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ABSTRACT

Let T be a tree. It is well known that the coefficients of the
characteristic polynomial (CP) of the adjacency matrix of T can be
expressed as the number of matchings of different sizes in T. Graham
and Lovasz have shown that a similar result is true for distance
matrices, although matchings must be replaced with forests of a
certain number of edges. We prove a generalization of their theorem
for trees with weighted edges.

Another theorem of Graham, Hoffman and Hosoya says that the
determinant of the distance matrix of any graph can be computed by
looking only at the 2-connected pieces of the graph. We consider the
weighted case and present a possible approach for paths to proving a
conjecture of Grahamos about the unimodality of the coefficients of
the CP of the distance matrix of a tree. -

In the final section, we factor the CP of the distance matrix of
the full binary tree into factors with degrees less than log n, where n
is the number of vertices of T. This factoring generalizes to full
k-nary trees. The factors satisfy an easy recursion, and define the CP
of the infinite binary tree. The factoring depends on the automor-
phisms of the binary tree, but we can produce factors for any tree
with a non-trivial involution.
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STANDARD MATHEMATICAL INTRODUETION

Trees probably don't need an introduction to those of you reading

this, nor is it likely that you need to know what they are or why they

are interesting. Trees are connected graphs without cycles, and they

form one of the most basic classes of examples in graph theory. Trees

are 2-colorable, have no sneaky properties that come from allowing

graphs to have lots of very closely interconnecting edges, and, in

general, are very well behaved. However, in our efforts to understand

the wonderful constructs called graphs, we still are so unknowledge-

able that we don't even understand trees.

Some efforts have been made to classify trees using polynomials,

where, ideally, we have a unique polynomial with degree n for every

tree on n vertices. All attempts so far have failed. The particular

cases that I am interested in involve the adjacency matrix and the

distance matrix of trees. Now the adjacency matrix of a graph on n

vertices with vertex set vi, v2 ''''' n, is an nxn matrix with

entries of 0 and 1; the ijth entry is I if v and v and adjacent,

and 0 otherwise. The adjacency matrix of a graph characterizes the

graph; therefore it was hoped that the characteristic polynomial of

the adjacency matrix would characterize trees.

After two trees were discovered that disproved that idea, other

aspects of the adjacency matrix were investigated, including its

spectral radius (largest magnitude of an eigenvalue) [CSDJ. Another

attempt led to the consideration of the characteristic polynomial of

distance matrices. The distance matrix of a graph on n vertices with

vertex set v1, v2, ... , v n, is an nxn matrix with the ijth entry the
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distance between v, and v1 . However, a computer search discovered

two non-isomorphic trees with identical distance matrix characteristic

polynomials. In a recent paper, McKay eliminates most polynomials

classically associated with trees as characterizing trees [McKJ.

Distance matrices remain something of a mystery. While successive

powers of adjacency matrices count the number of paths between any two

vertices, successive powers of the distance matrix seem to reveal no

information. The coefficients of the characteristic polynomial of the

adjacency matrix count matchings in a tree, while the same coeffici-

ents in the distance matrix count certain obscurely labelled subfor-

ests [G&L] (Section I). However, as will be shown in this thesis,

the characteristic polynomial of the distance matrix of a tree factors

according to its automorphism group. In particular, the characteris-

tic polynomial of the complete binary (and k-ary) tree has an

explicit decomposition (Section IV).

The original questions I worked on involved generalizing some

distance matrix theorems about trees to trees with weighted edges

(Section II). It was hoped that weighting the edges would give some

insight to the contribution of a single edge to the coefficients of

the characteristic polynomial of the distance matrix of a tree. In

fact, the contribution of a leaf can be isolated. Since a tree can be

decomposed by removing one leaf at a time, it is possible, although

time consuming, to build up the characteristic polynomial this way.

A lovely result about the determinant of the distance matrix of

any graph is due to Graham, Hoffman and Hosoya. It states that the

determinant can be computed using only the 2-connected pieces of the
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graph. In Section III, we attempt some generalizations of their

theorem, most .of which are disappointingly dull. However, it might be

possible to prove Graham's unimodality conjecture (Conjectures V) for

paths using this approach.

We conclude this introduction by mentioning what we believe to be

the most interesting problem and conjecture still open. The problem is

to try to factor the characteristic polynomials of distance matrices

of other classes of trees than the binary trees. Since binary trees

have so much symmetry, the automorphism group method of factoring the

characteristic polynomial gives a lot of information. Other classes

of trees probably will not respond with the same wealth of detail, but

some common factors for common subtrees may be found. The most

interesting open conjecture is whether binary trees are characterized

by their distance matrix characteristic polynomials. We know that

trees in general are not determined by their characteristic

polynomials, but it seems unlikely that another tree could imitate the

binary tree so well as to produce the same number of similar factors

as the ones found in Section IV. If the binary trees are

characterized by their characteristic polynomials, it would be

interesting to know other classes of trees that are characterized by

their polynomials.
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Section 0

For those who may not be completely familiar with graph theory

terminology, we present a few definitions. Please be sure to read the

last paragraph, since in it we define notation used throughout the

text. For a more thorough discussion of basic graph concepts, we

recommend [A). A directed graph G is defined to be a (finite) set of

vertices V(G) along with an edge set, E(G), which is a subset of

V(G)xV(G). An undirected graph (usually just called graph) is an

vertex set V(G) and an edge set E(G) which is a subset of all

unordered pairs of vertices in V(G). The degree of a vertex is

defined to be the number of edges it is contained in. If a vertex is

in an edge e, it is said to be adjacent to e. If two edges share a

common vertex v, they are said to be incident at v.

A walk of length r from vertex v1 to vertex vr+1 is a sequence of

edges, vi' 2 ' 2' 3 ' ''' r-1' r r' r+1 1. G is connected if

for every pair of vertices u and v, there exists a walk from v to u.

A cycle is a connected graph with every vertex of degree 2. A forest

is a graph that contains no cycle and a tree is a forest that is

connected. A path is a tree with every vertex of degree 42. The

distance between two vertices in a graph is the length of the shortest

path between them.

A leaf is an edge in a tree that contains a vertex of degree 1. A

comWonent of a graph is one of its connected pieces. A graph is said

to be k-connected if there exist k vertices whose removal disconnects

the graph, but the removal of any k-1 vertices does not disconnect the

graph. Note that a tree is always i-connected. A k-matching is a
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graph with k edges, no pair of which are incident with no isolated

vertices.

We define standard symbols used throughout the text. For any matrix

M, let CP(M) be the characteristic polynomial of M. Label the vertices

of a tree T with vi, v2 ' '''' n, and let D(T) = (d ) = the distance

matrix of a tree, with d = the distance from vertex v to vertex v .

Let Xn + dn-2 n-2 + ... + d0 be the characteristic polynomial of D(T),

CP(D(T)). Let A(T) = (S ) be the weighted distance matrix, i.e. let

the edges of a tree be labelled with x, x2 ' ' ' n-1 and o be the

sum of variables from the xi s on the shortest path from vertex vi to

vertex v . Let CP(A(T)) = Xn + 6n-2 n-2 + ... + 60 . Let A(T)=(a >=

the adjacency matrix of a tree, with a =1 if vertices v and v are

adjacent and 0 otherwise. Let in + an-2 n-2 + ... + a0 be CP(A(T)).
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Section I

It is well known that the coefficients of CP(A(T)) satisfy: [CDS]

a = (-1) n+k/ 1(k/2) if k is even,
n-k \ 0.otherwise

where L(i) = # of 1-matchings in T. Graham and Lovasz, in [G&L],

investigate the coefficients of CP(D(T)), and show that the coeffici-

ents of the distance matrix satisfy a similar, although somewhat more

complicated property.

Graham's and Lov~sz's result can be stated as:

Theorem i Let T be a tree. Then dk(T) = (-)nI2nk-
2 k

F
where T has n vertices, F ranges over all forests with k-1,k,k+1 edges

k
and no isolated vertices, and AF are integers depending only on F and

k, and N F(T) is the number of forests F contained in T.

The coefficients A can be written down explicitly in terms of theF

construction of the tree. My first result is a generalization of this.

Let the edges of a tree be labelled with xi,x 2 ''''.. In-1 so that 6 in

the weighted distance matrix A(T) is now a sum of variables from the

set of x 's. Let CP(A(T))= a k(T)Xk
k=O

Theorem 2 6k(T) = (-1) n-1 2 n-k-2 F F f
i I F LF

where LF is a labelled copy of F in T and A is the weighted versionF

of the A's. The 4 k,s and Aks will be defined at the end of theF F

following proof.

This theorem reduces to Theorem 1 when all the x 's are equal to 1.

The same explicit construction of the A can be given. We now proceed
F

to give the proof of Theorems 1 and 2, by using a complicated label-
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ling of the forests F contained in T. This proof is a straightforward

generalization of the proof for the unweighted case in [G&L]. Much of

the wording is taken directly from EG&LJ; the whole proof is given for

completeness.

EXAMPLE Let P 2 = ooo . Then CP(A(P2))= -X +2X, CP(D(P 2

-X 3+6X+4 and if the weighted version of P2 = o l o 2o then

CP(A(P -X 3 + 2X(x2 + x x2 + X 2 )+2x x (x + x
2 1 1 2 2 1 21 2

PEF OF THER I AND 2

The plan of the proof is fourfold:

1. The inverse A- of A=A(T) is found.

2. We can use the relationship between the characteristic polynomial

of a matrix and the characteristic polynomial of the inverse of the

matrix to find CP(A(T)) in terms of CP(A~ (T)).

3. The terms of the determinant expansion of A
1 -XI are interpreted

as counting the occurrences of certain labelled forests F in T.

4. The contribution each forest makes is determined.

Let us label the tree T as follows: Label the vertices v,,v2 '...V n

and let the first edge on the unique path from v to V1 be labelled

with xi 1 for 2(i(n-1. Let us define the nxn matrix B by

Lt x d -efn b1
o L 0

xv 0 0 - 0 -74%

Let N=(n )jbe the nxn matrix definied byn ij=iif d =d + d
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and 0 otherwise. Thus n9 =1 iff the unique path from v1 to v contains

v . Note that n = n1  = 1 for all i.

Lemma I A=N TBN

Proof of Lemma 1: Note that BN = (c ) where c = 6 for 1 j(n and

c = x i (1-2n 1 ) for 1)2. Multiplying by NT, we get that

N TBN = (c* ) = fxckj f \ n + 2nk)

k=1 k=2

n n
Now nkix k-1 (1- 2 nkj) = 2In kixk-1

k=2 k=2

n

2 >2n ki n k jk-1. But

n

nkixk-1
k=2

n
S11 and L nkinkjxk-1

k=2

-J
1~

0 if nij=nji=o
Sii if nij=1

61j if nji=1

Hence (c*) = (6 ).
ii ij

Lemma 2 N = (v ), where v =
ij ij

Proof of Lemma 2: Note that v

J
1

-1

0

if i=j
d =1 and d =1+d
ot erwise

= -i iff n = 1 and v is adjacent

to v . Since the ijth entry in the product NNi is

n
Z n ikj , the only terms in the sum which have a nonzero
k=i
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contribution come from those k with both nik 0 and v 0. If i=j then

we must have k=i and the entry is 1. If i~j then the only nonzero

terms are for k=j with n iv~= 1-1 = 1 and k=K, where d =1 and

d = 1 + d1K with n v = 1(-1) = -1. Thus, for i*j the entry is 0.
Iij K Kj

Hence NN 1 =I.

Lemma 3 N±(N)T = diag~d1+1,d2 1d3,...,d n] - A(T) where di = the

degree of v .

Proof of Lemma 3: The ijth entry in the product, namely,

n

ik kj, has the values d1+1 if i=j=1, since all 
k with either k=1

of vk adjacent to v1 contribute 1 to the sum; d if i=j>i, since now

we cannot take k=1; -a if i~j, for we cannot have vik=v jk0

Thus, the only nonzero contribution can occur is v ik=- jk, and v is

adjacent to v so that a j =1. This proves the lemma.

Lemma 4 Let x 1+x2 +...+ n-=X, and X =X-x . Then

o oL a

Proof of Lema 4 Multiply B-B1

__2. iA -

Lemma 5 A-1=(6 ) is given by

6-1 = (2-di)(2-di)
ij 2X

+ f -Di/2 if i=j
I aij/xij if ij
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where D. is the sum of the i/x for the edges x adjacent to y and

x is the edge label of the edge adjacent to vertices v and v . If

v. and v are not adjacent, then x is taken to be 1.

Proof of Lemma S Use A = N 1 B (Ni.)T The proof of the lemma is a

straightforward calculation.

We now will use some elementary linear algebra to calculate the

CPA1(T). Let C(X) be

2-A 1 2-4

Now C(X) is (n+1)x(n+1), so we label the first row and co umn of C(X)

with 0 instead of 1, in order to use our previous notation.

Let det(C(X)) = ) ck(T)Xk

k=O

By performing elementary row and column transformations on C(X), (we

multiply the 0th row by (2-d )/(n-1) and add the result to the ith

row) we get that det[C(X)J= -2nX-CP(A ). From elementary linear

algebra, we know that CP(A)(X) = (-X)ndet(A)-CP(A 1 )(X-1). We also

need

n-1 n-2. n-1
Lemma 6 [GHH] det(A(T)) = (-1) n-(2)n X- .

i=1

Proof of Lemma 6 The proof appears in Section III.
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Using Lemma 6, we have CP(A)(X) = -2n-2X-n -CP(A1 )(X-1 ).
1=1

n-1
Hence ok (T) 1(/4) -xfcn-k .

If we expand det[C(X)] and collect the terms which contribute to the

Xn-kth term, we find -2

n-km -L 9, /r(.

cn-k(T)= (-
2 ) n-

11, 12, - - >k

where the sum ranges over all choices of 1(1 <.. <in.

Let us examine the expansion of the general determinant

-- X-2--d-2-a-

where we label the rows and columns with 10,i,...,kl. An important ob-

servation is that the only permutation choices from the above matrix

which can contribute nonzero terms to the determinant correspond to

permutations

v=(OJI J2- -Js)Mjs+ Js+2)(Js+3 Js+4) - -Js+2m-1 Js+2m) (s+2m+13-- -(k

This follows at once from the fact that since T contains no cycles,

the only nontrivial cycles % can have either involve row 0 and column

0 or have length 2. Furthermore, all the terms aj132, a23. ... ,ajs-13s

must be i.
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Let mij-aiJ The permutation v above corresponds to the term (2)

Xij

(2-djl )ajij2 ' 'js-Ijs (2-ds) (aJs+IJs+2 xjs+ 2 s+1)--(-Djs+2m+1)- -(-Dk)

in the expansion of (1). When s=O, this has the slightly different

form -X -(aJs+ 1Js+2js+2Js+1) --(-Djs+2m+1)- -(- Dik). We may expand

the term in (2) into three similar terms formed by replacing

(2-dj1 )(2-djs) by dj d1 -2(djl+dj)+4.

Next, we interpret the individual terms in the expansion of the

determinants in the above c n-k as enumerating certain subforests F

of T in which the vertices and edges of F have been marked in various

ways.

(i) For the factor L1J2'(,J2J3 ...,13s-13s we distinguish the

endpoints and the direction on the path in T from vji to vj (if s>2)

and one over the weights on the edges as follows:

Vi

(ii)(a) For the factor Dj, we mark an edge of T incident to vj with an

arrow pointing to the shaded vertex v and one over the weight of the

'I
edge chosen:

AJI

(ii)(b) For the factor dj, we mark an edge of T incident to vj with an

arrow pointing to the shaded vertex vj:
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(iii) For the factor (aijaji) we distinguish the edge (vi,vj} in T and

mark it with one over its weight squared:

(iv) For the factor X, we mark an edge with the symbol e and its

weight:

(v) For the factor djdj (which will occur only when s=1), we mark one

edge incident to vj with an arrow to vj and a symbol 1 and we mark one

edge (possibly the same edge) with an arrow to vj and a symbol 2;

also, we circle and shade vj.

The terms in (2) now correspond exactly to the number of ways T can

be marked according to rules just given. Of course, one must keep in

mind the fact that degeneracies may occur; e.g., some edges of T may

receive several marks. The value of (1) is now given by enumerating

all possible ways of marking T according to (i) through (v) and

summing the appropriate signed expressions over all choices of

14 ji<. .. .<jk4 n.

Of course, the terms of determinant (1) also have signs attached

to them. Specifically each term with the cycle structure of r defined

above has an additional sign factor of (-1 )s+m.

A considerable simplification now results from the following

observation. For each marking of T which contains an edge marked by
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(111), i.e.: 2

VL..
(because of a factor (aijaji)) there is another marking of T which is

identical except for the edge {vi,vjl, now (degenerately) marked by

(ii)(a) as

Furthermore, the corresponding terms in the expansion of (1) from

which the two markings come have opposite signs. This is obvious,

since the two permutations differ only in that the factor (aijaji)

in one is replaced by (-Di)(-Dj) in the other and such a change

certainly changes the sign of the permutation. Hence, all the

contributions from the. markings of the type in (iii) are canceled out

by all the markings in which the edge fvivjl has two arrows, one to

vi and one to vj, and for which Di and Dj have been selected from the

diagonal of (1).

Thus, we may henceforth restrict our consideration to permutations

v for which m=0: n=(0 j1 * ' 's) (s+1 ' 'ik) (3), provided the edges

(vi,vj} in T marked as

come only from the factors (2-di)(2-dj) of a term i.e., have no weight

label. However, since for any permutation v above there is at most

one cycle (Oji-j js) containing 0, in the corresponding markings of T,

at most one edge can have arrows at each of its endpoints.

The specific terms of the determinant which come from the shorten-

ed v above are
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I. s=O: -X-(-Dj) ---(-Dak), sign r=1

II. s=1: (2-dji)(2-dj 1 )(-Dj 2 ) .(-DJk), sign n=-1

We split this into the sum of the three terms:

(U) djidji(-D J2)---.(-DJk)

(ii) -4dji(-DJ2)---(-D)k

(iii) 4(-DJ2 ) -- (-Dk

III. s)2: (2-dj)aJij2 ,aJs-ijs(2-djs)(-Djs+i) -- (- DJk), sign n=(-1)s

We also split this into the sum of three terms:

(1) (djj-1 )axJiJ2''"s-lJs (djs-1)(-Djs+1}'...(~ DJk)

(i1) -((dji-1)+(das-1 t(Jl2'as-lJs (-DjS+1)---.(- Dak)

(iii) aJid2--aXJs-iJs (-Djs+1)---.(-DJk)

Our next task is to examine the number of ways a given subforest F

of T can be marked so as to contribute to the nonzero terms in I and

II. If F is a forest with connected components Cl,...,Ct (which of

course are trees), we define

IFI=the number of vertices of F,

IIFII=the number of edges of F,
t

p(F)=fl ICil, and xF=Z xi
i=1 xicF

We let rk denote the set of all forests having no isolated

vertices and exactly k edges. For the empty forest F*, we set

w(F*)=i.

Since each factor djl, Dj, and aij corresponds to the marking of a

unique edge of T, with the exception of djj and djs in II which may

degenerate, it follows that we must have |IFII=k+i,k,or k-1.

Let F be an arbitrary fixed subforest of T with components

Cj,...,Ct and no isolated points. We wish to determine in how many
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ways T may be marked according to the conditions given above so that

the marked edges are exactly the edges of F. Because of the restric-

tions on marking T, it follows that all Ci except possibly one, which

we denote by C*, -have all edges marked according to (ii)(a), i.e., as

We say that Ci is marked normally in this case. The number of ways C1

can be marked normally is just ICi -, the number of vertices of Ci

times one over the product of the edge weights of Ci. This is because

each vertex of such a Ci, except for exactly one vertex v, must have

exactly one edge with an incoming arrow. Now v has all edges with

outgoing arrows. Thus, v serves as a "source" and the direction of

all other arrows are determined. (See Figure 1.) Hence, it suffices

to determine the number of ways the exceptional component C* can be

marked. Each edge in Figure 1 is labelled with one over its variable

label, xedge the variable labels being taken from our original

labelling of the edges of T. These labels are not present in Figure 1

to avoid confusing the eye.

Figure 1

As we have noted, F can have only k+i,k, or k-I edges. We treat

the three cases separately. We first interpret the absolute value of

the terms and then determine the appropriate signs. In the. first

case, with ||FI l = k+1, there can be no multiply labelled edges.

There are k+1 labels and k+1 edges and each edge must receive a label.
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I IFI I =k+i

I. X-(Dj1 )(Dj 2 ) ---(Dk) See Figure 2. If the edge e

corresponding to the choice for the factor X is erased from C*, the

two resulting components can be arbitrarily marked normally, that is,

using (ii). Thus, for each choice of "source" vertices u and v in C*,

there are d(u,v)=the unweighted distance between u and v in the tree T

possible locations of the edge e. Therefore, there are exactly

Z d(u,v)
(u,v}EC*

2
ways of marking C* in this case. The weight of C* is always x /xC**

This is because all the edges except e are weighted with one over

i
their usual label, xedge , and e is weighted with x

edge e

Figure 2

Let V(u,v) = the set of the edge weights on the path from u to v.

Since the sign of the permutation r in (3) is +1, the total contribution

to the determinant is
t

()k+1 p F) i 2
xF i=1 ICil 1u,V)ECi xrco(u,v)

II(i). djidji(-DJ2 )---(-DJk). See Figure 3. Since IIFII=k+i,

there are no multiply marked edges. We use an argument similar to

that in the preceding case (where an extra factor of 2 comes from the

labelling of the edges with 1 or 2). All the edges except those

labelled 1 and 2 are labelled with one over their usual variable.
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Figure 3

We obtain a total contribution in this case of

(-1)k2 p(F) i t 1I xrXs
XF i=itCil {u,v}SCi fxrlXslcS(u,v), xr*Xs are incident 

in T

III(i). (djj-1)aj1J2 ' Q.s-1 Js(djs-1)(-Djs 1)- - (- DJk). Now

on the path between the sources x and y we must choose the two points

vjl and vis as well as a direction. All the edges except the neighbor

of vji on the unique path from u to vg, , and the neighbor of vjs on
1

the unique path from v to vjs have the usual weight of Xedge

Figure 4

VVjV

Thus, the total contribution in this case is

(-1 )k2p(F)X ' 1 - xrXs
XF i=ItCil)u,v}ECi xr*Xs not incident in T; txrXs)C

6 (u,V)

The remaining cases II(i), (iii), and III(11), (iii) cannot

contribute for IIFIl=k+i. Combining the above results, we get

Lemma 7: If IIFII=k+, then

F P(F) Xxr ~ Xrxs

XF i=ilCil 1u,v}ECi xrco(uv) {xrvxslco(.u,v)

IIFII=k

I. -X-(-Dj,)- -(-Djk). The multiply marked edge must be an edge
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which has both an arrow and the symbol e. All components are

initially marked normally. Then an arbitrary edge of F is selected

i
for e. This edge contributes xe-xe = 1 as its weight. The total

contribution is therefore

(-1) k+1 P(F)Z Xr
XF xrcF

II(i) djidji(-DJ2 ) . (-Djk). There are two ways an edge can be

lost. They are shown in Figure S. In both cases, we must sum over

(u,v) and (v,u) since the sums are not symmetric in u and v.

Figure 5

In S(a), each edge contributes Xedge except the one labelled with i

and 2. The total contribution is

(-1 )k p(F)Z 1- Z Xuv
XF i=1ICil(uv)SCi;xuv is the edge on the path from u to v

incident to v.

(-1)k p(F) Xr
XF XrcF

In figure S(b), the points u and v cannot be adjacent. Also, we have a

factor of 2 corresponding to the assignment of 1 and 2. Each edge

1
contributes Xedge except the edge labelled 2. Thus, the total

contribution in this case is
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t
(-1)k2p(F)) 1 xuv

XF i=I|CiI(u,v)ECi; d(u,v)>=2; xuv is the second edge on the path
from v to u.

III(i). (d -DaJ13 2 ' ~ 3 s-1 s(dis-1)(-Dj+ 1 ) - Jk) The

factor (dj1-1) is interpreted as choosing any edge with no weight

adjacent to vj except the one on the path between vj and v3s (with

(ds-1) interpreted similarly). The only possibility for marking C* is

shown in Figure 6. Hence the only edge without a weight is the edge

corresponding to (djs-1). We must have d(u,v))3, since s)2. Once u

and v and the direction are chosen, there are d(u,v) - 2 choices for

i
vjs. Each edge contributes Xedge except the neighbor of vjs on the

unique path to v.

0

Figure 6

Thus, in this case the contribution is
t

(-)k2p(F) 1 Xr
XF ii Cil(u~v)EC xrc6 (u,v); xr is not the 1st or 2nd edge on

d(u,v)> the path from u to v

II(11). 4dji(-DJ2) k(-DJ). This "term" has the property that it

appears k times in the expansion of the determinant, once for each

choice of the small term dii. Since there are just k factors in it and

IIFIl=k in this case, no edges are lost, all components are marked

normally but the term dj, contributes no weight to the total. The

total contribution is

(-1)k+14p(F) E xr
xF xrcF
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III(11). -((djl-1)+(ds-i )3 1j 2 ' ~ )s-13s(-Djs+1) ..- (- DJk The

markings corresponding to this case are shown in Figure 7. As before,

we must have d(u,v))2. Each edge contributes the usual except the

neighbor of vg1 on the path from u to vg .

Figure 7

The contribution is readily calculated to be

(-1)k+12p(F) t 1 Y T Xr
XF i=1|Ci (uv)ECi xrco(u,v); xris not incident to v

II(iii). 4(DJ2 ) -.. (DJk) At first sight it would appear that

there are no contributions to IIFII=k from this case. However, it

must be recognized that this term actually occurs n-k+1 times in the

expansion of - (T). We can write this asn-k

4(n-k+1)(DJ2)- -. -(Dik) = 4(n-k)(DJ2) -(DJ) + 4(DJ2 ) - (Dk

We interpret the term 4(n-k)(D 2 ). (DJk) as selecting distinct edges

incident to vJ2,...,v k (as usual) together with another distinct edge

e* with no weight (since T has n-i edges altogether). The correspond-
1

ing marking is shown in Figure 8. Each edge has weight xedge except

e.

Figure 8

This therefore contributes
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t
(-1)k4p(F) [ _ T T Xr

XF i=J1Cil 1u,v}ECi xrcS(u,v)

There are no other contributions to IIFI I=k. We may now sum all the

preceding expressions for the case |IFIt=k to obtain the following

result.

Lemma 8 If IIFII=k, then

-F = 4p(F)f Xr 1r
XF XrcF i=1|Cil tu,v)Ci XrCS(u,v)

I IFI I=k-1

There are no contributions here from I. In this case, every edge

gets a label, so we don't have to cancel out any xi's, since only

unlabelled edges can overlap.

II(i). dj dj1 (Dj2 ) -- (DJk). There are two possibilities here.

They are shown in Figure 9. In Figure 9(a), an edge of C* is chosen

and one end is distinguished. Thus, this case contributes

(-1)k2p(F) | IlCil||
XF i=1 |Cil

In Figure 9(b), a pair of points u,v with d(u,v)=2 is chosen and the two

edges between them are ordered. Hence, this case contributes

(-1)k2p(F) 1

XF i=±lCil tu,vlECi;d(u,v)=2

Figure 9
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II(ii). 4dj1 (DJ2 ) -- (D k). The marking shown in Figure 10 can

contribute to only two terms, namely, 4(Djj) -.. di- --(Dj) - (DJk)

and 4(Dj1 ) - (Di) - - dj .. (Djk), since the parenthesized Di's cannot

place arrows on the same edge. Hence, to mark C*, we simply choose a

distinguished edge. The factor of 2 comes from the two terms to which

this marking contributes. The resulting expression is therefore

( )k+18p(F) || JCijl

xF i=i ICil

Figure 10

II(iii). 4(DJ2 ) -.. (D Jk). From the discussion of case II(iii) for

IIFII=k, we may use the expansion discussed there. In particular, the

second term 4(DJ2 ) -.. (Dj k), now summed just over 1 j2<- <Jk (n

results in a contribution of

(-1) k4p(F)

xF

III(i). (d,-i)aJiJ 2 'a 1.s-iJs (ds-1)(-Dj5 ,)-- - (- DJk). The

markings of C* contributing to IIFI I=k-1 are shown in Figure ii. Since

s)2, we must have d(u,v))3. The contribution here is

t
(-1)k2p(F) 1 

-

xF i=i1CiI{u,v)ECi;d(u,v)>=3
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Figure 11

V1
ii

The

corresponding marking is shown in Figure 12. We must have d(u,v)>2.

Thus, we obtain a contribution of

(-1)k+14p(F)Z 1 T .

x F 1=11Ci1 u,v}ECj;d(u,v)>=2

Figure 12

III(iii). ad i 2 s-ijs (-D js~) - (- D k). We show the marking

in Figure 13. The contribution is

(-)k2p(F)) 1

x F 1=1 Ci11 u, v}SCi

Figure 13

=-1 )kp(F) |1FIl

XF

V

By combining all the expressions we obtain

Lemma 9 If IIFII=k-i, then

k = 4p(F) / |MCill -

F XF ii 1C11

We combine lemmas 6,7and 8 to get

'lMEHN 2 Let T be a tree with n)2 vertices and distance matrix

A(T). Let rk be the family of forests of k edges. Let LF be a
k n

labelled copy of F in T. If we write CP((T)) = OTAk, then

k=0

III(11). ((dji-1)+(djs-l i j12- .s-lJs (-Djs ) -.-. (- D Jk).

V5
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6 k=( 1 )n-12 n-k-2 [r f
r=I 1

FcFrk+ LFcT

p(F)

X F

t f 2 X sCiX XZIXr {xrXs
i=I1Ci'1u,v)SCi xrc6 (U,v frxs~cS(U,v)

Fcrk

FcFk-1

LFcT

LFcT

4p (F) f

XF
Xr

XrcF

-X-!X

t
4p(F) f |ilCl||

XF % j=i1 |Ci

_ \I

K Xr X

xrc6(uv)f

I.

Example d (T) = (-1) n-1 2n-2 (n-1) for all trees T

d = (- 1)n- 2 n-3(N +2N 2+4N 3-)

where N is the number of pairs of disjoint edges, N2 is the number

of paths on 2 edges and N3 is the number of edges.

Example 6 = (-1) n-12n- x fT{xi X

= (-1)n 2 n-3f x 2 ( x ) t) - L(d - 2)2
i I i xi i=1

I
f
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Section II

If we could isolate the contribution of a leaf of T to CP(A(T)), then

we could inductively build up CP(A(T)) by peeling off one leaf of T at a

time. Thus, one would hope that the CP(A(T)) would contain the CP(A(T*)),

whenever T* is T minus a leaf. However, the coefficients of the bigger

tree contain more information than those of the smaller tree and

include forests in which the leaf is both an isolated and not an

isolated edge.

For example, let P3= o o 2 03 o.Then CP(A(P 3

X4 - X2(3x + 4x + 3x + 4x x + 4x2x + 2x x
1 2 3 1 2 2 3 1 3

2 2 2 2 2 2
- 2X(2(x x 2 + xtx3 + x 2x1 + x2 3  x 3 x1 + x 3 x2 ) +x 1 x 2 x 3

-4x x 2x 3 (xi + x2 + x3 '

Now if we take the partial derivative of the coefficient of X with

respect to the leaf x3 and set x 3=0, we get

2 ox3-1 ( ( ))x 22+X 2x ) but 6(P)2(x 2 + 2

26x 3  1 3x 1 =0 1 2 121 2 1 1 2 2

However, if we set x =0, for x1 a leaf, we can say something

inductive about CP(A(T)) if we know CP(A(G)) for graphs which are no

longer trees. For any matrix M, let H(ij) be H with the ith row and

jth column deleted. If M=A(T), then A(T)(ii) is the distance matrix of

the graph Gi with its ith vertex v replaced by a complete graph

K on the neighbors of vi, and the edge from v to vk in the complete

graph labelled with the sum x + xik'

Theorem 3 Let x1 be a leaf and v1 its vertex of degree 1, v2 its other
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vertex. Let T be the subtree of T without the edge x . Let G be the

graph whose weighted distance matrix is given by ((T(1,1))(2,2).

Then CP(A(T)) =0 = -2XCP(A(T )) - X 2CP((G2 ))

Proof of Theorem 3 Once we have set x to zero, the first and second

rows are the same except in the first two entries:

-X 0 623 624 2n (Since the matrix is symmetric, the first and

0 -X 623 624 2n

second columns are also the same, except in the first two entries.)

We subtract the second row from the first row and the second column

from the first column to obtain in the first two rows:

-2X X 0 0 '-- 0
X ~X 623 624 62n

Expanding by the first row gives us -2XCP(A(T )) - 2 det( N3), where 3

is the n-2 x n-2 submatrix of D(T) indexed by rows 3 to n and columns

3 to n. It is easily seen that N3 is the weighted distance matrix of

G2 above.

Theorem 3 above gives the most information when, not only is

x a leaf, but its vertex v2 has degree only 2. In this case, G2 is a

tree and each coefficient of CP(A(T)) "contains" the coefficient of

of CP(A(T-x )) and of CP(A(T-{v v2  .

Example When T is a path, we get the most flavor of the theorem.

CP(A( o x1 x x2 x x3 0 ... 0 xk 0))

-2XCP((o 2 0 3 o...o k o) - X2 CP ..o 0 k 0))



-34-

We can describe the contribution to CP(A(T)) of a single leaf x1 by

writing CP(A(T)) as a polynomial in xi, but we lose our inductive

interpretation of the terms. In the following theorem, we substitute

determinants which are no longer the determinants of subtrees of T,

but instead can only be expressed in terms of the minors of D(T).

However, it is possible to compare two characteristic polynomials

using this theorem to say exactly if they are equal.

Let x1 be a leaf and v1 its vertex of degree i. Let S =

(A(T) - XI)(1,1). So S has no entries containing x . For the sake of

clarity, we label the rows and columns of S from the set {2,..,n),

instead of the usual. Then CP((T)) = det(S)( -X - zTS-iz) where zT

[612 513 '' 61 J . This is clear, since it is just expanding the

determinant by the first row. Let D2 [622 623... 62 J and

J = xx ... x+ So z = J + D LetS =(s ).

Let cof(S) = det(S)L s i . Then we have

i,j

T -
Theorem 4 CP(A(T)) = -Xdet(S) - det(S)D S D2

-2x det(S) + Xn (-)2+jdet (S(2, j))) - x cof(S).

J=2

= -2Xdet(S) - X2det(S(2,2))

-2x det(S) + X (-1)2+det(S(2,j)) - x cof(S).

j=2

From this we see exactly the contribution of x .
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Proof of Theorem 4 The proof is simply expanding the term zT -iz and

realizing that DT S-1 = X + X 2det(S(2,2)).
2 2 det(S)
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Cospectral Trees

Two trees are said to be cospectral if they have the same CP(D(T)).

The smallest pair of cospectral trees are the following: (due to McKay

[McK]).

The removal of a leaf from each of these gives the same tree. McKay

has shown that there are infinitely many cospectral pairs as the

number of vertices goes to infinity. All the pairs in his paper

contain copies of the trees above. The following theorem gives

necessary and sufficient conditions for two trees that differ only by

a leaf to be cospectral. The conditions are a direct result of

Theorem 4.

Theorem S Let T be a tree with n vertices as usual and v1 ,v2 be

vertices of T. Let T be T with a leaf added at v and the leaf

vertex of degree 1 labelled xn+1, since T has n+1 vertices. Let

D(T) = (d ) be the distance matrix of T and let D = d -d inf

ij, and D = -X - din'

Then T and T2 are cospectral iff the determinants of

1n 2 L4 n~.c& L~a. I~~' c~ &

+ 01 tt
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and

C~~/ f Z2 Pt, b

=L 2

are zero. Note that this theorem does not distinguish isomorphic

cospectral pairs.

Proof of Theorem 5 Theorem 4 gives us the contribution of a leaf x .

Let S=D(T)-XI. Since S is symmetric, det(S(j,i))=det(S(i,j)). Using

the notation of the proof of Theorem 4, we have

CP(A(T ) - CP(A(T2 5 -X2 (det(S(i,1)) - det(S(2,2)))

-2x,( Xdet(S(1,1)) + X 3(-1)det(S(1,j)) - X 2(-1)Jdet(S(2,j))

Now det(S(1,1)) = det(S(2,2)) iff det(L ) = 0. This is true because

if we expand det(L1 ) by diagonals, taking an entry from the first row

and an entry from the first column, we get

(-1)+j-1(d I-d 21)(d +d 2j)det(S(1,i)(2,2)(j,i)) and its symmetric

partner

(-i) i+3I(d -d2j) (d +d 21)det(S(1,1)(2,2)(i,j)). Adding these

together we get
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(-1)i+j-12(d d -d 2id 2j)det(S(1,1)(2,2)(i,j)). But in the expansion

of det(S(1,1)), we get

(-1)i+j-d2i2d det(S(1,1)(2,i)(J,2)) + d2 d 2jdet(S(1,1)(i,2)(2,j2)).

Similarly, we can work out the expression for det(S(2,2)). This

proves the equivalence. Showing that

X 3(-1)Jdet(S(1,j))=Xdet(S(1,1)) + n -1) Jdet(S(2,j)) is

equivalent to det(L 2)=O is similar and not difficult.
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Section III

For any graph G, the following theorem of Graham, Hoffman and

Hosoya breaks down the determinant of the distance matrix into a sum

of terms related to the 2-connected components of the tree [GHHJ.

This theorem provides a most elegant proof that the determinant of the

distance matrix of any tree on n vertices is the same. One simply

observes that the 2-connected pieces of a tree are its edges.

Theoren 6 [GHH3 Let G be a finite graph in which each edge e has

associated with it an arbitrary non-negative length w(e). (The usual

weight chosen for edges is w(e)=1.) Let d = min w(P(v v ))
ij P(v,vj)

where P(vi,v ) ranges over all paths from v to v and w(P(v ,v

denotes the sum of all edge-lengths in P(v1 ,v ). Let the 2-connected

pieces of G be G G G...,G Let D(G) = (d ) and cofactor(D(G))

=cof(D(G)) = det(D(G)) Td7,.

1,j

Then det(D(G)) = det(D(G i))ll cof(D(G )

Recall that we promised a proof of Lemma 6 from the proof of

Theorem 2, that the determinant of the distance matrix of a weighted

n-1 n-1
tree is (-1)n 2n-21 x ( x ). Using Theorem 6, we can provide

i=n t=1

an easy proof by observing that the cofactor of an edge weighted with
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2
x is -2x and the determinant is x .

i ~iV

A simple lemma from [GHHJ will aid us in computing the cofactor of

a matrix. Recall that for any matrix N, H(ij) is M with its ith row

and jth column deleted. Let M* be N with the first row subtracted from

every other row and the first column subtracted from every other column

(M* retains the first row and column of N).

Lemma 10 [GHH] For any matrix N, cof(N) = det(* (1,i)).

A version of Theorem 6 that includes the other coefficients of

the characteristic polynomial would seem difficult, as demonstrated by

the straightforward attempt below.

Theorem 7 Let G = G and G2 joined together at vertex v.

Let D(G ) - XI = M for i=1,2. Then

CP(A((G)) = det(M )cof(M 2) + det(H 2)cof(M )

1 21 2 2

+ X(cof(H*cof(N2 ) + det(H )cof(N*(i,1)) + cof(NM*)cof(N1 )

+ det(M 2 )cof(H*(1,1)))

+ X2 ( cof(N* )cof( *(1,1)) + cof(M*)cof(M*(1,1))
1 2' 2 1

Proof of Theorem 7 The proof involves a straightforward application

of the techniques of the proof of Theorem 6 and is not enlightening.

Hence I do not include it here.

We have a description of the coefficients of CP(D(P)) where P is a

path using Theorem 6. Let Dfv1 ,v2,.. .,vk} be the kxk submatrix of

D(T) whose rows and columns are indexed by vl,v2,...,vk. Then the
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coefficient of Xn-k in CP(D(T)) is (for k>2)

(-1)n-k det(Dfvivj' 2 ,. Ivik).

When T is a path P, we may interpret Dviv1 2 '' .. 'vik}I as the

distance matrix of the path Pfi ,12'.'' k} whose vertices are

Viivi2,...vik and whose edges are the k-i shortest distances from

the set of distances between viIvi2 ,...,vik. Since we started with a

path, Pfi ,1 2 '''''ik} is still a path and we can apply Theorem 6 above

to get

Theorem 8 Let P be a path with n vertices. The coefficient of Xn-k

in CP(D(P)) is

(-1)n-12k-2 T (s 2-s .) (s3-s2) (sk-s k-1 (sk-s )
itS s <s 2< -. - <s k(n

Proof of Theorem 8 Since P{iIi,2 ''''1k} is a tree, its 2-connected

pieces are its edges. Therefore, its determinant is

-(-2) k-2(s2-s 1(s 3-s2 - ---(s k-s k-1)(s 2-s )+(s 3-s 2)+-- -+(s k-s k-1

since the distance between s2 and s1 is (s2-s ) When we multiply

this by (-1)n-k we get the above.

Theorem 8 could possibly be used to show the unimodality of

the coefficients of a path as described in the following conjecture.

Conjecture I The sequence (1/2 n-2)d 0(T), (1/2 n-3)d 1 (T)I, ... is
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unimodal, with the peak occuring at (1 /2n-[n/23-2 )Id n/2
(n/2J

(due to R. L. Graham).

We know exactly how to describe dO and we have a closed form

expression for d (T) from Theorem 2. However, we can also look

at d (T) from this point of view:

d(T) = - det(D(T)(i,i)).

i=1

Recall that D(T)(i,i) is the distance matrix of the graph Gi with the

vertex vi in T replaced with the complete graph Kdeg(vi) on the

neighbors of vi. The edge between vj and vk, neighbors of vi, is now

weighted 2 in the distance matrix. We can apply Theorem 6 to each Gi

and find the determinant det(D(Gi)) by computing the determinant and

cofactor of each of its 2-connected components. These are its complete

graph Kdeg() and the remaining edges that come directly from T.

Remark The coefficient of X in CP(D(T)) is

(-1)n- 12n-3((-deg(v)
2 + deg(v)(n+3) - 4).

v in T

n
Proof of Remark Let deg(v ) = g Now d 1 (T) = - det(D(T)(i,i)).

i=1

Using Theorem 6, we can write det(D(T)(i,i)) = (2gidet(Kg ))(-2)n-gji

+ (n-1-gi)(-1)(- 2 )n-gi-2(2gi tcof(Ki )). Lemmas 11 and 12 below complete
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the proof.

Lemma 11 det (D(Ki))=(-1) (i-1)

Lemma 12 cof(D(Ki))=(-i) i1

-1+2 1 1 1

Proof of Lemma 12: D(K.) -1+2 1

. . 1+21

Hence cof(K ) = (-1) i-I (1-1)( I ( 1(-1+2) + 12 _ ) -1

i-i

This remark hasn't given us much new information. However, we can

use the same technique to get a weighted version of the above. It

seems worthwhile to compute the cof and det of a weighted complete

graph, but the coefficient of X that we obtain in this way is not very

enlightening.

Lemma 13 Let H be a graph on vertices {1,2,...,i}, composed of

disjoint cycles of size)2 (i.e., a 2-cycle has two copies

of the same edge and hence its total weight is the square of the

weight of the edge) and with no isolated vertices. The weight of

edge e between vertices k and j is the variable yjk. Let f = the

number of even cycles of H. Let f' = the number of cycles of size )3

in H.

0 Y1 2 Y13 '' y1i

Then the determinant of Y = 12 0 Y23 ' Y2 1  is T (H)

Y1 Y21 Y31 - 0 H
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where w(H) = (-1) 2 Urw(e).
ec H

Proof of Lemma 13 The proof is simply expanding the determinant of Y as

T (-1)sign(a) y1(1)y2i(2) ia(i) where a is a member of Si, the
aCSi

permutation group on i letters, with y taken to be zero. The power

of 2 comes from observing that each cycle can appear twice due to the

symmetry of Y.

Lemma 14 Let H* be a graph on vertices {1,2,...,i}, composed of a

disjoint collection of a path with at least one vertex and

some number of cycles of size )2, possibly none. The weight

of edge e between vertices k and j is the variable yjk. Let f* =

i + #-connected components of H*. Let f** = #-cycles of size>3 + 1

- #-isolated vertices.

0 y1 2 Y1 3 ''' Yi
Then the cofactor of Y = Y1 2 0 Y23  Y2 1  is *(H*)

i1 Y21 Y31- 0 H*

where *(H*) = (-i) 2 Jrw(e).
ec H*

Proof of Lemma 14 Notice that in the definition of H* above a 2 vertex

subset of [1,2,...,1) can appear as a path with weight the weight of

the edge between the vertices, or as a cycle with the square of the

weight of the edge between the vertices. We use Lemma S from above to

write cof(Y) as a determinant:
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i
cof(Y) = det(Yk ) j,k=2 where Yjk k ij ik and y = 0. When we

expand the determinant as a sum of diagonals, as in Lemma 9,

(1)sign(a)Y2a(2) Y 3(3) 1(1) we observe that each of the terms

aeSi

is a polynomial in the yjk's with degree i-1. Each member of the set

{2,3,...,1} appears at most twice as a subscript in any monomial from

the terms above. Since there was nothing special about expanding the

cofactor using the first row and column, we can conclude that det(Y)

is a sum of monomials in the yjk that satisfy that in any monomial, no

subscript appears more than twice. Take each monomial as representing

the product of the weights of the edges of the graph Gm with the i-1

edges of Gm given by its factors. Then the vertex degrees in Gm are

all less than or equal to two and the graph has i-1 edges. Hence it is

a union of cycles and paths, and since there are i-i edges, there is

exactly one path.

The sign of a monomial is (-1 )sign(a) + deg(1) in Gm, where a

represents the ordering the the Yjk's given above. Since G always

contains a path, without loss of generality, we may assume deg(i) = 0

or 1. If deg(i)=0, then sign(a) = the # of even cycles in Gm, and

hence is congruent to i + #-connected components of Gm. If deg(1) =1

then sign(a) = the # of even cycles of GM + the # of odd paths in Gm'

so 1 + sign(a) is again congruent to i + the # of connected components

of Gm . In order to get the power of 2 in the statement of the lemma,

we observe that each cycle and path can occur twice because of the

symmetry of Y. However, the path containing a single vertex does not
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contribute a power of 2.

Theorem 9 Let KAj = the weighted distance matrix of the complete graph

on the neighbors of v with the weight of the edge between v .and vs

as xjr + xjs Let GAj be the complete graph whose distance matrix is

KAj. Let gi = deg(vi). If an edge e is not adjacent to a vertex vj,

we say eivj.

The coefficient of X in CP((T)) is

= (- 1 )n--gi2n-2-giy x[ 2Zr w(H) + T r*(H*) xi
vi in T x evi Hc GAi H*c GAi xjevi

Proof of Theorem 9

n
Now 6 1 (T) = - det(A(T)(i,i)). Using Theorem 6, we can write

i=1

det(A(T)(i,i)) = det(Koi) T[ cof(O Xj)
xj vi

+ E cof(KCi)det( j) T cofi ( j)
xjgvi xkivi

k/j

= det(KAi)(-2) n-1-g1  xi

xjffv
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+ cof(KAi)(-1) n-1-g 1 2 n-2-g1 ( z x I
xjtvi x Jvi

= (-1)n-i-g1 2n-2- gT xj 2det(Ko1 ) + cof(KAj) ( x3
xjtv1 xjivi

Hence the coefficient of X in CP(A(T)) is

Z (-1) n-1-g 1 2n-2-gi 1 xj I 2det(KAj) + cof(KAi) x 1
vi in T xjev ' xjtvi

Plugging in Lemmas 13 and 14, we get the Theorem 9.
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Section IV

We now proceed to factor CP(D(T)) using the automorphism group of

the tree. The method involved is to find subspaces V of D(T) such that

D(T)-V S V. We then compute the characteristic polynomial of the

action of D(T) on the subspaces. This must divide the characteristic

polynomial of the distance matrix of the whole tree. Let ei be the

vector with 1 in the ith place and 0 otherwise. For any set S, let

e = es
seS

Theorem 10 For any graph G, we always have a factor of degree the

number of orbits of G. The associated vector space is defined in the

proof below. The factor from this vector space is called the orbit

factor.

Proof of Theorem 10 Let the vertex orbits of G be S1, S2' ''' ' r

Let V orbit Si: i(i(r>. Then row(j) times eS = d s . Since

ScSi

every automorphism of G preserves distance, dj s = d 's for

seSi scSi

every j' in the same orbit as j. This completes the proof.

Theorem 11 Suppose T has a subgraph with a vertex v joined to two

isomorphic copies of rooted tree T* at root u. Suppose that v

disconnects each copy of T* from the rest of T. Then we can find a

factor of CP(D(T)) of degree the number of orbits of rooted tree T*.

Proof of Theorem 11 Let the left-sided copy of T* be labelled T* with

root u and the right-sided copy of T* be labelled T* with root u. Let

the vertex orbits of rooted tree T* be Si, S2' .' Sq and the orbits

of T* be Ai A2' '''' q with the correspondence S -+.L in the
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isomorphism between T* and T*. Let V = <e S - e i: 11(q>.

We show that D(T)-VEV. It is clear that the dimension of V is

the number of orbits of rooted tree T*.

Now D(T)-(eS - e ) = ds -Zd ,..., d1dns - d)
SESi acLi seSi 4cLi

If w is in T, but not in T* or T*, then T dws - dW= 0,
scSi AcLi

since d - d = (d + d ) - (d + d ) = 0, because s and 6 are in
ws wb wu us Wu ub

the "same" orbit of T*. If w is in T and w is its image under the

isomorphism, then d, - d = - ( d - d ) by symmetry.
seSi %cLi sCSi 6CLi

If w and w2 are in the same orbit in T*, then d = T d W26 since

w, and w2 are the same distance away from u and must go through u to

get to T*. Now T dws = d ws since the isomorphism that makes

scSi scSi

w, and w2 in the same orbit must preserve distance. Hence the action

of D(T) on V preserves V.

We use Theorem i to compute CPD(Br), where Br is the full binary

tree with maximum length r from the top vertex, by finding linearly

independent vector spaces that are preserved under the action of D(T).

For each vertex not on the bottom level we have exactly the situation

of the preceding theorem..Let the top level be labelled 0 and the

level at distance i from the top be labelled level i. Each vertex on

level i forms a Br-i with all its descendants. This generates a factor

of CP(D(Br)) of degree r-i. Each factor of degree r-i appears in
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CPD(Br) 2 times, since level i contains 2 vertices. We also get a

factor of degree r+i by taking Vorbit of the whole tree.

Theorem 12 Let B be the full binary tree with maximum distance rr

2 r-1 2 r-2
from the top vertex. Then CP(D(Br )) 1 2 P 22- r r+ where

each P has degree i and in fact, P i+(X) = -(2+3X)P (X) + 2X2 P (X).

Each P has leading coefficient (-1) and P = -(X+2), P2 _ 2 + 8X +4.

Proof of Theorem 12 We first show that the vector spaces associated

with the polynomials from Theorem 11 are linearly independent. The

vertex orbits of B are the levels of the tree. All of the vector
r

spaces given by Theorem 11 are generated by vectors with non-zero

entries only in one orbit. Hence we need only consider a single orbit

at a time to determine if all the vector spaces are independent. Let

S(m) = 11, 2,..., 2 mI and let M(p) be the 2px2p matrix whose rows are

given by eS(p) e S(P-1) ~ e2P-I+S(p-1)' eS(p-2) - e2p-2+S(p-2 )

e2 -2p-2+S(p-2 ) e 3-2p-2+S(p-2 )' ''' e1 - e2 ' e3 e 4 '''' e2P-1 ~e2 P'

It is easy to show that det M(p) is never zero. We replace

eggP_,, - e2P~1+S(p-1) with itself plus e to get 2e S(P-) and

then replace e with itself minus e to get e2P~1+S(p-1)' We

2

then have that Idet H(p)| = 2(det H(p-1))2. When p = 1, we get that

det M(1) = -2. Hence by induction det M(p) is never zero. Therefore

the vector spaces are independent.
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Using Theorem 10 and 11, we now have shown Theorem 12, except for

the recursion of the P's. To do this we must compute the matrix of

the action of D(B ) on the vector spaces of Theorem 12. Fix r and let
-r

M be the (2r+1 - 1)xr matrix with columns le S - e b: 1(i(ql where Si

is the set of vertices in Br at distance i from the top and

descendants of the left-hand child of the top, and 1 is the other

half of vertices on level i.

Now Pr is the characteristic polynomial of the rxr matrix H1 that

records the action of D(Br) on M. That is, the ijth entry of matrix HI

is the coefficient of e -e L in the linear expansion of

D(B )-(e - e ). Since we have one vector e - e for each orbit
r Si Ai Si 1i

S. ,we need compute only row(j)-(e S - e ) for a single vertex j in

orbit S to find the ijth entry of H1.

(J-i) + (J-i+2) + 2(j-i+4) + 4(j-i+6)+ ... + 2 1-2(i+j-2) - 2 (i+j)

= -2(2 -1).

If i>J, then row(j) in D(B ) times e - e is
r Si Li

2 { ( i-J) + (i-j+2) + 2(i-J+4)+ ... + 2J- 2(i+j-2) - 2 1 (i+j))

= -21i-j+1 (2 J1- 1) .

So Pr = det(fl-XI). We perform some elementary row and column

operations on l-XI to simplify taking its determinant. First we

divide every row by -2 and substitute y for X/2. Then we subtract

the kth column from the k+1st column, beginning with k = r (the first
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column remains the same). Finally we subtract 2 times new row k from

new row k+1 for k = 1 to r. Our resulting matrix Zr = (z ) has

z = 0 if i1-j>2, z = 1+Y, z = 1+3y for i>1, zi,1+ = -y and

z+ 2y. By expanding out the last column, we get that

det(Zr) = (1+3y)det(Z r-1) + 2y 2det(Zr-2 '

When we multiply by (-2)r and substitute X/2 for y, we get

P r(X) = -(2+3X)P r-1(X) + 2 X2,r-2 '

We mention without proof that Theorem 12 can be generalized for

full k-nary trees. Let Fr be the full k-nary tree with maximum

distance r from the top vertex. Then CPD(F r
(k-l)k r1 (k-lUkr-

P (1)r P 2(.1)r- r* Q r+1 where each P has degree i and

P i+1(X) = -(2+(k+1)X)P (X) + kX 2P _ (X). The proof of this will

appear in an upcoming paper [C. There will also appear in [CJ a more

complicated recursion developed for the Q r's, which are the

polynomials associated with the Vorbit of the full binary tree Br

Another attempt to find subspaces to use to factor the CP of the

distance matrix led to the following.

Theorem 13 Let s be an involution of the automorphism group of T,

contained in Sn. Let Vs be generated by fe - e ,() e2  es(2)'''' '

Then the action of D(T) on Vs preserves Vs, that is, D(T)-Vs S V

Proof of Theorem 13

D(T)-(e - es(1)) = [d1i - dis(1 ), d2 1 - ds(1), --. ,dni - dns(i)]

But d1i - d1s(1 ) = -(ds(1)i - ds(1)s(1 )) since s is an automorphism of

T and therefore preserves distance and also since s is an involution.

Hence D(T)-V is contained in V
U T

Using Theorems 10 and 13, we can factor the CP of the distance
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matrix of a path into "halves", much like the effect of its single

automorphism, the flip. We get a factor of degree In/21 from its

non-trivial involution. We also get an orbit factor of degree In/2I.

Thus we can write the CP of a path as the product of two factors, each

of degree approximately half of the number of vertices.

Theorem 13 also allows us to factor the characteristic polynomial

of the distance matrix of a graph, not just a tree. For example, we can

factor the CP of the odd cycle C2k+1by taking two involutions, say, the

flip that leaves vertex 1 fixed and the flip that leaves vertex 2 fixed

plus the factor from V orbit which is (X-(n 2+n)). Each flip gives us a

factor of degree n. We can easily factor the CP of the distance matrix

of a complete graph on n vertices minus an edge: we get an orbit

factor of degree 2, an involution factor that switches the vertices of

degree n-2, and n-3 involutions that switch the vertices of degree n-1

n 2 - (n-1)X - n-3to get (-1) (X (nlX-2)(X+2)(X+i)
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Group Representation Connection

People knowledgeable about representation theory will tell you that

the results in this section are no surprise. Here is a brief descrip-

tion of why the automorphism group helps factor the characteristic

polynomial. The group representation backgound can be found in [I.

If we take the representation of the automorphism group of G as the

permutation representation on the vertices of G, realized by nxn

matrices, then this representation has a character *. This character *

can be written as the sum of irreducible characters, and corresponding

to each irreducible character x there is a vector space V , called the

isotypic component of x, that is invariant under the action of the

automorphism group of G. If x appears with multiplicity greater than i

in the linear expansion of *, then V breaks up into a sum of vector

spaces, V X, V X2 '... XM , (with m(X) = the multiplicity of x) each

of which are invariant under the automorphism group of G. The distance

matrix of G is fixed by the automorphism group of G and hence, by

Schur's Lemma, D(G) acts as a scalar a on each V . Then what we have
Xi Xi

observed is that

CP(D(G)) = TT ( (X) X2 ''. (X' XM(x) dim(Vx±)

X appears in the linear expansion of *
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CONJECTURES

Conjecture i The sequence (1/2n-2 )1d0(T), (1/2 n-3)d (T) , ... is

unimodal, with the peak occuring at (1/2n-[n/2 3-2) Iddn/21 M

(due to R. L. Graham).

Conjecture 2 Binary trees are characterized by the characteristic

polynomial of their distance matrices. (Aw., iv Lviie btLIe-Y-)

Conjecture 3 If two trees

degree sequence. CAtk A

Open Problem 4 What other

CP(D(T))'s?

have the same CP(D(T)), they have the same

AA, 0U)

classes of trees have easily factorable

Conjecture S If two trees have the same CP(D(T)), then they have the

same automorphism group.

Conjecture 6 CP(D(T)) of a tree with trivial automorphism group has

no rational roots.
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List of Notation

a= the coefficient of X in CP(A(T)).

a. = 1 if vertex v and v. are adjacent; 0 otherwise.
ij 3

A = the integer coefficient in Theorem i that does not depend on T.F

i = the polynomial coefficient in Theorem 2 that corresponds to Ak.

A(T) = the adjacency matrix of tree T.

A(G) = the adjacency matrix of graph G.

a.. =a. /x

T
B = the matrix that makes A(T) = N BN true.

ICI = the number of vertices in component C.

I|CI| = the number of edges in component C.

~-1-
cofactor(H) = cof(M) = det(M)L mij for matrix M.

CP(H) = the characteristic polynomial of matrix M.

d. = the coefficient of Xi in CP(D(T)).

d = the distance between vertex vi and vertex v .

d(u,v) = the distance between u and v.

D(T) = the distance matrix of tree T.

D(G) = the distance matrix of graph G.

46 = the coefficient of Xi in CP(A(T)).

a. = the weighted distance between vertex v. and vertex v..
ij13

M(u,,v) = the weighted distance between u and v.

MT) = the weighted distance matrix of tree T.

A(G) = the weighted distance matrix of graph G.

A = the inverse of A(T).

e = special edge labelling in the proof of Theorem 2.

IFI = the number of vertices in forest F.
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IFI I = the number of edges in forest F.

g. = degree of vertex v..

G = a 2-connected component of graph G.

L(i) = the number of i-matchings (in an unspecified graph).

= usually denotes a matrix.

M* = the matrix M with its first row subtracted from every other row

and its first column subtracted from every other column.

N F(T) = the number of copies of forest F contained as a subforest of

tree T.

N = (n. .) the matrix given by n. . = 1 if j is on the unique path
1J 1

from 1 to i and 0 otherwise.

-1
v . = the ijth entry of N.

P = the path on k edges.

P(u,v) = the path from u to v.

p(F) = TT ICI where C is a component of F.

T = a tree.

v= the ith vertex of tree T.

V = a vector space.

x. = a variable label on the ith edge of tree T.

x = the variable label of the edge between vertex vi and v.

X = the sum of all the variable labels on the edges of weighted

tree T.



-59-

A Philosophical Conclusion

Most mathematicians love to play games. In fact, they love it so

much that theyr do it all the time. Even more characteristically,

mathematicians love to play games with changing rules, and would claim

that the fun lay in deciding which rules to choose instead of follow-

ing the'ones already picked out. Unfortunately, all this game playing

can be taken to an extreme that, it seems to me, destroys the fun of

the game.

As we all know, the number of mathematicians in the world has been

increasing dramatically, as has the body of mathematical knowledge.

Many journals have sprung up and it is not easy to keep track of

what's going on in one's own field, much less what's going on in other

fields. More than that, the standards of "good" mathematics have be-

come more and more blurred as an inrush of material to be read,

digested or understood and graded--i.e. by accepting for publication--

has flowed in another tenfold. No one has the time to read yet

another new and probably not very interesting--that is, unlikely to

directly relate to my theorem on characteristic polynomials of the

distance matrices of binary trees--paper written by yet another under-

paid, overworked mathematician struggling to meet the standards of

expertise that are never written down, and not well understood.

Graduate schools, whose job one would believe to be that of set-

ting the standards of graduating mathematicians, concentrate on a

single aspect of a mathematician's life to the exclusion of the rest

of mathematical experience. Admittedly, we all know that the

mathematicians who have jobs at graduate schools have not been taught

how to teach others, have not been taught how to give advice, have
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not been taught to describe the process of mind that goes on behind

mathematics, so the best they can do is to encourage the students

to learn about these things the way they did--an ad hoc procedure

developed by trial and error--a procedure that has been used for

hundreds of years by mathematicians without being improved. We like

to think of mathematical methods as always being improved, but we

have not even begun on the basics yet.

An unfortunate effect of our emphasis on newness instead of

quality, is that, instead of consolidating what we have, we are

constanly struggling not to repeat the poorly written work of someone

on a different campus. The requiste to graduate from the graduate

program of a high quality graduate schools is "original research". If

the student's work has been duplicated before graduation, that work

doesn't "count". On the other hand, no matter how uninteresting the

work of said student, as long as it hasn't been previously published,

it's usually enough to get a degree. Students are not asked to write

well--it's considered a bonus if they can. Certainly no one may

expect that after graduation the newly appointed professor will

include writing practice as part of the professorial duties. Other

professorial duties are certain to interfere--classes, homework,

tests--duties that already take too much time away from "research".

However, when asked to explain the work that requires such a high

priority and so much time, or even to explain the value of such work,

most mathematicians will say that they "can't". Not only can they not

explain it to others, a lot of the time they can't explain it to

themselves. Now why is it that something they feel is so important

doesn't receive enough of their attention for them to give a good
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description of it? The answer seems to be that we mathematicians

haven't devoted enough time to thinking about what quality work is.

It's usually easy for us to decide if a theorem is high quality--in

retrospect--but standards for how to think about, how to describe, and

how to write mathematics seem to be sorely lacking. Unfortunately,

our confusion about writing mathematics can only lead to confusion

about thinking mathematics.


