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[1] This paper describes the use of satellite‐based estimates of rainfall to force the
Hydrology, Entomology and Malaria Transmission Simulator (HYDREMATS), a
hydrology‐based mechanistic model of malaria transmission. We first examined the
temporal resolution of rainfall input required by HYDREMATS. Simulations conducted
over Banizoumbou village in Niger showed that for reasonably accurate simulation of
mosquito populations, the model requires rainfall data with at least 1 h resolution.
We then investigated whether HYDREMATS could be effectively forced by
satellite‐based estimates of rainfall instead of ground‐based observations. The Climate
Prediction Center morphing technique (CMORPH) precipitation estimates distributed by
the National Oceanic and Atmospheric Administration are available at a 30 min temporal
resolution and 8 km spatial resolution. We compared mosquito populations simulated
by HYDREMATS when the model is forced by adjusted CMORPH estimates and by
ground observations. The results demonstrate that adjusted rainfall estimates from
satellites can be used with a mechanistic model to accurately simulate the
dynamics of mosquito populations.

Citation: Yamana, T. K., and E. A. B. Eltahir (2011), On the use of satellite‐based estimates of rainfall temporal distribution to
simulate the potential for malaria transmission in rural Africa, Water Resour. Res., 47, W02540, doi:10.1029/2010WR009744.

1. Introduction

[2] Malaria is responsible for nearly a million deaths each
year, 90% of which occur in Africa [Aregawi et al., 2008]. The
disease is caused by the plasmodium parasite, which is trans-
mitted primarily by Anopheles mosquitoes. In arid areas such
as the Sahel, malaria is closely linked to rainfall, as the mos-
quitoes that transmit the disease are limited by the availability
of vector breeding habitat. In Niger, the primarymalaria vector
is Anopheles gambiae, which breeds in temporary rainwater‐
fed pools on the order of tens of meters in diameter. The for-
mation of these pools and their utilization by mosquitoes is
mechanistically modeled by the Hydrology, Entomology and
Malaria Transmission Simulator (HYDREMATS), developed
by Bomblies et al. [2008]. HYDREMATS has been used in a
number of studies of Anopheles mosquito dynamics in Bani-
zoumbou and Zindarou villages in Niger [Bomblies et al.,
2008; Gianotti et al., 2008a, 2008b; Bomblies and Eltahir,
2010].
[3] Previous applications of HYDREMATS relied on

ground observations for rainfall forcings. This limits the use
of the model, as rain gauge networks are sparse in many
malaria‐prone areas. The incorporation of satellite‐based
rainfall data into HYDREMATS would greatly increase the
range of applicability of the model. As rainfall estimates from

satellites vary in their temporal resolution, it is important to
determine the resolution required by HYDREMATS. Previ-
ous studies relating rainfall to malaria transmission have used
temporal resolutions on the order of days for mechanistic
models [Patz et al., 1998; Hoshen and Morse, 2004] or
months for statistical models [Craig et al., 1999;Kilian et al.,
1999; Thomson et al., 2005]. However, hydrology models
require a much finer time scale. The main hydrological pro-
cess of interest for malaria transmission is surface runoff,
as this is an important process affecting the mechanism by
which water forms pools of water that can be used by
anopheles mosquitoes. Investigations of the temporal reso-
lution requirements of runoff models have found that rainfall
inputs on the order of minutes or hours are required [Finnerty
et al., 1997;Krajewski et al., 1991;Pessoa et al., 1993;Winchell
et al., 1998].
[4] The application of remote sensing approaches to

malaria control has been the subject of extensive research
over the past 30 years, as has been reviewed in numerous
articles [Kalluri et al., 2007;Ceccato et al., 2005;Rogers et al.,
2002; Hay et al., 1998a; Thomson et al., 1996]. A common
approach is to apply statistical techniques relating satellite
images of land cover such as 30 m resolution data from
Landsat satellites to mosquito abundance in order to create
maps of suitable mosquito habitat [Beck et al., 1994; Pope
et al., 1994;Diuk‐Wasser et al., 2004;Masuoka et al., 2003].
Bogh et al. [2007] extended this approach to estimate the
entomological inoculation rate (EIR), defined as the number
of infectious bites per person, per unit time. Normalized
difference vegetation index (NDVI) data from multispectral
sensors such as the National Ocean and Atmospheric

1RalphM. Parsons Laboratory,Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA.

Copyright 2011 by the American Geophysical Union.
0043‐1397/11/2010WR009744

WATER RESOURCES RESEARCH, VOL. 47, W02540, doi:10.1029/2010WR009744, 2011

W02540 1 of 12

http://dx.doi.org/10.1029/2010WR009744


Administration’s (NOAA) advanced very high resolution
radiometer (AVHRR), available at 1.1 km resolution, have
been widely used as a proxy for rainfall data to map mosquito
habitat suitability or malaria distribution [Hay et al., 1998b;
Nihei et al., 2002; Eisele et al., 2003; Thomson et al., 1999;
Rahman et al., 2006]. The NDVI value gives information
on the abundance of green vegetation, which can then be used
to infer information about rainfall [Thomson et al., 1996].
NDVI ranges from −1 to 1 and is given by the formula
NDVI = (NIR − RED)/(NIR + RED), where NIR is per-
centage reflectance in the near‐infrared channel and RED is
the percentage reflectance in the red channel.
[5] Some authors have investigated satellite‐based mea-

surements of environmental variables directly. Thomson et al.
[2005] found correlations between malaria incidence in
Botswana and estimates of seasonal rainfall and sea surface
temperature. Omumbo et al. [2002] examined the relation-
ships between historical intensity of malaria transmission
and NDVI, midinfrared reflectance, land surface temperature,
and air temperature data obtained from AVHRR as well as
data on altitude and cold cloud duration in Tanzania, Kenya,
and Uganda.
[6] Monitoring rainfall has been recognized as an essential

component for the malaria early warning systems advocated
for by the Roll Back Malaria initiative [Grover‐Kopec et al.,
2005]. In response to this need, decadal (every 10 days)
estimates of rainfall anomalies are distributed by the Africa
Data Dissemination Service, aWeb site supported by the U.S.
Agency for International Development. The estimates
incorporate rain gauge data with cloud top temperature from
Meteosat 7 as well as estimates from the special sensor
microwave/imager on the Defense Meteorological Satellite
Program satellites and the advanced microwave sounding
unit on NOAA satellites [Ceccato et al., 2006]. Hay et al.
[2003] retrospectively determined that these data would
have provided a reliable warning to a major malaria epidemic
that occurred in 2002 in Kenya.
[7] While all of these studies use remote sensing data of

some form, none use satellite‐based estimates of meteoro-
logical variables to force a mechanistic model of malaria
transmission such as HYDREMATS. Rogers et al. [2002]
and Kalluri et al. [2007] call for the use of satellite data
in mechanistic models of vector‐borne pathogen transmis-
sion as an improvement over the statistical models currently
being used and an important next step for malaria control.
We propose the use of rainfall estimates from the Climate
Prediction Center morphing method (CMORPH) in order to
directly simulate the relationship between rainfall and
mosquito populations. CMORPH was chosen because of its
high spatial and temporal resolution and because CMORPH
has been shown to perform significantly better at estimating
rainfall than techniques that use only passive microwave
(PMW) images or PMW data blended with rainfall estimates
derived from infrared (IR) data [Joyce et al., 2004].
[8] CMORPH [Joyce et al., 2004] provides global esti-

mates of rainfall every 30 min at a 0.07277° (∼8 km) spatial
resolution. CMORPH combines rainfall estimates from
PMW sensors with spatial propagation vectors derived from
IR data. PMW sensors can detect thermal emission and
scattering patterns associated with rainfall. However, these
sensors are only available on polar orbiting satellites, giving
them limited spatial and temporal coverage. Infrared data

from geostationary satellites are available globally at 30 min
resolution and can be used to determine the movements of the
precipitating systems sensed by PMW instruments. CMORPH
uses infrared measurements from the Geostationary Opera-
tional Environmental Satellites 8 and 10, Meteosat‐5 and
Meteosat‐7, and Geostationary Meteorological Satellite‐5.
PMWsensors used byCMORPH are aboard the NOAApolar‐
orbiting operational meteorological satellites, the U.S. Defense
Meteorological Satellite Program satellites, and the Tropical
Rainfall Measuring Mission (TRMM) satellite. Consecutive
PMW images are propagated forward and backward in time
using motion vectors derived from the infrared images. The
shape and intensity of the precipitating systems in the 30 min
intervals between PMW measurements are determined by
using a time‐weighted linear interpolation [Joyce et al., 2004].
CMORPHhas been found to significantly overestimate rainfall
in Africa [Laws et al., 2004]. The wet bias of CMORPH data
has been attributed to evaporation of rainfall below the cloud
base [Tian and Peters‐Lidard, 2007].

2. Study Area

[9] The simulations in this paper were conducted over the
domain of our field site, Banizoumbou village in south-
western Niger. Banizoumbou is a typical Sahelian village in
a semiarid landscape, with a population of about 1000. Land
cover consists of tiger bush shrubland, millet fields, and
fallow and bare soil. Millet fields dominate near the village,
while tiger bush is more common near surrounding plateau
tops [Bomblies et al., 2008]. The rainy season in Bani-
zoumbou extends from May to October, with maximum
rainfall occurring in August. During this time, water pools
form in and around the village, providing ideal breeding
habitat for A. gambiae mosquitoes. Mosquito populations
and malaria transmission in Niger increase dramatically
during the rainy season.
[10] Meteorological data from three additional West Afri-

can locations were used to calibrate CMORPH data: Zindarou
village in Niger, Djougou in Benin, and Agoufou in Mali.
Zindarou village is located approximately 20 km away
from Banizoumbou. Djougou, Benin, receives significantly
more rainfall than Banizoumbou, with an average of over
1000 mm/yr, spread out over a longer rainy season. Agoufou,
Mali, is notably drier than Banizoumbou, with average annual
rainfall between 200 and 400 mm. The map depicted in
Figure 1 shows the four locations. The dotted contour lines
show average annual rainfall.

3. HYDREMATS Model Description

[11] The development of the Hydrology, Entomology and
Malaria Transmission Simulator (HYDREMATS) is described
in detail by Bomblies et al. [2008]. The model was developed
to simulate village‐scale response of malaria transmission to
climate variability in semiarid desert fringe environments such
as the Sahel. The model provides explicit representation of
the hydrology and mosquito life cycle, which are important
determinants of malaria transmission. HYDREMATS can be
separated into two components: the hydrology component,
which explicitly represents water pools available to anopheles
mosquitoes as breeding sites, and the entomology component,
which is an agent‐based model of the Anophelesmosquito life
cycle.
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[12] The hydrology component of HYDREMATS is based
on the land surface scheme LSX of Pollard and Thompson
[1995]. The model simulates momentum, energy, and water
fluxes within its vertical column of the atmosphere, six soil
layers, and two vegetation layers. Vegetation type and soil
characteristics are required as model inputs and strongly
influence soil moisture and runoff in the model. Thicknesses
and permeabilities of vertical soil layers are assigned to rep-
resent the soil structure observed in the Sahel, including the
thin layer of low‐permeability crust commonly observed in
areas with sparse vegetation [Bomblies et al., 2008].
[13] Water at each grid cell is partitioned between runoff

and infiltration on the basis of a Hortonian runoff process
governed by hydraulic conductivity and porosity of the soil.
Unsaturated zone hydraulic conductivity is calculated as a
function of soil moisture following Campbell’s equation.
Infiltration through the unsaturated zone is calculated using
an implicit Richard’s equation solver. Uptake of soil water
from evapotranspiration is calculated on the basis of cli-
mactic variables. Overland flow is modeled using a finite
difference solution of a diffusion wave approximation to the
St. Venant equations following the formulation of Lal
[1998]. Flow velocity is represented by Manning’s equa-
tion as a function of friction slope, flow depth, and the
distributed roughness parameter n, which is derived from
soil characteristics and vegetation type. The overland flow
process is of critical importance for the modeling of water
pool formation [Bomblies et al., 2008].
[14] The meteorological inputs required by the model are

temperature, humidity, wind speed and direction, incoming
solar radiation, and rainfall. These variables are assumed
to be uniform over the model domain in the simulations
conducted in this paper. Distributed rasters of vegetation,
soil type, and topography are required at the grid resolu-
tion specified by the user. The hydrology component of
HYDREMATS generates a grid of water depths and tem-
peratures for each grid cell for each time step. These grids

serve as the inputs for the entomology component of the
model [Bomblies et al., 2008]. HYDREMATS output
rasters of pool water depths for each time step can be com-
pared to assess the effect of reducing temporal resolution
on the modeling of pool formations. Figure 2 shows a
sample raster of pool depths for the 2.5 km by 2.5 km model
domain. Each grid point has dimensions of 10 m by 10 m.
The three labeled pools correspond to three grid points for
which a time series of pool depths is simulated by the model
and examined. Pool 1 is a large pool on the outskirts of the
village. Mosquito larvae are not generally found in pools of
this size, as they prefer shallower and calmer waters. Pool 2
is found in the center of Banizoumbou and is photographed
in Figure 3. This pool is a productive mosquito breeding
site, which, combined with its proximity to households,
makes it a significant public health concern. Pool 3 is
another typical pool where mosquito larvae are found.
[15] The entomology component of HYDREMATS simu-

lates individual mosquito and human agents. Human agents
are immobile and are assigned to village residences, as
malaria transmission in this region occurs primarily at night
when humans are indoors [Service, 1993]. Mosquito agents
have a probabilistic response to their environment based on a
prescribed set of rules governing dispersal and discrete
events, including development of larval stages, feeding, egg
laying, and death. The model tracks the location, feeding
status, and reproductive status of each female mosquito
through time. General trends and relative abundances of
simulated mosquito abundances compare well to field cap-
tures of mosquitoes in Banizoumbou [Bomblies et al., 2008].
[16] In addition to the water pool inputs supplied by the

hydrology component of the model, the entomology com-
ponent requires air temperature, humidity, wind speed, and
wind direction. Air temperature and relative humidity
influence mosquito behavior and survival, while wind speed
and direction influence mosquito flight, both by physical
displacement by wind and by attracting mosquitoes to

Figure 1. Locations of Banizoumbou, Zindarou, Agoufou, and Djougou (adapted from Bomblies et al.
[2008]).
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upwind blood sources. The location of village residences is
required in order to assign the location of human agents
[Bomblies et al., 2008].
[17] Mosquito eggs hatch and advance through four stages

of larval development at rates dependent on water tempera-
ture, nutrient competition, and predation given by Depinay
et al. [2004]. Surviving larvae pupate and emerge as adult
mosquitoes. The duration of the aquatic stage of A. gambiae
mosquitoes ranges from 8 to 24 days [Depinay et al., 2004].
All aquatic stage mosquitoes in a pool that dries up are killed,
emphasizing the importance of pool persistence for mosquito
breeding [Bomblies et al., 2008]. Adult female mosquitoes
follow a cycle of seeking human blood meals, feeding,
resting, and ovipositing for the duration of their lifespan.
Mosquito flight velocity is assigned as a weighted random
walk corrected for attraction to upwind CO2 and wind
influence. The effective flight velocity, which incorporates
resting time and direction changes within the model time
step, is assumed to follow a normal distribution with mean
15 m/h and variance 25 m/h. Mortality of adult mosquitoes
is a function of daily average temperature, with no survival
above a daily average temperature of 41°C.
[18] The model also includes a malaria component that

represents the stages of the malaria life cycle. However, this
aspect of the model has not yet been validated with field
data. The malaria parasite is transmitted to a mosquito when
the mosquito bites an infected human. It develops within the
mosquito at a temperature dependant rate described by
Detinova [1962] and is transmitted back to a human when
the infected mosquito takes a blood meal from an uninfected
human. The human infections clear with time. The model

outputs for each time step includes the number of live adult
mosquitoes, their location and infective status, and the
prevalence of malaria infections in humans [Bomblies et al.,
2008].
[19] While HYDREMATS can be used to assess the

potential for malaria transmission on the basis of the climatic
determinants of disease transmission, actual levels of malaria
transmission depend on many more factors, including the
presence of the parasite within a population, local vector
control activities, access to medical service, differences in
host susceptibility, and movement of people in and out of the
modeled population.

4. The Effect of the Temporal Resolution of
Precipitation on Simulations of Mosquito
Populations Using HYDREMATS

4.1. Simulation Description

[20] The meteorological station in Banizoumbou is owned
and operated by Institut de Recherche pour le Développement
(IRD). Rainfall data are collected by a tipping bucket rain
gauge at 5 min intervals. To examine the model’s sensitivity
to the temporal resolution of rainfall, the 5 min rainfall data
during the rainy season of the year 2006 were aggregated to
construct rainfall data sets with 15 min, 30 min, 1 h, 3 h, 6 h,
12 h, and 24 h resolutions. HYDREMATS simulations were
conducted for each rainfall data set, operating at a 15 min
time step, from 1 June 2006 through 31 October 2006. The
total rainfall measured during this time was 505.55 mm. The
15 min resolution rainfall measurements were assumed to be

Figure 2. Pool depth output in meters for the 2.5 × 2.5 km Banizoumbou domain for a sample time step.
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the truth, and the simulation using 15 min rainfall resolution
served as the control simulation. Rainfall inputs for the
30 min and lower‐resolution data sets were prepared by
distributing the aggregate data rainfall equally into 15 min
periods. For example, the 1 h resolution rainfall input was
constructed by distributing the total rainfall for the first hour
over four 15 min intervals, followed by the total rainfall for
the second hour divided over four 15 min intervals. Simula-
tions were not conducted using the original 5 min rainfall
resolution because of the computational time requirements
of using a 5 min time step. All other meteorological inputs,
temperature, humidity, wind speed and direction, and radia-
tion, had a 1 h resolution and did not vary between simula-
tions. The model domain was a 2.5 km × 2.5 km area centered
over Banizoumbou village.

4.2. Results

4.2.1. Effect on Water Pools
[21] Model outputs for total mass of pooled water, total

pool surface area, water levels of three specific pools,
evaporation, infiltration, and mosquito populations were
analyzed by Yamana [2010]. The total mass of pooled water
at each time step in the 30 min, 1 h, and 3 h rainfall reso-
lution scenarios were highly correlated with the control
scenario (correlation coefficient >0.97). However, quantity
of water stored in pools at each time step decreases as
rainfall resolution decreases further. Despite the high cor-
relation of mass of pooled water, the cumulative sum of

pooled water over the entire rainy season is nearly 20% less
than the control in the 1 h simulation and nearly 50% less
than the control in the 3 h simulation. Averaging rainfall
over 24 h results in a cumulative total of pooled water of
only 0.3% of the amount in the control simulation, with a
correlation coefficient of less than 0.005.
[22] The surface area of water pools is an important

characteristic, as larvae are limited to the water surface. The
total surface area of water pools over the model domain can
be calculated by counting the number of grid points with
water depth above a threshold value. The scatterplots in
Figure 4 compare the proportion of the model domain
covered in pools at the beginning of each day in the control
simulation on the x axis to that in the 30 min, 1 h, 3 h, and
6 h simulations on the y axis. Figure 4 shows that daily out-
puts of surface area in the 30 min and 1 h scenarios corre-
spond well with the control, while the 3 h and 6 h resolution
scenarios significantly underestimate the surface area of
water pools. This is consistent with the decreasing volume of
pooled water observed in these coarse‐resolution scenarios.
As with the mass of pooled water, we see that the surface area
of water pools decreases as the temporal resolution of rainfall
coarsens. The correlation coefficient between the simulations
and control decreases at a faster rate for surface area than it
does for water mass, decreasing to 0.91 for the 1 h simulation
and 0.80 for the 3 h simulation. The results are similar when
the surface area considered is restricted to shallow waters
preferred by mosquitoes, which is set in the model to be water
less than 0.7 m deep. The correlation coefficients between the

Figure 3. Pool 2, located in the center of Banizoumbou village, is a typical mosquito breeding site.
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simulations and control for the surface area of shallow water
were 1.00, 0.99, 0.90, and 0.82 for the 30min, 1 h, 3 h, and 6 h
simulations, respectively.
[23] The decrease in both the surface area and volume of

pooled water observed when the model is run with coarse
rainfall resolution can be explained by the differences in
rainfall intensity between the scenarios. In the control simu-
lation, rainfall events occur as short‐duration, high‐intensity
events, with rain falling at a faster rate than can be absorbed
by the soil. This leads to runoff and pool formation. When
these rainfall events are averaged over 1 or more hours, the
events begin to resemble long‐duration, low‐intensity rain-
fall, which is more easily infiltrated into the soil.
4.2.2. Effect on Mosquito Population
[24] Figure 5 shows the number of female adult mosqui-

toes alive at each time step for the different simulations. We
see that the number of mosquitoes in the 30 min, 1 h, and
3 h simulations is very highly correlated to the number in
the control simulation, with a correlation coefficient of
≥0.95.While the peaks and ebbs are closely matched between
the various simulations, the coarser resolutions significantly
underestimate the magnitude of mosquito populations. The
number of adult mosquitoes at each time step in the 30 min
and 1 h simulations corresponds reasonably well with the
control, underestimating the cumulative sum of mosquitoes
by 12% and 15%, respectively. The majority of this under-
estimation occurs in the first three peaks in the mosquito
populations, occurring between late mid‐July and late
August. When the rainfall resolution is degraded to 3 h reso-
lution, the model shows the cumulative sum of live mosqui-
toes as less than 50% of that in the control. This dramatic drop
in mosquito populations reflects the decrease in surface area

of pooled water, as pooled water drops from 90% the amount
seen in the control at 1 h resolution to 66% of the control at 3 h
resolution. When the rainfall is averaged over 12 or 24 h, the
resulting simulations show only very minimal mosquito
breeding, with the cumulative sum of mosquitoes being 13%
and 7%, respectively, of that of the control.

4.3. Discussion

[25] Hydrological modeling can add valuable information
to malaria transmission models. However, in order to
function properly, these models require a fine temporal
resolution of rainfall inputs. These simulations show that
while the availability and convenience of using a rainfall
data set with low temporal resolution has certain advantages,
HYDREMATS’ skill in accurately modeling the hydrologic
and entomologic systems decreases as the resolution of
rainfall decreases. This is because low temporal resolution
data sets average rainfall events into longer, lower‐intensity
events that lead to more infiltration and reduce the amount
of pooling. The decreased amount of water in pools means
that there is less breeding habitat available for mosquitoes,
and thus, the number of mosquitoes decreases.
[26] Given the results of these simulations, we conclude

that a minimum rainfall resolution of 1 h should be used
with HYDREMATS. Although there is some loss in accu-
racy, the high levels of correlation of all examined variables
between the 1 h simulation and the control indicate that
HYDREMATS can give a reasonable representation of the
environment using rainfall inputs of this resolution. Mean-
while, 1 h resolution data are likely to be more available
than rainfall data with finer resolution. While 3 h and
coarser resolution rainfall data sets are even more widely

Figure 4. Daily proportion of pooled area. Outputs from the control simulation are shown on the y axes,
while outputs from the 30 min, 1 h, 3 h, and 6 h simulations are shown on the x axes.
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available, using these data sets would result in significant
losses in the accuracy of the model.

5. Application of Satellite Estimates of Rainfall
Distribution to Simulate the Potential for Malaria
Transmission in Africa

5.1. Calibrating CMORPH Rainfall Estimates

[27] Here, we use CMORPH data instead of ground
observations as the rainfall forcing in HYDREMATS for
Banizoumbou, Niger, in 2007. We first developed a simple
method of correcting for the wet bias in CMORPH on the
basis of rules made by comparing CMORPH to ground data
at three locations in West Africa in 2006: Zindarou in Niger,
Agoufou in Mali, and Djougou in Benin. Data from Bani-
zoumbou were not used in the calibration process. Rainfall
in Zindarou was measured using a Texas Electronics TE525
rain gauge, installed by Bomblies et al. [2008] and main-
tained by Centre de Recherche Médicale et Sanitaire, our
collaborators in Niger. Rain gauge data for the other three
locations were provided by IRD of Niger, Mali, and Benin
and were obtained through the African Monsoon and Mul-
tidisciplinary Analyses (AMMA) database. CMORPH va-
lues used for each village corresponded to the roughly 8 km
by 8 km CMORPH grid cell containing the coordinates of
each rain gauge. The 30 min CMORPH data and 5–20 min
rain gauge data for these four locations were averaged into
hourly values of rainfall, which is the time step determined
by the previous investigation to be sufficient for accurate
use of HYDREMATS.

[28] An initial comparison of rainfall totals between the two
types of data sets showed that CMORPH overestimated total
annual rainfall by 45%–68%. The frequency bias (FB), false
alarm ratio (FAR), and probability of detection (POD) were
calculated on hourly and daily time scales. The FB refers to the
number of hours or days where CMORPH estimates nonzero
rainfall divided by the number of nonzero rainfall observations
on the ground. FAR refers to the fraction of nonzero rainfall
estimates in CMORPH that did not correspond to nonzero
rainfall measurements on the ground. The POD is the fraction
of nonzero rainfall measurements observed on the ground that
were correctly detected byCMORPH. The POD, FB, and FAR
for hourly and daily data at each location were analyzed by
Yamana [2010]. The overall FB was 1.81 for hourly data and
1.31 for daily data. This means that CMORPH estimates far
more nonzero rainfall hours than are actually observed on the
ground. The significant lowering of FB when rainfall is aver-
aged over 24 h implies that many of the false positives could be
the result of overestimating the length of actual rainfall events.
The POD over all four sites is 0.61 on the hourly scale and 0.81
on the daily scale. The FAR is 0.67 hourly and 0.38 daily.
[29] Examining the data, we observed that many of the

false positives occurred when the CMORPH hourly rainfall
estimates were less than 1 mm. Such small amounts of
rainfall are likely to evaporate before reaching the surface. It
was found that the FB and FAR could be significantly
reduced by setting all CMORPH data points less than or
equal to 0.4–0 mm, with a tradeoff being a small decrease in
the POD. On the hourly scale, this adjustment led to a 33%
decrease in FB, a 15% decrease in the FAR, and a 15%

Figure 5. Adult female mosquitoes from each of the simulations.
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decrease in the POD. On the daily time scale, the FB and the
FAR decreased by 11%, while the POD decreased by 5%.
[30] After removing the low‐intensity rainfall estimates,

CMORPH data were further adjusted by multiplying each
value by the ratio of total rainfall measured by rain gauges to
total rainfall estimated by CMORPH in Zindarou, Agoufou,
and Djougou, which was 0.73. Banizoumbou was not
included in the calculation of the correction factor so that we
could test the applicability of the adjustment method to other
stations. This crude adjustment scaled down CMORPH esti-
mates such that the annual totals were closer in magnitude to
observed data. Figure 6 showsweekly and cumulative rainfall
for the three locations for rain gauge data, raw CMORPH
data, and adjusted CMORPH data. We see that the adjusted
CMORPH data set agrees well with yearly rainfall totals and,
in many cases, with weekly rainfall totals.
[31] The adjustment method was applied to CMORPH data

for Banizoumbou in 2007. The resulting rainfall series,
shown in Figure 7, was the rainfall forcing for the CMORPH
simulation in HYDREMATS. The correlation between the
adjusted CMORPH rainfall and meteorological station rain-
fall during the rainy season (1 June 1 to 31 October) was 0.26,
0.74, and 0.77 for the hourly, daily, and weekly time scales,
respectively.

5.2. Simulation Description

[32] This investigation was based on two HYDREMATS
simulations conducted over the domain of Banizoumbou,

Niger, for the year 2007. The first simulation, the control,
used rain gauge data as the rainfall input. The second sim-
ulation used adjusted CMORPH data as the rainfall forcing.
The simulations ran using a 1 h time step.

5.3. Results

[33] The hourly depths of the three pools described in
Figure 2 are presented in Figure 8, with the blue line depicting
pool depth output from the simulation using ground data and
the red line pool depth using adjusted CMORPH rainfall for-
cings. Pool 1, the deepest and largest of the pools, was con-
sistently deeper in the ground data simulation than in the
CMORPH simulation, despite the fact that the CMORPH
simulation had slightly more total rainfall. The depths of pools
2 and 3 are closer in magnitude between the two simulations,
but their correlations are lower. The correlation coefficients
between the two simulations are 0.99, 0.78 and 0.83 for Pools
1, 2, and 3 respectively.
[34] The initial disparity of depths between the two simu-

lations observed in pool 1, observed mid‐June, is interesting
because it accentuates the importance of rainfall distribution
in the pool formation process. The rainfall event leading to the
formation of pool 1 occurred over a 9 h period between 15 and
16 June 2007. This event was recorded by both the rain gauge
and CMORPH, with the rain gauge showing a total of
40.5 mm, while the adjusted CMORPH data set showed a
total of 39.6 mm rainfall. Despite this very close agreement in
magnitude of the event, the gauge data recorded the rainfall

Figure 6. Weekly and cumulative rainfall in 2006. Ground observations are shown in blue, raw
CMORPH data are shown in green, and adjusted CMORPH data are shown in red.
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Figure 8. Water levels at three pools. The blue lines correspond to depths simulated in the control sim-
ulation, while the red lines show depths simulated in the adjusted CMORPH simulation.

Figure 7. Banizoumbou weekly rainfall in 2007. Ground observations are shown in blue, raw
CMORPH data are shown in green, and adjusted CMORPH data are shown in red.
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over 3 h with a maximum intensity of 34.6 mm/h, while the
adjusted CMORPH data showed the event as occurring over
7 h with a maximum intensity of 16.1 mm/h. The higher
intensity rainfall in the rain gauge simulation caused higher
rates of surface runoff, leading to greater volumes of pooled
water; thus, pool 1 was deeper in the rain gauge simulation
than it was in the CMORPH simulation. The same reason
explains the increased difference in depths of pool 1 observed
in early August. Pools 2 and 3 aremuch smaller and shallower
and are therefore less sensitive to the overall runoff patterns of
the model domain. They quickly reach their maximum depth,
after which excess water travels as runoff to a greater
depression in the topography.
[35] While differences in rainfall distribution accounted

for the discrepancies seen in pool 1 in mid‐June and early
August, this is not representative of all rainfall events.
Figure 9 shows the daily mean surface area of pools,
cumulative surface area of pools, and cumulative rainfall.
There is significant correlation between the daily mean
surface area of water pools of the two simulations, with a
correlation coefficient of 0.76. This correlation is compa-
rable to that of rainfall at the daily time scale. Comparing
cumulative surface area of pools to cumulative rainfall
shows that the major discrepancies observed in the daily
mean surface area of pools between the two simulations are
primarily due to differences in the magnitude of rainfall
events between the adjusted CMORPH and ground data
rather than differences in their temporal distribution; the

surface area of pools is closely correlated to rainfall, with a
correlation coefficient of 0.76 in the meteorological station
simulation and 0.84 in the CMORPH simulation.
[36] The number of live female mosquitoes simulated at

each time step for the two simulations is shown in Figure 10.
The correlation coefficient for the two outputs is 0.98, and
the root‐mean‐square error is 5.9 × 103. The CMORPH
simulation shows lower numbers of mosquitoes than the rain
gauge simulation in late June and July and early September
and greater numbers in August. This is consistent with the
relative amounts of pooled water available during these
times under the two model simulations.

5.4. Discussion

[37] The results of this study demonstrate that satellite‐
derived estimates of rainfall can be used in a mechanistic
model to simulate mosquito populations and malaria trans-
mission. The use of satellite data with such models has been
described as the logical next step to existing studies using
satellite data for malaria control [Rogers et al., 2002; Kalluri
et al., 2007]. While studies that use statistical information to
infer relationships between satellite‐based environmental
observations and malaria transmission have great value in
mapping malaria risk areas on the country scale, they gen-
erally do not address village‐scale variability. Since they
most often do not explain causal pathways between
remotely sensed data and malaria transmission, they have

Figure 9. Daily rainfall inputs and surface area outputs from the control (blue) and CMORPH (red) si-
mulations.
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limited ability to predict the malaria response to a given
environmental change.
[38] Satellite technology is constantly improving, provid-

ing plentiful information which can be used in a model such
as ours. In the future, we envision a system by which most of
the inputs to HYDREMATS could be obtained by satellite
and archived data sets. These inputs include temperature,
humidity, wind speed and direction, topography, soil char-
acteristics, and location of residences. If these data could
all be applied to the model, the range of applicability of
HYDREMATS could be extended to every village in western
Africa as well as any other area where malaria transmission
is limited by the availability of water. HYDREMATS could
be a valuable tool for researchers and those working in
malaria control programs. This would be especially useful for
addressing changes in the environment such as climate
change and land use change.

6. Conclusion

[39] We have demonstrated that hydrology‐based mecha-
nistic models of malaria transmission require rainfall data with
at least 1 h resolution. This requirement is far greater than the
rainfall inputs used by previous modeling studies of malaria
transmission. This resolution allows accurate modeling of
pool formation processes that form the link between rainfall
and mosquito abundance. While ground observations with 1 h
resolutions may be difficult to obtain in many malaria‐prone

areas, we have shown that satellite data can be used as the
rainfall forcing. After applying a simple adjustment, we
demonstrate that CMORPH satellite data are of sufficient
resolution and accuracy to be used with HYDREMATS. This
presents a new use for satellite estimates of rainfall, as a forcing
of a mechanistic model to simulate mosquito populations.
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