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ABSTRACT

Systems governed by retarded functional differential
equations are studied in the context of the Delfour-Mitter

M2 space setting. An exact, explicit closed form solution
to a differential-delay equation with one delay is exhibited.
The optimal control problem with quadratic cost on a finite
or infinite time interval is considered and solved completely.

The optimal control and the optimal cost are expressed in
terms of an M2 operator H (t) which is the unique solution
of a Riccati (differential) operator equation. In the
tracking problem, we have in addition a M2 -valued function

'(t) for which a differential equation is established.
From these two differential equations, it is possible to
deduce the first order differential equations satisfied

by the matrix valued functions H 0 0 (t), II01 (ta),

H (t,Oa) and the vector valued functions go(t),

gl(tO) appearing in the expressions for the optimal

control and the optimal cost. This coupled system of
differential equations is not solved explicitly. Instead,
in the autonomous case, we demonstrate an approximation
technique based upon the eigenfunctions of and which
reduces to the quadratic criterion problem for systems
governed by ordinary differential equations. An application
of the various results is made to Kalechi's differential-
delay equation governing the rate of investment in a
capitalistic economy.

Thesis Supervisor: Sanjoy K. Mitter
Title: Associate Professor of Electrical Engineering
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Notation

Set of real numbers denoted by R, set of complex numbers

by C.

Let X,Y be topological vector spaces.

We denote by c(X,Y) the set of all continuous linear

maps X into Y.

In the case X = Y, we write X(X) instead of f(X,Y).

Let HK be real Hilbert spaces.

The inner product of two elements x,y c H is denoted by

(x,y)H

and the norm of an element x c H is denoted by

IIx||H = (xx)H

In the case H = Rn, we denote the inner product of two

elements x = (x ...xn y l''.n) by

n
(xy) = E xy.

i=l1

For any A E o(H,K), the adjoint in of(H,K) is denoted

by A*. In the case H = K, A is said to be self-adjoint

if A = A*.
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Chapter 1

Introduction

Physical processes involving discrete subsystems are

usually described by ordinary differential equations.

The underlying assumption - implicit or explicit - is that

the interactions between the subsystems will be instantaneous.

In practice and in theory however, this will not be the case.

The dynamics of mechanical, electrical, hydraulic and

pneumatic devices involve non-zero time delays. The special

theory of relativity sets an upper limit to the speed with

which subsystems can communicate - this upper limit being

the speed of light (or radio waves). Thus for subsystems

stationed on the earth that interact through radio waves,

the delay will be so small that for all practical purposes

it can be ignored. This is not the case for space travel.

Radio waves take 1 1 seconds to travel from a control center

on the earth to a space vehicle orbitting the moon and

another 1T seconds to come back. If and when a space

vehicle is sent to Jupiter, the delay could be up to

40 minutes. It would not be prudent to ignore such a

large delay.

It should be pointed out that it might be possible

that a delay in a dynamical system is harmless in the

sense that the asymptotic properties of the "delayed"
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dynamical system are similar to that of the "undelayed"

dynamical system. Driver [24] has an interesting discussion

on this point.

1.1 Hereditary Systems in the Physical World

A hereditary system is a system whose dynamics

depends in some predetermined manner upon the past history

of the system. Hereditary systems can be adequetely

described by functional differential equations. A functional

differential equation of retarded type (R.F.D.E.) is one

in which the derivative i(t) of the state at time t is

specified as a functional of the past values of the state x

over some time interval [t-a, t]. A functional differential

equation of neutral type (N.F.D.E.) is one in which x(t)

is specified as a functional of the past values of x

and x over some time interval [t-a, t].

Hereditary systems occur naturally in the physical

world. The following are some examples:

a) Biological populations

A simple model of a biological population can be

found in Cooke [11].

Let x(t) be the number of individuals in a population

at time t, T the gestation period and a the life span.
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Then the functional differential equation governing the

growth of the population may be taken to be

x(t) = a~xt-T) - x(t-T-a)} 11

where a is some constant.

A slightly more sophisticated mathematical description

of a fluctuating population of organisms (for instance

bacteria) is given in Cunningham [13]

x(t) = ax(t) - Ox(t-T)x(t) (1-2)

where a and 8 are positive constants.

Equation (1-2) is also applicable to potentially

explosive chemical reactions.

b) Learning Theory

In studying problems associated with pattern

discrimination, learning, memory and recall in learning

theory, Grossberg [33] has used a system of nonlinear

functional differential equations describing cross

correlated flows in a signed directed graph to model

neural mechanisms. His equations are
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n
xi (t) =M! -a x1t [xm m +m z m (t)+Ci(t) (1-3)

zjk '~jkzjk (t) + 6jk i(t-Tk k Xk (-4)

where C i(t) is the ith input stimulus

x i(t) is the ith stimulus trace or short term

memory trace

zjk(t) is the (J,k)th memory trace or the long term

memory trace recording the pairing of the

Jth and kth events

Sjk is the (J,k)th signal threshold

Tjk is the time lag or reaction time between

signal sent at j and received at k.

a , Yjk, ajk are structural parameters and

[A]+ = max (O,A).

c) Number theory

Wright [80] came across the functional differential

equation

$(t) 0 - ax(t-1)[1 + x(t)] (1-5)
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in studying the distribution of primes.

Let w(z) denote the number of primes less than, z.

Putting w(z) * !2E2.log z - 1, log z 2, a log 2,

we can heuristically show that w(t) satisfies

equation (1-5). In [79J, Wright proved that for

0 < a < , w(t) + 0 as t + e, and from this, the

prime number theorem

w(z) # z/log z as z +

follows.

d) ,NWo Vody problem

Denote the position vector at time t of two

particles i,j by ri(t) and rg (t). Assuming that

there is no radiation reaction term, that electromagnet

effects propagate at speed c and that the force between

the two particles is entirely of an electromagnetic

nature, Driver (23) derived the equation

where t(t) -Ir i(t) - r (t)l/c.



e) Nuclear reactors

The dynamics of a nuclear reactor has been investigated

by Ergen [28] who proposed the functional differential

equation

x(t) - f (a+O) exp {x(t+6) - 1}dO (1-7)-a

where x(t) is the logarithm of the reactor power,

a is the transit time and c is a constant. This

functional differential equation arises out of the fact

that neutrons are given off some time after the fission

that caused them and hence the reactor dynamics depends

on its history over some time interval. Further mathema-

tical analysis of equation (1-7) has been carried out in

Nohel [63] and Levin and Nohel [55].

f) Rocket engines

The phenomenon of rough burning in a liquid

propellant rocket motor can be attributed to the time

delay between the instant when the liquid is injected

into the combustion chamber and the instant when it is

burned into hot gas. A detailed discussion is given in

Tsien [76] chapter 8, where by linearizing about the

steady state condition, he obtains the functional
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differential equation

- + (1-n)p(t) + np(t-a) = 0 (1-8)

where p is the dimensionless deviation from steady pressure

t is the dimensionless time variable

a is the dimensionless constant time lag of combustion

and n is a constant

g) Ship stabilization

In studying problems arising out of stahaizing a

ship by means of displacing ballast between two tanks

connected by a tube equipped with a propeller pump,

Minorsky obtained the functional differential equation

mx(t) + rc(t) + qx(t-T) + kx(t) = 0 (1-9)

where x is the angular displacement of the ship and

m, r, q, k are constants.

h) Transmission line

It is well known, Cooke [12], that a particular

initial boundary value problem for a hyperbolic partial

differential equation can be replaced by an associated
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neutral functional differential equation. This observation

originally arose out of the study of the transmission line

problem, Brayton [7]. The basic idea is that the solution

to the wave equation can be expressed as a linear

combination of two waves, one travelling to the right,

$(x-ct) and the other travelling to the left $(x+ct).

Since they travel with speed c, they will take a finite

time to travel from one end of the line to the other.

Hence what is happening at one efid of the line will

depend upon what happened at the other end some finite

time back in the past. More specifically, let us

consider the flow of electricity in a lossless transmission

line with ends at x = 0 and x = 1. The governing

partial differential equations will be

av(x, t) ai(x + e(x,t) (1-10)

31(x t) C - -C (1-11)
bx at

where i(x,t) is the current flowing in the line at

point x and time t, v(x,t) the voltage across the

line at x and t, L the inductance per unit length

and c the capacitance per unit length.
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The initial conditions

v(x,O) = v0 (x)

i(xO) = 10Ox)

are

(1-12)

(1-13)

where v0 x)

of

and i0 (x) are differentiable functions

x.

The boundary conditions are

- v(Ot) r0i(0,t)

v(1,t) r r i(1,t)

For t >

1 ( t)

+ 0 dt)

+ d i 1', t)
1 dt~z

where T = 1/(LC)

- u0 (t)

define

t
/ {Q(T(a-t)+1,a)//E~da

t-

t1

/ {e(T(t-a),a)/V}da
t

Also define + /L i(0,t)

y 2 (t)

(1-14)

(t)1 (1-15)

(1-16)

(1-17)

(1-18)yi(t) = /C- v(0,t)

= - /U v(1,t) + V-E 1(1,t)
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For t >' , Y(t) a . y(t)
y~t)(t)

sati~sfies the functional

differential equation

10) f t

I&)

C

* 0

YI ~
t

- A>

with initial conditions on [0, .1

LL
4-

I /i

L
2-

( TO
+

{
C

t12
+

2+

-QI

given by

(1-21)

- C'~

L) t2)

y1(0) uxv 1 (6 ) + 0 )

~&%)

I ) +. .(f

zL

I)T)

14J) =-oC

+~

+

t2-

(1-19)

) 4Qt

A, V) 0 (1--20)

IIL ;

1 12-

L

O (

+ -

FC A) C -C 0

: 2(0) a -1U V0(0) + r 1 0(0) (1-23)
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The last example (h) illustrates the point that

physical problems described by partial differential

equations can also be described (by making further

approximations or by making an equivalence transformation)

by functional differential equations, sometimes with a

gain in simplicity. So for instance, a valve in a

Diesel engine lifts in response to a pressure wave

generated by the piston. It is easier to describe the

motion of the valYe by introducing a time delay rather

than attempting to treat the entire problem of the

motion of the valve and the gas flow in the cylinder.

An extensive bibliography listing further examples

can be found in Choksy [9]. In chapter 6 we will discuss

in detail Kalechi's functional differential equation

model for the rate of investment in an economy. But now,

we will discuss the strange and mysterious role that

time delays play in four everyday occurrences: two of a

physiological nature, speech and sight, and two of a

mechanical nature, the electric bell and the thermostat.

Speech is the most complicated act (Fry [32]) that

a human being is capable of performing. It involves an

intricate coordination of the pharynx and the muscles

of the chest, larynx and face and with very precise timing.

Hence it demands a very complex control mechanism. Part
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of this control mechanism will be a feedforward open loop

control, but there is also a control through a feedback

loop. This auditory feedback takes place along the bones

of a person's skull and reaches the ear along this path-

way. Incidentally because the skull bones have a

different freqehcy characteristic than air, a person

never hears his voice the same way others do. This

auditory feedback is vitally important for successful

speech. Thus adults who become deaf in later life

continue to speak normally, but after a while their

speech becomes incoherent. Young babies - deaf or normal -

all pass through a babbling stage. Normal babies hear

their babble and go on to refine it into speech. Deaf

babies never do, and have to get special training in

order to learn how to speak.

There is a certain time delay associated with this

auditory feedback, and it is possible to set up an experi-

ment in which this delay is varied, Lee [52]. By getting

a person to speak into a microphone connected to ear phones

placed on the person's head and turning up the volume

sufficiently to mask the bone conducted sound, the auditory

feedback is transferred to the ear phones. The feedback

signal can be delayed by recording it and playing it back
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after a lapse of time. For a certain time delay (usually

1/10 second) the person is unable to speak, starts

stammering and stuttering and finally gives up in utter

frustration. It should be noted in passing that stammers

are usually able to speak fluently when subjected to

this experiment.

The second phenomenon is known as the Pulfrich

pendulum effect, Arden and Weale [2], in honour of its

discoverer. It can be demonstrated with a bare minimum

of equipment: a darkened glass and a string attached to

a weight to form a pendulum. The pendulum is set swinging

in a straight arc normal to the direction of sight and

one eye, say the left, is covered with the darkened glass.

The bob will appear to describe an ellipse - not a

straight arc. An explanation of the strange phenomenon

goes as follows. By reducing the light, the left eye

has become dark adapted and messages relayed to the brain

are delayed relative to the right eye. This delay

causes the left eye to perceive the bob slightly in the

past and in a different spatial position than the right

eye. Now the brain calculates distance from the disparity

in the images of the two eyes (This is true for distances

up to twenty feet. Beyond that another mechanism comes

into play). Under these conditions, the brain will
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interpret the usual input to be that of a bob describing

an ellipse.

The third phenomenon has to do with the electric

bell which would not work but for a delay in its

mechanism. The magnetic force exerted by the electro-

magnet does not appear and disappear instantly on the

operation of the interrupter contact. If this were

not the case, i.e. if the self induction in the

electromagnet appeared and disappeared instantaneously

when the current is on and off, the hammer would strike

the gong in a very feeble manner if it did so at all.

The derivation of a functional differential equation

describing (approximately) the motion of the hammer can

be found in Norkin [64] and is given by

mx(t) + rx(t) + kx(t) + cx(t-a) = 0 (1-24)

where x(t) is the displacement of the hammer at time t,

m, r, k, c are constants and cx(t-a) is an approximation

to the force acting on the hammer.

In any heating system equipped with a thermostat,

there will be an unavoidable delay in response to a

change in temperature. It is well known that this time
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delay can cause the system to oscillate indefinitely

rather than settling down.

The functional differential equations of examples (d)

and (h) were of neutral type. All the other functional

differential equations were of retarded type .

1.2 History of functional differential equations

The preceding examples should have provided enough

motivation to study the qualitative features of functional

differential equations. Euler was the first mathematician

to study functional differential equations, [29] and he

did so in connection with the problem of the general form

of curves similar to their own evolutes. Later in [301,

he looked for solutions of functional differential

equations of the form e t. This is basically the same

method that we will exploit in chapter 5, though in

keeping with the modern style in mathematics the approach

we use will be roundabout and convoluted so as to obscure

its basic simplicity. A number of other mathematicians,

J. Bernoulli, Poisson, Cauchy, Laplace, Condorcet tackled

functional differential equations in the latter half of

the eighteenth and the first half of the nineteenth centuries.

The problem was neglected in the latter half of the nine-

teenth century and did not attract the attention of
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mathematicians until 1911, with the publication of

a paper by Schmidt [72] who treated a fairly general

class of differential-difference equations. Thereafter,

a number of mathematicians, Hilb, Bochner, Pitt, Bruwier,

Volterra treated various aspects of functional differential

equations. In particular, Volterra [78] considered the

functional differential equation

.. 0
x(t) + cx(t) f F(O)x(t+o)de (1-25)

-a

and obtained conditions guaranteeing the stability of

the solution.

But it was not until the nineteen forties that the

problem was properly formulated and theorems on the

existence, uniqueness and continuity of the solution of

a functional differential equation were exhibited

(see Myskis [60]). In the nineteen fifties, the standard

approach to functional differential equations was to use

the Laplace transform to obtain a series solution or a

solution by definite integrals. Closely tied to that

approach was the studye 1f the distribution of the

characteristic roots in the complex plane. A good account

of the state of the art then can be found in books by
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Bellman and Cooke [51 and Pinney [66].

Then roundabout 1960, arising out of some difficulties

he had in studying the stability of functional differential

equations using Lipaunov functions, Krmsovskii [48]

pointed out that the natural concept of a state for a

functional differential equation is not the value of x

at time t, but the restriction of x to the interval

[t-a,t]. In other words, the state space should be a

function space and not Rn . In this setting it is

possible to bring the tools and techniques of functional

analysis (spectral, analytic, topological and semigroup

methods) to bear on a study of the problem and liberate

it from the Laplace transform and complex analysis. A

popular choice for the function state space has been

the space of continuous functions and within this context

a full treatment of functional differential equations of

retarded type has been given in Hale's book [36]. The

state of the art is less developed for functional

differential equations of neutral type. Recently, Delfour

and Mitter [18], [19] have proposed the setting of the

problem in the function space M 2(-a,0;R ) which will be

described in more detail in chapter 2.
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1.3 Development of Control Theory for R.FD.E.

From the control theorists point of view, it is

not enough to know the qualitative features of a dynamical

system. How the system will respond to different

controlling inputs and which control results in the

best behavior given some pre-ordained criterion is of

immense interest. But first of all, the control theorist

must have an adequate knowledge of the qualitative

features. It is for that reason why we shall not discuss

the control theory of systems governed by N.F.D.E. in this

thesis, and why we restrict discussion to systems governed

by R.F.D.E. Also we shall take the action of the control

on the system to be instantaneous; we shall not consider

systems in which there is a delay in the control.

The time optimal control problem for systems

governed by R.F.D.E. has been dealt with in Oguztoreli [65]

and Chyung and Lee [10]. Oguztoreli treated the case

where the control restraint set was a hypercube and

Chyung and Lee considered the more general case

where the control restraint set is compact. In brief,

the solution proceeds as follows. Working in Rn the set

of attainability at time t is shown to be convex,

compact and varies continuously with t. This enables
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one to prove the existence and a maximal principle for

the time optimal control. If normality conditions are

satisfied, this time optimal control will be unique.

The maximal principle is in terms of the solution to

the hereditary adjoint equation. As in the case of

ordinary differential equations without delay, the

time optimal control will be bang-bang.

The main concern of this thesis is the solution

of the quadratic criterion optimal control problem for

systems governed by R.F.D.E. The first definitive

paper on the topic was written by Krasovskii [46]

in 1961 and is entitled "On the analytic construction

of an optimal control in a system with time lag".

Krasovskii considered the R.F.D.E.

dx A0x(t) + A x(t-a) + Bv(t) (1-26)

x(6) = h(e) 0 e [-a,]

where v c R

and the quadratic cost functional

2
C(v;h) = {(x(t),x(t)) + v (t)}dt (1-27)

0
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Working in C(-a,O;Rn) the space of continuous functions,

considering a Liapunov functional that would ensure the

stability of the system (and hence that the problem was

well-posed) and using dynamic programming techniques

Krasovskii obtained an optimal feedback tontvbl

of the form

* 0
u(t) - B {r00x(t) + f n00 (a)x(t+a)da1 (1-28)

-a

Krasovskii's work was extended by Ross and

Flugge-Lotz who considered the slightly more general

case of Rm controls. In terms of the initial function h,

they were able to express the minimal cost as

,4C 40~=Y(oT ()) + +3Ooe1) ~o~ yd)T~~.4'
~#OO -0 (1-29)

and they were able to characterize f10* 01(4) E 11

by a coupled set of first order differential equations

A0(0+ *A - A + I01(0) + 1(0) + Q - 0 (1-30)

d A00 1  0 01(a) + ft(0,a) -a < 0 < 0

(1-31)
it (-a) -t mAi01 00
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( + )ff(,) = 1()R1( -a<6<0; -a<a<0 (1-32)

* **
1(-1,a) * A1 01(a), 11 (a,-li) = R01(a)A

where R * BN1 B .

The existence and uniqueness of an optimal contral

in the approach used by Ross and Flugge-Lotz depends upon

the existence and uniqueness of a solution to equations

(1-30), (1-31) and (1-32). This approach was extended

by Eller, Aggarwal and Banks, [27] Kushner and Barnea, [50]

Alekal, Brunovsky, Chydng and Lee, [1] and Mueller, [62]

to deal with the finite time quadratic criterion

optimal control problem for system governed by

non-autonomous R.F.D.E.

The dynamic programming in the space of continuous

functions approach to the quadratic criterion is unsatis-

factory for the following reasons:

(i) The class of admissible controls is

{u ; u(t) = u(x(t))} i.e. the control at time t is

linear map of the system state x(t) c C(-a,O;R n) into

Rm. This is an unnecessary restriction, though as luck

would have it the optimal control does indeed turn out

to be a linear functional of the state.
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(ii) The existence and uniqueness of an optimal

control depends upon the existence and uniqueness of the

solution to a complicated coupled set of first order

partial differential equations with Riccati type features

which in the infinite time case reduces to equations

(1-30), (1-31) and (1-32).

(iii) In general, dynamic programming does not

lend itself to a rigorous mathematical approach (see for

example a discussion in Krazovskii [49) though it yields

the right answer to optimal control problems.

(iv) There is a complete, satisfactory and standard

solution to the quadratic criterion optimal control

problem for systems governed by linear ordinary differential

equations which gives the optimal control in feedback form

with the gain matrix satisfying a matrix Riccati differential

equation. None of its features passes over into the

solution of the optimal control problem for systems

governed by R.F.D.E. using the dynamic programming

approach.
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1.4 Brief outline

Our approach will be different. Instead of taking

initial data in C(-a,O;Rn) the space of continuous

functions, following Delfour and Mitter [21], we will take

initial data in the space M 2(-a,O;Rn). In Chapter 2, we

will quote existence, uniqueness and continuity theorems

for the solutions of R.F.D.E. from Delfour and Mitter [181

and in general prove results that will be used in later

chapters.

In chapter 3, we use the Lions' direct method [83]

to obtain a necessary and sufficient condition for the

existence of an optimal control to the finite time

quadratic criterion problem. The optimal control is

characterized by means of a coupled duo of equations, the

R.F.D.E. and its hereditary adjoint equation. We can

decouple these two equations to obtain the optimal control

in feedback form, and we can express the minimum cost as

a quadratic functional of the initial data. This leads

to the study of an operator H(t) : M2 + M2 for which we

derive an operator Riccati differential equation. From

this equation we can deduce the coupled set of first order

partial differential equations satisfied by HO00(t),

H01 (ta), 111 (t,O,a). Whatever advantages working in the



32.

function space M 2 (-aO;Rn) might have over the function

space C(-a,O;Rn), it does not lead to less taxing and

tedious computations. Indeed it seems that no matter

what you do, the derivation of the coupled set of first

order partial differential equations satisfied by

1100 (t), 101 (ta), 1 11(tO,a) involves hideous calculations.

These calculations have been tucked into the appendices.

Finally in chapter 3, we consider the tracking problem

(i.e. we have a forcing term in the R.F.D.E.) whose

solution is a modification of the solution for the regulator

problem (i.e. have no forcing term in the R.F.D.E.)

In chapter 4, we consider the infinite time autonomous

regulator quadratic criterion problem. We introduce the

concept of stabilizability in order to ensure that the

problem is well posed. Again we obtain the existence of

an optimal control in feedback form and the minimum cost

as a quadratic functional of the initial data. We derive

an operator Riccati equation for an operator H : M2 + M2

and from this we deduce the coupled set of differential

equations satisfied by T001I 0 1 (a), H-11 (6,a). It should

be noted in passing that our approach to the finite and

infinite time quadratic criteria optimal control problems

is similar to the usual approach used for systems governed

by linear ordinary differential equations.
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If we could decouple the coupled set of first order

partial differential equations satisfied by

H 0 0 (t), 1 0 1 (t,a), 11 (t,O,a), we would be in a better

position of solving those equations to give an explicit

and complete solution to the optimal control problem.

But alas this does not seem to be possible, and a

solution to the equations even in the simplest possible

case - the one dimensional infinite time problem -

seems well nigh impossible. So approximate we must,

and we do so in chapter 5 by considering the solution

of the R.F.D.E. in the M 2(-a,O;R n) function space on

an eigenspace of M2 (-a,O;Rn). Fortunately, when this

is done, the approximate control problem reduces to a

quadratic criterion optimal control problem in Ri

where j is the number of eigenfunctions spanning the

eigenspace. This way, we reduce the problem to one whose

solution is well known. We can show that the optimal

control obtained this way is close to the exact optimal

control in the sense that as j -+ oo, the approximate

optimal control approaches the exact optimal control.

Finally in chapter 6, we apply the results of the

previous chapters to a model of the rate of investment

in a capitalistic economy proposed by Kalechi [40] in

1935.



34.

'Chapter 2

Mathematical Preliminaries

In this chapter, we shall establish some results

which will be used in succeeding chapters.

2.1 Existence, Uniqueness and Continuity of- solutions

of R.F.D.E.

We consider the linear R.F.D.E. defined on [t0,TI

dx N 0

= A 00(t)x(t) + Z A i(t)x(t+6 ) + f A0 1 (t,O)x(t+6)dO+f(t)
i=1 -a

(2-1)

x(t 0 +0) = h(e) 0 E [-a,0], h(-) initial data

where N > 1 is an integer, 0 < a

-a = 6N < 6N-1 < ... < 8 < E0 = 0 i = 1,... N

f e L2 (t0,T;Rn), A00 (), Ai (-) are elements of

L 2(t0, T; ct(R n) )

A01 (t,.) L2 (t0 ,T;-a,0; t(R n))

Equivalently (2-1) can be written in the integral form

(and this is the form in which the existence and uniqueness

theorems are proved)
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t N t
x(t) = h(0) + f A 0 0 (s)x(s)ds + E f A.(s)x(s+6.)ds

to 0 i=l t0

t 0 t
+ f ds f dO A0 1 (se)x(s+6) + f f(s)ds (2-2)

to -a to

x(t 0 +6) = h(e) 0 s [-a,0]

Remarks

1. The term A (t)x(t+6 ) in (2-1) gives rise to

a concentrated delay (also known as a transportation lag)

taking effect at time t and arising at time t+O . The

0
term f A01 (t,6)x(t+O)d6 gives rise to a distributed

-a

delay taking effect at time t and arising out of the

history of the system orr the interval [t-a,t].

2. Later on, for technical reasons

A0 0 t), A i(t), A01 (t,-) to be piecewise continuous

and continuous from the right.

First of all, we have to say something about the

existence, uniqueness and continuity of the solution of

(2-1) with respect to the initial data h taken to lie

in some function space. The usual choice for this function
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space is C(-a,O;Rn) the set of continuous functions

mapping [-a,O] into Rn with the supremum norm.

Looking for solutions in the space C(t 0,T;Rn) Hale [361

pp. 13-23 proves existence, uniqueness and continuity

of the solution with respect to the initial data.

The prominent feature of R.F.D.E. is that the

solution will be smoother than the initial data. Also

we can have a solution to (2-1) with the initial data h

discontinuous. Indeed all we have to specify of the

initial data h is the value h(O) and h as a measurable

and integrable map [-a,O] + Rn

This is the motivation for the introduction of the

space M2 (-a,O;Rn) (Delfour and Mitter [18], [19],

Delfour [17]) which is arrived at in the following manner:

Take f (-a,O;Rn) the vector space of all Lebesgue

measurable and square integrable maps h : [-a,0] + Rn

with h(O) well defined and impose the semi-norm

0 1
|ihil = {|h(0)l2 + f |h(6) 2 d } (2-3)

-a

Define the linear subspace Y of fr 2(-a,O;Rn) by

Y= {h;Ijhh| = 0} (2-4)
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M 2 (-a,O;Rn) is defined to be the quotient space of

" 0(-a,O;Rn) by .

M 2(-a,O;Rn) with the norm

01
1hI I 2 = {|h(0)I 2 + f |h(O)i 2d6} (2-5)

M -a

and inner product

0
(h,k) 2 = (h(o),k(0)) + f (h(e),k(6))de (2-6)

M -a

is a Hilbert space and is isometrically isomorphic to

Rn x L2 (-a,0;Rn).

When there is no possibility of confusion arising,

we shall denote M2 (-aO;Rn) by M 2.

If we take M2 (-a,O;Rn) to be the space of initial

data, our solution will be absolutely continuous and with

derivative in L 2(t 0 ,T;Rn). Hence we look for a solution

in the function space AC 2(t 0 ,T;R n), the vector space

of all absolutely continuous maps [t0 ,T] + Rn with

derivative in L2 (t0 ,T;Rn) and norm

T1

x|| 2 = t 2 + T (2-7)
AC t0
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AC 2 (t0 ,T;Rn) is a Hilbert space.

With M2(~.a,O;Rn) as the space of initial data and

AC 2(t 0 ,T;Rn) as the space in which a solution is sought,

Delfour and Mitter [181 establish the following result

which is stated as a theorem.

Theorem 2A Delfour and Mitter [181

With initial data h E M 2(-a,O;R ), the R.F.D.E. has a

unique solution x e AC 2 (t0 ,T;Rn). Denoting this

solution by $(t;t 0 ,h,f) and defining

Pt ,T) = {(t s); t,s E [t0,] t>s

we have

(i) for fixed t0 the map

rh,f) t 0(-;t0,hjf)

(2-8)

M 2(-a,O;R ) x L 2(t 0 ,T;Rn) + AC 2(t 0 ,T;Rn

is bilinear and continuous.

(ii) for fixed hf the map
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(2-9)

is (t o T) + Rn

is continuous.

In chapter 4, we shall consider the

R.F.D.E. defined on

autonomous

[0,o)

dx = A0 0x(t) +
N
Z A x(t+6

i=l

0

) + f A01 (e)x(t+e)de+f(t)-a

x(8) = h(O), 0 Es

where A0 0, A £

A01 (-) e L 2(-a,0

[-a, 01

Q (Rn)

; of (Rn)),

i

f

= 1,... N

F Loc(Ooo;Rn)

Corollary 1

The autonomous R.F.D.E. (2-10) has a unique solution

f) in AC2oc(,;Rn) and the map

(h,f) $(-;h,v)
(2-11)

M 2(-a,0;Rn ) x L oc(0, ;Rn)t~oe +~ ACc~(0,co;R n)

is bilinear and continuous.

(2-10)

(t,s) + $(t;s,h,f)



40.

2.2 Representation of solutions of' R.F.D,E,

Banks [3] gives a representation of solutions to

R.F.D.E. (2-1) when the initial data lies in C(-a,0;Rn)

For the initial data lying in M2 (-a,0;Rn) we have the

result

Theodem 2B Delfour and Mitter [191

The solution tO the R.F.D.E. (2-1) can be written in the

form

r4

to) +.

+ ~ a'-a-- t toF
(2-12)

t

or more compactly

$(t;t 0 ,h,f) = 40(t,t 0 )h(0) + f 0 (t,t0 ,a)h(a) + f D 0(ts)f(s)ds(2-13)
-a 

t0

where 4D O(t,s) e C0(Rn) t,s e [t0,T], t > s and

satisfies the matrix R.F.D.E.



41.

Si) (t+ ;,5) +I E) (~t+ 9,5)

(2-14)

P0 (s+es) = 0 0 e [-a,0)

The mapping (t,s) '+ 0 (t,s)

(2-15)

is continuous and the mapping

4)0 : [t 0 ,T] x [t 0 ;T]

(where t 0(t,s) = 0

-+ o(Rn)

for t < s) is an element

(2-16)

of

4p(t,tOa) e t (Rn) and

)
4) (t,t,a)

N 0

0

a+t0-t<0i <a

otherwise

(2-17)

+ I da 4)0(t~t+a-O)A01(t0+a-a,8)
max (-aca-t+t0)

0
= '1' .

L2(t0,T;t0,T; t(Rn)

S) = (o) t,5) +
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Consider the R.F.D.E. on [s,T] where s e [t0,oT

dx
UT = A0 0 (t)x(t)

x(s) = h(0) x

From theorem 2A,

+
N
E A 1 (t)x(t+

1=1

(s+O) = 0

0
) + f A0 1-a

(t, O)x(t+O)dO

(2-18)

Se [.-a,0)

(2-18) has a unique solution x(t;s)

and for fixed t,

h(0) -+ x(t;s)

t > S, the map

(2-19)

is linear and continuous and we can write

clearly 0 (ts) satisfies (2-14) since

= (D (t,s)h(0) satisfies

Also the continuity of the map

(tjS) O $0(t9s)

tn!,T) + ot(R n)

(ii) of Theorem 2A.

Proof.

x(t;s) (2-18).

x(t;s) = #At,s)h(0)

follows from
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Now let us consider the R.F.D.E.

= A0 0 (t)x(t) +
N
E A i(t)x(t+6)

1=1

0
+ f A0 1 (tO)x(t+6
-a

)de + r(t)

(2-20)

= 0 , a c [-a,0]

or equivalently the integral equation

t
x(t) = f A0 0 (r)x(r)dr +

t0

t d
+ f dr f dO A 01 (r,e)x(r+e)

t0

N t
E Ai (r)x(r+Oi

i=l t0

)dr

t
+ f f(r)dr

t0-a

e e [-a,O]

S0(t,s) will satisfy the matrix integral equation

t
=I + f A0 0 (r)

s
D 0(r,s)dr +

N
E

t
/f

i=l s-01
A i(r)40 (r+6

+ f de f dr A01 (rO6)40(r+es)
-a s-O

,0 (s+6,s) = 0 e c [-a,0)

dx

x(t 0+)

(2-21)

x(t 0+) = 0

4, (t,s) ,s)dri

(2-22)
0 t



We want to show that

t

t0

y(t) =

S0(ts)f(s)

0

satisfies the integral equation

Clearly it satisfies the initial conditions.

Substituting (2-23) into the left hand side of

we obtain

dr f ds A0 0 (r)4 0(r,s)f(s)
t0

N t
+ E f dr f ds A1

i=l t0 t0

(r)P0(r+6

A01 (r,)?o0(r+O,s)f(s)
t

+ f f(s)ds
t0

t t
= f dr f ds

t0 t0

N t
+ E f dr

=1 0

A00 (r)0 (rs)f(s)

t
f ds A1
t0

(r)P 0(r+6
1

,s)f(s)

0 t
f dO f ds A0 1-a t0

(r,6e) 0 (r+e,s)f(s)
t

+ f f(s)ds
t0

t > to

t < to

(2-21).

(2-23)

t4 r

S0
tc

(2-21)

,s)f(s)

t
+ f dr

t0

0
f ds
-a

r+O
f ds
t0

t
+ f dr

t0
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since 0(r,s) = 0 for r < s

t t 0
= f ds f dr A0 0 r) (r)fsV

to to

N t t 0
+ f f ds f dr A (r) 0 (r+O,s)f(s)

1=1 tO t0

t 0 t t
+ f ds f dO f dr A01 (r,6)@ 0 (r+O,s)f(s) + f f(s)ds

t 0 -a to 0

interchanging order of integration by.Fubini's theorem

t t 0
= f 'ds f dr A 0 0 (r)' (rs)f(s)

t0 s

N t t 0
+ E f ds f dr A (r)D (r+01 ,s)f(s)

i=1 t0 s-01

t
+ f ds

t0

0 t ot
f dO f A0 1 (r,O) 0(r+O,s)f(s) + f f(s)ds
-a s- t v

using fact that 0(r,s) = 0 r < s
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cit N

-t~~ S S)&

to

Hence y(t) does indeed satisfies integral equation (2-21)

and from uniqueness, it must be the solution of (2"21).

Now define

N Ai(t)h(t-t0+6 1)

1=1 0

t o-t

+ -a

t-.a<t+e <t0

otherwise

(2-24)

-a<t0-t<0

otherwise0

Clearly I E L2(t0 ,T;Rn).

Now consider the R.F.D.E.

fi 04 so-

XCtot 0) = 0 & E [- Q) o]

whose solution is denoted by x 1 (t)

(2-25)

A 01 (t,O)h(t-t 0 +)d6
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and the R.F.D.E.

A00 (t )x (t) +
N
E A i(t)x(t+Oi

i=l

0
) + / A01 (t,O)x(t+6)dO

-a

x(t0 ) = 0p x(t0 +6) = h(e)

whose solution is denoted by

o e [-a,O)

x2(t)

Let z (t) = x (t) - x2 (t). Then z satisfies the R.F.D.E.

:= noo~t) ( ±

N

L= i SOIX~{-~O)&0 *)

0 itt + ) = G e , 0)

z(t) = 0 for t e [t 0 ,T]J satisfies equation

and from uniqueness it must be the solution.

Hence x (t) = x2 (t) for t e [t0 'gT*

Hence the solution to (2-26) is

to
f p 0 (t,s)17(s)ds
t0

N t 0E f ds 0 (t,s)
i=l tn

(2-28)

A (s)h(s-t0+6)

0

t0-s'

t / dO A0 1 (sO)h(s-t0+E)
+ t do 0(t.s) -a

t0 0

s-a<s+ei<t
0

otherwise

t0<s<t0+a

otherwise

dx

(2-26)

x (t,,)
(2-27)

(2-27)

x2 (t)

x(t* GO t
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N t A (s)h(s-t0+6 )

Now E f ds D (t,s)
1=1 t0 0

s-a<s+0 <t0

otherwise

N min (t0+6 ,t)

i=1 t0  ds 9 (t,s)A (s)h(s-t0 +60)

N min (0,t-t 0 +6i)
=E /da P (tt 0 +a-0 )A (t 0+a-0 )h(a)1=1 60

putting a = s - t0 + 6

For case t0 < t < t0 + a

t 0 0a d A0 1 (s,6)h(s-t 0+6)
f ds 0 (t,s) -a

tO 0

t t0-s
= f ds f

t0 -a

t0<s<t 0+a

otherwise

dO 0(t,s)A 0 1 (s,6)h(sB-t 0 +)

changing to a = s-t 0 +e, 6 = e coordinates and interchanging

order of integration by Fubini

f
max (-a,a-t+t0)

d6 P0 (t,t0+a-6)A 0 1 (t0+a-6,8)h(a)
0

= f da
-a
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Inthe case t> t0 +a, -a> a-t+t 0  for all

a e [-a,O) and we get the same result as before. Hence

the solution to (2-26) is

N min (O,t-t 0+6 )

da t (t,t0+a-e i)A (t0 +a- i)h(a)

0 a
+ f da f d
-a max (-a,a-t+t

0 )
t 0(t~t 0+a-a)A 01 (t0+a-6,6)h(a)

0 da 1 (tvt0,a)h(a)
-a

Now

to) -4t)A0) + (t±to, t (t,S) (S) 
al

satisfies R.F.D.E,

must be the solution.

(2-1) and from uniqueness, it

Q.E.D.

x2(t) = f1
1=! ei

(2-29)

(2-30)
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Corollary 1

The solution to the autonomous R.F.D.E. (2-10) can be

written in the form

N min (Ot+O )
$(t;hf) = 0(t)h(0) + E f da 0 (ta+O )A h(a)

1=1 0

0

i

f da f d 0(t-a+)A 0 1( )h(6)
-a max (-a,a-t)

av

+ f O (t-s)f(s)
0

or more compactly

$(t;h,f) = 4 0 (t)h(0) + f 0 (ta)h(a)da + f O (t-s)f(s)ds (2-32)
-a 0

where 0 0 (t) C f(Rn) and satisfies the matrix R.F.D.E.

d40 (t) N 0
dt A0 04D (t) + E A 10(t+e ) + f A0 1 (0)(P (t+o)de

1=1 -a

(2-33)

P0 (0) = I, 0 (t) = 0 t < 0

(2-31)+
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1 (t,a) C D (R ) and

(2-34)

Proof

The autonomous R.F.D.E. on [s,0), s > 0

dxN 0
S00x(t) + EA i(t)x(t+6e) + f A01 ()x(t+O)dO

il -a

(2-35)

x(s) = h(0) x(s+O) = 0 6 e [-a,0)

has unique solution x(t;s) = 0 (ts)h(0).

But x(t;s) = x(t-s;O), since R.F.D.E. autonomous.

Hence ) (t,s) = 0(t-s,0).

Now define 0 (t-s) = 40 (ts).

From this point, proof of corollary proceeds as in

proof of theorem.

We are now in a position to exhibit an exact and

explicit closed form solution to a particular class of

R.F.D.E. - in fact a differential-difference equation

with one delay. To the best of the author's knowledge,

this is the first time this has been done.
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Corollary 2

The solution of the R.F.D.E.

$d = A00x(t)

x(O) = h(O)

where A00, A, Sot (Rn)

+ A1 x(t-a)*+ f(t)

(2-36)

0 e [-a,0]

and commute,

P cz.)
-~a.

where

is given by

+ S(i-s (s)ds

G o OLoo

(2-37)

E , + +)E

0

Proof

From corollary ., it is sufficient to observe that

satisfies the matrix R.F.D.E.

dO'0 (It) = A00<f0(t) + A 10(t-a)

(2-38)

It 0(0) = I, 0 (t) = 0 t < 0

4 0 (t)

Root (t - A

Ct~~~ ;A 0
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2.3 Continuity and differentiability in M2. ; State

evolution equation

Definition

(i) Given a map x [t0-a,T] -+ Rn such that for

t E [t0,T], x(t) e Rn is well defined and the map

xt [-a,0 + R n defined by xt(6) = x(t+O) is an

element of L 2(-a,O;Rn), define the map

x :[t0,T + M 2(-a,O;Rn)

(2-38)

by (x(t))(O) = x(t+O)

(ii) The map x is said to be continuous at the

point t E [tO,T] if given c > 0, 3 6 such that

It-s| < 6, s c [t0,TI

=> I|x(t) - x(s)II 2 < c i.e. lim I|x(t) - x(s)II = 0 (2-39)
M S +I t

The map is said to be continuous on [t0 ,T] if it is

continuous at every t e [t0,TI.

(iii) The map x is said to be differentiable at

the point t c [t0,T] if there exists an element denoted

by
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dx t) M 2(-a,0;R ) such that

lim x(t) - x(s) _ dx(t)

St -s dt 2
S t IW(t) 11M2

(iv) The M2 state

system (2-1) is the map

of the solution of the hereditary

t + x(t;t 0 ,h,f)

(2-41)

[t0 ,T] - M2 (-a,0;Rn)

defined by

x% 0 ,x(t+h;th)f)=
x(t;t0,qh~f)(0) = ~ - 6

t+6 > to

t+e < to

Remark

The concept of a state - that object which embodies all

the necessary information to determine the future evolution

of a system - is a very useful concept in systems theory.

We have already seen that for hereditary systems governed

by R.F.D.E. the state is not an element of Rn, but

an element of some function space. The usual choice

= 0 (2-40)
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for this function space is C(-a,0;Rl), but for reasons

that will be elaborated upon in section 2.7, we will

choose to work in M2 (-a,O;Rn). We shall be able to

treat a R.F.D.E. as a differential equation in the

Hilbert space M 2(-a,O;Rn). As we shall see, this

approach has many technical and theoretical advantages.

Theorem 2C

(i) The map t + x(t;t 0 ,h,f) : [t0 ,T] -+ M 2(-a,;Rn)

is continuous

(ii) For h e AC 2(-a,O;Rn), the subspace of

M 2(-a,O;Rn) of absolutely continuous maps [-a,O] + Rm

with derivative in L 2(-a,O;Rn), the map

t4* x(t;t0,hsf) :[t0,T] +o M2(-a,0;R)

is differentiable with derivative dx(t) n M2(-a,0;Rn

defined by

-T (V) f= A x t)+ 2 RA)* 3 o t S t e) te +o

where x(s) f $Cs;t0 ,h,f) s > to

h(s-t 0) s < to
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Proof

(1) Case a t > t0 + a

2
x(t;t 0 ,h,f)-x(s;t 0 ,h,f)|| 2I

0
+ f 0x(t+Q;t 0 ,h,f)-x(s+O

-a

Now the solution x(-;t 0,hf)

continuous on compact interval

= Ix(t;t 0 ,h,f)-x p;t 0 ,hf)j 2

;t0,h,f) 12de

will be absolutely

[t0 ,T] and hence will

be uniformly continuous on [tOIT]*

Hence given e > 0 there exists 6 > 0 such that for any

t?,sI e [t0,

< .)

(1+a)

2
S

< E5
2

+ ase

Case (b

T], It'-s'I < 6, Ix(t';t 0 ,h,f)-x(s';t 0,h,f)|

Hence IIx(t;t 0 ,h,f)-x(s;t0 ,h,f)lI 2M

2

) t=t + a s > t
0

As before, Is-tI < 6,

IIx(t;t 0 ,h,f)-x(s;t 0

we have

2
,h,f) 2 2

M

2
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Case (c) t = t 0 + a

s + 6 = t = to + a

I Ix(tjt 0,h~f')-x(s~t

0

t -s

t -s

-a

jx(t+e;t 0

0 ,h,f)| 22
M

,h,f) -x(s+9;t

jx(t;t 0 ,h,f)-x(s;t0 ,h,f)j 2

0,h,f)2 de

Ix(t+6;t 0 ,h,f)-h(s-to+6)| 
2dO

From the uniform continuity of x(.;t,h,f)

lim lx(t;t 0 ,h,f)-x(s;t 0 ,h,f)!
s + t

2 = 0

0
and lim f jx(t+6,t 0,hf)-x(s+6,to

s + t t 0-s
,h,f) 2dO =

t 0-s
t0~

Now f
-a

0

-6

|x(t+e;t 0 h,f)-h(s-t0 +0

lx(t+6+a;

0
= f x(t+6+a;
-a

)12d

t0 ,h,f) - h(a) 2 da

t0,h,f)-h(a)| X[-6,0](a2da

s < t

6 > 0

we have

0
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(where X is the characteristic function)

+ 0 as 6 -+ 0 by the Lebesgue dominated convergence

theorem.

Case (d) to < t < t 0 + a

s < t (The proof for s >

l|x(t;t 0,h,f)-x(s;t 0,h,f)|

t is similar)

22

M

22
x(t;t0,h~f)-x(s-t0,h f) 2

+ f x(t+6;t 0 ,h~f)-x(s+e;t0,h,f)2 dO

t0-

t0-s 2
+ f x(t+6;t 0,h,f)-h(s-t 0 +e)2 dO

t o-t

0+ Ih(t-t 0+6)-h(s-t 0+) 2 dO
-a

As before exploiting the uniform continuity of

x(-;t0, h, f) on [t0,TI, we have that

lim x(t;t 0,h,f)-x(s;toh~f)l 2
s + tL

+ f |x(t+6;to,h,f)-x(s+e;to,h,f) 2d6 = 0.
t0

Take t0<s<t0+a
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t 0-s

Now f
t 0-t

|x(t+e;t 0 ,h,f)-h(s-t 0+0)2 dO

0
f jx(t 0+6+a;t 0-6

,h9f)-h(a)l 2da s + 6 = t

= f Ix(t 0 +6+a;t 0 ,h,f)-h(a) 2X[-_ 6-a
0] a)da

-+ 0 as 6 + 0 by the Lebesgue dominated convergence

theorem

t -t

Now f h(t-t 0+0)-h(s-t 0 +0) 2 dO
-a

= f jh(a+6)-h(a)2 dO
s-tO-a

Now the set of continuous functions on

dense in L 2(-a,0;Rn ) and so given any

continuous on [-a,01 and hence uniformly continuous

and 60 > 0 such that

IIh-h 0 1 2
and Ih0(a+6)-h(a) < S for 6 < 60

and a e [-a,0].

[-a,0] is

E > 0,

Henc e
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t o-t2

-a |h(t-t 0 +O)-h(s-t 0 +6) 2de

- f |h(a+6)-h(a)I 2da
s-tO-a

|h(a+6)-h 0(a+6)12 da< 3 f
s-t 0 -a

6

s-t0--a
h0 a+6)-h 0 (a) 2 da +

-6
3 !
s-t0-a

(6+3a)e 2

Hence lim I jx(
s + t

t;t 0 ,h,f )-x(s;t 0 ,h,f)

Case (e)

||x(t 0 ;t0,h,f)-x(s;t 0,h,f)||22

0
+ f-
t0~

t 0-s
0

-a

= ih(O)-x(s;t 0 ,h,f) 2

ih(6)-x(s+O;t 0 ,h,f) 2 dO

|h(e)-h(s-t 0+0) 
2d

h 0(a)-h(a) 12 da

2
HN2 0

t = to s > t
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and using same techniques as before, we show that

lim IIx(t 0;t0,h,f)-x(s;t 0 ,h,f) |22 = 0
s + t 0 M

Hence the map t + x(t;t 0,h,f) is continuous

(ii)

+~ ' 1 0

-av

2.

Now the first term on the left hand side tends to 0

as 6 -+ 0 since x(t;t 0 ,h,f) satisfies R.F.D.E.

on [t 0 'T]

(2-1)
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Now I6 X(t+6+O)-X(t+O)
-a

_ dx(t+O) 2dO
dO

1 ft+dsdx s+6)

t

o tds idx s+e)

t+6 0
ds f dO jdx(s+O)

-a

_ dx (t+O)

de

dx(t+O)
_d t+)

2
x(-) is absolutely

continuous

2

2

(interchanging order of integration by

Now let g(O)

6 > 0 6 <

functions in

dx(t+O)
dO

a.

g c L 2(-a,6
1

;Rn)

From the density of the continuous

we can find go such that

IIg-go L 2

continuous

such that

Hence for

(-a,6 1; Rn)

on [-a,6

< e and go

]. Also there

e forIgo0 +6)-g0(e) I <

6 < 6O' 16 < 1f
t

is absolutely

exists 6 0 <

6 < 60,

ds (6+4a)e 2 =

0 s [-a,0].

(6+4a)s 2 &

Hence 16 + 0 as

0
= f-d
-a

0
< f d

-a

t

Fubini)

some

t+6-.

6 +* 0.
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Hence we have the differentiability of the map

t x(t;t 0 ,h,f)

for h e AC 2(-aO;R n).

Definition

(i) Define the differential operator jq(t) : 2 M2

with domain AC (-O,a;Rn) dense in M2 by

(ot

where h c AC 2(-a,O;R n).

(ii) For f(t) e L2 (t0 ,T;R n) f(t) well defined

for t e [t0,T], define the element f(t) e M2(-a,0;Rn)

by

a = 0f(t)

0 a e [-a,0)

We can now state a corollary to theorem 2C.

c~E[%O)

(2-42)

(2-43)
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Corollary

For h AC2 h,f) satisfies theFo hc C(-a,O;R X x(; 01hf

differential equation in M 2(-a,O;R n)

dx (t) t)x(t) + f(t)

x(t 0) = h

Remark

(1) Using a lifting process (see Delfour and

(2-44)

Mitter [21]) we can for equation (2-44) extend the

space of initial data from AC 2(-a,O;Rn) to M2 (-a,O;Rn)

since AC 2(-a,O;Rn) is a dense subspace of M 2(-a,O;Rn).

(2) Equation (2-44) is called the M2 state

evolution equation and can be written in integral form,

Delfour and Mitter [21], as

t ~

x(t) = 4D(t,t 0 )h + f 4(ts)f(s)ds (2-45)

0

where the integral is taken in the sense of Bochner.

Lemma 2.1

Suppose that xy are absolutely continuous maps

[t0-a,T] + Rn with square integrable derivative. Then

t
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for any t e [t0 ,T]

0
f x(t+O)dO =
-a

0.

-a

dx (t+e)de
de

dx t),y(t)) 
2dt M

dy (t)+ xtqd

(2-47)

Proof

0
6 If dOx

-a

0
=if dO
-a

(t+6+0)-x(t+0)

1

t6

tds{d
t

f d dx(t+O)I

-a

dx(t+O) }2

1 0 t+d idx(s+0dO f
-aT t d

1t+6 0
f ds f
t -a

dx(s+O)
d6

dx(t+) 2

dx(t+0) 2
~dO

Now for some 6 > 0, 6 < a, = dx(t+O)
g(6)U= ,

As before given

lig-go1 L2

E > 0, there exists go such that

(-a,6 1 ;Rn)

d (2-46)

(ii) (d x (t),9y(t))2
dT M 2

2

2 n
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and 6  < 6 such that |g0 (O+6)-g 0 (O)j < e for all

6 < 60, 6 e [-a,0]. Hence

t+6

t
(6+4a)e2 = (6+ 4 a) 2. Hence

+ 0 as 6 0 and we have (i).

(ii)

2.4 Seiigroup of operators

Definition

Let t0 < s < t < r < T and let x(t;s,h) be the

M2 solution of the R.F.D.E. (2-1) with f = 0 and

initial instant s. Define the transition operator

$(t,s) : M2 + M2 by

0(tss)h = x(t;s,h)

Theoremi 2D

0(t,s) is a two parameter semigroup of operators on
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satisfying the following properties:

(i) for fixed. t,s t > s, (t,s) is strongly

continuous linear M2 operator

(ii) 0(tt) = I, the identity operator in c (M2)

(111) C(r,s) O (r,t )((t,s )

(iv) the map t b* 4(t,s)h : [s,T] + M2 (2-48)

is continuous for all h e M2

(v) for fixed t, the differential operator of

{' (r,t) ; r e [t,T]} defined by

(2-49)
(t)h = lim [(r,t)-(t,t)]h

r t

(when the limit exists) is also the differential generator

of {W(r,t); r c [t,T]}; it has dense domain AC2 (-a,O;Rn)

and for h e AC 2(-a,O;Rn)

N

(vi) limo \(t+ )@t s)jh =A 0 (t)Z(t,s)h
6+0

(2-51)
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(vii) lim h
6 + 0

Proof (i) (t,s)

Let hl, h2

(r, t (t )h

is clearly linear.

C M2(-a0;R n)

0(t~s)h 1- P(t,s)h 2 = D(t,s)(h -h2)

Now let

= x(t;s,h 1 -h 2)

7 tqs denote the restriction of a solution of

with f = 0 and initial instant s. The restriction of

the solution will be a continuous function on

and Delfour and Mitter [18] have showed that

IPS (;s,h 1 -h 2 IC < 2d (t-s) I I -h 211 M2

[s,tl

where d 1 (t-s)

I$I4(t,s)h 1

is a constant

- C(t,s)h
2 1 2 2

M

for fixed t,s

2
= IIx(t;s,h 1 -h 2)II 2M4

= |x(t;s,h 1 -h 2) 2

0 ix(t+;s,h 1 -h2) 2 t+

2

(x(.;s,h -h2 ) 112.Is 2 C

a

+

> s

de

t+6 < s

|h 1 -h 2 2

[4(l+a)d (t-s)+l] Ilh1-h2  2
1 211 M2

(2-52)

(2-1)

+ f

< (l+a) I 7Tt
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Hence result

(ii) 0(tt)h = x(t;t,h) = h for all h e M 2

Hence result

(iii) 4(rt)D(ts)h = 4(r,t)x(t;s,h) = x(r;t,x(t;s,h))

= x(r;s,h) from uniqueness

= O(r,s)h for all h s M2

Hence result

(iv) Follows directly from (i) of theorem 2C

(v) For fixed t, (r,t) is a C0  (strongly

continuous)semigroup of operators from (iv), i.e.

lim (r,t)h = h, 0(t,t) = I, identity operator in
r+t

t (M2) (for definition, see Hille and Phillips [38] pp. 321)

and thus we can define the infinitesimal operator

0(t )h =lim [
r+ t -

The infinitesimal generator will be the smallest closed

extension of A 0(t). But since (r,t) is a C0  semi-

group, the infinitesimal operator is closed and thus the
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infinitesimal generator is given by (2-49).

Hille and Phillips [38] chapters 10,11). We now want

to compute the infinitesimal operator.

a c [-a,O), h

(r t) 7(jtt)

e AC 2(.-a,0;Rn)

h(a) [h(r-t+a)-h(a)]

for r such that

(a) = {L40 (t)lh}(a)

r-t+a < 0

dh

(0) 1 x(r;t,h)-h(0)}

1 r

r-t~ iAoo (u)x(u;t,h)
N

+ Z A
i1=

(u )h(u-t+O6idu

0
f dO A01 (u,)

x(u+;t,h)

h(u-t+8)

+ ,A0 0 (t)h(0) +

N
E A (t)h(O

i=1

0
) + f dO

-a
A0 1 (te)h(O)

assuming that A0 0 (t), are piecewise

continuous and continuous from the right.

(See

For

r
+ f du

T -a

u+Q > t

u+6 < t

rl+mt 4(r t) - (t 2t)

t(r-t) (t'jt) h

A (t), A 01 (t,*)
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Hence

t

(vi)
S~ +t s) tJ c

Act L I 6 +t

g40 LT

J

Remarks

1. Note that where A(t)

in (2-42) since (VA(t) -vA(t))h =

h eb (0t)) =D (04(t)) = AC2 (-a,0;

0 for all

Rn )

(vii)

defined

[ ,Ao (t) I (C ) =

StO
(t.,t

= MR (f it) A 0 (t) I/,-

A(t) =,q(t)
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2. (vii) states that for fixed r, the right hand

derivative of C(r,t)h with respect to t is

-@(r,t),0(t)h. Since (r,t-6)h is not defined for

6 > 0, the left hand derivative will be meaningless.

We will make more uee of (vii) in chapter 3 section 5.

2
- Let x(t;h) be the M solution of the autonomous

R.F.D.E. (2-10) with f = 0. Defining the transition

operator 0(t) M2 - M2 by

)(t)h =x(t;h)

we have as a corollary to theorem 2D

Corollary

4(t) is a semigroup of operators on M2 satisfying the

following properties

(i) for fixed t, 0(t) is a strongly continuous

linear M2 operator

(11) 4(0) = I, the identity operator in CA(M 2 )

(iii) 0(t 1+t 2 ) = 1 )Ct2

(iv) The map t +* (t)h :[0,o) -+ M2 is continuous

for all h e M2 i.e. 0(t) is a C0 (strongly continuous)

semigroup of operators on M2
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(v) The differential generator of {(t), t > 0}

is defined by

h = lim 1 {(t)-O(o)}h
t + 0

(2-53)

when the limit exists. It has dense domain AC 2 (-a,0;Rn)

in M . and for h c. (A)

N 0

A00h(0) + E A fh( ) + f A0 1 (6)h(e)de
i=l -a

dh

ac= 0

a E [-a,0)

(2-54)

(vi) lim
6 + 0

2.5 Hereditary

[ (t+6)-(p(t-)]h =Ah

adjoint equation; Hereditary product

In the theory of linear ordinary differential equations

dx= A(t)x(t) t [t0 sTI

(2-56)

x(0) = x0

where A c L (t0 ,T; (Rn) the adjoint differential equation

[Ah](a) =

(2-55)
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= - A (t)p(t) t e [t0,TJ

(2-57)

p(T) pT

plays a very useful role and even more so in the theory

of optimal control of systems governed by ordinary

differential equations, where, by means of the maximal

principle, the optimal control depends upon the solution

of the adjoint differential equation. Another of its

properties is that the inner product of x(t) and p(t)

is a constant

i.e. (p(t), x(t)) = constant t e [t0 ,T] (2-58)

In the study of the optimal control of systems

governed by R.F.D.E. the analogues of the adjoint differential

equation and the Rn inner product play a very significant role.

Definition

Corresponding to R.F.D.E., (2-1), we define the hereditary adjoint

equation for t s [%,TI

S + A+ N 0

t + A00 t)p(t) + E A i(t- i)p(t-6 )+f A0 1 (t-6,)p(t-e)de+g(t)
i=1 -a

= (2-59)

p(T) = pT, p(T+8) = 0 6 C (0,a]
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where g e L2(t 0 ,T;R n)

Remarks

1. Observe that A (t-6 ) and A 0 1 (t-0,) are

not defined for t - 6 > T and t - 0 > T respectively.

However, for these values p(t-01 ) and p(t-0) are zero

* *
and hence A (t-0)p(t-0i) and A* (t-6,0)p(t-0) will

be well defined (equal zero) for arbitrary values of

* *

A (t-0) and A 0 1 (t-6,0) respectively.

2. Note the restricted nature of the final data which

is essentially a R1n point data. (see Delfour and Mitter [19])

In principle, we could use more general data

p(T+6) = k(6), k # 0 on (0,a], k final data

but then A (t-60) and A* (t-0,0) would have to be

defined by t - 6 > T and t - 0 > T respectively.

However for our purposes, that will not be necessary.

3. For the autonomous R.F.D.E. the problem

discussed in the previous two remarks does not arise.

In keeping with the development in section 2.1,

we can analogously to M2 (-a,O;Rn) construct the space

2(0,a;Rn) as follows: Take 0,a;R n), the vector

space of all Lebesgue measurable and square integrable

maps
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k : [0,a] - Rn

with k(0) well defined.

We impose the seminorm

SIk I = {

and define the

= {k;I

a 1

Ik(0) 12 + f lk(8)I 2d1}
0

linear subspace of

Iki| = 0}

(2-60)

0 (0,a;R ) by

N2 (0,a;R n) is defined to be the quotient space of

O(0,a;Rn) by A
2( n)2 (O,a;R n) with the norm

I IkI 1 2 = {jk(0) 12 + fla k(
0

)2 d } (2-61)

is a Hilbert isometrically isomorphic to Rn x L2 (0,a;Rn).

Now by reversing time and starting; out at T (the

initial instant), we can regard the hereditary adjoint

equation (2-59) as a R.F.D.E. We can then evoke

theorem 2A to establish the uniqueness and continuity

with respect to the final data pT of a solution to (2-59).

Denote this solution by p(f;Tp Tg). As in section 3,

we can define the Pr2 state of the solution of the
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hereditary adjoint

t -+ p(t;T,pq,jg)

equation (2-63) to be the map

: [t0 T + M 2(O,a;Rn)

where p(t;T,pTg

0

t+a < T

t+6 > T

Definition

The hereditary product corresponding to R.F.D.E.

and its hereditary adjoint equation (2-59) is a mapping

T : [t0 ,T]
x M2 (-a,0;Rn) -+ R

4 T(tp(t),x(t))
= (p(t),x(t)) +

N i
Y f ds(p(s),A

i=1 t
(s)x(s+e 1i

0
+ f dO f

-a t

t-0
ds(p(s),A 0 1 (s,o)x(s+O))

1. The hereditary product introduced by De Bruijn

and subsequently exploited by Bellman and Cooke,

Halanay [34], Hale [26], Delfour and Mitter [191, [211.

2. As in the definition of the hereditary adjoint

equation A i(s) and A0 1 (s,) will not be defined

(2-62)

(2-1)

Remarks

(2-63)

[16]

[51,

p(t+6;T 2pT'g)

x r2 (0,a;R n )

f or
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s > T. However p(s) is zero for s > T and as before

the hereditary product will be well defined.

3. The hereditary product will be used in chapter 3

section 2 to characterize the optimal control and in

chapter 5 section 1 to project from M2 onto an

eigenspace of M 2

Theorem 2E Delfour and Mitter [191

2
Let x(-),p(-) be the M state of R.F.D.E. (2-1)

and the M2 state of the hereditary adjoint equation

(2-59) respectively. Then

t

d4 T(t,p(t),x(t)) - T(s,p(s),x(s)) = f dr(p(r),c(r))

t N t
- fdr(p(r),A 0 0 (r)x(r)) - E f dr(p(r),A i(r)x(r+ i))
r i~1=

t 0 t
- fdr f dO(p(r),A 0 1 (r,O)x(r+O)) + fdr(p(r),x(r))

s -a S

t N t *
+ fdr(A 0 0 (r)p(r),x(r)) + E fdr(A i(r-O )p(r-O i),x(r)

s i=1 s

t 0 *

+ fdr f dO(A 0 1 (r-6,e)p(r-0),x(r)) (2-64)
s -a
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Proof

t
I = fdr(p(r),x(r))

s

t
- fdr(p(r)

r

N t
- z fdr(p(r),A (r)x(r+Oi

i=1 s

t
+ fdr(p(r),x(r))

s

N t *
+ Z fdr(A (r-6

i=1 s

t 0
- fdr f dO(p(r),A 01 (r,O)x(r+O)

s -a

t
+ fdr(A 00 (r),p(r),x(r))

s

)p(r-O ),x(r))

t 0 *
+ f dr f dO(A 0 1 (r-O,6)p(r-o),x(r))

s -a

t
Now fdr(p(r),x(s))

S
= (p(r),x(r))

t

S

t .
- f dr(p(r),x(r))

s

= (p(t),x(t)) - (p(s),x(a))

t
- f dr(p(r),x(r))

S

(by integrating by parts which is permissible since

p(-) and x(.-) are absolutely continuous maps

[t 0 ,T] -+ Rn)
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N t
E fdr(A (s-0 )p(s-e

i=1 s

N t-e.
=E f
i=1 s-eO

N

i=l

),x(r))
N

i=1-

t
fdr(p(r),A i
s

dr(p(r),A (r)x(r+e1 ))

t
f dr(p(r),A i(r)x(r+e
s

(changing variables in the first expression)

t-0i

f dr(p(r),A i(r)x(r+01
t

S-0

f dr(p(r),A i(r)x(r+0
s

t 0
fdr f dO(A 0 1s -a

t 0
- fdr f dO(p

r -a

0 t-0
= f de { f d

-a s-0

(r-,O)p(s-6),x(r))

(r),A 0 1 (r,6)x(r+O))

r (p(r),A 01 (r,O)x(r+e)

t
- fdr (p(r),A 0 1 (r,)x(r+6))

s

N
= N

i=1l

N

-iE

( r)(rY)
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(changing variables in first expression and interchanging

the order of integration by Fubini)

t-e
f dr(p(r
t

s-0
f dr(p(r
s

) ,A01 (r,O)x(r+6))

),A01 (r,)x(r+o))

Hence I = (p(t),x(t)) +
N t

i=1l

-Qi
f dr(p(r)
t

,A i(r)x(r+O i))

0 t-0
+ f d6 f dr(p(r),A

0 1-a t

- p(s),x(s))

0 s-O
+ f dO f dr(

-a s

(rO)x(r+6))

N "~e1
Z f dr(p(r),A i(r)x(r+6

i=1 s

p(r),A 0 1 (r,O)x(r+O))

= (t~p t)x(t)) -T

Hence result.

Corollary

and g = 0 in (2-59)

0
= f dO
-a

0
- f dO
-a

if f = 0 in (2-1) then
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O (t,p(t),x(t)) = constant t e [t.0 ,T]

Proof From previous theorem and (2-64), for any

t,s e [t0 ,TI we have

T(tp(t),x(t)) - T(sp (s), x(s))

Hence result.

Remark

Equation (2-65) is the analogue of equation

for R.F.D.E.

2.6 Linear bounded

operators in

operators and unbounded differential

M2

Definition

Let A : M2 + M2 be a linear operator on

(i) A is said to be bounded if

IIAh I 2 < c I hI| 2 for all h e M2 and some c > 0

(ii) For A bounded we define IAII = sup IAhII 2
1Ihi 1 2

(2-65)

= 0

(2-58)

(2-66)
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(iii) A

(h,Ak)M
2

is said to be symmetric if

= (kAh) 2 for all h,k c M2

(iv) A is said to be positive if

(hAh) 2 > 0 for all h c M 2 (2-68)

Let A be a bounded linear operator on M2

Exploiting the isometric isomorphism between M 2 (-a,O;Rn)

and Rn x L2 (-a,0;R)

i.e. M 2 (-a,O;Rn) e Rn x L2 (-aY 0;Rn) (2-69)

we can decompose A into a matrix of bounded transformations

A0 0  A0 1
A = (2-70)

A1 0 A1 1 )

where

(1) A00
e (Rn) can can be represented as an

n x n matrix

(ii) A0 1 E f (L2(-a,0;Rn),Rn) and from the Riez

(2-67)
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representation theorem, we can represent A01 as

0
A 01x = f A0 1 (a)x(a)da (2-71)

-a

where x e L2 (-a,0;R ) and A0 1 (*) s L 2(-a,0;c(Rn))

(iii) A10 E of(Rn,L 2 (-a,O;Rn)) and can be

represented in the form

(A1 0 x)(0) = A1 0(O)x (2-72)

where x e Rn and A1 0 (-) E L 2 (-a,0;i(Rn))

(iv) A1 1 s of(L 2 (-a,0;Rn))

It would be pleasant to be able to give an integral

representation for A11 e c (L2-a,0;Rn) in terms of a

kernel A 11 (6,a) e L2 (-a,0;-a,0;Ji(Rn)). However

this is not possible unless A is a Hilbert-Schmidt

operator (See Dunford [251 and Schatten [711 for more

detailed discussion). However we can use the Schwartz

kernel theorem (Schwartz [731) to represent A in

the form

(A x)(0) = 0 A11 (6,a)x(a)da (2-73)
-a
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where A1 1 (6,a) is a distribution on [-a,01 x [-a,0]

defined uniquely by All.

For any bounded linear operator A : M2 - M2 we

can define A : M2 + Rn by

0 0
A h = (Ah)(0) = A0 0 h(O) + f A01(ah(a)da

-a

From (2-71), (2-72) for any h,k E M2 (-a,0;R n) we can

write

0
(hAk) 2 = (h(0),A 0 0 k(0) + f (h(0),A0 1 (a)k(a))da

M -a

+ f (h(e),A 1 0 (e)k(O))de + (h 1,A1 1 k1) 2-a M

where exploiting the isometric isomorphism between

M2 (-a,O;Rn) and Rn x L 2(-a,O;Rn) we can write

h = (h(0),h1 )

where h(0) c Rn and h 1 L2(-a,0;Rn )

Corresponding to the autonomous R.F.D.E.

(2-74)

(2-75)
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dx = A x(t)d 0 0 xt +
N
E A x(t+e

0
) + f A0 1 (O)x(t+O)d

-a

x(O) = h(O), 6 e [-a,0], h E M2

we have the closed differential operator

A4 : o (A) +1 m2

with dense domain o& (A)

for h 4()

= AC 2(-a,0;Rn ) defined by

N
Z A h(O

i=li

0
) + f A01

-a
(e)h(O)do

[Ah](a) =
dh a s [-a,0)

(2-77)

will be the differential generator of the semi-

group of operators {(t), t > 0} corresponding to (2-76).

Associated with R.F.D.E. (2-76), we have the hereditary

adjoint equation

dp +*N

+ A0 0p(t) + TZ
1=1

Aip(t-6 )

(2-76)

A0 0 h(0) + a=0

and '

0 *
+ f A0 1-a

= 0

(2-78)

(6)p(t-6)d6

p(T+a) = k(6), 6 e [0,a], k c Mf2
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and the closed differential operator

/' :L -b ~) ->. N2

with dense domainc (.,) = AC 2(0,a;R ) and defined by

for k ch( )

[t*k](a) =

* N 0 0 *
A00k(0) + E A ik(-6 ) + f A01 ()k(-e)dO

i1= -a

dk

(2

a=0

a C (0,a]

-79)

Equation (2-76) can be written as a differential equation

in M2

dx =x(t)
aTE

(2-80)

x(0) = h

and equation (2-78) can be written as a differential

equation in 2

dp +
dT + p(t) = 0

(2-81)

p(T) = k
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Let us now consider the complex extensions of

M 2(-a,O;R ) and 2(0,a;R n), namely M 2 and 2

respectively

Definition

(i) The resolvent of A- is the eet in the complex

plane

p(h) = {A e(; range (XI-T) is dense M2 and (XI-)

has a bounded inverse defined on its range}

(ii) The spectrum of a(A) is the complement

of p(A) in E .

(iii) The continuous spectrum of A

a (C) = {X c a(A); (XI- ) is (1,1), has dense range

and (XI-A)~1 exists on the range, but is

not bounded}

(iv) The residual spectrum of

aR f { e (A); (XI-,#) is (1-1) but range (XI-A)

is not dense in M }

(v) The point spectrum of

a (4) = { E a(4A); (XI-$) is not (1,l)}
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(vi) The points X e a (J) are called the eigen-

values of A and any h # 0, h c M2 such that

(XT4)h = 0

is called the eigenfunction corresponding to the

eigenvalue X.

(vii) The generalized eigenspace W ( A) is
the smallest subspace of M2 containing all the

elements that belong to the null space of (XTA)k

k = 1,2,...

(viii) The resolvent P(AY), spectrum a(A*) etc.

of are defined similarly.

It is clear that the sets a RA), A , oA

are pairwise disjoint and that

T(A) = a )U Rh R U P (CyA) (2-82)

Theorem 2F Hale [36]

( = (A) = {X eC, det A(X) = 0} (2-83)

N X. 0 xe
where A(M) = XI - A0 0 - 7 Ai e - f A0 1 (6)e de (2-84)

i=l -a
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The roots of

det A(M) = 0 (2-85)

have real parts bounded above, and for X c a

is finite dimensional.

There is an integer m such that

() = null ( I-)

and M 2 = null Q-Im@range (,k-XI) .

(2-86)

(2-87)

Proof To show that a(A) A (), we show that p(A)(A P

consists of all X c C except those that satisfy (2-85).

Now X c p(A) iff the equation

AXI)h = k (2-88)

has a unique solution h chCJ) for every k in a dense

subset of M and the solution depends continuously

on k.

From (2-88) we have

dh(a) - Xh(a) = k(a)
dca

a c [-a,0) (2-89)
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N
and A00h(0) + Z A h(6

1=1

Solving (2-89) we have

0
+ f A01 ()h(6)
-a

- Xh(0) = k(0) (2-90)

h(a) = e ah(0)

Substituting (2-91) into (2-90) we have

N xe
-Xh(0) + A 0 0 h(0) + Z A ie h(0)

i=1

= k(0)
N
F,

i=1
f
0

e
e
x(ei-)

A ik()dE -

0
+ f A0 1-a

0
f dO
-a

(e X0h(0)dO

e
f d
0

e (-) 01(O)k(E)

Define Z(X)

Z(X)k = -k(0)

0
+ f dO

-a

: M2 + Rn by

N
E

i1= 0

f d e A01(O)k( )
0

Hence A(X)h(0)

Z() covers Rn and hence

+ f e Xa-0)k( )dC
0

(2-91)

fe
x(ei-0)

= Z(X)k

(2-92)

(2-93)

(2-88) will have aThe map
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solution for every k in M2 iff det A( / 0. For

det A(X) # 0, the solution h will depend continuously

on k.

Hence p(A) = {X; det A(X) # 0}

If det A() = 0, then (2-91) and (2-92) imply that

there exists a nonzero solution of (2-88)

{h(a) = eXah(0) where h(0) c null A(X)} for

which k = 0, and hence X c a (A).

Hence C(A) = aP(A).

det A(M) is an entire function of X

and hence has roots of finite order. Hence the

resolvent operator (A-xI)~ has a pole of order m

at 0 0 is a zero of det A(M) of order m.

Since A is a closed operator, it follows from

theorem 5.8-A Taylor [741 pp. 3Q6 that

(&) is finite dimensional and
0

M2 = null (A-AI)m $ range Q -XI)m

det A(X) is a polynomial in X of degree n with

leading coefficient one and the lower order terms

have coefficients which depend on X through e 6

and integrations of terms of the form e X. Hence it
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follows that there is a y > 0 such that no roots of

det A(M) have real parts greater than y

0.E.D.

Corollary

y(A*) = ap( A,) = ap(4)

For X c ap(4), X(A,) is finite dimensional. (2-95)

Proof Same as for the proof of the theorem except that

now we have to solve the equation

(2-96)(,, - AI)k = h

for h in a dense subset of M2 and that the solution k

depends continuously on h.

From (2-96) we have

dk(a) - Xk(a) = h(a) ae [0,a] (2-97)

N * 0
A00k(O) + E A k(-Oi) + f A01 (e)k(-e)dO Ak(0) = k(O) (2-98)

i=1 -a

Solving (2-97)

(2-94)
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k(a) = e- ak(0)

Substituting

- f e h(d
0

(2-99) into (2-98) we have

N * xei
A 0 0k(Q) + E Aie k(O)

=1

= h(0) - N -e
i=1 0

0
-f
-a

Define 7(X)

= - h(0)

0
+ f de
-a

01
+ f A0 1(e)e k(0)de -

-a

A e(Oi+()
Aie

-o
dO f dF,

0

: 9 2 +) R n

+
N -81

1=1. 0

by

e( A+ ) ,
e Aih(E)

-0dC e
0

A (X)k(0) = T(h.

As before p (0j
*

But det A (X)

) = {X; det A (M)

= det A(X).

Hence proceeding as in the theorem, we

(2-99)

Xk(0)

Hence (2-100)

# 0}

ex(e+0)A *(6)h(E)

O+E) A* W(6h(W

obtain the result.
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Lemma 2.2

The eigenfunction h co

of A with multiplicity

m-1 1 j xxn- J= .h(P ) = j pry e

Proof We first prove the

h x satisfies

rresponding to an eigenvalue X

m is of the form

a e [-a,0] (2-101)

lemma in the case m = 1.

A h = Xh

i.e. dh(a) = Xh(a) a c [-a,0) (2-102)

Solving h(a) = h(0)eXa

where h(0) satisfies A(X)h(0) = 0

Since det AM) = 0, there is a n vector v such that

A(X)v = 0

Hence h,(a) = v e

In the general case,

(.-XI)mh = 0

d - A)mh(a) = 0 a e [-a,0) (2-103)T- [-,0
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(2-103) has solution

M-1 j a
h (a) y e' a c [-a,0] (2-104)

where the n vectors v xj are chosen so that

h E null (,-AI)m

Corollary

The eigenfunction k corresponding to an eigenvalue X

of 1 * with multiplicity m is of the form

m-1 (-l)jaj -X (1
k(a) = v ( a e a C [0,a] (2-105)

Proof Same as for the lemma.

For the semigroup of operators {4(t); t > 0}

corresponding to (2-76) and A its differential generator,

we want to list the relationships between a($(t)) and

a(A) . We make use of the fact that 0(t) is a C 0

(strongly continuous) semigroup of operators. ((iv) of

corollary to theorem 2D) and that for t > a 0(t) is

a compact operator (Delfour and Mitter [21]).

Definition

The spectral radius rA of an operator A is the smallest
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disc centered at the origin of the complex plane which

contains a(A).

The relationships between a(O(t)) and a(A)

plus possibly

(Mille and Phillips [38] pp. 467

(ii) For t > a and for any P c a(t),

P C a (O(t)) and the only possible

is {0}.

accumulation point

(iii) The limit

is finite or -o.

0 = lim
t + 00

For any

I ICit)I/

6 > 0,

exists and

there is a

constant K
6

I 5((t) I

such that

< K e
(w0 +6)t

for all t > 0

Also a(A) = aP() lies to the left of the line

in the complex plane (Dunford and Schwartz [26] pp. 619,622)

(iv) Since a (A) has real part bounded above,

the spectral radius r = r 4(a) is finite and if

defined by

are

{0} (2-106)

pi / 0,

WO

(2-107)

Re Z = WO

= exp (tayP (A) )(1)( aC(t ) )
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Sa = log r@(a) (2-108)

for any y > 0, there is a constant K such that

II(t)h|| 2 < K e (+Y)t|thil 2 for all t > 0 (2-109)

(Hale [361 pp. 112).

(v) From (iii) and (iv) we have that there exists

a > 0 and K > 1 such that Il@(t)H| < K e-at <> (

lies in the left half of the complex plane.

2.7 Advantages of M2 over C

This is perhaps a good point to enumerate the

several advantages working in the function space

M2 (-a,0;Rn) has over working in the function space

C(-a,0;Rn). They are as follows:

1) M2 contains a larger class of functions than C

and when working in the space C, we are forced to exclude

discontinuous initial data. There is no good reason why

discontinuous initial data should be discriminated

against in such a manner and there are times when this

discrimination can prove embarassing. So for instance

Zverkin [82] takes as initial data
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h(t) = 0 t < a, h(a) = 1 (2-110)

and observes that his initial data is discontinuous although

he is working in the space C. He disposes of the

difficulty in the peculiar (and amusing) manner of "by

carryirg the initial point to the right, we can consider

it as a solution with continuous initial data".

Incidentally, there will be many times in this thesis

when a proof depends critically upon the use of a

h E M2 as in (2-110).

2) Working in M 2, the representation of solutions

to R.F.DE. (2-1) (equation 2-12) is tidier and more

transparent than that obtained when working in the space C

(see for example Banks [31).

3) M2 is a Hilbert space with an inner product

whereas C is a Banach space without an inner product.

As such a wider range of techniques can be used in

working in M2 than in C. In particular, we can use

the Lione' direct method [83] which has been successfully

applied to systems governed by parabolic partial

differential equations whereas in C we would be

limited to using dynamic programming arguments. Ross

and Flugge-Lotz [69] had speculated on the possibility

of deriving the first order partial differential
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equations satisfied by R 0 0 (t), R0 1 (t,a) and H 11(t,eca)

from an operator Riccati differential equation, but

realized that this could not be done rigorously

working in a space without an inner product.

4) f(t) as defined in (2-43) is an element of

M 2(-a,O;R ), but it is not an element of C(-a,O;Rn).

Thus when working in M 2, we can write the R.F.D.E. (2-1)

as a M2 differential equation. It is not possible to

do this when working in C, though it is possible to

write the R.F.D.E. (2-1) as an integral eouation in

C(-a,O;Rn) (see Hale [36] pp. 86).

5) Finally, experience of working in partial

differential equations shows that for many problems,

the choice of the function space must be exactly right

to guarantee success. Our own particular problem,

that of minimizing a quadratic functional, calls for a

function space with an inner product.
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Chapter 3

Finite Time Quadratic Criterion Optimal Control Problem

In this chapter, we shall tackle the finite time

regulator and tracking quadratic criterion problems.

We shall follow closely the treatment of Lions [83] for

systems governed by partial differential equations and

of Delfour and Mitter [21] for hereditary systems.

(3.1) Formulation of the control problem

Consider the contv6lled hereditary system defined

on [t0 'T]

Rowxt)~{± i -t ±, S± 0 t ) 0)a (f *

0+ ) = -, 7 )]) 4 jM;' (3-1)

where B c L2 (tT; t(Rm,Rn)), v L2 (t0 ,T;Rm), f c L2 (t0 ,T;Rn)

with quadratic cost criterion

C(v;h) = C(v) = (x(T),Fx(T))

T
+ f {(x(t),Q(t)x(t)) + (v(t),N(t)v(t))}dt (3-2)

t0
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where Q e L(tT; f(Rn), N c L0(tT;(Rm)), F c (R

* * *
Q(t) = Q (t) > 0, N(t) = N (t) > 0 for t e [to,T], F = F > 0

and there exists 6 > 0 such that

(v,N(t)v) > 6Ilv 2 m for all t e [t 0 ,T]
R

Our class of admissible controls is

(3-3)

T

VJ[tTI {V; f
t0

jv(t) 2dt < co} = L 2(t 0 ,T;Rm)

Note that U[t0,T] is a Hilbert space and that from

C(v;h) > 611v1 2

[t0'T

(3-4)

(3-3)

(3-5)

Unless there is any danger of confusion, we shall denote

21toT by '
[t0,'

Our objective is to find

inf C(v;h) (3-6)

which will be called the optimal cost and a u E( such that
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C(u;h) = inf
v 'a

C(v;h) < C(v;h) for all v c U

Such a u c 'b- will be called the o

From the representation of solutions

can write the solution to (3-1) as

( tI to)

+5

ptimal control.

formula (2-12)

(3-8)

t

where

x0 (t) = 10 (t,t 0 )h(O) + f 1 (t,toa)h(a)da +
-a

t
f +0 (t,s)f(s)ds
t0

Now

C(v) = (x(T;v)-x 0 (T), F[x(T;v)-x 0(T)1)

T
+ f

t
{(x(t;v)-x 0 (t),

U

F[x(t;v)-

Q(t)[x(t;v)-x 0 (t)])+ (t),N(t)v(t)) }dt

T
*x0 (T)I) + 2f (x0(t),Q(t)[x(t;v)-x0(t)])dt

t

+ (x 0 (T), Fx0 (T) )
T

+ f (xO(t),
t0

0

Q(t)x 0 (t)dt

(3-7)

we

(3-9)

+ 2(x0 T)

(3-10)

4(0) -1 S (- t0 1) 1 )d t

9 t, s) 8(s) Atr(S) + (s d

Vt, 5)S) ()
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Now define bilinear form r and linear form L on '7-

by

(jF - - xjT), F ( Axt - :tJT)])

+ S t; t J
to~

Q(t) Ldt; AT-) - L(t))dt

$ ) (t))t

L(v) = -(x0 (T),F[x(T;v)-x 0 (T)D

T
- f (x 0 (t), Q(t)[x(t;v)-x 0 (

to

Note the following properties of

(i) *r is symmetric, i.e.

t)])dt

ir and L

= 7(V 2 v1 )

for all v 1 ,v2 "U

6 > 0

v is coercive,

and all V C i

i.e. 7 (v,v) > 6 1v 11 2

This follows

for

and (3-5)

(iii) The map (v ,v2) - 1 r(v1,v2 ) : 7 x 7 -+ R

continuous

(iv) The map v + L(v) : U, is continuous.

Now C(v) = '(v,v)-2L(v)+(x0 (T),Fx0 (T))

T
+ f (x 0 (t),Q(t)x0 (t))dt

t0

(3-11)

(3-12)

(ii)

some from (3-3)

is

(3-13)

'TI~1 (AlT -G '=

Wff(vl ,v2)
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Hence to minimize C(v) over 74 , it is sufficient to

minimize

C0 (v) = 7t(v,v)-2L(v) (3-14)

over Lt .

(3.2) Existence and characterization of the optimal control

Several methods for obtaining the existence and

characterization of optimal controls in hereditary control

problems exist in the literature - maximal principles

of Banks [31 and Kharatishvili [44], [45], Datko's [151

Frechet derivative method, and Lee and Marcus [53] set

of attainability approach. However, for our purposes the

most powerful method is due to Lions [83] which we will

not state as a theorem.

Theorem 3A Lions [83]

Let IT be a continuous symmetric bilinear form on

satisfying n(v,v) > 6||V I and L a continuous linear

form. Then there exists a unique element u eli

minimizing C0 (v) = n(v,v) - 2L(v) and characterized by

for all v eb (tr(u.v) = L(v) (3-15)
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Proof

(i) Existence

Let {v n} s I be a minimizing sequence such

that

CO(n)+ inf C 0(v)
V F16 I

(3-16)

Since L is a continuous form, there exists 61 > 0 such

that

L(v) < 6

and hence that

CO(V) > 61Vj 2 - 6 lvil

Hence |vn JU< some constant for all n. Since VU-

Hilbert space) is weakly compact, we may extract a subsequence

{vm I such that

vm - u weakly in V (3-18)

Now v -+ lr(v,v) is lower-semi-continuous in the weak

(3-17)

(as a
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topology of IL and

v -+ L(v) is continuous in the weak topology.

Thus the map v -+ C 0(v) is weakly lower semi-continuous

and hence

C0 (u) < lim C0 (m) = inf C0(v)
M +* W y E 1L

Henc e C0 (u) = inf COv
v C 1)-

and thus we have proved existence.

(ii) Uniqueness

The map v -+ f(v,v) is strictly convex and

hence the map v -+ C0 (v) is also strictly convex.

Let u1  and u 2 be two distinct elements such that

C 0 (u 1) = C0 (u2) = inf C Cv)
v CU 0

C0(U + u 2 )) < C0 (u1 ) + $ C0 (u2 ) < inf CO(v)
v c IL

This is a contradiction and hence u1 = u 2 = u.

(iii) Characterization

Let u be the minimizing element. Then

and t c (0,1) we havef or any v c 1U
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CO(u) < CO((1-t)u + tv)

Hence 1[C (u + t(v-u))

Letting

- C0 (u)]

t -+ 0 we have

C (u)*(v-u) = 2[f(uv-u) - L(v-u)] >

where C0(u) is the Frechet derivative of

Putting w a v - u, we have

!T(u,w) > L(w)

But 7 (u, -w)

for all w e I

= -W.(uw) > L(-w) = -L(w)

Hence ir(u,w) < L(w) for all w e'L

Hence ir(u,w) = L(w) for all wel

Conversely, suppose that

t(u,w) = L(w) for all w elC

is convex, we have

(3-19)

> 0.

0 (3-20)

C0 (u).

(3-15)

Since v +> C0(V)
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C((l-t)u + tv) < (1-t)CO(u)

C0 (v) - C0 (u) > 1[C((1-t)u

+ tC 0 (v)

+ tv) - C0 (u)]

Taking limit t + 0 we obtain

C 0(v) - C0 (u) > C (u)-(v-u)

= 2[(u,v-u)-L(v-u)] = 0

Hence C0 (u) < C0 (v)

We immediately obtai

for all v eli

Q.E.D.

n the corollary

Corollary

The control problem (3-1), (3-2), (3-4) has a unique

optimal control u el .

We now want to characterize this u.

From (3-15),we have ir(u,w)

.

= L (w) f or all w e R .
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i.e.

0 = (x(T;u)-x 0(T), F[x(T;w)-x 0(T)I)

{ (x(t;u)-x 0(t), Q(t)[x(t;w)-x 0 (t)]) + (u(t),N(t)w(t))}dt

+ (x0 (T),F[x(T;w)-x 0(T)D

= (x(T;u),F[x(T;w)-x0 (T)]) +

T
+ f (x0 (t),Q(t)[x(t;w)-x0 (t)])dt

t0

T
f

u

T
+ f

t
U

(x(t;u) ,Q(t)[x(t;w)-x0 (t)])dt

= (x(T;u),Fx 1 (Tw)

T
+ f {(x(t;u),Q(t)x (t;w))+(u(t),N(t)w(t)) Idt

t0

where x 1 (t;w) = x(t;w)-x 0(W

and satisfies the R.F.D.E.

tic
-4

E - t) 01

T
+1

to

(3-21)

- ~~t~~Q±Z~)t±N
o kf ) If ) -t-L R)T j

(u(t),N(t)w(t))dt

-+ B W U04t)

19-+ a) z 0o (3-22)
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Corresponding to (3-1), we have the hereditary adjoint

equation for p(t;u)

c-t * L

0a QR )yI ) ()

equation (2-64) we have

T
f (p(t;u),B(t)w(t))dt' -
t0

T
J.

(3-24)

(Q(t)x(t;u),x (t;w))dt

U

But 46 T(tO*p (to;u),x (t;w)) = 0

and AT(T,p(T;u),x (t;w))

(3-25)

(3-26)= (x(T;u),Fx 1 (T;w))

Hence from

T
t (N(t)u(t)
t 0

(3-24), (3-25), (3-26), we

+ B (t)p(t;u),w(t))dt

~*i - .

Hence u(t) = - N (t)B

have

0 for all

-0-

From theorem 2E

(3-23)

w sU (3-27)

*- t - 1 9)RC) t t

FxT )ST) =
p

T t0,Op(t0;u), Ix(t0;w)-*T (T,p(T;u),x,(T;w))

(t)p(t;u)

T+ )=, 0
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We have thus proved the theorem

Theorei 3B

The unique optimal control of the control problem (3-1),

(3-2) and (3-4) is characterized by

u(t) = - N~ (t)B*(t)p(t)

where (p(-),x(-)) is the unique pair of maps

AC2 (t0,T;R n)

equations on

which satisfy the following system of

[t 0 ,TI

N

~t) At*~) 4 §~t, o) ~ -

-,& E 2 -

Rt) ) +t)

(3-29)

Rte)t-e) + t -,)t-)0 4)d Q

and where R(t) = B(t)N~ (t)B (t)

(3.3) Decoupling optimality pair of equations

We now set out to decouple the optimality pair

(3-28)

in

S=: R(t)x()+

,Xit rl - ) = .S(p')

N- -

X\T ) (3-30)

(3-31)

ra E (- a, q] ,

0 E (0, aT-t- p =
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of equations (3-29) and (3-30). To do so, we consider

the control problem on the interval

s e [t0,'T

$(t;sv) satisfies for t s [s,T]

N- z f~~~~~&t)~~~ V{±)tF0 ta (t~ L

(3-32)

and we have cost functional

Cs (v;h) = C (v) = ($(T;s,v),F$(T;s,v))

T
+ f { ((t;s,v),Q(t)$(t;syv))+(v(t),N(t)v(t))}dt

t0

and with class of admissible controls

[s, = {v; f Iv(t) 2dt <
5

SL2 (s,T;Rm)

Unless there is any danger of confusion,

(3-34)

we shall denote

s'

The hereditary adjoint

[s,T] where

(3-33)

'U[s,T]

S S t e =- ( )) ) e& E [ a I

solution $(t;s,v) satisf ies
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A=

'yKhv )FT)) Y MT+@)=o

From theorem 3B,

characterized by

u(t) = - N~ (t)B*

where ($(-;s), $(.;s)

system of equations

N

d~t

the unique optimal control U C S is

(t)1(t;s)

) is the solution of the coupled

0J ~ktle~) pQt+)4L

- Rf() 'W~7)

('S te')

N

+

Wcv V T

~ j oIL lyE [H1

o t Roo- ± S0R* ,9

(3-35)

(3-36)

(3-37)

( C (c ]

(3-38)

TT P) = 0
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Lemma 3.1

The map (hf) +)- ( C(*;s),

M 2(-a,O;Rn) x L 2(s,T;R n) + AC 2(sT;Rn) x AC 2 (s,T;Rn)

isbilinear and continuous.

Proof The map is clearly bilinear.

To show that it is continuous,

converging to h in M2

in L 2(s,T;R n).

For some v c 24s, let

and ($(.;s,v), (-;aS,v)

we take a sequence

and {f n}

(n (;sv),

) be the s

converging to

*n s;s,v))

olutions of (3-37)

and (3-38) with initial data hn,

f', f respectively.

h and forcing terms

From theorem 2A, in M2 and fn + f in L2 (sT;Rn)

in AC 2(s,TRn)

Denote the cost functional for

forcing terms fn,'f by Cn(v)

initial data

and C s(v)

hn h and

respectively,

and denote the optimal control for Cn(v), C (v)

u n and u respectively.

(3-39)

{h n

f

by

=> $n (-;s,v)



Cs(u) = inf C (v)
V Et 14

5

and C (u)S
-+ C (u) as n + w

Hence 1~ii Cn(un) < ITm C (u)
n + o n + o

Since, from (3-3) I un

a bounded subset of 'I S, and since 1~L

pact, there exists a subsequence

w E U s

{u }

{u belongs to

is weakly com-

and an element

such that

um +1 w weakly in L5

Thus $m(e;s,um) + $( -; s,w) weakly in AC2 (sT;R n)

Since v -+ C (v) is convex

C (w) < lim C m(u
s ~m +. CO

Combining (3-40) and (3-41),

C (w) < lim C (u ) < IIn C h(um)
m5+ m + s

116.

< Cn(u)
s

= Cs (u) (3-40)

(3-41)

we have

< C (u)

< C nun),$
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Hence w = u.

Thus we have

u m +* u weakly

Cm ) + C (u)
S m S

m (-;sum) +(;s,u) weakly in AC 2 (s,T;Rn)

S(-;s,u m) + $(;s,u) weakly in AC 2(s,T;Rn )

This proves the continuity of the map (3-39) where

continuity is with respect to the strong topology of

M2 and L 2(sT;Rn) and the weak topology of

AC 2 (sT;Rn).

Q.E.D.

Corollary

For s c [t 0 ,T], t c [s,T], the map

(h,f) + $(t-s)

(3-42)

K2 x L 2(s,T;Rn) + Rn

is bilinear and continuous and has representation
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= P(ts)h + F(ts)f

where P(t,s) E -(M 2 Rn), F(t,s) E cD(L2 (sT;Rn),Rn)

Proof The map (3-42) is a composition of the maps

(h,f) -+ ($(-;s), $(-;s))

and ($(;s),ip(-;s)) -+ $(ts)

both of which are continuous.

Lemma 3.2

Let (p(-),x(.)) be the solution of the coupled system

of equations (3-29),,

s < t

(3-30). Then for all pairs

in [t0,T]

p(t) = P(t,s)x(s)

where P(t,s) E S (M ,Rn)

+ d(ts)

and d(t,s) c Rn

( 3 -43)

are

obtained in the following manner: we solve the system

in [s,T]

1P(t;s)
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Et)q -et+2 ei tteKd- WYt

S6[-a ), o -Il e M 2

*((ts)

N

CL =5+9) =4(6),

Tt C )o

and then $(t) = P(ts)h

and we solve on [s,T]

N nah( )

0 9 E (- Cto]

i () )t )(t)(
t~I

IT)

and then d(t,s) = ,(t)

Proof P(t,s) and d(t,s), are clearly defined from

(3-46) and (3-49).

S' A*t(4)= 0

f> e o, a)(3-45)

(3-44 )

(3-46)

S ~o ~ ~)

(3-47)

Q(v7 f1)
Se to, a] 93-48)

(3-49)

' T) .= F f(T),

AGO() (t)+ - )K(f ) 

S(S5+ e) =

+ 10 ts, ) N~-O)A +

=z F 7(T) 'sTI)
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We want to prove the identity (3-43).

Let p(-), x(-) be the solution to (3-29) and (3-30)

and consider the system of equations (3-37) and (3-38)

with initial data x(s), and with solutions 0(- ),

Let $) (-), IP (-) be the restriction of and p(-)

respectively on [s,T].

and 's5 satisfy (3-37) and

data as (-), $(-).

Hence from uniqueness
$p5

= 5, $

(3-38) with some initial

= P.

Hence ip (t) = p(t) = (t) = P(ts)x(s) + d(ts)

Q.E.D.

Corollary 1

The map t + P(ts)h + d(ts)

is in AC 2(sT;Rn) for fixed s £ [t,T]I.

Corollary 2

+ d(tt)

where P(t) = P(tt) E Of(M 2,R )

d(t) = d(tt) e Rn

= P(t)x(t)

The map t + d(t) is absolutely continuous

The proof

lemma 3.2.

of corollaries 1, 2 follow immediately from

+ d(t)

in

(3-51)

(3-52)

(3-53)

[to,T].

(3-50)

p(t) = P(tpt)x(t)
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From the Riez representation formula,

P(ts) E t(M 2 ,Rn), we can write

P(ts)h = P0 (t,s)h(0)

c t(Rn),

0
+ f P 1 (t,s,a)h(a)da

P 1 (t,s,-)

P 1 (ta)PO t) = PO(tt), = P (ttva)

from (3-51)

p(t)
0

= PO(t)x(t) + ! P (t,a)x(t+a)da + d(t)
-a

Hence we can express the optimal control to (3-1),

(3-4) in the feedback form

u(t) = -N~1 (t)B (t){P0 (t)x(t)

(3.4) The operator T(t) an

0
+ f P1

(3-56)

(3-2),

(t,a)x(t+a)da + d(t)}

(3-57)

d the optimal cost and optimal

control

In this section and section 3.5, we shall study the

regulator problem for which

f(t) = 0 t E [t 0 ,T]

s I nc e

where P0 (ts)

Defining

(3-54)

(3-55)

we have

F- L 2(-a ,0; (Rn))
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We shall introduce and study a family {I(t); t C [t0 ,T]}

of M2 operators,

Let us denote by $0 -;s,h) and $0 (';s,h)

solution of (3-37) and (3-38) with initial data

forcing term

Lemma 3.3

(i) (S, (T5S'), t) -,
F T s,

(3-58)

(ii) the map (hk) +T (s 1P(s;s,k),h)

(3-59)

M2 x M2 + R

is a continuous,

(iii) 3

positive,

operator

symmetric,

H(s) : M2 +

bilinear form.

M2 defined by

(h,TI(s)k)M2 T(s,$*O(s;s,k),h)
M 2=

(iv) (h,HT(s)h) 2 = inf
M V ev'

f = 0.

the

h and

(3-60)

(3-61)C s(v -h)
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(v) c > 0 such that

HIn(s)hM M 2 < c h I

Proof

(i) From theorem 2E equation

for s E [to,

(2-64),

T ( T, IP 0 (T; s, k)

T
= -(t;s.k),R(t)$0

,$(T;s,h)-..4(s,V(s;s,k),$ 0 (s;s,h))

(t;s,h))+(Q(t)$0 (t;sk),$0 (t;sh))}

Now T(s$0(s;s,k),$(s;s,h)) = (s$ 0(s ;s,k) ,h)

and *T(T,PO(T,s,k) = (F$0(T;s,h),$f0 (T;s,k))

Hence result

(ii) Now the map ish + ($0-;s-h),$0'-;s'h))

linear and continuous from lemma 3.1 and hence the map

(3-59) is bilinear and continuous. The symmetry and

positivity of the map follow from the symmetry and

positivity of R(t), Q(t) and F.

(iii) Since the map

is continuous, it follows from Horvath [39]

h E M2

(3-62)

we have

, 0(T;s,h))

(h1 k) + (s,$0 Os;s,k),h)

pp. 44 that
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there exists a continuous operator

I(s) : M2 + M2

such that (hf(s)k) 2

(iv)

- TS s-, F T,))

CS

since the optimal control is given by

u(t) - N~ (t)B*(t)$0(t;s,h)

~t) (t sotk)SI ~dt

A,)

(v) (h,HT(s)h) 2

Hence result.

From the results

decompose the operator

0;h) 122
M< Ct (0;h) < c ihi

of chapter 2 section 6,

Q.E.D.

we can

n(t) into a matrix of bounded

transformations

t (s O(s;s~k),h)

(/ P

s C(
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H(t) =

H1 0 (t)

(i) H0 0 (t)

Hl (t))

and can be represented at ae k(Rn)

matrix.

(11) 0 1 (t) cot(L 2 (-aO;Rn) n) and has representation

110 1 (t)x =

where x E L 2(-a,0;R n)

0
.f
-a

and H01(t,-)

10 1 (t,a)x(a)da

e I 2 0;(Rn)

c t(RnL 2 (-.a,o;Rn)) and has(iii) T 10(t)

representation

= 11 0 (t,0)x

where x c Rn

(iv) 1 1 (t)

and T1 0 (t , * )

c o(L 2 (-a,0;Rn))

Also we have

where

(3-63)

(3-64)

(HI10(t)x)(0)

E L 2(-a, 0; (R n))
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(h,H(t)k) 2 = (h(0), 00 (t)k(0))
0

+ f (h(0),l 0 1 (t,,a)k(a)da
-a

0
+ f (h(),11 0 (t,e)k(o)de

-a

(3-65)
+ (hl, A 1 1 k1 ) 2

Lemma 3.4

(i) 110 0(t) = P O(t)

= P, (t,a) a.e. a c F-a,0)

= (h (0) 00(t )k0))

0
+ f (h(0), 0 1
-a

(ta)k(a))da

0
+ f (h(e),ll
-a

0 0
+ f de f da(h(O),T

-a -a

A (t+0-0

N

(t,6O,a)k(a))

01 <0<0

where H 11(t,e,a)

0 otherwise

(t-6,t,t)

(3-66)

(3-67)

(3-68)

(3-69)

0
+ /

6
d60A (t-6,6+6)P

(ii) 1101 (tSa)

(iii) (h,HT(t)k) 2

10 (t,6)k())
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and 11 (t,*,*)

(iv) nOO(t) = HOO(t); 1 0 1 (t,a)

H 11 (tsa)

= 110 (ta)

= H (t,a, )

(3-70)

Proof We exploit the relationship

(h,TT (t)k)M2 T t,0(t;tjk),h)

0
(h(0),f 0 0 (t)k(0)) + f (h(0),1H0 1 (ta)k(a))da

-a

0
+ f (h(),n1 0 (t,e)k(0))dO
-a

+ (h, ,A k1)

= ($0(t;tk),h(0))

N t
+ z f ds($0(s;tk),A i(s)h(s-t+6i))

1=1 t

0 t-6
+ / de !ds( $0 (s;t ,k) ,A0 1 (s,6)h(s-t+O))

-a t

= (h(0),P 0 (t)k(0))
0

+ f (h(0)P, (t,2a)k(a))da +
-a

c L 22(-a,0;-a,0;f,(Rng)

a~e. a c [-a,0]O

a.e. (6,a) c [-a,0]x[-a.,0]
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N ~
+ E f ds(A (s)h(s-t+O ),PO(st)k(O))

i=1 t

N t-0
+ E /

1=1 t

0
ds f da(A (s)h(s-t+ ),P

-a

0 t-O
+ f dO f ds(A 0-a t 1 (s,6)h(s-t+e),P 0 (s,t)k(0))

0 t-6
+ f dO f ds

-a t

0
f da(A 01 (s,O)h(s-t+O),P 1
-a

(st,a)k(a))

(h(0),P 0 (t)k(0))

0
f dO(A (t+0-0 10.

N 0
+ E/

1=1 0.

0
+ f (h(O),P 1 (ta)k(a))da

-a

)h(6),PO(t+O-6i)k(0))

0
dO fada A (t+O-o )h(O),P 0 (t+O-O6,t,a)k(a)

-a

0
dO f d6(A01

0
(t-6,0+6)h(0),P (t-6,t)k(0))

0
+ f dO

0 0
f da f d6(A 0 1-a -a u

(t-6 , 0+6)h( ,P (t-6,t,ca)k(a))

(changing variables and interchanging order of integration

in the 6th expression on left hand

N
+ z

i=l1

C

-1

(3-71)

l(sJt,a)k(a))

side)
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(i) Now putting h = k1 = 0, h(0), k(0)

in (3-71) we have

(h(O),110 0 (t)k(0)) = (h(0),P 0 (t)k(0))

for all h(O), k(0) in R . Hence result

(ii) Putting k(O) = 0, kI # 0, h1 = 0, h(0) # 0

in (3.71) we have

0
I (hCO),l 01 (ta)k(a))da =/
-a

0

-a
(h(0) ,P1 (t,a)k(a))da

for all h(0) e Rn, k e L2 (-a,;Rn)

Hence result.

(iii) Putting h(O) = k(O) = 0, h , k1 $

we have

0 in (3-71),

= ~2 ~ (Ik(~,
-&

±~ ~ 0&& Jc

where RlH (t,O,a) is given in

# 0

(3-72)

(3-73)

tt toe) A(ao)
4-

RO, I - 1 0 e, t -S, t , 'k) k (a)

(3-69)

IT, , t 0, G, o) .1k(l)



(iv) From symmetry,

(hI(t)k

Hence

(h(0),H 0 0 (t)k(0))

2 = (kH(t)h)M2

0
+ f (h(0),1101 (t,a)k(a))da

-a

0
+ f (h(O),1H1 0 (te)k(o))de

-a

= (k(0),H 0 0 (t)h(0))

0 0
+ f de f da(h(O),HFl(tsa)k(a))
-a -a

0
+ f (k(0),H 01 (t,a)h(a))da
-a

(3-74)

0 0
(k(),I1 0(t,)h(o))da +f d8

-a -a
f da(k(e),HT11(t,6,a)h(a))

Considering in turn

k(0) = 0,

the result

/ 0, h(0) # 0,

= 0, h(0), k(0) # 0;

h = 0; h(0) = k(0) = 0, h ,k#0,

follows.

Q.E.D.

Corollary

p(t) = 0 (t)x(t)

Follows from (3-56) (f = 0 => d(t)

(i) and (ii) of lemma 3.4 and definition (2-74) of n 0(t).

Q.E.D.

130.

we have

0
+ -

-a

Proof

(3-75)

= 0),
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With f = 0, we can express the optimal control of'

(3-2) and (3-4) in the feedback form

= - N 1 (t)B* (t){110 0 (t)x(t)
0

+ f IT01-a
(t ,a)x(t+a)da}

and the optimal cost to go at time t c [t0,T]

= (h(0),H 0 0 (t)k(0))
,inf Ct (v;h)

v C 'tt

0
+ 2 f (h(0),H 0 1 (ta)h(a))da

-a

0 0
f dO f da(h(),H
-a -a

11(tO,,a)h(

Either or both of the expressions

been obtained by Krasovskii [46],

(3-76), (3-77)

Ross and

have

Fl'ugge-Lotz

Eller, Aggarwal and Banks [27], Kushner and Barnea

Alekal, Brunovsky, Chyung and Lee [1], Mueller

and Delfour and Mitter [21].

3.5 Operator Riccati differential equation for m(t)

Definition

Define M2 operators

u(t)

(3-1),

(3-76)

(3-77)

[69],

[501,

[62]

Q(t), R.(t), I by
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[r(t)h] (a)

[r(t)hl (a)

Q(t)h(0)

0

~- IR(t)h(0)

0

a = 0

(3-78)
a c F-a,0)

a = 0

a e [-a,0)

(3-79)

a = 0

(3-80)
a c [-a,0)

Note that Q(t), (t), I are symmetric positive operators.

Now let x(.;t,h) be the solution of (3-1) wit

with initial data h at initial instant t e

and corresponding to the optimal control u.

h f = 0,

[to,T]

Then for

DOO(s)x(s)

s e (t,T), x(s;t,h)

+
N

satisfies

0
E Ai(s)x(s+o ) + fD01

i=l -a
(s,)x(s+6)dO

(3-81)
x(t+O) = h(e) 0 E [-a,,O] h c M2

where D 0 0 (s) = A0 0 (s) - R(s)H 0 0 (s)

D0 1 (s,8) = As01f(s,(6) - R(s)H01 (S,9)

[h](a)

Ph(0)

0

(3-82)

(3-83)
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From theorem 2B and (2-12), the solution can be written

in the form

x(s;t,h) = It (st)h(0)

N min (0,s-t+O )
+ f da 0st+a-

1=1

0
+ -

-a
da !*

max

aX

/ -

d6 4 0(st+a-6)D0 1(t+a-,)h(a)

or more compactly

x(s;t,h) = (D (st)h(0) + f4 (s,t,ca)h(a)da
-a

0
where 35 s

a s = D00( S)O'(st) +
N
E A (s)'

i=1

0
(s+04 ,t)

00
+ f D0 1 (s,6) DU(s+6,t)dO
-a

= I, D0(t+et) = 0 e E [-a,0)

Pl(s,t,a)
N 40

= Ej')
(st+a-e6)A (t+a-e )

0

a+t-s<O <a

otherwise

+ f
max (-a,a-

d4 0(s,t+a-B)D 0 1 (t+a-,3)
s+t)

)h(ca)

(3-84)

(3-85)

4 0(tt)

(3-86)

(3-87)

( -a., aY- S t )
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We denote the M 2 solution of (3-81) by x(s;t,h) and we

define the two

to (3-81) by

parameter eemigroup of operators corresponding

(s,t)h = x(s;th)

The differential generator of the semigroup of operators

{(st) ; s > t} (see chapter 2 , section 4)

jA(t) - t)t)

and recalling (vii) of theorem 2D,

lim [(s t+6)
6 + 0

- C(,t)]h = - - Q(t)T(t)]h

where h c (At) - R(t)Tt)) =A (r(t)) = AC 2(-a,0;R n)

i.e. for fixed s > t,9

of 4D(s,t)h is

the right hand derivative in

- (s,t)[fAt)

M2

Recall

that the left hand derivative is meaningless since

C(s,t+6)h is not defined for 6 < 0

x(s;t,h) will satisfy the M2 differential equation on

dx(s) = [JA( s)

[t,TI

- 4(s)(s) x(s)

(3-91)

x(t)

(3-88)

is

we have

(3-89)

(3-90)

- P(t)TH(t)]h.
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From (1) (3-58) and (111) (3-60) of lemma 3.3, we have

(IkITT k),A24 -(T tj)Fx(T t,k ))

t ( () ( , . 0

ThIT

0'-92)

Note that (3-92) is an integral operator

By writing it out in full, we obtain the

equation for 7(t).

theorem:

Theorem 3C

(1) 1100(T) F

The map t + H 00(t) : [t0,T] + o(Rn)

(3-93)

(3-94)

is absolutely continuous

(ii) H0 1 (T,a) = 0 a.e. a E [-a,0]

For fixed t c [t0,TI, the map

a j0 1 (t,a) : [-a,0] + (Rn)

is piecewiee absolutely continuous with Jumps at

(3-95)

(3-96)
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a = 6 i = 1 ... N-1 of magnitude 00 (t)A (t). For

fixed a c [-a,0], a 0 0. for any i = 1.,. N

the map t + H 0 1 (tc) :[t0 ,T] +

is absolutely continuous

(3-97)

a.e.

(3-98)

For fixed t c [t0,T], the map

(I, T 11 (t,6,a) [-a, 0] x [-a, 0] +Z (Rn (3-99)

is piecewise absolutely continuous with jumps at

*
a= O, j = 1,... N-1 of magnitude H 1 (t,6)A (t) and

at 0 = 0. i = 1 ... N-1 of magnitude A (t)HT0 1 (t,a).

For fixed (0,a) e [-a,0] x [-a,0], 0 , a . fo

any i,j = 1 ... N

the map t + H (t,0,a) [t0 ,TI + ((Rn)

is absolutely continuous.

Proof See appendix 1

Remarks

1) In case F # 0, we assume, without any loss in

generality that A (T) = 0, A. (-) absolutely continuous, i=l...N

2) Note that for a = -a, (or a = . for any i=1...N-l).

r

(3-100)

(01,a) c [-a,0]x[-a,0](111) Hi 1 (T,16,a) = 0
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the map t * 1101 (t,-a) = H0O(t)AN(t)

will not necessarily be continuous, since A N(t) does

not have to be continuous.

A similar remark holds for the map (3-100).

Theorem 3D

H(t) satisfies the operator Riccati differential

equation

(h ,2(t)k) + (A(t)h,(t)k)2 + (h(t),(t)k)
14 14 2M2

(3-101)
-(hlI(t)I(t)R1(t)k) 2 + (hQ(t)k)M2

= 0

H(T) =

for all h, k e,&(A) and where the derivative d isaT.
taken to be the right hand derivative. Also equation (3-101)

has a unique solution.

Proof Taking the right hand derivative with respect to t

of both sides of (3-92) and using lemma 2.1 we obtain
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ct
-

T)I~

- Y, ~Y 2t- ThI

-~~~~~~~~~T W]~~XQs t~I4b-~~M4

t 5(Th )s) ,t) [Ak#) -UT)i, Q1s 4 L

tWI

= -(hQ(t)k)

- (hqn(t)[A(t)-eXt)H(t)1k) m2

- ([v4(t)-k(t)T(t)h, k)) 2

-(hvfl(t)A(t)k) + (hxlI(t)W(t)fl(t)k)

- (A(t)hsln(t)k) 2 +

d

a ) v (t) k) z

Q ;) (S, f)

'C" (T1(t)hsq(t)TI(t)k)

(R(t)]T(t)hsll(t)k)

t) [,A W -Rt) TV M I,
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Hence we have

from (3-92).

To show that

that H 1(t)

IT (t), H12(t)

(3-101), and IT(T) a :

(3-101) has a unique solution,

and IT2 (t) are solutions of

bounded symmetric operators

follows immediately

suppose

(3-101),

for all

t e [tO'T *

Let R 0 (t) = 1 (t) H2 (t)

Then T0 (T) = 0

and T O(t) will satisfy the operator differential equation

d (h ,1 O(t )k )k )

- (H 1 (t)h,(R(t)HI

2 + (A-(t)h,1O (t)k)

1(t)k) 2 + (H2 (t)h

2 + (hF 0 (t)(t)k)M2

,R(t)T2(t)k)

= 0

Now let 1 (S~t)

by A(t) - 9(t)H

and P2 (s,t) be the semigroups generated

1 (t) and A (t) - R(t)F 2 (t) respectively.

Now let us consider

d
D1 (st)h, HO0(s)02 (st)k)M 2

(3-102)

(3-103)

(3-l04)
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where the derivative L is taken from the right and
ws

where s c [t$T]

d (D
ds 1 (s,t)hH 0 (S

= ([A(s) -R(s)H

)D2 (Sjt)k) 2

(s)],D (s,t)h,Hl 0 (s)4 2 (s,t)k)2
1 1 1 2 M

+ ( 1 (s,t)h,H O(s) [A(s)-&s)R2 (s)30 2 (s,t)k)

- (A(s) (s,t)h, 0(s) 2 (s,t)k) 2

- ( 1 (St)h,HO(s)(s)02 (st)k) 2

+ (H 1(s)D 1 (s,t)h,R(s)I 1 (s)42 (st)k)

- (H 2 SO1 (S-t ) hR(sq) T2(t)02 (s~t)k)

= - (C(s) ll(s) (s,t)h, 1(s)2 (s,t)k)

+ (R(s)H 1(s) (s,t)hHT2 (s)2 (s,t)k)

M2

M 2

M 2

- (0 1(st)hll 1

+ (4 (s,t)h,.R2 (s)C(s)Hl2 (s) 2 (s,t)k) 2

+ ( D 1(s)4(s,t)h,A((s)H (s)02 (st)k)

= 0

M2

M2

s)HI2(s)02 (s,t)k)

- (7 2 (S D1 (s.t)hqel(s)H2 (t) 1 2 (s.t)k)
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Hence (1 (st)hT 0 (s)D 2(st)k) 2 is constant for s c Ft,T]

Hence ( 1 (tt)h,110 (t)4'2 (tt)k) 2 = (h,7 0 (t)k) 2

= (0 1(Tt)hH 0(T)2 (T,t)k) 2

= 0 , since R0 (T) = 0

2 OFn)Hence (h,1 0(t)k) 2 = 0 for all h,k c AC (-a,0;Rn)

a dense subset of M 2 (-a,O;Rn).

Hence R 0 (t) = 0

But t E [t0 ,T] is arbitrary

Hence R 0 (t) = 0 for all t c [t0 ,T] and hence we

have uniqueness of a solution to (3-101).

Q.E.D.

Writing out (3-101) in full, we can establish

Theorem 3E

(I) HOO(t) satisfies the differential ecuation

dR100(t)
d 00( )+ A00  t)1OT (t) + ROO(t)A00 (t) - O t)R(t)RO (t)

+ p01 t,0) + 101 (t,0) + Q(t) = 0 (3-105)

a.e. in [t 0 ,T]

T 00(T) = F
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(ii) 01 (t,a) satisfies the differential eouation

01+ A0 0 01 (t,a)

+ T0 0 (t)A0 1 (ta)

- TT 0 0 (t)R(t)TT0 1 (t,$a)

11 (t,0, a) = 0

N-1
[t0 ,T] x L

i=0
(01 + 1 e01 )

T101(T, a) = 0 a.e. = TTOO(t)AN(t)

and R0 1 (t,a ) has jumps at a = 0, i=1

magnitude R 0 0 (t)A

satisfies the differential

[ - ]H (t ,,a)

+ A 01 (t,6)H101

enuation

+ 1.0 1 (tO)A0 1 (ta)

(t,cx) - TTI1(tO)R(t)H01 (tca) = 0

N-1
a.e. in [t 0 ,TI x U

1=0
(6i+1, 1 )

N-1

x l
i=0

((1+1, )

S11 (T,,C)

(t,-a, a) SAN (t)TI01(t,t), T 11 (tO,-a) = * (te)AN(t-)

T 1 1 (tsa) has jumps at a = 6 ,sj = 1 ... N-1 of magnitude

I * (t,)A (t) and at e = e

A (t)TI 0 1 (t,9a).

i = 1 ... N-1 of magnitude

a.e. in (3-106)

(t)

. 0 N-1 of

= 0 a.e.

T 11

(3-107)

[ - T]T

a c [-a,0], HOO t,-a)

(iii) IT1 (t,9 ,a)

(0,a) E [-a,0] x [-a,0]
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Proof See appendix 2

Remarks

1. Equations (3-105), (3-106), (3-107) give a

coupled set of Riccati type first order partial differential equation

for the entities 7 00 (t), 10 1 (ta), 1 (t,e,a) which

appeared in the feedback form of the optimal control (3-76)

and in an expression for the optimal cost to go.

2. In the dynamic programming approach, the

existence and uniqueness of an optimal control is made

to depend on the existence and uniqueness of the

equations (3-105), (3-106), (3-107). Our approach is

different. We first prove the existence and uniqueness

of an optimal control. We then exhibit an M2 operator

R(t) (thereby disposing of the problem of existence)

and the related matrix functions H 0 0 (t), T 01 (t,a),

11 (t,6,a). We show that u(t) satisfies an operator

Riccati differential equation (3-101) and that it is the

unique solution. From (3-101), we deduce the coupled

set of Riccati type partial differential eauations (3-105),

(3-106), (3-107) satisfied by 7 0 0 (t), T0 1 (t,a), I 1 1 (t,e,a)

and since (3-101) has the unique solution 1(t), eauations

(3-105), (3-106), (3-107) must have the uniaue solution

HOO0 (t), T01 (t Ia), IT1 ( t,10,1a).*



3. The optimal control problem (3-1), (3-2), (3-4)

will be completely solved once we have the solutions to

equations (3-105), (3-106) and (3-107). However solving

those equations is no easy business and we postpone

further discussion until next chapter when we obtain a

slightly simpler version of (3-105), (3-106), (3-107)

which however is still very difficult - if not impossible -

to solve.

3.6 Finite time tracking problem

Denote by $(+;s,h) and $(.;s,h) the solution

of (3-37) and (3-38) with forcing term f # 0. From

corollary 2 to lemma 3.2 and corollary to lemma 3.4

0
$P(t;sk) = R (t)$(t;s,k) + d(t) (3-108)

Hence $(-;s,h) satisfies the R.F.D.E.

N 0

= D00 (t)$(t) + E A (t)6(t+e) + f dO D0 1 (tO)$(t+O)
i=1 -a

- R(t)d(t) + f(t) (3-109)

$(s+6) = h(O) e c [-a,0], h c 12

where D0 0 (t), D0 1 (t,) are as defined in (3-82), (3-83)

respectively.
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Hence (3-109) will have solution

$(t;s,h) = $ 0 (t;s,h)

f0 (t) = f(t 1 ) -

is as defined in

(3-111)R(t d8 t 6 )

(3-86)

and $0(t;s,h) is the solution of (3-37) with

Now define d(t), fO(t)

d(t)

[d(t)I (a)

0

[f 0 (t)] (a)

f0 (t)

0

a = 0

a e [-a,0)

a= 0

a E [-a,0)

It is clear that

We can write (3-

f0 (t) = f(t) -Ik(t)d(t)

110) in the M2 form

$(t;s,h) = $ 0 (t;s,h)
t

+ f (t,t 1 )f0 (t 1 )dt 1
s

ft 0 0(t~t 1)f 0(t 1)dt 1
s

where

4 t 1t)

(3-110)

C M 2

f = 0.

by

(3-112)

(3-113)

(3-114)

(3-115)
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where (t,t 1 ) is as defined in

(3-108)

(3-88)

can be rewritten

$(t;sk) = H(t)O(t;sR ) +
t

S
4(t,t f 0(t1 )dt1} + d(t)

Lemma 3.5

3,1))

lt;s,1 ))dit

+ ( ) (t)

, q))At

= inf C s(v;h)
v e 'l A

T
- f ($(t;s,h),f(t)dt

S

(i) From theorem 2E, equation (2-64) we have

(T, (T; Ss, ), (T; 8, h)) - (s (s,s, k) , h)

T
= .. f {((t;s,h),R(t)$(t;s,k))+((t;s,h),Q(t)$(t;sk))}dt

T
+ f ($(t;s,k),f(t))dt

s

(3-116)

Proof

(3-116)

(3-117)

(i)(s TS,4A)?

S ,$ 7 l),?

(11) 3 T (s,$(s;s,h),h)
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from which the proof follows.

(ii) follows from observing that

inf
v E 'ils

T

Cs (v;h) = ($(T;s,h),F$(T;s,h))

s

Hence"

NT(s,9$ (s; s,k).,,h)

=($(T;sh).,'J(T;s,k)) 
M2

T ~^~
+ f {($(t;s,h),(IR(t)$)(t;s,k))

T
- f (4i(t;s,k),f(t)dt

=

=(%O(T;s,h), 0(T;sqk)) M2

+

T ~

+ f ( 0 (t;s,h),
S

2 }dt
N
2

2dt
M

Q(t )$0(t; s,k)dt

{($(t;s,h) ,R(t)(t ;slh) )+($(t;sh) ,Q(t)$(t; sh))}dt

0 .E . D.

40 (t;s,h),OZ(t) 4t;s,k)
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T
+ f

S

T
+ f

s

~N($0(T;s~h), (T,t f0 t )) 2 dt1

($0 (t; s,h) , q?(t)d(t)) 2dt

T t
+ f dt f dt

s s

T t
+ f dt f dt

s s

)) 2
M

1 ( 0 (t;sh), (t)(t,t 1 )f0 (t 1 )) 2
M

plus four expressions as above with h replaced by k

T T
+ f dt f dt 2 ($(T,t)f 0 (t1 ), th5(T,t 2 )f 0 (t 2)) 2s s M

+ 2 f
s

T t
dt f

s )) 2
M

T t
+ fdt fdt 1

s s

T
+ fdt

s

t
fdt2
s

l) 1i(t)H (t)4(tt 2 )f 0 (t 2)) 2
M

t t
fdt 1 fdt 2 (
S s

T
- f ($(t;s,k),f(t))dt

s

Definit ion

Define an element 29(s) c M by

)f0 (t2)) 2

,(0(t;s~h), R(t)HI (t) D(t,t 1 f0 (t

dt 1(d(t), R(t)H (t)@(t~tj 0 (t

(11 (t)O(t3tj)CO(t

(t3tl)f O(t 1)3 Q(t)(P(t-It2
M
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T
(g(s),h) 2  = f

M S
)fO(t )) 2dt

T

S

+ /
s

+ /
s

(O(t;s,h), R(t)d(t)) M2 dt

T t
dt f dt (0e(t;sth),

s

T t
dt f dt

s

T
= f ($(Ts)h, '94(T,t

s

T

s

2

)f 0 (t )) 2dt
M/

(T(t)O(ts)h, R(t)d(t)) 2 dt

T t
+ f dt f dt1

S s

T
+ f dt

s

t
f dt 1((tSs)hQ(t)P(tjt 20 ts

g(s) is well defined from the Riez representation theorem,

since the left hand side(s) of (3-118) is a continuous

linear functional on M 2

) 2

)) 2
M/

(3-118)

(O0(T;s,h),I $$(T,t

k(t)rT(t)D(t~t 1 f 0(t 1)

($0 (t; s,h),IQ(t) (D(t 9t 1 )O0(t 1))

)fl (t)(IT(t)4p(t S)h R(t)TT(t),rD(t t
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Using the isometric isomorphic between M2 and

we can write

g(s) = (g0(s),

where g0 (s) and g 1 (s, ) e L2 (-aO;Rn)

Similarly, we can define (g(s)

Define the scalar function

T
c(s) = f dt1

s
f
S

T
+ 2 f dt

s

T ~
f dt 1 (d(t
s

), R(t)H(t)(t,t 1 )f0 (t 1 )) 2M

T t t
+ f dt f dt1

s s

T t
+ f dt f dt 1

S S

Lemma 3.6

(i) min C (v;h)
v C t t

= (hHI(t)h) 2 +
M2

2(g(t),h) 2 +
M

c(t) (3-121)

(ii) go(t) = d(t)

for t s [t0,T]

Rn x L2

(3-119)

,k)M 2

T

Sdt2(H(t)D(tIt 1O( l

t
f dt

2S

t2)) 2
M

((D(t,tl~ I(t A(t ) 4(t, t2 t )(3-120)
M

(3-122)

91(s, -.))

E: R n

), $(T,t 2 0f ( 2)dt 2 ((T~t 1 )O0(t 1

),R(t)HT(t)c(tqt2 O(
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Proof

(i) This follows immediately from (ii) of lemma

equation (3-117) and the definitions of g(t) and c(t)

(ii) We exploit the relationship

iT(t,$P(t;t,k),h) = (hT(t)k) 2 + (g(t),h) 2 + ( 2

T
+ c(t) - f

t

which follows

(3-123)
($(s;t,k),f(s))ds

from the definitions.

(h(0),1H0 0 (t)k(0)
0

+ f (h(0),T01
-a

(t,a)k(a))
0

+ f (h(e),H 1 0 (te)k(0))de
-a

0 0
f dO f
-a -a

da(h(O),H + (g0 (t),h(0))

0
+ f (gl(tO),h(6)de +

-a

T
- f ($(s;t;k),f(s))ds

t

0
+ f (P (s,a)k(a),h(0

-a

(g0 (t),k(0))

0
+ f (g1 (t,a),k(a)

-a

= (P0 (t)k(0),h(0)

)da + c(t)

+ (d(t),h(0))

))da +

3.5

Hence

(t,6,a)k(a))
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- n
N

i=l t
ds(P 0 (st)k(O) ,A0 1

(s,6)h(s-t+O))

t-6
f ds(d(s,t),A

0 1t
(s,O)h(s-t+O))

t-e 0
f ds f da(P 1(s,t,a)k(a),A 0 1 (s,6)h(s-t+O))
t -a

Put k(0) = 0, h = k I = 0, f = 0. f = 0 => d(t) = 0

and c(t) = 0

Hence (d(t),h(0) = (g0 (t),h(O))
for all h(0) e Rn

Hence result.

Hence we have proved

Theorem 3F

The optimal control to control problem

can be expressed in feedback form

(3-1), (3-2), (3-4)

u(t) = -N~ (t)B (t){H 0 0 (t)x(t)
0

+ f 01l
-a

(t ,a)x(t+a)da + g 0 (t)}

(3-124)

and the optimal cost to go is expressed in the form

0
+ /

-a

0
+ -

-a

dO

dO

d(s,t) = 0

-
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Ct(v;h)

(h(0),RT01

= (h(O),H 0 0 (t)h(O))

(t ,a)h(a) )dca

0 0
+ f de f

-a -a
da(h(O),H (tea)k(a)) + 2(g 0 (t),h)

(gl(t,cx),h(a))dax + c(t)

We have already given a full description for

now want to do the same for

IT(t). We

g(t).

From the

equation

definition (3-119) of g(t) and (ii) of lemma

(3-122) we have that

((t)~(t)

and hence we

= (t)g(t)

have an integral equation for g(t)

(g(t) ,h)
T

= f ds(O(T,t)h, JO(T,s)[f(s)
t

- R(s)g(s)])

T
+ f ds(f(s)(s,t)h, ,(s)g(s))

inf
v C 'lt

0
+ 2 !

-a

0
+ 2 f

-a

(3-125)

(3.6)

(3-126)

s M 2 +
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T s
+ f ds f ds

s t

T s
+ f ds f ds

t t
(f(s ,t)hQ(s) (s s )[f(s )

)[f(s 1 )4(s )g(s

)1)

Writing out equation (3-127) in full, we have

Theorem 3G

(i) The map t + g0 (t)

is absolutely continuous

and g(T) = 0

(ii) For fixed

e + g 1 (tO)

t C [tOT],

S[-a,0] + Rn

is piecewise absolutely continuous,

with jumps

For fixed

at e = 6. i = 1 ... N-1

e s [-a,0], 0 

of magnitude A (t)g0 (t)

i = 1

t g 1 (t,6) : [t0 ,T] + Rn

is absolutely continuous.

(3-127)

[t0 ,T] -+ Rn (3-128)

the map

(3-129)

(3-130)

the map (3-131)

-o(ag g( s
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Proof See appendix 3

Theorem H.

g(t) satisfies the differential equation

dt(g(t),h) 2 +
M2 + (1R(t)f(t),h) M2 =

for all h eo&(A) and where the derivative

taken to be the right hand derivative.

Proof Taking the

d is

right hand derivative with respect

of both sides of equation (3-127) we obtain

d.
(p) 4tfl

- t )LcO-

- T

t

~s, t)~ A()- R(*)0T1 )] 4I k) ,S)XA2m

i~ ~SOt/?T 14 57Fk) %t)) (1 M2t)-h))

-t

0

(3-132)

to t

(g(t), [j(t)-k(t) ff(t)]Ih)

( r I --'rv ol ) mz
T(d (T) 5) e-

Li

(7 al QW (SI t)



1.56.

-R - f) )M

- C~,~t)t)T(
2.

-ci

Q.E.D.

Hence result.

Writing out (3-132) in full, we establish

Theorem

(i) gO(t) satisfies the differential equation

dg0(T) + A* tgot
dt + 00(tg() - H 00(t)R(t)g0 (t)

+ 1100(t)f(t) + g1 (t,0)

= 0

a.e. in [t0 T]

g(T) = 0

(3-133)

r j
S& S

t 
t

o7 m --
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(ii) gl(t,G) satisfies the differential equation

-g - g]g(t,G) + A01 (t,O)g 0(t) - R01 t,0)R(t)gl(t,6)

+ R0 1 (t,e)f(t) =

N
a.e. in [t0 ,T] x U (oi+1i)

i=o

0 (3-134)

g (T,) = 0 a.e. 0 e [-a,0]; gl(t,-a) = AN (t)g0 (t)

and gl(t,O) has jumps at 0 = 0 , i = 1 ... N-1 of

magnitude A (t)g0 (t)

Proof See appendix 4

Remarks

1. Equations (3-133), (3-134) along with equations

(3-105), (3-106), (3-107) gives a complete characterization

of the entities H 00(t), J01 (tca), 1 11(t,0,0), g0 (t),

g 1 (t,e) appearing in the optimal control feedback form

(3-124) and the optimal cost to go (3-125).

2. Notice the resemblance between the solution of

the optimal control problem for R.F.D.E. and that for
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ordinary linear differential equations. Equations (3-101)

and (3-132) would be exactly the same as in the ordinary

differential equation solution where instead of the

2 2
M operator function II(t) and the M function g(t),

we would have a Rn matrix function and a Rn function.

This resemblance will become stronger in chapter 5.
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Chapter 4

Infinite Time Regulator Problem for Autonomous R.F.D.E.

The solution of the infinite time regulator problem

for linear autonomous ordinary differential equations is

well known. (See, for example, Kalman [41] and

Lee and Markus [53]). One of the conditions that

ensures that the problem is well posed is that the

control system is stabilizable, i.e. there is a constant

feedback matrix such that the resulting closed loop

system has all its eigenvalues strictly in the left half

of the complex plane. The stabilizability of the system

guarantees that an optimal control exists. This can be

expressed in feedback form as a constant matrix operating

on the state of the system, and it can be shown that this

matrix satisfies a matrix Riccati equation.

The infinite time regulator problem for certain

classes of infinite dimensional systems has been studied

in recent times: Lions [83] has examined the problem for

partial differential equations of parabolic type and Lukes

and Russell [85] have tackled the problem for linear

differential equations in Hilbert space. The first

attempts at the quadratic criterion optimal control
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problem for hereditary systems, Krasovskii [46],

Ross and Fluigge-Lotz [69], dealt with the infinite time

regulator problem. Recent attempts include Delfour,

McCalla and Mitter [22] whose approach is closely

analogous to that for linear autonomous ordinary

differential equations outlined above and whose treatment

is as complete. We shall stick closely to the treatment

of Delfour, McCalla and Mitter [22] and in so doing, we

shall interweave results, concepts and techniques from

the work of Lions [83], Delfour and Mitter [18], [21]

and Datko [14].

(4.1) Formulation of the control problem

Consider the controlled hereditary system on [0,co)

dx N 0

dt= A00x(t) + A x(t+ i) + f A01 (6)x(t+O9dR,+Bv(t)
i~l -a

(4-1)

x(e) = h(6), 0 E [-a,0], h E M2

where A0 0 , Ai, (i = 1 ... N)e (Rn), B .f(RmR n),

As01 2 (-a,0;&(Rn)) with quadratic cost functional

C(v;h) = C(v) = f {(x(t),Qx(t)) + (v(t),Nv(t))}dt (4-2)
0
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* *
where Q = Q > 0, N = N > 0

with admissible class of controls

16 = {v; f Iv(t) 2dt < c, C(v) < 0} (4-3 )
0

Our objective is to find

inf C(v;h)
V C 1

which will be called the optimal cost and a u c i such

that

C(u;h) = inf C(v;h) < C(v;h) for all v e U
v C 14

Such a u will be called the optimal control.

For the problem to be well posed, L has to be nonempty.

We shall show that if the controlled hereditary system

is stabilizable in a sense to be defined later, then 71

is nonempty, and an optimal control u c kI exists.

4.2 L 2-stability; Stabilizability

The uncontrolled hereditary system
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N 0
Ai x(t+ i) + -a

x(O) = h(e), 0 e [-a,0],

A0 1 (O)x(t+O)d6

h e M2

will have solution denoted by

solution denoted by

and will rise to a C0
semigroup of M2 operators

{(t), t > 0} where

cD(t)h = x(t;h)

with differential

A0 0 h(0)

generator

+
N
E A h(Q)

i=1

defined by

0
+ f A0 1 (O)h(O)dG

-a

dh a s [-a,O)

where h 4(A) = AC2(-a,O;R n)

Lemma 4.1

00

0
I ID(t)h I

Datko [14]

22dt

M

d= A0 0x(t) +

(4-4)

x (;h)

x (;h)

(4-5)

a = 0

< 00 => lim ||(t)hj|
t +- 0

= 0 (4-7)

Lh]I(a)
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Proof f
0

||$(t)hl1|22dt <
M

00=> lim inf
t +,

We want to show that lim sup I |(t)h I

So assume that lim
t + C

sup ||1(t')hf

Since 0(t) is a CO semigroup, there exists constants

K > 1 and L

| j(t)||

> 0 such that

< Ke't for all t > 0

(see Dunford and

Since II (t)h | I

lim
t +* 0

inf ||@(t)hj|

Schwartz [26] pp. 619)

is continuous, and

0

and a sequence of disjoint closed

such that

we can find a constant

intervals [ai,bi]

c > 0

i = 1,2---

for each i

(i) ||t(a )hI| 2
M

= Kcljh|
M

2

< 2K2 cl jhff

for t E (a,b i)

= 0

= 0

>0| 2
M

(4-7)

|I

(11) Kcl~h|| 2 < 11|@(t)h||
M

||tP(t)h|| 2
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= 2K 2 cjjhII 
2

Hence for each 1,

2K2 c|IhI
M2

= ||(b )h 2

< Ke (b -a )Kc

)hl|M
2

| h I

Hence 0 < -log 2 < (b - a ) for each

Hence co = K2 c2||h
2

M 2

< K2 c2 ihi

< /
~~ 0

I | (t)h

log 2 lim i
i -

2E(b i-a i)
m i=1

|122dt < 
M

Contradiction

Hence

||4(t)hI| 2 =lim inf
M t+ -) C

= lim
t + 00

I | @(

I|D(t)hf | 2

t)h! I = 0
I Iv 2

i

lim sup
t + -, G

Q.E.D.

= |j,(b i-a )4)(a i

(111) |11 (b )hj i 2
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Lemma 4.2

00

f IIx(t;h)
0

CO

<=> f
0

11| 2dt
M

=f

0

jx(t;h) 2dt

Proof ||x(t;h)||

||$(t)h| 22 dt < co

for all h e M2

= Ix(t;h)I
2

for all h s M

+ f jx(t+O;h) 2d6
-a

Hence (4-8)

00

0
Ix(t;h) 12 dt

=> (4-9), since

00

< f ||x(t;h)II 2 dt
0 M

T ~ 2
Now f ||x(t;h)I|2 dt

a M

T 2
= f !x(t;h) 2dt
a

T 2
= f |x(t;h) 2dt

a

interchanging o

T 0
+ f dt f de

a -a

0
+ f dO
-a

|x(t+6;h)|2

T+O
f dslx(s;h)12

a+6

rder of integration

by Fubini

T
< (1+a) f
~~ 0

< (1+a) f0
0

jx(t;h) 2dt

|x(t;h)l 2dt

(4-8)

("1-9)
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Hence (4-9) => (4-8).

Definition

(i) The uncontrolled hereditary system (4-4) is

said to be L 2-stable if (4-8) holds.

(ii) If the uncontrolled hereditary system (4-4)

is L2 -stable, then A is said to be a stable differential

operator.

(iii) A sequence of M2 operators

be monotonic increasing if

(hAn h)M 2 < (h,Amh) 2

{A } is said to

(4-10)

for all h e M2 and n < m.

Lemma 4.3

Let {A } be a bounded monotonic increasing sequence of symmetric

M2 operators. Then An converges in the strong operator

topology to a symmetric bounded operator.

Proof Since {A n} is bounded, we have

sup IAn|l = A < o (4-11)



For fixed h,

(h,Anh) 2

and m > n

< (h,Ah) 2

(h,A nh) 2 is a monotonic increasing numerical sequence

which is bounded above and hence

lim (hAnh) 2
n + O M

exists and is finite.

Using the generalized

|(hAk) 2'
2

Schwartz

< (hAh)

inequality

2 (kAk) 2

Defining

|Amh|| 2I JA n 

A mn =Am -An, we have

< (AmhA h) 2 (h,A
mn mn M2 ri

< (2A)3 ||h 1 2 (h,Amh)M 2

+ 0 as m,n -

+ 0 from (4-12)

167.

(4-12)

since (h.,A mnh)
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Hence lim Anh exists.
n +co

Define A by

Ah= lim Ah
n +- c

A is obviously symmetric and bounded.

Hence proof.

Theorem 4A Datko [141

Let P be a bounded, symmetric positive

**
Then f (O(t)h,Pr(t)k) 2dt < for all

0 M

M 2 operator.

h,k e M

<=> there exists a bounded positive symmetric operator A

which is a solution of the equation

(Ah,Ak) 2 + (h,Ak) 2 + (h,rk) 2 = 0 (4-16)

for all h, k sb(A).

Proof (4-15) => (4-16)

Define a positive symmetric operator A(t)

t
(hA(t)k) 2 = f (4(s)hP4'(s)k) 2 ds

M 0 M2'

by

(4-17)

(4-14)

Q.E.D.

(4-15)
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Note that (h,A(t1 )h) 2 < (h,A(t2 )h) 2
M M

Hence the family of operators {A(t),t > 0} is monotonic

increasing.

Now (h,A(t)h) 2 for all t E [0,oO) and h c M2

and hence by

Horvath [39]

the uniform boundedness principle,

pp. 62, there is a constant A such that

for all t

Hence from lemma 4.3 it follows that

A(t) -+ A

in the strong operator topology where A is given by

(h,Ak) 2

00

= f ((s)h,PG(s
0

For h, k c)i), we have

(4hAk)M2 + (h,Ak) 2

=h
= f {(cO(s)$-hjO'(s)k)

)k) 2ds
M4

M 2 +
0

for h e M 2 and

I IA(t)| I < A E [0,00) (4-18)

(4-19)

}ds(4)(s) hP 0(s)j$k)
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= lim (C(s)h,rO(s)k) 2 1
S B+*.0 M

= - (hrk)M
2

=> (4-15)

Suppose now that A is a bounded positive symmetric

solution of

(Ah,Ak) 2 + (h,A-k) + (h,rk)

for all h, k c4 (4) .

Define a symmetric positive operator V(t) by

(h,V(t)k)M2 = ((t)h,AO(t)k)M2

d (hV(t)k)2 =
dt ~M2

(\A (t )l-AO(t )k) 2 + (D(t)hA(t

= - (4(t)h,r@(t)k)

taking h, k c& (A).

Integrating

ds
00

0

S

0

(4-16)

= 0

(4-20)

)vAk)M2
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(hV(t)k) 2 - (hAk) 2
M M4

t
Hence f ds($(s)hvr(s)k)

0

t
- f (4(s)h,F4(s)k) 2 ds

0 M

= (hAk) - (hV(t)k)

< (hAk)

00

Hence f
0

for all h, k e)(P).

But - (#) is dense

2
for all h, k s M

Corollary 1

in and hence the result

||@(t)h1 22dt
M

for all h c M 2 <=> there is K0

and y > 0 such that I I (D(t)hI I 2 < K0 e-yt||hI| 2

for t > 0

Proof It is clear that

for t > 0 that f
0

if I|@(t)h | |2 < KOe -pt||hI M2

I I| (t)hj 22dt
M

follows

00

f
0

>1

(4-21)

(, (s)hPG(s)k)
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So suppose that ||P(t)hj 12 2dt < o
0 M

for all h c M2

irnn lemma 4.1

Hence |I|(t)h||

lim II(t)ht|
t + O

is bounded for every

From the uniform boundedness principle, we

I 14(t)I I

have that

K for some K 1 > 1

Also since

the previous

00

f
0

||I(t)h |2 2dt < o
M

for all h c M2

theorem, there is a bounded symmetric

M2 operator A which satisfies

(Ah,Ak) + (h,A Ak)

for all h, k e t(#)

and (hAk) 2 =f
M 0

Since A is bounded,

00

f
0

| D(t)h|| 2 2dt
M

there is a

< K2 1|h1 2
2M

K
2

such that

= 0

h e M 2

from

+ (hk) = 0

(C(t)h,$D(t)k)
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Taking K = max (K1 ,K 2) we have

for all

I I (t)hI I
22dt

M

Let 0 < e < K~ 1

t > 0

< Kjjhf| 2
M

and let T(h,e) be such that

I |(t)h I

1

> (Kc) 21ihilI on [0,T(h,c)]

{I I| (s)h| I
1

>(Kc) 21 Ihi I 2 on s C [c,t]} (4-26)
M

T(h,c) exists and

||$(t )h j| M2 +

is finite, since

0 as t + o

Using semigroup property and (4-23)

I I (t)h I

3 1
K C lihiI for t > T(hs)

M 2

Hence K c ||hjj|2 T(h3c)
M2

T (hC)

0
I j(t)hj I 2

2 dt < I-
M 0

< KI |hI | 2

fO
0

(4-23)

T(h,) = sup
t

(4-25)

we have

(4-27)

00

|| (t)hl 22
M

II((t)h||M2 - K||h||M2

(4-24)



174.

Hence T(t,E) < for all h / 0

and hence T(h,E)

Hence if t >

= T(e) independent of

|I@(t)h M2

3 1
K s I1hI|

and hence

Let E = e- K

Then I I C(t) I I

In particular 114)(K 3e2 1

It is well known (Dunford and Schwartz [261 pp. 619)

the limit

log .ID(t)|
t exists and is finite or - co.

WO= lim
0 t + CO

log II$(t) I|
t lim log 1(nK3 e

2

32n +* co nK e

< lim log 2(K3e2 ) n

~n -* o nK e2

K3e2

Hence taking = K3e,

h.

I I| (t) I

31

K E

e- 1 if t > K3e2.

-1

0= lim
t ) CO

Now

, we can f ind a KO0 such that



175.

I I (t)I I < K0 e-t

since from Dunford and Schwartz [26] pp. 619, given any

6 > 0 we can find

| (t)| < K e

a K6 such that

(W0 +6)t
for all t > 0

Corollary 2

The uncontrolled hereditary system is L2 stable

<=> a(4) = aP (P) lies entirely in the left half of

the complex plane.

Proof Follows immediately from corollary 1,

the discussion at the end of section

since from

6 chapter 2 we

know that

< K0e-t <=> a (A-) lie entirely in left half

Definition

(1) Define a mapping

L By

[jv)(a) =0

(0

: Rm 2(-a,0;Rn ) by

a = 0

(4-28)

a e [-a,0)

I I (t) I I
plane
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(ii) The controlled hereditary system (4-1) is

said to be stabilizable if there exists a G e(M 2,R m

such that A +1 G defines a L2 -stable hereditary

system i.e. (A + SG) is a stable differential

operator and a(A +(BG) lies entirely in the left half

plane.

Remarks

1. The importance of the concept of stabilizability

is that it provides us with a least one v e sI and

hence IA is nonempty.

2. In section 4 of chapter 5, we will be able to

give a necessary and sufficient condition for the

stabilizability of the controlled hereditary system (4-1)

in terms of the spectrum ofO .

4.3 Asymptotic behavior of HT(t)

Consider the controlled hereditary system restricted

to the interval [0,T]

dxN 0
A0 0x(t) + E A x(t+e ) + ! A01 (Q)x(t+O)dO + Bv(t)

i=l -a

x(6) = h(e), 6 e [-a,0], h c M 2 (4-29)
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with quadratic cost functional

T
CT(v) = CT(v;h) = f {(x(t),Qx(t)) + (v(t),Nv(t))}dt

0

and with admissible class of controls

T

T = {v; I
0

Iv(t) 12dt < oo} (4-31)

From the results of the previous chapter we know

that the control problem (4-29), (4-30) and (4-31) has

a unique optimal control uT tlr given by

uT (T) = - N B I T(t)x(t;uT,h) (4-32)

and optimal cost

CT(uT;h) = inf
v t otT

and that the MN opt:

CT(v;h) = (h,H T(O)h) (4-33)

imal solution satisfies the differential

equation

dx -

x(o)

(4-30)
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Theorem 4B

Assume that the controlled hereditary system (4-1) is

stabilizable. Then

(i) ? is nonempty

(ii) for fixed t e [0,co), t < T

lim HT(t) = R
T -+ oo

the limit being taken in the strong operator topology and

H is a bounded, positive symmetric operator

CO

(111) (h,Hlh) = f (x(t;h),[Q+ HIRH]x(t;h)) 2 dt (4
0 M

= C(u;h)

where u = -N B TI x(t;h) (4

2and x(t;h) satisfies the M differential equation

dx

-35)

-36)

(A - RH)x(t)

(4-37)

x(0) = h

Proof

(i) Since (4-1) is stabilizable, there exists a
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G Et(M2,Rm) such that

A + G

is a stable differential operator.

Let x(t;h) be the solution of the M differential

equation

dx(t) =
dt

(4-38)

x(O) = h

with the control

x(t;h) is the M2

Now I |Ix(
0

since A +ZG

v(t) = Gx(t;h), it is clear that

solution of

t;h)1|2
2 dt < co

M

is a stable differential operator

some constant K1I|v(t)|I < K, ||I1 2

since G e e(M 2,Rm) and is a bounded transformation.

Hence (v(t),Nv(t)) < K2I| t;h)!1 2  for some constant
M

K
2

(4-1).

(4-39)

(A+ B0)x(t)
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Hence C(v)
00

0
{(x(t,h),Qx(t;h)) + (v(t),N v(t))}dt

for some constant K3

Also f
0

Iv(t) 12dt < K f1 0
||x(t;h) |22dt

M

Hence v e I which is nonempty.

(ii) Fix t e (0,oCo)

Then for T > t,

(h,T(t)h) 2 = min
v 'It[ t,T]

C[tT](v;h)

Now let T 2 > T1 > t

,T ]
(v;h) < C[t,T 2(v;h) for all v C' tT

respectively be the optimal controls

corresponding to the intervals

respectively.

C[t,T 21 (u2 ;h)
= vinf

C t TC[t,T
2 (v;h) > C[t,T 1 (u2 ;h)

< K3 f
0

I x(t;h) 2
2 dt

M

Let u ,u2

C Et

[t,T ] , [tT 2
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> inf C EtT ](v;h) = C[tT ] (Ul;h)
V el Eft,T 1] ] 1

(4-40)Hence (h,HT (t)h) 2 > (hflT (t)h) 2
2 M 1 M2

2
for T2 > T and all h e M

Hence the family {RT(t);T > tI is a monotonic increasing

sequence of positive symmetric operators. Also, from

the stabilizability hypothesis,

IIHT(t)I| < A (4-41)

A some constant and for all T > t.

Hence applying lemma 4.3, we have that there exists a

positive symmetric operator H(t) such that

1 T(t) +) H1(t)

in the strong operator topology.

Now choose s2 > s 1> 0 such that

T - s = T2 - s2 >0

2
(h,TET (s )h) 2 = (h,IIT (s2)h) 2 for all h s M

1 M 2 M
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and hence H

H(s1 ) = lim
T + -1

T (S1 = T(2
I

00 H1T (s1 )1

Hence H(s1 ) = f(s 2

(iii) Let xT(-)

lim

T + -
T 1+s - (s 2)
1 2 100

b

be the solution of

dx-

x(0) = h

i.e. xT (-)

dx

0

satisfies

(A0 0 - RT OOT(t))x(t)

+ f [A 0 1-a

x(6) = h(6)

(

+
N
El

1=1
A ix(t+Oi

6) - RH01T (t,)]x(t+e)dG

6 e [-a,0], h e M2

and x(-) be the solution of

)

(4-42)

2

= S2)

(VA - R IT (t)) x(t)
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dx
(A - kHT)x(t)

(4-43)

x(O) = h

i.e. x(-) satisfies

LR4Kp) - KTV0So)dt~L

(4-44)

x(6) = h(O) e c [-a,0] h - M2

Let yT(t) = XT(t)

Then yT ( - )

YT(t) = xT(t)

satisfies

- (K(,(t) - T) xT(t)

satisfies

(A 0 0 - H 0 0)y(t)

0
+ -

-a

+
N
E A y(t+09

i=1

[A 0 1 (e)-RH 0 1 (e)ly(t+O)dO - R(H00T(t)-700 )xT(t)

- x(t)

dy=
dt~

(4-45)

= 0

i.e. yT ( - )

(4-46)

dy

lor- , S Iw RTTOOI) t)

- x(t);

(A - (RHy (t )
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R[Hf01T (t1O) -1 01 (IxT(t+e)de

6 e [-a,0]

Equation

yT(t) =f

0

(4-47) has solution

to
4) 0(t-s)R(R OOT (s-I00 )xT (s)ds

t 0

ds f de 0 (t-s)R(H01T(s,e)-01 (e))xT(s+e)
-a

= - f 0(t-s)R(HOOT(s)-H00 )yT(s)ds
0

t
- f ds

0

0
f dO
-a

0D(t-s)R(R01T(s,e)-H01

t 0
- f 0(t-s)R( OOT(s)-T0O)x(s)ds

0

t 0
- f ds f de

0 -a

Given any t C [O,oo), we can find

and constants c1 and c2 such that

IG (t-s)| < c I I 10 10 0 < S < t

0
-a

-a

y(6) = 0 (4-47)

0(t-s)R(H01T(s,6)-H01(e))x(s+6)

t , T > t1

(0))YT(S+O)

< C 2
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Hence, there exist a positive continuous function

and a constant c3 > 0 such that

a(s)y T j(s)lds+ c3 max
[0,t.

the continuous

0

0

function

a(t)dt)

satisfies the inequality

t
!a(s)g (s)ds
0

< ag(t)

T S 2 +

1

< (1+a) max
y s [0,s]

Hence IYT(t)| < ac 14 g(t) tyTt Ca

+ c3 max I
s c s[0,t]

IYT (Y)12

(0,t;Rn)

0 (s)-j 0
T

t
< f

O0

a(s)

yT(t) I

Now f or

ga (S)

0 < a < 1,

= exp (a (4-48)

0
f
-a

(4-49)

1
2 dl2

(4-50)

I YT (" |yT (s+6) I

||Hf (s)-RO



max 0H -(s)-
S e [0,t ]

where yT IC (0,a
t; Rn) = max

s E [Ot]
{ y(s)/g (s) }

Choose 0 < a < min (1, )

- ac 4
> 0 and as T +)

Hn0(s)-n 0 | + 0

Hence yT(S)

Hence (s)

+ 0 uniformly

+ 0 uniformly

on

on

(xT(s) ,[Q+TTT(s) T
T
(s)]x,(s))

Now define fT(S)
M

s E F0,T]2

0 otherwise

f(s) = (x(s),[Q+jTRH]x(s)) 2

We know that

(hHh) 2 = lim
M T + m

(h, TT(O)h) 2
M

co

= lim f fT(s)ds
-+c o 0

186.

i.e. (1-c )IYT IC a(0,t;Rn)
< C3 (4-51)

Thus 1

(4-52)

(O,t 1 )

(0,t1 )

and
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Now since lim
T + co

and lim xT(s)

= H for all s

= x(s)

we conclude that fT(S) -+ f(s) as T - w for all s E [0,o).

Hence by the Lebesgue dominated convergence theorem,

can show that

t

lim f
T+ w 0

for fixed t C (0,Co)

(xT (s)[Q,+fT (s)kfT(s)]xT(s)) 2My

tlt1 ~
= f (x(s)
0

Hence result

Theorem 4C

Assume that the

[Q+ ]Ix (S) ) 2ds
M2

o.F.D.

controlled hereditary system (4-1) is

stabilizable. Then there exists a unique optimal control

u Et 't and

C(u;h) inf
v C Ik

C(v;h) = (hTh) 2 (4-5 3 )

u(t) =- N B TT x(t;h)

s E [0,xo)

we

HTT (S)

(4-54)
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where x(t;h) satisfies the differential enuation

dx(t) =
dt

(4-55)

x(0) = h

Proof From (iii) of theorem 4B,

Consider any

For all T >

other

we have that

v E 2.

0

(hHIT(0)h)
2 min

M w c Vtr

{(x(s;v),Ox(s;v)) + (v(s),Nv(s))}ds

Taking the limit as T + w, we have

(h,h) 2  <
M 2

0
0

{ (x(s;v),Ox(s;v)) + (v(s),Nv(s))}ds

and the result follows from theorem 14B.

U E VI.

CT(w; h)

T
< 0.

0

(4-bJ) x(t)
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Operator Riccati enuation for H

Theorem 4D

H is the unique solution of the operator eouation

(Ah,Hk) 2
M

+ (h,U4k) - (h,H$Lk) 2 + (h, k) 2

for all h, k E) (6)

Let D(t) be the C 0 semigroup with A

differential generator.

We have

oo

(hHk) 2 = f (O(t)h,[Q+FRH ]'(t)k)
0

For h, k c-(tA), we

2dt

have

((A- W )h,Hk)M 2 + (h,(A-RHT

00

= f ($(t)(4-JI)h,[Q+IJI]@(t)k)
0

co

+ f (O(t)h,[Q+HkH](t)(A -R7)k
0

(4.4)

= 0

Proof

(4-56)

- (R

M

2 dt

) 2d =

)k) 2
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= d

0

= lim ($(t)h,Lt+
t + 0

- (h,[Q+THIk)M 2

Hence (4-56).

Now suppose that

(4)(t)h,[FQ+R] (t)k) 2 dt

t
] (t) k)j

M 0

they are two solutions

to (4-56), f , I2 bounded MI2 operators.

Let I = 1 2'

Then we have

(h ,T 0k) 2M
+ (hTT0k) 2 + (h,9 T2 T2 k) - (hI ITkT k)11

for all h, k ch ( )

or (-L4TT 2 ]h,IT0k) 2

Let (D (t), (2 (t) be the C0 semigroups generated

respectively.

T and T 2

-o0
2M

+ (h ,HO 1 k) = 0 (4-57)

by

a -91H and 4-kH2
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Then d ($ 2 (t )hIH 0 (t)k)d 2 '01 2 ([- 2 12 (t )h, 0 1 (t)k) 2

+ (4) (t)hu 0( (--g 1 1 t)k)

=0

for all h, k E-0- (4).

Hence ($2 (t)h, 04 1 (t)k) = constant = (hn 0 k).

But (0 2 (t)h,H0 D1 (t)) 2 + 0 as t + o

Hence (h,1 0k) = 0 for all and since

is dense in M 2, it

Hence (4-56) has a unique

follows that H 0 = 0.

solution.

Theorem 4E

IT can be decomposed into a matrix of transformations

1100

T =

11

where

( 00 =1100

(4-58)

hI k edv (4)

P- (R n (4.-60)(1) 0O0
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(ii) I01 e
L- 2 a,;n n)

0

01 -

where the map

T 0 1 (a)x(c)da x 1,2 (-a,0;Rn)

a -+ 1 0 1 (a)

is piecewise absolutely continuous with Jumps

(4-61)

(4-62)

at

i = 1 ... N-1

(iii) U1 0

of magnitude

e t(Rn, L2(-a, 0;R n))

x) (a) = H10 ax

S10(a) = H101 (a)

where the map a -* H 1(a):

is piecewise absolutely continuous with jumps at

i = 1 N-1 of magnitude

(iv) TI 1 (L2 (-a,0;Rn))

(TI1 x)(0)
10

= -a 1
-a

(,0 a)x(a)da x L 2(-a,0;Rn )

1 1 (0,a) = H (a,0)

a = 0
H00A I

x - Rn

(4-63)

a = e

( 4-64)

*
A TOi, -0

(4-65)

: [-a,0] + cX(R n)

(HI10

[-a,0] + (n)
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where the map (0,a) [-a,01-* (0,a): x F-a,0] + X(Rn)

(4-66)

is piecewise absolutely continuous in each variable

with jumps at
*

A 0 1 (a) and

TI0 1 (O)A

o = ,

at a=

Moreover,

i = 1 ... N-1 of magnitude

j = 1,...N-1 of magnitude

satisfy a

coupled differential equations of Riccati type

(v) H 0 0 A0 0 + A000I

+ 101(0)

set of

- if 0 0 RHT0 0 + H01(0)

+ Q = 0

dH10 1 a)
(vi) da A0 0 0 1 (a) - T 0 0 RI 0 1 (a) + 1 0 0A0 1 (a)

(4-67)+ IT11 (0,)

N1-1
a.e. in () (i+

i=0

H01(-a) = H OOAN and jumps at % = 0, i = 1 ... N-1 of

magnitude

(4-66)

HOO,0 H 01(a), Til (8,a)

A HOO 0
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(vii) + ] (,) = A 01 (6) 01(a)

+ I ( )A0 1 (a)

N-1
a.e. in UJ

- 01()RT101

N-1(1+1, )1 x 0
i=0

(a)

(01+1,6 )

1 1(-a,a) = AN T1 ll (O,-a) = 01(6)AN

and jumps at o = 6.

a = 0 3

See appendix

i = 1 . N-1 of magnitude

j = 1 ... N-1 of magnitude

A 0 1

*
1T01( e)A1

1. Eauation (4-68) can be integrated to

11 (-,e) in terms of 1oo and T01().

Further simplification of (4-66), (4-67), (4-68) along

those lines does not seem possible.

2. We can define

(4-68)

and at

Proof

Remarks

express

5.
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V(0,a) = HO0 +
0 * 0

f I0 1 (6)d6 + f R ()dB
0 0

0 0
+ f d6 f d

0 a

and

3V(0,a) _
Ta 01(a

V(,a) = ( )36a11 1(,)

(4-69)

(4-70)

(4-72)

and thus (4-66), (4-67) and (4-68) becomes differential

equations for a single quantity V. However, we have

achieved no essential simplification of (4-66), (4-67),

(4-68) by this procedure.

3. Equations (4-66), (4-67), (4-68) is a

version of equations (3-105), (3-106), (3-107)

both have the same structure.

simnlif ied

and they

We summarize with the theorem

Theorem 4F

Assuming that

stabilizable,

the controlled hereditary system (4-1) is

the control problem (4-1), (4-2), (4-3)

V(0,0) = T 00
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will have a unique optimal control u which can be

expressed in feedback form as

u(t) = - N1B {T0 0x(t)
0

+ f H01
-a

and with optimal cost

= (h(0),n 0 0 h(0))
0

+ 2 f (h(0),IT0 1 (a)h(a))da
-a

0 0
+ f d6 f da (h(e),H

-a -a

where H 0  1 * 110E (0,a) satis

Riccati type differential equations

(6,a)h(aU))

fy the coupled

(4-66), (4-67)

(4-74)

set of

, (4-68).

(4.5) Example

Consider the scalar controlled hereditary system

dx

x(O) = h(e), 0 E [-1,0], h E M 2(-l,0;R)

v(t) e R

inf
v E'Ul

(4-73)

C(v;h)

(4-75)

(a)x(t+a)da}

x(t-1) + v(t)
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with quadratic cost functional

C(v;h) = f
0

{ x(t) 2 + |v(t) 2}dt

X C a(A-) <=> X + e~A =

and all the roots

complex plane.

of (4-77) lie in the left half of the

Hence (4-75) is stabilizable (take

and hence

existence

Equations

- R2
-100

an optimal control exists and we have the

of an operator 7

(4-66), (4-67), (4-68) reduce to

+ 21101(0) + 1 =

d110 1 (a)

da

0

+ 11 (0,a)

1101 (l) =T00

[ + IH (O,a) = - 101 WTI 0 1 ( a)

(4-80)

1
11 -1,I) =- 01(a), 11 (0 -1) = - H01(0)

0

(4-76)

(4-77)

v(t) = 0, i.e. G = 0)

(4-78)

(4-79)

- T00 IT01(0)0
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(4-78), (4-79), (4-80) can be transformed to

J10 1 (a) + e IT~ -0+ HT00 (a-E) T0 FIdilOO + f e 1 -- )d
-1

a
+ f d(
-l1

f
0

du e
-IT 00(a-)

H01(-1+U)I01(-C-l+u)

= 0 (4.81)

which is still very difficult to solve. The moral of

this example is that even in the simplest possible case,

the Riccati type equations for HO 00 0 1 (a), IT11 (,a)

is very hairy.
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Chapter 5

Approximate Optimal Control for Autonomous R.F.D.E.

There seems very little hope of obtaining exact

solutions to equations (3-105), (3-106), (3-107),

(3-133), (3-134) of chapter 3 and equations (4-66),

(4-67), (4-68) of chapter 4. It is possible to obtain

a numerical solution to those equations and one such

attempt can be found in Eller, Aggarwal and Banks [271.

Rather than trying to find an approximation to the

optimal control, we shall find the optimal control to

a finite dimensional approximation of the control problem.

This approach has the flavour of the Ritz-Galerkin

method and bears many resemblances to the theory of

modal control of systems governed by partial differential

equations.

Stated briefly, the approach goes as follows:

Following Lions[831 pp. 142, we take a basis

$1 ... .. of M2 and Y the finite dimensional

subspace spanned by {4 1.$ }. The jth order approxi-

mation of the M2 state will be the projection of the

state into Y . We can solve the jth order optimal
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control problem to obtain the jth order approximate

optimal control u. and we can show that u. + u the

optimal control as j + w.

So far, we have said nothing about the choice of

the basis. Here we can exploit Hale's observation F361

pp. 94 that on an eigenspace of A- , the M2 solution

can be viewed as the solution of an ordinary differential

equation. Thus by taking the eigenfunctions of A as

a basis of M 2, the Jth order approximate control problem

reduces to a control problem for a system governed by an

ordinary differential equation. The solution to the

later problem is well known. This approach thus focuses

attention on the eigenfunctions of A and thus does

for hereditary systems what is already standard engineering

techniques for systems governed by partial differential

equations.

Crucial for the applicability of this approach is

that the eigenfunctions of A form a basis in M2.

This is proved for a scalar R.F.D.E. in section 5. Our

method of proof does not extend (in an obvious manner)

to the general autonomous R.F.D.E. So at the end of

section 5, we make a conjecture as to the conditions
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under which the eigenfunctions of A will form a basis

in M2

5.1 Decomposing M2 into eigenspace and complementary

subspace

Let X ... . be the eigenvalues ofA (and Al)

ordered in some manner, say Re Xi > Re Xi+1. We take

into account the multiplicity of the eigenvalues in the

ordering i.e. if X has multiplicity m, it is included

m times. It is well known, Pinney [66], Bellman and

Cooke [51 that Re . -+ -o as i -+ and that to the

right of any line Re z = a that there is at most a

finite number of eigenvalues.

This sets up an ordering { and

{$...$ ... } of the eigenfunctions of A and A*

respectively. Expressions for the eigenfunctions ofA

and A* are given in equations (2-101) and (2-105)

respectively.

Let Y., Y. respectively be the closed finite

dimensional subspaces of M2 and 72 soanned by

{$ ... }I and {l ... $ }. Since M2 and 72 are
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Hilbert spaces, there are complementary subspaces

such that

M/2 = Y . @ Z37

= 17.

(5-1)

(5-2)
SIi

i.e. any $ E M2

) = y. + z.
3

and any P c M

can be written

c a Y , rt Zt

can be written

4' = F:~ , Z F Z.

Definition

The hereditary product

is the map

I:2 x M2 - P

for the autonomous P.P.D.F.

+
M -a
Z f

i=1 0
(kh) = (k(0),h(0))

0 -0
+ I de r dc(k(ct),A 01

-a 0

j' I j

(5-3)

+ zj
yj

(5-14)

(2-10)

(5-5)
(6h(a+O) )
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Lemma 5.1

A (k,h)

for all h absolutely continuous

k absolutely continuous [0,a] + .n, k

Proof h,k are absolutely continuous and we can

integrate by parts

-4 (k,Rh) = (k(0),A 0 0h(0)) +
N

1= (k(0),A h(6 ))

0
+ f dO(k(0),A 0 1 (O)h(@))
-a

+ E f da(k(a)
±=1 0

dh(a+ 1 )

d a

0 -0 dh (c+O)
+ f dO f da(k(a),A 0 1 () d+t

-a 0

= (A00k(0),h(0) +
N
E (k(0),A h(e))

i=1

0
+ f d6(k(O),A 0 1 (e)h(e))

-a

N

i11

-0.

f
0

+
N
E (k(a),A=h(a+1

i=1 ~

dk
da(t T, A ha+0

0
+ f de(k(a),A 0 1 (8)h(a+O))j
-a

-e

a=0

(5-6)

[-a,0] - Rn , h E&(I)

-e

a= 0



204.

0 -6 dk
- f dO f da(, 

-a 0

= (A 0 k(0),h(0)) +

0
+ f d6(k(0),A 0 1()h(O))

-a

A 01 (O)h(a+))

N
E (k(0),A h(O

1=1

N
E (k(-Ol ) ,A h(0))+

1=1

N
- (k(0),A h(O

i=1

0
+ f dO(k(-O),A

0 1-a

N

1 1=1

(e)h(0))

-

0
dak( , A h(a+O ))

0
- f de(k(0),A 0 1(6)h(O))

-a

da( ,A 0 1(
e)h(ac+6))

Q.E.D.

Remark

From the previous lemma, it follows that ,

to 4% relative to the hereditary product.

is adjoint

This is the

justification for calling A,4 the hereditary adjoint

of J .

-
0 -0
do fI

a 0

=j ( Q,,k, h)
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Corollary

:A ) = 0 for

Proof

As if S, ) = 4 ( I, $ ) = X ( ,$ )

Also O44'pAi S-(Aor.*1 4 ) = ,i~4~

Hence (X - ) - ($ ,$) = 0

But X - X

Definition

and result follows

For e E [-a,01, at C [0,a] define the nxj matrix

j (0) = column

and f or

(6)} (5-8)

a c [0,a] define the j x n matrix

= row {( 5-... ( W1(a

(5-7)

Q.E.D.

(5-9)
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the j x j matrix (v ,Q )

the j column vector [T ,h]

3-

the j row vector [k,Q.] =((k$).N ,$))

Lemma 5.2

( Y ,Q ) is nonsingular

Proof

Suppose that there is a j-vector b such that

( ,0 )b = 0

Then [T ,0 b]

Hence Q.b is in the range of (4- XT)m and in null

for some X e (IX ... 0 X ) which has

multiplicity m.

i=l... i k=l. .. j (5-10)

(5-11)

(5-12)

= 0

(A - XI)m
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But from theorem 2F,

range (,y} - AI)m n null (v - I)m = 0

Hence b = 0 Q.F.D.

Since (TP.,Q.) is nonsingular, we can change the basis

elements (for instance premultiply by ( P i

so as to obtain

(N{ , ) = I., the j x j identity matrix

Now since the columns of Q. are eigenfunctions of JA,

A &I = Q3

where 0

{A. . .. .

Similarly

where

{ . J

is a j x i matrix with eigenvalues

is a j x j matrix with eigenvalues

(5-13)
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Lemma 5.3

(i) i =if

of.
(iii) .(c) = e

(iii) T ( ). =t e ?1 (0)

o e [-a,0]

a C [0,a]

Proof

(i) (' .,AQ.) = (WQ ,.oj) = (V.,0.) =

Also (Tj,AQ) = (JI} , Q ) = (c T ,0) = j

Hence result

(ii) and (iii) follow immediately from the

solution of

Ap j = 0 and 4y = T

O.E.D.

can be written in the form

+ ... + b b ... b scalars

b a j-vector= Q b,

(5-14)

(5-15)

(5-16)

Now any $ C Y

$ = b
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['T., ] = [T.,Q.b] = (TP., .)b = b

Hence Y. = {$; $ M2 , $ = ? b for some j vector b}

From the corollary to lemma 5.1, we have

Z = {$; $ e M2 (p,) 0 for i = 1 ...j}

Now if $ = y + z = Q b + zj

[Y.,] = [ T 1 .2 1 + z 1

Hence * = 3 .T.I] + z

Hence we can define the Y projection operator

M 2 * Y E $ = i2 [ ,$ I (5-20)

Similarly we can define the Y projection operator

g2 + Y.
3

E.4 = [$,Q.]T. (5-21)

Now let x(- ) be the Rn solution of

(5-17)

(5-18)

(5-19)

E :

ff. :
3
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N
A0 0 x(t) + E A ix(t+e.)

1 =1i

0
+ f A0 1 (O)x(t+O)dO

-a

x(O) = h(e)

on the interval

or equivalently

dx xt

dtx A( t)

e s [-a,0]

[0,T]

x(- the M2

h c M 2

solution of

+ f(t)

x(0) = h

and the corresponding hereditary adjoint p(.) the Rn

solution of

d * N

dp + A00p(t) + E
i=l

A*~tO 01) + f A0 1
-a

(0)p(t-O)dO

p(T+S) = k(S)

or equivalently

E [0,al,

p(-) the M

k P- f2

solution of

= 0

(5-25)

p(T) = k

dx
+ f(t)

(5-22)

(5-23)

= 0

(5-24)

+p A p(t)
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Theorem 5A

solution of

x(t) = y (t)

x(t) = 0 y (t)

(5-23) is

+ z (t)

+ z (t)

(t) satisfies the differential equation

= y (t + T 1(0)f(t)

(5-27)

(0) = [P ,h]

Proof For any t > t0 C

we have

[0,T], from theorem 2E

0

Now each row of e

-e 
t

where [e ]Y(e)

), x(t
t

0)) = f
t0

(p(s), f(s))ds

T

= e
-c(t+8)

T (0)

(5-25) with appropriate final

The M2

where yj

(5-26)

(t)yj

y

(2-64)

(5-28)x(t)) -((p(t

is a solution of (5-24),
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data.

Hence from (5-28)

T .,x(t)]
- e ~

- [e J GTj~x(t) 0

t -C s
=fe

t0
T i (0)f(s)ds

-/ (t-t
i.e. [ ,x(t)]

0 ~
[ET ,x(t0)

t P (t-s)

t0

(t-t)
y.(t) = e 0

T i (O)f(s)ds

t o(t-s)
oe

to

TJ(O)f(s)ds

Hence y (t) satisfies for t E [O,T] the ordinary

differential equation

3 (t) = of y (t) + TJ ()f(t)

Hence result

1. The previous theorem is a precise version of the

more loosely worded phrase that the projection onto Y

(5-22), (5-23) behaves like a solution

[e-jO 
t

(5-29)

i.e.

(5-30)

Remark

Q.E.D.

eU= J

of the solution of
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to an ordinary differential equation in R.

2. Note the important role that the hereditary

product plays in giving us an explicit representation of

the Y projection operator E in (5-20) and in

establishing the differential equation satisfied by

y (t) in the proof of theorem 5A.

Proposition 5.4

(i) C(t)Y. C Y 7 y.C. Y (5-31)

(ii) (t)Z C Z, A Z C Z (5-32)

Z.
(iii) Denote by O 3 (t) the restriction of

(t) to Z . Then for all J, there is a K > 1 such

that

|I J(t)I| < Ke{l+Re Ajit t > 0 (5-33)

Proof (i) and (ii) are obvious.

(iii) follows from the fact that the spectrum of

restricted to Z will have eigenvalues lying to the
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left of the line Re z = Re A

ships between a(O(t)) and a(-)

section 6 chapter 2.

5.2 Finite time regulator problem

Consider the control problem on

dx N
= A0 0 x(t) + E A x(t+)

i=1

and from the relation-

stated at the end of

[0,T]

(6)x(t+O)dO + B(t)v(t)
0

+ f A0 1-a

x(e) = h(O) e s [-a,0],

C(v) = C(v;h) = (x(T),Fx(T))

T

h e M2

+ f
0

{(x(t),Q(t)x(t))

where Q c Ls(0,T;&(Tn)),

*

+ (v(t),N(t)v(t))}dt

N e LP(0,T;.(Rm)),

*
F = F > 0, Q(t) = Q (t) > 0,

and there is a 6 > 0

> 6|VI 2

N(t) = N (t)

such that

for all t E [0,T]

(5-34)

(5-35)

F c s (Rn

> 0

(v,N(t)v)
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and with class of admissible controls

T
= {v; J-

0
(v(t) 2dt < o} L 2(0, T; Rm )

The corresponding jth order approximate control

problem is

minimize C (vh) = (yj (T) ,y (T) 2

T -

+ f
0

{ (y i(t), Q,(t)yj (t) ) M22

i.e. minimize

+ (v(t),N(t)v(t))}dt

(C (vsh') = (yj(T), Q (0)F (O )y (T))

( Y ( ) .~ j ( O Q~*Q (0)y.(t))+(v(t),N(t)v(t))}dt

(5-37)

-with admissible class of controls '/

and where

+ T i(0)B(t)v(t)

(5-38)

{{ (t) = fy (t)

y.(O) = [Tvh]

(5-36)

T
+ f

0
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The optimal control to (5-37), (5-38) is

(5-39)u (t) = N~ (t)B (t). (O)p.(t)
3 3

and the optimal equations are

y.(t) = ti y.(t) - T (O)R(t)y

p (t) +djp (t) + 0 (0)Q(t)G (O)y (t) = 0; p (T)

=Q (0)FQ (0)y i

(5-41)
(T)

(5-40) and (5-41) can be decoupled

Pi(t) = P (t)y (t)

where

P (t) is a j

to obtain

(5-42)

x j matrix satisfying the matrix Riccati

differential equation

P.(t) + *P (f)+ P (t)X
3 3

-- P (T (0)R(t)T*(0)P (t

*
+ ~2.(

3
O)Q(t)R (0) =

P (T) = SI*(0)FQ (0)

(0)pj(t);yj(0) = [Y,h]
i a

(5-40)

0 (5-43)
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Hence the jth order approximate optimal control

given by

u (t) = - 1(t)B*(t)T*(0)P

where y (t) satisfies

(0)R(t)'Y*-
T 0)P (t jyj (t) y (0) = [,,h]

)

We also have an expression for the optimal

the instant

cost to go at

t E [0,T]

Smin C (v;h)
v C /t

We define a positive symmetric M2 operator

(hfl (t)k)M2 = (ETj h],

Theorem 5B

As j + co

(i) C (u) )

is

(5-44)

y (t) = (5-45)

(5-46)

l 1(t) by

([T ,h], P (t)[T , h])

p (t) [ T , k])

(5-48)+* C(U)
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(ii) u. - u strongly in = L 2(0,T;Rm )

(iii) N 1(t) -+ R(t) in weak M2 operator topology

for fixed t E EO,T]

(5-49)

(5-50)

Proof Define h =E h = Q2 [T ,h] for h M2

Let x(.;h,v) be the solution of (5-34) with initial

data h and admissible control v and let the corresponding

solution of (5-38) be yj(t;v).

fx(t;h,v) - 0 (0)yj(t;v)l2 < 2|x(t;h,v) - x(t;h ,v)t2

+ 2Ix(t;h ,v) - Q (0)yj(t;v)|2

As J -+ oo, h +4 h in M2 (assuming the

the eigenfunctions in M ) and from the

the solution with respect to the initial

follows that

completeness of

continuity of

data, it

fx(t;h,v) - x(t;h.,v)!2 + 0 uniformly for t c [0,T] (5-51)
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Now lx(t;h,v)

< x(t;hj,

= z (t;hj

- Q (O)y (t;v)|
2

v) - y4(t,h Sv)|| 2

,v) ~2
.I ) M2

t Z
= t D Z(t-s)q(s)v(s)ds11 2

20 M

< al lvi 12 K2

uI

t 21{1+Re
fe
0

x }(t-s)
ds

for some constant a and from (5-33)

= acjvIl K2 [1
it

- e
-2|1+Re A |t

]/2f1 + Re'X I

T (f -

T> r

{t;'l, A1)

q > 0, since

Now

(5-52)

b)I ( Ar) fl l') Oa

-9- (b (t;Ar

(0) V t- 4-J-)l
T 2 112- -rA +--Rio)VAA tj f a,--

Q(t) e L'(0,IT;Rm)for some
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T
Now f

0
|x(t;x,v)

< 2 !
~ 0

T
lx(t;h,

T
+ 2 f jx( t-h

0

- o (n) (t v)2dt
y ; 2

v) x(t;h v)2 dt

,v) - A (0)y 2(t;V)12dt

T
Now 2 f

0
Ix(t;h,v) - x(t;h.,v) 2dt + 0 as j +o

from (5-51).

From (5-52)

T

0
- Q (0)y (t;v)| 2 dt

z(IJKT ±~zlRxTk

+ 0 as j since |l + Re X |

T
Hence. f

0
lx(t;h,v) (tv) 2dt + 0 as j + w

T
f IX(t;x,v)
0

+ S (0)y (tv)|2dt

for some bound M.

+ Co.

- 0 1(0) y

+
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Hence

+ 0 as j + co.

Hence for fixed

Now C (u ) < C

v C Vl, C (v) + C(v)

(u)

Hence lim sup C (u )

Now C (u ) > 62ui J I j lI,

< C(u).

and since 'U is weakly compact, we can 'a't'act aslub-

sequence {

uk + U

ukI such that

*
weakly in R .

Hence x(-;h,u k) + x(.;h,u ) weakly in AC 2(0,T;Rn )

and lim inf Ck(uk)

(5-53)

*
> C(u

I Ar), Q t) -Qj 0) ;vt
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Hence C(u) > lim sup C (u ) > lim sup Ck(uk)

> lim inf Ck(uk > C(u

Hence necessarily, u = u and C (u ) + C(u)

u + u weakly

and since C (u ) -* C(u),

T
/0 (u.(t), N(t)u.(t))dt

we necessarily have

T
+ 3 (u(t), N(t)u(t))dt
0

since otherwise we have a contradiction

Now 62u -u||6I uUI!
T

< J* ((u.
0

(t )-ut), N(t)(u

T
= 3.{(u.(t), N-tu.(t)) - (u(t), N(t)u 1

0

- (u

Hence

+ (u(t), N(t)u(t))}dt

+ 0 as j -* oo

u U strongly in 24

)

Now

(5-54)

(5-55)

(5-56)

(t))

(t)-u(t)))dt

(t), N(t)u(t))
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(hT (t )h) 2 = inf
M ve'L

+ inf C t(v;h)
v 

t 
h

=(h$11(t)h) M2

= ((h+k),H (t)(h+k))
N
2

,H(t)(h+k)) 2

as j + oo

-( h-k

-(h-k)

),I (t)(h-k))M
2

,H](t)(h-k)),,

= (hfH(t)k)M2 as

Hence RH (t) S11(t)

j . 00

weakly.

Q.E.D.

5.3 Finite time tracking problem

Now consider the control problem (5-34), (5-35)

(5-36) with non-zero forcing term f(t) in the hereditary

system (5-34).

The corresponding jth order approximate control

problem is

We have C (v;h)

Hence

S (h+k)

(h,$H (t)k)



224.

minimize C (v;h) = (y (T),l y(T))
3

+ f
0

= (y (T)

T ~
{(y.(t), Q(t)y

*

(t)) 2 +
M

(v(t),N(t)v(t))}dt

(T))

T
+ f {(y.(t),0*(O)Q(t)Q I(0 (t))+

0o
(v(t) ,N(t)v(t))}dt

(5-57)

with admissible clas

y (t) = yj (t)

s of controls U4

+ y (O)B(t)v(t)

and where

+ TY (O)f(t)

y ( 0) = [ ,h]
tJ

The optimal control to (5-57), (5-58)

u (t) S- N~ (t)B (t) (O)p.(t)

and the optimality equations are

= (fy (t) - T (O)R(t) T (O)p (t) + '(O)f(t);

y (0) = [Ii1,h]

(5-58)

is

(5-59)

(5-60)

i
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= (o) F co (T)
(5-61)

These equations can be decoupled to obtain

Pj (t) = P (t)y (t) + d (t) (5-62)

where P (t) is a j x j matrix satisfying the matrix

Riccati differential equation (5-43) and d (t) is a

j vector satisfying the differential equation

(t) + i P (ty (0)R(t)V(0)]d (t)+P (t) (0)f (t) = 0

(5-63)

d (T) = 0

Hence the jth order approximate optimal control is given

by

u (t) = - N~1 (t)B* (t)Y;(0)[P (t)yj(t)+dj(t)] (5-64)

where yj(t) satisfies
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(5-65)

y (0) = [.Y,h]

We also have an expression for the optimal cost to go

at the instant t e [0,T]

inf C t(v;h) = ([g ,h],Pj(t)[, ,h])
V C U

(5-66)

+ 2(d (t),[Tjh]) + cj(t)

where the scalar c (t) satisfies the differential equation

0 ) Tp)() ()

(5-67)

c (T) = 0

Define g(t) C 1 by
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(g (t) ,h) = (d (t),[ ,h])

Theorem 5C

As j + o

(1) C (ui ) + C(u)

(11) u + U strongly in 1 = L2 (0,T;R m)

(iii) g i(t) + g(t)

(iv) c (t) + c(t)

weakly in M2

for t c [0,T]

for t c [0,TI (5-69)

(5-70)

Proof (i) and (ii) are proved exactly as in theorem 5B.

To prove (iii) and (iv) we make use of the fact that

inf C (v;h)
v cidet

By considering the

+

Since (h,1T (t)h) 2 +

M

inf C t(v;h).
v t

case h = 0, we get c (t) -+ c(t).

(hfl(t)h) 2 and c (t) -+ c(t),
M

we must have

(gj (t),h)
2 g

(5-68)

+(g(t),h)
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And since this holds for all

g (t) -+ g(t) weakly.

5.4 Infinite time problem

Consider the controlled hereditary system on [0,O)

dx
= A0 0 x(t)

x(6) = h(e)

+
N

E Aix(t+8
1=1

0
) + f A01(

-a
o)x(t+e)de

with cost functional

C(v;h) = C(v) = f {(x(t),Qx(st)) + (v(t),Nv(t))}dt
0

and admissible class of controls

00

= {v; J.
0

v(t) 2dt < 00, C(v) < 00}

be the longest j such that

Re Aj+1 < 0

h e M 2

+ Bv(t)

(5-71)

(5-72)

Let j 0

(5-73)

Re XA > 0, 1 (5-74)
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Such a j0 exists from the ordering of the eigenvalues

and since only a finite number of the eigenvalues will

lie in the right half of the complex plane.

We can now state and prove a theorem due to Vandevenne [771.

Theorem 5D

The controlled hereditary system (5-71) or (4-1) is

stabilizable iff the finite dimensional system

y (t) = 0 y JO(t) + T .o Bv(t) (5-75)

is completely controllable.

Proof Suppose that (5-75) is completely controllable.

Hence there exists a matrix C : RO -+ Rm such that

all the eigenvalues of the matrix

(cfZ. + T . (O)BC) (5-76)

lie strictly in the left half plane.

Define a mapping

G : 2(-a,O;R , R m

(5-77)
Gh = C[i. ,h]
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G is a bounded linear map and

Gh = 0 for h C Zs O

We want to show that a (A + () G) lies strictly

left half plane.

Denote by A+ $G

z jo

Similarly for \A +

Now a((A+ 6G) I

ziGO
the restriction of

Y.
JO

) = a(y|

ZiO
)

Zi0

which lies strictly in the left

Also (dA+ Q0)

+ xp (0)BC

half plane.

is represented by the matrix
Y.

20

) = a .
Y 20o

which lies strictly in the left

+ '1 . (O)BC)
J0

half plane.

now follows, since

in the

,4+Y G to

Hence a((,4+$G)|

Result
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a(A +FG) = a(6 +GI ) Ua(4 + G)j
Y.
J0

Now suppose that (5-75) is not completely controllable.

From Lee and Marcus [531 pp. 99, we can decompose R O

into a controllable and an uncontrollable part such

that

. (t) =o . ly 1 (t) +d 2 y (t) + (Y. (0)B)lv(t)
jo 0J jo JOjo JO 'jo

2 (2 2

which for the initial condition

y. (0) =
r
L

0

-2
y (

(5-79)

will have a solution y. (t,v) bounded away from zero

on a set of infinite measure for every control v since

the eigenvalues of 22q"jo0 all have real parts greater

or zero. Hence (5-75) will not be stabilizable.

Q.E.D.

)
Z.

00

(5-78)

O
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Remarks

1. The complete controllability of (5-75) implies

the stabilizability of

y (t) = XLy (t) + y (O)Bv(t) (5-80)

for any j > Jo, since only the eigenvalues

( .1*"X 1 0) of d can cause (5-80) not to be

stabilizable.

2. From the results of section 2 of this chapter

and section 3 of chapter 4, we can obtain an approximation

to the optimal control and the optimal cost of the control

problem (5-71), (5-72) (5-73) by taking j and T

sufficiently large in the jth order approximate control

problem (5-37), (5-38) with F = 0.

5.5 Completeness question

There are a number of papers in the literature on

whether or not any solution of an autonomous R.F.D.E.

can be expressed as an infinite series of eigenfunction

solutions. See for example Zverkin [82] and Bellman and

Cooke [5]. However, with the exception of Pitt [67], there
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has been very little concern as whether or not the

eigenfunctions will be complete and form a basis in

some appropriate function space. In this section, we

shall establish the completeness of the eigenfunctions

in the space M 2(-a,O;R) for the scalar R.F.D.E.

dx=

= A1 x(t-a), A 1 0

and its corresponding differential operator

C = 0A 1h (-a)

E4h](ax) = fAh(a{dh (5-82)

ct C [-a,0)

where h EA (4).

We first must determine the location of its eigenvalues

which will be the roots of the characteristic equation

A0 (z) = z - A1 e-az = 0

We have two possibilities; case (i) A > 0, case (ii) A1 < 0

(5-81)

(5-83)



234.

Case (i) A1 > 0

For z = x + iy, (5-83) reduces to

x = A e-axcos ay

y = - A e-axsin ay

Real roots y = 0 x = A 1 e-ax

(5-86) has one real root a0 > 0 given by

a0 = G(A1)

where G(x) is the inverse function of

g(x) = xeax

which is monotonic increasing for x > 0.

Complex roots y / 0. The purely imaginary roots will

be included in this case.

It is clear that the complex roots of (5-83) will occur

in conjugate pairs and we restrict our attention only to

(5-84)

(5-85)

(5-86)

(5-87)
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those roots that have positive imaginary part.

From (5-84) and (5-85), we have

xcot ay= - , y/
y

0

and hence

- ax = ay cot ay

Hence from (5-85), we have

y = - A 1eay cot aysin ay

Let f(y) = sin ay eay cot ay
y

Hence we want to find the (real) roots of

f(y) = - 1/A1

For p > 1, in any interval ((2p-l), 2p7), f(y)
a a

increases monotonically from -o to 0.

Hence f(y) = - 1/A1 has precisely one root

(5-88)

(5-89)

(5-90)
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T in ((2p-1) Tr 2 p gr)p a ' a

i.e. (2p-1)e. < T <a a t

and corresponding to T

(5-91)

we have a solution to the

characteristic equation (5-83) i.e. an eigenvalue

A= ap + iTp

T
where a -- log{ p

p a A1Isin ar PI

We now want to find the asymptotic location of X .
p

From (5-91), it follows that tp 'v, 2pw/a

-ac
aP =Ae
op 1 - pcos aT

p

-aa
Tp = -Ale Psin aT

(5-94)

(5-95)p

Taking the log of (5-95), we obtain

- aap = log Tp/A1 = o(1)

(5-92)

(5-93)

(5-96)
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= 2pIT/a + o(1)

aa
cos at = a e /A

Hence TP = (2p-)t-

1 - log 2piraTA1

- log

+ O( p ) 2

+ 0( ) 2

a
1 (2p--r

log aA O( P) 2

Define R f'A I

=- ( , )2

+-3}±(f-

I-

(5-102)

Hence R = 2 1( 1 + a(p))p a

- + o()

Now T (5-97)

(5-98)

(5-99)

2.

(5-100)

(5-101)

(5-103)

I
a 'Tr,

1
+ 7

4-p T
7r)

A,

o 0(

where a (P) (5-104)=

+
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Case (ii)

Real roots

A1 < 0

y = 0 x = A1e -ax = - IAleax

For 1A1 | > (ae) 1, no real roots

A1 | = (ae)~double root 0 = -

(5-105)

(5-106)

A1 | < (ae)- two real roots a', a0 "

Complex roots y 3 0 Again the purely imaginary case

will be included and the roots will occur in conjugate

pairs. Again we restrict attention only to those roots

with positive imaginary part.

We want to find the (real) roots of

f(y) = 1/IA1 | (5-107)

Now f(0) = ae and f(y) decreases monotonically from ae

to 0 in interval (0, 1L).
a

Hence for 1A11 > .(ae) -1 f(y) has one real rootT0

on (0, E.).a
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IA1! = (ae)~

A, < (ae) -1

f(y) has (double) root To 0

f(y) has no roots on (0, )a

For p > 1, f(y) decreases monotonically from

on the interval (2p, (2p+l)) and hencea'3 a

f(y) = l/|A nas precisely one root TP in

2p7 (2 p+l)f)
a' a

ie . i1 < Ta P

and corresponding to

0 to 0

< (2p+l) -
a (5-108)

, pSwe have an eigenvalue

x = a + it
p p p

where a --1log { } -a A-[sin at (5-109)

We want to find the asymptotic location of p

From (5-108), it follows that T1 p\ 2p'r/a

i.e. Tp = 2p7T/a + o(l) (5-110)
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ap - 0log 2 pT+
p a

cos aT
P

o(1)

- o e P/IA1 I

cos aT = log + 0 (10 
P) 2

T = (2p 1) + 1 log 2pn

(2p+ 1 ) a
p a a A +

+ O (Log p) 2

p

log p 2
( p )

2pT2[1

a
1T4f + 2~ log 2p T

2 A1!

2prrlog aA p + 1 
+ ,(log

+ 1 log
(2p-) 2

aA 2 + 0 ((log P) 
2 )

p3

R =2P H(1 + a(p))

where a(p) + 0( 1
+ -p )

(5-111)

Hende

(5-112)

(5-113)

(5-114)

R2
p

1
3 -2

2p T 2)7

(5-115)

(5-116)
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Expressions (5-99), (5-100) and (5-110), (5-111) are well

known and can be found in Pinney [66] and Wright [791.

Definition

Let n (t) be the number of {X p with modulus less

than t

R n (t)
Define N (R) = f dt (5-117)0

Lemma 5.4

lim sup {N X(R)

Proof Case (i)

aR +1
- + - log R} = 0o

A > 0

For Rp > a0 , n (t) = 2p + 1

N (Rp) =

Rp n (t) p-1
f t - dt = E
0 m=0

Rm+l 2mdt

R t
Rm

p-1
- E 2m[log Rm+1 - log Rm] + log

m=0
Rp - log a 0

p
- 2p log - 2 E log Rm + log Rp - log a

m=1

(5-118)

Rp < t < Rp+1 (5-119)

R

dt

(5-120)
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From hence onwards, we shall denote any (finite) constant

by A.

aR 1

N (R ) - -R + 1 log R

= 2p log Rp -

p
2 E

m=1

- 2p - 2pa(p) + 5 log p + log (1 + a(p)) + A

-2 logeP +
+!

2 log (1 + a(p)) - 2
p
E

m=1
log (1 + a(m))

+ 5 log

Now lim
p , 00

(1 + a(p))

p+1
e -pp -

p

- 2pa(p)

1

/27f

From (5-104),

and hence

lim pa(p)
p -0 0

1 ,

lim (1 + a(p))P =
p -4 00

lim
p + 0 0

1

e-I

Also lim log (1 + 1a(m)) =

log Rm

aR
p

7T

p
-2 Z

m=l

+ 5

R

log ~
m

log R
P

(5-121)

a (p) = 0

1
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p
and hence the series - E log 1 + a(m) and

m=1

converge or diverge together.

P 1
But lim E = 0

p -> m=1

p
and hence lim - 2 E log

p +-

Hence lim {N x(Rp)
R +o
P

m=1

aR
p

7JT

(1 + a(m)) = 00

+ log R} = 00

Case (ii)

For p > 0

A < 0

n (t) = 2 (p + 1) Rp < t < Rp+1

Nx(R) = p nA(t) p-1_Rm+1
N (R ) = f n A ()dt = E f 2(m+1)dt

x P O t m0Rt0 M=ORtm

p-1
mZ 2(m + 1)[log Rm+1 - log Rml
m=0

p
= 2(p + 1)log Rp - 2 E log Rmm=0

p
1Em

m=1

(5-122)



aR 1
-- +7r. V

= 2(p + 1)log Rp - 2
p
E

m=0

aR
log Rm ~~ p

R
log R-

m
2p - 2pa (p) + 1 log p + - log (1 + a(p))

= 2 log e * p + log p - 2pa(p) + log p + 1 log (1 + a (p))

+ 2 log (1 + a(p))P - 2
p

m=
log (1 + a(m))

From (5-117), lim pa(p)
p + 0 0

=1, lim
p) +

1

lim (l + a (P) ) p = e

Also lim log (1 + 1a(m))
M + f1

Hence given 0 < e < 1, there exists such that

(- ) I <1 log (1+a(m)) < (1+c)

244.

N (R ) log R

p
=2 E

m=0

+ log R

a (p) = 0

-for all. m > mO0
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Hence

and

p
- 2 E log (1+a(m))

m=m
0

{ (1+e)log p -

> 2(1+){log p

2
p

m=m0

p

E~m

p 1
But log p - E

m=m0

1Hence {:F(1 s)1og p

p
>- (1+E)

m=m
0

log (1+a(m))}

1}

is bounded as

- 2

p + Co

p
E log (1+a(m))}

m=m
0

is bounded from below as p + oo.

Hence lim
p + Co

{N x(R )

{(- e-)log

Theorem 5E

The eigenfunctions

of M2(-a,O;R).

of A defined in (5-82) form a basis

1

1
Jr log Rp I

aR
- - +

> T

> lrn

p C
p + Al = c0,
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Proof We must first

in M2 (-a,0;R).

For suppose not.

Then there

(f,e P )

show that

is a f e M2 (-a,0;R n),

0 xe

2 = f(0) + f f(O)e P de
-a

{e I is complete

f $ 0 such that

= 0 for all p

Define F(z) = f(0) + JO g~)zOdf(O)e dO
-a

F(z) is an entire function of

IF(z)I < If(0)I + ifLf(O)eZ4d|O
-a

z and F(X ) = 0 for all p

0O
f f(O)e zedO
-a

-a+c
=f

0

-a -a+s
f(O)ez dO

0
If f(e)ezed6I
-a

-a+E
< f
-a

0
+ f

-a+s
If(O)Iexe de

1a+C

e2x dO) ( /
-a

1
e2xO dO

0

-a+c

If()I 2de)

If(0)2 dO
1

(5-123)

-a+s
(-
-a

0
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Case (a) x < 0 x = -I x{

-a+Es
f
-a

0
f

-a+c

2xOe de

e 2 xOO= 1 -2

-a+e
Let 6(e) =( /I

-a

-2I x Ie-a

x 6 -7a+e
]'0

If(o) 12 d /2;6(c)

<1
-2|x|

1
-2jx|

e2 1x I a

e21xI (a- )

as c + 0

1

Hence IF(z)I <. 1 Ijxfa(- IxI

'TV

iT

and I- {27F i

1 
- r 'I

log IF(Re16 )jd6}
TV

log R dO - f
T

; log |cos Q I dO

aRicos 61de

R + +
IVT

+ 1 f
T

,T

TV

Tr

log (e-ERIcos

log (e-ERicos 01

6o + 6)dO + A

+ 6)dO + A
T1

(5-124)

+ 6S())

1T/

log

1x
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Case (b)

-a+E

-a

0

-a+e

2xee d6

x > 0

1
=2fx

2x0dO =
e| |

x = IxI

[e2xl -a+E

-"a

[e 2|x|6 
1

Hence |F(z)f < f(0) + 2,
1

21li7

K
2

some constant

jF(Re )I

21f(0) 12

2K3R Isec

Isec el < K 4 f(0)f 2 R

|1
Isec 01 > K4 If(0) 12 R

where K3 and K are constants.

7
Hence L log IF(Re16 ) de < K5, for sufficiently

large R and constant K5

(5-125)

1

1
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Now Jensen's theorem states that

R nF(t) d
NF(R) =f t dt = f

F0 t -r0
log IF(Reie)|dO - log |F(O)|

(5-126)

where nF t) is the number of zeros of F with modulus

less than t.

Without any loss in generality, we can assume that

F(O) 9 0, since if F(0) = 0 with multiplicity r.

We can write

F(z) = z rF (z)

where F 1 (z) is an entire function of z, F (0) / 0

and apply Jensen's theorem to F1

Since F(Ap ) = 0 for all p, we have

(5-127)N x(R) < N F(R)

Hence from (5-124), (5-125) and (5-126) we have

N (R) - aR + lo R < f log (e-cRIcos el + 6)d6 + A
7iT

(5-128)
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If c > 0 is small enough, and R > 0 is large enough,

we can make

f log (e-RIcos of + 6)dO

less than any arbitrary large negative number.

Hence lim sup (N x(R)
R -*oo

- + 1 log R) = - 0o

But this contradicts (5-118) lemma 5.4.

Hence either f = 0, in which case we have proved

completeness or F = 0.

So suppose F = 0

Hence f(O) + f f(O)ezedO = 0
-a

We differentiate to get

f0 of(O)ez de = 0
-a

Putting z = iy f Of(O)eiyedO = 0
-a

(5-129)

(5-130)

(5-131)
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Hence by the Fourier transform theorem,

of() = 0

Hence f(6) = 0

From (5-130), it

a.e. on [-a,0].

a.e. on [-a,0]

follows that

f(0) = 0

Hence f = 0 as an element of M 2(-a,0;R) and we have

proved completeness.

To complete the proof, we have to show that

{e } is strongly linear independent, i.e. that no

member can be approximated by a linear combination of the

others. Put another way, if

n (n X6
h (e) = E a(n) p e
n p=l

and h n 0

a n) +
q

0 E [-a,0]

in M, then we have to show that

0 for fixed q.
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From corollary to lemma 5.1

-A (-)
q

-X (-)
,hn )

(n)-a {l

a (n)
q

Hence a(n)
q

q

1

+ aA1 e

0 -x (E+a)

-a

-X qa
a(n){l
q

dE}

+ ax }.

,hn)/{l + aX I

0 -x (C+a)

= {hn (0) + A /e q-
-a

+ 0 as h + 0

h ( )}/{l + aX

in M2

Hence proof.

Remark.

1. The proof of the completeness

functions follows the work of Levinson

and Levin

of the eigen-

[561, Boas [61

[541. The concise proof that F = 0 => f = 0

is due to Levinson [571.

)
a (-)

n)q q
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2. From the completeness of the eigenfunctions

of (5-81) in M 2(-a,0;R) and the continuity of solutions

to a R.F.D.E. with respect to the initial data, it

follows that any solution of (5-81) can be arbitrarily

approximated by the eigenfunction solutions. Thus we

have arrived at the series expansion of a solution

to (5-81) as, for example, has been discussed in Bellman

and Cooke [51 pp. 102-110.

Corollary 1

The eigenfunctions corresponding to the scalar R.F.D.E.

dx= Ax(t) + A x(t-a), A 0 (5-132)
At00xt A1xt1)

form a basis of M2 (-a,0;R)

Proof The characteristic equation yielding the

eigenvalues is

A(z) = z - A0 0 - A1 e-az

= (z - A0 0) - (Ae-aA0 0 -a(z-A 0 0) = 0 (5-133)
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and comparing with (5-83)

A 0 (Z) = i - (A1 e
-aA00)e-a = 0

where z= z - A0 0

i.e. the eigenvalues are

I = X + A
p p 0 0

where Xp are the roots of (5-83) with A replaced

-aA00
by A1 e

Hence the proof is as in the proof of the theorem and its

preceding development.

Corollary 2

The eigenfunctions corresponding to the R.F.D.E.

A x(t-a)

where A1 e 4(Rn) and has real distinct non-zero

(5-134)

(5-135)
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eigenvalues, forms a basis of M 2(-a,O;Rn )

Proof Follows from decomposing (5-135) into n scalar

R.F.D.E.'s and apply the previous theorem.

Counterexample 5.5

The eigenfunctions corresponding to a R.F.D.E. will not

2always be complete in M .Consider for example

A x(t-1)

where A1 = (
\ 0

(5-136)

0

0)

The characteristic equation is

A(z) = det {zI - A e -Z} = z(z + e = 0

The eigenvalues are X = 0 and X

where Xp satisfies X + e = 0

p

The eigenfunctions are
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0 , 6 e [-1,01

which are clearly not complete in M2 (-a,0;R 2

Conjecture 5.6

Consider the autonomous R.F.D.E.

n
= A0 0x(t) + E A x(t + o ) + f A0 1(e)x(t + 0)de

i=1 -a
(

A00 , Ai (i = 1...N)S L(Rn), A01(*) e L2 (-a,0;(Rn))

and suppose that either

(i) det AN 3 0

or (ii) det A01 (0) / 0 a.e. on some set [-a,-a+e]

for some e > 0

Then the eigenfunctions corresponding to (5-137) will

be complete and form a basis in M 2(-a,0;Rn).

(5.6) Example

We will now work out an example to illustrate our

5-137)
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method of generating approximate optimal controls.

We consider the one dimensional controlled

hereditary system

dxx -
dt A 1x(t-l) + Bv(t)

x(6) = h(6),

with quadratic cost

T
C(v) = f

0
{Qjx(t) I

0 C [-1,01

2 + Niv(t) 2}dt

and class of admissible controls

T
= {v; f

0
Iv(t)| 2 dt

We take A 1 > 0. From the results of the last section,

the eigenfunctions of th

th ]( 
A) = ( h (-l )

dct

e differential operator

a = 0

(5-141)

a C [-1,0)

(5-138)

(5-139)

< Co} (5-140)
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will be a basis for M 2 (-l,0;Rn)

We take a finite set of the eigenvalues of

A n = {O' x ' 1 - l' ' A1*xn' X-n}

X+n = an + iTn

and where the ordering is as in the previous section.

a and T satisfy for j > 1

a = A e COS T ; T = - A e sin T

S0 satisfies a0 = A1 e

Sn = column {$' 0l' -l' ** n' -n}

(5-142)

(5-143)

(5-1414)

(5-145)
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where for -1 < e < 0,

a0 0

= e 1sin T 1

COS T 1OS

(5-146)

On(e)

$-n()

= row {n

= e n sin

an
= e cos

I I I

Tnn

TO

... $) , ) }n -n (5-147)

'' 0
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where for 0 < a < 1

$ 0 (c) = e

-a 1a
$()= e sin Ta

$n()=

-a1 a
e coS T 1a

-anaL
sin TnU

-a aL
I (a) = e n cos Tna-nn

($,$) = $p(0)$(0) + Al
0

-1

For j > 1, = A 1
0 -a.((+1)

-1
sin T (E+1)e sin ( T )dT

= 1(1 + aj)

(5-148)

(5-149)

(5-150)
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0 -a (+1)
j = Ai/ e sin T (C+l)e i cos (T )dC

~ ~ Tj

A 0 -a ( +1)4) =A! e

T

($i $ )= 1 + A1 f/ e
-1

=1
7(1+ a)

From corollary to lemma 5.1 it follows that

( ,$k) = 0 for |jI / |kf

Also S1(i 0,) = 1 + a 0

(5-151)

(5-152)

(5-153)

(5-154)

COS T (E+1)e CYi sin (T i )dE

or i
COS T (E+1)e J COS (T i )dE
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Hence

0

( ' n ' n

1+0

0

0

0

(1+a ) 1

1
2 T1

1+ )

0

0 k(1+a2 n

o -

0

(1+n

}(1+an15
(5-155)

Define y1 = 4/{(1+a )2 + T } j > 1

(5-156)

90 = 1/(1+a0 )

Po0i 0, y/ 0 for any J > 1
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0
I

0

0)

,

-La C

-izAr, jS'~0i)

0

C LA ~+$~)L-
C

I

C +

(5-157)

Define Tn (Tn )~ T

For 0 < a < 1

-a0 a
VO

y e [(1+a )sin Ti a + T Cos Tia]

y e a [-r sin T a + (1+a )cos T a!

7 1*

1
7'p n 1e

-ac a

2"

[(1+an)sin Tna + TnCOS TnoI

(5-159)y e -n sin T a + (1+a )cos T a]71nn n n n

(5-158)

T (a) =

it Q -1 =



=V
T n (0)n (5-160)

T1
n nf~f

Sn (1+an)
-4

For , -1 < 6 < 0

IJe 4 /cA T,61

(5-162)Hence Q (0)

Since Ae = t ,9

26 4.

)211

7-1( 1T+a

L

we obtain

AW T, &, I-

= [1, 0,$ 1, ... 0,$ 1]
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0 0

o a -T

0 T a

0 0

0 0

0 -Tn n

o T
n n I

The (2n+l)th order approximate control problem is

minimize

C n(v;h) = f
0

where yn(t)

T

{(yn(t)
*

Q (0)OQ (0) It))n ~n kn
2+ Nlv(t) { }dt

is a (2n+1) vector satisfyinr

+ Tn (O)Bv(t)

(5-165)

y (t) = eyn( t)

yn (0) = [ Ynih]

a 0r

-P
n

(5-163)

(5-164)
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where for instance, the first component of yn(t) is

(90 e- ,(-$h) = ph(0) + U0A f e h(E)d

The other components can be calculated in a similar

fashion.

If for instance h(0) / 0

yn(0) =

p0 h( 0)

7117US~ih0)

11 (1+aT )h(0)

1 1

n nh(O)

1un1(1+an)h(0)

h1 = 0

The (2n+1) th approximate optimal control is

un(t) - N~ BT (0)Pn(t)yn(t) (5-166)

I
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where the (2n+1) x (2n+l) matrix P n(t) satisfies the

matrix Riccati differential equation

*p) ',C PJt)i t, t) P %o)B N~'*o P)
± S2 () - (6) = 0

Pn (T) =

(5-167)

0

and the (2n+l) vector v n(t) satisfies the differential

equation

(t) = - n()B2N~1T (0)Pn(t)}yn (t)

(5-168)

yn(0) = nh]

There are standard numerical methods of solving (5-167)

to obtain (approximately) Pn (t) with knowledge of

P n(t), the (2n+l)th order approximate control problem

is completely solved.

Remark

Note the resemblance between the (2 n+l)th order approximate

control for the scalar R.F.D.E. and that for a system

governed by a scalar P.D.E. of hyperbolic or parabolic

type.
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Chapter 6

Applications, Suggestions for

Further Research, Conclusions

(6.1) The business cycle, or a control theorist looks at

economics.

Mayr ([58] pp. 128) has an interesting discussion

on the possible influence of control mechanisms on

economic thought. So for instance the Baroque pre-

occupation with an inflexible predetermined feedforward

control, as evidenced by the countless inventions of

automatons, led to the Mercantilistic economics of a

rigidly planned centrally directed economy. The increase

in the use of feedback devices at the start of the

Industrial Revolution led to Adam Smith's free enterprise

economic philosophy that the economy would automatically

swing into equilibrium at optimal conditions without

governmental interference.

However, by the nineteen thirties, Adam Smith's

laissez faire economics was no longer viable and the

business cycle, with its alternate successions of

severe depressions and runaway inflations, was a
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terrible scourge on the capitalistic economies. Marxist

economists claimed that the business cycle was an

inherent trait of a capitalistic economy. Nonetheless,

a cure was forthcoming. Keynes [43] was largely

responsible for the recommendation that the government

should intervene and regulate the economy by means of

taxation and public spending. It is interesting to

note that since the second world war there has not been

a severe depression nor indeed does anybody seriously

anticipate its reoccurence.

What, though is the optimal government policy? We

shall try to answer this question by considering a

R.F.D.E. model of the business cycle due to Kalechi [40]

along with a quadratic objective functional. Kalechi's

model takes into account the fact that there will be a

time lag between the decision to invest in a capital good

and the completion of the finished product. From this

we can obtain an R.F.D.E. for the rate of investment.

There are three stages of an investment: the order

for the capital good, the production and the delivery.

We denote by
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I(t) the rate of investment orders at time t

J(t) the rate of production of capital goods at time t

L(t) the rate of delivery of capital goods at time t

Let a be the time lag between investment decision and

completion of capital good i.e. the gestation period.

The relation between L and I is simple

L(t) = I(t-a) (6-1)

Let W(t) be the total volume of unfilled investment

orders at time t. We have

t
W(t) = f I(T)dT (6-2)

t-a

since no order during the period [t-a, t] is yet

finished while all the orders before that period have

been completed.

The rate of production must be

J(t) W(t) = f I(T)dT (6-3)
t ba t-a

Let K(t) be the stock of capital goods at time t.
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The derivative will be given by

k(t) = L(t) - D + v(t) (6-4)

where D is the depreciatbn of the capital stock

and v(t) is the rate of governmental investment,

positive for public spending and negative for taxation.

v(t) is therefore the controlling input of the government

independent of considerations of profitability.

Let B(t) be the gross profit and C(t) the

consumption at time t. C(t) is assumed to consist of

a constant part C and a part proportional to

B(t) i.e. XB(t)

i.e. C(t) = C1 + XB(t) (6-5)

Also B(t) = C(t) + J(t) (6-6)

From (6-5) and (6-6), B(t) = (C1 + J(t))/(l - X) (6-7)

Kalechi assumes that the relative investment rate

is a linear function of the relative profit rate and
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obtains

I(t) = m(C1 + J(t)) - nK(t) (6-8)

where m and n are constants.

Let I be the desired rate of investment and

x(t) = I(t) - 10 the deviation from the desired

rate of investment.

Differentiating (6-8), (6-3) and combining with (6-4) we

obtain Kalechi's equation

= A00x(t) + A x(t - a) + Bv(t) + f (6-9)

where A00 = 2, A = -

We consider (6-9) over

( + n), B = - n, f = - n(IO - D) (6-10)a t i

some time interval [0,T] and with

initial condition

x(O) = h(O), e s [-a,0], h e M2 (6-11)

Not surprisingly, we complete the control problem by
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considering the objective function

minimize C(v; h) = f {qlx(t)I2 +|v(t) 2}dt (6-12)
0

with admissible class of controls

{v; f (v(t) 2dt < ,o} = L 2(0, T; R) (6-13)
0

where q > 0 is a weight indicative of the trade off

between deviation and the magnitude of the control.

Remarks

1. Central to Kalechi's model is the role played

by K(t). Investment activity is directly related to

profitability and prices do not enter into the picture.

2. Very few economic variables appear in the model.

3. A mathematical analysis of Kalechi's equation (6-9),

a study of its spectrum and eigensolutions and of its

stability can be found in Frisch and Holme [311.

4. With no governmental intervention v = 0 and

with f = 0, Kalechi's model yields the following dilemma



274.

of the capitalistic system: growth and instability

or stability and stagnation. For further details see

Lange [51] chapter 5.

5. From an examination of U.S.A. economic data

for the years 1909-1918, Kalechi obtains m = 0.95 and

n = 0.121. He takes a = 0.6 years from a consideration

of the lag between orders and deliveries in the

industrial trades.

Now from the results of chapter 2, namely corollary

to theorem 2B, we can write an exact closed form solution

to Kalechi's equation (6-9) with initial condition (6-11).

It is

0 ~ min (0,t-a)0
x(t) = (0 (t)h(O) + f t 0 (t-a-a)h(a)da

-a
(6-14)

+ ft 0 (t.-s){Bv(s) + f}ds
0

-aA .

A00 t p (e 0 0 A ) (t-ja)a
0e 00 J)0

where (t) = j=0 +

0 t < 0

(6-15)
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From the results of chapter 3, we have a unique

optimal control to (6-10),

given in feedback form by

u(t) = -B{1 0 0 (t)x(t)

(6-11) (6-12) (6-13)

0
+ f H 01 (ta)x(t+a)da + g0 (t)}
-a

where

dH 00 (t)

dt E + 2A 0 0110 0 (t) - B 22 0 0 (t) + 2T
01

(t,0) + q = 0

(6-17)

R00(T) = 0

- ~O.3T1L) o

f01 (T,a) = 0

a e [- ;t

a~e. a c [-a,0]; 1101 (ti-a)

(

=11O )

a a a
[.aV - 77- .J1 1 tO

n11(T,o6,a) = 0 a.e. (6,a) c [-a,0] x [-a,0]

= A 1 H0 1 (ti)

(6-16)

6-18)

= B2 H01(t,6)H01(tla)

(6-19)

=A 1H 01 (ta); IT1 (t,6,-a)
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dg 0 (t) 2
dt + A 0 0g 0 (t) - B IT 0 0 (t)g 0 (t) + H 0 0 (t)f + g1 (tO) = 0

(6-20)

g(T) = 0

[ - 1g(tO) - B 2H (t,6)g(tO) + H0 1 (tO)f

(6-21)

g1 (T,6) = 0 a.e. 6 E [-a,0], g(t,-a) = A1g 0 (t)

Of economic significance is that the optimal policy will

be in feedback form. There is no known solution of

equations (6-16) through (6-21) and so to obtain an

answer in concrete form we have to apply the approximation

method of chapter 5. From corollary 1 to theorem 5E

the eigenfunctions corresponding to Kalechi's equation

(6-9) will form a basis in M2(-a,0;R) and so we can

apply the results of section 3 to obtain a concrete

approximate answer.

The eigenfunctions of Kalechi's equation (6-9)

have already been used to study the stability of the

solutions of the equation, Frisch and Holme [311. Here

we have extended their use to another purpose - that

of finding an approximate optimal control to the control

problem (6-9), (6-11), (6-12), (6-13).
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6.2 Suggestions for further research; Conclusions

Mention has already been made of the several

advantages of setting the R.F.D.E. problem in the

2
functional space M . The main conclusion of this

thesis is that M2 is the appropriate functional space

in tackling the quadratic criterion problem for hereditary

systems. The solution to the problem follows naturally

from the structure of the M2 framework, use of the Lions'

direct method provides us with a vastly superior approach

in terms of elegance, aesthetics and generality, and

concrete results are obtained rigorously without having

to make ad-hoc assumptions.

Success in one area does not necessarily guarantee

success in another, but it provides a strong incentive

to try. In this light, the following topics seem worthy

of further attention:

1) The formulation and the solution of the control

problem for systems governed by neutral functional

differential equation with quadratic cost and within some

suitable analogue of the M2 function space.

2) The formulation and solution of the stochastic

control problem for hereditary systems with quadratic
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cost functional within the M 2 framework (or its analogue

for the neutral functional differential).

3) It would be interesting and hopefully fruitful

to pose problems of interest in the control theory of

hereditary systems within the M2 framework. In particular,

one such study could be the realization theory for

hereditary systems.

Finally, there was one question raised within the

M2 framework and which was not answered in full

generality. That is the conjecture 5.6 on the complete-

ness of the eigensolutions of A. That problem is of

mathematical interest in its own right and it ought to

be possible to supply an answer and a proof.
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In one word, secret of success in mathematics - plagiarize,

Plagiarize - let no one else's work evade your eyes,

So don't shade your eyes,

But plagiarize, plagiarize, plagiarize.

Only be sure always to call it, please, research!

Song Nicoli Lobachevsky, Tom Lehrer.
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