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Granger causation analysis of high spatiotemporal resolution reconstructions of brain acti-
vation offers a new window on the dynamic interactions between brain areas that support
language processing. Premised on the observation that causes both precede and uniquely
predict their effects, this approach provides an intuitive, model-free means of identify-
ing directed causal interactions in the brain. It requires the analysis of all non-redundant
potentially interacting signals, and has shown that even “early” processes such as speech
perception involve interactions of many areas in a strikingly large network that extends
well beyond traditional left hemisphere perisylvian cortex that play out over hundreds of
milliseconds. In this paper we describe this technique and review several general findings
that reframe the way we think about language processing and brain function in general.
These include the extent and complexity of language processing networks, the central
role of interactive processing dynamics, the role of processing hubs where the input from
many distinct brain regions are integrated, and the degree to which task requirements
and stimulus properties influence processing dynamics and inform our understanding of
“language-specific” localized processes.

Keywords: Granger causation analysis, MEG, EEG, effective connectivity, rich-club connectivity, small world
connectivity, superior temporal gyrus, speech perception

INTRODUCTION
Experimental methods inherently shape the way we understand
the world and the kinds of questions we ask as researchers. To
early aphasiologists including Wernicke (1874/1969), observations
of the deficits associated with focal brain damage combined with
inferences based on apparent functional dependencies between
different brain regions led to the view that language is the prod-
uct of a dynamic, distributed network of specialized processors.
A century later, developments in neuroimaging have shaped a
neuroscience that until recently has focused primarily on the
interpretation of local function rather than dynamic interactions
between localized processors. This focus reflects classical BOLD
imaging techniques that reliably, and with increasing precision,
isolate and localize functions, but are inherently limited in their
ability to identify the direction of processing interactions or to dis-
tinguish between function-specific and neuromodulatory effects
(Logothetis, 2008). This trend has shifted in recent years with
the development of new techniques for identifying patterns of
directed causal interaction within networks, or effective connec-
tivity, using a variety of imaging modalities (Friston et al., 1997,
2003; Bullmore, 2000).

In our work (Gow and Segawa, 2007, 2009; Gow et al.,
2008; Caplan and Gow, 2012; Gow and Nied, 2012), we
have applied a specific effective connectivity analysis, Granger
analysis of MRI-constrained magnetoencephalography (MEG)/
electroencephalography (EEG) data, to the study of interactions

that support the perception of speech and sentence processing.
This paper is intended as an introduction to these techniques
and a discussion of the implications that our results and, more
broadly, the nature of these analyses themselves hold for the way
we understand and approach the study of language processing.

FUNCTIONAL ARCHITECTURE, EFFECTIVE CONNECTIVITY,
AND CAUSAL INFERENCE
Measures of functional connectivity identify correlated or coor-
dinated activity. In contrast, measures of effective connectivity
identify causal, directed influences between brain regions. They
are used to determine how (and ideally when) activity in one
brain region drives activity in another. When coupled with well-
developed analysis of localized function, effective connectivity
analyses offer a direct view of the functional architecture of cogni-
tive processes. They can be used to resolve fundamental questions
including whether processing is modular or interactive, parallel or
serial, or organized into streams or hubs.

Significantly, functional architecture are not readily addressed
by either behavioral or neuroimaging techniques. In behavioral
paradigms subjects are generally presented with a stimulus and
the dependent measure is the latency or accuracy of a judgment.
Unfortunately, there is no way to know whether the judgment
reflects the state of one particular representation (e.g., acoustic-
phonetic or lexical) or the output of a response selection
mechanism that may be informed by the state of one or perhaps
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Gow and Caplan Granger analysis

several of these representations (Dennett, 1992; Norris et al., 2000).
Moreover, with the exception of eyetracking and mousetrack-
ing paradigms, behavioral paradigms typically only examine the
output of processing and so provide no direct window on the
dynamics that lead up to the judgment. The problem is further
exacerbated by the potential for a tradeoff between assumptions
about structure and processing (Anderson, 1978) that limits the
strength of inferences about functional architecture based on
purely chronometric data.

Traditional neuroimaging data are similarly limited. Consider a
hypothetical result in which BOLD imaging reveals correlated acti-
vation between brain regions associated with acoustic-phonetic
processing and lexical representation. Such a result could be
produced by bottom-up activation of lexical areas by acoustic-
phonetic areas. It could also reflect activation of acoustic-phonetic
areas by lexical areas, a reciprocal interaction between both areas,
or spurious correlation with no underlying causal link between the
regions. Electrophysiological data offer a variant of the same prob-
lem. If activation of the acoustic-phonetic region occurs before
activation of the lexical area it is tempting to infer that the later
activation was caused by the earlier activation. However, the same
temporal patterning could result from a difference in the rise
times of lexical and acoustic-phonetic processing. It could also
be a purely accidental property. As a result, inferences about func-
tional architecture depend on the formal apparatus of effective
connectivity analysis.

Analyses of effective connectivity are rooted in intuitions about
causality. It is important to remember that statistics alone can-
not directly determine whether one variable causes changes in
another. At best, they can be used to identify and quantify pat-
terns that are the basis of human attributions about causality.
One way we discover causality is through systematic experimenta-
tion. We can systematically perturb a system and observe how
it reacts to make inferences about the underlying relationship
between specific events and their effects. This is the strategy that
underlies the most widely used effective connectivity technique,
Dynamic Causal Modeling (DCM; Friston et al., 2003). Imaging
data are collected across several related experimental conditions,
and differential equations are used to model the changing rela-
tions between localized activation measures across conditions as
a function of potential effective connectivity patterns. Bayesian
techniques are then used to compare the model fit and iden-
tify models or classes of models that provide the best fit to the
observations. This method is implemented in widely available
statistical parametric mapping software and has been applied to
both BOLD imaging and MEG/EEG data (Daunizeau et al., 2009;
Valdes-Sosa et al., 2011). DCM has been continually refined since
its development (Stephan et al., 2010). DCM has several vulnera-
bilities. The most critical is that it assumes that the same network,
with the same underlying causal relations between elements sup-
ports processing across experimental conditions (Daunizeau et al.,
2011). This assumption is at odds with evidence that flexible net-
works are assembled “on the fly” and evolve rapidly to address
task and stimulus-specific processing challenges and opportunities
(Buzsáki, 2006).

Recent statistical critiques further suggest that the potential
model space is too large to allow exhaustive model evaluation

(Lohmann et al., 2012). As a result, DCM is only practical given
either very small networks examined across very few experimental
conditions, or heavy reliance on a priori heuristic constraints on
model space.

The method that we are presenting, Granger causality analysis
relies on the temporal structure of causation. The germ of the idea,
first proposed by Wiener (1956), and later realized more fully by
Granger (1969) is that causes carry predictive information about
an effect that is not present anywhere else in a system. Granger
suggested that if you track everything and use that information
to predict the future behavior of one variable, the most useful
information will come from tracking the behavior of the variable
that directly causes change in the variable you are trying to pre-
dict. Any quantitative prediction will be associated with an error
term. Granger’s strategy was to make two predictions. The first
prediction would be made based on measurements of all vari-
ables, including the one that you are trying to predict. The second
prediction would be made based on a restricted set of measure-
ments that would not include one variable. Granger argued that if
the dropped variable directly influenced the predicted variable, the
error term would become larger. Unlike DCM, this approach does
not involve comparison across experimental conditions, and it
does not involve the a priori specification of effective connectivity
models.

The requirement that all potentially causal variables are tracked
insulates Granger analysis against the effects of spurious correla-
tion. In spurious correlation two variables that have no direct
relationship appear to interact due to the influence of an unob-
served mediating variable. For example, there may be a relation-
ship between energy consumption and ice cream sales mediated
by temperature. When it is hot people use more energy (for cool-
ing) and may be more likely to buy ice cream (also for cooling).
If this is the case, electricity use may predict ice cream sales, but
temperature should be an even better predictor. One’s ability to
forecast ice cream sales should not be reduced if they lose informa-
tion about electricity use, as long as they retain information about
temperature. However, assuming that energy use is also deter-
mined by many factors other than temperature, losing information
about temperature should hurt the prediction of ice cream sales.
Given the practical limitations on the measurement and analy-
sis of brain activity, Granger analyses of neural data never fully
meet this assumption. As a result, spurious correlation may occur.
For this reason, researchers must make every effort to sample all
potentially causal regions within the limits of their measurement
techniques.

In some instances, Granger analysis is implemented using
bivariate models. For example, given a three variable (A, B, C)
system, they may break analyses down into separate models of the
prediction of A by B, A by C, B by A, B by C, C by A, and C by
B. This approach is mathematically straightforward, and is used
widely in Granger analyses of imaging data (c.f. Hesse et al., 2003;
Dhamala et al., 2008b). Despite its practicality, this approach is
vulnerable to artifact from spurious correlation, even if all causal
factors are sampled. Geweke (1982) addressed this problem by
extending Granger analysis to the multivariate case in which all
variables are entered into the prediction and a single variable is
eliminated from the restricted model.
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Gow and Caplan Granger analysis

IMPLEMENTATION
While the basic premise of causal inference in Granger analy-
sis is simple, application of the technique involves a number of
more technical considerations. These are explored in more depth
in several reviews (Ding et al., 2006; Seth, 2010). The purpose
of the current review is to identify constraints that have specific
implications for imaging methodology or the form of cognitive
models.

COVERAGE, SPATIOTEMPORAL RESOLUTION, AND THE
CHOICE OF AN IMAGING MODALITY
The ideal imaging modality for use with Granger analysis would:
(1) independently monitor activity from all interacting brain
regions, (2) provide sufficient spatial resolution to interpret the
functional significance of measurements of local activity based
on the existing BOLD imaging and neuropsychological localiza-
tion literatures, and (3) provide sufficient temporal resolution to
support reliable quantitative modeling and prediction of the time
course of activation over the interval of interest. In this section
we consider how current imaging modalities align with these
requirements.

Constraints on temporal resolution all follow from the way
predictions are made in Granger analysis. In its pure form, the
logic of Granger analysis does not constrain the choice of how
quantitative predictions are made. Discrete vector autoregression
models are widely used (Geweke, 1982; Gow et al., 2008; Seth,
2010), but other techniques including time-varying Kalman fil-
ter based models (Havlicek et al., 2010; Milde et al., 2010) and
non-linear models (Dhamala et al., 2008a) have also been used
in neuroscience research. The choice of a modeling or predic-
tion strategy is generally based on consideration of assumptions
about the nature of underlying processes (e.g., whether they are
adequately described by linear or non-linear models), ease of
implementation, and technical considerations described below.

All of these methods are forms of time series analyses that
depend on the availability of a critical mass of observations. Time
series analyses based on too few observations are not considered
reliable. The minimum number of observations depends on the
specific choice of a modeling technique, the inherent variability
of the data, and the number of parameters being modeled (Box
et al., 1994). Spectral Granger analyses are further constrained by
the choice of frequency range. Heuristic estimates about the mini-
mum number of time samples for meaningful time series analysis
may range between 50 and 200. When applied to long time inter-
vals as in resting state analyses (Uddin et al., 2009) or the analysis
of events that take place over relatively long time periods such
as learning, habituation, or fatigue (Deshpande et al., 2009) the
temporal resolution of BOLD imaging techniques is sufficient to
meet this requirement. However, given current limitations on the
temporal resolution of time-resolved fMRI it is unclear whether
BOLD imaging data provide sufficient resolution to adequately
model neural events that play out over tens to hundreds of mil-
liseconds, such as those involved in the online comprehension and
production of language. Roebroeck et al. (2005) and Stephan and
Roebroeck (2012) suggest that BOLD data may be suitable for
bivariate, but perhaps not multivariate, Granger analysis for these
reasons.

Intracranial recording, EEG and MEG all offer millisec-
ond resolution sufficient to perform meaningful modeling
of event-related cognitive processing. However, each of these
approaches present tradeoffs. Several studies have applied Granger
analysis to intracranial electrode data (Brovelli et al., 2004;
Dhamala et al., 2008a; Gow et al., 2009). Intracranial data provide
extremely high spatial and temporal resolution. However, due to
the invasive nature of this technique, it is only feasible to record
over a very small area of cortex surrounding an area showing a
suspected pathology in human subjects. This sparse sampling may
be sufficient to analyze highly localized networks such as the corti-
cal columns examined by Dhamala et al. (2008a) but is vulnerable
to the effects of spurious correlation associated with unrecorded
sources.

Magnetoencephalography and EEG present a different chal-
lenge. They provide temporal resolution sufficient to support
modeling, but do not provide the localization accuracy associated
with BOLD imaging or intracranial electrophysiological record-
ing. One solution to this problem is to rely on sensor space analyses
(Kaminski et al., 2001; Hesse et al., 2003). This sidesteps the local-
ization problem, but limits the interpretability of the function of
the brain activations that drive the analysis.

A number of techniques exist for localizing the source of mea-
sured MEG and EEG signals in the brain. For the purpose of
Granger analysis it is necessary to use a method that can local-
ize multiple distributed sources. Source localization is challenging
because the inverse problem (inferring the location of sources
based on measures made outside of the skull) is inherently ill
posed. No set of measures projects to a unique source configura-
tion. A number of techniques have been devised to address this
problem including classical least squares minimum norm esti-
mation or MNE (Hämäläinen and Ilmoniemi, 1984), its spatially
normalized variant dynamic statistical parametric mapping or
dSPM (Dale et al., 2000), and standardized low-resolution elec-
tromagnetic tomography or sLORETTA (Pascual-Marqui, 2002).
Comparison of these techniques is not straightforward, because
each offers different patterns of localization error, spatial exten-
sion (spatial spread of point sources), and amplitude estimation as
a function of several factors including source location (Hauk et al.,
2011). In our work, we rely almost exclusively on MNE. Within
each of these approaches, source localization can be improved
in several ways including depth weighting to correct a bias toward
superficial sources (Lin et al., 2006b), using anatomical reconstruc-
tions based on MR data to constrain localization (Hämäläinen and
Sarvas,1989), the imposition of dipole orientation constraints (Lin
et al., 2006a), and active correction for head movement artifacts
(Wehner et al., 2008).

Source estimation is also improved by integrating multiple
imaging modalities. A number of fusion strategies for combin-
ing BOLD and MEG or EEG data are currently in development
or limited usage (Valdes-Sosa et al., 2009; Henson et al., 2010;
McDonald et al., 2010; Lei et al., 2011; Luessi et al., 2011) and at
least one study has applied Granger analyses to fused multimodal
data (Lei et al., 2011). This type of data fusion is difficult due to the
different temporal sensitivities of BOLD and MEG or EEG data.
BOLD imaging priors may suggest a bias toward a source localiza-
tion, but they typically do not provide information about when
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Gow and Caplan Granger analysis

that source is active, and so may undermine localization of some
of short-term activations.

Another approach is to integrate simultaneously collected MEG
and EEG data. EEG and MEG signals are complementary signals
arising from the same sources: synchronized post-synaptic cur-
rents produced in the vicinity of apical dendrites of pyramidal cells
(Hämäläinen et al., 1993). The addition of EEG improves MEG
localization in two ways. It increases the density of the senor array,
and provides access to sources that MEG cannot detect because it
because it is insensitive to radially oriented sources (Hämäläinen
et al., 1993). In our work, we rely primarily on MRI-constrained
MEG/EEG data (Gow et al., 2008; Gow and Segawa, 2009). These
data have superior spatial resolution to either unimodal EEG or
MEG, with typical localization errors in some regions on the order
of 5–6 mm (Sharon et al., 2007).

While MRI-constrained combined MEG/EEG appears to offer
the best currently available combination of spatial and temporal
resolution and coverage, it has several limitations as a vehicle for
Granger analysis. The most important is its inability to accurately
track deep subcortical activations (Hämäläinen et al., 1993). As a
result, some apparent cases of cortico-cortical interaction may be
mediated by unmeasured subcortical structures.

STATIONARITY
Classical Granger analysis assumes that all time series are station-
ary within the time period being modeled. This means that their
means, variances, and covariances with other factors do not change
over the period that is being analyzed. Granger (1969) argued that
this assumption is necessary because causal relations may change
within non-stationary time series, undermining modeling, and
making it more difficult to define terms and assumptions in a man-
ner that is verifiable. When Granger analysis is based on multiple
vector autoregression (MVAR) models, non-stationary time series
can produce an artifact called“spurious regression”in which corre-
lations reflect non-stationarities instead of deterministic relations
between variables (Granger and Newbold, 1974). The stationarity
assumption creates significant challenges for the analysis of neural
dynamics because they inherently evolve over time.

Stationarity can be evaluated in several ways. One approach is
to generate a correlogram. A correlogram is a graph that plots the
kth order autocorrelation coefficient as a function of k. In station-
ary time series autocorrelations quickly disappear as k increases
(Box et al., 1994). A number of simple statistical tests including
the augmented Dickey–Fuller test (Greene, 1997) can be used to
verify stationarity by testing for the absence of unit roots. Unit
roots are a characteristic of non-stationary processes that reflect a
failure of values to regress to a common mean over time.

Time series can often be rendered stationary through transfor-
mation. The simplest approach is to difference (Seth, 2010). This
involves using the first derivative of the time series rather than the
raw values. Differenced time series are then tested for stationarity.
If they are still non-stationary the process can be iterated until
they pass the test. While computationally sound, this approach
may obscure the interpretation of Granger results, which reflect
velocity of acceleration of change in activation rather than raw
activation itself. The other primary transformation strategy is to
model the non-stationary component of time series and subtract

that from the observed values. This can be done through sim-
ple linear detrending or may involve more sophisticated modeling
techniques. In practice, differencing and detrending strategies may
be applied in combination.

One way to reduce reliance on transformation is to conduct
analyses over short windows during which time series may be
locally stationary (Ding et al., 2000). In this strategy, analysis is
conducted over a series of short overlapping windows, with MVAR
parameters adapted as necessary at each successive window. This
approach simplifies the interpretation of Granger results. While
useful for bivariate analysis or multivariate analysis of very small
networks, it becomes problematic for the analysis of larger models.
The number of variables used in modeling grows as a function of
the model order (the number of lagged units over which a predic-
tion is made) and the number of time series that are used to predict
a variable. When the number of variables approaches or exceeds
the number of observations a model is overfit and thus unreli-
able. In our experience, this often makes it impossible to define
an analysis window that is short enough to show local stationarity
when realistically large sets of ROIs are used.

The stationarity assumption only holds if time series models
apply to an interval of time. As a result, the stationarity assump-
tion can be avoided if analyses are applied to a point in time rather
than an interval. Several methods have been developed that take
advantage of this fact by calculating instantaneous measures of
Granger causation at each timepoint. One approach involves the
use of a regressive least squares with forgetting algorithm to calcu-
late autoregressive parameter matrices (Moller et al., 2001). More
recently, researchers have turned to the use of Kalman filter tech-
niques that may be used to model larger models (Milde et al.,2010).
Kalman filter techniques have been applied to Granger analysis
of BOLD, EEG, and multimodal data (Valdes-Sosa et al., 2009;
Havlicek et al., 2010, 2011; Milde et al., 2010; Gow and Nied, 2012).
Kalman filtering techniques appear to offer the best currently
available means of both addressing the inherent non-stationarity
of neural signals and meeting Granger analysis’ requirement of
including all potentially causal signals.

ROI SELECTION
The requirement to measure all potentially causal signals is both
a fundamental strength of Granger analysis because it minimizes
the likelihood of spurious correlation artifact, and a fundamen-
tal weakness because it is unrealistic. Granger (1969) described
this assumption as being “completely unreal” (p. 429) and devel-
oped the application of his technique around the use of practically
available measures.

In neuroscience applications the selection of regions of inter-
est (ROIs) to track is limited by the choice of imaging techniques
and the practical limits of computation. Intracranial recording
techniques can only be applied to human subjects over a very lim-
ited area in the regions of suspected physiological abnormality in
available presurgical patients. In BOLD and electrophysiological
techniques the spatial resolution of analyses places constraints on
the size and proximity of ROIs. Recognizing these constraints,
analyses could in principle be applied to all measureable and
non-redundant vertices or voxels. Depending on how strictly
redundancy is defined, this could lead to the analysis of networks
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Gow and Caplan Granger analysis

with hundreds to perhaps thousands of units. Given the compu-
tationally intensive nature of Granger analysis and bootstrapping
methods for assessing the statistical significance of Granger causal-
ity measures, it would be impractical to run analyses involving so
many variables.

Region of interest selection can be approached in several ways.
One way is by performing analyses on sensor data using EEG
or intracranial EEG (iEEG) data based on relatively few chan-
nels (Kaminski et al., 2001; Gow et al., 2009). For EEG data this
approach comes with the cost of losing the ability to relate indi-
vidual timeseries to what is known about the neural localization
of function. In contrast, iEEG electrode data provide excellent
implicit source localization, but as noted above, are impractical
to deploy in a manner that allows sampling of all potentially
causal signals except in the case of very localized discrete networks.
Another approach is to select ROIs based on a priori theoreti-
cal considerations. This approach is at odds with the exploratory
nature of Granger analysis. It also carries several risks. One is the
scarcity of well-developed anatomically grounded models of cog-
nitive task performance. Another is the fact that the models that
do exist tend to involve a very small set of ROIs and may underesti-
mate the size and extent of actual networks, opening the possibility
of artifact by spurious correlation.

A more common approach is base ROI identification on sim-
ple measures of activation (Roebroeck et al., 2005; Sridharan et al.,
2008). This method allows the inclusion of ROIs that are not pre-
dicted by theory. The primary limitation of this approach is that it
may fail to identify ROIs that play a causal role in neural dynamics
but are downregulated during task performance. Another problem
is that this approach may fail to identify processing regions that
show no overall increase or decrease in activation, but do show a
qualitative change in the nature of activation such as a change in
phase-locking that may influence activation in another region.

A principled approach is to base ROI selection on measures
of functional connectivity such as correlated regional changes in
BOLD activation, phase coherence, or phase-locking (Supp et al.,
2007; Gow et al., 2008; Gow and Segawa, 2009). Gow et al. (2008)
found that this approach identified a superset of ROIs identified
by activation alone, including ROIs that did not show increased
activation, but still exerted significant and theoretically important
causal effects during processing.

This approach to ROI selection typically produces a larger set
of ROIs than do hypothesis-driven effective connectivity stud-
ies. Recent studies of effective connectivity in language processing
employing DCM have explored network models ranging in size
from three to six nodes (c.f. Hara et al., 2007; Leff et al., 2008;
David et al., 2011; Lee and Noppeney, 2011; Yvert et al., 2012).
Given the hyperexponential growth in model space intrinsic to
DCM, it is not computational reasonable to exhaustively test all
potential models given networks of more than 3 nodes explored by
more than 3 experimental conditions (Lohmann et al., 2012). As
a result, DCM analysis can only be applied to very small models if
the goal is to identify the best model. In contrast, Gow et al. (2008)
identified nine ROIs in a study of lexical influences on phoneme
categorization and Gow and Segawa (2009) identified 16 in a study
of the perception of coarticulated speech. These higher numbers
do not represent the upper limits on Granger analysis. Gow et al.
(2009) applied the same analyses to a 64 electrode sensor space

analysis of iEEG data using differencing to achieve stationarity.
Given the concerns raised above about the interpretability of dif-
ferenced data, we feel that Kalman filtering techniques that do
not require the stationarity assumption are preferable. Milde et al.
(2010) successfully applied this approach to the analysis of a 58
node network.

Regardless of how ROIs are initially identified, it is impor-
tant that all timeseries associated with different ROIs are non-
redundant. Granger analysis is premised on the role of unique
predictive information. If two timeseries were too similar there
would be no loss of information associated with a restricted model
that eliminated one of those areas, even if one of those regions
played a causal role in driving activation in the predicted region.
As a result, the effect of including redundant timeseries should
be reduced sensitivity. In MEG and EEG, redundancy may be
arise due to spatial “smearing” or “leakage” intrinsic to source
localization (Hämäläinen et al., 1993). Similarly, the low tempo-
ral resolution offered by BOLD imaging techniques my minimize
differences between timeseries.

MANAGING OUTPUT
The sheer volume of output produced by Granger analysis poses
significant challenges for interpretation. Unlike hypothesis testing
analyses in which the complexity of a possible result is constrained
by the state of explicitly stated theory and the limits of experi-
mental design, exploratory analyses such as Granger analysis may
produce results that lie outside of current understanding or expec-
tation. Data-driven ROI identification typically produces larger
networks than those typically explored by techniques such as struc-
tural equation modeling. If one includes analyses of self-causation
or Granger autonomy which are inherently one directional, the
number of potential directed causal relationships between nodes
is 2× (number of ROIs)2

− number of ROIs. When measures of
continuous Granger causation are applied these relationships may
be fully evaluated at the frequency of the sampling rate. This means
that analysis of a 20 ROI network employing a continuous Granger
analysis of a MEG/EEG sampled at 1,000 Hz over 200 ms produces
156,000 comparisons, which may each be submitted to significance
testing based on its own independent distribution.

This complexity may be approached in several ways. The sim-
plest approach is to ignore most of the output and to focus on a
small number of connections of interest. For example, when exam-
ining the role of lexical influences on speech perception, Gow et al.
(2008) focused on the role of interactions between brain regions
hypothesized to play a role in lexical representation and a brain
region hypothesized to play a role in acoustic-phonetic process-
ing. In order to ensure the integrity of the analysis, all nine ROIs
were included in the analysis. The analyses were further simpli-
fied by the use of an epoch-based analysis focused on the interval
in which STG activation diverged between experimental condi-
tions. As a result, primary interpretation of the experiment rested
on a single connection. Consideration of a handful of additional
influences on STG and of the causal interactions that led to the
initial activation of the lexical ROI provided further context for
understanding this interaction.

While this approach narrows the number connections to be
considered, it may do so at the cost of ignoring other connections
that may play a critical, but unexpected role in processing. For
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this reason, we developed another approach that relies on simple
measures drawn from graph theory to guide purely exploratory
analysis. The most basic of these is degree, which refers to the
number of connections a node, or in this case, an ROI has with
other components of the network. Degree can further be differ-
entiated into in-degree, the number of nodes that have influence
on a given node, and out -degree, the number of nodes that a given
node influences. These measures can be weighted by connection
strength as quantified by Granger index (Milde et al., 2010) or
thresholded to include only those connections that are statisti-
cally significant or reach a particular threshold. Degree can be
visualized by a source space bubble graph where the size of cir-
cles placed over ROIs depicts a degree measure either in static or
movie form. ROIs that show high-degrees serve as processing hubs
within a network (see Figure 1A). In particular, ROIs with high
in-degrees may be interpreted as regions where multiple informa-
tion types are integrated. Similarly, a large out-degree identifies
a node that drives multiple operations. Having identified com-
putationally critical nodes based on these measures, researchers
may focus on the interpretation of the subsets of connections

that contribute to those degree measures (Figure 1B), examining
time-varying graphs of continuous Granger index measures for a
specific directed connection or set of connections as a final stage
to understand how microprocessing interactions are organized in
time (Figure 1C).

This strategy also has its vulnerabilities. The most critical is that
it may over-represent the role of processing hubs in the overall
dynamics that support cognitive processes. For this reason, it may
be advisable to take a hybrid approach that combines question
or hypothesis-driven interpretation with additional exploratory
analyses guided by graph theory.

SUMMARY OF TUTORIAL
The preceding tutorial provides the outline of an at-present-
unique approach to Granger analysis premised on the importance
of respecting the assumptions that underlie the logic of Wiener
and Granger’s method of causal inference. We are advocating an
approach to Granger analysis that involves the use of: (1) high spa-
tiotemporal resolution imaging techniques capable of sampling
all brain regions, (2) functional connectivity analyses to identify

FIGURE 1 |Three Granger analyses for identifying critical
processing interactions in a word-picture matching task. (A) Is a
bubble graph used to identify processing hubs. Bubbles are centered in
ROI centroids and varying in size as a function of the number of ROIs
providing significant Granger input over the analysis period. (B) Plots

the relative strength of Granger influence (cumulative Granger
Causality index values) by ROIs on a target region identified in green.
(C) Plots a continuous measure of Granger causation strength for
afferent (red) and efferent (teal) interactions between the left STG and
SMG from 100 to 400 ms.

Frontiers in Psychology | Language Sciences November 2012 | Volume 3 | Article 506 | 6

http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gow and Caplan Granger analysis

the set of all brain regions that interact during processing, (3)
time-varying VAR modeling techniques to provide full multivari-
ate modeling and prediction involving a realistically large set of
ROIs, and (4) graph theoretic techniques to identify the loci of fun-
damental processing interactions. These properties, coupled with
Granger analysis’s ability to identify directed causal interactions
without the use of an a priori processing model, produce results
that show linguistic and cognitive processes in a different light. In
the remainder of this paper we will review some of our own work
and explore the implications of this approach for understanding
linguistic processes and their biological bases.

GRANGER ANALYSIS STUDIES OF SPEECH PROCESSING
Work in our lab has focused on the use of these methods to exam-
ine the neural dynamics that support spoken language processing.
In this section we will briefly describe two representative stud-
ies that illustrate the application of this approach. Both studies
relied on the same processing stream. Subjects performed a behav-
ioral task while simultaneous EEG and MEG data were acquired.
These were reconstructed with MRI anatomical constraints as
source space MNE activation movies. ROIs were identified in
these movies based on 40 Hz phase-locking to a reference region
identified in the left STG that showed early and persistent activa-
tion during task performance. We compared the timing of major
activation maxima and minima for all pairs of timeseries to elim-
inate redundant timeseries. Discrete VAR Granger analyses were
then performed on these timeseries data using the Seth’s (2010)
MATLAB Granger Analysis Toolbox. Stationarity was achieved by
differencing.

Gow et al. (2008) examined the role of top-down lexical influ-
ences on speech perception. In this study subjects heard tokens
from a /s/-/∫/ continuum in the context of lexical contexts that
biased interpretation toward either /s/ (_andal) or /∫/ (_ampoo)
and performed an explicit fricative categorization task. Behavioral
analyses replicated the classical Ganong (1980) effect with listen-
ers interpreting the same ambiguous fricative as /s/ in the _andal
context and /∫/ in the _ampoo context. This behavioral effect is
consistent with two contrasting analyses. One analysis suggests
that lexical factors influence perceptual processing. The other is
that lexical factors have no influence on perceptual processing, but
may interact with the output of perceptual processing at a late
decision stage (Norris et al., 2000). An fMRI study by Myers and
Blumstein (2008) implicated increased bilateral posterior supe-
rior temporal gyrus (pSTG) activation in this process but could
not discriminate between top-down and bottom-up accounts. The
Gow et al. study found similar patterns of activation using MRI-
constrained MEG/EEG, but identified a larger network based on
an analysis of 40 Hz phase-locking to a reference area in the left
pSTG. Granger analysis of this network revealed a complex pattern
of causality characterized by early activation driven by left pSTG
(from 80 to 280 ms post stimulus onset) followed by a period
coincident with lexical access (280–480 ms) in which left pSTG
activation was influenced by five different brain regions including
the left supramarginal gyrus (SMG), a region implicated in lexi-
cal representation (Gow, 2012). To our knowledge, these were the
first data that uniquely indicated a role of top-down influences on
speech processing.

Gow and Segawa (2009) used the same imaging and analy-
sis techniques to study the mechanisms that allow listeners to
compensate for assimilation in the perception of spoken words.
This effect has been broadly studied, and has been variously
attributed to inference based on abstract phonological knowl-
edge (Gaskell and Marslen-Wilson, 1996), the perceptual grouping
of phonetic feature cues (Gow, 2003), or perceptual processes
mediated by articulatory representation (c.f. Liberman and Mat-
tingly, 1985). The last account, articulatory mediation, has been
the target of intense investigation over the last 50 years, but has
been difficult to evaluate due to the challenges of independently
manipulating speech articulation and acoustic structure and deter-
mining whether articulation-related activation in perceptual tasks
influences perceptual analysis.

In this work subjects performed a delayed sentence-picture
matching task with stimuli in which spontaneously produced
assimilation produced words that were phonetically ambiguous
(e.g., pen pronounced pen

m). Analyses focused on the first 200 ms
following the onset of word that immediately followed this item.
Granger analysis of trials in which listeners showed behavioral
evidence of compensation for items in which assimilation did not
produce a potential lexical competitor to the intended word (e.g.,
pen

m) showed influence by both the left posterior middle tempo-
ral gyrus (pMTG) a region implicated in lexical representation
(Gow, 2012), and the left dorsal premotor area, a region involved
in articulatory representation (Watkins et al., 2003; Hickok and
Poeppel, 2004) on the left pSTG. The same patterns were found
in trials where assimilation produced a potential lexical competi-
tor (gun

m) in the context of a much more complicated pattern of
interactions that included confluent influences of 15 brain regions
including many right hemisphere and non-perisylvian regions that
are not typically associated with speech perception. These included
regions associated with decision-making (left anterior and pos-
terior cingulate), vision (superior occipital sulcus, primary visual
cortex), and memory (left parahippocampal region). These results
affirm a causal role of articulatory mediation in speech perception,
and suggest that stimulus and task-specific factors play a major role
in determining how the brain processes speech.

IMPLICATIONS
INTERACTIVE PROCESSING
The hypotheses that these studies address about the role of artic-
ulatory and lexical mediation in speech processing are not new. In
each case we have used Granger analysis to examine hypotheses
that have resisted verification or falsification due to the inher-
ent limits of behavioral and BOLD imaging research paradigms.
Different experimental and analytical techniques often support
different types of inferences. A primary limitation of behavioral
data, simple BOLD subtraction, and even measures of functional
connectivity is that they do not support strong inferences about the
role of top-down mechanisms in processing. Abstractly, negative
feedback produces self-limiting processes, while positive feedback
accelerates processes and can move systems toward discrete states.
The central role of feedback in domains as diverse as chemistry,
electrical engineering, and systems biology is beyond question.

For all of its computational merits, there are serious rea-
sons to doubt both the necessity of top-down processes and
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Gow and Caplan Granger analysis

the inference that evidence of interaction between higher and
lower level representations indicates the existence of top-down
processes. Dennett (1992) makes the distinction between bottom-
up processes that “figure out” (e.g., identify an ambiguous speech
sound to recognize a word), and top-down processes that “fill in”
(e.g., modify lower level phonetic representations to conform to
the lexical hypothesis). The argument is that if the purpose of the
process is to arrive at the correct output representation, there is
simply no need to change the input representation. Norris et al.
(2000) developed this argument further, demonstrating that the
purely feedforward MERGE model could account for the inter-
action between phonetic and lexical knowledge in a variety of
behavioral results given the assumption that phonetic represen-
tation feeds lexical processes, and that the output of both lexical
and phonetic processes are combined at a later decision process
without feedback. This structural interpretation could be applied
to evidence of articulatory mediation in speech perception or
any data that show the combined influence of multiple types of
information on an output measure.

This is a critical distinction, but one that cannot be explored
purely behaviorally, because behavioral methods only directly tap
a decision, and (with the exception of mouse- and eyetracking)
only do so at one point in time, typically after the processing
dynamic is complete. Measures of localized neural activation have
the advantage of offering the ability to observe multiple local-
ized processors. Here, top-down lexical processes may produce
increased activation of acoustic-phonetic processors (Myers and
Blumstein,2008). However, top-down processes are generally asso-
ciated with ambiguous input, and so this increased activation
could be attributed either to top-down facilitation or the need for
increased bottom-up processing to address the ambiguity. Corre-
lational measures of functional connectivity also fall short because
both feedforward and feedback mechanisms can produce corre-
lated activity between two linked processors. Our Granger causal-
ity results thus provide unique evidence for top-down influences
on perceptual processing.

FUNCTIONAL ARCHITECTURE: STREAMS VERSUS HUBS
The most surprising and consistent result that we have found in
our speech studies is evidence that activation in bilateral pSTG
is directly influenced by a large bilateral network. This finding
is at odds with the metaphor of the processing stream that has
dominated cognitive psychology, psycholinguistics, and current
neuroanatomical models of language processing (c.f. Denes and
Pinson, 1993; Scott and Wise, 2004; Hickok and Poeppel, 2007;
Rauschecker and Scott, 2009; Sahin et al., 2009). The stream
metaphor suggests that processing occurs through a sequence
of ordered steps in multiple parallel processing streams. In its
most concrete form, the stream metaphor suggests a linear cas-
cade of ordered processes in which the output of one process
provides the input to the next. Within the dual stream model of
language processing (Hickok and Poeppel, 2007), the pSTG has
bidirectional connectivity with the mid-posterior superior tem-
poral sulcus, which becomes the origin for both the ventral and
dorsal processing streams. However, even advocates of interac-
tive processing may recognize the general outline of a stream in
models such as TRACE (McClelland and Elman, 1986) in which

bidirectional connectivity is limited to two adjacent levels within
a network.

Our results suggest that bilateral pSTG serves as a process-
ing hub where information from a large, bilateral network of
traditionally recognized perisylvian language regions as well as
regions associated with non-linguistic, but task relevant represen-
tation and processing are integrated. In network science, the term
hub refers to a high-degree node (a node that is connected to
many other nodes). Recent studies of white matter tractography
and functional connectivity present converging evidence that hub
organization is a fundamental property of brain structure (c.f.
Bassett and Bullmore, 2006; Bullmore and Sporns, 2009). Using a
combination of anatomical and functional connectivity analyses,
Hagmann et al. (2008) identified bilateral superior temporal cortex
as a major hub based on six different connectivity measures. This
role is not unique within language processing. Related anatomi-
cal and functional analyses have identified other likely language
processing hubs including the middle temporal gyrus, temporal
poles, SMG, and inferior frontal lobes (c.f. Patterson et al., 2007;
Hagmann et al., 2008; Tomasi and Volkow, 2010).

Hub architecture has several advantages. In the context of a
“small world” organization characterized by a high-degree of local
connectivity combined with a distributed pattern of hubs showing
longer range connectivity, hubs help reduce the number of links
needed to connect any two points in the cortex (Bassett and Bull-
more, 2006). This may contribute to flexibility in processing by
allowing direct or almost direct communication between almost
any pair of regions in the brain. Evidence that hubs tend to show
high connectivity with other hubs, a pattern known as “rich-club”
organization (Van Den Heuvel and Sporns, 2011), further supports
integration over a distributed network and provides a physical
basis for interactions in which many types of representations and
analyses can mutually constrain and support one another.

The role of a hub is to integrate. In the case of pSTG, hub sta-
tus provides a ready mechanism for explaining a large body of
behavioral evidence that suggest that the perception of speech is
influenced by diverse factors including coarticulation (Liberman,
1957), phonotactic context (Massaro and Cohen, 1983), lexical-
ity (Ganong, 1980), semantic context (Warren and Warren, 1970),
syntactic and prosodic context (Price and Levitt, 1983), and pre-
vious exposure to a dialect or speaking style (Kraljic et al., 2008;
Maye et al., 2008). The ability to flexibly draw on many types of
representations contributes to the robustness of speech percep-
tion. Moreover, to the degree that pSTG connectivity is reciprocal,
hub status also serves a parity checking function, assuring that
all levels of representation are drawing on a common interpreta-
tion of speech sounds. A broader pattern of rich-club organization
may amplify these functional properties by allowing many levels
of linguistic representation to reinforce and support one another.

INTERPRETING FUNCTION
The goal of our effective connectivity analyses of source space
activation is to identify how specific types of information interact
to achieve a processing goal. The validity of these analyses rests
in large part on how accurately we are able to ascribe functional
significance to activation in any particular brain region. For exam-
ple, claims that lexical representations influence speech processing

Frontiers in Psychology | Language Sciences November 2012 | Volume 3 | Article 506 | 8

http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences/archive
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in the examples above depend on the reliable inferences about
the functional significance of activation in pSTG, SMG, and MTG
(Gow et al., 2008; Gow and Segawa, 2009). In this section, we will
examine how conversely, analyses of effective connectivity may
inform our understanding of functional localization.

The functional localization literature relies primarily on patho-
normal inference and BOLD imaging data. The inferential limits
of both techniques have been well explored. Neuropsychologists
depend on the assumption that damage to localized processors
does not influence how intact portions of a processing network
operate (Kosslyn and Intrilligator, 1992). Similarly, the interpreta-
tion of BOLD imaging data by the subtraction technique depends
on the assumption that there are no interactions between proces-
sors (Friston et al., 1996). Both of these assumptions are belied by
the rich,dynamic pattern of interaction between brain regions seen
in studies of effective connectivity. Friston et al. recognized this
problem and suggested that a complete accounting of functional
localization requires the characterization of both local activation
and patterns of interaction.

Consider again the role of pSTG in the examples described
above. Bilateral pSTG appears to play a role in higher-level spec-
trotemporal analysis of sound. This interpretation is consistent
with pSTG’s proximity to primary auditory cortex and a pattern
of reliable activation in subtractions between listening to com-
plex auditory stimuli and rest (Hickok and Poeppel, 2007). More
focused analyses suggest that this region shows some category-
specific sensitivity to acoustic-phonetic cues (Blumstein et al.,
2005). This simple view of bilateral pSTG appears to be at odds
though a variety of results showing pSTG activation in both speech
production and perception tasks (Buschsbaum et al., 2001) and
sensitivity to manipulations of speech and non-speech factors
including lexicality (Gow et al., 2008), morphology (Tyler et al.,
2005), grammaticality (Raettig et al., 2010), the producibility of
non-native speech sounds (Wilson and Iacoboni, 2006), spatial
congruity between sound sources and semantically related targets
(Plank et al., 2011), unaltered versus scrambled environmental
sounds (Thierry et al., 2003), and the presence of melodic pattern
in a tone sequence (Griffiths et al., 1998).

This diversity of effects may reflect a kind of referred sen-
sitivity, in which BOLD sensitivity to a stimulus property such
as morphology or melodic structure in pSTG may not indi-
cate that it is directly involved in the detection or representa-
tion of that process. Instead, it may reflect influence of another
localized processor that is sensitive to those properties on the
activation of pSTG. This observation has bearing on the his-
toric debate over where the analysis of speech sounds diverges
from the analysis of non-speech sounds. In this framework,
the same region may play a role in general auditory processing
for many sounds, but play a role in language-specific process-
ing when it becomes involved in reciprocal processing inter-
actions with a brain region involved in specifically linguistic
representation.

The use of temporally continuous measures of Granger causa-
tion (Milde et al., 2010) or measures of Granger causation over
multiple discrete time windows (Gow et al., 2008) further demon-
strate that processing interactions evolve over time. This may be
attributable to differences in the rise time associated with differ-
ent linguistic processes. For example, Gow et al. (2008) found
increased pSTG activation within 100 ms of the onset of spo-
ken words, but found no effect of lexicality on pSTG activation
until 220 ms after the word onset. This suggests that pSTG acti-
vation reflected only non-lexical auditory processes until listeners
had heard enough of words to identify lexical candidates. This
result parallels the finding by Sahin et al. (2009) that Broca’s area
is sensitive to different types of properties at different points in
time. In our experiment, top-down lexical influences produced
a behavioral trend toward normalization, with the categorization
of ambiguous speech sounds shifting to support lexical candi-
date. This finding was confirmed in later experiments examining
the role of lexical mediation in phonotactic influences on speech
perception (Gow and Nied, 2012). This evolution of influences is
consistent with the possibility that pSTG activation initially reflects
raw auditory stimulus properties, but is normalized through res-
onant processing interactions with stored lexical representations
to approximate acoustic-phonetic and later abstract phonological
representations of speech. This hypothesis requires further evalu-
ation, but it illustrates the notion, raised by high spatiotemporal
resolution analyses of causal brain interactions, that functional
localization analyses need to identify a region’s function in the con-
text of a network, determined by a task, and localize that function
in both time and space.

SUMMARY
Granger analysis of high spatiotemporal resolution data such as
MRI-constrained MEG/EEG provides a powerful tool for ana-
lyzing directed causal interactions between brain regions dur-
ing event-related processing. These analyses are rooted in non-
technical intuitions that human observers use to identify patterns
of everyday causation. The logic of these inferences constrains
methodological choices about suitable imaging modalities. Statis-
tical considerations further constrain the implementation of these
analyses and favor the use of methods that provide continuous
measures of causality based on full multivariate modeling. We have
suggested that the requirements of these analyses produce results
that point to unexpected levels of complexity and interaction in
language processing and inform the way that we understand func-
tional localization and characterize the functional architecture that
supports language processing.
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