in the ath electrode. k is a set of quantum numbers for the electrode

electrons. aA and at are the bosonic operators corresponding to the Ath molecular

vibration. HT describes the tunneling between the device region and the electrodes.

Vibratiii refionl

Left electrode Right electrode

Central region
(Device region)

Figure 4-1: Schematic geometry of a two-terminal set-up. The electron-vibration

interaction exists only inside the device region.
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Because the electron-vibration interaction He__vib does not distinguish between spin

degrees of freedom, the spin index is not explicitly specified.

4.2 Device Green's function

Now we want to calculate the full device Green's functions

G ij (T, T') = KTdi(T)dt(T')) (4.8)

in the presence of the coupling to electrodes and the interaction with local vibrations.

As seen in the previous chapter, G(T, T') satisfies the Dyson equation,

G(T, r') = g(T, T') + [g - (EZlead + Eib) - G] (r, T) (4.9)

Here G(T, T') can be interpreted as a matrix Green's function whose (i, J) component is

Gij(T, T'). gij(T, T') is an isolated device Green's function when there is no interaction

with electrodes and local vibrations:

1 i\
gjj(T, 7') = -- dj(T)d9(T')/ . (4.10)

Here we put the subscript H0 to emphasize that its dynamics is governed solely by HO.

Elead is the lead self-energy coming purely from coupling with electrodes. Evib is the

electron-vibration self-energy that is a sum of all the connected irreducible diagrams

containing the electron-vibration interaction [76].

Applying Langreth's rules and taking the Fourier transformation to the energy

space, the Dyson and Keldysh equations for the device Green's function are obtained

as

G (E) = g'(E) + g'(e) [Fead(E) + rZib(E)] G'(E) (4.11)

GC(E) = G'(E) [Eead(E) + Evib(E)] Ga(E). (4.12)
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Here we can simplify the Dyson equation further by introducing the non-interacting

device Green's function Go(r, r') that is calculated without the electron-vibration

interactions, but only with connections to the electrodes,

1i\
Go,ij(T, r') = - (Td(T)d(') 2. (4.13)

Zih 3 Ho+HT'

Note that the subscript Ho + HT indicates that the device region is coupled to the

electrodes. For this non-interacting Green's function one can write down the Dyson

equation for the retarded part,

GE)g() + g'(-)EZ'ad(E)G'(g) (4.14)

Using the fact that [g'(E)]- = [(E + iO+) - Ho], Eqs. (4.11) and (4.14) are rewritten

as

1
G'(e (4.15)Greg)10+) - Ho - Er - (415

1
G = (4.16)

(E + 0+) - Ho - led

Rearranging these equations, one can express the Dyson equation for Gr(E) in terms

of G (),

1
G'(e (4.17)[Go]- 1 - Er()41

= G (e) + G'(E) E'ib(E)G() (4.18)

4.3 Self-energy

The next step to obtain the full device Green's function is to calculate the lead self-

energy and the electron-vibration self-energy. The self-energy in the Dyson equation

is a collection of all the possible irreducible diagrams, in which irreducible means

that the diagram cannot be divided into two pieces by cutting one device Green's

function [76]. While the lead self-energy can be exactly calculated when electrons in
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the electrodes are assumed to be in equilibrium, the electron-vibration self-energy is

approximatedly calculated by using diagrammatic perturbation theory.

4.3.1 Lead Self-energy

We first discuss the lead self-energy Elead(T, T'). In case of coupling to the electrodes

one can have the following irreducible term,

Zaleadij (=, T') R Zaij(T, T') = k Z
a=LRa=L,R k

Vc,*k,i9Qk(T, T')Vak,j,

1 (\
gak(T, T') = - ccak(7 )c'k(T'))th \~o

(4.20)

is a free Green's function for an electron in the ath electrode decoupled to its sur-

rounding. The retarded, advanced, lesser, and greater parts of the lead self-energy

are obtained straightforwardly:

Iead,ij (E)

le jJ (E)

a=LR k

c=L,R k

Vc,,i9"a( c)~ (4.21)

(4.22)

For the electrode assumed to be in equilibrium with the chemical potential P, the

lesser and greater free electrode Green's functions are

gak (E)

9Yc>k (E)

= i2r[nF( - /IQ)-- - Ekk)

z i2w [rF(E - P,') - 1] 6(E s )

(4.23)

(4.24)

Thus the lesser and greater parts of the lead self-energy are rewritten as

Zleadij()

Zleadij (E)

a=L R EF ' E

ae=L,R

(4.25)

(4.26)
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where

(4.27)'(E) - 2Yr , V*k, Vakio(E - Eck).

F' is called a broadening function because it physically describes broadening of an

electronic level when a level is coupled to electrodes. Using the relation g> - 9< =

gr - ga, the broadening function can be obtained from the retarded and advanced

lead self-energies,

Pa(E) = i [ (e) - E(s)] = i [E,(E) - (E,(E))t] (4.28)

Once one can calculate the retarded lead self-energy, then one can directly obtain the

broadening function F, and the lesser and greater self-energies E.

4.3.2 Electron-Vibration Self-energy

As stated before, the electron-vibration self-energy consists of all the irreducible con-

nected diagrams. Building blocks of the diagrams are the non-interacting electron

device Green's function

Go,i (r, T') = - KEdi()d t(),)
theij e v o G ' io o+HT

the unperturbed vibration Green's function

(4.29)

Do,A(T, T') = 1 K [at(r-)+ a,(T) [at (T') + aA (r')] ,

and the vertex factor MA. The retarded and lesser vibration Green's functions in the

energy representation are

DoA (:)

D0A (E)

1 1

- hwA + i0+ E + hA + i0+

-27ri [(NA + 1) 6(E + hAo) + NA 3(E - bwA)]

(4.31)

(4.32)
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(a) (b)

Figure 4-2: Lowest-order electron-vibration diagrams: (a) Hartree and (b) Fock. The

arrowed line and wiggly line indicate electronic and vibrational Green's functions. The

black filled circle represents the vertex factor of the electron-vibration interaction.

For the isolated vibration N obeys the Bose-Einstein distribution nB(hwA) =

In reality the molecule is mechanically coupled to bulk phonons in the electrodes. In

addition, when conducting electrons are scattered off by the molecular vibrations due

to the electron-vibration coupling, the electrons can emit or absorb molecular vibrons.

As a result, the vibron population can deviate from Bose-Einstein equilibrium. These

effects may result in two changes in the vibrational Green's function: a vibrational

frequency shift w\ -± WA + AWA, and a finite lifetime iO+ -± irI. The delta-function

may be replaced by Lorentzian with the broadening correponding to the lifetime. In

the weak coupling regime one might use the same form of the unperturbed Green's

function as a first approximation, except for the nonequilibrium vibron occuption

NA -/ nB(hwA). This is called the vibronic quasiparticle approximation [82]. We will

discuss how to calculate the non-equilibrium vibron occupation number NA in the

next chapter.

With these components one can generate a variety of diagrams by following Feyn-

man rules as one does in the equilibrium theory [9]. Because the exact self-energy

includes an infinite number of irreducible digrams, it is impossible to calculate the

exact self-energy. For a real calculation we have to replace the exact self-energy by

an approximate one. In this study the lowest-order diagrams, which are in the second

order of MA, are considered: Hartree and Fock diagrams in Fig. 4-2. We discuss sev-

eral methods to calculate the full device Green's functions with these two diagrams.

They are different in terms of the order of MA and the summation of the diagrams.
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Lowest-order approximation

The simplist way to calculate the self-energy is just to compute the Hartree and Fock

diagrams by using Go,ij and Do,A in the second order of the electron-vibration inter-

action MA. This approximation can be valid in the weak coupling regime. According

to Feynman rules, the Hartree and Fock terms are evaluated to be

Evb,(2) i2 M Do(A, E = 0)Tr [G' (T= 0, T' = O)MA] (4.33)
A

Fb,(2) = E M DoA(, T')Go(T, T')M A. (4.34)
A

The factor 2 in the Hartree diagram accounts for the spin degeneracy in the electron

loop in the diagram. The subscript (2) indicates that these diagrams are second order

in the vertex factor MA.

When Langreth's rule is applied, the Hartree term is written as

E( 2) = -2i E h I 'MATr [G< (E')], (4.35)

-2iEMA D><(A, E = O)Tr [G< (0, 0)M A] = 0. (4.36)i b, (2) 0 0

A

Note that the Hartree retarded contribution is energy-independent, which means

that it gives a static correction to the electronic potential. The lesser and greater

contributions identically vanish.

In the energy representation the Fock term reads

E,, (e =iA [DO. A ( - E')G*(E') + D<OA - E')Go')] M A,

(4.37)

E F'ys =, < M E' D>'<(E - E')Go'' (E') MA. (4.38)
A Ft

In fact the retarded Pock term can be expressed in terms of the lesser and greater

64



ones via the Kramers-Kr6nig relation as follows:

Zvib ,(2) ( 2 = v [z ,?(2) - vib,(2 )] (6) -

i
-WE/

2
E Z b'j(2) (E') - E b,(2)( (E )

where

NE, [f (E')] (e) __ P f (')
-'P dE

(4.40)

is called the Hilbert transformation.

With the lowest-order irreducible diagrams one can calculate the full device Green's

function Gij in two ways. The first one is to insert Er, + F, into Er
vb() - vib, (2) vib,(2) vib

in the Dyson equation Eq.(4.17). Essentially this solution is the same as a geometrical

series, obtained by expanding Eq.(4.18) iteratively,

GT(e) G + i b,b(2)G, + GEi,(2)G 0vib,(2)G

= [(G')- 1 - Erib (2)] - GBA

(4.41)

(4.42)

With G1BA() the lesser and greater ones are readily obtained from the Keldysh

equation Eq.(4.12),

G><(E) = G1rBA(E) E>d) vib (2 )()] GBA (e)

This is called the first Born approximation.

The second method is to truncate the geometrical series Eq. (4.41) and to keep the

lowest-order term only,

Ge~ Gr + GEE'ib.(2)Gr = G2 (4.44)

Similarly for the lesser and greater Green's functions one can keep up to the lowest-

order term,

G ~G ; +aG; a G '
(2)lea lea G >) < G (E) (4.45)G><E) G'_Z ><Gg + Gr E>< 2)G~ + or + G 02><
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Throughout this study we call this the lowest-order expansion [72, 27].

However, one should be very careful in using these approximated Green's func-

tions. One should make sure whether the approximation used in the theory is physi-

cally reasonable. For our problem, where a finite-bias current will be calculated, the

most important criterion is that the current conservation must hold, together with

the approximation to calculate self-energy and the Green's function. Unfortunately

the first Born approximation, which is often used in equilibrium theory, does not

guarantee current conservation. In constrast, when the current is calculated up to

the lowest order of the electron-vibration interaction MA with Gr and G><, it sat-

isfies the current conservation condition. We will discuss this issue in detail in the

next chapter.

Self-Consistent Born Approximation

One can further improve the Green's function calculation together with the Hartree

and Fock diagrams. Let us replace the non-interacting device Green's function G's>

by the full Green's function Gr,>,< in the Hartree and Fock diagrams,

E SCB = 2 A 1 f MATr [G<(E')] (4.46)

FZrb'0Bd(')"_ [D rAe - c')G>(6') +i D '~& - E) G (Ef)] A,

(4.47)

CBA< ( z =0 MAD> (E - E')G><(E')MA. (4.48)

With the Dyson and Keldysh equations

G'(E) = Go() + G()Erb(6)Gr(6) (4.49)

G -(E) = G'(E) [ZEad(E) + ZVib(E)] G4(E). (4.50)

one has a closed set of the equations for Gr,>,< and E>'< to be solved in a self-

consistent way. This self-consistent calculation method is called the self-consistent
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Born approximation (SCBA). From a viewpoint of the diagrammatic perturbation,

this approximation includes more diagrams than the first Born approximation or the

lowest-order expansion. Moreover, because the SCBA satisfies the current conserva-

tion, it is a relevant approximation to a finite-bias transport problem. In this study

the lowest-order expansion and the self-consistent Born approximation are adopted

for the electron transport calculation.
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Chapter 5

Quantum Transport with

Electron-Vibration Interactions

The Landauer-Bittiker formalism is the basic quantum mechanical description for the

electron transport, and has been widely used in many nanoscale transport problems.

However it is suitable only to non-interacting electrons or quasiparticles. In 1992 Y.

Meir and N. S. Wingreen developed a generalized transport formalism that enables

us to take into account interaction effects on transport properties [65]. The Meir-

Wingreen transport formalism, which we want to discuss here, can deal not only with

electron-vibration interactions, but also with a variety of interactions, from electron-

electron to electron-photon interactions in nanoscale systems. The ingredients for

the Meir-Wingreen formalism are non-equilibrium Green's functions and self-energies

coming from the interactions and the coupling to electrodes, which have been dis-

cussed in the last two chapters. In this chapter we provide a brief derivation of the

Meir-Wingreen transport formula, and discuss the current conservation condition and

non-equilibrium vibrational populations within the formalism.
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5.1 Meir-Wingreen Transport Formalism

5.1.1 Derivation

The system Hamiltonian is the same as our Hamiltonian introduced in the previ-

ous Chapter except that the electron-vibration interaction is replaced by a general

interaction Hamiltonian Hint,

11 = HD +Hlead +HT

HD
i Z ,j dj + Hit ({dt, dj})

ij

Hlead = Z &0kCakcak

a=L,R k

HT = E Z [Vak,ica'kdi
a=L,R k i

(5.1)

(5.2)

(5.3)

(5.4)+ V*dkcidtC0 k.

When I, is defined as the electron current entering the ath electrode, it can be

calculated as

/ d \ ie [
'0l = eKNo =.[7,Na])

=- [Vka,nKcedn) - V*,n(dcka)]
k,n

(5.5)

(5.6)

where N =Ek cEkck a, and k is a set of quantum numbers for the electrode electron,

including the spin quantum number o =t, 4.

When we define the following contour-ordered Green's functions

Gn,ka(T7 T')

Gk ,, (T, T')

= - Tdn(F)Ck(T'))

= -A K~caCk,(T)dt (r'))

(5.7)

(5.8)
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one can notice that

(5.9)

(5.10)

Gn, - (Kt0(t)dn(t))

G< t) = (dt(t)cka(t)).

Thus, the current expression becomes

-e E [VkanG~k (t, t) - V G,nG k (t, t)]
k,n

(5.11)

(5.12)
00 . [Vka,nG ka() -

-o 2 k,n

From the Dyson equation or the equation of motion technique [39] one can evaluate

Gn,ka(T, T') and Gk,n (r, T') in terms of full device Green's functions Gmn(T, T') and

free electrode Green's functions gka(T, T/),

Go,kQ (T, T')
m I riGnm(T, Ti

= L19ka(T ,71)
M C

Vki*,mgka(Ti, T').

V*,, mG,,,,(71, T' ).

(5.13)

(5.14)

Using Langreth's rules and the convolution theorem, the lesser parts of G,,k,(T, T')

and Gk,(T, r') are

G~nka(E)

Gkan (E)

- >V*,m [Gam(E)g a(E) + G m(E)ga(e))]

= Z Vkc,m [g'j(E)Grn(E) + gj ()Gmn(E)]km k

(5.15)

(5.16)

Let us insert Eq.(5.15) and (5.16) into Eq.(5.12). Using the relation G' - G' =

G> - G< and the definition of the electrode self-energy that we discussed in the last
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chapter, one can find that

,mn()G 'm () - E ,mn(E)G m (E)]
m,n

d6Tr [E>(E)G<(E) - E<(E)G>(E)]
2w C

where E<'> are the lesser and greater ath electrode self-energies.

(5.17)

(5.18)

The factor 2 ac-

counts for the spin degree of freedom. This is the Meir--Wingreen transport formula

[65].

This formula is readily applied to the energy current carried by the conducting

electrons. The power transferred into the ath electrode P, is

P, = Ha
dETr [E (E)G<(E) - E<(E)G>(E). (5.19)

5.1.2 Non-interacting Case

As a sanity check one can apply Eq. (5.18) to the case where there is no interaction

in the device region, Hint= 0. The Dyson and Keldysh equations read

GE (e)G e r
- [e + i0+ - HD ~ L -~ ?() -

= Gr(E) [E'< + E>,<] G (E),

(5.20)

(5.21)

where the subscript 0 indicates the non-interacting system. Recalling that

ZLR (E)

- 1nF (e - IL,R) FL,R(e)

= i [nF (E - PL,R) - 1] FL,R(E),

(5.22)

(5.23)

the non-interacting current is straightforward calculated as

2e
h

2e

h

0 -Tr [E>(E)G'(E) - E<(E)G>(E)]

J o
-00c

de
2-rTr [FLG'FRGf] (E) [nF(E - AL)- nF(E -2w PR)].

(5.24)

(5.25)
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The transmission probability function T(-) = Tr [FLGrFRGa] (E) is known as the

Fisher-Lee relation [26]. For simplicity let us consider a very small bias regime eV =

PL - PR < 1 at zero temperature. If we assume that the transmission probability

function T(E) is almost constant at the energy range between PL = P + eV/2 and

PR = P - eV/2, the current might be approximated as I(V) ~ T(t)eV. Therefore

the zero-bias conductance is

g B I(V) _2e
2

1V - h T(p) (5.26)
OV h

The Meir-Wingreen transport formula recovers the Landauer-B~ittiker one for the

non-interacting case.

5.1.3 Current Conservation

As we pointed out in the last chapter, the approximation adopted for the interacting

self-energy calculation should satisfy the current conservation. Here we want to find

out an explicit condition that the approximated self-energy should satisfy for the

current conservation from the Meir-Wingreen formula. The current conservation is

stated as IL = -IR in our definition of the current. Let us calculate

IL + I Z E j Tr [E(E)G' (E) - E,(,)G>()] (5.27)
a=L,R -oo

= 2 0 de Tr [(YE_ - E ,) G<(E) - (t ot - E_t) G>(e)] ,(5.28)
h J-O _ 2 2o into i

where Eto -E'' + E>'< + E:j. Here we claim that

Tr [E> (E)G<(e) - E< (E)G>(E)] = 0 (5.29)

for any energy e. In order to prove this cancellation, one can use the Keldysh equation

G -''(E) = G'(E)E>'<Ga(E), (5.30)
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and the following relation

(Ga)-1 - (Gr)-l = (Gr)-l(G> - GC)(Ga) = E _ . (5.31)

The second relation is immediately derived from the fundamental relation Gr - G a

G> - GC. With these relations one can show as follows:

Tr [ZECG< - EZtG>] Tr [E> G'E<,Ga - E<GrZE> G a

= Tr [(Ez, + (Ga)- - (Gr)- ) GrE:G4a

-EtoG (Ez, + (G4) 1 - (GT)l) G"]

= Tr [(Gr - Ga) E3t - E,< (G - G")] = 0,

where the cyclic property of the trace operation Tr [AB] = Tr [BA] is used. Therefore

the current conservation condition is simplified as

2e
IL + IR =e

h J 0-Tr [--ntG<(E) + rQ<tG>(e)] = 0
27 i i

With this explicit condition we can check whether the approximations introduced in

the last Chapter satisfy the current conservation.

Current Conservation within the SCBA

Recalling the lesser and greater electron-vibration self-energies in the SCBA

Zvib(6)
-Evib,A (E)
A

-: ZA\ [NAG< (E - hwy)) + (NA + 1) G< (E + hwjA)] MA
A

A

- ZMA[NAG>(,Fhw,)±(NA±1)G>(E- jWA)MA,

A

(5.36)

(5.37)
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the current conservation condition becomes

IL + IR
2=
h O -Tr

[M A (NAG<(F - hWA) + (NA + 1)G<(F + hwA)) MAG>()]

-Tr [M A (NA G>(E + hox) + (NA + 1)G>(E - hwA)) MA G<(c)]

= 0.

(5.38)

(5.39)

One can realize that Eq. (5.38) vanishes by changing the integral variable E E +hwA

and using the cyclic property of the trace operation.

Current Conservation within the 1BA

By analogy with the SCBA, the current conservation condition for the first Born

approximation is readily written as

2e dETr [MA (NA G<(e - hwA) + (NA + 1)G+
- MA _ 2+ A

-Tr M.4 (N\Go>(E + hw\) + (N,\ +1)Go"(E - ho))

# 0.

Since G A(E) f Go"<(E), Eq.(5.40) is nonzero in general.

Current Conservation within the LOE

Up to the lowest order of MA, the current conservation condition turns out to be

IL + IR 1 (0) + 1(0) + (2) + 12)

2e f dER Z>G<(E + Z<G>(E 1

oh tiCO 27r 0,(2)ode d iar s ar e

Notice that I(") + I(0) = 0. Because the lowest-order diagrams are

Eib,<2) (E)

vib,<2) (e)

= MA [NAG(E -WA) + (Nx + 1) G(E+ hwa)] MA
A

= ZMA[NAG>(E+rKUA)±(NA±+1) G>~(E hwA)]MA
A

(5.42)

(5.43)

(5.44)

(5.45)
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the current conservation rule reads

I 2) + e f Tr [MA (NAG<(E - hwA) + (NA + 1)G<(E + hwA)) M A G> (E)]

-Tr [MA (NAG> (E + hWA) + (NA + 1)G> (E - hwA)) M A G<(E)] (5.46)

=0. (5.47)

Thus one can conclude that current is conserved in the lowest-order expansion.

5.2 Non-Equilibrium Vibrational Occupations

One of the most important issues to address is the non-equilibrium vibron popula-

tion induced by conducting electrons. Vibrational occupation is determined by two

competing mechanisms. The first one is an energy exchange with the conducting

electrons, via electron-vibration interactions. The electrons can be scattered off by

emitting or absorbing molecular vibrational quanta. Whether the conducting elec-

trons heat up or cool down the molecular junction depends on the relative strength

between vibrational emission and absorption rates. The second mechanism is the

vibration decaying to heat reservoirs. Since the molecule is mechanically connected

to bulk electrodes, the locally excited vibraions can decay to bulk phonons. This

argument can be formulated in a rate equation for the vibrational occupation NA

[27],

d P
-NA - YA (NA - nB (bwA)) (5.48)
dt hWA

= (NA + 1) EA - NAAA - _YA (NA - nB (hLWA)), (5.49)

where PA is the power transferred from electrons to the vibrational mode A, and 'YA is

a decaying rate of the mode A by coupling to bulk vibrations. nB is the Bose-Einstein

distribution of the heat reservoir. , is further expressed in terms of emission and

absorption rates EA and AA. (NA + 1)E is vibrational excitation by conducting elec-

trons which lose their energy in this emission process. Likewise, NAAA describes a
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vibrational de-excitation process in which electrons get energies from local vibrations.

The third term corresponds to coupling between local vibrations and bulk phonons.

This coupling keeps local vibrations equilibrated with heat reservoirs (bulk phonons).

Unlike absorption (emission) processes that always decrease (increase) local vibrons,

the coupling to heat reservoirs can either decrease or increase the populations, de-

pending on the difference between NA and nB(hwA)- If the local vibration is beyond

the equilibrium value nB(hwA), the local vibration is decayed into heat reservoirs. In

contrast, if the vibrating molecule is cooled down below the equilibrium occupation

nB(hxA) due to the interactions with electrons, heat reservoirs supply a vibrational

energy to local vibrations in order to make the molecule in equilibrium with the

Bose-Einstein distribution.

The steady state solution for Eq.(5.48) is immediately obtained as

NA = nB ( -y)\ + E. (5.50)

Note that the steady state solution does not always exist. If E > AA + YA, the

solution for Eq.(5.48) is exponentially growing as a function of time, which implies a

vibrational instability.

5.2.1 Emission and Absorption Rates

By analogy with current conservation one can consider energy conservation, i.e.

PL + PR + Pib = PL + PR + PA = 0. (5.51)
A

Note that P (a = L, R, vib) is defined as the power transferred into the electrodes

or the molecular vibration. Using the relation Eq. (5.29) one can find that

2 E
PA = -] -- ETr [E>AG(. - ~ G>(c)l (5.52)
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H B~H

HBS (harmonic coupling)

Figure 5-1: Local vibrations coupled to bulk phonons (heat bath).

In the SCBA scheme, using Eq.(5.36) and (5.37), it can be re-expressed as

= (NA + 1) 2

h _ 0

J 0_O2 Tr [M AG<(e + hw)MA G>(e)]2 -r

ATr [MA G<(E - hWA)M AG> (e)]

The emission and absorption rates for mode A are identified as

E CBA

A SCBA

Tr [MAG<(E + hWA )M G>(E)]

2

h '-2r [MAG<(E - hw)M AG>(E)]

(5.54)

(5.55)

In the lowest-order expansion, G>< is replaced by G '<:

EA,(2)

AA,(2)

2

h
2

h

d Tr [MA G<(E + hw\)MAGg> (E)]
27r 0 -

de Tr [A\ G <(E - hw,\)MA A G > (E)].
27r00

(5.56)

(5.57)

5.2.2 Vibrational Decay Rates

In order to obtain vibrational decay rates, let us consider a situation where local-

ized vibrations are harmonically coupled to bulk phonons (heat reservoir). Localized
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(5.53)
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molecular vibrations and bulk phonons are described by collections of harmonic os-

cillators in the second quantized form:

3n

Ws bL bt +

SB lk Ckck +

(5.58)

(5.59)

where bi(bt) and ck(ct) are annihilation (creation) operators for localized vibrations

and bulk phonons respectively. The molecule consists of n atoms. In this study, it is

assumed that local vibrations are harmonically coupled to bulk phonons:

n N

i=1 a=x y z j=1

n N

i=1 a=x,y,z j=1

#=x,y,z

where qi,, is the a-direction Cartesian coordinate of ith atom

ilarly qj, represents the -direction Cartesian coordinate of

electrode. ujioy is the (harmonic) interatomic force constant

and the electrode. Use,jo, Qja, and Qj, are mass-renormalized

stant and coordinates defined as follows:

Uic~jf3

Qifi

(5.60)

(5.61)

in the molecule. Sim-

jth atom in the bulk

between the molecule

interatomic force con-

_ Uiajfl

Vi iqi~,

,hjj/3.

(5.62)

(5.63)

(5.64)

(5.65)

One may use the Fermi golden rule to calculate harmonic vibrational decay rates.

When the ith molecular vibrational state is occupied, the decay rate at which the
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vibration decays by exciting bulk phonons is given by

Fi-*bath - Z E B kLC Si) 2 a (hk - hWi), (5.66)
kEbath

where li)S = bt|O) and |k)B = c)jO). Here |0) represents a vacuum state. After some

lengthy algebra, Eq.(5.66) can be re-expressed as follows:

Fiebath = -i- mFI r (Wi) Xi, (5.67)

where X is the normal mode vector of the ith local vibration. flr(w) is the retarded

heat bath self-energy, which is defined as

H'(w) U 1 U . (5.68)
(W + ir/)2 - 7HB

In fact, one can easily notice that the system discussed here is essentially the same

as the lead-conductor-lead geometry in the electron transport problem. Ur is the me-

chanical counterpart to the electronic lead self-energy E'(E). The numerical method

to calculate E'(E) can be directly applied to I' calculation. For a detailed derivation,

see Appendix A.
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Chapter 6

Numerical Implementation

In this chapter we discuss the numerical implementation and technical issues for a non-

equilibrium Green's function formulation in combination with DFT. The calculation

consists of three parts:

1. The first part is a planewave-based DFT calculation. By solving the Kohn-Sham

equation we construct a self-consistent charge density, a self-consistent potential,

and an electronic Hamiltonian. Using density-functional perturbation theory

the vibrational spectra of a molecule, and the electron-vibration interactions

are obtained.

2. The second part constructs maximally localized Wannier functions. As seen in

the past Chapters, the Meir-Wingreen transport formula needs an atomic-like

localized basis or localized states. Bloch orbitals used in the DFT calculation

do not meet this condition. Once the unitary mapping into Wannier functions

is constructed, the electronic Hamiltonian and the electron-vibration interac-

tions in the Bloch representation can be transformed into those in the Wannier

representation.

3. The last part is to calculate the electrode and the electron-vibration self-energies,

and the device Green's functions from the Hamiltonain in the Wannier repre-

sentation.
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tij

4

Homtonian in

h

3

-* Wannier transformation

- Wanni er f unct ions k~R

KineticEqations

- ;-1 Dyson Equation

MLIAWFs G' (,:) = G' (j) - ' G, G (:

2. Keldysh Equation

Self -energy

Current Calculaion
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Figure 6-1: Road map for ab initio inelastic transport calculation based on Wannier
functions.

The first step in performing these calculations is to decide the supercell geometry

from which Hamiltonian matrices are extracted. Although the system in theory is

composed of the device region containing a vibrating molecule, and two semi-infinite

electrodes, one has to use a finite size supercell in any practical calculation. We

will first discuss how to decide the size of the device region in the supercell. For the

electrodes we will introduce the concept of a principal layer [55], which is the building

block of the semi-infinite electrode.

6.1 System Partitioning

The system Hamiltonian N for the two-terminal geometry is written as

NL

NCL

0

NLC

NC

NRC

0

NCR

NR

(6.1)
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where 7 L, 7 R, and WC represent the non-interacting Hamiltonian matrices for the

left and the right electrode, and the device region. Note that Wc corresponds to Ho

in Eq. (4.3). WL(R)C is the coupling matrix between the left (right) electrode and the

central region.

6.1.1 Device Region

Note that the device region does not consist of only the conducting molecule. In

general the device region is required to be larger than the vibrating molecules by

considering the following conditions.

1. The central region needs to be large enough to make a direct coupling between

the electrodes zero, -LR = RRL = 0. This can be achieved by including some

surface atoms of the electrodes into the central region and defining them as an

extended molecule.

2. The electrode Hamiltonian 7
HL,R is assumed to be the same as the bulk Hamil-

tonian. If the device region is not sufficiently large, the potential profile of the

electrode close to the device region may deviate from the hulk one.

3. For an elastic quantum conductance calculation, the former conditions are suffi-

cient to decide the optimal size of the device region. However, remembering that

the Meir-Wingreen formulation assumes that the interaction is confined only in

the device region, the electron-vibration coupling matrix should be zero outside

the device region. In other words, when Pc denotes a projection operator onto

the device region, Nelvib PCNei vibPC should be satisfied.

6.1.2 Principal Layer

In principle left and the right electrodes are semi-infinite, but in a real DFT calcula-

tions it is impossible to include a semi-infinite lead in the supercell. However, it turns

out that we can model a semi-infinite electrode by using surface Green's function
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no interaction

principal layer

Figure 6-2: An infinite electrode consisting of a repeated array of principal layers.

The principal layer interacts only with its nearest neighbor.

techniques. We can have a hint from tight-binding calculations. Recalling the tight-

binding model, one can reproduce an entire band structure at any k-point by knowing

on-site energies of orbitals and hopping parameters between neighboring orbitals. We

can use this idea. For a localized basis |wm) a Hamiltonian matrix (omWn) con-

verges to zero as the distance between two localized basis functions increases. Based

on this localization property of the basis function, one can define a principal layer by

combining adjacent unit cells in order to satisfy the condition that the principal layer

interacts only with the nearest neighboring principal layer. More precisely, when |wj)

denotes the jth localized orbital in the ith principal layer, (wf(wjl :
2 ) = 0 holds

for the principal layers. So, the principal layer should be large enough to reproduce

the band structure of the electrode accurately. The lead Hamiltonian, which is con-

structed by translating the principal layer repeatedly, can be written in the form of

a tri-digonal block matrix,

0 0 0

-. oo Roi 0 0

Hlead = 0 No0f RNo Rol 0 . (6.2)

0 0 'H0t oo .

0 0 0

Here Roo represents the block matrix between localized functions in the same principal

layer, i.e. 0oo (WIl ). 1 (l (Rol +(j' 1)) is the interaction block
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(a)

(b)

IiLC NCR

10 01 W 10Rf R L

WLC NCR NLC WCR

Figure 6-3: (a) Actual two-terminal geometry. The left and right electrodes do not

interact with each other. (b) Supercell geometry used in DFT calculation. The

principal layers for the left and right electrode interact with each other in a periodic

image. This interaction gives N 10 = W" = 7".

matrix between neighboring principal layers. -oo and 01, corresponding to the on-

site energy and the hopping parameter in the simplest tight-binding model, are the

master keys to enable us to access all the electronic properties of the electrode. The

entire system Hamiltonian reads

NL

NCL

0

NLC

NC

NRC

0

NCR

NR

/

-(lo0
Lloft

0 0

0 0

0 0

0 0

0

NL0

NCL

0

0

0

0

0

NLC

NC

NRC

0

0

0

0

0

NCR

Olt
RR

0

0

0

0

0

Rol
R~s

0

0

0

0

0

(6.3)

6.1.3 Supercell Calculations

As discussed before, what one needs to obtain are NO, NiL, NLC, NC, NCR, RO

and N0. For this purpose one can construct a supercell that is composed of the

principal layers for the left and the right electrodes and the device region. Thanks
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to the large size of the supercell one can safely use F-point sampling. Let us restrict

ourselves to considering the case that the left and right electrodes are of the same

kind, that is, N0 = N. In a real system, principal layers for the left and the right

electrodes do not interact with each other because of the long device region. However

because we adopt F-point sampling with periodic-boundary conditions in the DFT

calculation, the principal layers of the left and the right electrodes interact with each

other's periodic image. This interaction actually gives N'- and N . The Hamiltonian

obtained in the supercell calculation is as follows:

(H N20  HLC N 0 1

INsupercell = NCL Nc NCR , (6.4)

N N c NR

where No = N , No = Not = .N ot, and NV0 No = N 0 . One can, there-

fore, construct all the parts of the entire Hamiltonian Eq.(6.3) from a single F-point

calculation.

6.2 Hamiltonian in a Wannier Basis

In the F-point formalism, the integration over the first Brillouin zone is dropped, so

the Wannier transformation becomes a pure matrix multiplication. Let rectangular

Udis and square U denote the disentanglement matrix used to extract the maximally-

connected subspace from the the entire entangled Bloch space, and the Wannier

unitary matrix acting on the maximally-connected subspace respectively. Using these

two transformations Wannier orbitals lw) are obtained from Bloch states |@):

|wn) = U 'Uis|@$) (6.5)

- (udisu)jn Kj), (6.6)
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where |J) is the Bloch state. The electronic Hamiltonian and the electron-vibration

interaction can be written in the Wannier representation.

EH 'Hmnc t Cn (6.7)

m n

Nel-vib =E Z. AMn C~tCn (bt + b,\) ,(6.8)

A m,n

where

Wmn = (m|'e lWn) (6.9)

= S (UdisU< (K@I7-e|$y) (UdisU), (6.10)
imii

MA hAmn WmIAV |Wn) (6.11)

(U U) (IlAVal10) (Uds U). (6.12)

Here AVA is the derivative of the self-consistent potential with respect to the normal

mode A of the molecular vibration. cm(ct) is the annihilation (creation) operator

for the Wannier function Ion). Similarly bA(bt) denotes the annihilation (creation)

operator for the vibrational mode A.

6.3 Lead Self-energy

In the theory Chapter we used the eigenstate representation for the electrode to cal-

culate lead self-energies. Instead of diagonalizing the semi-infinite electrode Hamilto-

nian, we can equivalently compute the lead self-energy by using the lead Hamiltonian

in a localized basis representation. Once the system Hamiltonian 'H is obtained, the
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retarded Green's function for non-interacting electrons is defined as

gr g 0  gLrOL OLC 0LR

[(E + iO+) g gr 9CR 1 (6.13)
OEL C CR
QRL R !91R

where I is the identity matrix in the Wannier basis. After some algebra, one finds

that the non-interacting device Green's function is

G= [(E + ig) - HC - Er- Er], (6.14)

where

Ei=NCL(LC, (6.15)
(E +i0+)_- L

1
E = 1CR RC. (6.16)

(e + iO+) - -R .

Since 7 L,R is semi-infinite it is impossible to calculate the lead Green's function

9L,R(E) = [(E + iO+) - -L,R] directly. Luckily what one has to compute is not

9L,R(E) itself, but its sub-matrix. That is because the localized functions in the device

region are coupled only to the finite range of the electrodes close to the conductor,

that is, the outmost principal layer. When POL and PR denote the projection operators

onto the first principal layers of the left and the right leads next to the device region,

the coupling matrices with the device region can be re-written as RLC =LPOL LC and

WCR = '7CRPOR. Therefore, the electrode self-energies can be expressed as

L = 7 1CLO L LC, (6-17)

R1  = NCR +o 0 RC (6.18)
(e + iO+) _-y

The sub-matrix POL,R (E+i+ ' LR is called the surface Green's function. The

surface Green's function can be numerically calculated in several ways. In this study

we use an efficient and fast iterative method suggested by Sancho et al[83, 84, 851.
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In a principal layer representation for the electrode, the lead Green's function G

[E - 'H]-' satisfies the following equation,

0oo

-Holt

0

0

F - w00

-710f6 - H10

Go0

G10

G2 0

G0  2 Co2

G" G12

G2 1 G2 2
(6.19)

Here the surface Green's function Po ~eio+) -Po is G00 , which will be numerically

calculated below. From Eq. (6.19) one can obtain the following relations between the

block Green's functions G"O,

Go0

Gm

=E - h ] + 4oGl0

=toGC"m-') + ioG(m+1)o

where

to [ - doo] 1

io = [e- 0 4%0.

By iterating Eq. (6.21) i times, one can show that

tG" + eiG

where

tj =21-t _ f _ -i _ t _ ] t 1

fi = [1 -ts_ 6 _1 - fi 1ti 1] t _1.

(6.25)

(6.26)

(6.27)
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Using Eq. (6.21) and Eq. (6.24) with n = 2, one can solve G10 recursively in the

following manner,

G10  = toG 0 + toG 20  (6.28)

= (to + oti)G00 + io 1 G40  (6.29)

= (to + toti + - --.... - 1 ti)G + fJ G 2oG, (6.30)
k=O

This recursive calculation will be repeated until tjl and ii are lesser than a certain

threshold. In this limit Eq. (6.28) becomes

G10 = (to + ioti + - - -+ To -.- -i 1 ti)G4 = TGO00 . (6.31)

Inserting Eq. (6.31) into Eq. (6.20), one can finally obtain

G00() = [E - Roo - R 01T] 1 (6.32)

6.4 Green's function and Current Calculations

When system parameters such as the electronic Hamiltonian R, the electron-vibration

interaction Ned vib, and the vibrational spectra hwA are computed, the next task is

to calculate the full interacting Green's function that enables us to obtain transport

properties.

6.4.1 Discretizing Energy Space

For the numerical calculation, Green's functions and self-energies, which are functions

of the energy 6, are required to be discretized. The energy grid size should be small

enough to capture all the detailed physics. For example, in order to distinguish

vibrational spectra ranging from tens to hundreds of meV, the energy grid may be

chosen to be less than 1 meV. If the Green's function has a very sharp resonant

structure, one has to use an energy grid smaller than the width of the resonant
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peak. Furthermore, the thermal smearing in the Fermi-Dirac distribution should be

captured properly by using a fine energy mesh. On the other hand, one has to take

into account the fact that using too fine energy mesh makes the numerical calculation

slower and increases the computational cost. Thus the size of the energy grid should

be tuned by considering these two issues.

6.4.2 Self-consistent Calculation

Figure 6-4 summarizes the self-consistent calculation procedure for the Green's func-

tions. As an initial input the non-interacting Green's functions are used.

G ) = ( i0+) - 'c - Er - E] (6.33)

G -(E) G'(e) [E'(e) + E'(E)] G'(E). (6.34)

As discussed before, the electron-vibration self-energies are computed at the level

of Hartree and Fock diagrams, Eq.(4.46)-(4.48). The Green's functions are updated

by using Dyson and Keldysh equations Eq.(4.49) and (4.50). When O, is the ob-

ject calculated in the nth iteration, self-consistency is tested by using the following

convergence criterion:

On - On+1 On(Ei) - On+1(Ei) jk < Acony, (6.35)
i jk

where Acony is the convergence threshold. If the convergence criterion is not satisfied,

the object that will be used in the next iteration is prepared using a linear mixing

scheme,

(1 - #)On + 0 0 n+1 ± On+1, (6.36)

where /3 is tuned for the better convergence.

For nonequilibrium vibration populations one can add another self-consistent loop

to the Green's function calculation loop, as seen in Fig. 6-5. The equilibrium occupa-

tion given by Bose-Einstein distribution is used in the very first run. With the mth
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nonequilibrium vibration population NA,,, one can calculate the Green's function

well converged in a self-consistent way. Using Eq.(5.48) the (mA+ 1)th vibration pop-

ulation NA,mi is updated. Until convergence for vibrational occupations is achieved,

this nested self-consistent iteration continues. Once well converged Green's functions

and nonequilibrium population are ready, then physical observables such as the cur-

rent and the spectral density of the central region are straightforwardly calculated

from the Meir-Wingreen formulation.

System Parameters

Lead Self-energy at bias V

~L.R

Non-interacting Green's functions

G, G :

Electron-Vibration Self-energy Linear mixing

No

Full Green's functions Convergence check

Yes

Current Calculation

Figure 6-4: Flowchart for SCBA. Here an equilibrium vibrational population is as-
sumed.
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Eouibriurn Population

n00

Green s functions for the nex run o Noneq populaton for the next run

E ectron Vibration Self-energy Linear mixing

b -v( ;G
---- ---- ---.--- --- .-- .---- --- . . ... . .. .. . . . . ..--- --- --- -

No
------------- ---- Linearm x,(YlIng

Futi Greers functions update Convergence check

Emiss on and Absorptton rates N

Nonei population update Convergence c-hech
Converged quantites m- - -- - -1 c

smscB n~stp;r rtsN

SCBA C BA -
Yes

Figure 6-5: Nested self-consistent calculation loop for non-equilibrium vibrational

occupation.
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Chapter 7

Application: Carbon-based

molecular junction

In this Chapter we present two applications of our ab initio inelastic transport ap-

proach. As a first application we calculate inelastic transport properties of a benzene

molecule connected to monoatomic carbon chains (cumulenes). For this benchmark

system we apply both the SCBA and the LOPT for equilibrium and non-equilibrium

solutions. As a second example we replace cumulene with (3, 3) single-wall carbon

nanotube (CNT). In this molecular junction we focus on the calculation of realistic

decay rates and non-equilibrium vibration populations. Technically, all DFT cal-

culations are performed using the Perdew-Zunger local density approximation[75],

norm-conserving pseudopotentials[95], and a plane-wave basis with a cutoff of 55 Ry.

7.1 Cumulene - C6 H 4 - Cumulene

We first study a benzene molecule connected to a monoatomic carbon chain. It is

known that cumulene is subject to Peierls distortion: It readily becomes dimerized

and opens an energy band gap favored by a lower energy structure. We thus freeze

the structure of cumulene and use it as a metallic electrode.
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7.1. Syste Details

5........... . . ...........

-10

(b)

0 0.2 0.4 0 .6 0.8 1 1.2
k (270/a)

Figure 7-1: Band structure of cumulene for a two-atom unit cell. (Red dots: direct
DFT calculation; black solid lines: Wannier interploted bands). (a) p-type Wannier
function at an atomic site (b) a-like Wannier function at a mid-bond site.

7.1.1 System Details

We construct two p-orbitals and one o-like mid-bond Wannier functions (see Fig.

7-1) for this electrode. The two p-orbitals, p. and p2, are perpendicular to the trans-

port direction, which is along the x-axis in our calculation. Figure 7-1 shows the

band structure of cumulene. The energy bands are obtained either from a direct

planewave-based DFT calculation, or by Wannier band interpolation, and are in ex-

cellent agreement. While the lowest energy band originates from --orbitals, p-orbitals

give rise to doubly degenerate ir-bands around the Fermi level, and transport prop-

erties at the Fermi energy are characterized by these two ir-bands.

Figure 7-2 shows the supercell geometry used in the transport calculations. The

benzene molecule alone is allowed to vibrate. The device region, containing the

vibrating region and part of the cumulene, is taken to be large enough to make sure

that there is no direct coupling between electrodes, and that the electron-vibration

coupling is zero outside the device region. For the benzene molecule, pz-type Wannier
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XVibrating region
-------------

Principal Layer |Principal Layer

Left electrode Device region Right electrode

Figure 7-2: The supercell used in the calculation. The coordinate system is indicated
in the right top. Only the benzene (C6 H4 ) is allowed to vibrate. One principal layer
contains six carbon atoms. The device region is taken large enough to make sure that
there is no electron-vibration interaction outside the device region.

(a) (b) (c)

Figure 7-3: Wannier functions of the benzene molecule. (a) o-like Wannier function
between carbon and carbon atoms, (b) o-bond between carbon and hydrogen atoms

, and (c) 7r orbital at each carbon atomic site.

functions on carbon atoms and o-like Wannier functions on C - C and C - H bonds

are constructed, as illustrated in Fig. 7-3.

7.1.2 Equilibrium Vibrations

The differential conductance G = dI/dV and its derivative dG/dV are calculated us-

ing either the SCBA or the LOPT scheme. Temperature is taken to be kBT =1meV.

As seen in Fig.7-4, these two approximations display essentially perfect agreement.

Four conductance changes are observed in the differential conductance curve of Fig.

7-4. The corresponding inelastic transport signals due to electron-vibration inter-

actions appear as peaks in the d2I/dV2 plot. The peak position on the bias axis
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Figure 7-4: Differential conductance G = dJ/dV and its derivative dG/dV with equi-
librum vibrationi populations calculated using LOPT (black solid line) and SCBA

(red dashed line). At lower bias two differential conductance increases are observed.
At higher bias, two large conductance drops occur. These conductance changes cor-
respond to peaks in dG/dV.

corresponds to the vibrational energy involved in the electron-vibration scattering

events. From four peaks observed in Fig. 7-4 one might conclude that there are four

active vibrational modes, but there is a shoulder on the right side of the third peak.

This may indicate that there is a fifth active vibrational mode.

To investigate which vibrational modes participate in inelastic transport, we per-

formed modewise calculation by keeping only one particular vibrational mode. For

clarity the elastic contribution is excluded in the modewise calculation. These calcu-

lations show that there are five major peaks in dG/dV (Fig. 7-5). The corresponding

vibrational configurations of these five active modes are also shown in Fig. 7-5: While

two upward peaks are out-of-plane vibrations, three downward peaks correspond to

in-plane motions.

Thus, electron-vibration interactions can lead to both differential conductance

rises and drops. This simultaneous occurrence can be understood from scattering
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Figure 7-5: dG/dV in modewise calculation. Five active vibrational modes are found.
The corresponding vibrational configuration are illustrated. While the first two active
modes leading to conductance jumps are out-of-plane motions, the three conductance-
drop modes correspond to in-plane vibrations.

theory and transmission eigenchannels[59, 71], following Ref.[38]. As seen in Fig.

7-6, let us consider an electron injected from the left electrode on a left-incident ith

eigenchannel |JW) at energy E. If there is no scattering with molecular vibrations,

this electron contributes to elastic conductance

(7.1)Gno el-vib = Go Ti n(e),

where Go = 2 and T_,R(E) is the elastic transmission probability of |JW(E)). Now

let us consider that the electron on a left-incident ith eigenchannel I(e)) is scattered
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Left-incident ith eigenchannel

VL (E)

Scattering probability P
Pa ~ 'I -( (h - ha|HrgW(e)

transinssion

7L -+R

Vibron emission

~hw

reflection

Wq e h)
Right-incident jth eigenchannel

Figure 7-6: Schematic representation of inelastic scattering in the presence of electron-

vibration interactions. Solid arrows indicate transmission eigenchannels.

off to a right-incident jth eigenchannel I IF'(E - hw)) by emitting a vibrational quanta

hw. The outgoing state of |Wj 4(E - hw)) can go either to the left electrode or to

the right one. Since conductance measured in the right lead is considered here, the

probability to move back to the right electrode for IV ((e-hW)) is given by

probability 7VRZe - ho).

its reflection

If Pij denotes a probability that |I(E)) is scattered to

|W (E - hw)), then the total conductance can be computed as:

Gel-vib - Go (1

+ Z Pi7 jlzR()
i~j

Thus, the conductance change is given by

AG Gel-vib - Gnoel-vib

= Go [ Pi_J (7Ra(E - hw) -

EGo

Let us examine these relations in detail. First, transmission and reflection probabili-
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(a) Major channel: |T 1)

1Z = 0.259 Ti 0.741

Pz

(b) Minor channel: "'2)

R2 =0.996 7T 0.004

PO

Figure 7-7: Cumulene-benzene-cumulene system has two transmission eigenchannels.
The major channel consists of py orbitals on the cumulene electrodes and the benzene
molecule. py on the cumulene leads and o bonds on the benzene constitute the minor
eigenchannel.

ties are approximated by those at Fermi energy eF (Since vibrational energies are gen-

erally small, one might expect that transmission and reflection probabilities would not

change significantly over [EF - &w, EF+Ilw]). Now, note that conductance can increase

or decrease depending on the relative magnitude of Pij (1R (eF) - 7L-+R(EF)). and

that while (R(eF) - TL R(EF)) does not depend on a vibrational configuration,

Pi-+i c (W71'H-v _ 1| 2 , which can be calculated from Fermi golden rule[60, 66],

is determined by the electron-vibration interaction matrix.

For the cumulene-benzene-cumulene system, it is found that there are two trans-

mission eigenchannels: the major transmission channel |TLR) with TJ_,R = TR--L

0.741 and the minor channel |'L,R) with TL_, = -9L = 0.004. pz orbitals on the

cumulene wire and the benzene molecule constitute the major transmission eigenchan-

nel |I ',R). py orbitals on the cumulene wire and o- bonds of the benzene molecule

contribute to the minor transmission channel yL,R). In addition, while IP) is
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symmetric with respect to the zx-plane, |1R) is anti-symmetric. In other words,

when P2x denotes the reflection operator with respect to zx-plane, FZx|'L R) = L,R)

and PzzPL,) --L,R) hold.

The first two active vibrational modes A = 5, 11, shown in Fig. 7-5, which lead to

differential conductance jumps, show anti-symmetric vibrational motion with respect

to the zx-plane. Then, the corresponding electron-vibration interactions W _5;1 sat-

isfy

A=5,1 A-5' 11(7.5)

Because of these reflection symmetries,

('l ; |nA=s, Wi) = (2 _in5;|ib RL) = 0, (7.6)

i.e. scattering from |IW ) to |IJ) is prohibited. Since (R - Tj-) = - ,R) =

0.255, one obtains a differential conductance rise

A=5,11 (,2 TJR
AG = Go IPI2'"2 R - T_,R)

+ All(7? = 5T2 11] > 0. (7.7)---2 I ( R -V -+R)

In contrast, the last three active modes A = 17,19 and 25 are symmetric with respect

to the zx-plane:

2519.25 A=17,19,25 (7.8)el-vib - ZJIHel-vib PZX.

Therefore, one has these reflection selection rules:

(WPl1 _Ai7 1 9 ,9 , 2 5 I ) = 0. (7.9)
R lvb L Rel-vib -U

Since PAl7,19,25 A-17,19,25 from numerical calculation, then one finds the three

differential conductance drops

AG = Go P A17,19,2(Ri - T5sR)

PA -1719252)] <0, (710)
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Figure 7-8: Inelastic transport calculations with nonequilibrium vibrational popula-

tions (blue solid line: LOPT; red dashed line: SCBA; black dot-dashed line: equilib-
rium case). (a) differential conductance, (b) second derivative of the current, and (c)

vibration populations..

where (RR' - T_,R) =-0.482 and (2 _ -7-R) = 0.992. More generally this multi-

channel analysis shows that differential conductance rises and drops can occur at the

same time.

7.1.3 Non-Equilibrium Vibrations

Next, let us take into account the effect of nonequilibrium vibrational populations

on transport properties. This situation corresponds to the case where the decay rate

of a molecular vibration to its surrounding is larger than the emission rate due to

electron-vibration scattering. In order to compare equilibrium and nonequilibrium

vibration cases the decay rate h- = 0.1 meV is chosen for all vibrational modes;

This condition will be relaxed in the next example.

As shown in Fig. 7-8 (a), nonequilibrium effects lead to larger slopes in comparison

with the equilibrium case. Furthermore, the differential conductance change increases

at the threshold bias voltage. These two changes appear as (1) the finite dG/dV value

between peaks and (2) increased peak heights in Fig. 7-8 (b). When the bias exceeds

the threshold voltage equal to the vibrational energy, the vibrational population starts

to increase as observed in Fig. 7-8 (c). This is because of the increase in phase
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Figure 7-9: Differential conductance for different decay rates (black solid line: hyA =

0.1 meV; red solid line: h-y = 1 meV; green solid line: hy = 10 meV; blue solid
line: equilibrium case (h-yA -+ oc)).

space of conducting electrons that can emit molecular vibration quanta. Recalling

that electron-vibration scattering is roughly proportional to N\, increased vibration

populations enhance inelastic transport signals in return. Last, We also considered

transport calculations where we change the decay rate. Figure 7-9 shows that the

differential conductance approaches the equilibrium case as the decay rate increases.

7.2 CNT(3, 3) - C6 H 4 - CNT(3, 3)

In the previous benchmark, the cumulene wire, subject to Peierl's instability, was

frozen in order to keep its metallic character, and a decay rate for molecular vibrations

was used as a parameter. Here we replace the cumulene wire by a metallic (3, 3) carbon

nanotube (CNT), which is mechanically stable. Using this electrode we derive a fully

ab initio approach to calculate non-equilibrium populations under electron-vibration

interactions.
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Vibrating region
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surface
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Figure 7-10: (3,3) CNT - Benzene - (3,3) CNT supercell geometry used in the decay
rate calculations. The vibrating region contains a benzene molecule and three relaxed
surface CNT layers.

Carbon-based nanostructures, such as CNT and graphene, could become new plat-

forms for future nanotechnology applications due to their excellent electronic prop-

erties. Recently carbon-based nanojunctions have been experimentally fabricated:

a pure carbon chain connected to graphene[43] or CNTs[7], and organic molecules

coupled to CNT electrodes with amide linkages[30]. These experimental achieve-

ments stimulated theoretical and computational studies on carbon-based nanodevices

[45, 63]. In particular, a benzene molecule connected to CNT electrodes (which is

the system of our interest) was suggested as a molecular switch, operated by control-

ling the relative angle between ir-orbitals of the benzene and the ir-oribtal manifold

of CNT electrodes [63]. Functionality and performances of molecular devices are

strongly affected by molecular geometries or anchoring points to the electrodes, and

they may be affected by vibrations induced by conducting electrons. In the worst

case, the local heating may break down the junctions.

7.2.1 System Details

In our work, we choose a vibrating region by defining an extended molecule in which

a benzene and the outmost relaxed CNT layers are included. This extended molecule

is seamlessly connected to the bulk CNT electrodes. The vibrating region contains 56

atoms in total, and these correspond to 168 vibrational modes. Figure 7-10 illustrates

the supercell geometry used in the decay rate calculations: It contains the extended
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molecular region

Figure 7-11: Molecular region containing a benzene molecule, anchoring carbon

atoms, and hydrogen atoms saturating the CNT edge.

molecule and two mechanical principal layers[55] for bulk phonons.

We proceed as follows. First, by allowing only the extended molecule to vibrate,

the electron-vibration interaction Net__vib, the vibrational spectrum {hwA}, and the

corresponding normal modes are calculated. For the decay rates the interatomic force

constants for the entire supercell in Fig. 7-10 are calculated. From this interatomic

force constants one can extract the harmonic coupling matrix 'HC between the ex-

tended molecule and the bulk electrodes. In addition, we take a peridoic unit cell of

the bulk (3, 3) CNT and calculate its interatomic force constants HB.

7.2.2 Decaying Rates

The calculated decay rates are shown in Fig. 7-12 (a). Note that the decay rates are

written in units of eV (of multiplying by h). While most of the decay rates are of

the order of 10-2 to 10 3 eV, there are few modes with much smaller rates. These

small decay rates can arise for two reasons. First, as seen in Fig. 7-12 (a), decay

rates start to increase significantly from mode 153 on. These vibrational modes

(between 153 and 168) have energies higher than the highest (3, 3) CNT phonon

energy. Recalling that decay processes based on the harmonic coupling essentially

correspond to one vibration to one phonon transitions, there are no bulk phonons

to which the vibrational modes lying outside the band width of bulk phonons can

transfer their vibrational energies. Once the anharmonic coupling that makes one

vibration to multi-phonons transition possible is taken into account, these modes

may have larger decay rates. However, this correction is beyond our work.
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Figure 7-12: (a) Decay rates for each vibrational mode of the (3, 3)
(3, 3) CNT junction. (b) Decay rate vs. localization (see the text for
Decay rates are plotted in a logarithmic scale.

CNT-Benzene-
the definition).

Second, notice that among the vibrational modes whose energies lie inside the

bulk phonon dispersions, some of them still have small decay rates. Most of them

correspond to vibrations that are localized inside the benzene molecule, or to wagging

motions of the surface hydrogen atoms. Because these motions are spatially well

separated from bulk phonons, one may expect that they are less coupled to bulk

phonons. In order to measure how localized these modes are inside the molecule, we

define the benzene molecule, two anchoring carbon atoms, and the surface hydrogen

atoms as the molecular region as seen in Fig. 7-11. When PM denotes a projection

operator onto the molecular region, one can find out how localized the vibration is

inside the molecular region from PMl A)2 where IA) indicates the vibrational state for
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Figure 7-13: Nonequilibrium vibrational populations for the most excitable modes as

a function of a bias voltage.

the normal mode A. We call 'PM A) 2 the localization measure. Figure 7-12 (b) shows

a relation between the localization measures and decay rates. When the vibration

is localized in the molecular region, or equivalently 'PMlA)|2 approaches 1, its decay

rate becomes smaller.

Except for modes between 153 and 168, the majority of the vibrational modes

overlap with the phonon dispersions of the CNT electrodes. This happens thanks

to the same chemical character between hydrocarbon molecules and carbon-based

electrodes. If we were to consider organic molecules attached to a metal electrode

such as gold or platinum, the large mass difference between atoms in the molecule

and those in the electrode would make most of the molecular modes to lie outside

the electrode phonon dispersions. Therefore, most of the vibrational modes would

have very small decay rates, significantly increaseing the probability of the molecular

junction to break down.
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(a) mode 1

(c) mode 77

(e) mode 149

(b) mode 52

(d) mode 110

(f) mode 156

Figure 7-14: Vibrational configurations for the most excitable modes in Fig. 7-13.

7.2.3 Non-Equilibrium Vibration Populations

Together with Eq. (5.48), we can calculate nonequilibrium vibrational populations.

Vibrational occupations will start to increase as the bias voltage exceeds their cor-

responding threshold voltages. While in the vicinity of the threshold voltage the

vibrational populations increase linearly, nonlinear effects can appear at higher bias

voltages. For low-energy modes vibrational populations monotonically increase with

the bias; However, non-monotomic populations are observed for some of the high-

energy modes. These trends are shown in Fig. 7-13, where vibrational populations

for some of the highly excitable modes are illustrated. The mode 1, which is low-

energy, shows monotonically increasing behaviors. For the other high-energy modes,

their populations increase, then decrease in a certain bias voltage range, and then

start to increase again.

One can hint at a qualitative explanation for this cooling behavior examining the

local density of states in the device region, as recently reported in Ref. [81]. As
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Figure 7-15: Density of states for the device region. Close to the equilibrium Fermi
level, one resonance peak is found.

observed in Fig. 7-15, there is one resonant peak located at a energy higher than

peg, which is the common Fermi level before the bias is applied. Figure 7-16 shows

absorption and emission processes where electrons can exploit the resonant density of

states for different bias voltages. Red and blue lines indicate absorption and emission

processes respectively. For a very srnall bias none of the electrons can access the

resonant peak, as seen in Fig. 7-16-(a). When the bias increases, the absorption

process using the resonant peak starts to take place, but the electrons participating

in the emission process cannot reach the resonance (See Fig. 7-16-(b)). Therefore

the absorption rate A>, becomes enhanced, so it may lead to a decrease in vibrational

populations. For a higher biases such that the resonant peak is located between left

and right chemical potentials, the emission process using the resonance is activated,

leading to enhanced emission rates, as shown in Fig.7-16-(c). When the bias increases

more, another resonant emission process becomes possible, as shown in Fig. 7-16-(d),

while the resonant absorption process at which the electrons are reflected back to the

left lead is prohibited due to Pauli blocking. As a result, the emission rate becomes

more enhanced in comparison to the absorption one, and vibrational populations may

increase again in this bias range. As an illustratative example, Fig. 7-17-(b) shows

the absorption and emission rates for mode 156. One can clearly observe that the bias
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Figure 7-16: Possible absorption (red arrow line) and emission (blue arrow line)
processes via the resonant peak as the bias voltage increases.

voltages for which the absorption and emission rates get enhanced are different: The

slope of the absorption rate curve first increases around 0.4 V, but then decreases

at 0.7 V. By contrast, the emission rate linearly increases up to 0.8 V, and at a

bias larger than 0.8 V its slope also increases. Difference between bias voltages at

which absorption and emission rates become enhanced results in the observed cooling

behavior in the intermediate bias range.

For low-energy modes whose energies are much smaller than the broadening of

the resonant peak, the intermediate cooling regime may not distinctly appear. For

example, see Fig. 7-17-(a) the absorption and emission rates for mode 1. Unlike

mode 156, the absorption and emission rates show quite similar dependence on the

bias voltage, implying that the cooling behavior is not observed.

Last, not every high-energy mode goes necessarily through a cooling down phase,

since vibrational populations are determined by the interplay of absorption, emission,
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Figure 7-17: Absorption (red dashed line) and emission (blue solid line) rates for (a)

the vibrational mode 1 (low-energy mode) and (b) 156 (high-energy mode)

and decay rates. When the decay rate -yX is larger than the difference between the

absorption and emission rates AA - E,, the steady state solution can be approximated

as

NA =+ B nB(hWA) + BA (7-11)
-yA AA EA YA

In this case, the dependence of the vibrational population on the bias voltage becomes

similar to that of the emission rate, and the cooling behavior does not appear.

Finally, we would like to stress the importance of the mass ratios between the

conducting molecule and electrodes. As pointed out above, since the band width

of bulk phonons in the electrodes gets narrower as the atomic mass of electrodes

increases, a molecular junction connected to electrodes consisting of heavier atoms

will have less opportunities to thermalize. To demonstrate this mass ratio effect, we

calculate the total vibrational energy stored in the vibrating region by increasing the

mass of the atoms in the carbon electrode to be e.g. silicon or germanium. As shown

in Fig. 7-18, the junction with a larger mass ratio has more vibrational energy, and

higher probability to break down due to heating effects.
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Figure 7-18: Total vibrational energy stored in the vibrating region, as a function of
the mass of the electrode atom (black solid line: carbon; red dashed line: silicon; blue
dot-dahsed line: germanium).
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Chapter 8

Inelastic Local Currents in

Molecular Electronics

Nanoscale electronics has been intensively developed over the last decade thanks to

advancements in fabrication and measurement technologies. Molecular and atomic

conductors, which are regarded as the smallest devices, are actively investigated as

candidates for future nanoscale devices [1]. However, there are still many issues to be

resolved both experimentally and theoretically.

The effect of electron-vibration interactions on molecular conductors is one of the

main issues that have been recently investigated [29]. This is because current-driven

atomic excitations might lead to changes in molecular configurations and geometries,

thereby affecting performance and functionality of the device. Furthermore, since

electron-vibration interactions act as scattering mechanisms, the I-V characteristics

also change. However, most of the theoretical work has focused on studying the prop-

erties of the net current, and understanding and describing the microscopic picture

of inelastic local currents has been rarely attempted.

The spatial and local distributions of elastic currents have been studied in various

systems, for example, imaging of the local current in a quantum point contact [94],

a disordered quantum wire under a magnetic field [20], a quantum Hall geometry in

a two-dimensional electron gas [21], and the formation of a local loop current and a

magnetic moment in the C60 molecule[67]. In particular, local current profiles have
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been calculated in order to investigate quantum interference in molecular junctions

[88]. This is particularly since one can interpret quantum interference by applying

the concept of Feynman paths to the visualized local current [22].

In this study we derive the expression for the local current profile in a nanoscale

junction in the presence of electron-vibration interactions. Considering a weak cou-

pling regime, we calculate the local current up to the second order in the electron-

vibration interaction by using non-equilibrium Green's functions [79]. Furthermore,

we provide a simplified expression of the local current that approximately holds when

the electronic structure changes slowly in comparison with a typical vibrational energy

[72]. As an illustrative example we calculate the local current profile for a benzene

molecule connected to carbon monoatomic chains to show how the local current dis-

tribution can be affected by electron-vibration interactions.

8.1 Local current operator

The average local current can be readily calculated by taking a time derivative of the

electron number operator at the site m [88]:

(d F2ei t D] 8-1
(Zm) = -2e c (t)ci(t) c ciND (81)

Licm ic-m

where i indicates localized orbitals located at the site m. In this letter, we have

used the maximally localzied Wannier functions as localized orbitals [64]. WD is the

Hamiltonian for the device region including electron-vibration interactions, ND

E ejcici + Ei/ Vicicy + EA Ei M,(bA + b')ctcj. Here ci and c are electronic

annihilation and creation operators for the ith localized orbital, and b\ and bt are

vibronic annihilation and creation operators for the Ath vibrational mode. ej is the

on-site energy for the ith orbital, Vij is the hopping parameter between the ith and jth

orbitals, and MA is the electron-vibration coupling term. Unless a spin-orbit coupling

is considered, electron-vibration interactions do not distinguish between spin degrees

of freedom, and so the spin index is not explicitly indicated here (Hence the factor two
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in the current expression). Equation (8.1) can be written as ([m) =Em En(Imn),

where (Zmn) is the local current from site n to site m,

(Imn) = 2e ( ((Vi G<(tt) - VjjG (t,t))

j~n
n7 m

+ E~ [MA ' Gi (t, t) - A G< i ,ji ,\(t, 0)]1 (8.2)

where Gj(t, t) and G (t, t) are the lesser part of the contour-ordered Green's func-

tions [33]

Gij (T,') = - ( cCi(r), c(r')) (8.3)

Gi\ (T, T') =- K ci(r), (bA + b') (r')c (T')}

(8.4)

Under steady state, Eq.(8.2) becomes

(Zmn) = Imn + Inn, (8.5)

where

I: E I J Vi G <(E) - ViG(e)) (8.6)
iem jEn

nom

[Aib 2e jJ [MjGli(E) (E)]. (8.7)
iGm jEn A

n#im

The local current is thus decomposed into two parts IMl and IVn. In the first part

I1n, when the hopping parameters between two localized orbitals Vi are fixed, the

electron-vibration interaction can still change the correlation function between or-

bitals G'. The other physical effect of the electron-vibration interaction is that

it can modulate the hopping parameters, which are roughly determined by overlap
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between localized orbitals. One can note that the second part Igij includes this con-

tribution, since Mi'\ (bA + bi) describes the hopping parameter variation due to the

electron-vibration interaction. Recalling the net current measured in the electrode,

the second part is newly introduced for the local current. In order to calculate the

local current profile with electron-vibration interactions, one might be tempted just

to replace the non-interacting Green's function by the full Green's function G" in the

elastic local current expression. However, Eq.(8.2) points out that this replacement

would be incorrect, and hopping modulation due to vibrations should be included.

8.2 Lowest-order Perturbation

Assuming weak electron-vibration coupling, Green's functions can be expanded up to

the second order of the electron-vibration coupling MA. Using Dyson and Keldysh

equations for the contour-ordered Green's functions, the correlation function G< in

Eq.(8.6) is found to be

G< ~ Go< + G< ,(8.8)

where

G< = GrE EG< + G<Ea G a + Gr G (8.9)

where Go indicates the non-interacting Green's function that includes only the cou-

pling to the electrodes. The electron-vibration self-energies up to the second order

are given by

Ezra -: 2 r nvb (8.10)

Z: MA [n,\Gs (T hj-)A) + (nA ± 1) G' (E hw-LA)] MA (8.11)
A

E = 4 (. Tr [M A Ac(E)] fa(E)), (8.12)

where 'H {f} indicates the Hilbert transform, nA is the vibrational population for

mode A, and f,(E) = f(E - [pa) is the Fermi-Dirac function for the electrode a.
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E7 is the Hartree diagram contribution, which does not have an energy dependence.

Therefore Ien can be further decomposed into a non-interacting part and a correction

due to electron-vibration interactions:

jel jel (0) + el,(2)
mn mn mn (8.13)

where

jel (0)
mn

2e
h

2c

h

EE
iEm jEn

n#m

iEm jEn
nom

I
I

dE

2w

dF

27T

- VjGj (E)) (8.14)

(8.15)V jG )() -ViG<(2) .

The vibronic contribution JIb can be obtained by using the S-matrix expansion or

equation-of-motion technique. The final expression reads

i~m jEn A
n#m

[I

[M.fG<A (E) - MAG ()]

+Gnim (E) G (6 -- ') Di (c')

+G~im (E) G (6 - E') D' (E')

-GOnm (6) G (E) D (0)

Dr/a()

D(6)

1 1

E- hwx ± iO+ E + hWA ±iO+

-i27r [nxA (E -F hw) + (n\ + 1) S (E t A)

(8.18)

(8.19)

are free non-equilibrium Green's functions for the vibrational mode A.
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8.3 Wide-band limit

One might further approximate Eqs. (8.14) and (8.15) by replacing Go and F,=L,R

by Go(EF) and Fa=L,R(EF) at the common Fermi energy EF. This is called the lowest-

order expansion in the wide-band limit (LOE-WBL) [72, 27, 97, 34]. This approxi-

mation is useful because a typical vibrational energy is smaller than the energy scale

where the electronic structure changes. Moreover, LOE-WBL also provides an ap-

proximate expression of the bias dependence in the current expression. ILOE reads

ILOE = GoV17~ (8.20)
im jEn

nfm

+GOV [YHT ij + (2nA + 1) 77e'j] (8.21)
i~m jEn A

nfm

+ Tx K(eV, wA) (8.22)
iEm jEn A

nom

+ 7 >> TI xg (eV, WA) (8.23)
iEm jEn A

nfm

+GoV >7>7 i + (2n, + 1) 7i] (8.24)
iEm jEn A

nom

+>T77 Ix K(eVwA) (8.25)
iEm jEn A

nom

+>T xg (eV, wA ) . (8.26)
iEm jEn A

nfm

where

', = 2V1jIm [AL]jp (8.27)

S 2VjIm [GOMAAL -+ ALMACo] (8.28)
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Tel = 2VIm [G'MA ReG'MA AL

+ALMA ReGBM AGg ]

+%gIm [G"MA ALM AGr

+G MA ALMAG ] , (8.29)

Te-= ViRe [G'M [ALMAAR - ARAAL]

+ [ALMAAR - ARM AAL] MAG ] (8.30)

TQJ = 1KIm [GrMA (ALMAAR+ ARM AA)

+ (ALMAAR + ARMAAL) MAG ] (8.31)

bA = 2M Im [AL]ji (8.32)

T 2M§jm [ReG'M A AL ± ALMAReGr] (8.33)

7 = MIRe [ALM AAR - AR AAL] , (8.34)

7 = M jIm [ALMAR + ARM AL]J, (8.35)

A 4 LI Tr [MA Aa(E)] fa(s) (8.36)

where Aa=L,R = G"FGa is the spectral function originating from the left or right

electrode, and Go = 2e 2/h. Green's functions and spectral functions are calculated

at EF except for the spectral functions in Eq. (8.36). This is because the spectral

function in Eq. (8.36) does not have a finite support [34], so LOE-WBL cannot

be applied to these terms. Equations (8.21), (8.22), and (8.23) originate from I,

while Eqs. (8.24), (8.25), and (8.26) come from I The functions IC (eV, wx) and
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g (eV, w,) are defined as follows:

2eV)w - V - w + 1eVV
C (eV, WA) = 2e (h' -ev - i Ah +e + 2nAeV (8.37)

(eV, WA) = 2 f 2 E - f (E - ev)

x7h' {f (' - hwa) - f (' + hW)} (E). (8.38)

When compared with the total current measured in the electrode [72, 27, 97, 34], each

term in I E can be separatively and meaningfully discussed. Equation (8.20) corre-

sponds to the elastic local current when the electron-vibration interaction is absent.

Equations (8.28) and (8.32) are quasi-elastic correction due to the Hartree diagram,

while Eqs. (8.29) and (8.33) correspond to quasi-elastic contributions coming from

the Fock diagram. Energy levels renormalized due to the electron-vibration inter-

actions lead to these quasi-elastic contributions, which are linearly proportional to

the bias voltage. Equations (8.22) and (8.25) are symmetric under the change in the

polarity of the bias voltage, V -+ -V. Meanwhile, Eqs (8.23) and (8.26), which are

negligible for a symmetric junction, show asymmetric bias dependence. Equations

(8.37) and (8.38) and their derivatives show singular behaviors, for example, a step

or a peak structure, which indicate the onset of real vibrational scattering at the

threshold voltage eV = hwA. Note that Eqs. (8.23) and (8.26) vanish in a symmetric

molecular junction, where couplings to the left and right electrode are equal.

8.3.1 Example: Cumulene - C6 H4 - Cumulene

As an illustrative example we calculate the local current profile for a benzene molecule

connected to a cumulene mono-atomic carbon chain (See Fig.8-1 for the atomic con-

figuration and the coordinate system). This system was investigated in our recent

work in which an ab initio inelastic quantum transport formalism based on Wannier

functions was developed [47].

This system has two elastic conducting channels: the major channel lip,) consist-

ing of pz orbitals in the cumulene and the benzene molecule, and the minor channel
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(c) mode 11

(d) mode 17 (e) mode 19 (f) mode 25

Figure 8-1: Local profiles for elastic current and inelastic currents induced by five
active modes. Green and gray spheres indicate hydrogen and carbon atoms. The
arrow scale is arbitrary chosen for better illustration.

|qJ2) composed of p. orbitals on the cumulene wire and o-type midbond states on

the benzene molecule. Their transmissions coefficients are T = 0.741 and 72 = 0.004

respectively.

When the differential conductance G and its derivative dG/dV are calculated,

five active vibrational modes are found (see Fig.7-5). In the first two active modes

leading to upward peaks in dG/dV, atoms move out of the plane on which the benzene

molecule lies. The other three downward peaks correspond to in-plane motions where

carbon-carbon bonds inside the benzene molecule and between the benzene and the

cumulene chain vibrate.

Figure 8-1 shows the local current profiles for the elastic contribution and the

five active modes at the bias voltage 0.2V. In-plane vibrations (mode 17, 19, and

25) induce current flow along carbon-carbon bonds. The current patterns of these

in-plane motions are the same as that of the elastic current. In other words, in-plane

motions just enhance or reduce the local profile of the elastic current. Note that
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Loop current

77-1 7

Reverse direction

Figure 8-2: Local current profile for mode 11. -r orbitals at carbon atoms and o-

orbitals at carbon-carbon and carbon-hydrogen mid-bond sites are indicated.

o-type mid-bonds do not participate in local currents of in-plane motions.

In contrast, the local currents for out-of-plane vibrations (mode 5 and 11) show

a different profile since the inelastic current can flow via o--bonds. This behavior is

much clearer for mode 11. Most current flows along the -r orbitals at carbon atoms for

mode 5, with u bonds contributing to small residual current for mode 5. In constrast,

the significant amount of current for mode 11 is transferred to the right cumulene

chain via o--oribtals. One of the interesting features for mode 11 is that the local

current between r2 and r3 orbitals flows in the direction opposite to the total current

direction (from left to right), as seen in Fig.8-2. Different from other modes, the

current reaching 7r4 orbital passes through the o-4 and o-7 orbitals. Furthermore one

can notice that there are local loop currents, i.e. among 7r2 , u-4 , and r3 .

The difference in the local current patterns between in-plane and out-of-plane

motions can be understood from symmetry consideration. Regarding the parity sym-

metry with respect to zx-plane, whose operator is denoted by 'Pz, out-of-plane and
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in-plane vibrations are anti-symmetric and symmetric respectively:

,PzX MA=51"1Pt

,P mA=17,19,2 5, t __ A17,19,25,

Furthermore, the major and minor conducting channels are symmetric and anti-

symmetric under the parity operation P7z,

Pzl 2)

(8.41)

(8.42)-Iq2).

This symmetry condition implies that the transition between |T1) and |'2) is forbid-

den for the in-plane vibrations. Thus 1 1I) and lW2) are not mixed together by the

in-plane vibrations, and the current profiles of the in-plane motions follow the elastic

current.
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Chapter 9

Transport properties of CNT-GNR

junctions

Since the experimental realization of graphene [70, 69, 102], intense experimental and

theoretical studies have been conducted in order to unveil its exceptional electronic

properties and find out the possibility to use it as a platform for future devices and

integrated circuits [68). Graphene nanoribbons (GNRs), which have also been inves-

tigated, are regarded as candidates for interconnectors of graphene-based integrated

circuits. Moreover, because of their peculiar electronic and spin transport properties,

GNRs themselves have been studied to use as field effect transistors and spintron-

ics devices. From the experimental viewpoint, it has been a challenge to produce

smooth and defectless graphene, and its derivatives, in a controlled fashion. Several

methods have been proposed for graphene and GNR production, from lithographic

patterning [5, 32] to chemical methods [92, 58, 11] and nano-etching [23, 18, 10]. In

particular, lithographic methods have been quite successfully employed to produce a

wide graphene sheet (> 20 nm) [5, 32]. Chemical vapor deposition has been used for

bulk production of GNRs (to the order of grams per day) [11]. These existing meth-

ods, however, are not useful to control edge smoothness and width, and especially to

produce narrow nanoribbons at the sub-10 nm scale.

Recently experimental techniques to make narrow GNRs have been proposed and

demonstrated by unzipping carbon nanotubes (CNTs): Those have been cut longitu-
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N = 2

N 3

N = L 1

N=6

Figure 9-1: Classification of a zigzag nanoribbon by using the number of zigzag carbon
chains. The given nanoribbon has 6 zigzag carbon chains as indicated. It is denoted
by (N=6) ZGNR in this study.

dinally by using a solution-based oxidative process [53], plasma etching after partial

embedding in a polymer film [42], and intercalation followed by exfoliation [12]. Fur-

thermore, the group of Dai has demonstrated that well aligned GNR arrays can be

produced by using plasma etching, because the initial alignment of CNT arrays can

be maintained while CNTs are embedded in the polymer film, they are partly etched

by plasma, and are transferred to another substrate [41].

Unzipped CNTs have been experimentally used to make CNT-GNR and CNT-

GNR-CNT junctions [41]. The experimental realization of CNT/GNR junctions has

stimulated theoretical investigations on their electronic properties and the possibility

of using them as nano-devices such as heterojunction field-effect transistors [101, 61],

magnetoresistive devices [86, 98], and nanosensors [48].

Differently from these works that have calculated total zero-bias elastic condunc-

tances, we present here ab initio transport calculations on armchair CNT (ACNT)-

zigzag GNR (ZGNR)-ACNT junctions that focus on the local current distribution

over the junctions. In the following section we show the local current distribution of

the elastic current through the junctions in comparison with that of pristine ZGNRs.

Next we investigate inelastic transport properties and the effect of vibrations on the

local current distribution by introducing electron-vibration interactions.
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Figure 9-2: Configurations of (4,4) CNT/ZGNR/(4, 4) CNT junctions. Starting from
a single carbon chain (polyacetylene), the zigzag nanoribbon in the central region
becomes wider by adding a carbon chain one by one.

9.1 CNT/ZGNR/CNT junction

Figure 9-2 shows the configurations of (4, 4) CNT/ZGNR/(4, 4) CNT junctions ex-

ploredin this study. Starting from a single 7-atom carbon chain with hydrogen ter-

minations (i.e. polyacetylene), the ribbon is subsequenctly widened by adding other

carbon chains, one by one. In this study, the number of zigzag carbon chains, N, is

used in order to classify zigzag nanoribbons in the conductor region. For example, Fig.

9-1 is the (N=6) ZGNRs, according to our classification. DFT calculations are per-

formed using the Perdew-Zunger local density approximation [75], norm-conserving

pseudopotentials [95], and a plane-wave basis with a cutoff of 55 Ry.
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Figure 9-3: The local distribution of elastic currents through (4, 4) CNT/ZGNR/(4, 4)
CNT junctions.

9.2 Elastic Current

Using the local current expression discussed in the previous chapter, we have first

calculated the local distribution of elastic currents in the (4, 4) CNT/ZGNR/(4, 4)

CNT junctions. Figure 9-3 shows the local elastic currents for ZGNRs from N = 1

to N = 8. The electronic properties of carbon-based materials around the Fermi

energy are mainly determined by the -r orbitals of the carbon atoms, it is observed

that local currents mostly flow via nr-type Wannier functions at carbon atoms. For

polyacetylene (N=1), there is only one r-orbital bridge in the conductor region, along
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(a) N - 4

(1) (2)

h.-'

4 4"~

(b) N = 6

(1)
side view

(3)

(2)

Figure 9-4: Local density of states for (a) (N=4) ZGNR and (b) (N=6) ZGNR
junctions. (a)-(1): high local density of states concentrated on the outmost carbon
chains of the (N=4) ZGNR junction. (a)-(2): local density of states for a pristine
(N=4) ZGNR. (a)-(3): local current distribution for for a pristine (N=4) ZGNR. (b)-
(1): local density of states concentrated on the outmost carbon chains of the (N=6)
ZGNR junction. (b)-(2): local current distribution for for a pristine (N=6) ZGNR.

which the elastic current flows as shown in Fig. 9-3-(a). In the case of the (N=8)

ZGNR junction, which is a pristine (4, 4) nanotube, a homogeneous elastic current

along zigzag carbon lines is observed.

9.2.1 Edge current in ZGNR

For 2 < N < 7, most of the elastic current flows along the nanoribbon edges. Due to

symmetry, the same amount of edge currents are observed for (N=even) nanoribbons,

which have symmetric edges. Even for N = odd > 3 nanoribbons whose edges are

asymmetric, almost the same amount of current is observed at both edges. The edge

current at zigzag nanoribbons agrees with the well-known fact that currents at the

Fermi level flow along the edges for pristine zigzag graphene nanoribbons. The edge
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Figure 9-5: Local current distributions for the (N=4) ZGNR connected to (3, 3) and
(5, 5) CNT electrodes.

state of the finite ZGNR between CNT electrodes, however, is more localized than

that of a pristine infinite ZGNR. In order to see this difference, we have calculated

the local density of states for both cases. Figure 9-4-(a) illustrates the isosurface of

the local density of states for the (4,4) CNT/(N=4) ZGNR/(4, 4) CNT junction and

the pristine (N=4) ZGNR. While the isosurface for the pristine ZGNR spreads out

over the whole region of the nanoribbon, the (4,4) CNT/(N=4) ZGNR/(4, 4) CNT

junction has a well-connected local density of states that are concentrated at the

outmost single carbon chain. In fact, for very narrow zigzag nanoribbons like (N=4)

ZGNR, the concept of an edge state is meaningless because the spatial dispersion of

the edge state in the transverse direction is comparable to the width of the narrow

nanoribbon. Moreover, as demonstrated in Fig. 9-4-(a)-(1), the elastic current for

the (N=4) nanoribbon is almost uniformly distributed over the whole ribbon. In

contrast, in the case of the (4,4) CNT/(N=4) ZGNR/(4, 4) CNT junction, a sharp

edge current flowing via the outmost carbon line can be generated even for a narrow

zigzag nanoribbon. Similarly, Fig. 9-4-(b) illustrates the isosurfaces of the local

density of states for a pristine (N=6) ZGNR and a (4,4) CNT/(N=6) ZGNR/(4, 4)

CNT junction. Just like the (4,4) CNT/(N=4) ZGNR/(4, 4) CNT junction, an edge

state localized at the outmost carbon chain is clearly formed. In contrast to the

(N=4) nanoribbon, one can observe that the (N=6) nanoribbon has an edge state

mostly located at the outermost benzene chain (two zigzag carbon chains).

We also checked whether this feature is observed when ZGNRs are connected to
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Figure 9-6: Local current distributions for (4, 4) CNT/(N=4) ZGNR/(4, 4) CNT
junction with different lengths. Iout and hI, represent currents flowing along the
outmost carbon chain and the inner one respectively.

smaller and larger CNT electrodes. Figure 9-5 shows the local current distributions

for the (N=4) ZGNR connected to (3,3) and (5, 5) CNT electrodes. It is clearly seen

that both systems have edge currents mostly concentrated on the outermost carbon

chains.

One might guess that this feature gets weaker as the length of ZGNRs in the

central region increases, sine the bulk properties of the ZGNRs are recovered as the

finite ZGNRs in the central region get longer. Because the current inside the ribbon

is larger than the edge current for the bulk ZGNRs, as observed in Fig. 9-4-(a)-(3),

A similar current distribution will be observed for a long ZGNR junction. In order to
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Figure 9-7: Local current distribution in the interface between the CNT electrode
and the ZGNR. The elastic current from the CNT electrode converges to the central
region indicated by the blue box. The current is re-distributed to the ZGNR edges.

verify this hypothesis, we have calculated local current distributions while increasing

the length of the nanoribbon. In Fig. 9-6, (a), (b), (c), and (d) represent the local

current distributions when the ZGNR part consists of 4, 7, 9, and 11 unit cells. When

Iot and Ii denote currents flowing along the outermost carbon edge and the inner

carbon line, the ratio / is also calculated. As the size of (N=4) ZGNR increases,

the ratio I0s±/Ih0 gets smaller and approaches that of the infinite bulk ZGNR, 0.73. In

particular, for the 11-unit-cell ZGNR, the ratio 10.2/14, is smaller than unity, which

means that this junction no longer has a well-localized edge current.
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Figure 9-8: The ratio of the current in the lower region Ido, to that in the upper
region Ip. Deep inside the CNT electrode Idown/I, is unity. Before entering the
edges, Idown/up gradually increases to 2.77.

9.2.2 Current injection to edge states

Next let us focus on how the elastic current is injected into the zigzag nanoribbon in

the central region. Figure 9-7 illustrates the current injection patterns at the interfaces

of CNT/(N=4) ZGNR and CNT/(N=6) ZGNR. It is shown that the current at the

CNT electrodes is not directly injected to the edges, but a large amount of the current

from the CNT electrodes first converges to the center of the interface between the

CNT and the ZGNR. Then the current is re-distributed to the edges. As seen in Fig.

9-3-(h), the elastic current is uniformly distributed deep inside the CNT electrode far

away from the central region. Approaching the interface, some of the current flowing

along the upper part of CNT moves to the lower part of CNT. To illustrate this, we

have calculated the ratio of the lower current Ido, to the upper current Ip for CNT-

(N=6) ZGNR as shown in Fig. 9-8. As expected, I, and Ido, are equal inside the

135



CNT electrode, which is distant from the ZGNR by 5 unit cells (approximately 12A).

The ratio Idomn/Ip gradually increases up to 2.77 before the current is distributed to

the edges.

9.3 Inelastic current

On the top of the elastic transport properties investigated in the previous section,

we here study the inelastic transport properties by using the ab initio method that

we have developed throughout this work, and the expression for the local inelastic

current distribution. First we calculate the derivative of the differential conductance

dG/dV, which is known as the inelastic tunneling spectroscopy signal (IETS), for

each (4,4) CNT/ZGNR/(4, 4) CNT junction in order to find out active vibrational

modes leading to conductance steps. Next we investigate how the electron-vibrational

interaction changes the local current distribution.

9.3.1 Inelastic tunneling spectroscopy signal (IETS)

Figure 9-9 shows the derivative of the differential conductance dG/dV for the poly-

acetylene and polyacene junctions. It is observed that there are two and three large

peaks for the polyacetylene and polyacene junctions, respectively. The vibrational

configurations for two major peaks of the polyacetylene junction are illustrated above

the dG/dV graph in Fig. 9-9. Basically, they correspond to bond-alternating longitu-

dinal vibrations, which can lead to large modulations in hopping parameters between

Wannier functions. While mode 108 is concentrated inside the polyacetylene, a sur-

face vibration of the CNT electrode has a large contribution to mode 142. Compared

with Fig. 9-3-(a), the surface atom vibration matches the main path of the elastic

current. Conducting electrons, therefore, can have more chances to interact with local

vibrations. It qualitatively explains why vibrational mode 142 leads to the largest

conductance peak.

For the polyacene junction, mode 150 has transverse vibrations of the CNT surface

layer, but there is no vibration inside polyacene. For mode 157, the vibration is
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Figure 9-9: The derivative of the differential conductance dG/dV for the (a) poly-
acetylene and (b) polyacene junctions. The vibrational configurations for major peaks
in dG/dV of the polyacetylene and the polyacene are indicated above and below the
graph respectively

concentrated on the interfacial region and a part of the polyacene close to the CNT

electrode. Compared with vibrational mode 150, mode 157 can be characterized more

by a longitudinal vibration than a transverse one. Mode 176 shows a longitudinal

stretching vibration of the polyacene.

The IETS graphs for the (N=3) to (N=7) ZGNR junctions show qualitatively

similar trends to that of the polyacene junction, as shown in Fig. 9-10. Major IETS

peaks occur at three bias voltages, at which the polyacene junction also has three

distinct peaks: 170 meV, 185 meV, and 196 meV. These three voltage values are

indicated by red, blue, and green dashed lines in Fig. 9-10.
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Figure 9-10: The derivative of the differential conductance dG/dV for the (N=3) to
(N=7) ZGNR junctions.

Figure 9-11 illustrates some of the active vibrational modes that lead to main

peaks for the (N=4) to (N=6) ZGNR junctions. The left, center, and right columns

in Fig. 9-11 correspond to three main peak regions indicated by the red, blue, and

green dashed lines in Fig. 9-10. The modes in the left panel, whose energies are

approximately 170 meV, can be characterized by transverse vibrations whose large

contributions come from the surface layer of the CNT electrode and the interface. In

contrast, the modes in the right column are longitudinal stretching vibrations of the

zigzag nanoribbons. Their vibrational energies are about 196 meV. The modes in

the central panel show mixed behaviors of the modes in the left and right columns;

for example, a mixture of longitudinal and transverse vibrations, or a combination
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(a) (N=4) ZGNR

(b) (N=5) ZGNR

(c) (N=6) ZGNR

Figure 9-11: The examples of the vibrational modes for the (N=4) to (N=6) ZGNR
junctions. The left, center, and right panels correspond to regions indicated by the

red, blue, and green dashed lines in Fig. 9-10.

of vibrations in the surface layer and the central region. This change in vibrational

configurations resembles that of the polyacene junction.

9.3.2 Local distribution of inelastic current

Although the ZGNR-CNT junctions show similar trends in IETS, the local distri-

butions of inelastic currents are not totally similar. We have found that the local

inelastic current patterns for the ZGNR-CNT junctions in our study can be cate-

gorized as two sub-groups. First, the local distributions of the inelastic current for

the (N=1) to (N=4) ZGNR junctions are the same as that of the elastic current

(Compare Fig. 9-3 and Fig. 9-12), apart from the current direction. Therefore the

inelastic current for the (N=1) to (N=4) ZGNR junctions just enhances or dimin-

ishes the elastic current. The only difference is that one edge current is larger than
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Figure 9-12: The local distributions of
ZGNR junctions.
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the inelastic current for the (N=1) to (N=4)

the other for the (N=1) ZGNR junction, which has asymmetric edges.

In contrast to the uni-directional current distribution of the (N=1) to (N=4)

ZGNR junctions, the inelastic currents for the (N=5) to (N=7) ZGNR junctions

exhibit more complex local current patterns. The representative feature of their

inelastic currents is a formation of loop currents, as seen in Fig. 9-13. The loop

currents are generated inside the nanoribbon, at the CNT surface layers, or at the

CNT electrodes. Moreover, the inelastic current can flow not just along edges but

also through the inside of the nanoribbons. For example, the inelastic current for the

(N=6) ZGNR junction flows not along the edges, but along inner carbon chains next

to the edges, as indicated by black boxes in Fig. 9-13-(b).

One might guess that this sharp distinction between two sub-groups comes from

a difference in the curvature of the nanoribbons (the wider nanoribbon is more bent

since it has more carbon chemical bonds with the CNT electrodes). Figure 9-14

shows how much each nanoribbon junction is bent. As an indirect check on this

speculation, we have performed the same current calculation on ZGNR-(3, 3) CNT

junctions whose cross sections are illustrated in Fig. 9-15. First, the elastic cur-

rent distributions for the ZGNR-(3, 3) CNT junctions have the same features that
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Figure 9-13: The local distributions of the inelastic current for the (N=5) to (N=7)
ZGNR junctions.

we observed in the ZGNR-(4, 4) CNT junctions: (1) edge currents are formed at the

outmost carbon chains and (2) currents first converge to the center, and are dis-

tributed to the edges (See Fig. 9-16). However, we could not find the same trend

on the inelastic current distribution observed in the (4, 4) CNT/ZGNR/(4, 4) CNT

junctions, and especially the curvature effect. It is true that there is a simiarity in the

inelastic current distribution in comparison with the (4,4) CNT/ZGNR/(4, 4) CNT

junctions: for example, one edge carries larger inelastic current than the other for

for the (N=3) and (N=5) ZGNR junctions, as illustrated in Fig. 9-17. In addition,

although the loop current formation is not observed, non-unidirectional current is
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(b) N=4 (c) N=5 (d) N=6

Figure 9-14: Cross sections for the (N=3) to (N=7) ZGNR connected to (4, 4) CNT.

(a) N=3 (b) N=4 (c) N=5

Figure 9-15: Cross sections for the (N=3) to (N=5) ZGNR connected to (3, 3) CNT.

locally formed in the (N=3) and (N=5) ZGNR junctions, as indicated in Fig. 9-17.

The (3, 3) CNT/(N=4) ZGNR/(3, 3) CNT CNT junction, in contrast, does not pos-

sess those features, but its inelastic current distribution simply resembles that of the

elastic current. This observation implies that it might not be true that the curva-

ture effect leads to two sub-groups in the inelastic current distributions for the (4, 4)

CNT/ZGNR/(4, 4) CNT junctions. It might be system-specific, but not generic.

Nevertheless we have confirmed that the electron-vibration interaction can lead to

more complex inelastic current distributions than elastic ones, leading, for example,

to locally reversed current directions, or to the formation of loop currents observed

in (4,4) CNT/ZGNR/(4, 4) CNT junctions.
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Figure 9-16: The local distribution of elastic currents through the ZGNR-(3, 3) CNT
junctions.
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Chapter 10

Summary

In this work we develop an ab-initio approach to study vibration-induced inelastic

transport properties of molecular and nanoscale systems. Our method is based on

planewave-based DFT calculations and the Meir-Wingreen transport formalism with

non-equilibrium Green's functions. We use maximally localized Wannier functions as

a localized basis set, as required for Green's function methods. Due to the exact uni-

tary transformation between eigenstates and maximally localized Wannier functions,

the accuracy of planewave-based DFT calculations can be preserved throughout the

process. The electron-vibration self-energy, which captures the physics of inelastic

transport, is calculated using both the lowest-order perturbative expansion and a

self-consistent approach. We confirm that these two approximations can guarantee

the current conservation. Furthermore, we also calculate non-equilibrium vibrational

populations induced by conducting electrons, with vibrational absorption and emis-

sion rates, and decay rates to bulk phonons. These rates can be calculated within

Green's function methods.

In order to test our implementation, we investigate inelastic transport properties,

such as a differential conductance and its derivative with respect to a bias voltage,

and nonequilibrium populations for benzene molecular junctions connected to mono-

atomic carbon chain (cumulene) and (3,3) CNT electrodes. We observe steps in the

differential conductance at the threshold bias voltage corresponding to the vibrational

energies. These steps imply that new conducting channels open up by accompanying
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a real emission of vibrational energy. From these signals we identify active vibra-

tional modes that participate in opening the inelastic conduction channels. For the

cumulene-benzene junction, there are five active vibrational modes, among which two

out-of-plane vibrations and three in-plane ones lead to upward and downward con-

ductance steps respectively. Using standard scattering theory, it is shown that the

polarity of these conductance steps is the result of a competition between two elastic

conducting channels. This multichannel effect is generic, so it is possible that upward

and downward steps can be observed in any other system. By replacing the cumu-

lene chain by the (3, 3) CNT electrode, we calculate the nonequilibrium vibrational

populations of the benzene molecule. The decay rates of the molecular vibrations are

calculated within harmonic coupling theory to bulk phonons of the CNT electrodes.

It is found that some of the vibrational modes have small decaying rates. This can

be qualitatively explained, considering that these modes are located outside the CNT

phononic band, and are localized inside the molecule. Furthermore, some high-energy

vibrational modes are found to cool down in a certain range of bias voltages, which

is understood in terms of a resonant structure in the density of states around the

Fermi energy. These findings are in a good agreement with other theoretical and

computational works.

Next we focus on the local distribution of inelastic currents inside a molecular

conductor. While the local elastic current has been theoretically studied in many

nanoscale systems, it has rarely been attempted to understand how local current dis-

tributions are changed under the electron-vibration interaction. In order to answer

this question, we derive an analytic expression for a correction to the local current

distribution due to electron-vibration interactions using non-equilibrium field theory.

By revisiting the cumulene-benzene junction, we find that out-of-plane active vibra-

tional modes can induce a non-trivial local current distribution, different from the

elastic current distributions. Unlike elastic currents flowing through ir-orbitals, o-

orbitals can contribute to inelastic current paths, as well as ir-orbitals. Furthermore,

it is observed that the inelastic current direction is locally inverted inside the molecule

and loop currents between 7r and o- orbitals are formed. These features differ from
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the uni-directional elastic current.

Motivated by recent experimental advancements to produce narrow GNRs by un-

zipping CNTs, we study transport properties of CNT/ZGNR/CNT junctions using

the approach we developed. In particular we focus on the local current distribution in

the junctions and inelastic transport properties. First, we calculate the local distri-

bution of the elastic current to visualize the current injection pattern from the CNT

electrodes to ZGNRs and the current path inside ZGNRs. Regarding inelastic trans-

port properties, we find that CNT/ZGNR/CNT junctions with different widths show

major peaks in inelastic tunneling spectroscopy signals, at three similar bias voltages.

The corresponding vibrational configurations are also qualitatively similar. When

it comes to the local current distribution, it is observed that the electron-vibration

interaction can lead to a complex current network such as the locally inverted cur-

rent direction and the formation of loop currents, as shown in the cumulene-benzene

junction.

The relevance of the method developed throughout this work can be seen from

several viewpoints. First, our approach is the first attempt to combine planewave-

based DFT calculation and inelastic quantum transport theory. Considering the fact

that the planewave-based DFT calculation can describe electronic properties more

accurately than those based on a localized orbital basis, we believe that our approach

can provide accurate and reliable descriptions on transport properties of nanoscale

systems. Furthermore, because it can be generalized to other types of interactions,

it can act a starting point to extend the existing Wannier-based transport formalism

to study various transport phenomena in the presence of other interactions.
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Appendix A

Vibrational Decaying Rates

A.1 The Hamiltonian of system in the presence of

a heat bath

Let us define a classical, harmonic Hamiltonian

~12 t 2
3n

1  j + E 2
= Qisy~y+ Qiy~',

i=1

(A.1)

(A.2)
ij

where Q= Vm iqi and K1$ vj y/ m m. The normal modes and its eigen-frequencies

are determined by solving the eigenvalue equation

VX- = of(. (A.3)

In the normal mode representation, the Hamiltonian becomes

= QTXX
2

T + IQTX 23o XTQ2
(A.4)

(A.5)-QT 1 T [W26j
2 1
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Figure A-1: Schematic diagram
are coupled via 'HBS SB-

of system and heat bath Hamiltonians. Two parts

where

Qi

Q2

Q3n

Xi X2 ... 3n]

Q = XQ.

By defining the annihilation and creation operators as

bW
FR2- P

bt = <

(A.9)

(A.10)1lwI -

where P, = PI, the system Hamiltonian is written in terms of harmonic oscillators:

3n

S i(btb (A.11)
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(A.7)

(A.8)

Q =

X =



Likewise, the heat-bath Hamiltonian reads

3N 1i

RB =Zhk Ccy + .
j= 1

(A.12)

Note that the bar is used to distinguish quantities for the heat bath and those for

the system. The coupling Hamiltonian can also be written in the second-quantized

normal mode representation,

3N

u u gj

3N

UtJQQJ
j

S7
m

E
m

( UtXkXim)

\ij /

EUtj Xikk r

(A.13)

(A.14)

(A.15)QkQ m

b + b" (c+ ct)
Wk AW.m16)

(A. 16)

where Ugj u= ni/ mghty is the mass-renormalized interatomic force constant between

the system and the heat bath.

A.2 Decay rates

The decay rates of the kth local vibration in the system into the heat reservoir may

be calculated using Fermi golden rule:

Fk-bath = 2 B m7-C k)S 1 (h m k),
mC bath

(A. 17)
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Using Eq.(A.16), it becomes

2=

-4
m~bath

21 4 Xik

Uij X ikXjm 1 UlnXlkAnm) 1 (m 

\i~j 1,n / Wk

UijUin [Xjm xnm
mEbath

Xlk (26 m
Wk

- Wk) (A.18)

-wk)(A.19)

Here the following relation holds:

ZXmo(Wk - m)Xnm
mWk

in

2
= Im

7F I (A.20 )
(Wk + iO+) 2 - B I

This can be proved by diagonalizing the heat-bath Green's function 1/ [(o~k + i0+)2 - WBI:

Im [(Wk + -O+) 2
- RB]jn =Im EXim )2 -2 mn

m (k + i0 m

1
=Im _ D Xim

mZ2 Xm ( 1Wk±i+ - W

(A.21)

Wk -+ iO + -m) An

(A.22)

=X jmnm j (Wk -Im)

Therefore the decaying rate is

Fk-abath = - [UImG' (Wk)U] Xk,
wk

where GE = (w )l2_4 B
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Appendix B

Derivation of Eq.(8.17)

The lesser Green's function in the vibronic contribution ,

(b,\ + bi) cci) (T) = lim GiA (T, T') (B.1)

is calculated up to the first order of the electron-vibration interaction MA. This can

be obtained in two ways: (1) the S-matrix expansion and (2) the equation of motion

technique.

B.1 S-matrix expansion

When the operators in GAj (T, T') are written in the interaction picture with respect

to the free-particle Hamiltonian 7- = eictcj + Ei4 Vic cj, G rAj, T') becomes

= - c (r) (bA

= - Se (r) (t

+ b) (T')c(r')}

)A + I (r')C (r),

S = e~lee

h
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(B.2)

I dtW (t)
+ O(M2) )

(B.3)

(B.4)

Gi, y (r, r')

~t eI (et) -



where the bar on the operators indicates that the operators are written in the inter-

action picture with respect to Ro. Here Nk(t) is the electron-vibration interaction,

and N' is the coupling Hamiltonian to the electrodes, which drives the device out of

equilibrium.

The zeroth order term is

G j( (T, T')
=- i KTc {ci(r) (bA + b (t')c)(r')}

= -( c(T)c (r')} b + b ,

(B.5)

(B.6)

where the subscript 0 indicates that the operators are written in the Heisenberg

picture with respect to the non-interacting Hamiltonian No + N'. In the last line the

fact that electrons and vibrations are decoupled in the zeroth order is used. Since

b, + b ) = 0, G() (r, T') vanishes. Thus nontrivial terms start at the next order:

~ dt( Mmn
c A' mn

xT (by, + bt (t)ct (t) cn(t)

xc (r) bx + bt (r')c (r')

.2

= - ~dt M
c mn

x (T b, + bt,) (t) (b,\ + br) .

(B.7)

(B.8)

Using Wick's theorem[77], the four-point function is expanded in terms of two-point

propagators:

K T, {cL (t)cn(t)c(r)c(t')} = (ih) 2 Go,im (7, t) Gorj (t, T')

-(h)2 Go,nm (t, t) Go,ij (r, T'),

(B.9)
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where Go (, T') T= -i T ci(r)cj(r')}

Therefore it is concluded that

~m [Go,im (r, t) Go

-2Go,nm (t, t) Go,ij (r, r')] DA (t, r') ,

where

+ b, ) (t) (b, + b') (T')) .

Note that the factor two accounts for the spin degree of freedom. By applying Lan-

greth's rule for analytic continuation to the contour-ordered Green's function[33, 77],

one can obtain Eq.(8.17).

B.2 Equation-of-motion technique

Equation (8.17) can be obtained alternatively by using the equation-of-motion[77].

Taking a time derivative with respect to T on Gi,)1 (T, T'), one might obtain the

equation of motion for T on Giy (r, T'):

o7- Vil )Gly = c (T - /') oiy bA

+ -S I dTEi (T, Ti) G,,A (r 1 , r')c

(B. 12)
+AM'GlaA (r, r

1,A'

where c, (r - r') is defined as

5(T - T')

- (r -Tr)

0

T, T' E forward time branch

T, T' E backward time branch

otherwise.
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In energy space, the equations of motion for the retarded and lesser parts are

(e6~ - Vi) G,)\j = b +b 6ij

+A EG 'G
11i, A'

(B.14)

and

( - V- Z ) G< = ZZG,j MA'G<Ai,,.+E

Using Eq.(B.14), Eq.(B.15) is further shown to be

= b, + bt G<

+ z(Z GimMAn GA',Aj
A' mn,

+ z o Z 'im)MnGnA/,Aj
A' m,n

(B.16)

G",ja and b, + bA are calculated to the zeroth and first order of MA respectively

First, since ih g (b\(t)) = 0 for the steady state, one finds

b + b'A
12

hWA

AMn

At
f G~ (e)D"a(0).

(B.17)

(B.18)
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Second, Green's functions can be calculated as follows:

G',,y(e dte ti KQA cQA (t)ci(t))

J dteiwt  (QAQv(t)) c ci(t))

= 3, [Gi< (E - hoA) nA + Gij (E + hWA) (nA + 1)]

= 3 ( j E') G~ (E - E'), (B.19)

where QA = bA + bt.

iAA )= J dtet (-t) (Gi A(t) - GAAit)]

~ i-0C die (~/,[QA'y(t)) (cjci(t))

+ (Qd(t)QA) ciQ(t)c Kc)I(B.20)

= AA' dtie t/h (eiwt - e'iWAt) Ggi (t)

+Ce t nAG',i(t) + Ce-WA )t (nA + 1) Gg a(t)

(B.21)

= j G ( -G'D"'

+G - (E - D (E') (B.22)

Inserting Eq.(B.18), (B.19), and (B.22) into Eq.(B.16), one can recover Eq.(8.17).
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