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Abstract - Successful development of effective real-time traffic 

management and information systems requires high quality traffic 

information in real-time. This paper presents the state-of-the-art of 

traffic and general mobility sensory technology and a suite of methods 

for data pre-processing and cleaning for real-time applications. We 

propose a suite of methods and techniques to be applied from traffic 

data acquisition, preprocessing, transformation and integration until 

data advanced processing and transfer. Next, we detail some techniques 

for data preprocessing and integration, or fusion, phases. Even though 

the comprehensive use of historical traffic data and assignment models 

to support the most part of online services and operations, real-time 

data is extremely important to promote models’ accuracy and, 

therefore, the reliability of information and outputs derived from data 

fusion and processing. Together with techniques and theoretical 

formulas we present a case study applied to the Portuguese Brisa’s A5 

motorway, a 25 km inter-urban highway between Lisbon and Cascais. 

Traffic on this motorway heading to Lisbon in the morning rush hours 

typically experiences high levels of congestion. Brisa, the motorway 

operator company, has equipped A5 with a variety of traffic sensors to 

be used in a real-time multi-purpose way, either for traffic 

management and control or for traveler information and third-part 

applications.  

Keywords: Traffic data acquisition, Data preprocessing, Data 

transformation and fusion 

I. INTRODUCTION 

Continuing deployment of a large number of sensors, 

telemetry and telematics devices, and other on-line traffic 

and mobility data collection tools, pushed by road traffic 

engineering, such as traffic monitoring, signal control, 

automatic incident detection and recovery, traffic forecasting 

and traveler information, has increased hugely the amount of 

time-series traffic data [Antoniou et al., 2008]. The range of 

new data generated provides remarkable opportunities for 

enhancing decision-making in areas such as transport 

systems management and control, traveler information 

services, and urban and transportation planning. However to 

manage and make efficient use of such amounts of 

heterogeneous data sets in a comprehensive way, it’s also a 

big challenge, and even bigger for real-time use cases and 

applications. 

The foremost data-collection task is therefore an essential 

component on the process chain, and definitively does not 

end on the data acquisition. Together with data 

preprocessing and fusion, implements a silent but crucial 

mission to provide the essential raw material for upcoming 

applications and systems: stable, coherent and efficient 

traffic data. Figure 1 presents a schematic overview of the 

process chain from data acquisition until transfer for third 

party applications and services. 

 

Figure 1: Schematic workflow of traffic data collection and processing 

Since all data available is accurately collected from the 

transportation system, or it is related with it, the ability to 

use all datasets combined in the most appropriate way is a 

key issue for the information systems solution providers and 

a challenge for the data processing systems and methods. On 

top of those pressing solutions, traffic and congestion 

estimation and forecasting methods aims to maximize the 

use of the pool of versatile data, through the development of 

algorithms and techniques to fuse those seemingly unrelated 

data into high level information which is readily usable by 

predicting systems. 

This paper is concerned with the traffic data collection, 

preprocessing and fusion chain to support real-time 

applications, whereas data completeness, consistence, 

performance and reliability promote an equilibrium equation 

for effective implementations.  

The paper is organized as follows: State-of-the-art sensory 

technology for traffic and generic mobility data collection is 

presented in Section II. Then some descriptions and figures 

about the case study area in Section III. This is followed by 

the introduction of methods and techniques for data 

preprocessing and cleaning, along with some experimental 

results in Section IV. Finally, in the Section V we discuss 

results and introduce some works and guidelines for future 

research. 

II. TRAFFIC AND MOBILITY SENSORY TECHNOLOGY  

For many years, under growing pressure for improving 

traffic management and control, traditional on-road sensors, 

(e.g. inductive loop detectors), were massively installed and 

collecting methods have been evolving to obtain, compute 
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and transfer traffic data. [Klein, 2006] Along the roadway, 

such in-situ technologies, either based on intrusive or non

intrusive techniques, revealed necessary but not sufficient 

because of their limited coverage and expensive costs of 

implementation and maintenance. In the last years, several 

alternatives technologies and data sources emerged, driven 

by innovative methods and models. This section presents a 

comprehensive overview of sensor technology applied to 

transport engineering.  

Traffic data collection is primarily categorized in three 

methods: site data, floating car data and wide

Each of these methods has different technical characteristics 

and principles of operation, including structure of data 

collected, accuracy of the measurements and network 

coverage. [Antoniou et al., 2008] 

classification establishes such sensor types based on their 

functionality as point, point-to-point, and wide area. 

third and under research methodology, wide

aims to get automated traffic condition snapshots from the 

road network. 

Site data: refers to traffic data measured by the means of 

sensors located along the roadside with diverse technologies 

and application techniques. Some have been employed for 

many years such as inductive magnetic loops, pneumatic 

road tubes, piezoelectric loops arrays and microwave radars. 

With the recent technology developments, new sensors for 

roadside sites came out powered by flexibility, multi

purpose and cost effectiveness. Examples of those new 

sensors are ultrasonic and acoustic sensor systems, 

magnetometer vehicle detectors, infrared systems, LIDAR 

light detection and ranging, and video image processing and 

detection. 

Floating car data (FCD) also defined as

detection: refers to mobility data collection by locating and 

recognizing vehicles at multiple points in a network, where 

specific detectors are real or virtually installed. 

2010] Some of those point-to-point sensors provide 

complete transversal of the travel path, providing excellent 

and confident information for route choice ana

estimations. Examples of FCD sensors are: license plate 

recognition (LPR), automatic vehicle identification (AVI) 

transponders including probe vehicles and electronic toll 

tags. Varying from previous methods, global positioning 

system (GPS) combined with wireless communication 

service GSM/GPRS, provides mobility data from dynamic 

segments where equipped vehicles, in terms of delay and 

congestion level.  

More recently, new technologies arisen both from road 

infrastructure and vehicle side, in the first instance 

established for vehicle-to-infrastructure and vehicle

vehicle cooperation. Those identifiable vehicles, equipped 

with wireless communications devices, are able share 

mobility data each other and with roadside devices, as 

shown in the Figure 2. Finally wireless cell

also provides important mobility data about moving mobile

phones intensity and times along the road netwo

Along the roadway, 

technologies, either based on intrusive or non-
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infrastructure and vehicle-to-

vehicle cooperation. Those identifiable vehicles, equipped 

with wireless communications devices, are able share 

mobility data each other and with roadside devices, as 

wireless cell-phone tracking 

also provides important mobility data about moving mobile-

phones intensity and times along the road network. 

Figure 2: Probe vehicles systems for vehicle
infrastructure cooperation

Wide-area: under research method and technology aims to 

carry out wide-area traffic flow monitoring capabilities 

based on multi-sensor tracking options such as 

photogrammetric processing, video analysis, sound 

recording, and space-based radar.   

Table I classifies the various traffic data collection methods 

and technologies by their network and vehicle coverage, and 

traffic data collected. As previously defined, based on the 

network coverage, collection methods can be limited to a 

particular site location; can be stretched to fixed road 

segments or trips defined by identifying sensors; or can be 

extended to a wide-area network thr

board equipped vehicles and airborne sensors.

 

TABLE I

TRAFFIC AND MOBILITY DATA 

AND TECHNOLOGIES
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Inductive 

loops 
X X

Road tubes X X

Piezoelectric X X

Microwave 

Radar 
X X

LIDAR/ 
Infrared/ 

Acoustic 

X X

Video 

processing 
X X(1)

Toll plazas X X

Road 

segments 

LPR   

Transponders   

Wireless 

devices 
  

: Probe vehicles systems for vehicle-vehicle and vehicle-
infrastructure cooperation 

area: under research method and technology aims to 

area traffic flow monitoring capabilities 

tracking options such as 

photogrammetric processing, video analysis, sound 

Table I classifies the various traffic data collection methods 

and technologies by their network and vehicle coverage, and 

collected. As previously defined, based on the 

network coverage, collection methods can be limited to a 

particular site location; can be stretched to fixed road 

segments or trips defined by identifying sensors; or can be 

area network through autonomous on-

board equipped vehicles and airborne sensors. 
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Wide-

area 

GPS   X X X 

Cell-phone 

tracking 
  X X X 

Airborne 

sensors 
  X X X 

(1) Classification of the vehicles into two classes: regular cars and lorries, 

from vehicles volume and estimated length; not compatible with axels 

classification methods.  

First conclusion from methods and technologies comparison 

is the highest complementarity between solutions, in terms 

of functionalities and data gathered from transportation 

system. 

III. CASE STUDY AREA 

For the experimental analysis of this research study, we use 

the A5 motorway, a 25 km inter-urban highway connecting 

Lisbon and Cascais in the West-cost of Portugal, presented 

in Figure 3. The first stretch of this motorway, linking 

Lisbon to the National Stadium in Oeiras, with 8 km length, 

opened to the traffic in 1944 and became the first motorway 

in Portugal and one of the firsts in the world.  

A5 Main Figures 

Geometry (km) 25 

Nodes 14 

Ramp 
connections 

64 

Toll plazas 6 

Annual Average 

daily traffic 
(AADT) 

67,200 

AADT near 

Lisbon 
135,400 

ETC rate 71% 

Light vehicles 

rate 
93% 

Occurrences 

average/day  
 

Incidents 28 

Accidents 4 

Obstructions/ 

Lane closures 
6 

 
Figure 3: The Portuguese A5 inter-urban tolled motorway main figures 

A5 motorway is widely equipped with telematics systems 

for tolling and traffic management and control. It includes a 

variety of sensors for traffic monitoring, for the most part 

used in a multi-purpose way, according to the Table II. 

Primarily telematics installations on the roadway regarded 

toll collection systems for open tolling service, where tolls 

fees are levied at certain points on the highway, once on the 

main carriageway and other at interchanges.  Since 1991, the 

high acceptance of Via Verde – the national-wide electronic 

toll collection service, based on dedicated short-range 

communications (DSCR) microwave communications, A5 

toll plazas, located between kilometer 11 and 19, are 

equipped with the electronic toll collection (ETC) devices.  

Due to the ETC use rate, and additional DSRC detectors 

were installed to collect travel time information between 

location points. Automatic video processing cameras and 

microwave radars are now under deployment to dense the 

sensory infrastructure, as shown in the Figure 4. 

Behind roadway telematics infrastructures and systems, 

Brisa motorways, including A5, are fully equipped with a 

private high-speed fiber-optic cabling and wireless solutions 

to enable real-time remote monitoring of the network 

conditions, but also, traffic management, tolling operations 

and enforcement. 

TABLE II 

TELEMATICS SYSTEMS INSTALLED IN THE CASE STUDY 

AREA 

Telematics system 
Number of 

units 

Operating functions 

T
o
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ic
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ll

ec
ti

o
n
 

M
an
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&
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o
n
tr

o
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Toll gates 40 X  X X  

ETC toll gates 20 X X X  

PTZ Video cameras 47  X  X 

VMS Variable 

message Signs 
9    X 

Loop detectors 3  X X  

Microwave radars 2  X X  

Video processing 
cameras 

4  X X  

Point-to-point DSCR 12  X X  

Roadway telematic infrastructures are then connected to 

Brisa’s traffic control center (TCC) where, a state-of-the-art 

suite of systems and applications corporate an advanced 

traffic management and information system (ATMIS), 

providing 24-hour automated electronic tolling, traffic 

monitoring, traveler information and decision support 

services for traffic control and management. At ATMIS 

level, all data is managed together and, even though the 

specific use for specific functions, such as toll tax charging, 

it is available for multiple purpose applications, from traffic 

management to road maintenance and planning.  

This work is part of a research project to generate real-time 

anticipatory short-term traffic conditions to be integrated 

with traffic management and traveler information services, 

both for recurrent and non-recurrent, unpredictable, incident-

based conditions. Although the primarily A5 motorway 

application, success results will be applied to the complete 

network. 
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Figure 4: A5 motorway sensory infrastructure 

IV. DATA PREPROCESSING AND CLEANING 

Real-world raw sensor data, technology independently, is 

highly susceptible to noise, missing values, and inconsistent 

data due to sensor failures, measurement errors, and data 

link errors or simply because of their huge size. Low-quality 

data will lead to low-quality data processing and outcomes, 

whichever downstream traffic data application is to run. 

Furthermore, due to measurement errors derived data, such 

as average speeds or vehicles counts, may have values that 

are physically impossible such as negative volume counts or 

vehicles speed, unless wrong-way driving incidents.  

However, this straightforward approach to improve data 

quality becomes ineffective in case of road incidents. For 

this, extended algorithms for pattern analysis focus precisely 

on the identification of unexpected significant variations so 

called incident-affected data or outliers, either in data 

measured or predicted. Consistent values leads to identify 

outlying events, correspondent to roadway incidents. This 

automatic process for incident detection is extremely useful 

for network operations, to proceed with automatic responses 

and control. However, new incidents conduct to unexpected 

traffic patterns commonly not found in the historical 

database. Therefore, data preprocessing can be used as a 

parallel process, valid and useful until an unpredicted 

scenario event occurs and disrupt traffic conditions. 

In a short definition, data preprocessing is a combination 

chain of techniques to be applied to improve data quality 

through the completeness, consistency and simplification of 

datasets.  

A. Data properties summarization  

To be successful and effective with real-time data 

preprocessing it is essential to have a comprehensive, overall 

picture of existing datasets. It can be based on summarized 

representative data properties, including highlights of data 

values to be treated as noise or outliers. [Han, 2006] The 

technique is to understand the distribution of the data based 

on descriptive statistics, regarding both central tendency and 

dispersion of data. It includes mean, median, mode and 

midrange as measures of central tendency and quartiles, 

inter-quartile range and variance for data dispersion. Figure 

5 shows the correlation relationship between FCD average 

speed and flow rate in the A5 corridor. 

 

Figure 5: A scatter plot for FCD average speed versus Point flow rate in   

the A5 corridor 

Both central tendency and dispersion properties are obtained 

as distributive functions, calculated by partitioning the 

dataset into smaller subsets and computing measures for 

each subset. The global and unique measure is obtained by 

merging results. 

The end result of this process step is a package of discrete 

characteristics about traffic data, either for a short sliding 

window reaching real-time timeline or for the entire dataset 

for analysis, such as, the complete day. The spatial domain 

of those characteristics is also stretchy and can be applied to 

a single measure site, to a set of sites defined individually or 

within a corridor, or to the network as a whole.  

However, for some following pre-processing steps and for 

the some applications further on, it is essential to know how 

current traffic conditions compare with past periods in the 

historical database.  Once again the time and space scale to 

find out the reference period, depends on the application 

goal. 

B. Data cleaning – Missing values 

Most real-time applications, such as monitoring, simulation, 

require complete datasets without missing values. Data 

cleaning techniques attempt to fill in missing values, smooth 

out noise while identifying outliers, and correct other 

inconsistencies in the data. Several methods endeavor to 
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complete missing gaps dynamically, implementing 

estimation strategies balanced between data accuracy and 

computational complexity. Beyond this technical approach 

to estimate wanting data, there is an essential variable prior 

to the strategy definition: the gap size.  

Taking into account the typical interval for roadside data 

acquisition and aggregation, varying from one to 5 minutes, 

a missing gap up to 15 minutes, corresponding to a one-step 

iteration bootstrapping, can be estimated with a straight-line 

regression analysis, involving a response traffic value, �, and 

a single predictor time-based period, �. That is, 

 � = � + �� (1) 

where b and w are regression coefficients, thought as 

weights to be solved by the method of least squares. So that 

we can equivalently write, 

 � = �� + ��� (2) 

Let 
 be the set of existing time-based observation 

values���, ��
, ���, ��
, … ��|�|, �|�|�, the regression 

coefficients can be estimated using the method with the 

following equations, 

 �� = ∑ ��� − �̅
��� − �̅
|�|���∑ ��� − �̅
�|�|���  (3) 

 

 �� = �̅ − ���̅ (4) 

where �̅ and �̅ are the respective mean values of existing 

dataset 
. Figure 6 shows an implementation example of 

missing values estimation using linear regression method, as 

described in the equations (1) to (4). 

 

Figure 6: Missing data estimation using linear regression 

For larger missing data gaps, (e.g. 45 to 120 minutes), but 

reasonable to be a punctual system or communications 

failure, data completion can be estimated using historical 

data in combination with the most recent observations. For 

the present research work, gap sizes over 120 minutes are 

considered input data failure, not able to be estimated from 

online and historical data sets. 

A basic assumption is to consider that the evolution of traffic 

patterns on a given day of the week is the same as the 

evolution of the traffic pattern on the corresponding day in a 

reference week, constructed as a moving average over 

several weeks in the past. [Bellemans, 2000] This 

construction requires dealing with scenarios such as 

“special” days or official holidays on a weekday and days 

with major events where traffic patterns may differ 

significantly from regular days. 

For instance, to estimate a missing value � for a time step � 

in the current day �, we use the following equation. 

 ����
 = ���� − 1
����� − 1
 ×  �����
 (5) 

Where �����
  is the corresponding data value at the time � 

in the reference day ��. Such matching value is then scaled 

to the traffic value intensity that precedes the missing value, 

using the factor (6). 

 ���� − 1
����� − 1
 (6) 

The application of this method is shown with the chart in the 

Figure 7, where missing values are estimated through the 

interpolation process (5) using values from the reference day 

22.Jan - the regular weekday from previous week and the 

correction factor. 

 

Figure 7: Missing data estimation for a 30 minutes missing gap using 

reference data interpolation 

The big advantage of this method is the simplicity that leads 

to ease implementation and computation, useful for real-time 

applications. However it fails thoroughly when traffic 

patterns suddenly changes because of any roadway incident 

or demand fluctuations. To handle that situation, keeping the 

low complexity, we propose a statistical-based analysis to 

establish dynamically an effective connection supported by 

evolutionary traffic patterns.  

Space-based similarity search 

This new process is based in time-series data analysis and 

aims to find the most similar traffic pattern to the real-time 
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sequence pattern, or trail, to be used as reference data to 

complete missing values gaps. Because of the heterogeneity 

and complexity of the network of sensors and traffic 

measure database, we implement an experience-based 

heuristic to optimize patterns recognition and matching. The 

strategy starts with a space-time based correlation to identify 

space-time connections among network elements. The 

objective of this first step is to elect a representative pair of 

elements, to be used on the next step. 

To summarize such linear connections between elements 

numerically is used the mean and standard deviation of each 

variable-element separately plus a measure known as the 

Pearson correlation coefficient. Let � and   be a pair of ! 

observations from two independent data sources, at time 

interval "�, � − !#, � = { %& , %&'�, %&'�, … , %&'( }  and  ={ *& , *&'�, *&'�, … , *&'( } , the correlation coefficient + is 

given by the formula 

 +��,  
 =  ∑ �%� − %̅
�*� − *,
(���-∑ �%� − %̅
�(��� ∑ �*� − *,
�(���  (7) 

In other words, the coefficient of correlation is obtained 

from the covariance ./01.3 normalization, by division it by 

the standard deviation 41 ×  43 of each variable element. 

From the correlation coefficient + we obtain the coefficient 

of determination +
, by squaring +. The magnitude of the 

coefficient of determination +
 indicated the proportion of 

variance in one variable-element, explained from the 

knowledge of the second variable-element. 

 +
 = +� (8) 

Finally we calculate the amount of variation that the two 

variable-elements have in common - the proportion or 

percentage of shared variance. There is also the opposite 

coefficient for free – the coefficient of alienation 1 −  +�, 

which defines the measure of non-association or variation 

between such two variables. 

 5ℎ7�8� �7�97!:8 = +
 × 100 (9) 

Therefore, shared variance is the variance accounted for in 

one element by another element. For each sensor or data 

source of the network, this space-based similarity process 

establishes a reference element, to be used in the following 

processing steps.  

Time-based similarity search 

Traffic conditions can be stated as an evolution chain of 

values, sequence or trail, established from plain measures, 

summarized indicators or from a complex, highly elaborated 

gauge. Each value is the representative of the traffic network 

for the discrete time �� . The set of values, behavior as time 

series sliding window, can be defined as the sequence trail of 

the network conditions for the time �(, where ! the near 

real-time index. The trail structure is topologically linear, 

which can be represented by a vector of measures in the 

common timeline. 

From the real-time traffic trail, this function aims to discover 

in the historical database, the most similar trail to be defined 

as the reference trail. The similarity between two trail 

structures can be measured by the normalized root mean 

square deviation (NRMSD). Let the real-time traffic trail be 0 = { �& , �&'�, �&'�, … , �&'( }  where ��  are the discrete 

values for the 9-th element, and let the historical set of traffic 

trails for a reference element obtained in (9), be 0< where 

each 0<=  is >-th trail index and the �<=�  is the counterpart 9-
th element.    

Then we can find the minimum value of the NRMSD 

between the real-time trail 0 and historical trail set 0<, 

applying the following formulas, 

 +?@
�0, 0<=
 = A1! B‖�� − �<=�‖�(
���  (10) 

over all selected historical trails, where ‖ . ‖ denotes the 

norm value. To normalize the deviation or error found in 

terms of percentage, RMSD is then divided by the range of 

computed values �DEF − �D�(, 

 

 G+?@
�0, 0<=
 =  +?@
�0, 0<=
 �DEF − �D�(  (11) 

 

Hence, the most similar historical trail 0<�HI is obtained as 

the minimum value of the NRMSD between the real-time 

trail 0 and the historical trail 0<= , 

 0<�HI = min�G+?@
�0, 0<=

 (12) 

From here 0<�HI will be used as the reference data set to 

complete missing values in 0. 

 
Figure 8: Missing data estimation based on space-time similarity search 

The application of this method combination is shown in the 

Figure 8. For the 29
th

 of January, missing values in the 

sensor point-to-point Carcavelos/Oeiras Service Area, in the 

time period 8:20 to 8:50 AM, are estimated using data from 
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20
th

 of January, found in the space-time similarity search. 

Ultimate values are applying factor (6) where the reference 

data is 0<�HI. 

TABLE III 

RESULTS COMPARISON FOR 40 MINUTES MISSING GAP  

Method RMSD 

Linear regression 13.05 

Interpolation with reference data 18.25 

Space-time similarity search 12.40 

 
As presented in the Table III, for short missing values 
periods, both linear regression and space-time similarity 

search are satisfactory to estimate missing values. This way 
promotes the usage of the linear regression, due the low 
computational complexity and easy implementation.  
 
Next we process and present estimation values for a large 
missing gap, for the same reference day.  

 
Figure 9: Missing values estimation methods comparison 

Using the same package of techniques and methods, we 

produced a 90 minutes missing values gap for the 29
th

 of 

January in the same sensor. Figure 9 presents the estimation 

values results graphical comparison, using precisely the 

same reference data sets. 

TABLE IV 

RESULTS COMPARISON FOR 90 MINUTES MISSING GAP  

Method RMSD 

Linear regression 21.03 

Interpolation with reference data 29.81 

Space-time similarity search 9.16 

 
As shown in the Table IV, for large missing values periods, 
space-time similarity search with NRMSD is definitively the 
most appropriated method to complete dataset. 
 

C. Data cleaning – Outliers 

Outlying observations are measures that numerically deviate 

radically from the rest of the data. [Mendenhall, 1993] 

defines the term “outliers” to values “that lie very far from 

the middle of the distribution in either direction”. They may 

be due to sensor noise, acquisition process instability, 

equipment degradation, computer or communication system 

fails, or human-related errors. However, with some 

applications, abrupt changes in the acquisition field may 

occur and cause fluctuations in upcoming observations from 

the bulk of values. In case of traffic data measurement, such 

sudden changes are usually related with traffic congestion 

caused by accidents, broken vehicles or any other type of 

incident. For real-time applications, based on online data 

collection and processing, it is crucial to assure data quality 

through the identification and isolation of outliers.  

In this research work, automated detection of outliers and 

removal were developed and integrated with automatic 

incident detection, in order to preserve all data, including 

such apparently unreliable data. Therefore, this process is 

made up of two distinct functions: i) identify, isolate and 

replace outliers; and ii) automatic data-driven incident 

detection. In this paper and section we focus on the first 

function, in order to support real-time data applications.  

The generation of outliers can be described by the time-

series process analysis additive outlier model [Martin, 1986]. 

 M= = N= +  O= (13) 

Where M= are the observations data sequence, N= is the 

expected data sequence and O= represents a sequence of 

contaminating outliers. The expected sequence N= is based 

strictly on the current and past data observations M='P 

for > ≥ R ≥ 0, and the median value MS. For a data point %, 

the distance �T is 

 �T = U MT −  MSTU (14) 

Is the distance �T exceeds some specific threshold VT > 0, 

and then we declare MT to be an outlier and replace it with an 

estimated value obtained from the process to complete 

missing values, defined previously. 

 

Figure 10: Automated outliers detection and replacement process 

The method application is shown in the Figure 10 with the 
variable average speed in the sensor point-to-point 
Carcavelos/Oeiras Service Area for the 29

th
 of January.  
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D. Data reduction 

For conventional surveillance systems, raw data is gathered 

from a multi-variety of sensing methods either installed on 

the network operators’ infrastructure or on fleeting vehicles, 

as previously described. This increasing array of data 

sources leads to an increasing difficulty to accomplish 

desired results by making use of the whole data. [Huang et 

al., 2009]  Some of the main reasons for that relies on the 

intrinsic characteristics of data sources and types: i) Are 

deployed with uneven density over the network; 2) Are 

heterogeneous in type; 3) Provide highly correlated data; 4) 

Report at non-uniformed resolution; 5) Report at different 

frequencies. Data reduction techniques can be applied to 

work out some of those difficulties by harmonizing data 

references and dimensions, and bringing down the size and 

complexity of datasets, maintaining the integrity of the 

original data.  

In the present work we design a two-tier approach for data 

reduction: i) at the data acquisition level; and ii) at data 

fusion level. For the first tier, data acquisition process 

computes raw or elementary data and, along with events 

detection, proceeds with data aggregation and 

summarization per regular periods, varying in space, time 

and measure type. For the second tier, heterogeneous data 

sets are merged together do obtain a single data platform, 

and is defined as data integration and fusion. 

Data fusion is the process of merging together information 

gathered from various heterogeneous sensors, into a single 

data platform. In space-time domain, such as traffic field, 

data fusion is synonymous with data integration and aims to 

combine diverse data sets into a unified, or fused, data set 

which includes all of the data points and time frames from 

the input data sets. The resulted data set differs from a 

simple merged superset in that data tuples contains attributes 

and metadata which might not have been included for these 

points in the original data set. 

TABLE V 

TRAFFIC DATA, INFORMATION AND KNOWLEDGE 
Data 

acquisition 

and 

preprocessing 

Data Fusion 

Knowledge 

and decision 

making 

Elementary 

data 
Object data 

Situation 

information 
Response 

- Sensor data 
- Tolling data 

- Road 

segment  data 
- GPS data 

- Cell-phone 

data 

- (…) 

- Point speed 
- Point flow 

- OD travel 

times 
- OD flows 

- Class-relative 

density 

- (…) 

- Road point 
conditions 

- Link conditions 

- OD conditions 
- Driver-choice 

options 

- Incidents 

- (…) 

- Traffic 
control 

- Driver 

warning 
- Congestion 

pricing 

- Maintenance 

- (…) 

Table V presents a data architecture overview, concerning 

the evaluation chain from elementary data to knowledge for 

decision making support. 

 

V. DISCUSSION AND FUTURE WORKS 

Real-world traffic databases are highly susceptible to noise, 
redundancy and inconsistent data due to their typically huge 
size and their likely origin from multiple, heterogeneous 
sources and sensory technologies. Low-quality traffic data 

will lead to low-quality results processing. For real-time 
traffic data applications this postulation is even more 
significant, since low-quality information for decision 
support will lead to incompetent control and management. 
Data preprocessing and cleaning defines a set of techniques 
and methods to analyze databases, identify errors and 
inconsistencies and proceed with dataset correction, 
completion and simplification.  
This paper presents a suite of combination methods to 
analyze and summarize real-time traffic data sets, to estimate 
missing values and to identify and correct outliers in 
datasets.  Either used separately in the simplest way for short 
missing gaps or in a complex way, combining several 
methods and time-space based historical datasets, data 
preprocessing techniques aims to improve data quality 
through the harmonization and completeness. 
 
Our contribution is the designing and implementation of a 
systematic methodology to measure, check and repair traffic 
data in order to enable following steps in the processing 
chain till decision making and transfer. With this approach, 
facing data problems in early stage, including data 
simplification, reduction and integration, we promote the 
multi-purpose usage of traffic data. However, the key 
advantage of our process definition goes for real-time data 
applications, used to manage primitive data with noise and 
errors inside. Future works in this research program will take 
advantage of this work, and will focus data fusion and 
decision making processes. 
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