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Abstract

We provide a framework for studying the relationship between the financial network
architecture and the likelihood of systemic failures due to contagion of counterparty risk.
We show that financial contagion exhibits a form of phase transition as interbank connec-
tions increase: as long as the magnitude and the number of negative shocks affecting fi-
nancial institutions are sufficiently small, more “complete” interbank claims enhance the
stability of the system. However, beyond a certain point, such interconnections start to
serve as a mechanism for propagation of shocks and lead to a more fragile financial sys-
tem. We also show that, under natural contracting assumptions, financial networks that
emerge in equilibrium may be socially inefficient due to the presence of a network exter-
nality: even though banks take the effects of their lending, risk-taking and failure on their
immediate creditors into account, they do not internalize the consequences of their actions
on the rest of the network.
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1 Introduction

Since the global financial crisis of 2008, the view that the architecture of the financial system causes,

and shapes the nature of, crises has become conventional wisdom. The intertwined nature of financial

markets has not only been offered as an explanation for the spread of risk throughout the system,1

but also motivated much of the policy actions as the crisis unfolded.2 Such views have even been

incorporated into the new regulatory frameworks developed since.3 Yet, the specific role played by

the financial network structure in creating systemic risk and shaping the fragility of the financial

system remains, at best, imperfectly understood. This is not only due to a lack of conclusive empirical

evidence on the nature of financial contagion, but also due to the absence of a theoretical framework

that can serve to clarify the relevant economic forces.

The current state of uncertainty about the nature and causes of systemic risk is reflected in po-

tentially conflicting views on the relationship between the structure of the financial network and the

extent of financial contagion. Pioneering works by Allen and Gale (2000) and Freixas, Parigi, and Ro-

chet (2000) suggested that a more equal distribution of interbank claims enhances the resilience of the

system to the insolvency of any individual bank.4 Allen and Gale, for example, argue that in a more

densely interconnected financial network, the losses of a distressed bank are divided among more

creditors, reducing the impact of negative shocks to individual institutions on the rest of the system.

In contrast to this view, however, others have suggested that dense interconnections may function as

a destabilizing force, paving the way to systemic failures. For example, Vivier-Lirimont (2006) argues

that as the number of a bank’s counterparties grows, the likelihood of a systemic collapse increases.

This perspective is also shared by Blume et al. (2011) who model interbank contagion as an epidemic.5

In view of the conflicting perspectives noted above, this paper presents a unifying, yet simple

framework for studying the role of the financial system’s architecture in shaping systemic risk. In

particular, by focusing on the relationship between the structure of the financial network and the ex-

tent of contagion via the so-called domino effects, we clarify the economic forces that may contribute

to the propagation of shocks during the times of crises.6

1See, for example, Plosser (2009) and Financial Crisis Inquiry Commission (2011).
2For an account of the policy actions during the crisis, see Sorkin (2009). For a general discussion of the crisis and events

that followed the collapse of Lehman Brothers, see Gorton (2010). Also see Gorton and Metrick (2011) on the spread of the
crisis from subprime housing assets to the repo market; Stulz (2010) on the CDS market; and Longstaff (2010) on cross-market
contagion.

3For example, the provision on “single counterparty exposure limits” in the Dodd-Frank Wall Street Reform and Con-
sumer Protection Act is meant to prevent the distress at a single institution from infecting the rest of the system by limiting
each firm’s exposure to any single counterparty (The Economist, 05/12/12).

4Similar ideas are discussed by Kiyotaki and Moore (1997), who study contagion in credit chains amongst lenders and
entrepreneurs.

5Along the same lines, Battiston et al. (2012) argue that due to a positive feedback loop resulting from a financial accel-
eration mechanism, more interconnectivity leads to greater fragility in the financial system. Somewhat relatedly, Billio et al.
(2012) show that, over the past decade, financial institutions have become highly interrelated, which has led to an increase
in the level of systemic risk in the finance and insurance industries.

6The role played by the network architecture crucially depends on the nature of economic interactions between different
entities that constitute the network. For example, focusing on the intersectoral input-output linkages in the real economy,
Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012) show that in the presence of linear (or log-linear) economic inter-
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We focus on an economy consisting of n financial institutions (henceforth banks, for short) that

lasts for three dates. In the initial date, banks borrow funds from one another to invest in projects that

yield returns both in the intermediate and final dates. The liability structure that emerges from such

interbank loans determines the financial network, capturing the pairwise counterparty relationships

between different institutions. Banks in our model have to make other payments (such as wages or

taxes) with claims that are senior to other banks’. Assuming that the returns at the final date are

not pledgeable, all debts have to be repaid at the intermediate date. Thus, a bank whose short-term

returns are below a certain level may have to liquidate its project prematurely (i.e., before the final

date returns are realized). If the revenues from the liquidations are insufficient to pay all its debts, the

bank defaults. Depending on the structure of the financial network, this may then trigger a cascade

of failures: the default of a bank on its debt may lead to financial distress of its creditor banks, which

in turn may default on their own counterparties, and so on.7

We first study the extent of financial contagion while taking the structure of the financial network

as given. By generalizing the results of Eisenberg and Noe (2001), we show that a mutually consistent

collection of repayments on interbank loans always exists and is generically unique. We then show

that when the magnitude and the number of negative shocks are below certain thresholds, a result

similar to those of Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000) holds: a more equal

distribution of interbank obligations (liabilities) leads to a less fragile financial system. In particular,

the complete financial network, in which the liabilities of each institution are equally held by all other

banks, is the configuration least prone to contagious defaults. At the opposite end of the spectrum,

the ring network — a configuration in which all liabilities of a bank are held by a single counterparty

— is the most fragile of all financial network structures. The intuition underlying these results is that

a more equal distribution of interbank liabilities guarantees that the burden of any potential losses is

shared among more counterparties and hence, in the presence of relatively small shocks, the excess

liquidity of the non-distressed banks can be efficiently utilized in forestalling further defaults.

One of our main results is that that as the magnitude or the number of negative shocks cross

certain thresholds, the types of financial networks that are most prone to contagious failures change

dramatically. In particular, more financial interconnections are no longer a guarantee for stability.

Rather, in the presence of large shocks, interbank liabilities facilitate financial contagion and create

actions, the volatility of aggregate output is independent of the sparseness or denseness of connections. Rather, it depends
on the extent of asymmetry in the interconnections of different entities. Acemoglu, Ozdaglar, and Tahbaz-Salehi (2010) show
a similar result for the “systemic” event in which aggregate output falls below a certain threshold. Such conclusions, how-
ever, do not extend to financial interactions, as the possibility of default (and the presence of debt-like financial instruments
or other non-linearities) create a very different set of economic interactions over the network.

7As this description clarifies, our main focus is on the spread of counterparty risk, which is a specific type of financial
network interaction. At least two other types of network interactions are important in practice: (i) fire sales of some assets by
a bank may create distress on other institutions that hold similar assets (represented by the means of the network of common
asset holdings); and (ii) withdrawal of liquidity by a bank (for example, by not rolling over a repo agreement or increasing
the haircut on a collateral) may lead to a chain reaction spreading over a particular network structure, perhaps related to
the network of counterparty relations. In view of the comment in footnote 6, we expect the role of network architecture in
these alternative mechanisms, though related, to be different from the one studied in here. The study of these alternative
propagation mechanisms is beyond the scope of the current paper.
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a more fragile system. Our results show that, in the presence of large shocks, “weakly connected”

financial networks — for example, one consisting of a collection of pairwise connected banks with

only a minimal amount of shared assets and liabilities with the rest of the system — are significantly

less fragile than the more complete networks.8 The intuition underlying such a sharp “phase transi-

tion” is that, with large negative shocks, the excess liquidity of the banking system may no longer be

sufficient for absorbing the losses. Under such a scenario, less interbank connections guarantee that

the losses are shared with the senior creditors of the distressed banks, and hence, protecting the rest

of the system.

Our formal results thus confirm a conjecture by Haldane (2009) who suggested that highly inter-

connected financial networks may be “robust-yet-fragile”and that they “exhibit a knife-edge or tip-

ping point property”, in the sense that “within a certain range, connections serve as shock-absorbers

[and] connectivity engenders robustness.” However, beyond a certain range, interconnections start

to serve as a mechanism for propagation of shocks, in Haldane’s words, “the system [flips to] the

wrong side of the knife-edge,” and fragility prevails. On a broader level, our results highlight that the

same features that make a financial system more resilient under certain conditions may function as

significant sources of systemic risk and instability under another.

We also endogenize the interbank counterparty relations and use our characterization of financial

contagion to investigate the efficiency of equilibrium financial networks. The key endogeneity in

our model involves the structure and the terms of bilateral interbank agreements. In particular, we

assume that banks lend to one another through debt contracts with contingency covenants, which

allow lenders to charge different interest rates depending on the risk-taking behavior of the borrower.

The presence of such covenants is both empirically plausible and theoretically central as it guarantees

that all bilateral externalities are internalized. Nevertheless, our key result here is that, despite the

covenants, the equilibrium financial networks are generally inefficient. Our results thus highlight

the presence of a financial network externality in the formation of financial networks: even though

banks take the effects of their actions on their immediate creditors into account, they fail to internalize

the externalities that they impose on the rest of the network — such as on their creditors’ creditors

and so on. We then illustrate the implications of the financial network externality for the types of

inefficiencies that may arise in the formation of financial networks. In particular, we show that (i)

banks may “overlend” in equilibrium, creating channels over which idiosyncratic shocks can translate

into systemic crises via financial contagion; and (ii) they may lend to the “wrong” set of borrowers

from the point of view of the social planner, creating an insufficiently connected financial network

that is excessively prone to contagion. We also show that banks’ private incentives may lead to the

formation of robust-yet-fragile networks of counterparty relations, which are overly susceptible (from

the social planner’s point of view) to systemic meltdowns with some small probability.

Finally, we relax the assumption of non-pledgeability of the long-term returns and study the na-

8Such financial networks are somewhat reminiscent of the old-style unit banking system, in which banks within a region
are only weakly connected to the rest of the financial network.
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ture of contagion within the financial network. With limited pledgeablity of returns, there is room for

renegotiating debts that are due in the intermediate date. We show that when the financial network is

connected, there is a threshold of financial distress below which the structural details of the network

become irrelevant and the excess liquidity within the banking system can be efficiently mobilized to

forestall all defaults. However, once the size of the negative shock is sufficiently large, our earlier

results become applicable once again and the fragility of the banking system would highly depend

on the structure of the financial network. Thus, limited pledgeability leads to another form of phase

transition in the financial network: below the critical threshold, the banking system successfully man-

ages aggregate liquidity provision, whereas above that threshold, the local structural properties of the

financial network dictate the extent of contagion.

Our paper is part of a recent but growing literature that focuses on the role of the architecture of

the financial system as an amplification mechanism. Allen and Gale (2000) and Freixas, Parigi, and

Rochet (2000) provided some of the first formal models of contagion over financial networks. Using a

multi-region version of Diamond and Dybvig (1983)’s model, Allen and Gale show that the interbank

relations that emerge to pool region-specific shocks may at the same time create fragility in response

to unanticipated shocks. Dasgupta (2004) studies how the cross-holdings of deposits motivated by

imperfectly correlated regional liquidity shocks can lead to contagious breakdowns. More recently,

Allen, Babus, and Carletti (2012) show that the pattern of asset commonalities between different banks

determines the extent of information contagion and hence, the likelihood of a systemic crisis. Elsinger

(2009) and Elliot, Golub, and Jackson (2012) focus on a different mechanism, according to which cross-

holdings of different organizations’ shares or debts may lead to cascading failures. Also related is the

work of Castiglionesi, Feriozzi, and Lorenzoni (2010), who show that a higher degree of financial

integration leads to more stable interbank interest rates in normal times, but to larger interest rate

spikes during crises.9 None of the above papers, however, provide a comprehensive analysis of the

relationship between the architecture of the financial network and the likelihood of systemic failures

due to contagion of counterparty risk.

The paper perhaps most closely related to ours is an independent work by Eboli (2012), who also

studies contagion of counterparty risk. He develops a different analysis based on the network flow

problems and provides conditions for indeterminacy of the interbank payments due to the cyclical en-

tanglement of assets and liabilities. Though Eboli also studies the extent of contagion in some classes

of networks and notes the possibility of phase transitions, his focus and results are quite different

from ours.

Our analysis of the financial externality is also related to a smaller literature on the formation of

financial networks. Babus (2009) studies a model in which banks form linkages with one another in

order to insure against the risk of contagion. She shows that banks can succeed in forming networks

9Other related contributions include Cifuentes, Ferrucci, and Shin (2005), Leitner (2005), Rotemberg (2011), Zawadowski
(2011), Cabrales, Gottardi, and Vega-Redondo (2012), and Caballero and Simsek (2012). For a more detailed discussion of
the literature, see the survey by Allen and Babus (2009).
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that are highly resilient to the propagation of shocks. Zawadowski (2012), on the other hand, shows

that banks may choose not to buy default insurance on their counterparties, even though this may

be socially desirable. This differs from our focus, which is to explicitly endogenize the network of

interbank liabilities and study the implications of the financial network externality across institutions.

Finally, our paper is related to the literature that emphasizes the possibility of indirect spillovers in

the financial market. For example, Shleifer and Vishny (1992), Holmström and Tirole (1998), Brunner-

meier and Pedersen (2005), Lorenzoni (2008) and Krishnamurthy (2010) study the potential impacts

of firm-level distress on market distress or liquidity shortages. However, rather than taking place

through direct contractual relations as in our paper, the amplification mechanisms studied in these

papers work through the endogenous responses of various market participants.10

The rest of the paper is organized as follows. Our model is presented in Section 2. Section 3

contains our results on the relationship between the extent of financial contagion and the financial

network acrhitecture. In Section 4, we endogenize the interbank counterparty relations and study the

financial networks that arise in equilibrium. In Section 5, we show how the possibility and extent of

renegotiations affect the robustness of the financial system to distress. Section 6 concludes. All proofs

are presented in the Appendix.

2 Model

2.1 Agents and Technology

Consider a single good economy, consisting of n risk-neutral banks denote by {1, 2, . . . , n} and a con-

tinuum of risk-neutral outside financiers of unit mass. We index the representative outside financier

— which may be another financial institution outside of the network of interest — by 0.

The economy lasts for three dates: t = 0, 1, 2. At the initial date, banks borrow funds from one

another or the outside financiers to invest in projects that yield returns at the intermediate and final

dates. More formally, each bank is endowed with k units of capital at t = 0 and has access to a project

that requires an investment of size k to generate returns in future dates. However, in analogy to the

“coconut” model of Diamond (1982), a bank cannot use its own funds to invest in its project, and in-

stead, needs to borrow from other banks or the outside financiers. We assume that there are exogenous

constraints on the extent to which banks can borrow from one another. Such restrictions may arise

from liquidity and maturity mismatch across banks — for example, bank i may have excess funds to

lend but not when bank j needs it — or may be due to asymmetric costs of peer monitoring, absence

of long-term interbank relationships, or pairwise commitment problems.11 Formally, we assume that

10For a recent survey of this literature, see Brunnermeier and Oehmke (2012).
11The assumption that bank i cannot invest its own funds in its project, and can only borrow from some specific banks, is

meant to capture, in a simple way, the possibility that the investment opportunity and the funds required for undertaking
that investment may not arise simultaneously. Consequently, banks may need to borrow when they have access to an
investment opportunity, and can only do so from banks that have available funds exactly at the same time. As an alternative
setup with identical implications, one can assume that date t = 0 is itself subdivided to multiple subperiods, in each of
which some banks have excess capital while others have investment opportunities. In this alternative setup, the fact that i
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bank j can borrow at most kij units of capital from bank i. This relationship may not necessarily be

symmetric, in the sense that the extent to which bank j can borrow from bank i may be different from

the extent to which the latter can borrow from the former. We define the lending/borrowing oppor-
tunity network as a weighted, directed graph on n vertices, where each vertex corresponds to a bank

and a directed edge of weight kij from vertex j to vertex i is present if bank j has the opportunity to

borrow from bank i. The existence of such a borrowing opportunity, however, does not necessarily

imply that the banks would enter into a lending agreement. Rather, the interbank lending and bor-

rowing decisions are endogenous. Banks may also decide to keep (“hoard”) their funds, receiving a

rate of return normalized to 1 (for example, by purchasing government bonds).

Finally, each bank can always borrow from the outside financiers, who are assumed to have suffi-

cient funds at t = 0 with an opportunity cost of r > 1 between dates t = 0 and t = 1 (e.g., they have

access to a linear risk-free technology with return r realized at t = 1).

Once bank i borrows k units of capital at t = 0, it invests in a project with a random short-term

return of zi at t = 1, and if held to maturity, a fixed, non-pledgeable long-term return ofA at t = 2. The

bank can liquidate the project prematurely at t = 1, at a loss. In particular, if the project is liquidated,

the bank obtains a return of ζA, where ζ ≈ 0.12 We assume that once a bank undertakes the project, it

must also meet an outside obligation of magnitude v > 0 at t = 1, which is assumed to have seniority

relative to the its obligations to other banks and the outside financiers. These more senior obligations

may be senior debts (to other financial institutions outside the network), wages due to its workers or

taxes due to the government.

2.2 Debt Contracts

Interbank lending takes place through debt contracts signed at t = 0.13 We defer the complete de-

scription of the contracts and the process according to which agents enter into lending agreements to

Section 4. For now, we take the amount of interbank borrowing and the interest rates as given. In

particular, if `ij denotes the amount of capital borrowed by bank j from bank i, the face value of j’s

debt to i is equal to yij = Rij`ij , where Rij is the corresponding interest rate. Note that by definition,

`ij ≤ kij . The total debts (liabilities) of bank i at t = 1 is thus equal to yi + v where yi =
∑

j 6=i yji.

Given our assumption that the long-term returns are not pledgeable, all debts have to be cleared

at date t = 1. If bank j is unable to meet its t = 1 obligations in full, it defaults and has to liquidate

its project prematurely where the proceeds are distributed among its creditors. We assume that all

cannot invest its funds in its own project, for example, can be interpreted as the assumption that the subperiods in which i
has excess capital and the subperiods in which it has an investment opportunity do not coincide.

12This assumption ensures that liquidation of the project does not generate enough funds for the bank to meet its obliga-
tions.

13Even though we will allow these debt contracts to have covenants making interest rates contingent on the lending/risk-
taking decisions of the borrowers, we do not allow general contracts. In a setting with bankruptcy and multiple creditors,
general contracts pose certain conceptual problems which are beyond the scope of this paper (for example, obligations can
be arranged so that they are highest when the bank is already bankrupt, thus making the creditor effectively senior relative
to other creditors or so as to avoid the bankruptcy threshold in certain cases). In practice, the issue of counterparty risk is
pertinent in the presence of debt contracts which are the norm in interbank markets.
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junior creditors — that is, other banks and outside financiers — are of equal seniority. Hence, if bank

j can meet its senior obligations, v, but defaults on its debt to the junior creditors, they are repaid

in proportion to the face value of the contracts. On the other hand, if j cannot meet its more senior

outside obligation v, its junior creditors receive nothing.

2.3 Financial Networks

The lending decisions of the banks and the resulting counterparty relations can be equivalently rep-

resented by an (endogenous) interbank network. In particular, we define the financial network corre-

sponding to the bilateral debt contracts in the economy as a weighted, directed graph on n vertices,

where each vertex corresponds to a bank and a directed edge from vertex j to vertex i is present if

bank i is a creditor of bank j. The weight assigned to this edge is equal to yij , the face value of the

contract between the two banks. By definition, the set of edges of a financial network is necessarily a

subset of the set of edges of the underlying borrowing opportunity network.

A (financial) network is said to be regular, if all banks have identical interbank claims and liabil-

ities; that is,
∑

j 6=i yij =
∑

j 6=i yji = y for some y and all banks i. Even though the total liabilities

and claims of all banks in a regular financial network are equal, the distribution of interbank claims

may not be identical across different banks. Two important regular financial networks which feature

prominently in our analysis are as follows.

Ring Financial Network The ring financial network, also known as a credit chain, represents a config-

urations in which bank i > 1 is the sole creditor of bank i− 1 and bank 1 is the sole creditor of bank n;

that is, yi,i−1 = y1,n = y for some y. Thus, as depicted in Figure 1(a), credit flows in only one direction.

Though special, the ring financial network succinctly captures the properties of a financial network

with very sparse connections.

1

2

3

n
y

(a) The ring financial network

y
n−1

(b) The complete financial network

Figure 1: The ring and the complete financial networks
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Complete Financial Network The polar opposite of the ring network is the financial network with

fully diversified interbank lending, which we refer to as the complete financial network. In the complete

financial network, depicted in Figure 1(b), all banks lend equally to all others; that is, yij = y/(n− 1)

for all i 6= j. Given that the liabilities of each bank are spread across all other banks, the interbank

connections in such an architecture are maximally “dense”.

The ring and the complete financial networks correspond to the least and most densely inter-

connected financial networks, respectively. It is also useful to define a class of financial networks

that exhibit intermediate degrees of interbank connectivity. We define a financial network to be the

γ-convex combination of two regular financial networks corresponding to collections of pairwise con-

tracts {yij} and {ỹij} if for all pairs of banks i and j, the face value of j’s obligations to i is equal

to γyij + (1 − γ)ỹij . Thus, a financial network that is the γ-convex combination of the ring and the

complete financial networks has an intermediate degree of density of connections. As γ decreases,

such a network approaches the more densely connected complete network.

2.4 Payment Equilibrium

The ability of a bank to fulfill its promise to its creditors depends on the resources it has available to

meet those obligations. In particular, the realized repayments by the bank on the debt to its creditors

depends not only on the returns on its investment, but also on the realized value of repayments by

the bank’s debtors.

More formally, let xjs denote the repayment by bank s on its debt to bank j at = 1. By definition,

xjs ∈ [0, yjs]. The total cash flow of bank j is then equal to αj = cj + zj +
∑

s 6=j xjs, where cj =

k −
∑

i 6=j `ji is the cash hoarded by the bank. If αj is larger than the bank’s total liabilities, v + yj ,

then the bank is capable of meeting its obligations in full, and as a result, xij = yij for all i 6= j. If,

on the other hand, αj < v + yj , bank j defaults and its creditors are repaid less than face value. In

particular, when αj is smaller than v, the bank defaults on its senior liabilities and its junior creditors

receive nothing; that is, xij = 0. However, if αj ∈ (v, v+ yj), the interbank payments by bank j would

be proportional to the face value of the contracts. This is a consequence of the assumption that all

junior creditors — which includes the creditor banks as well as the outside financiers — are of equal

seniority and are repaid on pro rata basis. Thus, to summarize, the t = 1 payment of bank j to a

creditor bank i is equal to

xij =
yij
yj

min
{
yj , ej +

∑
s 6=j

xjs

}+

, (1)

where ej = cj + zj − v and [·]+ stands for max {·, 0}. Note that whenever the bank is unable to meet

its obligations in full, it has to liquidate its project prematurely. The liquidation value, however, does

not appear in (1) in light of the assumption that ζ ≈ 0.
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Definition 1. Given cash holdings {cj}, the face value of the bilateral interbank contracts {yij}, and

the realizations of the shocks {zj}, the interbank payments {xij} form a payment equilibrium if they

simultaneously solve (1) for all i and j.

A payment equilibrium is thus a collection of mutually consistent interbank payments at t = 1.

The key observation is that a payment equilibrium captures the possibility of financial contagion

in the system. In particular, given the interdependence of interbank payments across the financial

network, a (sufficiently large) negative shock to a bank not only leads to that bank’s default, but may

also initiate a cascade of defaults by spreading to its creditors, its creditors’ creditors, and so on. Our

first result shows that the payment equilibrium is a well-defined notion.

Proposition 1. For any given financial network and any realization of the shocks, a payment equilibrium
always exists and is generically unique.

Thus, for any given financial network, the payment equilibrium is uniquely determined over a

generic set of parameter values and shock realizations.14 The notion of payment equilibrium in our

model is a generalization of the notion of a clearing vector introduced by Eisenberg and Noe (2001)

and utilized by Shin (2008, 2009). Unlike the model of Eisenberg and Noe, the financial obligations of

the banks in our model are of different seniorities.

Finally, for any given financial network and the corresponding payment equilibrium, we define

the (utilitarian) social surplus in the economy as the sum of the returns to all agents; that is,

u = π0 +

n∑
i=1

(πi + Ti),

where Ti ≤ v is the transfer from bank i to its senior creditors, πi is the bank’s profit, and π0 denotes

the net return (in excess of their opportunity cost of r per unit of lending) to the outside financiers.

3 Financial Contagion

In this section, we study the repayment of interbank loans and the extent of financial contagion at

t = 1, while taking the interbank debt contracts (signed at t = 0) as given. In particular, we focus on

the properties of the payment equilibrium as a function of the structure of the financial network. We

study the lending decisions of the banks and the formation of the financial network in Section 4.

In order to simplify the presentation, we restrict our attention to regular financial networks in

which banks have no liabilities to outside financiers, and assume that all interbank loans are at the
14As we show in the proof of Proposition 1, in any connected financial network, the payment equilibrium is unique as

long as
∑

j(zj + cj) 6= nv. In the non-generic case in which
∑

j(zj + cj) = nv, there may exist a continuum of payment
equilibria, in almost all of which banks default due to “coordination failures”. For example, if the economy consists of two
banks with c1 = c2 = v, bilateral contracts of face values y12 = y21 and no shocks, then defaults can occur if banks do not
pay one another, even though both are solvent.
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same interest rate, R.15 Thus, the total interbank claims and liabilities of all banks are equal to y = Rk.

Restricting our attention to regular financial networks enables us to focus on the relationship between

the distributions of interbank liabilities and the extent of contagion, while abstracting away from

effects that are driven by other features of the financial network, such as the asymmetry in the size of

different banks’ assets or liabilities.16

We further assume that the short-term returns on a given bank i’s investment can only take two

values zi ∈ {a, a − ε}, where a > v is the return of the project in the “business as usual” regime

and ε ∈ (a − v, a) corresponds to the magnitude of a negative shock to the project’s returns. Finally,

we assume that the realizations of the short-term returns are independent and identically distributed

across different banks. These simplifying assumptions enable us to provide a meaningful comparison

between the extent of financial contagion in different financial networks in a tractable manner. The

following lemma characterizes the social surplus under the above assumptions.

Lemma 1. Conditional on the realization of m negative shocks, the social surplus in the economy is equal to

u = (n− ]defaults)A+ na−mε.

Hence, the social surplus is simply determined by the number of defaults, which in turn reflects

the extent of financial contagion. It is thus natural to measure the performance of a financial network

in terms of the number of banks in default.

Definition 2. Conditional on the realization of m negative shocks,

(i) the stability of a financial network is the inverse of the expected number of defaults.

(ii) The resilience of the financial network is the inverse of the maximum number of possible defaults.

Thus, stability and resilience capture the expected and worst-case performances of the financial

network in the presence of m negative shocks, respectively. Clearly, both measures of performance

not only depend on the number (m) and the size (ε) of the realized shocks, but also on the structure

of the financial network. To illustrate the relation between the extent of contagion and the financial

network architecture in the most transparent manner, we initially assume that exactly one bank is hit

with a negative shock. We generalize our results to the case of multiple shocks in Section 3.3.

3.1 Small Shock Regime

We first characterize the fragility of different financial networks when the size of the negative shock

is relatively small.

15In the full equilibrium of the model described in Section 4, banks may face potentially different (and endogenously
determined) interest rates depending on their probability of default.

16For example, Acemoglu et al. (2012) show that asymmetry in the degree of interconnectivity of different industries as
input suppliers in the real economy plays a crucial role in the propagation of shocks.
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Proposition 2. Let ε∗ = n(a− v) and suppose that ε < ε∗. Then, there exists y∗ such that for y > y∗,

(a) The ring network is the least resilient and least stable financial network.

(b) The complete network is the most resilient and most stable financial network.

(c) The γ-convex combination of the ring and complete networks becomes less stable and resilient as γ increases.

The above proposition thus establishes that as long as the size of the negative shock is below a

critical threshold ε∗, the ring is the financial network most prone to financial contagion, whereas the

complete network is the least fragile. Moreover, a more equal distribution of interbank obligations

leads to less fragility.17 Proposition 2 is thus in line with, and generalizes, the observations made by

Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000). The underlying intuition is that a more

equal distribution of interbank liabilities implies that the burden of any potential losses is shared

among more banks, creating a more robust system. In particular, in the extreme case of the complete

financial network, the losses of a distressed bank are divided among as many creditors as possible,

guaranteeing that the excess liquidity in the financial system can fully absorb the transmitted losses.

On the other hand, in the ring financial network, the losses of the distressed bank — rather than being

divided up between multiple counterparties — are fully transferred to its immediate creditor, leading

to the creditor’s possible default. A similar mechanism then guarantees that the distress is passed to

a large fraction of the banks through a chain reaction, leading to a highly fragile system.

The condition that ε < ε∗ = n(a − v) requires the size of the negative shock to be less than the

total “excess liquidity” available to the financial network as a whole. Recall that in the absence of

any shock, a − v is the liquidity available to each bank after meeting its senior obligations to outside

the network. Proposition 2 also requires that interbank liabilities (and claims) are above a certain

threshold y∗, which is natural given that for small values of y, no contagion would occur, regardless

of the structure of financial network.

The extreme fragility of the ring financial network established by Proposition 2 is in contrast with

the results of Acemoglu et al. (2010, 2012), who show that if the interactions over the network are

linear (or log linear), the ring is as stable as any other regular network structure. This contrast reflects

the fact that, with linear interactions, negative and positive shocks cancel each other out in exactly

the same way independently of the structure of network. However, the often non-linear nature of

financial interactions (captured in our model by the presence of debt contracts on which banks may

default) implies that the effects of negative and positive shocks are not necessarily averaged out. Sta-

bility and resilience are thus achieved by minimizing the impact of the distress at any given bank on

the rest of the system. The ring financial network is highly fragile precisely because the adverse ef-

17It may appear that part (c) of Proposition 2 can be proved by generalizing Lemma 6 of Eisenberg and Noe (2001).
However, a closer inspection shows that the statement and the proof of the aforementioned lemma are incorrect. We provide
a direct proof of Proposition 2 in the Appendix. We should stress again that neither Eisenberg and Noe (2001) nor any other
paper we are aware of proves an equivalent statement.
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fects of a negative shock to any bank are fully transmitted to the bank’s immediate creditor, triggering

maximal financial contagion.

3.2 Large Shock Regime

Proposition 2 shows that as long as the magnitude of the negative shock is below the threshold ε∗, a

more equal distribution of interbank liabilities leads to less fragility. In particular, it shows that the

complete network is the most stable and resilient financial network: except for the bank that is directly

hit with the negative shock, no other bank defaults. Our next result, however, shows that when the

magnitude of the shock is above the critical threshold ε∗, this picture changes dramatically.

A collection of banks M ⊂ N is said to form a δ-component of the financial network if (i) the total

obligations of banks outside of M to any bank in M is at most δ ≥ 0; and (ii) the total obligations

of banks in M to any bank outside of M is no more than δ. Intuitively, for small values of δ, banks

in a δ-component have weak ties to the rest of the financial network. We say a financial network is

δ-connected if it contains a δ-component.

Proposition 3. Suppose ε > ε∗ and y > y∗. Then,

(a) The complete and the ring networks are the least stable and least resilient financial networks.

(b) For small enough values of δ, any δ-connected financial network is strictly more stable and resilient than
the ring and complete financial networks.

Thus, when the magnitude of the negative shock is sufficiently large, the complete network ex-

hibits a form of phase transition: it flips from being the most to the least stable and resilient network,

achieving the same level of fragility as the ring network. In particular, when ε > ε∗, all banks in

the complete network default. The intuition behind this result is simple: given that all banks in the

complete network are creditors of the distressed bank, the adverse effects of the negative shock are

directly transmitted to them. Thus, when the size of the negative shock is large enough, not even the

originally non-distressed banks are capable of paying their debts in full, leading to the default of all

banks.

Not all financial systems are as fragile in the face of large shocks. Instead, as part (b) shows, if

the financial network contains a δ-component for small enough values of δ, then it is strictly more

stable and resilient than both the complete and the ring networks. The presence of such “weakly

connected” components in the network guarantees that the losses — rather than being transmitted to

all other banks — are borne in part by the distressed banks’ senior creditors.

Taken together, Propositions 2 and 3 illustrate the “robust-yet-fragile” property of highly inter-

connected financial networks conjectured by Haldane (2009). They show that more densely inter-

connected financial networks, epitomized by the complete network, are more stable and resilient in

12
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Figure 2: A collection of δ-connected pairs of banks

response to a range of shocks. However, once we move outside this range, these dense interconnec-

tions act as a channel through which shocks to a subset of the financial institutions transmit to the

entire system, creating a vehicle for instability and systemic risk.

The intuition behind such a phase transition it related to the presence of two types of “shock

absorbers” in our model, each of which capable of reducing the extent of contagion in the network.

The first absorber is the excess liquidity a − v > 0 of non-distressed banks at t = 1: the impact of

a shock is attenuated once it reaches banks with excess liquidity. This mechanism is utilized more

effectively when the financial network is more “complete”, an observation in line with the results of

Allen and Gale (2000) and Freixas, Parigi, and Rochet (2000). However, the claim v of senior creditors

of the distressed banks also function as a shock absorption mechanism. Rather than transmitting the

shocks to other banks in the system, the senior creditors can be forced to bear (some of) the losses

and hence, limit the extent of contagion. In contrast to the first mechanism, this shock absorber is

best utilized in weakly connected configurations and is the least effective in the complete financial

network. Thus, when the shock is so large that it cannot be fully absorbed by the excess liquidity in

the system — which is exactly when ε > ε∗ — financial networks that significantly utilize the second

absorber are less fragile.

Example 1. Consider the financial network depicted in Figure 2, consisting of n/2-many δ-components

of size two, where δ < a−v. This configuration is reminiscent of the traditional “unit banking system”

with minimal connections between banks across different regions or industries.

If 2(a − v) < ε < ε∗, a negative shock to a bank would guarantee the default of its (sole) major

counterparty. Thus, in the face of a small shock, the financial network is strictly less stable and resilient

than the complete financial network, in which only one bank defaults. On the other hand, given the

absence of any significant inter-pair claims and liabilities, a negative shock to a bank would not cause

any other defaults besides that of its major counterparty, regardless of the size of the shock. Hence,

if ε > ε∗, it is strictly more stable and resilient than the complete network. In fact, in the large shock

regime, the financial network in Figure 2 is the most stable and resilient financial network.
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3.3 Multiple Shocks

The insights on the relationship between the extent of contagion and the structure of the financial

network studied so far generalize to the case of multiple negative shocks.

Proposition 4. Let m denote the number of negative shocks and let ε∗m = n(a− v)/m. There exist constants
y∗m > ŷm > 0, such that

(a) If ε < ε∗m and y > y∗m, then the complete network is the most stable and resilient financial network, whereas
the ring network is the least resilient.

(b) If ε > ε∗m and y > y∗m, then the complete and the ring financial networks are the least stable and resilient
financial networks. Furthermore, for small enough values of δ, any δ-connected financial network is strictly
more stable than the complete and ring financial networks.

(c) If ε > ε∗m and y ∈ (ŷm, y
∗
m), then the complete financial network is the least stable and resilient financial

network. Furthermore, the ring financial network is strictly more stable than the complete financial network.

Parts (a) and (b) generalize the insights of Propositions 2 and 3 to the case of multiple negative

shocks. The key new observation is that the critical threshold ε∗m that defines the boundary of the small

and large shock regimes is a decreasing function of m. Thus, the number of negative shocks plays a

role similar to that of the size of the shocks. More specifically, as long as the magnitude and the num-

ber of negative shocks affecting financial institutions are sufficiently small, more complete interbank

claims enhance the stability and the resilience of the financial system. This is due to the fact that the

more complete the interbank connections are, the better the excess liquidity of non-distressed banks

are utilized in absorbing the shocks. On the other hand, if the magnitude or the number of shocks

are large enough so that the excess liquidity in the financial system is not sufficient for absorbing the

losses, financial interconnections serve as a propagation mechanism, creating a more fragile financial

system. Weakly connected networks ensure that the losses are shared with the senior creditors of the

distressed banks, protecting the rest of the system.

Part (c) of Proposition 4 contains another new result. It shows that in the presence of multiple

shocks, the claims of the senior creditors in the ring financial network are used more effectively as a

shock absorption mechanism than in the ring financial network. In particular, the closer the banks

hit with the negative shocks are to one another in the ring financial network, the larger the loss their

senior creditors are collectively forced to bear. This limits the extent of contagion in the network.

Finally, we remark that even though we illustrated our results by focusing on an environment

in which shocks can take only two values, similar results can be obtained for more general shock

distributions.
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3.4 Illustrative Simulations

We end this section by providing a few simulations, illustrating the performance of different financial

network structures as a function of the size of the negative shock.

We focus on four different financial network configurations consisting of n = 20 banks: (i) the

complete financial network; (ii) the ring financial network; (iii) the γ-convex combination of the ring

and the financial networks for γ = 3/4 ; and (iv) the double-clique financial network which is a weakly

connected network consisting of two 0-components (that is, disconnected components) of size 10,

each of which is complete. We vary the size of the negative shock ε and simulate the expected number

of defaults in each of the above-mentioned financial networks. For the purpose of the simulations, we

let y = 30 and a− v = 1, which implies that the critical threshold is ε∗ = 20.

Figure 3(a) depicts the expected number of defaults conditional on the realization of a single neg-

ative shock of size ε. As it is evident form the graph, the ring financial network is the most fragile

regardless of the size of the shock. The figure also clearly highlights the phase transition of the com-

plete financial network: once the size of the shock crosses ε∗, the complete financial network flips from

the most to the least stable architecture. The financial network that is a γ-convex combination of the

ring and complete financial networks exhibits an intermediate level of robustness. Finally, the results

for the double-clique financial network highlights the fact that weak connections limit the extent of

financial contagion in the face of large shocks. These observations are in line with Propositions 2 and

3. As a final remark note that the expected number of defaults in the double-clique financial network

exhibits a discontinuity at ε = 10. Recall that this financial network consists of two complete cliques

of size 10. Thus, in line with the results for the complete network, each of these cliques would go

through a phase transition as the size of the shock crosses ε̂ = 10(a− v) = 10.
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Figure 3: Number of failures as a function of the size of the shock
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Figure 3(b) depicts the extent of financial contagion when the shock realizations are independent

and identically distributed, with each bank being hit with a negative shock of size ε independently

with probability p = 0.05. This figure confirms that our results do not depend on a specific number of

shocks (at random) hitting one of the banks; once again the ring financial network is the most fragile

of the four networks, the complete financial network outperforms all others for ε < ε∗, and the weakly

connected double-clique financial network is the most stable for ε > ε∗.

4 Financial Network Externality

In the previous section, we took the lending decisions of the banks as given and studied the extent of

financial contagion as a function of the structure of the financial network. In this section, we endoge-

nize the interbank counterparty relations and study financial networks that arise in equilibrium. The

key endogeneity involves the structure and the terms of bilateral interbank agreements. Our main

results are to establish the presence of a financial network externality and study the inefficiencies that

it introduces.

We begin by describing how the terms of trade across banks are determined. At the beginning of

date t = 0, all banks and outside financier simultaneously post contracts detailing the terms at which

they are willing to lend to one another. We assume that the posted contracts are standard debt contracts
with contingency covenants, according to which the lender specifies the interest rates at which it lends

to the borrower as a function of the borrower’s lending behavior. Given the posted contracts, each

bank then decides how much and from whom to borrow, which in turn determines the interbank

interest rates. More formally, the timing of events over date t = 0 is as follows.

1. All agents i ∈ {0, . . . , n} simultaneously post contracts of the form Ri = (Ri1, . . . , Rin), where

Rij is a mapping from the bank j’s lending decision (`j1, . . . , `jn) to the interest rate on bank j’s

debt to i. If i cannot lend to bank j or decides not to do so, then Rij = ∅.

2. After observing the set of posted contracts, each agent can withdraw one or more of its contract

offers if it so wishes. The final set of contracts offered by bank i is thus R̂i = (R̂i1, . . . , R̂in),

where R̂ij ∈ {Rij ,∅}.18

3. Given the set of contracts (R̂0, . . . , R̂n), each bank j decides on the amount bij that it borrows

from agent i.

By construction, the borrowing decisions of the banks determine the amount of interbank lending;

that is, `ij = bij . This, in turn, pins down the interest rate on bank j’s debt to i at R̂ij(`j1, . . . , `jn).

18The second stage of the game, in which contract offers can be withdrawn, is introduced in order to rule out certain
unnatural equilibria that may arise due to “coordination failures”. In particular, unless bank i can withdraw its posted
contracts, it cannot make its lending decisions contingent on the contract posted by a potential creditor bank s. In other
words, without the possibility of contract withdrawals, once bank i posts a contract Rij , it already commits to lend to bank
j regardless of the value of Rsi.
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Given the large set of possible lending decisions by the banks, the contract Ri posted by bank i is

an infinite dimensional object. In order to simplify the exposition and derivation of our main results,

unless otherwise noted, we restrict the set of interbank borrowings by assuming that bij ∈ {0, kij}.
That is, if banks i and j enter into a lending agreement, then the borrowing would be equal to the

maximal borrowing capacity. This simplification reduces each borrowing decision to a binary choice.

Consequently, the contractRij(`j1, . . . , `jn) is reduced to a vector, specifying the interest rates at which

bank i is willing to lend to j as a function of the identities of j’s counterparties. With some abuse of

notation, we use Rij to denote both the contingent debt contract between i and j, as well as the actual

interest rate on j’s debt to i once all the bilateral interbank agreements are finalized. Also, whenever

there is no risk of confusion, we use Rij and R̂ij interchangeably.

Definition 3. A full (subgame perfect) equilibrium is a collection of contracts posted by the banks and

the outside financiers, given by (R0,R1, . . . ,Rn) and (R̂0, R̂1, . . . , R̂n), bilateral borrowing decisions

{bij}, and interbank repayments {xij} such that,

(a) Given the financial network, the repayments on the loans are determined by the corresponding

payment equilibrium.

(b) Given the posted contracts, the financial network is a Nash equilibrium of the corresponding

subgame.19

(c) Neither the banks nor the outside financiers have an incentive to deviate by withdrawing or post-

ing a different contract at any stage of the game at time t = 0.

A financial network {yij} is thus part of an equilibrium if (i) taking the interest rates as given,

the banks have no incentive to unilaterally change their counterparties; and (ii) they cannot make

strictly higher profits by charging different interest rates. Given that the outside financiers are risk

neutral and act competitively, the equilibrium contract R0 gives them an expected return equal to

their opportunity cost, r.

The most important feature of our setup is that equilibrium interest rates are determined endoge-

nously. In particular, given that the lending behavior of a bank may expose its creditors to additional

counterparty risks, the presence of covenants that make interest rates contingents on the borrower’s

behavior forces the banks to internalize the impact of their decisions on their immediate creditors.

This feature, as we show in the next subsection, ensures that the most obvious form of bilateral ex-

ternalities are internalized, thus providing a useful framework for analyzing financial network ex-

ternalities. Throughout, we use a notion of efficiency according to which the social planner controls

19An alternative is to use a solution concept similar to the pairwise stability notion of Jackson and Wolinsky (1996), often
used in problems of network formation. Given the more specific context here, posting of interest rates combined with
subgame perfection provides a powerful solution concept that is both more transparent and easier to work with. Our main
results and the insights that follow are robust with respect to the choice of the solution concept.
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the lending decisions, but not the interbank interest rates, which are determined by the equilibrium

behavior of the outside financiers.20

4.1 Bilateral Efficiency: The Three-Chain Financial Network

To show how bilateral financial externalities are internalized thanks to the covenants, we focus on

a special architecture in which no other form of network externalities is present. In particular, we

consider an economy comprising of three banks labeled {1, 2, 3}, each endowed with k units of capital.

In order to invest in their projects, banks 1 and 2 need to borrow k units of capital from banks 2 and

3, respectively. That is, k21 = k32 = k, and kij = 0 otherwise. Bank 3, on the other hand, does not

borrow and simply acts as a (potential) lender to bank 2. The assumption that there are no other banks

or financiers lending to bank 3 rules out the possibility of network externalities.21

Given the above description, if no bank relies on the outside financiers for funding, the three-chain

financial network depicted in Figure 4 would form. To further simplify exposition, we assume that

bank 1 is the only bank subject to a negative shock. In particular, we assume that z1 ∈ {a− ε, a}where

the negative shock is realized with probability p and satisfies 2(a− v) < ε < 2(a− v) + k. Banks 2 and

3, on the other hand, are not subject to shocks, i.e., z2 = z3 = a with probability one.

123

Figure 4: The three-chain financial network.

Given that the returns on bank 1’s investments are subject to negative shocks, bank 3’s profits

depend on whether bank 2 decides to lend to bank 1. In particular, a bilateral lending agreement

between banks 1 and 2 not only increases the default probability of bank 2, but also exposes bank 3 to

the risk of contagion. Yet, our next result shows that thanks to the contingency covenants in the debt

contracts, bank 2 fully internalizes the effect of its lending decisions on bank 3.

Proposition 5. The three-chain financial network is an equilibrium if and only if it is efficient.

The above proposition thus establishes that each bank takes the effects of its actions on its imme-

diate creditors into account. In other words, bilateral externalities are internalized because a bank’s

creditors can offer contracts whose terms induce the “right” behavior for the borrower. In the partic-

ular case of the three-chain financial network, if a bilateral lending agreement between banks 1 and 2

increases the risk of contagion to bank 3 beyond the socially efficient level, bank 3 would be willing

20If we allow the social planner to also determine the interbank interest rates, she can increase utilitarian social welfare by
setting all interest rates equal to zero, thus minimizing defaults. Such a framework, clearly, does not constitute a reasonable
benchmark for comparison.

21This assumption implicitly implies that bank 3 is not subject to default. This has no bearing for the results that follow.
To restore symmetry between the three banks, we can alternatively assume that bank 3 also has access to a project it can
invest in and loses an extra amount of A (due to costly liquidations) if its returns fall below a certain threshold. Proposition
5 remains valid under this assumption.
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to offer bank 2 a sufficiently low interest rate provided that the latter hoards cash, hence, ensuring

efficiency.

4.2 Financial Network Externality: Overlending

We next show that in the presence of counterparty risk and the possibility of financial contagion, pri-

vate and public incentives for forming financial connections do not generally coincide. In particular,

we start by showing that the equilibrium often features “overlending”, in the sense that banks lend

to one another even though the social planner would have preferred that they hoarded cash.

To illustrate the nature of these inefficiencies in a clear fashion, we focus on a special configuration

of interbank lending opportunities. We assume that bank i ∈ {1, . . . , n − 1} cannot borrow from any

bank other than bank i + 1, whereas bank n can only borrow from bank 1; that is, k1,n = ki,i−1 = k

and kij = 0 otherwise. Thus, if all projects are fully financed via interbank loans, the ring financial

network, depicted in Figure 1(a) would form. We assume that a single shock of size ε hits the banks

uniformly at random.

Proposition 6. Suppose that ε < ε∗. Then, there exist constants α < ᾱ such that,

(a) The ring financial network is part of an equilibrium if αA < (r − 1)k.

(b) The ring financial network is socially inefficient if (r − 1)k < ᾱA.

The ring financial network is thus part of an equilibrium if the interest rates that the banks can

charge when they lend to one another — the benefit of which over hoarding cash is (r−1)k — is large

enough to justify the subsequent increase in the expected cost of a default, which is proportional to

A. On the other hand, the ring financial network would be socially inefficient whenever the costs

associated with the higher risk of financial contagion are high enough so that it is no longer justified

for all banks to lend. The more important consequence of Proposition 6 is that, unlike the case of

the three-chain financial network, the equilibrium and efficiency conditions no longer coincide: as

long as αA < (r − 1)k < ᾱA, the ring financial network is formed in equilibrium, even though it is

inefficiently fragile.

The juxtaposition of Propositions 5 and 6 clarifies that the inefficiency of equilibrium financial

networks is not due to a simple bilateral externality. Rather, it is due to the presence of a financial
network externality: lending by each bank creates a pathway for the translation of idiosyncratic shocks

into financial contagion and systemic crises . Even though, thanks to the covenants, each bank takes

the effect of its actions on itself and its immediate creditors into account, it does not fully internalize

the effects of its decisions on the its creditors’ creditors and so on. For example, in the case of the ring

financial network, despite the fact that the interest rate Ri+1,i faced by bank i depends on whether

it decides to lend or not, the effects of i’s actions on banks other than i + 1 are not reflected in that

interest rate. In particular, neither i nor i + 1 take into account that lending by bank i may lead to a

cascade of defaults of length τ > 2.

19



The presence of this type of financial network externality implies that financial stability is a public

good, which cannot be resolved by bilateral contracting and is only inadequately provided in equilib-

rium.22

4.3 Financial Network Externality: Insufficiently Dense Networks

We next show that the financial externality identified in the previous subsection may lead to the

formation of insufficiently dense networks, in the sense that banks may lend to the “wrong” set of

banks from the social planner’s point of view.

To illustrate this possibility, we focus on an economy in which each bank can lend to two different

borrowers. In particular, consider an n-bank economy (where n is even) in which banks labeled 2i and

2i−1 can lend to banks labeled 2i−2 and 2i−3; that is, k2i,2i−2 = k2i,2i−3 = k2i−1,2i−2 = k2i−1,2i−3 = k

and kij = 0 otherwise. Thus, if all banks decide to lend equally to their potential borrowers, the

interlinked rings financial network, depicted in Figure 5(b), would form. However, each bank can also

decide to follow an undiversified lending strategy and instead lend to only one borrower. Following

such a strategy by all banks would lead to the formation of the double-ring financial network depicted

in Figure 5(a). We assume that a single shock of size ε hits the banks uniformly at random.

Proposition 7. Suppose that ε < ε∗/2 and let τ = dε/(a−v)e−1 be the number of defaults in the double-ring
financial network. Then, there exists α > 0 such that

(a) The double-ring financial network is part of an equilibrium if αA < (r − 1)k.

(b) The double-ring financial network is socially inefficient if τ is even.

Thus, for large enough values of r, the double-ring financial network is part of an equilibrium even

though it is not socially efficient. As in Proposition 6, the assumption that αA < (r − 1)k guarantees

that no bank in the double-ring financial network has an incentive to deviate by hoarding cash. Unlike

the previous example, each bank can also deviate by following a diversified lending strategy. Yet, as

part (a) shows, such a deviation would not be profitable either: for a large enough value of τ , lending

to a diversified set of banks would expose the bank (and its immediate creditor) to a higher level of

counterparty risk.

The key observation is that even though no bank finds diversified lending profitable, such a devi-

ation imposes a positive externality on the rest of the system. Recall that by Proposition 2, the extent

of financial contagion is reduced the more densely interconnected the financial network is. Hence, fol-

lowing a diversified lending strategy would benefit other banks as the excess liquidity in the system

is more efficiently utilized in absorbing the shocks. This is the source of inefficiency of the double-ring

financial network established in part (b) of Proposition 7.23

22As noted in the Introduction, this result is related to Zawadowski (2012) who shows that banks may underinvest in
default insurance on their counterparties, partly because they do not internalize the positive spillovers that such insurance
would create to other banks. Though clearly complementary, the exact mechanism and theoretical analysis in his paper are
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Figure 5: The double-ring and the interlinked rings financial networks

4.4 Robust-Yet-Fragile Financial Networks

We end this section by showing that the the same type of financial externalities can also lead to the

emergence of robust-yet-fragile financial networks, in the sense that the entire financial network re-

mains (inefficiently) vulnerable to the realization of a rare negative shock.

To this end, we focus on the particular configuration of interbank lending opportunities described

by kij = k/(n−1) for all i 6= j; that is, if no bank hoards cash, the complete financial network depicted

in Figure 1(b) would form. We once again assume that a single shock hits the banks uniformly at

random. The shock can take two distinct values εh and ε` with probabilities p and 1− p, respectively,

where ε` < ε∗ < εh. Thus, for small enough values of p, the two realizations correspond to “large

but rare” and “small but frequent” negative shocks, respectively. Our next result provides necessary

and sufficient conditions for the complete financial network to be socially efficient and/or part of an

equilibrium.

Proposition 8. Suppose that ε` < ε∗ < εh. There exist constants p̄ > 0 and ξ > 0 such that

(a) If p = 0, the complete financial network is socially efficient.

(b) If p > 0 and pA > ξ, the complete financial network is socially inefficient.

(c) If p < p̄, the complete financial network is part of an equilibrium.

The intuition behind part (a) is simple. Recall from Proposition 2 that in the presence of only small

shocks, the complete financial network is the most stable financial network and ensures that only the

quite different from ours.
23The requirement that τ is an even number is a simple technical assumption guaranteeing that the extent of financial

contagion in the interlinked rings financial networks is strictly smaller than τ .
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bank that is hit with the negative shock defaults. This also implies that when p = 0, the social surplus

is maximized whenever all banks fully lend to one another, forming the complete network. This is

no longer true, however, when there is a positive probability of a large shock realization. As part (b)

of Proposition 8 shows, even for small (yet positive) values of p, the complete financial network is

socially inefficient if A is large enough. The reason behind this inefficiency can be understood in light

of Proposition 3. Recall that conditional on the realization of a large shock, all banks in the complete

financial network default. Thus, if the cost of a default is sufficiently large, the social planner would

prefer a weakly connected network or the empty configuration — in which banks withhold lend-

ing altogether — to the complete financial network. Such a weakly connected or fully disconnected

(empty) architecture would ensure that the realization of a large shock at some distant corner of the

network does not translate into a systemic crises, affecting all banks. Finally, part (c) of Proposition

8 shows that, if p is small enough, the complete financial network is part of an equilibrium. This is

due to the fact that if the large shock, and hence, financial contagion is fairly unlikely, the banks find

lending more profitable than hoarding cash.

The key insight in Proposition 8 is obtained from comparison of the conditions in the three parts.

Taken together, parts (a) and (c) imply that the complete financial network is part of an efficient

equilibrium whenever the possibility of a large systemic shock is ruled out (because when p = 0,

the complete financial network fully absorbs the shock without any contagion). Public and private

incentives for interbank lending diverge, however, as soon as a large shock is possible considered

impossible. This can be seen by comparing statements (b) and (c). As far as an individual bank is

concerned, hoarding cash (as opposed to lending to the other banks) decreases its default probability

by p(n − 1)/n. But, hoarding cash by some bank i also protects the rest of banking system whenever

i is hit with the large shock. In fact, from the social planner’s point of view, hoarding cash by a bank

decreases the expected number of defaults by 2p(n−1)/n. The presence of the financial network exter-

nality thus implies that the possibility of a rare, large shock may lead to the formation of (inefficiently)

robust-yet-fragile financial networks a la Haldane (2009).24

5 Renegotiations and Financial Contagion

In this section, we relax the assumption that long-term returns are non-pledgeable, thus allowing

banks to pledge at least a fraction of their long-term (date t = 2) returns to their creditors. In particular,

we assume that a fraction κ ∈ [0, 1] of the long-term returns can be pledged at t = 1, essentially

allowing banks to pass the ownership of a fraction κ of their long-term returns to their creditors.25

Because these returns remain non-pledgeable at t = 0, banks still need to fund their projects through

24The comparison between statements (b) and (c) of Proposition 8 implies the emergence of the complete financial network
as an inefficient equilibrium only if the intersection of the conditions in the two statements is non-empty; that is, only if p < p̄
and pA > ξ can hold simultaneously. It can be verified that for large enough n, the value of p̄ becomes independent of A.
Hence, for any p ∈ (0, p̄), there exists a large enough A such that pA > ξ holds.

25We are thus assuming that two banks cannot renegotiate with one another, unless they are counterparties. We also
continue to assume that the banks cannot pledge their long-term returns to the outside financiers.
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standard debt contracts that clear at the intermediate date. The difference, however, arises in the event

that a bank is unable to make its debt payments at t = 1, in which case it can pledge up to κA of its

long-term returns.26

In order to formalize the renegotiation stage, we assume that the intermediate date is subdivided

into M periods (where M > 2n2) during which banks make renegotiation offers to their counter-

parties. In particular, first bank 1 makes renegotiation offers to its creditor banks in a pre-specified

order, followed by renegotiation offers by bank 2 to its own creditors, and so on.27 These renegoti-

ation offers take the form of a bank i pledging some amount Aji ≥ 0 to its creditor j, subject to the

constraint that its pledges do not exceed κA. In exchange, i may request postponement of its debt

repayments or even injection of additional funding from j. The interbank payments are made at the

end of date t = 1 after the renegotiation phase is over. For a given regular financial network, we have

the following result:

Proposition 9. Suppose that the financial network is connected.

(a) If ε < min{ε∗m, κA/m+ a− v}, then no bank defaults.

(b) If ε > min{ε∗m, κA+ a− v}, then at least one bank defaults.

Thus, for large enough values of κ, the possibility of renegotiations by counterparties would pre-

vent all defaults, even if some banks are distressed. On the other hand, if κ is small enough, then

distressed banks cannot avoid costly defaults by renegotiating their obligations to counterparties in

exchange for future payments. In fact, no renegotiations occur throughout the network, all distressed

banks default and financial contagion occurs as if κ = 0. These observations are intuitive. More in-

terestingly, however, is the case that a single bank is hit with a negative shock. In particular, if m = 1,

Proposition 9 is essentially another phase transition result: there exists a threshold

ε̂ = min{ε∗, κA+ a− v},

such that for ε < ε̂, the structure of the financial network (beyond connectivity) plays no role whatso-

ever in the extent of contagion. In fact, regardless of the detailed structure of the financial network,

the excess liquidity of the banking system — through a sequence of renegotiations — is utilized to

avoid all bankruptcies. This picture is dramatically different if ε is above the critical threshold ε̂, in

which case even all the liquidity that can be mobilized is insufficient for preventing defaults. Thus,

failures would occur and local network effects similar to those characterized in the Section 3 would

become the defining factor in the extent of financial contagion.

Note that for the above phase transition result to hold we do not need to assume that a bank can

renegotiate with all other banks. In fact, as long as each bank can renegotiate with its creditors (and
26Equivalent results would be obtained if the initial loans are made with more complex contracts that make payments both

at date t = 1 and t = 2. Sticking to the standard debt contracts and allowing renegotiation is just a convenient convention.
27The same results would obtain with simultaneous renegotiation offers if we pick the best Nash equilibrium of the

simultaneous offer game.
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the financial network is connected), the excess liquidity at any part of the banking system can be

diverted to the distressed bank. This is due to the fact that even if a distressed bank’s creditors do not

have enough funds to lend, they can themselves pledge their own long-term returns to their creditors,

and raise the necessary funds to lend to the distressed bank. Such renegotiation chains guarantee that

excess liquidity would be allocated efficiently.

6 Conclusions

The recent financial crisis has rekindled interest in the relationship between the structure of the fi-

nancial network and systemic risk. Two polar views on this relationship have been suggested in the

academic literature and the policy world. The first maintains that the “incompleteness” of the finan-

cial network can be a source of instability, as individual banks are overly exposed to the liabilities of

a handful of financial institutions. Thus, according to this argument, a more complete financial net-

work which limits the exposure of the banks to any one counterparty would be less prone to systemic

failures. The second view, in stark contrast, hypothesizes that it is the highly interconnected nature of

the financial system that contributes to its fragility, as it facilitates the spread of financial distress and

solvency problems from one bank to the rest in an epidemic-like fashion.

This paper provides a tractable theoretical framework for the study of the economic forces shap-

ing the relationship between the structure of the financial network and systemic risk. We show that as

long as the magnitude (or the number) of negative shocks is below a critical threshold, a more equal

distribution of interbank obligations leads to less fragility. In particular, all else equal, the sparsely

connected ring financial network (corresponding to a credit chain) is the most fragile of all configura-

tions, whereas the highly interconnected complete financial network is the configuration least prone

to contagion. In line with the observations made by Allen and Gale (2000), our results establish that,

in the more complete networks, the losses of a distressed bank are passed to a larger number of

counterparties, guaranteeing a more efficient use of the excess liquidity in the system in forestalling

defaults.

We also show that when negative shocks are larger than a certain threshold, the second view on

the relationship between the structure of the financial network and the extent of contagion prevails.

In particular, completeness is no longer a guarantee for stability. Rather, in the face of large shocks,

financial networks in which banks are only weakly connected to one another would be less prone to

systemic failures. Such a “phase transition” is due to the fact that, the senior liabilities of banks, as well

as the excess liquidity within the financial network, can act as shock absorbers. Weak interconnections

guarantee that the more senior creditors of a distressed bank bear most of the losses and hence, protect

the rest of the system against cascading defaults. Our model thus formalizes the robust-yet-fragile

property of interconnected financial networks conjectured by Haldane (2009). On a broader level, our

results highlight the possibility that the same features that make a financial network structure more

stable under certain conditions may function as significant sources of systemic risk and instability

24



under another.

The paper also provides an analysis of the efficiency of the financial networks that emerge in equi-

librium. We assume that interbank interest rates adjust endogenously in order to reflect the risk that

each bank’s decisions impose on its counterparties. Nevertheless, we show that equilibrium financial

networks may be excessively prone to the risk of financial contagion. The intuition underlying this

result is that even though banks fully internalize the effects of their lending (and risk-taking) deci-

sions on their immediate creditors, they do not take into account the fact that their lending decisions

may also put many other banks (such as their creditors’ creditors) at a greater risk of default. Thus,

our results highlight the presence of a financial network externality, which cannot be internalized via

simple bilateral contractual relations, thus providing an example of the view that financial stability is

a “public good,” likely to be under-provided in equilibrium. We also show that the presence of this

externality may manifest itself in equilibrium financial networks that (relative to the socially efficient

level) are either too sparsely or too densely connected. The financial network externality and the con-

sequent inefficiency also imply that there is room for welfare-improving government interventions.

We leave the analysis of the optimal policy in this class of models to future work.

Finally, we establish a second form of phase transition when long-term returns are partially pledge-

able. In particular, we show that if the fraction of the returns that is pledgeable is above a certain

threshold, there are no network effects: the excess liquidity of the baking system can be efficiently

reallocated to distressed banks and all defaults are avoided, regardless of the structure of the finan-

cial network. However, if the pledgeable fraction is below this threshold, network effects cannot be

avoided, and the local structure of the financial network plays a defining role in the extent of financial

contagion.

There are several areas of future research highlighted by our paper. First, a more complete analysis

of network formation in the presence of counterparty risks is an obvious area of investigation. Second,

it is important to understand whether and how other forms of financial network interactions (along

the lines of those discussed in footnote 7) affect the stability of the system as a whole. Finally and

most importantly, a systematic empirical investigation, informed by the theoretical results in this

paper, would enable us to measure the key components that play a role in financial stability.
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A Appendix: Proofs

Denote the fraction of obligations of agent j 6= 0 to agent i by qij = yij/yj . Given that the outside

financiers have no debt obligations (i.e., y0 = 0), we define qi0 > 0 arbitrarily, while assuming that∑n
i=0 qi0 = 1. Let Q = [qij ] ∈ R(n+1)×(n+1) and denote the sum of the payments of bank j to the rest of

the banks in the financial network by xj =
∑n

i=0 xij . Finally, we define the mapping Φ : H → H as

Φ(x) =
[

min {Qx+ e, y}
]+
,

where H =
∏n
i=0[0, yi]. We have the following simple lemma.

Lemma A.1. For any x, x̂ ∈ H ,
‖Φ(x)− Φ(x̂)‖1 ≤ ‖Q(x− x̂)‖1. (2)

Furthermore, the above inequality is tight only if for all i, either (Qx+e)i, (Qx̂+e)i ∈ [0, yi] or (Qx)i = (Qx̂)i.

Proof. For any pair of real numbers ξ and ξ̂, it is straightforward to verify |ξ+ − ξ̂+| ≤ |ξ − ξ̂|, where

the inequality is tight only if ξ = ξ̂ or ξ, ξ̂ ≥ 0. Therefore,∣∣Φi(x)− Φi(x̂)
∣∣ ≤ |min {(Qx)i + ei, yi} −min {(Qx̂)i + ei, yi}| . (3)

On the other hand, it is again easy to verify |min{ξ, ζ} −min{ξ̂, ζ}| ≤ |ξ − ξ̂| for all real numbers ξ, ξ̂

and ζ, where the inequality is tight only if ξ = ξ̂ or ξ, ξ̂ ≤ ζ. As a result,

|min {(Qx)i + ei, yi} −min {(Qx̂)i + ei, yi}| ≤
∣∣(Qx)i − (Qx̂)i

∣∣, (4)

for all i. Combining (3) and (4) establishes (2).

To prove the second statement, note that (2) is tight only if inequalities (3) and (4) are tight for all

i. Inequality (4) is tight only if either (Qx)i = (Qx̂)i or (Qx)i + ei, (Qx̂)i + ei ≤ yi. On the other hand,

inequality (3) is tight only if (Qx)i = (Qx̂)i or (Qx)i + ei, (Qx̂)i + ei ≥ 0. Combining these completes

the proof.

Proof of Proposition 1

Existence: The mapping Φ : H → H continuously maps a convex and compact subset of the Eu-

clidean space to itself. Therefore, by the Brouwer fixed point theorem, there exists x∗ ∈ H such that

Φ(x∗) = x∗. This immediately implies that the collection of pairwise interbank payment {x∗ij} defined

as x∗ij = qijx
∗
j simultaneously solves the collection of equations (1) for all i and j, and thus, corre-

sponds to a payment equilibrium of the financial network.28

28Conversely, any payment equilibrium of the financial network corresponds to a fixed point of Φ.
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Generic Uniqueness: Without loss of generality, assume that the financial network is connected.29 By

Lemma A.1, Φ is a non-expansive operator with respect to the `1-norm. In particular, for any x, x̂ ∈ H ,

‖Φ(x)− Φ(x̂)‖1 ≤ ‖Q(x− x̂)‖1 (5)

≤ ‖Q‖1 · ‖x− x̂‖1 (6)

= ‖x− x̂‖1,

where the last equality is due to the fact that the column sums of Q are equal to one. Therefore, Φ has

two distinct fixed points x and x̂ only if all the inequalities above are tight. By Lemma A.1, inequality

(5) is tight only if for any given bank i, either (Qx)i+ei, (Qx̂)i+ei ∈ [0, yi] or (Qx)i = (Qx̂)i. Denoting

the set of banks that satisfy the former by B, we have

ei +

n∑
j=0

qijxj = xi

ei +

n∑
j=0

qij x̂j = x̂i,

for all i ∈ B with the convention that e0 = 0. Thus,

Qx =

[
xB − x̂B

0

]
.

which leads to ‖Qx‖1 = ‖xB− x̂B‖1. Furthermore, (6) holds as an equality only if xi = x̂i for all i 6∈ B.

Hence,

QBB
(
xB − x̂B

)
= xB − x̂B, (7)

whereQBB is the submatrix ofQ corresponding to the banks inB. However, the fact that the financial

network is connected (alongside the assumption that qi0 > 0 for all i) implies that Q is an irreducible

matrix and therefore, (7) cannot hold unless Bc is empty.30 As a consequence,

n∑
i=0

xi =

n∑
i=1

ei +

n∑
i=0

n∑
j=0

qijxj

which implies
∑n

i=1 ei = 0, an equality that holds only for a non-generic set of parameters z1, . . . , zn.

Thus, the fixed points of Φ, and hence the payment equilibria of the model are generically unique.

Proof of Lemma 1

Denote the set of banks that default on their senior debt by F , the set of banks that default but can

meet their senior obligations by D, and the set banks that do not default by S = (D ∪ F )c. For any
29If the financial network is not connected, the proof can be applied to each connected component separately.
30An n× n matrix Q is said to be reducible, if for some permutation matrix P , the matrix P ′QP is block upper triangular.

If a square matrix is not reducible, it is said to be irreducible. If Q is a non-negative irreducible matrix with unit column
sums, then all eigenvalues of any square submatrix of Q, say Q̃, lie within the unit circle, which implies that Q̃x = x has no
solution. For more on this, see e.g., Berman and Plemmons (1979).
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bank i ∈ F , we have

πi + Ti = zi +
∑
j 6=i

xij ,

whereas for i ∈ D,

πi + Ti = v.

On the other hand, for any bank i ∈ S which does not default,

πi + Ti = A+ zi − y +
∑
j 6=i

xij .

Finally, note that in any regular financial network, the outside financiers do not lend to the banks and

instead, invest their capital in a linear technology with return r, implying that π0 = 0. Therefore, the

social surplus is given by

u = (A− y)|S|+ v|D|+
∑
i 6∈D

zi +
∑
i 6∈D

∑
j 6=i

xij

= (A− y)|S|+
n∑
i=1

zi +
∑
i∈S

∑
j 6=i

yij

where the second equality is due to the fact that for i ∈ D we have,
∑

j 6=i(xji − xij) = zi − v. Hence,

u = na−mε+A(n− ]defaults).

Two Auxiliary Lemmas

Lemma A.2. The number of bank defaults satisfies

m ≤ ](defaults) <
mε

a− v

where m is the number of realizations of negative shocks in the network.

Proof. Given that the total interbank liabilities of each bank is equal to its total interbank claims and

that v > a − ε, any bank that is hit with a negative shock defaults. Hence, the lower bound is trivial.

To obtain the upper bound, note that for any bank i that defaults but can meet its senior obligations

in full, we have

zi +
∑
j 6=i

xij = v +
∑
j 6=i

xji.

Denoting the set of such banks by D and summing over all i ∈ D imply∑
i∈D

zi +
∑
i∈D

∑
j 6=i

xij = v|D|+
∑
i∈D

∑
j 6=i

xji. (8)

On the other hand, for any bank i that defaults on its senior obligations (if such a bank exists), we

have ∑
j 6=i

xij + zi < v.
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Summing over the set of all such banks, F , implies∑
i∈F

∑
j 6=i

xij +
∑
i∈F

zi < v|F |. (9)

Adding (8) and (9) leads to

mε− (a− v)](defaults) ≥
∑
j 6∈S

∑
i∈S

(yij − xij),

where S is the set of banks that do not default. By definition, the right-hand side of the above equality

is strictly positive, proving that the number of defaults is strictly smaller than mε/(a− v).

Lemma A.3. If ε < ε∗m, then at least one bank does not default, where ε∗m = n(a− v)/m. On the other hand,
if ε > ε∗m, then at least one bank defaults on its senior obligations.

Proof. Suppose that ε < ε∗m and that all banks default. Therefore,

zi +
∑
j 6=i

xij ≤ v +
∑
j 6=i

xji,

for all banks i. Summing over i implies

na−mε ≤ nv,

which contradicts the assumption that ε < ε∗m.

To prove the second statement, suppose that ε > ε∗m and that no bank defaults on its senior obli-

gations. Thus,

zi +
∑
j 6=i

xij ≥ v +
∑
j 6=i

xji,

for all banks i. Summing over i implies na−mε ≥ nv, leading to a contradiction.

Proof of Proposition 2

Proof of part (a). Without loss of generality assume that bank 1 is hit with the negative shock. By

Lemma A.3, bank n does not default as it is the bank furthest away from the distressed bank. More-

over, as long as y > y∗ = (n− 1)(a− v), bank 1 — and consequently all banks — can meet their senior

obligations in full. This is due to the fact that y + a − ε > v. Given that the set of banks that default

form a connected chain, say of length τ , the repayment of the last bank in default to its sole creditor

satisfies

xτ+1,τ = y + τ(a− v)− ε.

On the other hand, given that bank τ + 1 does not default, we have

a+ xτ+1,τ > y + v.
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As a result, τ ≥ ε/(a − v) − 1, implying that the number of defaults reaches the upper bound estab-

lished in Lemma A.2. Hence, the ring network is the least stable and least resilient financial network.

Proof of part (b). By Lemma A.3, as long as ε < ε∗, there exists at least one bank that does not default.

Given the full symmetry in the complete network, the n − 1 banks that are not hit with the negative

shock can thus meet their obligations in full. Hence, the complete financial network is the most stable

and most resilient regular financial network.

Proof of part (c). Consider the financial network constructed as the γ-convex combination of the ring

and the complete financial networks. Without loss of generality, we assume that bank 1 is hit with the

negative shock. Define γd to be the value at which banks 1 through d− 1 default while bank d is at the

verge of default. At this value of γ, we have

x1 =

(
1− γd
n− 1

)
[(x1 + · · ·+ xd)− x1 + (n− d)y] + γdy + (a− v − ε) (10)

xi =

(
1− γd
n− 1

)
[(x1 + · · ·+ xd)− xi + (n− d)y] + γdxi−1 + (a− v) (11)

for 2 ≤ i ≤ d. Hence,

∆2 = x2 − x1 = γd∆1 −
(

1− γd
n− 1

)
∆2 + ε

∆i = xi − xi−1 = γd∆i−1 −
(

1− γd
n− 1

)
∆i,

where ∆1 = x1 − y. Thus, for all 2 ≤ i ≤ d,

∆i = βi−1(∆1 + ε/γd),

where for notational simplicity we have defined β = (1 + 1−γd
n−1 )−1γd. Given that xd = y, the terms ∆i

must add up to zero, that is,

d∑
i=1

∆i =

(
1− βd

1− β

)
∆1 +

(
1− βd−1

1− β

)(
βε

γd

)
= 0,

which immediately implies

∆1 = −
(

1− βd−1

1− βd

)(
βε

γd

)
.

Therefore,

xi = y +

i∑
s=1

∆s = y +

(
βd−1 − βi−1

1− βd

)(
βε

γd

)
,

and as a result,
d−1∑
i=1

xi = (d− 1)y +

[
dβd−1(1− β)− (1− βd)

γd(1− β)(1− βd)

]
βε.
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On the other hand, from (10) and (11), we have

d−1∑
i=1

xi = (d− 1)y +
d(a− v)− ε

(n− d)(1− γd)/(n− 1)
.

Equating the above two equalities thus leads to

n(a− v)/ε− 1 =

[
βd−1(1− β)

1− βd

]
(n− d).

Therefore, the value γd at which d− 1 banks default and bank d is at the verge of default must satisfy

the above equality. For a fixed value of d, the right-hand side is increasing in β (and hence in γd).31 As

a consequence, in order for the right-hand side to remain equal to the constant on the left-hand side,

d has to decrease with γ. Thus, there will be weakly more defaults as γ increases.

Proof of Proposition 3

Proof of part (a). First consider the complete financial network. By Lemma A.3, the distressed bank

defaults on its senior obligations. Suppose that the remaining n−1 banks do not default and that they

can all meet their obligations in full.32 This would be the case only if

(n− 2)
y

n− 1
+ (a− v) ≥ y,

where we are using the fact that the distressed bank does not pay anything to its junior creditors. The

above inequality, however, contradicts the assumption that y > y∗. Hence, all banks default, implying

that the complete network is the least resilient and the least stable financial network.

Now consider the ring financial network and assume without loss of generality that bank 1 is hit

with the negative shock. Once again by Lemma A.3, bank 1 defaults on its senior obligations and

hence, does not pay anything to its more junior creditor, bank 2. Thus, if some bank does not default,

the length of the default cascade, τ , must satisfy

τ(a− v) > y,

which in light of the assumption that y > y∗ guarantees that τ > n − 1, leading to a contradiction.

Hence, all banks default, implying that the ring financial network is the least stable and resilient fi-

nancial network.

Proof of part (b). By definition, any regular δ-connected financial network contains at least one δ-

component M . Given that the total obligations of banks in M c to any bank i ∈ M is at most δ, the

total obligations of banks in M to i is at least y − δ; that is,
∑

j∈M yij > y − δ.

31This can be easily verified by noticing that βd−1(1− β) = (1− βd)
(
1 + β−1 + · · ·+ β−(d−1)

)−1.
32Note that given the symmetric structure of the complete network and the uniqueness of payment equilibrium, either all

other banks default together or they all meet their obligations fully at the same time.
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If the negative shock hits a bank outside of M , all banks in M can meet their obligations in full as

long as

y < a− v + min
i∈M

{∑
j∈M

yij

}
,

which holds whenever δ < a− v. A similar argument shows that when the shock hits a bank in M , all

banks in M c can meet their obligations in full. Thus, the financial network is strictly more stable and

resilient than both the complete and the ring networks.

Proof of Proposition 4

Proof of part (a). First consider the complete financial network. If ε < ε∗m, at least one bank does not

default. Given the symmetry, all n − m banks that are not hit with a negative shock do not default

either, implying that the complete network is the most stable and resilient financial network in the

face of small shocks.

Now consider the ring financial network and assume that m consecutive banks, labeled i + 1

through j = i+m, are hit with negative shocks. An immediate observation is that all banks in default

also form a connected chain, say of length τ ≥ m, the last of which is labeled s = i + τ . In view of

Lemma A.3, bank i does not default, as it is the bank furthest away from the realized shocks. As a

result, as long as y > y∗m = (n−m)(a−v), in the unique payment equilibrium of the financial network,

all banks can meet their senior obligations v in full. This can be established by verifying that bank

j — which is the bank facing the most amount of potential distress — can pay its senior debts. In

particular,

xj,j−1 = y + (m− 1)(a− ε− v),

guaranteeing that xj,j−1 + a− ε > v. Given that all banks can meet their senior obligations, we have

xs+1,s = y + τ(a− v)−mε

where s = i+ τ is the index of the last bank on the chain that defaults. On the other hand, given that

s+ 1 does not default, we have y ≤ a− v + xs+1,s. As a result,

τ =

⌈
mε

a− v

⌉
− 1 ≥ mε

a− v
− 1. (12)

Hence, when shocks hit m consecutive banks on the credit chain, the number of bank failures reaches

the upper bound established by Lemma A.2, implying that the ring network is the least resilient fi-

nancial network.

Proof of part (b). The proof follows a logic similar to that of Proposition 3. We first prove that if

ε > ε∗m, then the complete network is the least stable and resilient financial network. In particular, we
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show that all banks default. By Lemma A.3, them distressed banks default on their senior obligations.

The remaining n−m banks do not default only if

(n−m− 1)
y

n− 1
+ (a− v) ≥ y.

The above inequality, however, can hold only if y < ŷm = (n−1)(a−v)/m ≤ y∗m. Hence, the complete

network is the least resilient and the least stable financial network as all n banks default.

We next show that if ε > ε∗m, then all n banks in the ring network fail as well. Suppose not, and

that there exists a bank that can pay all its creditors in full. On the other hand, by Lemma A.3, there is

also a bank that defaults on its senior obligations v. Consider the path on the ring network connecting

bank j to bank l, such that (i) j defaults on its senior debt; (ii) l pays all its creditors in full; and (iii) all

banks on the path default but can pay back their senior debt. Denote the length of the path connecting

j to l by τ (see Figure 6), and suppose that there are h negative shocks realized on this path.

j l
length = τ

Figure 6: There are τ banks connecting j to l, all of which default, but can meet their senior obligations.

Given that j does not pay anything to its junior creditor (which is the first bank on the path connecting

it to l) and that l does not default, we have (τ + 1)(a− v)− hε ≥ y, implying that

τ >
y∗m + hε∗m
a− v

− 1

= n−m− 1 +
hn

m
.

On the other hand, the remaining m − h shocks hit banks that are not on the path connecting j to l.

Thus, the total number of defaults is at least τ +m− h, implying

]defaults > n− 1 + h
( n
m
− 1
)
≥ n− 1.

This, however, contradicts the assumption that at least one bank does not default.

Finally, consider a δ-connected financial network, containing a δ-component M . Given that the

total obligations of banks in M c to any bank i ∈M is at most δ, the total obligations of banks in M to i

is at least y− δ; that is,
∑

j∈M yij > y− δ for all i. If the negative shock hits a bank outside of M and as

long as y < a−v+mini∈M

{∑
j∈M yij

}
, all banks inM can meet their obligations in full. Thus, as long

as δ < a−v, the financial network is strictly more stable than both the complete and the ring networks.

Proof of part (c). An argument similar to the one invoked in the proof of part (b) shows that the when

ε > ε∗m and y > ŷm, all banks in the complete network default. Therefore, the complete network is the

least stable and resilient financial network.
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To prove that the ring financial network is more stable than the complete network, we show that

there exists a realization of the shocks for which at least one bank in the ring network does not default.

In particular, consider the situation in which m consecutive banks, labeled 1 through m, are hit with

negative shocks. By Lemma A.3, in the unique payment equilibrium, bank m defaults on its senior

debt. Therefore, the length of the cascade of defaults following bank m, denoted by τ , satisfies

τ(a− v) < y ≤ (τ + 1)(a− v).

Thus, the number of defaults in the whole network is

]defaults = m+ τ

< m+
y∗m
a− v

= n,

implying that at least one bank does not default. Hence, the ring network is strictly more stable than

the complete network.

Proof of Proposition 5

We first prove that the 3-chain financial network is efficient if and only if

(r − 1)k ≥ pA. (13)

Given that there are only two potential interbank bilateral contracts, there are only four possible

financial networks that can arise. It is easy to show that if banks 2 and 3 lend to banks 1 and 2,

respectively, the social surplus is equal to

u3-chain = 2a− pε+ k + 2(1− p)A,

where 2(1 − p)A captures the fact that a negative shock to bank 1 would lead to the default of (and

hence, costly liquidation by) banks 1 and 2. Furthermore,

u23 = 2a− pε+ 2k − rk + (2− p)A

u12 = 2a− pε+ 2k − rk + 2(1− p)A

uempty = 2a− pε+ 3k − 2rk + (2− p)A,

where uij refers to the social surplus in the financial network in which only bank j lends to bank i,

and uempty is the social surplus in the financial network with no interbank borrowings. The above

equalities immediately imply that the 3-chain financial network is efficient if and only if (13) holds.

We next show that (13) is a necessary condition for the 3-chain to be an equilibrium financial

network. Suppose that the 3-chain financial network along with the collection of posted contracts
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(R0,R2,R3) correspond to an equilibrium.33 Given that the outside financiers are competitive and

have to break even, the contract posted by the representative outside financier, R0 = (R01, (R02, R
′
02)),

satisfies

rk = (1− p)R01k + p(a− v − ε+ k) (14)

rk = (1− p)R02k + p(2(a− v)− ε+ k) (15)

rk = R′02k,

where R02 and R′02 are interest rates faced by bank 2 contingent on its decision whether to lend to

bank 1 or not, respectively. It is also immediate to verify that the equilibrium interest rate offered

by bank 2 to bank 1 has to be equal to the one offered by the outside financiers; that is, R2 = R01.

Else, either bank 1 would have borrowed from the outside financiers, or bank 2 could have increased

its profits by posting a higher interest rate. A similar argument establishes that, as long as bank 2

lends to bank 1, bank 3 would not charge an interest rate different than what is offered by the outside

financiers. In other words, R3 = (R02, R
′
32), where R′32 is the interest rate at which bank 2 can borrow

from bank 3 if it decides not to lend to bank 1. Thus, given the equilibrium interest rates, the profits

of the banks are equal to34

π1 = a− v − (r − 1)k − pε+ (1− p)A

π2 = a− v + (1− p)A

π3 = rk.

Finally, for the 3-chain financial network to be part of an equilibrium, bank 3 should not be able to

make a strictly higher profit by deviating and posting a new contract R̃3 = (R̃32, R̃
′
32). In particular,

there should not exist an interest rate R̃′32 for which both banks 2 and 3 would make strictly higher

profits if bank 2 hoards cash. Given that the profits of the banks when bank 2 hoards cash are

π̃2 = a− v + k − R̃′32k +A

π̃3 = R̃′32k,

such a deviation would be profitable if there exists R̃′32 such that

k + pA > R̃′32k > rk

as it would guarantee that π̃2 > π2 and π̃3 > π3. Thus, if (13) does not hold, the 3-chain financial

network cannot be part of an equilibrium.

The proof is complete once we show that (13) is also a sufficient condition for the 3-chain financial

network to be part of an equilibrium. In particular, we show that if (13) holds, then the collection
33Note that since bank 1 has no lending opportunity, the contract R1 is not part of the equilibrium definition.
34Note that given that hoarding cash by bank 2 is off the equilibrium path, the equilibrium profits of the banks are inde-

pendent of the value R′32.
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of contracts R0 = (R01, (R02, r)), R2 = R01, and R3 = (R02, r) and the 3-chain financial network

constitute an equilibrium, where R01 and R02 solve equations (14) and (15), respectively. To this end,

first take the posted contracts as given and consider the subgame that follows. Banks 1 and 2 have no

unilateral incentives to borrow from the outside financiers, as they would be facing the same interest

rates offered by banks 2 and 3, respectively. Furthermore, bank 2 does not have an incentive to deny

lending to bank 1. In particular, if bank 2 hoards cash, it would make a profit of π̂2 = a−v+k+A−rk
which is strictly smaller than π2 = a − v + (1 − p)A. Finally, note that bank 3 does not have an

incentive to hoard either. Because, if bank 3 hoards cash, its profit would be equal to π̂3 = k, which is

strictly smaller than its profits in the 3-chain financial network. Thus, given (R0,R2,R3), the 3-chain

financial network is a Nash equilibrium of the subgame that follows the posting of the contracts.

Finally, we show that no bank has an incentive to unilaterally deviate by posting a different con-

tract. Given that R0 = (R01, (R02, r)), bank 2 has no incentive to post anything other than R2 = R01.

Similarly, bank 3 cannot make strictly positive profits by posting a contract that offers bank 2 an in-

terest rate other than R02 if bank 2 does not hoard cash. Thus, the only possible profitable unilateral

deviation would be for bank 3 to post a contract R̃3 = (R02, R̃
′
32) in which R̃′32 < r. However, as we

showed earlier, as long as (13) holds, such a deviation either (i) is not profitable to bank 3, or (ii) would

not induce bank 2 to hoard cash. Thus, the specified collection of contract and the 3-chain financial

network constitute a subgame perfect Nash equilibrium.

Proof of Proposition 6

Proof of part (a). Define τ = dε/(a − v)e − 1 as the extent of financial contagion in the ring financial

network and let α = 2(τ − 1)/(n − 1). We show that if αA < (r − 1)k, a collection of contracts

of the form Ri = (R,R′) for all i ∈ {0, 1, . . . , n} along with the ring financial network constitute a

symmetric equilibrium, where R and R′ are the interest rates at which the lender is willing to lend

to the borrower contingent on whether the latter lends or hoards cash, respectively. In particular, we

choose the pair (R,R′) to satisfy the indifference equations of the outside financiers:

rk =

(
n− τ
n

)
Rk +

1

n

τ∑
s=1

[
s(a− v)− ε+Rk

]
(16)

rk =

(
n− 1

n

)
R′k +

1

n
(a− v − ε+ k). (17)

We first take the pair of interest rates (R,R′) as given, and consider the subsequence subgame. Note

that bank i has an incentive to deny lending to bank i − 1 and hoard cash instead. In particular, if

bank i hoards cash, it would face the interest rate R′ and as a result, its profits would be equal to

π̃ = a− v +

(
n− 1

n

)
A− ε

n
− (r − 1)k.

On the other hand, if bank i does not hoard cash, it would make a profit equal to

πring =

(
n− τ
n

)
A+ a− v − ε

n
, (18)
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which is strictly larger that π̃. Furthermore, bank i has no incentive to deviate in its borrowing be-

havior either, as it would face interest rate R no matter if it borrows from bank i + 1 or the outside

financiers. Therefore, given the collection of contracts Ri = (R,R′), the ring financial network is a

Nash equilibrium of the corresponding subgame.

It is thus sufficient to show that no bank has an incentive to deviate by posting a different contract.

Clearly, no bank can make a strictly higher profit by offering an interest rate other than R for the case

that its designated borrower does not hoard cash. Therefore, the only possible profitable deviation is

for a bank i to post R̃i = (R, R̃′) where R̃′ < R′. For such a deviation to be profitable, however, there

should exist an interest rate R̃′ such that π̃i > πring and π̃i+1 > πring where,

π̃i =

(
n− 1

n

)
(a− v + k − R̃′k +A)

π̃i+1 =

(
n− 2

n

)
(a− v + R̃′k −Rk +A).

Thus, such an interest rate exists only if

k − 1

n− 1
(a− v − ε) +

(
τ − 1

n− 1

)
A > Rk +

1

n− 2
(2(a− v)− ε)−

(
τ − 2

n− 2

)
A,

which implies(
τ − 1

n− 1
+
τ − 2

n− 2

)
A+

(
1

n− 1
+

1

n− 2

)
ε > (r − 1)k +

(
τ − 1

2n
+

1

τ(n− 1)
+

2

τ(n− 2)

)
ε,

where we are using the fact that τ = dε/(a − v)e − 1. The above inequality, however, contradicts the

assumption that αA < (r− 1)k. Therefore, such a deviation would not be profitable for by i, complet-

ing the proof.

Proof of part (b). Given that the ring financial network is symmetric, there are exactly τ defaults in

the presence of a single negative shock. Therefore, the social surplus is equal to

uring = na− ε+ (n− τ)A.

If, on the other hand, the social planner forces a single bank i to hoard cash instead of lending to bank

i− 1, (that is, by setting `i,i−1 = 0 and `j,j−1 = k for j 6= i) the social surplus would be equal to

uhoard = na− ε+ (n− E[τhoard])A− (r − 1)k,

where E[τhoard] is the expected number of defaults. Given that bank i is no longer at the risk of default

due to contagion, the extent of contagion would be strictly smaller than τ if any of the banks indexed

i − τ + 1 through i − 1 are hit by the negative shock, whereas there would be a longer cascade of

defaults, say of length τ ′ ≥ τ , if bank i itself is distressed. This is due to the fact that hoarding cash
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implies a smaller return on i’s capital, and hence, a smaller cushion to absorb the shock at t = 1.

Hence,

E[τhoard] =
1

n

[
(n− τ − 1)τ +

τ∑
s=1

s+ τ ′
]

≤ τ + 1− τ(τ + 1)

2n
,

where the inequality is due to the fact that τ ′ ≤ n. Therefore, as long as

(r − 1)k <
(τ(τ + 1)

2n
− 1
)
A,

the social planner can increase the social surplus by forcing bank i not to lend to bank i− 1.

Proof of Proposition 7

Proof of part (b). We establish the inefficiency of the double-ring financial network by showing that

the social surplus is higher in the interlinked rings financial network. Given that there are τ defaults

in the double-ring financial network, the social surplus is equal to

u2-ring = na− ε+ (n− τ)A.

On the other hand, the social surplus in the interlinked rings network is

ulinked = na− ε+ (n− τ̂)A,

where τ̂ is the number of defaults. Thus, it is sufficient to show that τ̂ < τ . Suppose without loss of

generality that bank n in the interlinked financial network is hit with the negative shock. Hence, if

banks 2q − 1 and 2q default, their total repayments on their obligations are equal to

x2q−1 = x2q = Rk + (q + 1/2)(a− v)− ε/2.

As a result, the total number of defaults in the interlinked rings financial network would be equal to

2s+ 1, where s is the largest integer for which x2s < Rk. Hence,

τ̂ = 2

⌈
ε

2(a− v)
− 3/2

⌉
+ 1.

Given that ε/(a− v) ≤ τ + 1, we have

τ̂ ≤ 2 dτ/2− 1e+ 1 = 2 dτ/2e − 1,

which implies that if τ is even, then τ̂ < τ . Hence, the double-ring financial network is socially ineffi-

cient.
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Proof of part (a). We show that a collection of contracts of the form R = (R,R′) for all i ∈ {0, 1, . . . , n}
along with the double-ring financial network constitute a symmetric equilibrium, where R and R′ are

the interest rates at which bank i is willing to lend to a borrower contingent on whether the latter

lends to others (regardless of whether it lends to one or two other banks) or hoards cash, respectively.

We choose the pair (R,R′) to satisfy the indifference equations of the outside financiers, determined

by (16) and (17).

Given that in the double-ring financial network each bank effectively belongs to a single credit

chain, the results established in Proposition 6 are applicable. In particular, the double-ring financial

network is a Nash equilibrium of the subgame that follows the posting of contract R by all agents.

Furthermore, no bank has an incentive to deviate and charge an interest rate other than R or R′ when

its borrower lends fully or hoards cash, respectively. Therefore, to verify that R and the double-ring

financial network constitute an equilibrium, it is sufficient to show that no lender bank i + 2 has an

incentive to charge an interest rate that would lead the borrower bank i to split its lending between

two counterparties. We establish this statement by showing that if the interest rate is kept at R, both

banks i and i+ 2 would make strictly smaller profits when bank i splits its lending. Hence, there is no

interest rate at which (i) bank i+ 2 can induce bank i to split its lending; and (ii) bank i+ 2 is strictly

better off than in the double-ring financial network.

Recall from (18) that the profit of a bank in a credit chain is equal to

πring =

(
n− τ
n

)
A+ a− v − ε

n
.

On the other hand, if bank i deviates and splits its lending between the two borrower banks (i.e.,

banks i − 2 and i − 1 assuming that i is odd), then it would default on its obligations to bank i + 2 if

any bank j satisfying i − 2τ + 4 ≤ j ≤ i is hit with the negative shock. Therefore, if the interest rates

are kept constant at R,

π̂i =

(
n− 2τ + 3

n

)
A+

(
n− τ + 2

n

)
(a− v)− ε

n
.

A similar argument implies that bank i+ 2 defaults with probability 2τ − 6 and hence,

π̂i+2 =

(
n− 2τ + 6

n

)
A+

(
n− τ + 5

n

)
(a− v)− ε

n
.

The above equations immediately imply that if τ > 3, then π̂i, π̂i+2 < πring, completing the proof.

Proof of Proposition 8

We first state and prove a simple lemma. Suppose that p = 0 and defineRc as the interest rate at which

the outside financiers break even in a complete financial network when all banks are also lending at

rate Rc. In other words, Rc solves

rk =

(
n− 1

n

)
Rck +

1

n
(a− v − ε` +Rck).
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Furthermore, for 0 ≤ s ≤ n−1, defineRs as the interest rate at which the outside financiers are willing

to lend to a bank i who deviates from the complete network by only lending to s other banks.35

Lemma A.4. Suppose that p = 0. Then, Rs > Rc for all s < n− 1.

Proof. Suppose that bank i lends to s other banks, where s < n − 1. Also suppose that the outside

financiers break even by charging bank i an interest rate of Rs ≤ Rc. It is easy to verify that bank i

defaults on its obligations with probability at least 1/n. In particular, even if Rs = r, the bank cannot

meet all its obligations, as a− ε` +Rck < v + rk. Furthermore, given that bank i is lending at rate Rc,

the total default repayment of i on its debt to the outside financiers is strictly less thanRck+a−v− ε`.
Hence, the expected repayment of bank i on its debt to the outside financiers satisfies

E[x0i] <

(
n− 1

n

)
Rsk +

1

n
(a− v − ε` +Rck) ≤ rk,

which is a contradiction.

Proof of part (a). Given that the shock is of size of ε` with probability one, the social surplus in the

economy is equal to

u = na− ε` + (n− E[τ ])A− (c1 + · · ·+ cn)(r − 1),

where ci is the amount of cash hoarded by bank i and E[τ ] is the expected number of defaults in the

financial network. As the above equality suggests, only the last two terms depend on the structure of

the financial network. Given that r > 1, the last term achieves its maximum value of zero when no

bank hoards cash. Clearly, the complete network satisfies this condition. Furthermore, by Proposition

2, there is exactly one failure in the complete network regardless of the realization of the shock, and

hence, E[τ ] = 1. Thus, the proof is complete once we show that the expected number of failures in all

symmetric financial networks is at least one. Suppose not. This implies that there exists a realization

of the shocks for which no bank fails. By symmetry, however, this means that no bank fails in the

financial network, and as a result, all banks can borrow at the risk-free interest rate r. Therefore, the

total amount owed to any given bank i is less than or equal to its total debt of value rk. This however,

implies that the bank defaults if it is hit with the negative shock, which is a contradiction. Thus, the

complete network is the most efficient symmetric financial network.

Proof of part (b). It is sufficient to construct a symmetric financial network for which the social

surplus is larger than that of the complete network. First, consider the complete financial network.

Conditional on the realization of ε` and εh, there are 1 and n defaults, respectively. Therefore, the

social surplus in the economy is

ucomplete = na+ (1− p)(n− 1)A− [(1− p)ε` + pεh].

35Note that by definition, Rn−1 = Rc.
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Next, consider the empty financial network in which banks do not lend to one another at all and

instead, hoard all their cash. In this case, the social surplus in the economy is

uempty = na+ (n− 1)A− [(1− p)ε` + pεh]− nk(r − 1),

where we are using the fact that a bank defaults only if it is hit with (either a small or a large) shock.

Thus, for any given p and n, the complete network is inefficient if

p(n− 1)A ≥ n(r − 1)k,

which completes the proof.

Proof of part (c). We first show that if p = 0, then the complete financial network is part of an

equilibrium. In particular, we show that if all banks and the outside financiers post the contract

R = (R0, . . . , Rn−1), then the complete financial network can be supported as part of an equilibrium,

where Rs is defined above.

As a first step, we show that given R, the complete network is a Nash equilibrium of the sub-

sequent subgame. Given that all banks and the outside financiers are posting the same contract, no

bank has an incentive to deviate and borrow from the outside financiers instead of other banks. Fur-

thermore, no bank has an incentive to deviate and lend less either. By Lemma A.4, such a deviation

implies that the bank would face a higher interest rate from its creditors, while getting a smaller rate

of return on its own investment. Therefore, given the contracts, no bank has a profitable unilateral

deviation.

Next, we show that no bank has an incentive to deviate by posting a contract other than R. Clearly,

a given bank cannot make strictly higher profits by charging an interest rate other than Rc for the case

that its borrowers are not hoarding cash. In particular, if the bank chargers an interest rate higher

than Rc, the borrower banks would switch to the outside financiers. Thus, any potential profitable

deviation should involve changing the interest rates that a bank is willing to charge contingent on the

borrowers hoarding cash. Note that such deviations would lead to different payoffs only if the banks

do end up hoarding cash in the subsequent subgame. Thus, suppose that a bank i deviates by posting

a contract R̂ 6= R and that at least one bank, say bank j, hoards cash (partially or fully) in the subgame

that follows. Now it is easy to verify that the corresponding element of the vector of interest rates R̂

cannot be larger than Rc. In particular, if that is the case, then j can simply stop hoarding cash, and

hence, face the smaller interest rate of Rc instead. On the other hand, no element of R̂ can be smaller

than or equal to Rc either. In particular, if bank i charges an interest rate that is smaller than or equal

to Rc, it would be receiving a strictly smaller repayment on its loan to j, regardless of whether j is

defaulting or not. Hence, no bank has a profitable unilateral deviation in posting a contract other than

R.

To summarize, we have so far shown that when p = 0, the complete financial network is part of an

equilibrium. More specifically, we showed that any deviation that would lead to a financial network
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structure other than the complete network in the subsequent subgame, would lead to a strictly lower

profit for the deviating bank. Therefore, by continuity, there exists a small enough p̄ such that for

p < p̄, the complete network is part of a subgame perfect Nash equilibrium of the game.

Proof of Proposition 9

If ε > ε∗, then there is simply not enough liquidity in the system to forestall all defaults, regardless of

the value of κ. Therefore, throughout the proof, we assume that ε < ε∗.

Proof of part (a). The argument relies on transforming the pattern of interbank renegotiations into a

network flow problem and invoking the maximum-flow minimum-cut theorem of Ford and Fulker-

son (1956).36 In particular, consider the multi-source multi-destination network flow problem defined

as follows: (i) each bank i for which zi = a is a source with value of a− v, (ii) each distressed bank is

a sink of value ε + v − a, and finally, (iii) each vertex in the network has a capacity of κA whereas all

edges have infinite capacity. Note that the capacity of each vertex can alternatively be represented by

“splitting up” that vertex to two adjacent vertices of infinite capacity each and connecting them with

an imaginary edge of capacity κA.

If the above network flow problem has a feasible solution, then there exists a pattern of renegoti-

ations such that all banks would avoid default. In particular, the flow value on the edge connecting

bank i to bank j is exactly the amount that one bank pledges to pay the other at t = 2, in exchange

for a reverse transfer at t = 1. Also note that the assumption that vertex capacities are equal to κA

guarantees that no bank can get a transfer at t = 1 which exceeds the value of its pledgeable assets at

t = 2.

Given the above network flow problem, the max-flow min-cut theorem implies that a feasible flow

exists as long as the value of the minimum cut in the network is larger than the total outgoing flow

to the sinks, i.e., m(ε+ v − a). Since the minimum cut would consists of at least one of the imaginary

edges of capacity κA, the theorem implies that a feasible flow exists as long as κA > m(ε + v − a),

completing the proof.

Proof of part (b). Suppose that there exists a pattern of renegotiations which guarantees that no

defaults occur. If all defaults are indeed avoided, any distressed bank i is paid back in full by its

debtors, which means that i would have a total shortfall of v + ε − a on all its debt (to its senior

creditors and other banks). Bank i would be able to renegotiate this debt only if it can pledge as much

at t = 2; that is, only if κA > v + ε − a. This is, however, in contradiction with the assumption that

ε > min{ε∗, κA+ a− v}. Thus, at least one bank defaults.

36For a careful treatment of network flow problems, see for example, Cormen, Leiserson, Rivest, and Stein (2001). For
another application of this theory in economics, see Ambrus, Mobius, and Szeidl (2012).
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