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Abstract

This thesis studies the price of anarchy in supply chains, congested systems and joint
ventures. It consists of three main parts. In the first part, we investigate the impact
of imperfect competition with nonlinear demand. We focus on a distribution channel
with a single supplier and multiple downstream retailers. To evaluate the perfor-
mance, we consider several metrics, including market penetration, total profit, social
welfare and rent extraction. We quantify the performance with tight upper and lower
bounds. We show that with substitutes, while competition improves the efficiency
of a decentralized supply chain, the asymmetry among the retailers deteriorates the
performance. The reverse happens when retailers carry complements. We also show
that efficiency of a supply chain with concave (convex) demand is higher (lower) than
that with affine demand.

The second part of the thesis studies the impact of congestion in an oligopoly by
incorporating convex costs. Costs could be fully self-contained or have a spillover
component, which depends on others' output. We show that when costs are fully
self-contained, the welfare loss in an oligopoly is at most 25% of the social optimum,
even in the presence of highly convex costs. With spillover cost, the performance of an
oligopoly depends on the relative magnitude of spillover cost to the marginal benefit
to consumers. In particular, when spillover cost outweighs the marginal benefit, the
welfare loss could be arbitrarily bad.

The third part of the thesis focuses on capacity planning with resource pooling in
joint ventures under demand uncertainties. We distinguish heterogeneous and homo-
geneous resource pooling. When resources are heterogeneous, the effective capacity
in a joint venture is constrained by the minimum individual contribution. We show
that there exists a unique constant marginal revenue sharing scheme which induces
the same outcome in a Nash equilibrium, Nash Bargaining and the system optimum.
The optimal scheme rewards every participant proportionally with respect to his
marginal cost. When resources are homogeneous, we show that the revenue sharing
ratio should be inversely proportional to a participant's marginal cost.
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Chapter 1

Introduction

Decentralized systems with agents who operate within their sphere of interest are

widely recognized as less efficient than their centralized counterparts. This phe-

nomenon is pervasive in social, political, economical, and even biological systems.

Papadimitriou (2001) in his seminal work, coined the term Price of Anarchy (PoA),

which measures the difference in the performance of a decentralized system to a fully

centralized system. Quantifying this value is essential in predicting system behavior

and in designing appropriate rules of action to improve its performance. The main

purpose of this research is to provide new ways for understanding and evaluating ef-

ficiency loss in complex competitive environments including supply chains, congested

systems and joint ventures.

1.1 Thesis Outline

The thesis consists of three main parts. In the first part, we focus on a distribution

channel with a single supplier and multiple competing retailers. While our application

is in supply chain management, the base game-theoretic framework which we study is

generic and captures many other applications where oligopolistic competition exists.

To evaluate the performance, we consider several metrics, such as market penetration,

total profit, social welfare and rent extraction. The second part of my dissertation

incorporates a by-product of competition: externalities. We study the impact of

15



selfish behavior on societal welfare. Our model consists of several service providers,

competing for users who are sensitive to both prices and congestion. By identifying

two types of congestion effects which depend on whether one service provider's service

level could affect others' congestion cost, we measure the welfare loss in a decentralized

setting and propose novel implementation of congestion pricing which appeals to the

self-interest of participants. The third part of my thesis describes a joint work with

Retsef Levi, Cong Shi and my advisor, Georgia Perakis. This work is motivated by the

growing popularity of joint-ventures in the past decade. Decisions in such settings are

distorted by self-interests and demand uncertainties. They are further complicated

by joint business constraints.

1.2 Main Contributions

1.2.1 Supply chains under imperfect competition and non-

linear demand

In the first part of the dissertation, we study a distribution channel with a single

supplier and serval downstream retailers, whose demand depends on the prices of

all available products in the market. The main objective of this work is to under-

stand how imperfect competition, demand nonlinearity and the nature of products

(substitutable versus complementary products) affect the performance of a supply

chain.

To analyze imperfect competition, we associate product substitutability (or com-

plementarity) with a ratio between the inter-firm and the intra-firm price sensitivity

coefficients. This measure captures the interdependence of one product with respect

to other available products in the market, implying the strength of a retailer with

respect to his competitors. Based on this measure, by only knowing information on

two "representative" retailers, we are able to analytically quantify various perfor-

mance metrics including market penetration, channel profit, social welfare and rent

extraction for a supply chain with an arbitrary number of retailers with tight upper

16



and lower bounds.

We show that when the retailers compete with substitutes, the two "strongest"

retailers predominantly determine the supply chain performance. Although asymme-

try between them deteriorates the performance, a decentralized supply chain with

substitutes is fairly efficient as suggested by the performance metrics. For comple-

mentary products, we characterize how much the performance is affected by product

complementarity. The bounds imply that the performance could be primarily deter-

mined by the two "weakest" retailers. Although asymmetry between them has some

countervailing effect to combat this inefficiency, a decentralized supply chain with

complements generally demonstrates a significant loss of efficiency.

With nonlinear demand, we utilize the concept of "Jacobian similarity" to describe

the curvature of the demand function. We show that when the demand function is

concave, the decentralized supply chain is more efficient than one with affine demand.

To be more specific, with concave demand, the profit loss in a decentralized supply

chain is at most 25% of the optimal profit in a coordinated setting and improves

as the intensity of competition among retailers increases. On the other hand, with

convex demand, the inefficiency is relatively higher than one with affine demand.

1.2.2 Congested systems with convex costs: self-contained

versus spillover

In this part of the thesis, we consider competition in the presence of congestion

effects. In contrast to many studies on congestion games which consider infinitesimal

users who are price-takers with no market power (e.g., Dafermos and Sparrow 1969,

Wardrop 1952), players in our model are competing oligopolists who have sufficient

market power to influence prices. Our model consists of several service providers

with differentiated services, competing for users who are sensitive to both prices and

congestion costs which are convex and increasing with the output level. We study

two types of congestion effects depending on whether one service provider's congestion

cost could be influenced by other providers' output level. Congestion effect is said

17



to be self-contained, when the congestion cost associated with one service provider

only depends on his output level. Bandwidth congestion is one such example, where

carriers use dedicated frequency bands for transmissions to avoid signal interference.

As a result, service degradation is only experienced by users in the affected network.

This is in contrast with airport congestion, where when one airline schedules an

additional flight in a congested airport, it creates additional delays for every flight

which attempts to land and take off. Congestion in this setting also has the spillover

effect as everyone in the system experiences additional delay.

We compare the total welfare in an unregulated setting where the service providers

have free access to the facility to that of the social optimum which maximizes the total

surplus, so as to assess how much welfare is lost due to decentralization. We show that

with fully self-contained cost, the maximum welfare loss in the unregulated setting is

limited to 25% even in the presence of highly nonlinear convex costs. Moreover, the

efficiency of the unregulated setting improves as the competition among the service

providers increases. The main insight is that, when costs are self-contained, service

providers take those into fully consideration when they determine their own output

level. As a result, price of anarchy in this case is bounded. With spillover congestion

cost, the performance highly depends on the relative magnitude of the marginal unin-

ternalized congestion cost and the marginal consumer surplus when an additional user

is enrolled. In particular, we show that when the marginal uninternalized congestion

cost outweighs the marginal benefit, the welfare loss in the unregulated setting could

be arbitrarily high even with affine costs. The latter validates the need of implement-

ing some rationing mechanisms in airports to curb congestion since there are rooms

for substantial potential welfare gains.

1.2.3 Joint ventures with resource pooling and demand un-

certainties

The work is motivated by the growing popularity of joint-ventures in the recent years.

In this work, we study capacity planning with resource pooling in a joint venture

18



under demand uncertainties. We distinguish two types of resources pooling, based on

whether the resources are heterogeneous or homogeneous. We assume each entity in

a joint venture contributes one type of resources. When resources are heterogeneous,

they are not fully substitutable. It implies that the contribution from one entity

cannot be fully replaced by others. This is in contrast with homogenous resource

pooling, where resources are fully substitutable.

We show that with heterogeneous resource pooling, the effective capacity in a

joint venture is constrained by the minimum individual contribution. In addition,

every participant is committed to make an equal contribution in a joint venture. We

also show that, there exists a same efficient and fair revenue sharing scheme in both

Nash equilibrium and Nash Bargaining solution. The optimal scheme rewards every

participant proportionally to his marginal cost.

When resources are homogeneous, however, there does not exist a revenue sharing

scheme which induces actions to achieve the optimum which maximizes the collective

profit. Nonetheless, we propose some methods to share revenue with the worst case

performance guarantee for general convex costs. The methods suggest that the re-

ward should be inversely proportional to the marginal cost of each participant with

homogeneous resources.

The rest of the thesis is organized as follows. The work on supply chains is broken

into Chapter 2 and 3. Chapter 2 focuses on a setting with nonlinear demand while

each retailer carries a single type of substitutable products. In Chapter 3, we consider

affine demand while each retailer carries multiple complementary products. Chapter

4 is devoted to the study on congested systems. The work on joint ventures can be

found in Chapter 5. We conclude the thesis in Chapter 6.
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Chapter 2

Price of Anarchy in Supply Chains

with Imperfect Competition and

Nonlinear Demand

2.1 Introduction

In this paper, we develop tight upper and lower bounds to quantify the loss due

to decentralization in a two-tier supply chain with price-only contracts when there is

imperfect competition among downstream retailers with nonlinear demand. Browsing

through a comparison shopping engine often reveals a surprisingly wide dispersion of

prices for a same product. One of the reasons for price differentiation is imperfect

competition induced by retailer asymmetry in the market. That is, retailers are

perceived differently by consumers based on market share, brand name, reputation,

availability, etc.

Despite a large and growing literature studying the issue of supply chain coor-

dination, most papers make one of the following assumptions: (1) monopoly or a

duopoly; (2) independent (noncompeting) retailers; or (3) symmetric retailers with

homogenous products; (4) affine demand. Each of these assumptions imposes sig-

nificant limitations. Some results immediately fail once we relax the assumptions.
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For example, it is well-known that with noncompeting or symmetric retailers, every

retailer in a decentralized setting experiences sales decline compared to a centralized

setting due to "double marginalization". However, an example in Section 3.3 shows

that in an asymmetric duopoly, one retailer may charge a higher price yet sell more

in a decentralized setting. Under the symmetry assumption, it has been established

in various settings that a decentralized supply chain achieves higher channel profit

as competition in the retail market intensifies, where the intensity of competition

is measured by the number of retailers (Tyagi 1999, Mahajan and Van Ryzin 2001,

Cachon and Lariviere 2005). When retailers are asymmetric, for example, with domi-

nant retailers such as Wal-Mart and fringe retailers like local grocery stores coexist in

a market, it is ambiguous how to measure "competition", let alone quantify a supply

chain's performance.

2.1.1 Contributions

In this work, we relax all the assumptions aforementioned. Our main contributions

of this chapter are as follows.

Analytical upper and lower bounds with competition index. We associate

the level of competition faced by a product with a ratio between its cross and own

elasticities. This measure indicates the relative strength of a retailer's product with

respect to his competitors, and captures the interdependence of the products in that

market. Based on this measure, by only knowing information on two "representative"

retailers, we are able to analytically quantify various performance metrics including

market penetration, channel profit, social welfare and rent extraction for a supply

chain with an arbitrary number of retailers by deriving their respective upper and

lower bounds.

We present families of demand functions for which the bounds are tight. We also

use simulation to show that the bounds achieve an accuracy of within 7% under a

more general setting. To establish the analytical bounds, we develop the analysis

by utilizing tools such as Cassini ovals of eigenvalues and copositivity from matrix

analysis (Horn and Johnson 1985). We believe the methodology proposed in this
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work could potentially be used in other problems.

Impact of imperfect competition. By first focusing on affine demand, we quantify

how much competition induced by product substitutability promotes output levels,

channel profit and social welfare. We show that the two "strongest" retailers pre-

dominantly determine the channel performance. Although asymmetry between them

deteriorates the performance, a decentralized supply chain with substitutes is fairly

efficient as suggested by the performance metrics. We show that with affine demand,

the profit loss in a decentralized supply chain is always less than 25%. In many real

life scenarios supported by empirical evidences, the loss is well within 15%, which im-

plies that price-only contracts are often "good enough" for supply chains in practice.

Impact of nonlinearity of demand. We show that when the demand function is

concave, the decentralized supply chain is more efficient than that with affine demand.

To be more specific, the profit loss in a decentralized supply chain is at most 25% of

the optimal profit and improves as the intensity of competition among retailers in-

creases. On the other hand, with convex demand, the inefficiency is relatively higher

than that with affine demand. The intuition is that inefficiency in a decentralized

supply chain is induced by the successive markups imposed by the supplier and retail-

ers. When demand is concave (convex), a given price change induces a proportionally

smaller (greater) change in demand than with affine demand.

Rent extraction in a decentralized chain. The study on the profit allocation

reveals that the supplier is always guaranteed with a larger share of the channel profit.

Moreover, the supplier enjoys a lion share of over 66% of the channel profit and her

share increases further as the competition in the retail market intensifies. This result

offers some explanation for the prevalence of price-only contracts in practice since

they are desirable from the perspective of the supplier.

2.1.2 Relevant literature

Two sources of competition exist in a decentralized supply chain: (i) vertical competi-

tion between the supplier and the retailers and (ii) horizontal competition among the

retailers. Since Spengler (1950) who identified the double marginalization effect, the
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problem of channel coordination and its relevant issues have generated considerable

research in both the marketing and economic literature. (e.g., Choi 1991, Krish-

nan and Winter 2007, Moorthy 1987 and Pasternack 1985). During the last decade,

the issue of coordination in supply chains has also gained a lot of attention in the

operations management literature (see Cachon 2003 for a review).

Despite numerous coordinating contracts proposed in the academic literature (e.g.,

Corbett et al. 2005, Bernstein and Federgruen 2003, 2007, Cachon and Kok 2010),

simple price-only contracts are more often observed in practice. Their prevalence

suggests the importance of quantifying the "price of decentralization", that is, the

decentralized channel performance in comparison to a centralized chain with price-

only contracts. Such analysis measures the potential gains through coordination, and

thus, allows managers to gauge whether there is a need to implement more complex

contracts. Perakis and Roels (2007) formally characterize the profit loss for various

supply chain configurations when retail prices are exogenous. Adida and DeMiguel

(2010) study a supply chain with multiple suppliers and multiple risk-averse retail-

ers in a Cournot oligopoly. Nevertheless, the authors primarily perform compara-

tive analysis for symmetric manufacturers and retailers with affine demand. For the

asymmetric setting, based on numerical simulations, they conclude that some results

obtained for the symmetric chain do not hold for asymmetric retailers. Their obser-

vation reaffirms the need to study this problem with asymmetric retailers. Netessine

and Zhang (2005) study the performance of a distribution channel from the supply

side, where the demand of one retailer is concave with respect to the stock level of

his competitors. They conclude that retailers with complements tend to understock

compared to the centralized setting, whereas they tend to overstock with substitutes.

Thus, Netessine and Zhang (2005) conclude that complements (substitutes) aggra-

vates (compensates) the double-marginalization effect.

Linear, convex, and concave demand functions can be found in the literature.

Robinson (1933)'s pioneering analysis, taken forward by Schmalensee (1981) studied

how the curvature of demand functions affect the output level in an monopoly. The

primary focus of the this body of literature (e.g., Varian 1985, Holies 1989, Schwartz
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1990, Yoshida 2000 etc.) is on how social welfare is affected when price discrimination

exists in a market. It is well-known that with a affine demand, a profit-maximizing

monopolist produces exactly half of the socially optimal output. Malueg (1994) shows

that when the demand is concave (convex), the output level becomes at least (at most)

half of the socially optimal quantity. Moreover, when demand is concave, the ratio

between the welfare loss in the monopoly to the social optimum is bounded. The

similar argument, however, does not apply when demand is convex. In this work,

we will investigate the impact of demand curvature on the performance of a supply

chain.

Lastly, our work which measures the performance of a decentralized system with

respect to a centralized system is related to a stream of literature on price of anarchy,

popularized by Koutsoupias and Papadimitriou (1999). It compares the performance

of the worst-case Nash equilibrium with respect to the centralized system. The con-

cept has been used in transportation networks (Roughgarden and Tardos 2002, Correa

et al. 2004, 2007, Roughgarden 2005), network pricing (Acemoglu and Ozdaglar 2007,

Johari and Van Roy 2009), oligopolistic pricing games in a single tier (Farahat and

Perakis 2010a,b), and supply chain games with exogenous pricing (Perakis and Roels

2007, Martinez-de Alberniz and Simchi-Levi 2009, Martinez-de Alberniz and Roels

2010).

The rest of the chapter is organized as follows. Section 2.2 describes our model

and assumptions. Section 2.3 begins with affine demand, and investigates the per-

formance by quantifying various performance metrics to showcase the impact of im-

perfect competition. We will incorporate nonliear demand in Section 2.4. Several

simulation experiments which evaluate the tightness of the bounds can be found in

Section 2.5. Lastly, we will discuss some extensions of the current model and conclude

the paper in Section 2.6.
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2.2 Problem Formulation

2.2.1 Model and assumption

We consider a two tier supply chain with a single supplier and n retailers. We denote

the retail price set by retailer i = 1, 2, ..., n by pi and we use p = (pI, ... , Pn) to denote

the entire price vector set by all the retailers. Each retailer purchases one type of

product from the supplier. We will show that this assumption can be easily relaxed

in Section 2.6. We denote the constant marginal production cost incurred by the

supplier when she fulfills retailer i's order as ci and let vector c = (ci, ..., cn). The

marginal cost may vary across the retailers as different orders may require different

levels of effort from the supplier. The supplier has to determine the contract, the

wholesale price wi for each retailer, and vector w = (wi, ... , wn). Each retailer faces

a deterministic demand, qj(p), which depends on the prices set by all the retailers.

The decision sequence is as follows. The supplier initiates the process by proposing

a wholesale price contract to each retailer. Each retailer then announces his retail

price pi and places his order quantity qj(p) from the supplier who fulfills all the orders

without delay.

Assumption 2.2.1 The demand function qi is a continuous, twice differentiable

function with respect to prices, p. Furthermore, we assume that ' < 0 for all i,

and ;> 0 for j i i.

This assumption states that the demand decreases strictly if the retailer increases

his price and increases if his competitors increase their prices. Denote the Jacobian

matrix of the demand function as -B(p) such that,

B (p) = - -- : ,

8pi 8pn ,

where B(p) is a n x n matrix. For ease of notation, we will use B instead of B(p)

for the rest of the chapter. We will utilize subscripts to distinguish this matrix
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evaluated at different values of p. When demand is affine, then B is independent of

p, and q(p) = q(0) - Bp, where q(O) is the maximum demand when products are

free. Denote #ij as the (i, j)th element of matrix B, which represents the demand

sensitivity with respect to a price change. Assumption 2.2.1 states that matrix B has

positive diagonal elements and nonnegative off-diagonal elements. Denote matrix F

as the diagonal matrix of B, i.e., F = diag(#i , ... , #nr).

Assumption 2.2.2 Matrix B is symmetric and strictly diagonally dominant for all

feasible price vectors p.

The symmetry of the Jacobian matrix of demand naturally arises from a representa-

tive consumer utility framework with a concave utility function. Furthermore, strict

diagonal dominance of the matrix implies that a retailer's demand is more sensitive to

his own price changes than to those of his competitors. This assumption follows from

the law of demand for substitutable products where a price increase by any retailer

leads to a decrease of the total sales in the market.

Assumption 2.2.1 and Definition 2.2.2 imply that the Jacobian matrix B belongs to

the class of M-matrices, also referred to as Stieltjes matrices. This class of matrices has

several interesting properties, e.g., positive definite and its inverse is componentwise

nonnegative. We refer the reader to Horn and Johnson (1985) for more information

on this topic.

Assumption 2.2.3 The demand function qj is a concave function of the price vector

p. Alternatively, the demand function qj is a nonnegative, convex function of the

prices and the individual profit for retailer i piqj(pi, p-j) is a quasi-concave function

of the price pi.

This assumption guarantees the existence and uniqueness of the solution in both the

decentralized and the centralized settings. It is possible to relax it to some extent,

but it involves more tedious derivations. As a result, we impose this assumption to

enhance the transparency of the model.

Assumption 2.2.4 q(c) > 0.
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This assumption states that the demand must be positive when products are priced at

cost. Products which do not satisfy this assumption are unprofitable and are expected

to be removed from the market by the profit-seeking retailers. With affine demand,

this assumption becomes q(c) = q(0) - Bc > 0.

Assumption 2.2.5 F(F + 2B)- 1 B(p - c) > 0

This assumption implies that when the items are priced at the equilibrium retail

prices, the expected demands are positive. For the case with symmetric retailers and

affine demand, this assumption can be shown to be equivalent to Assumption 2.2.4.

Adida and DeMiguel (2010) have imposed a similar assumption in their work with

affine demand.

To facilitate the analysis with imperfect competition, we consider the following

measure which captures the relative dependence of each retailer with respect to other

competitors in the market.

Definition 2.2.6 Competition index. Given a price sensitivity matrix B, we de-

fine ri for retailer i as follows, ri(-) = I |ii

By Assumption 2.2.2, 0 ; ri(B) < 1 for retailer i =1,... , n. This index is known as

diversion ratio in the economics literature (e.g., Bordley 1985), that is, the fraction of

retailer i's customers who switch to other retailers when retailer i raises his price by

1 unit, given all other retailers keep their prices unchanged. This index is positively

related to competition and negatively related to product differentiation. For instance,

when retailers are noncompeting (e.g., the products are unrelated), i.e., ri(B) = 0.

It means that if retailer i increases his price, there is no change in other retailers'

demand. Another extreme case is when ri(B) approaches 1. That is, customers view

retailer i's product and other products as fully substitutable. Thus, when retailer i

raises his price, all his lost sales switch to other retailers.

With symmetry, all retailers share the same competition index, i.e., ri(-)

for all i (without the loss of generality, we set all #ij = -1 for all j # i and #ij = # for

all i). When asymmetry exists, ri(.) differs across retailers, which in turn, implies the
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relative strength of a retailer. A "strong" retailer is one whose demand is not affected

much by external price disturbances, whereas a "weak" retailer is more susceptible

to price changes. Suppose every retailer changes his price by (, the demand change

experienced by retailer i selling substitutes is given by 3ii(1 - rj(B))(. High ri(B)

results in a small demand change, implying a strong retailer.

Based on the competition index for every retailer, ri (.), we introduce the following

two indices to approximate a market with asymmetry.

Definition 2.2.7 Given a market with n retailers whose competition indices are

ri,. -- , rn, we define

(i) One-Firm Ratio. r(1)(B) = maxi ri(B), and

(ii) Two-Firm Ratio. r(2)(B) = maxi,jljo# Vrj(B)rj(B).

We are going to show that with either index, we are able to derive tight bounds on

the channel performance. Though the One-Firm Ratio requires less information to

compute (it only looks at one retailer whose product exhibits the highest competition

index), the bounds in terms of the Two-Firm Ratio are more accurate as the ratio

contains additional information on asymmetry. We can rewrite the Two-Firm Ratio

,,±a~_ (V,-Vr-j)2
as r(2) = maxiJylyg 2 2 which is essentially a geometric mean of the

two retailers with the highest competition indices and a correction term which is

determined by the asymmetry between them.

When the demand q(p) is nonlinear, the Jacobian matrix B depends on the value

of p. To establish a bound, it is key to introduce a constant that will measure the

curvature, or the degree of nonlinearity of the demand function. As a result, we briefly

introduce the concept of Jacobian similarity. We refer reader to Perakis (2007) for

more information on this concept.

Definition 2.2.8 The Jacobian similarity property. A positive semidefinite

matrix F(p) satisfies the matrix similarity property if there exists a constant K > 1

such that for all w, p and p': KwT(F(p))w > wT(F(p'))w> wT(F(p))w.
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Notice that if F(p) is the Jacobian matrix of an affine function, i.e., F(p) does not

depend on p, then r, = 1. In general, the constant K is easy to compute when

matrix F(p) is positive definite for all p. In that case, one choice for the constant

maxp maxi Ai(F(p)) that is, the ratio between the maximum and minimum eigenvalue
minp mini Ai (F(p))

of the matrix.

2.2.2 The decentralized and centralized problems

Throughout the paper, we compare the performance of a decentralized (uncoordi-

nated) supply chain to a benchmark setting of a centralized (coordinated) system.

Denote the wholesale prices, retail prices, order quantities and chain-wide profit as

w, p, q and ir respectively. We use subscripts c and d to differentiate the centralized

and the decentralized settings.

In a decentralized setting, the supplier maximizes her profit by deciding the whole-

sale prices, anticipating the equilibrium order quantities from the retailers. Each re-

tailer determines his retail prices in order to maximize his own profit. We assume a

sub-game Nash Equilibrium has been reached where no single retailer can increase his

profit by unilaterally changing his price. For each retailer i, given the supplier's equi-

librium wholesale price, wi, and competitors' equilibrium price vector, p-i, retailer

i's optimal retail price pi is a best response function to the maximization problem:

(7rd),i A max (pi - wi)q%(pi, p-i), s.t. pi > 0, qj(pi, pi) > 0.

The supplier maximizes her profit by deciding the wholesale price vector, w, given

the retailers' order quantities obtained from vector q(p(w)):

(7rd), max Ei(wi - ci) -qj(p(w)), s.t. w > 0.

The total profit in the supply chain 7rd is given by 7ra A (rd)s + Ei(7rd)ri.

In a coordinated supply chain, a central authority decides the retail prices across
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the chain with the objective to maximize the chain-wide profit:

7rc A max Ei(pi - ci)qi(p), s.t. p > 0, q(p) > 0.

Proposition 2.2.9 Under Assumptions 2.2.1 to 2.2.5, there exists a unique equilib-

rium to the decentralized supply chain problem. The equilibrium output level and the

total profit are given by

qd = Tda(T + 2Bd)- 1 Bd(Pd - c), and (2.1)

7rd = (Pd - c)Trd(Fd + 2Bd)~1 Bd(Pd - c). (2.2)

Under Assumptions 2.2.1 to 2.2.4, there exists a unique solution to the centralized

supply chain problem. The corresponding output and profit are given by

c= Bc(pc - c), and (2.3)

7rc = (pc - c)TBc(pc - c). (2.4)

Proof of Proposition 2.2.9. We first derive conditions on the decision variables

based on the optimality condition. For both the centralized and decentralized settings,

we will show that there exists a unique optimal solution to the unconstrained problem.

Next, we show that with the nonnegativity constraints, the solution is feasible. Thus,

it is also the unique optimal solution to the original constrained problem.

The decentralized problem:

Consider the decentralized supply chain problem for each retailer i, given a wholesale

price w, in the equilibrium, the output level must satisfy qd = 'd(Pd - Wd), where

rd is the diagonal matrix with matrix Bd. Substitute Wd = Pd - ]P-lqd into the

supplier's objective, i.e., (7rd)s = qa'(pd - l qd - c). Taking the first order condition

with respect to Pd, and since Bd is symmetric by Assumption 2.2.2, we obtain the
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following condition that

qd - Bd(pd - c) + 2Bdrd-7qd = 0 = (rd + 2Bd)L' lqd = Bd(pd - c).

Thus, we have shown that qd = 'd(Fd + 2Bd)- 1 Bd(pd - c), which is nonnegative

by Assumption 2.2.5. To show that nonnegative constraints are satisfied, notice that

Pd = c + (F (Fd + 2Bd)>Bd) 1 qd = c + (Bj + 2Ld 1)qd. By Assumption 2.2.2 that

matrix B is a M-matrix, thus, its inverse is nonnegative. r 1 is a positive diagonal

matrix. Therefore, Pd > c > 0. In addition, substituting qd and qd, the wholesale

price is shown to be wd = C + (Bd 1 + rd 1)qd > c. Moreover, we have established

Pd > Wd > c, that is, "double marginalization" exists with nonlinear demand and

asymmetric retailers in a decentralized supply chain. Lastly, the chain-wide profit

in a decentralized supply chain is given by 7rd = (Pd - c)'q = (Pd -- c)TrFd(Ld +

2Bd)- 1 Bd(pd - c).

The centralized problem:

The first order optimality condition for the centralized supply chain problem is given

by Bc(pc - c) = qc. To show that qc satisfy the nonnegativity constraints, notice

that when the demand function q(p) is concave,

q(O) - qc < -Bc(O - pJ =- q(O) - qc < Bcpc.

This implies that qc > q(O)-qc-Bec #4 2qc > q(0)-Bcc =4 qc > 1(q(0)-Bcc) > 0.

We obtain the last inequality by Assumption 2.2.4. To show pc > 0, by the optimality

condition, pc - c = BC-'qc. Because BC-' is nonnegative componentwise (by property

of a M-matrix) and qc > 0 which we have just shown, pc - c > 0 #> pc > c.

On the other hand, suppose the demand q(p) is convex, then

q(pc) - q(0) > -Bope =4 (Bc + Bo)pc > q(0),

where B 0 is the matrix evaluated at q = 0. Bc + B 0 is a M-matrix and its inverse is

nonnegative. Thus, with positive q(0), pc > (Bc + Bo)>q(O) > 0
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Lastly, substituting the optimality condition of qc into the objective, we obtain

that the total profit is 7rc = qj(pc - c) = (Pc - c)TBc(pc - c). D

The proof of Proposition also shows that with nonlinear demand and imperfect

competition, the existence of "double marginalization" in a decentralized supply chain

continue to hold, i.e., Pd > Wd > c.

2.3 Efficiency with Affine Demand

In this section, we investigate the performance of a decentralized supply chain with

imperfect competition when the demand function is affine. By doing so, we isolate

the impact of imperfect competition from demand nonlinearity and we will address

nonlinear demand in the next section. Note that with affine demand, the Jacobian

matrix B is constant and independent of the values of Pc or Pd.

Before we delve into the analysis, we would like to highlight that the impact of

imperfect competition could be ambiguous at the first glance. For example, with

affine demand, one can show that Pd Pc. One might conjecture that every retailer

in the decentralized chain sells few units due to the higher retail price. The following

numerical example shows, however, that this relationship may fail to hold. Consider

the following setup with 2 retailers, let demand q1(p) = 0.7413 - pi + 0.8039 P2,

1.4006
q2(p) = 0.1048 - P2 + 0.803 9 pi, c1 = = 0. This results in Pd = ;>

1.1107

1.1670 0.2336 0.3706
Pc J. However, qd = and qc = . In this case,

0.9906 0.1201 0.0524

(qd)2 > (qc)2. In general, lower sales volume for every retailer, in the decentralized

setting, can only be guaranteed in special cases such as noncompeting or symmetric

retailers.

2.3.1 Lower and upper bounds on performance metrics

We investigate three aspects of performance, the first two address the chain-wide

behavior from the channel members' perspective and the last focuses on the consumers
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and the society as a whole. We begin with chain-wide profit, defined as the fraction

of possible profit that the decentralized setting attains compared to the centralized

setting, i.e., rd/rc. Next, we consider market penetration, that is, the total sales in

a given market. The deeper the penetration, the higher the sales volume. We are

interested in finding out the fraction of sales volume captured in the decentralized

setting, i.e., eTqd/eTqc, where e = (1, ..., 1) E Rn. Next, The third performance

metric analyzes the behavior of the supply chain from a societal perspective. The

quantities of interest are consumer surplus (CS) and total surplus (TS) which is

defined by aggregating consumer surplus and producer surplus which is the channel

profit in this model.

Theorem 2.3.1 When the demand function is affine with a price sensitivity matrix

B, the chain-wide profit, market penetration, consumer surplus and total surplus of

a decentralized supply chain with imperfect competition are bounded as follows,

3 7r< 3 - 2r(2)(B) 3 - 2r(1)(B)

4 - re - (2 - r(2 )(B)) 2 - (2 -r(1)(B))2'

1 eTqd 1 1

2 - eTqc - 2 - r( 2)(B) - 2 - r(1)(B)'

1 CSd 1 1- < Cd< 1 < 1and
4 - CSc - (2 - r(2)(B)) 2 - (2 - r(i)(B)) 2 '

7 TSd 7 - 4r(2)(B) 7 - 4r(i)(B)

12 - TSc - 3(2 - r( 2 )(B)) 2 
- 3(2 - r(i)(B))2

The lower bounds are tight with noncompeting retailers and the upper bounds are tight

with symmetric retailers.

Since the techniques used to prove bounds on the performance metrics are similar,

we will present the proof on 7rd/7rc below. The proofs for the other metrics can be

found in the Appendix.

Proof of Theorem 2.3.1 on 7rd/7rc. This proof consists of three main steps.

Step 1: Preliminary work. Using Equation (2.2) and (2.4) derived in Propsition

2.2.9, we have an expression for the ratio of the profit obtained in the two settings,
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i.e.,

7rd (Pd - c)TFp(F + 2B)- 1 B(pd - c) (2.5)
7rc (Pc - c)TB(pc - c)

We will now find an expression to express qd in terms of Pc. With affine demand,

q(p) = q(0) - Bp, i.e., qc = q(0) - Bp, and qd = q(O) - Bpd. Thus, qd + Bpd -

Bc = qc + Bpc - Bc. Use the optimality conditions shown in Equation (2.1) and

(2.3), we obtain

(T (r + 2B)- 1 B + B)(pd - c) = 2B(pc - c)

z (F + B)(F + 2B)- 1 B(pd - c) = B(pc - c)

SPd-c=B-l(r+2B)(FP+B)-B(pc-c).

Substituting Equation (2.6) into Equation (2.5) and with some algebra, it is easy to

show the following:

7 _ (Pc - c)T(2B + F)(B + F)'B(B + )-'F(pc - c) (2.6)
7rc (Pc - c)TB(pc - c)

Step 2: Lower bound. To prove 7rd/7c is always greater than 3/4, it is equivalent

to prove a composite matrix 1(B) = 4B- 1 (B+FP)]F 1 (2B+FP)(B+)~ 1 - 3B'(B+

)F'BTF1 (B+F)B- is a copositive matrix. To see this, let x = B(B+r)-IT(pc-

c), which is nonnegative under Assumption 2.2.5. Notice that if 1(B) is copositive,

by its definition, xT (B)x > 0 must hold. It implies that

xTp(B)x > 0

m (B(B + F)-F(pc - c))T @(B) (B(B + r)-ir(pc - c)) > 0

4(pc - c)T(2B + F)(B + F)'B(B + )~1J7(pc - c) > 3 (pc - c)TB(pc - c)

I(pc - c)T(2B + F)(B + F)-'B(B + F)-1 J(pc - c) 3

(pc - c) TB(pc - c) - 4'

where the right-hand-side is the same expression as what we have derived for 7rd/7rc
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in Equation (2.6).

Denote G = F- 0 .5Br-0.5 , whose diagonal elements are normalized to 1 and its

(i, j)th element is defined as $ij/ / 3-jjp. It is straightforward to show that I@(B) =

F1 /2 1(G)r 1/2 . Note that r is a diagonal matrix with positive elements, thus if we

can show that 1(G) is copositive, then ID(B) must also be copositive. To prove this,

4(G) = 4G-'(G + I)(2G + I)(G + I)-' - 3G- 1 (G + I)G(G + I)G-1

= 4G- 1 (G + I) + 4G- 1 (G + I)G(G + I)-' - 3G- 1 (G + I)2

= 41 + 4G- 1 + 41 - 3G-'(G 2 + 2G + I)

= 21+ G- 1 - 3G

= (G- 1 + 3I)(I - G).

Because B is a M-matrix, G is also a M-matrix. The first term is the sum of an

inverse M-matrix G- 1 and an identity matrix, therefore, it is also nonnegative. Also,

G has diagonals equal to 1 and nonpositive off-diagonals, thus, I - G is also nonneg-

ative. D(G) which is a product of two nonnegative matrices is also nonnegative. A

nonnegative matrix is copositive and this establishes 3/4 as a lower bound.

To show that this bound is tight, consider the case with noncompeting retailers,

i.e., #ij = 0 for all j # i. Thus, the sensitivity matrix B becomes a diagonal matrix,

i.e., r = B. The profit expression in Equation (2.6) becomes,

7d (Pc - c)T(3r)(2r)-2p 2 (pc - c) 3

ire (Pc - c)Tr(pc - c) 4

This has shown that the lower bound is tight.

Step 3: Upper bound. Denote w = B1/2 (pc - c). Rewrite the ratio grd/ 7rc in

Equation (2.6) as follows,

7rd wTB-1/ 2 (2B + P)(B + )-1 B(B + r)-rB-1/2w
7re WTw

wT B-1/ 2 (I + B(B + F)-')B(I - (B + T) B)B-1/2W
wTw
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w TB-1/2 (B - B(B + F) IB(B + F)~1B)B-1/2w
wTw

w I - Bi/2(B B(B + )- 1 B(B +F)- /2W

wTw

wT(I - A2 )w
wTw

where A = B 1 /2(B + F)-1 Bi/ 2. Note that matrix I - A2 is symmetric and can be

diagonalized with a unitary matrix which corresponds to the eigenvectors. Using the

Rayleigh-Ritz Theorem, the ratio 7rd/rc must be bounded by the maximum eigenvalue,

that is,

- < Amax(I - A2 )

= 1- Amin(A 2 )

= 1 - Amin(A). (2.7)

The last equality holds because matrix A is positive definite.

Amin(A) = Amin(B 1/2(B + r) B/2)

1

Amax(B-1/ 2(B + P)B- 1/ 2 )
1

Amax (I + B- 1/ 2FB- 1/ 2 )
1

1 + Amax(B- 1/2 FB- 1/2)'

Since B- 1/2 FB- 1/2 - B- 1/ 2(FB-)B1/2 and TB 1 - 1/2(F1/ 2 B-1F1 / 2 )r- 1/ 2, which

implies that B- 1/2FB-1/ 2, FB- and r1/ 2B-'r1/2 are similar matrices, i.e., they all

have the same eigenvalues.

Ami(A) 1
1 + Amax(F 1/ 2B- 1F1/ 2 )

1

m (F-1/ 2 Br-1/ 2 )
1
1 + where G = r -/2BI-1/2

1+Ami.(G)
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Figure 2-1: The upper bounds for the performance metrics (which are tight for sym-
metric retailers).

Amin(G)
1+ Amin(G)

Substitute it into Equation (2.7) and we obtain the upper bound in terms of the
minimum eigenvalue of G as shown below.

7d< 1-fAmin (G) 2

?rc - \+ Amin(G)f)
1 + 2Amin(G)

(1 + Amin(G))2-

Because the inequality (2.8) is decreasing in Amin(G), we can further bound the ratio
by lower bounding Amin(G). Substitute the inequalities in Lemma A.2.1, we obtain
the corresponding upper bounds on the chain-wide profits,

(2.8)

1 + 2Amin(G)
(1 + Amin(G)) 2

1 + 2Amin(G)

(1 + Amin(G)) 2

< 1+ 2(1 - r(2)(B))

- (1 + 1 - (B))2

3 - 2r(2)(B)) 3
~ (2 - r(2)(B)) 2

1 + 2(1 - r(1)(B))
(1 + 1 - r(1)(B))2

- 2r(1)(B))
2 + r(1)(B)) 2

Because r( 2 ) (B) < 1, all four performance metrics considered are always lower

in the decentralized supply chain than that of a centralized setting. Nonetheless,
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Theorem 2.3.1 states that as the competition index increases, the channel performance

improves. In particular, the worst case for the decentralized setting occurs in the

absence of horizontal competition (noncompeting retailers), i.e., r(2)(B) = 0. Note

that as r(2)(B) -+ 1, the performance of the decentralized setting approaches that

of a centralized setting. Figure 2-1 depicts graphically how the performance metrics

vary with competition index, r(2)(B).

Prior work on supply chains with symmetric retailers (see for example, Adida and

DeMiguel 2010 and Cachon and Lariviere 2005) concluded that efficiency improves

as the number of symmetric retailers increases. Intuitively, as the number of retailers

grows to infinity, the retailers become price-takers with zero profit margin, and hence

it eliminates the double marginalization effect. We extend the analysis to asymmetric

retailers. We show that the level of competition in the retail market depends on the

number of retailers and their relative price elasticities. Therefore, it is possible for

a decentralized chain with a small number of retailers to also achieve high efficiency,

if their products are highly substitutable. Moreover, the bounds in Theorem 2.3.1

also suggest that the performance of a decentralized supply chain predominantly

depends on the two "strongest" retailers, whose products exhibit the highest levels

of competition.

To explain this phenomenon, consider the comparison between the marginal gain

of an individual retailer's profit in the decentralized setting ((7d),/&pi) and the

marginal gain of the chain-wide profit in a centralized chain (O7rc/&pi):

vertical externality horizontal externality

9(rri)d 07r, (2.
- - + (wi - ci)#ii + Z(p3 - cy)#30 . (2.9)

As highlighted in Equation (2.9), an individual retailer in the decentralized setting

faces two types of externalities: The vertical externality occurs when the supplier

charges a price higher than her marginal cost, while the horizontal externality results

from the cross-elasticity effect of the demand.

As #ij > 0 for all i, the vertical externality is always positive, i.e., indicating
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Source Industry Products r(2) (B) 7rd/7rc

Chintagunta et al. (2002) Frozen pasta 5 0.45 87%
Ellison et al. (1997) Pharmaceutical products 3 0.750 96%
Mela et al. (1998) Cleaning supplies 9 0.875 98.7%

Table 2.1: Illustrative empirical results

that the retailer has an incentive to raise his price so as to increase his profit. The

horizontal externality can be either positive or negative, depending on the type of

products that the retailers are competing with. To be specific, when retailers are

competing with substitutes as considered in this work, ji < 0, for all j f i. It

means that the horizontal externality is negative, indicating a downward pressure to

offset the vertical externality as the two externalities act in opposite directions. In

other words, when products are highly substitutable, i.e., the intensity of horizontal

competition is high, the retailers have to undercut prices to attract sales. As a result,

it reduces the gap of double marginalization which in turn, promotes the channel

efficiency. When the horizontal externality is sufficiently large to balance the vertical

externality, the decentralized setting behaves as a centralized chain.

We conclude this subsection with three examples drawn from the literature that

we use to estimate the chain-wide profit ratio for three different industries. The

results are summarized in Table 2.1. The cited papers provide empirical estimates

of price sensitivities of competing substitutes. We symmetrize the matrix by using

(B + B')/2. We see that for all three examples, the performance of the decentralized

supply chain is comparable to the centralized setting. It implies that in a supply

chain with substitutable products, price-only contracts are quite "efficient". Thus,

the room for benefits from using more elaborate contracts, which are often costly to

implement, could be limited. This may partly explain the observation by Cachon

(2003) that price-only contracts are commonly used in practice despite a proliferation

of complex coordinating contracts proposed in the academic literature.
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2.3.2 Rent extraction in decentralized supply chains

As with all supply chain structures, the retailers and the supplier are indirectly inter-

ested in the aggregate performance of the supply chain (e.g., chain-wide profit) and

more directly interested in their own share of that profit. In this section, we analyze

rent extraction of the individual channel members in a decentralized chain, that is,

the profit allocation between the supplier and all the retailers. We use (7rd)s and (7rd)R

to denote the profits earned by the supplier and all the retailers in a decentralized

setting, where (7d)R = Ei=i(7d)ri.

Proposition 2.3.2 In a decentralized supply chain, the profit allocation between the

retailers and the supplier is bounded as follows,

1 (7rd)R 1 - r(2)(B) 1 - r(1)(B)

2 - (7r)s 2- r(2)(B) - 2 - r(1)(B)

where the lower bound is tight with symmetric retailers and the upper bound is tight

with noncompeting retailers.

Price-only contracts guarantee the supplier with a higher profit share. Being a leader

in a Stackelberg game, the supplier has the advantage of selecting the most favor-

able contractual terms by anticipating the retailers' responses. When retailers are

independent (i.e., r(2)(B) = 0), the supplier's profit exactly doubles that of all the

retailers.

The supplier also benefits from horizontal competition as her lion share of the

profit grows further. We observe that the supplier's profit increases while the re-

tailers' profits decrease with competition index. This result is consistent with our

previous analysis: Intense competition induced by high level of product substitution

essentially transfers the market power from the retailers to the supplier. For the case

of symmetric retailers, in the limit as r(2) (B) -+ 1, retailers become perfect price-

takers, leaving the entire profit share to the supplier. Based on the analysis, we see

that price-only contracts are desirable from the supplier's perspective, which offers

another potential explanation to their popularity in practice.
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2.3.3 Impact of retailer asymmetry

So far, we have developed several bounds that measure the performance of a decen-

tralized supply chain relative to a centralized setting. We showed that the bounds are

tight for special cases such as noncompeting or symmetric retailers. In this section,

we will study the impact of asymmetry among retailers on the channel performance.

As the behavior of the bounds is quite similar for all three performance metrics, we

will use the chain-wide profit ratio, i.e., Tr/7rc, as an example.

Consider the following supply chain setting with n retailers:

[ rin -1i... -1

, qqoz B -1 nk -1
c= - q(0)= - B=

c q(0)-_ - -- 1 . -1 nk

Let k denote the asymmetry factor. The competition index is given by ri (B) =

J and r 2(B)=...= r(B) = " 1 = /k. When k = 1, all the retailers are symmetric.

Figure 2-2 shows a plot of rd/rc with respect to k for a setting with n = 3 retailers.

Proposition 2.3.3 The channel performance decreases with the asymmetry factor

k.

As the asymmetry factor k increases, ri(B) decreases for all retailers except i = 1.

Decreasing ri(B) implies weakening of retailer i or reduced competition intensity. We

have shown in Theorem 2.3.1 that the channel performance is heavily dependent on

the two "strongest" retailers in the market for substitutes, i.e., the "stronger" they

are (or equivalently, more intense the competition is), the better the overall channel

performance. As a result, as k increases, the asymmetry between the two "strongest"

retailers increases (i.e., one of them becomes "weaker"), the channel performance

deteriorates as shown in Figure 2-2.

Recall that the Two-Firm Ratio can be expressed as a geometric mean (see Defini-

tion 2.2.7) which captures the asymmetry between the two retailers with the highest
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Figure 2-2: The plot shows the exact 7rd/7rc and two upper bounds in terms of the Two-
Firm Ratio r(2)(B), and the One-Firm ratio r(1)(B), with respect to the asymmetry
factor k.

competition indices. For a fixed mean, as the asymmetry increases, r(2) decreases.

Since 7rd/7rc increases in r(2 ), the asymmetry between the two "representative" retailers

has a reverse impact on the channel performance, i.e., 7rd/7rc decreases in asymmetry.

In other words, more imperfect the competition induces a more inefficient decentral-

ized supply chain.

The analysis also highlights the benefit of using the Two-Firm ratio, especially

in settings where there is a significant difference the two retailers with the highest

competition indices (e.g., Walmart versus local grocery stores). For the given setting,

the One-Firm ratio, r(1)(B) = 6, is a constant, while the Two-Firm ratio, r(2 )(B) =

J/vk, decreases in k. Essentially, the One-Firm ratio estimates the performance of

the entire supply chain based on a single retailer. As shown in Figure 2-2, the errors

from using the bound in terms of r(1) (B) grow rapidly since r(1) (B) is independent of

k and ignores retailer asymmetry. For instance, when k = 20, the exact ratio of 7rd/7rc

for complement is 0.71, whereas the bound predicted by r(1)(B) stays at 0.44. In

contrast, the bound in terms of r(2)(B) estimates the exact value with errors around

5%, since r(2) (B) captures the asymmetry between the two "representative" retailers
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Figure 2-3: The impact of nonlinearity: rd/rc with respect to the degree a, where
the demand function is given by p(q) = p(O) - #pa.

who predominantly determine the channel performance and provides a more accurate

estimation. We will present a more comprehensive computational experiment to

compare the tightness of these two bounds in Section 2.5.

2.4 Efficiency with Nonlinear Demand

In this section, we will investigate the performance when the demand is nonlinear.

We focus on the total profit as we have seen in the earlier section that the other

metrics such as market penetration, social welfare and consumer surplus behave very

similarly. We will begin with an example. Consider the following supply chain with a

single retailer who faces a demand function: p(q) = p(O) - Op'. This function can be

convex, affine and concave, depending on the value of degree a. To be precise, when

0 < a < 1, p(q) is convex; a = 1, p(q) is affine; when a > 1, the function is strictly

concave. Figure 2-3 shows the value of Fd/rc with respect to the degree a.

Figure 2-3 shows that the efficiency of the decentralized supply chain increases

with a. In particular, when a = 1 (affine demand), the total profit of a decentralized
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supply with a monopoly is exactly 3/4 of the optimal profit. When a < 1 (convex

demand), the efficiency is lower than 3/4. Contrast this with a > 1 (concave demand),

the efficiency increases above 3/4.

We have already shown in Theorem 2.3.1 that with affine demand and noncom-

peting retailers, efficiency of a decentralized supply chain in terms of profit is exactly

3/4. Based on the example as shown in Figure 2-3, compared to affine demand,

efficiency of a supply chain is higher with concave demand and lower with convex de-

mand. In the following two subsections, we will generalize these results on nonlinear

demand and derive upper and lower bounds on the profit ratio when is also imperfect

competition.

With nonlinear demand function, the Jacobian matrix of the demand depends on

the value of p. We will use Bd and Bc to differentiate this matrix evaluated at Pd

and pc respectively. In particular, r(1)(Bc) and r(2)(Bc) refer to the One-Firm and

Two-Firm ratio with respect to the Jacobian matrix Bc.

2.4.1 Concave demand

When the demand function is concave, for a given price p, the demand q(p) > q(O) -

B5 where B is the Jacobian matrix evaluated at j5. To quantify the performance,

we will make use of the Jacobian similarity property of a nonlinear function (see

Definition 2.2.8).

Theorem 2.4.1 When demand function q(p) is concave with p, the efficiency of a

decentralize supply chain is higher than that with affine demand. In particular, the

total profit in a decentralized supply chain is bounded between

3 <7d 3 - r( 2)(Bc) 3 - r(1)(Bc)
4 - 7rc - (2 - r(2 )(Bc)) 2 - (2 - r()(Bc))2'

where K1 > 1 is the Jacobian similarity factor.

Proof of Theorem 2.4.1. Without loss of generality, we will set the constant

marginal cost c = 0 in this proof.
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Lower bound: By concavity of the demand function,

qc - qd -Bd(pc - Pd)

-qc + Bapc < qd + Bdpd.

Substituting the equilibrium condition derived in Proposition 2.2.9, we obtain

(Be + Bd)pc (rd(Fd + 2Bd)~1 Bd + Bd)pd

= 2(Fd + Bd)(Fd + 2Bd)-Bdpd.

Since Bc + Bd is a M-matrix by Assumption 2.2.2, (Bc + Bd)- 1 is nonnegative and

we obtain the inequality,

(2.10)pc < 2(Be + Bd)- (Fd + Bd)(Fd + 2Bd) Bd Pd

One upper bound for -rc = p'Bcpc can be obtained by using Equation (2.10), i.e.,

7re 4pdt(Bc + Bd) 1Bc(Bc + Bd)-4'dpd

We will now multiply (2Bd)(2Bd)- 1 = I and BdB-1 = I to the inequality,

rFd < 4pid (Bc + Bd) 1 (2Bd)>1(2Bd)BcBdBd1 (2Bd)-1(2Bd) (Bc + Bd)-<Ddpd.

Using the definition of the maximum eigenvalue, it implies that

7C < Amax{(Bc + Bd)~2(2Bd)2BcB-1}4pT<D (2B)d-B(2B)dpd

Amx{(Bc + Bd)--24BdBc}p T ) dB-<dpd. (2.11)

First notice that Amax{(Bc + Bd) 2 4BdBc} > 0 since the composite matrix is positive
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definite. Next, decompose the matrix,

Amax{(Bc + Bd)-24BdBc}

=Amax {I - ((Bc + Bd) 1 (Bc - Bd)) 2 1

=1 - Amax{((Bc + Bd)-(Bc - Bd)) 2 1

<1.

Thus, Equation (2.11) can be reduced to 7rc < Pd(dBdJdpd. An lower bound on

the profit can be written as

7rd pTFd(Fd + 2Bd) 1 Bd (Pd)
7rc pT4DB -'4)dpdCPd'~~'dd .(.2

Notice that every element in this expression only depends on the value of q, the

subscript d can be dropped for simplicity.

In the proof for Theorem 2.3.1 with affine demand (i.e., constant B), we have

shown that Pd = B-1 (B + F)(2 + BF)-1 Bpc. Substitute this equation into Equation

(2.6), followed by some algebraic manipulations, one can show that the expression

is exactly the same with the right-hand-side in Equation (2.12). Therefore, we have

shown that 3/4 is a lower bound with concave demand.

Upper bound: By concavity on the demand function,

qd - qc < -Bc(pd - Pc)

-q+ Bcqd < qc + Bcqc.

By the optimality condition shown in Proposition 2.2.9,

(rd -F+ 2Bd)- 1 Bd + Bc) Pd< 2Bepc. (2.13)

The composite matrix Q is a M-matrix and its inverse matrix is nonnegative. There-
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fore, Pd < 2Q- 1Bcpc and an upper bound on lrd is given by

7r p = P Tp(ra + 2B)- 1 Bdpd

4pT BcG 1 Lfd(Fd + 2Bd)- 1 Bd(Q- 1 Bcpc). (2.14)

Note that with the affine demand, i.e., Be = Bd, Equation (2.13) becomes an equality

and Q = 2(Bc + Tc)(Fc + 2Bc)- 1 Bc = f2c. Equation (2.14) is simply,

7r = pT (rc + 2Bc)(Bc + Tc)-Irc(Bc + Tc)- 1 Bcpc = (pc).

With nonlinear demand, by using the Jacobian similarity property, there exists si >

1 such that 7d Kif(pc). Using the definition of the maximum eigenvalue of a

positive definite matrix, an upper bound on , is given by i < AmaxQ -2 Q2(Bf +

2F- 1)-'(Bc'+2Fe 1 )}. Note that when Bd= Bc, then , = 1. With this nonlinearity

factor, we obtain an upper bound on the decentralized profit, i.e.,

rai f(pc)

I~c lIc

pT (c + 2Bc)(Bc + Tc)'Fc(Bc + Tc)-Bcpc
KpTB cpc

Notice that the right-hand-side looks exactly the same as expression with affine de-

mand in Equation (2.6), except matrix Be and Ic depend on the optimal solution

pC. With the same argument in the proof for affine demand, we can obtain an upper

bound on 7rd/7rc which is in terms of the competition index evaluated at the Pc, i.e.,

7Td 3 - r( 2)(Bc) 3 - r(1)(Bc)

rc (l2- r(2) (Bc))2 - (2 -r()(Bc
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2.4.2 Convex demand

When the demand function is convex, for a given price j5, the demand q(p) < q(0) -

BP, where B is the Jacobian matrix evaluated at p.

Theorem 2.4.2 When demand function q(p) is convex with p, the efficiency of a

decentralized supply chain is lower than that with affine demand. In particular, the

total profit in a supply chain is bounded between

3 < < 3 - r( 2)(Bc) 3 - r(1)(Bc)

4K2 7- (2 - r(2)(B())2 - 2 -r()(Bc))2

where '2 and r13 are the Jacobian similarity factors.

Proof of Theorem 2.4.2. With convex demand, qd - qc > -Bc(pd - Pc).

Lower bound : It is easy to show that when the demand is convex, the inequalities

in Equation (2.13) and (2.14) switch its sign (compared to the case with concave

demand), i.e.,

lr 4p Bcil'rd(Fd + 2Bd) 1B -1 Bcpc, (2.15)

where the composite matrix Q is defined in Equation (2.13).

With nonlinear demand, by using the Jacobian similarity property, there exists

K2 > 1 such that 7d > y f (pc), where f (pc) = pT'(Fc + 2Bc)(Bc + Lc)~'1 Fe(Bc +

'c)-'Bcpc. By the definition of the minimum eigenvalue, we can obtain a bound on

r, 2 as follows,

1
- > Aminf 2 2(B- 1 + 2Fj)~1 (Bc1 + 2F- 1)}

1

Amax{ 2Q -2(Bdj + 2 Tl)(B I + 2J 1)- 1 }

- "2 < Amax{2 2 (Bd ' + 2F-1)(Bc1 + 2F')-1}.

With this Jacobian similarity factor, we obtain a lower bound on the decentralized
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profit, i.e.,

7r > 1 f(PC)
7rc K2 7c

1 pT (Fc + 2Bc)(Bc + Fc)-'Tc(Bc + rc)- 1Bcpc
K2 p[Bcpc

Notice that the right-hand-side after ' looks exactly the same as expression with
K2

affine demand in Equation (2.6). We can use the same techniques to prove the lower

bound in Theorem 2.3.1 to show that the lower bound on profit with concave demand

is 4, with K2 > 1.

Upper bound: By convexity,

qc - qd -Bd(pc - Pd)

-> (Bc + Bd)pc 2 (Fd + Bd)(Ld + 2Bd)- 1 Bd Pd.

4Fd

Since 1 d is a M-matrix, its inverse is nonnegative and we obtain the inequality,

Pd -1(B + Bd)pc. (2.16)
2

The profit in a decentralized setting is given by Equation (2.2). With Equation

(2.16), an upper bound can be readily written as follows,

7rd < 4 p (Bc + Bd)4D-ird(Fd + 2Bd)- 1Bd1g 1 (Bc + Bd)pc.-4

With the Jacobian similarity property, there exists a nonlinearity factor K3 > 1 such

that 7rd K3f(pc). One upper bound on K3 is given by

K3 < Amax{(Bc + Bd)2 (2Bc)-- 2  2  (2F- 1 + B-)- 1 (2Fc- + B-')}.

The rest of the proof follows the same argument as that for the upper bound in

Theorem 2.4.1. 0

The bounds shown for concave and convex demand are very similar in the sense
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that the upper bounds suggests that a decentralized supply chain becomes more

efficient as the competition in the market increases. The notable difference between

Theorem 2.4.1 and Theorem 2.4.2 is that with convex demand, the worst case could

be lower than 3/4.

To provide some explanation to the behavior with demand nonlinearity, note that

the inefficiency in a decentralized supply chain is created by the successive markups

imposed by the supplier and the retailers. A affine demand with a constant curvature

produces a change in demand that is proportional to the price change. The same

price change induces a change in demand which is proportionally smaller with concave

demand, and larger with convex demand. Thus, the same markup in a decentralized

supply chain will lead to a proportionally larger (smaller) demand drop with a convex

(concave) demand, resulting in a larger (smaller) decrease in the total profit. Although

it should be apparent that the prices are different with different demand functions,

the intuitive explanation seems to agree with our analysis.

Our result on demand nonlinearity is consistent with the studies in oligopoly

theory. For example, Malueg (1994) show that a monopolist facing a concave demand

will produce a greater percentage of the efficient output level than if demand had been

convex. Consequently, the relative welfare loss due to a monopoly is less when demand

is concave rather than convex. We have shown that for supply chains, in terms of the

worst-case performance, the inefficiency resulting from decentralization is relatively

smaller when demand is concave rather than convex. Nonetheless, we would like to

highlight that existing results in oligopoly theory often do not generalize to the multi-

tier supply chain setting. For example, Farahat and Perakis (2009) have shown that

the efficiency (in terms of total profit) of an oligopoly decreases with competition,

whereas we have shown that a decentralized supply benefits from competition.

One interpretation of the shape of the demand curve is linked to the distribution of

reserve price in the consumers' population. One could refer reserve prices to income,

so that the shape of the demand curve can be derived from income distribution. In

particular, three kinds of society give rise to three shapes of consumers' demand: A

affine demand curve arises from a uniform distribution of reserve prices. A concave
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demand curve arises from a distribution of reserve price with a wide number of con-

sumers having a similar middle reserve price, only few "rich" and few "poor". By

contrast, a convex demand curve arises from a polarised distribution of reserve prices

with most consumers having low reserve prices, few are "rich", and only slightly more

are in the middle. Theorem 2.4.1 and 2.4.2 imply that a decentralized supply chain

tends to be more efficient when the majority of the population has the similar reserve

prices, and less efficient when the most consumers have low reserve prices and are

sensitive to prices.

2.5 Tightness of Bounds

In the earlier sections, we have quantified several bounds on the performance of

decentralized supply chains and proved that they are tight under special instances.

This section addresses a natural questions that arises in the context of our analysis:

How "good" are our bounds in general?

The first experiment is used to illustrate the tightness of the bounds for a gen-

eral setting with an arbitrary number of asymmetric competing retailers with affine

demand. For a comprehensive analysis, besides the bounds in terms of r(2 ) (B) and

r()(B), we include an additional bounds in terms of the minimum eigenvalue of the

normalized price sensitivity matrix as shown in Equation (2.9). It is crucial to note

that we are able to compute bounds with information only based on the price elas-

ticities. Neither the supplier's marginal cost c nor the maximum demand q(O) is

needed.

The experiment consists of 35 scenarios and the results are shown in Figure 2-

4. For each scenario, the number of retailers is uniformly picked between 2 and 20.

Inputs, including the price sensitivity matrix, the vectors q(O) and c are also randomly

generated. We first compute the optimal equilibrium solution and obtain the exact

ratio, 'Fd/wr. Based on the price sensitivity matrix, we also compute the corresponding

eigenvalues, the degree of substitutability and their corresponding bounds.

The bound in terms of the eigenvalue of the price sensitivity matrix gives the
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Figure 2-4: A simulation experiment for an arbitrary
ers: The plot shows the exact ratio rd/7rc and three
eigenvalue, r(2)(B), and r(1)(B).
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Figure 2-5: Histograms for errors between the exact values of 7/7rc and
bounds in terms of r(2)(B) and r(1)(B) respectively for 105 instances.
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most accurate estimation, with a maximum difference within 4% for all scenarios.

The bounds in terms of r(2 ) (B) which uses information of only two "representative"

retailers yield slightly looser estimation with accuracy within 7%. The bounds in

terms of r(1) (B) which is based on a single retailer estimate the channel performance

with accuracy within 12%.

We will now present a more comprehensive simulation experiment to compare the

two bounds in terms of One-Firm and Two-Firm ratio. Figure 2.5 illustrates a result

of a numerical simulation with 10 5 instances. For each instance, we generate a market

structure of 2 to 20 retailers and randomly generate the inputs including B, c and

p(O). We then compute the exact values of the profit ratio 7rd/7rc and the two upper

bounds. Denote the error terms which are the differences between the exact value

and the upper bound in terms of Two-Firm ratio as Ar(2) for all the instances (define

Ar(1) similarly). For each array of the error terms, the elements are grouped into

20 equally spaced bins. The histograms for Ar(2) and ArT() are plotted in Figure

2.5. The x-axis reflects the range of error terms and the y-axis shows the number of

instances that fall within the bins. Figure 2.5 depicts clearly the advantages of using

r( 2) over r(i): The spread of errors is smaller for Ar(2) than Ar(1) (i.e., [0, 0.131] vs.

[0.003, 0.195]); the mean error is also lower for Ar(2) (i.e., 0.0117 vs. 0.0439).

The results highlight a trade-off between accuracy and complexity: In order to

obtain a more accurate bound which is in terms of the minimum eigenvalue, we

need information on the price elasticities of all the retailers. Taking a practical look,

though it is relatively straightforward to estimate price elasticities, the task becomes

increasingly challenging as the number of retailers in the market grows. Measurement

errors in the data are unavoidable and eigenvalues are susceptible to perturbations

(the computational procedure can be very inaccurate in the presence of round-off er-

ror). Furthermore, computing eigenvalues is as difficult as solving the original supply

chain optimization problem and its complexity increases rapidly with the dimension

of the matrix. On the other hand, for the bound in terms of r(2 ) (B), it is sufficient

to select two retailers with the highest degree of complementarity (substitutability).

Thus, the r( 2) (B) bound is particularly useful when there is only enough data to
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make reasonable estimation about the most "representative" retailers in the market.

Moreover, r(2) (B) provides an intuitive explanation on the channel performance as it

implies the strength of the retailers and the degree of asymmetry in the market.

2.6 Extension and Conclusions

One of the assumptions used in this paper is that each retailer carries a single product.

This assumption can be easily relaxed to incorporate a setting where each retailer

carries multiple products. Consider the following supply chain, a single supplier offers

wholesale price contracts to n retailers who carry a set m of products, where m > n.

Retailer i offers product {mi_1 +1, ... , mij, where mo := 0, mn := m, and mi- 1 < mi

for i > 1. When m = n, every retailer only carries a single product. Denote the price

sensitivity matrix as B, where -B is the Jacobian matrix of demand. Let F be a

block diagonal matrix, consisting of n blocks, whose ith block is the square submatrix

of B formed by the rows and columns indexed mi- 1 + 1,..., IM. F is referred to as

the intra-firm price sensitivity matrix. Denote B = B - F as the inter-firm price

sensitivity matrix. For the setting when each retailer carries a single product, r and

B are simplified to the diagonal and off-diagonal matrix of B respectively.

This extended model allows each retailer to carry a bundle of imperfect substitutes

or complements, as lohg as the retailers are viewed as competitors by consumers. That

is, the inter-firm price sensitivity matrix B is nonpositive. It can be shown that the

lower bounds established in Theorem 2.3.1, 2.4.1 and 2.4.2 continue to hold with this

extension.

With multiple products per retailer, the competition indices r(l)(B) and r(2)(B)

need to be defined slightly differently to capture that fact that each retailer also

carries other "competing" products.

Definition 2.6.1 Competition index for product i, ri(B) for i E {1, . .. , M,

ri = |[F 1 ]f\ 1 , where [F-12]i refers to the it" row of the matrix F[-1 B and | is

the L1 vector norm (i.e., |x|1 = E" |xj).
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Remark When each retailer carries a single product, ri(B) is reduced to Defintion

2.2.7.

We normalize the price sensitivity matrix B with the intra-firm sensitivity matrix

to capture the competing effect contributed by other products carried by the same

retailer. With this definition for the competition index, the upper bounds developed

in this chapter also carry through.

Inefficiency caused by competition has been the subject of extensive research in

operations management in recent years. So far, however, primarily cases of symmetric

equilibrium have been analyzed in the literature. In this paper, we provide an in-depth

treatment of analyzing a general setting of a two-tier supply chain with imperfect

competition and nonlinear demand. We present tractable and intuitive tight upper

and lower bounds on performance metrics such as market penetration, chain-wide

profit, consumer surplus and total social welfare.

We first propose a measure to evaluate competition in a supply chain with asym-

metric retailers. We show that the performance of a decentralized supply chain im-

proves with competition. Moreover, we characterize various performance metrics with

tight bounds by using this measure. We conclude that the performance of a decen-

tralized supply chain is predominantly determined by the two "strongest" retailers.

Asymmetry between the retailers deteriorates the performance. The study on non-

linear demand suggests that compared to an affine demand, a supply chain is more

efficient with concave demand and less efficient with convex demand.

An important take-away from our analysis is that for substitutes, price-only con-

tracts are often "good enough" in the sense that there is limited room for potential

gains from implementing other more complex contracts. In addition, as price-only

contracts disproportionately favor the supplier, she has less incentive to adopt other

contracts. The results provide some partial intuition that may help explain the pop-

ularity of price-only contracts in practice.
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Chapter 3

Price of Anarchy for Supply Chains

with Partial Positive Externalities

3.1 Introduction

The issue of inefficiency in a decentralized supply chain has attracted a lot of attention

since Spengler (1950) introduced "double marginalization", i.e., two price markups,

imposed by an upstream supplier and downstream retailers. The existing literature

typically assumes that the demand of competing retailers exhibits negative externali-

ties (or substitutability), i.e., an increase in one retailer's price induces an increase in

the demand for other retailers' products. Research has shown that substitutability

reduces the double marginalization effect, hence improves the channel performance

Adida and DeMiguel (2010), Cachon and Lariviere (2001).

In this chapter, we focus on positive externalities (or complementarity), i.e., a

decrease in the price of one product results in an increase in demand for all other

products. We investigate the performance of a supply chain with a single supplier and

several downstream retailers. The supplier offers wholesale price contracts to each

retailer who carries multiple imperfect complements, inducing partial positive exter-

nalities. Most existing literature on supply chain performance with positive external-

ities typically assumes perfect complements Carr and Karmarkar (2005), Corbett and

Karmarkar (2001), Wang and Gercliak (2003, 2004), which implies that whenever a
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purchase takes place, a consumer has to purchase one product from each and every

retailer. Most complements in reality only exhibit partial complementarity - more

complement goods are sold compared to the base goods, e.g., games versus game

consoles, software versus hardware, ink cartridges versus printers, etc.

Based on a simple example, we illustrate a surprising phenomenon in a multi-

product setting with partial complementarity - double marginalization may fail to

exist in a decentralized supply chain! By characterizing the degree of complementarity

for imperfect complements, we quantify the performance of a decentralized supply

chain with respect to the centralized setting with upper and lower bounds. We show

that the decentralized supply chain loses at least 25% of the optimal profit. We derive

two lower bounds on its performance with respect to the complementarity effect which

we will rigorously define later. We present the instances when the bounds are tight and

demonstrate their performance in a general setting through numerical simulations.

Discussions on complements in the economics and the industrial organization liter-

ature tend to focus on single-tier oligopolistic settings Arora and Gambardella (1990),

Bulow et al. (1985), Fudenberg and Tirole (1984), Milgrom and Roberts (1995). Most

studies on supply chain performance with complements consider assembly chains Carr

and Karmarkar (2005), Wang and Gerchak (2003, 2004) as opposed to distribution

channels addressed in this work. Netessine and Zhang (2005) studies the impact

of supply-side externalities on supply chains, where the complementary effect arises

through product availability and prices are exogenous. Our work considers demand-

side externalities that arise through prices which are endogenously determined.

3.2 The Model

We consider a supply chain with one supplier who offers wholesale price contracts to

n retailers who carry a set m of products, where m > n. Retailer i offers product

{mi_1 + 1,... , mi}, where mo := 0, mn := m, and mi_ 1 < mi for i > 1. When

m = n, every retailer only carries a single product. In the notation below, we adopt

a convention where vectors and matrices appear in boldface. As is traditional in the
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pricing literature Tirole (1988) Vives (1999), we consider affine demand functions,

q(p) = a - Bp wherea > 0. We assume that the price sensitivity matrix B is sym-

metric, which is a natural consequence of maximizing a quasilinear utility function of

a representative consumer. To model the positive externalities or complements, it re-

quires that qj(p)/&pj < 0 for all i and j, &pi(q)/&qi < 0 for all i, and api(q)/ aqj > 0

for all j # i Vives (1999). The first condition implies that the demand for comple-

ments moves in the same direction when the price of one product changes, whereas

the other conditions suggest that the prices of complements move in the opposite

directions when the supply for one product changes. For instance, if the supply for

product i increases, i's price decreases. This induces an increase in demand for prod-

uct i, which then triggers an increase in demand for its complementary product j,

resulting in an increase in product j's price. Together with the symmetry assumption

on B, it implies that B 1 belongs to the class of M-matrices and the reader is referred

to Horn and Johnson (1985) for details. Let r be a block diagonal matrix, consisting

of n blocks, whose ith block is the square submatrix of B formed by the rows and

columns indexed mi-i +1,... , m. F is referred to as the intra-firm price sensitivity

matrix. Denote B = B - F as the inter-firm price sensitivity matrix. For the setting

when each retailer carries a single product, F and B are simplified to the diagonal

and off-diagonal matrix of B respectively.

For each product, we assume that the production capacity is unlimited and marginal

costs are constant. Let c denote the vector of marginal costs. Our final assumption

is that d := B- 1a > c, implying a > Bc, i.e., the base demand at marginal costs

must be positive. We will refer to this as Assumption (*).

Throughout the paper, we compare the performance of a decentralized supply

chain to a benchmark setting of a centralized setting. Denote the wholesale prices,

retail prices, order quantities and chain-wide profit as w, p, q and r respectively. We

use superscripts d and c to differentiate the decentralized and the centralized settings.

In a decentralized supply chain, the supplier initiates the process by proposing a

wholesale price contract wi to every retailer i with the goal to maximize her profit.

Each retailer then determines his retail prices pi, given the prices set by his competi-
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tors, p-j. We assume Nash Equilibrium has been reached where no single retailer can

increase his profit by unilaterally changing his price. The problem for the supplier

and the retailers can be written as follows:

(7rd),(w) A max(w - c)Tq(p(w)), s.t. w > 0.

(7rd),i(P) A max(pi - wi)Tqi(pi, p-i), s.t. p > 0, qi(pi, p-i) 0.

In a centralized supply chain, a central authority decides production quantities

and retail prices across the chain with the objective to maximize the chain-wide profit

by solving the following problem:.

Trc(p) A max(p - c)Tq(p), s.t. p 0, q(p) > 0.

Proposition 3.2.1 In a decentralized supply chain, wd = (B d + c), Pd = !(B +

F) 4 (2B+F)d+c, qd = !B(B+F)-'Fd, 7rd = NT(2B+F)(B+F)-B(B+Lr) l .

In a centralized supply chain, pc = }(B- 1 + c), qc = !Bd, 7rc = NTBa.

Proof of Proposition 3.2.1 The decentralized problem is solved by backward in-

duction. Since B-1 is a M-matrix, it is positive definite. This guarantees the existence

and uniqueness of a pure strategy equilibrium to the unconstrained problem. We need

to show that the solution obtained from the equilibrium condition also satisfies the

nonnegativity constraint. The order quantities in the decentralized setting can be

written as, qd = 2(B- 1 + F 1 ) 1d. Since B-1 is a M-matrix, F- 1 + B-1 is also a

M-matrix, and its inverse is nonnegative. d is positive by Assumption (*), thus, we

have shown qd > 0. Similarly, we can show that Wd satisfies the nonnegativity con-

straint. For the centralized problem, qc which is a product of a nonnegative matrix

and a positive vector is clearly nonnegative. 0
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3.3 Comparative Studies on Prices and Quantities

In this section, we begin with one example which highlights a interesting phenomenon

that occurs in a decentralized supply chain with partial positive externalities. Con-

sider the following setting with two retailers and three products. Retailer 1 carries the

first two products and the retailer 2 carries the third product. The price sensitivity

matrix, marginal cost, and the maximum demand are given as follows,

0.657 0.231 0.284 0.878 1.432

B= 0.231 0.422 0.154 ,c= 0.290 ,d= 1.373

0.284 0.154 0.611 0.979 1.267

In a decentralized supply chain, the wholesale prices and the retail prices are given by

Wd = (0.879,1.336,1.025) and Pd = (0.871,1.856,1.116) respectively. Notice (Pd)1 -

(Wd)1 = -0.008. Retailer 1 is unable to cover the wholesale price and loses money

every time when product 1 is sold!

This example illustrates a characteristic unique to pricing of complements: the

base product (product 1 in the example) is priced low to generate sufficient sales

volume which stimulates the demand for its complements (product 2). The objective

is to create a level of profit which adequately covers losses sustained by the base

product (otherwise, the retailer is better off by exiting the market). The almost

universal tactic in the desktop printer business involves printers selling for as little

as $100 which include two ink cartridges, which themselves cost around $30 each

to replace. Thus the company prices low on the printers to create the anticipated

revenue flow from selling the ink cartridges.

Proposition 3.3.1 In a supply chain with partial positive externalities,

(a) Wd = Pc > C.

(b) qd < qc.

Proof of Proposition 3.3.1. (a) The inequality can be easily established under

Assumption (*). (b) The order quantities in the decentralized setting could be
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Figure 3-1: The total profit between the decentralized and the centralized settings
with respect to the degree of complementarity for perfect complements. The curve
serves as a lower bound for settings with imperfect complements, where r is replaced
by r( 2) and/or r(i).

expressed as qa = j(B-1 + F-')-ld. Using the Inverse Binomial Theorem, we

can expand the term (B-1 + F-1)-1 = B - (B- 1 1/2]1/ 2B-1 + B-1)-1. B-11/ 2,

F1/ 2B and B' are M-matrices, thus the second term is nonnegative. It follows

that (B-' + )' < B. Since d is positive, we obtain the desired result. D

The supplier in the decentralized setting and the central planner in the centralized

setting charge the same prices and keep a positive markup for every product they dis-

tribute. Any product whose price falls below the manufacturing cost will be dropped.

The example above illustrates that for certain products, the retail price in a decentral-

ized setting could be lower than in the centralized setting. Nonetheless, Proposition

3.3.1 states that for every product, fewer units are sold in the decentralized setting.

3.4 Comparative Studies on the Channel Profit

Decentralized supply chains are widely recognized as less efficient than centralized

settings. The ratio rd/7rc compares the channel profit in a decentralized setting rela-

tive to that in a centralized setting. Quantifying this ratio is essential in predicting

system behavior and in designing appropriate rules of action to improve its perfor-

mance. In the rest of this section, we will give a precise characterization of this ratio

which solely depends on the price sensitivity information, assuming no knowledge of

d, aside from the fact that it is positive.
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To facilitate the analysis with imperfect complements, we consider the following

measure which captures the relative dependence of one product with respect to all

other products available in the market.

Definition 3.4.1 The degree of complementarity for product i, where i E

{1..., m}, ri = |[P4-5]j 1 , where [F- 1B]i refers to the ith row of the matrix F-5

and | is the L1 vector norm (i.e., |x| 1 = E7 |x,|).

Remark When each retailer carries a single product, ri could be simplified as ri =

S 3#ij // 3 ii, where #ij is the (i, j)-element of B.

The degree of complementarity of a product, measures the relative influence of posi-

tive externalities from other available products. It indicates how strongly one product

is dependent on other retailers' products. To be precise, consider the setting when

every retailer carries a single product, the numerator E, #ij measures the aggregate

demand change for retailer i's product triggered by retailer j's price change, the de-

nominator /
3ii reflects the demand change solely contributed by i's own price change.

Thus, a high ri implies a strong need to use i's product with other retailers' products.

When some retailers carry multiple products, ri compares the inter-firm positive ex-

ternalities created by other retailers' products and the intra-firm externalities induced

by other products which the same retailer carries.

By definition, ri > 0. When products are perfect complements, then ri = r for all

i. With imperfect complements, ri varies across the products. In particular, as a unit

change in demand of a base good (computer) induces a larger change in the demand

for its complement good (software), the magnitude of ri is higher for the latter.

Given a market with m products, each with the degree of complementarity ri

defined as before, we introduce the following two indices as "proxies" for the entire

market.

Definition 3.4.2 For a set of m products with the degree of complementarity given

by r = (ri, ... rm),

(i) One-firm index: r(1) = maxi ri.
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(ii) Two-firm index: r( 2) = maxi,4$i p r 3i.

The one-firm index represents the highest degree of complementarity among all avail-

able products, thus, it only requires price sensitivities with respect to that firm. The

two-firm index is defined as a geometric mean of the two highest degrees of comple-

mentarities. This index captures the asymmetry effect between these two products.

To be precise, rewrite r(2) as maxi,,IJi 1(ri + ry) - 1(fi - /j)2, where the second

term decreases with the difference between ri and rj.

Theorem 3.4.3 When retailers carry multiple imperfect complements, the total profit

of a decentralized supply chain is bounded by

3 + 2r) 3 + 2r(2) 7( 3
-~ (2<r2 ) ~ - (3.1)

(2 + r(i)) 2 -(2 + r(2) )2 - 7rc 4

where the two lower bounds are tight with perfect complements, the upper bound is

tight with independent products (i.e., noncompeting retailers).

Proof of Theorem 3.4.3. We first prove the lower bounds. Denote w = 1/2a

and I as the identity matrix. Rewrite the ratio lrd/ 7rc as follows,

7Fd dT(2B + L)(B + F)~'B(B + F)- 117
7rc dTBd
wTB-1/ 2 (2B + L)(B + F>1 B(B + )-irB-1/2W

wTw

wT B-1/ 2 (I + B(B + F)-)B(I - (B + r)"B)B-1/2W

wTw

wTB-1/ 2 (B - B(B + F)-'B(B + r)-'B)B-1/2W

wTw

wT(I - B 1/ 2 (B + F)-'Bi/ 2 B1 / 2 (B + r)-'Bi/2W
wTw

wT(I - A 2 )w where A = B1 / 2 (B + r)-'B1/2
wTw'

> Amin - A 2)

= 1 - Amax(A 2 )

= 1 - A2ax(A), (3.2)
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where the last equality holds because matrix A is positive definite.

Amax(A) = Amax(B 1/ 2 (B + )~1Bi/2)
1

Amin(B-1/ 2 (B + F)B- 1/2 )
1

Amin(I + B- 1/ 2FB- 1/ 2 )
1

1 + A minB12B12

Since B- 1/ 2 FB-1/ 2 - B- 1/ 2 (FB-)B 1/ 2 and TFB-1 = r 1/ 2 (r 1/ 2 B- 1] 1/ 2 )]-1/ 2, which

implies that B- 1/2FB-1/2, B-1 and [1/ 2B-1F1/2 are similar matrices, i.e., they all

have the same eigenvalues.

Amax(A) =
1

1 + Amin (F 1 /2B-1i/2)

1

1 + x(r-/ 2 BP-1 / 2 )

1
1 ma.(G)

Amax(G)

1 + Amax(G)

where G = r-1/2Br-1/2

Substituting this into Equation (3.2), we obtain the lower bound in terms of the

maximum eigenvalue of G,

7rd K1+ Amax(G) 2

7c 1- + Amax(G)

1 + 2Amax(G)

(1 + Amax(G)) 2

Because the inequality is decreasing in Amax(G), we can further bound the ratio by

upper bounding Amax(G). We will show that Amax(G) 1 + r(2 ) < 1 + r(i) and

substitute this into Inequality (3.3) to establish the lower bounds.

To show Amax(G) is bounded from below by the two indices, notice that the matrix

G and F-1 B are similar matrices, thus, Amax(G) = Amax(FT1B). Using Brauer's
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Theorem (see Appendix), we obtain

(Amax(L' 1B) - 1)2 <max rirj
itjlj54i

- Amax(FTB) < 1 + max r ri
lj#2AiV

- Amax(FTB) 1+ r(2)(B). (3.4)

Substituting Inequality (3.4) into (3.3), we obtain the first lower bound in terms of

r(2). Notice r(2)(B) < rma(B), we obtain the looser lower bound in terms of r(1).

To prove the upper bound 7rd/7,r 5 3/4, it is equivalent to prove the matrix t1(B)

3B - 4(2B + F)(B + r)- 1 B(B + r)-'r is copositive. By copositivity, xTh(B)x > 0,

for all x > 0. Thus, substituting a which is positive by Assumption (*), we obtain

aT(3B - 4(2B + F)(B + )-'1 B(B + F)-F)d > 0

dT(2B + J)(B + F)-1 B(B + F)-1 Fd 3

dTBd 4
7rd <3

7Tc 4

To prove the copositivity of the matrix T(B), we first express B = Ti/2Gri/2

(since G = F- 1 /2 B1-1/ 2 ). Then we rewrite '1(B) as 1(B) = Fi/ 21(G)F1 / 2, where

(D(G) = 3G - 4(2G + I)(G + I)>G(G + I)-1. r is a nonnegative block diagonal

matrix, thus, the matrix 4(B) is copositive if 1(G) is copositive. Express 1(G) as

follows,

1(G) = G - I + 2G + I - 4(2G + I)(G + I)~1 (G + I - I)(G + I)-'

= (G - I) + (2G + I) (I - 4(G + I)-(I - (G + I) ))

=(G - I) + (2G + I) (I - 4(G + I)-' + 4(G + 1)-2)

= (G - I) + (2G + I)(G + I)-2(G - I)2

= (G - I) + (2G + I)((G + I)-1 (G -_ ))2.

G - I is a nonnegative matrix as G is a nonnegative matrix with diagonals equal to 1.
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The second term is a product of a positive definite matrix, (2G + I), with a positive

semi-definite matrix, ((G + I)- 1(G - I))2, therefore, it is also positive semi-definite.

Matrix <b(G) is a sum of a nonnegative matrix and a positive semi-definite matrix,

therefore, it is copositive. E

The theorem suggests that the performance of a decentralized supply chain deterio-

rates with the degree of complementarity. The best scenario that one can hope for,

arises when products are independent, i.e., ri = 0 for all i. As the products exhibit

higher complementarity effect, the total profit earned in a decentralized supply chain

decreases with respect to the centralized setting and loses at least 25% of the optimal

channel profit.

The theorem reveals two sources of distortions in a decentralized supply chain with

partial positive externalities. The first distortion is attributed to vertical competition

between the supplier and the downstream retailers. This alone costs a decentralized

setting 25% of the optimal profit. The second distortion stems from the "neglected"

complementary effect across the retailers. In contrast with a centralized setting where

all products are priced to generate a demand level that maximizes the total profit, a

retailer in a decentralized supply chain is only interested in his own profit. By ignoring

the complementary effect induced by other retailers, the retailers in a decentralized

setting charge prices which induce a lower demand level for every product as compared

to the centralized setting (as shown in Proposition 3.3.1). As the complementary effect

across the retailers grows, the second distortion increases and gives rise to a larger

profit loss in a decentralized setting.

The bounds in Theorem 3.4.3 also suggest that the rate of decrease is more sub-

stantial when the degree of complementarity is small. As illustrated in Figure 3-1,

when the degree of complementarity increases from 0 to 1, the relative profit in the

decentralized chain decreases from 75% to 55.6% of the optimal profit; when the

complementarity effect increases to 2, the decentralized setting captures less than

half of the optimal profit. The main implication is that the decentralized setting

could experience significant profit loss even when the products exhibit a small degree

of complementarity.
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Figure 3-2: Histograms for errors between the exact values of 7rd/7rc and the lower
bounds in terms of r(2) and r(1) respectively for 106 instances.

An interesting observation from Theorem 3.4.3 is that the performance of a decen-

tralized supply chain with complements is predominantly determined by the products

which exhibit the highest degree of complementarity. Since the complement good has

a much higher degree of complementarity than the base good, Theorem 3.4.3 implies

that in order to boost the performance of a decentralized chain, it is important to

"strengthen" the complementary products.

Our analysis thus far shows that the bounds in Theorem 3.4.3 are tight when the

retailers carry perfect complements, i.e., r(l) = r(2) = ri, for all i. In the following

two simulation experiments, we will investigate the performance of the bounds with

imperfect complements, i..e., there exists some i and j, where ri # ry. In particular,

we will highlight the strength of using the bound in terms of r(2) which captures the

asymmetry effect for products with partial complementarity.

Figure 3-2 illustrates a result of a numerical simulation with 106 instances. For

each instance, we generate a market structure of 2 to 20 retailers and randomly

generate the inputs including B, c and a. We then compute the exact values of the

profit ratio 7d/7c and the two lower bounds. Denote the error terms which are the
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Figure 3-3: The exact value of wrd/7rc and the two lower bounds as k increases from 1
to 20.

differences between the exact value and the lower bound LB(r(2)) as Ar( 2) for all the

instances (define Armax similarly). For each array of the error terms, the elements

are grouped into 20 equally spaced bins. The histograms for Ar(2) and Ar(i) are

plotted in Figure 3-2. The x-axis reflects the range of error terms and the y-axis

shows the number of instances that fall within the bins. Figure 3-2 depicts clearly

the advantages of using r(2) over r(1): The spread of errors is smaller for LB(r(2)) than

LB(r(1)) (i.e., [0, 0.143] vs. [0.003, 0.188]); the mean error is also lower for LB(r(2))

(i.e., 0.0126 vs. 0.0389).

The advantage of using T( 2 ) is even more prominent as the asymmetry between

the two products with the highest degree of complementarity increases. Consider a

setting with two retailers who each carries one product, where c = (c, c), d = (d, d)

and the price sensitivity matrix is defined as k , where k > 1 represents the
1 k#

asymmetry factor between the two retailers. When k = 1, the setting described above

is fully symmetric. The exact expression of the profit ratio can be written as, rd/7Tc =

b(12# 4 k 3 +121 4 k 2 +161 3 k 2 _9 2 k 2 _9/32 k-6#k+2k+2). Note that, in general, it is hard to express
(#3+3k+2)(43 2k -1)2

the profit ratio for problems with imperfect complements in higher dimensions. The

degree of complementarity for two retailers is defined as r1 = 1/#, and r 2 = /(k#).

Thus, the two indices are r(1) = maxi ri = 1/# and r(2) = Vrir 2 = 1/(V'W/3). As k

increases, r(i) remains the same while r(2) decreases. We obtain the two lower bounds,

namely, LB(r(1)) and LB(r(2)) in Theorem 3.4.3 by substituting the corresponding
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index. Figure 3-3 records the exact value of 1rd/7rc and the two lower bounds as k

increases from 1 to 20. When k = 1, all expressions yield the same value. As k

increases, the gap between the exact value and LB(r(i)) widens to 15% since r(1)

ignores the impact of asymmetry. At the same time, the differences between the

exact value and LB(r(2)) stays within 2% for this experiment.

We would like to point out that to compute the exact values of 7rd/re, one would

have to estimate the pair-wise price sensitivity across all products in the market,

marginal costs c and maximum demand d (when products are free), which is a chal-

lenging task to begin with. Both lower bounds are independent of c and d and only

require information of one or two products with the highest degree of complemen-

tarity in the market. In addition, we have also shown that using the two-firm index

allows us to estimate the supply chain performance with high accuracy based on the

simulations.
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Chapter 4

Price of Anarchy for Congested

Systems

4.1 Introduction

In a recent study conducted by the Federal Communication Committee (FCC), it

predicts that the demand for wireless bandwidth is expected to surpass the avail-

able spectrum by as early as 2014. When the amount of wireless traffic exceeds the

available bandwidth, users in the affected network would experience spotty services,

dropped calls, and sluggish data speeds. With the rapid proliferation of new content-

rich multimedia devices such as smartphones and tablet PCs, network congestion is

becoming a common problem in many urban areas. For instance, many AT&T users

in San Francisco and New York were angered by service degradation, when AT&T,

the exclusive seller of iPhone in the United States until 2011, did not adequately an-

ticipate the demand surge in bandwidth accompanied by the device's huge popularity

(WSJ December 9, 2009). In the U.S., FCC currently auctions off spectrum bands

that then become the property of the purchaser. Given the demand for wireless band-

width is expected to grow between 25 and 50 times the current levels within 5 years

(FCC Technical Paper 2010), one may wonder what kind of measure FCC should take

to control network congestion and ensure an efficient usage of the finite bandwidth.

Besides the field of wireless networks, another area routinely plagued by congestion
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is airports. In July 2009, for example, 30% of the flights in the U.S. domestic market

arrived late, up from 20% in July 2005. It has been reported that flight delays cost

passengers, airlines and the U.S. economy more than $40 billion in 2007 (The Joint

Economic Committee Report 2008). The rise in delays, not surprisingly, correlates

with a significant increase in the number of flights. However, research shows that

the vast majority is coming from substitution away from large aircraft in favor of

more frequent operations of smaller planes. Whalen et al. (2008) found out that at

LaGuardia, for example, the average number of seats per aircraft was 143 in the first

quarter of 1998, but that fell to 94 as of the first quarter of 2007. Similar trend was also

observed in other congested airports such as O'Hare. The existing system across the

U.S. is unlikely to promote efficient use of the scarce runway space: Current landing

fees depend only on aircraft weight and do not vary by time of day; runway allocation

is mostly done on first-come, first-serve basis. In fact, the weight-based landing fees

are often blamed for creating the wrong incentives for airlines to use small aircrafts.

The widespread problem of airport congestion raises the issue of finding a rationing

mechanism to use the runway space efficiently.

One common feature in the two examples mentioned above is oligopolistic com-

petition with congestion effects. In the example of wireless communication, as of the

fourth quarter in 2008, Verizon, AT&T, Sprint, Nextel, and T-Mobile together con-

trol 89% of the U.S. market. While airports vary in sizes, a small number of airlines

usually dominates an airport in terms of flight share. For both industries,, Cournot

has received both theoretical and empirical support as a good model of competition.

Theoretically, Kreps and Scheinkman (1983) show that Cournot models best approx-

imate the long run results of two-stage competition with capacity choice followed by

price setting. Airlines compete by first setting schedules and later set prices to fill

seats. Wireless service providers first purchase bandwidth and then determine prices

for subscriptions. Empirical work also supports Cournot models reflecting actual

competition in these two industries, see for example, Weisman (1990), Brander and

Zhang (1990, 1993), Oun et al. (1993), Parker and Roller (1997) and Faulhaber and

Hogendorn (2000).
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However, we would like to point out a subtle difference associated with the cost

effects in the two examples: As wireless service providers use different frequency

bands to reduce signal interference, congestion in one provider's network does not

affect other networks. Congestion effect in this case is self-contained, i.e., the conges-

tion cost associated with one service provider only depends on his service level, e.g.,

the number of users, the amount of bandwidth consumed. For the example of wire-

less communication, service degradation is only experienced by users in the affected

network (a bogged-down AT&T network does not affect the service quality of other

carriers). This is in contrast with the airport example: When one airline schedules

an additional flight in a congested airport, it creates additional delays for every flight

which attempts to land and take off. Besides the self-contained cost component, cost

in this setting also has the spillover effect as an increase in delay affects everyone in

the system.

In this chapter, we study both scenarios, depending on whether spillover cost is

present. We consider congestion pricing as a control mechanism to ration demand,

with the goal to improve the societal welfare. Our model consists of several service

providers with differentiated services, competing for users who are sensitive to both

prices and congestion costs. A facility manager imposes an admission-level pricing

scheme on the service providers. Relating this model to the two examples, FCC

could play the role of the facility manager and determines a unit price for bandwidth

allocated to each wireless network operator, who in turn determines how many users

to enroll. Similarly, FAA would be responsible for imposing a landing fee and each

airline determines its flight frequency subsequently.

Our main contributions of the paper are the following:

Welfare analysis with nonlinear convex costs. We compare the total welfare in

an unregulated setting where the service providers have free access to the facility to

that of the social optimum, so as to assess how much welfare is lost due to the lack of

coordination. Congestion effects are modeled as nonlinear convex cost functions which

increase with the output level. We show that with self-contained costs, the maximum

welfare loss in the unregulated setting is limited. In fact, this loss is capped at 25%
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of the optimal welfare, even in the presence of highly nonlinear costs. Moreover, the

efficiency of the unregulated setting improves as the competition among the service

providers increases. When spillover cost is also present, the performance highly de-

pends on net marginal externality, which is measured by the relative magnitude of

the marginal spillover cost and the marginal consumer surplus when an additional

user is enrolled. With positive net externality, we show that the unregulated setting

could be just as efficient as the social optimum. However, we also show that when

net externality becomes negative due to high spillover costs, the welfare loss in the

unregulated setting could be arbitrarily high, even with affine marginal cost. The

latter validates the need of implementing some rationing mechanisms in airports to

curb congestion since there are rooms for substantial potential welfare gains.

An alternative perspective on mergers in the absence of cost synergy. Most

arguments which support mergers rely on the internal efficiency gain in the form

of cost reduction (e.g., economies of scale, technological progress and eliminating

redundancy etc). We show that even in the absence of such internal cost synergy, the

society could potentially benefit from mergers. We show that it only happens when

congestion has the spilling effect. The key idea is that the merged firm internalizes

more congestion, thus, leaving a smaller amount of uninternalized congestion onto

others. This optimistic view on mergers, however, does not apply to the case when

congestion cost is self-contained. Under this setting, our analysis agrees with the

conventional wisdom that reduced competition leads to a lowered total welfare in the

absence of cost reduction. While we recognize that our model only addresses one

aspect on mergers from the perspective of total welfare, our analysis could offer an

explanation (at least partially) to the Court's rejection for the proposal between T-

Mobile with AT&T versus a clearance for the consolidation of United with Continental

airlines.

Social acceptance and a novel implementation. We address some of the

issues which traditionally have made the adoption of congestion pricing a challenging

task in practice. Firstly, to address the question of whether congestion pricing is

necessary, one needs to measure how much potential benefit such a scheme could

74



offer. We quantify the welfare loss in an unregulated setting to a social optimum

by deriving tight upper and lower bounds which depend on at most two parameters.

The parameters measure the degree of competition in the oligopoly market and the

relative magnitude of the spillover cost. We demonstrate with simulations that the

bounds are able to predict the gain computed from the model for a high amount

of accuracy. Thus, instead of doing a full-blown estimation of all the inputs to the

model (which is a challenging task to begin with), it is possible to quantify the

welfare gain with confidence by only estimating a couple of parameters. We identify

one obstacle for congestion pricing to be implemented, that is, without a proper

channel of investing the revenue collected from congestion pricing, users and service

providers will be strictly worse-off. Clearly, such consequences leave individuals with

little desire to adopt the scheme. We propose a proportional rule which appeals to the

self-interest of participants by ensuring a positive welfare improvement for everyone.

As the proposed scheme ensures not only social optimality but also individual welfare

improvement, we believe it has a greater likelihood of gaining support in practice.

4.1.1 Related literature

Motivated by congestion management in transportation and communication net-

works, there has been a huge body of literature to analyze traffic in a congested

network (e.g., Hamdouch et al. 2007, Hayrapetyan et al. 2007 and Maille and Stier-

Moses 2009). Acemoglu and Ozdaglar 2007, Ozdaglar 2008 study competition among

profit-maximizing oligopolists who set prices on the links and congestion cost on each

link only depends on the traffic volume on that link (this corresponds to self-contained

congestion cost in this chapter). Users choose the path based on a notion of full price,

which is the sum of the price paid to the oligopolists and the congestion cost. In these

models, a single price prevails in equilibrium as a result of homogeneous services. In

this work, we adopt the full price concept to capture user equilibrium. Our model

differentiates itself from prior work by incorporating several new features, including

differentiated services, elastic demand and spillover congestion cost.

Compared to the vast amount of literature which focuses on road congestion,
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there is less work addressing congestion pricing in other settings where users have

oligopolistic power. Daniel (1995, 2001), Brueckner (2002, 2005) and Mayer and

Sinai (2003) have considered congestion pricing for airports. Most of the studies

derive their findings either through simulations with empirical data or theoretical

analysis on a symmetric duopoly. In general, the topic on congestion pricing has

long been recognized as controversial and challenging. Jones (1991) suggests that the

support for the scheme is much higher when it is presented as a complete financial

package with explicit proposals for using the revenues in his survey paper. Economists

such as Goodwin (1990) and Small (1992) analyze how to use revenues collected from

road tolls and propose dividing the money equally as an reimbursement to road users,

tax rebates and investment for new transportation services. In this work, we quantify

how much each service provider and user should gain from adopting congestion pricing

based on a proportional rule, with a goal that everyone should experience a positive

welfare improvement.

Several papers in the operations management literature have addressed the issue

of congestion in service industries (see for example, Allon and Federgruen 2007, 2008,

Cachon and Harker 2002, Weintraub et al. 2010, etc). They assume each firm owns a

resource and is only sensitive to congestion caused by users using his resource. In our

model, differentiated services belong to different service providers who participate in

an oligopolistic quantity competition to maximize their own profit. In addition, the

facility manager acts as the Stackelberg leader who determines optimal access fees

by anticipating that service providers will select their service levels according to the

equilibrium.

The optimal congestion pricing considered in our model resembles a "coordinat-

ing contract" in the supply chain literature (e.g., Corbett et al. 2005, Bernstein and

Federgruen 2003, 2007, Martinez-de Alberniz and Simchi-Levi 2009, Cachon and Kok

2010). A key difference is that the objective in our model is to maximize the societal

welfare which sums over consumer surplus, producer surplus as well as the congestion

pricing revenue. We show that despite a higher societal welfare after implementing

a coordinating contract, service providers and users might be worse off compared to
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their counterparts in the unregulated setting. Therefore, it leaves little incentives for

adoption, in addition to the high administrative costs which are commonly associated

with coordinating contracts. To bypass this difficulty, based on an n-person bargain-

ing game, we show that there exists an alternative implementation which achieves

the social optimum and ensures that every entity in the system could gain from this

scheme.

Recently, several talks on mega-mergers have created quite a stir in the media,

e.g., AT&T with T-Mobile in the mobile marketplace, as well as United with Con-

tinental in the airline industry. The primary argument against mergers is that the

reduced competition could lead to many undesirable repercussions such as price in-

creases, which ultimately hurt consumers. For example, based on a symmetric setting,

Deneckere and Davidson (1985) and Farrell and Shapiro (1990) have shown exactly

such behavior under both price and quantity competition, in the absence of cost re-

duction resulting from a merger. Some economists have challenged this pessimistic

view on mergers which is based on "consumer welfare" and propose the use of "to-

tal welfare" to evaluate mergers (see for example, Neven and Roller (2005), Heyer

(2006)). Perhaps the most influential contribution which advocated the total welfare

approach in merger analysis is by Williamson (1968). By focusing on the net welfare

impact, the author argues that when the benefit from cost saving (from realization

of internal efficiency) offsets the welfare loss due to a price increases (from greater

market power), the society benefits from the merger. The key argument which sup-

ports mergers hinges on the internal cost synergy from the merger. We show in this

chapter that, even in the absence of cost reduction, mergers could be beneficial when

congestion has the spillover effect.

Lastly, our work which measures the performance of an unregulated setting with

respect to a centralized system is related to a stream of literature on price of anarchy,

popularized by Koutsoupias and Papadimitriou (1999). It compares the performance

of the worst-case Nash equilibrium with respect to the centralized system. The con-

cept has been used in transportation networks (Roughgarden and Tardos 2002, Cor-

rea et al. 2004, 2007, Roughgarden 2005, Perakis 2007), network pricing (Acemoglu
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and Ozdaglar 2007, Weintraub et al. 2010), oligopolistic pricing games in a single

tier (Farahat and Perakis 2010a,b), and supply chain games with exogenous pricing

(Perakis and Roels 2007, Martinez-de Alberniz and Simchi-Levi 2009, Martinez-de

Alberniz and Roels 2010).

The rest of the chapter is organized as follows. In Section 4.2, we introduce a three-

level model with assumptions used in the paper. Section 4.3 performs the welfare

analysis, comparing the total social welfare achieved in the unregulated setting to the

maximum social welfare which could be achieved by implementing congestion pricing.

In Section 4.4, we evaluate the tightness of the bounds via computational analysis. In

Section 4.5, we discuss the potential merits of mergers. We address some issues which

make congestion pricing unattractive in reality and discuss potential remedies that

would make the scheme more appealing from an individual's perspective in Section

4.6. The conclusions can be found in Section 4.7.

4.2 Model

We consider a facility with n differentiated services, each offered by a provider. We

denote qi as the output level chosen by service provider i = 1,. . . , n. The service

providers compete in a quantity competition as he can control his service level qj.

The price for provider i's service is denoted by pi. We use lower-case, boldface letters

to represent column vectors, e.g., p = (pi, ... , pn) and q = (qi, ..., qn) represent the

market prices and the output levels respectively.

Given an output level q, we denote the marginal utility obtained from consuming

an infinitesimal amount of service i as ui (q). As is traditional in the pricing literature

(see Vives 1999), we consider the marginal utility function as a affine function of

output levels:

1i [ ... #1n qi

u(q)= p-Bq=

Pn On1 ... Onn gn
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where 15 = (PI... , Pn) represents the maximum prices that a user is willing to pay

for the services. Different Pi captures the quality differences perceived by consumers,

which could be affected by factors such as brand recognition, word-of-mouth effects,

prior experience with the product, etc.

Assumption 4.2.1 Matrix B is a symmetric and positive-definite matrix.

/
3 jj > 0 means that each service sees a downward sloping demand resulted from

users' diminishing return. #ij > 0 captures the relationship that service i and j are

substitutes, i.e., an increase in production of service j lowers the willingness of a user

to pay for service i. Symmetry of the matrix implies that the cross-effects of any

two service providers' output changes are equal. This is a natural consequence of

maximizing a quasilinear utility function of a representative consumer.

In a congested facility, both the users and the service providers are affected con-

gestion. For the case of airport congestion, airlines have to pay extra for crew, fuel,

and maintenance costs while delayed travelers and their employers lose productiv-

ity, business opportunities and leisure activities. In this work, congestion effect is

modeled in currency equivalent terms. Let l0(q) and ly(q) denote the congestion

cost per service incurred by the service provider i and his users respectively. Denote

li(q) = l(q) + lY(q) as the aggregate congestion cost associated with a service. Thus,

when service provider i enrolls qj users, the aggregate congestion cost associated with

i and his users is li(q)qi. Let 1(q) = (l1(q), ... ln(q)), then the total congestion cost

in the system is given by qTl(q).

Assumption 4.2.2 For every i, the cost function li(q) is convex, continuous, non-

decreasing, and continuously differentiable for every component of q.

Denote the Jacobian matrix of the cost function 1(q) as R(q), where

[l1/9 ... l1 /& qn

R '.. .qJ

aln8q - -. iln|8qn
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Except with affine costs, the Jacobian matrix R(q) depends on the value of p. For

the ease of notation, we will write R instead of R(q) for the rest of this chapter. We

will use superscripts to differentiate the matrix evaluated at different values. This

assumption states that R is a nonnegative (componentwise) and positive semi-definite

matrix. Denote the diagonal part of matrix R and its off-diagonal part as FR and

Reff respectively. Denote the (i,j)the element of the matrix R as rij.

In this work, we distinguish two types of costs which are formally defined as

follows.

Definition 4.2.3 Self-contained cost, alil/q > 0. Spillover cost, Dli/&qj > 0

for all j # i.

When costs are fully self-contained, the cost associated with service i only depends

on i's output level and independent of others. It implies that the Jacobian matrix is

simply a diagonal matrix, i.e., R = TR. On the other hand, when spillover cost is

also present, one's cost increases whenever there is an increase in the system output.

Assumption 4.2.4 The maximum reservation price must satisfy, p - 1(0) > 0.

The assumption states that the maximum profit per service must be positive. If this

assumption is violated, it implies that no user is willing to pay for the service and this

corresponding "inactive" service provider could be removed from the equilibrium.

When spillover cost exists, we make use of the following assumption in our analysis.

Assumption 4.2.5 The Jacobian matrix of the cost function R is symmetric.

This assumption requires ali/Dq = Bl /8qi for all j # i. One justification is that if all

users are homogenous in the sense that enrolling an additional user creates the same

amount of additional cost to others, then this assumption holds. The assumption

simplifies the derivation in the analysis as R = RT, or rij = rji. It can be relaxed by

considering its "symmetrized" matrix with a norm which measures the asymmetry as

discussed in Sun (2006).
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To establish bounds when costs are nonlinear, it is key to introduce a constant

that will measure the degree of nonlinearity of the cost function. As a result, we

briefly introduce the concept of Jacobian similarity. We refer rthe eader to Perakis

(2007) for more information on this concept.

Definition 4.2.6 The Jacobian similarity property. A positive semidefinite

matrix F(q) satisfies the matrix similarity property if there exists a constant K > 1

such that for all w, q and q': KwT(F(q))w > wT(F(q'))w> wT(F(q))w.

Note if F(q) is the Jacobian matrix an affine function, then , = 1. Notice that

constant K is easy to compute when matrix F(q) is positive definite for all q. In that

case, the constant K = maxq maxA(F(q)) , that is, the ratio between the maximum andminq mini A(F(q))'

minimum eigenvalue of the matrix.

To interpret the bounds established in this chapter, we will introduce two notions.

They measure the level of competition and the extent of spillover respectively.

Definition 4.2.7 Competition index adjusted with self-contained cost.

Given a price sensitivity matrix B and self-contained cost I1R, the competition index

for service provider i is defined as -yj = EZj #ik/#3 ii + 2rii/#11, for all i. Let 1 =

maxi yi.

The notion that Ej #/#ijii is used to measure the intensity of competition (see Sun

2006, Farahat and Perakis 2010a,b). Suppose every service provider in the market

changes his output level by 1 unit, 3ii reflects the amount of price change which is

solely contributed by i's own output change, while Ejo #ij measures the price change

contributed by i's competitors. A high value of Eo #ij/#ii suggests that i's price

is more susceptible to his competitors' output change than his own change, implying

that service provider i faces a high level of competition. When Ejo #ij = 0 for all

i, it implies that #ij = 0 for all j # i. That is, each of service provider acts as a

monopolist and does not face any competition.

When there is self-contained cost (i.e., rii > 0), the competition index also contains

the term rii/#ij. It compares the marginal decrease in the revenue per service due
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to one's own cost increase to the decrease due to diminishing returns of the demand.

Thus, when rii/#i3 is large, it implies that the cost increase is rather steep.

Thus, -y meausres the level of competition faced by service provider i, taking into

account the self-contained cost, i.e., comparing the aggregate price impact from i's

competitors and the self-contained congestion to the price change solely contributed

by i's output change. With asymmetric service providers, 'yi differs across i. We will

use -y = maxi yi to approximate the competition intensity in the market.

Definition 4.2.8 Marginal net externality. Define pi = ry2 / pri, for all i.

Let p = maxi pi.

This ratio is nonzero only when spillover cost is present. The numerator Zji rj cap-

tures the marginal spillover cost created by service provider i, and the denominator

reflects the additional welfare increase to users when service provider i increases his

output. Thus, the term p2 could be interpreted as the external cost (spillover con-

gestion cost) versus the external benefit (additional consumer surplus) which service

provider i brings to the society. P represents the value of the "worst offender" among

all the service providers by taking the highest value of pi. When P < 1, it implies net

positive externality, that is, after taking into account of spillover cost, every service

provider is contributing more welfare to the society than the cost. When P > 1, there

exists some service provider whose spillover cost outweighs the welfare he brings to

the society, thus, the net externality is negative.

4.2.1 User behavior

Given n differentiated services available, a representative user derives a different

marginal utility ui(q) for services with provider i. A user's total disutility is the

sum of the price he is charged for the service and the congestion cost he experiences,

i.e., pi + IY(q). This term is known as full price or effective price in the literature

(e.g., Weintraub et al. 2010, Acemoglu and Ozdaglar 2007).

We assume that each user is "small" compared to the total traffic volume in the

sense that when he switches from a service provider to another, there is no consider-
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able change in the congestion cost. We use the General Wardrop equilibrium principle

with multiple commodity flows to model user behavior in the presence of differenti-

ated services. For a given price vector p, a vector of service level q is a General

Wardrop equilibrium (GWE) if

pi + l(q) = ui(q), for all i if qi > 0;

pi + li (q) > ui(q), for all i if qj = 0.

The equilibrium condition states that for any price vector p, the full price of a user

with any active service provider, must be equal to the corresponding marginal utility

obtained in equilibrium. Without loss of generality, we only restrict our attention to

these active service providers with

p = ui(q) - lu(q), for all i if qj > 0. (4.1)

When there is no congestion, the market clearing price of any service is simply its

marginal utility, i.e., pi = ui(q). The presence of congestion directly lowers a user's

willingness to pay for the service, and consequently reduces the profitability of the

service providers.

Remark In a setting with a single type of service or symmetric service providers,

GWE implies that a single full price prevails in an equilibrium. With differentiated

services, different full price values exist as the service providers leverage product

differentiation to capture consumer surplus. An ubiquitous observation is how airfares

for the same trip within the same class vary across airlines.

4.2.2 Service provider's profit maximization problem

We define the service provider i's profit function as Tri(qj, q-j) = qj(pj(qj, q-j) - tj -

lf(qi, q-j)), where qji are the service levels set by i's competitors and tj is the access

fee per service imposed by the facility manager. Without loss of generality, we assume

the unit cost of providing a service is zero. By Equation (4.1) which describes the
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users' behavior, we obtain the following, ri(qi, qj) = (uj(qi, qj) - tj - l(qj, q-i))qi.

The dynamics between the facility manager and the service providers are modeled

as a Stackelberg game. The facility manager, announces the access fee per service,

ti. The service provider then determines his appropriate output level. We assume

service providers behave according to a Subgame Perfect Equilibrium, that is, for

every access fee ti, every service provider i determines his service level to maximize

his profit, given the service level set by his competitors. Under Assumptions 4.2.1

to 4.2.5, the profit function of all service providers are diagonally strictly concave

over the strategy space, thus, the existence and uniqueness of the equilibrium are

guaranteed.

4.2.3 Facility manager's welfare maximization problem

The goal of the facility manager is to maximize the total social welfare (W), which

is defined as the sum of consumer surplus (CS), producer surplus (PS) and revenue

collected from acess fee (TR), i.e., W = CS + PS + TR. Consumer surplus is

defined as the difference between the total utility derived from consuming q units of

services and the total cost incurred by users. With affine marginal utility function,

the total utility is given by fq u(x)dx = qT(p - !Bq). The full price is given by

(p + lu(q))Tq. By Equation (4.1), full price in equilibrium is simply u(q)Tq. Thus,

CS = qT(p - iBq) - qT(p - Bq) = !qTBq. The producer surplus is the total

profit generated by all service providers, i.e., PS = ' Ti(q) = qT(u(q) - 1(q) - t) =

qT(p - Bq - 1(q) - t). The revenue collected from congestion pricing is captured by

TR = qTt. Combine all three terms, the total welfare is given by the following:

1
W(q) = qT (p _ IBq - 1(q)). (4.2)

2

The welfare maximization problem (4.2) is a strictly concave optimization problem

in terms of the output level q, where q* = arg maxq W(q). To achieve the maximum

welfare W(q*) in the three-level model, the facility manager can use the access fees

such that the desirable service level q* is achieved, i.e., q(t*) = q*. Therefore,
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the access fee could be viewed as a "coordinating contract" that aligns the profit-

maximizing objective of service providers to one that maximizes the societal welfare.

Proposition 4.2.9 For a given output level q in the facility, the access fee per service

i is given by ti(q) = -3iiqi + Z l /&qi.

In the absence of spillover costs, the second term vanishes, i.e., ti(q) = -Oiiqi.

Since fii > 0, the access fee ti is negative in this case. It implies that the facility

manager has to give a subsidy to every service provider i in order to ensure the

maximum societal welfare. In the unregulated setting (i.e., t = 0), one can show that

the output level generated by the profit-maximizing service providers is always below

the socially optimal level. With the the subsidy, lower prices induce more users to

acquire the services, leading to higher welfare.

With spillover cost, the second term in the access fee holds service providers

accountable for the "spillover" they have imposed onto others. Therefore, the access

fee has to balance the size of the subsidy which encourages production and the penalty

to discourage "tragedy of the commons" phenomenon.

Proposition 4.2.9 captures a sharp contrast to the traditional road toll imposed on

road users in two distinct aspects. Firstly, in the road traffic model, the congestion

pricing is the full marginal cost, whereas an oligopolistic service provider is only pe-

nalized for the marginal cost which he has not internalized (the spillover). Secondly,

the optimal access fee considered here also includes a subsidy which encourages pro-

duction. As a result, it suggests that the optimal access fee charged to an oligopolist

would be much smaller than the traditional "toll" with the same cost function.

Relate the result to the wireless service industry where costs are fully contained,

Proposition 4.2.9 suggests that FCC should provide a subsidy so that more users

will acquire the services. On the other hand, the FAA (or the airport regulator)

should hold the airlines responsible for the additional delays which they impose onto

others. Moreover, the access fees could provide some incentives to revert the trend

of the decreasing aircraft size1 . To model this, we incorporate a parameter pi in

'Whalen et al. (2008) have shown that from 1997 to 2007, the number of departures has skyrock-

85



our formulation which captures the size of an aircraft that airline i uses, and each

airline adjusts its frequency of the flights, qi/pi, to maximize the profit, where qi is

the total number of passengers to be transported2 . The access fee per flight takes

the form ti(q) = -Baqi + Ej Oil(q)/aqi/pi. If all other things being equal, an

airline with a larger aircraft will pay a lower fee. For an industry with a measly profit

margin of 0.7% in 2011 as predicted by the International Air Transport Association, a

landing fee based on the aircraft's size would provide airlines with more incentives to

use large aircrafts, which in turn ensures a more efficient use of the limited runways

and alleviates congestion. Comparing this scheme to the current practice where the

landing fees are based on the weight of an aircraft, the latter gives exactly the wrong

incentives for smaller aircrafts, which exacerbates the congestion problem in many

airports.

4.3 Efficiency Analysis

In this section, we will compare the social welfare achieved in the unregulated setting

with the social optimum. By doing so, it enables us to address a question that is

important to both theory and practice. That is, what is the maximum welfare loss

due to the lack of regulation in an oligopoly? The answer to this question helps policy

makers to gauge the need for regulation. While almost all policy changes have to deal

with huge political and financial challenges, if one can show that the loss of welfare

is significant in the unregulated setting, it provides one concrete evidence to concrete

support the implementation of new policies such as the access fees discussed in the

previous section.

Moreover, the comparative analysis also helps us isolate some key factors which

affect the efficiency of such an oligopoly. In many scenarios, "optimum" might be

infeasible to attain and it is just as important to determine what kind of actions that

eted by 35% while the total number of seats has risen by less than 6%, implying that a dramatic
decrease in the number of seats per aircraft.

2To reduce notation and enhance the transparency of the model, we only discuss the case where
each airline only uses a single type of aircraft. The case with multiple sizes of aircrafts could be
easily incorporated.
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will improve the efficiency.

Denote qN and q* as the output level in the unregulated setting and that in a

social optimum respectively. Let W(qN) and W(q*) be the the total welfare attained

in these two settings. The quantity of interest is W(qN)/W(q*). We will address

the settings with only self-contained cost and with spillover separably. We will first

establish a lower bound on this quantity which gives the worst performance guarantee,

followed by a upper bound.

With nonlinear convex costs in a model, it is generally hard to obtain closed-

form solutions. Nonetheless, we can derive optimality conditions that can be used to

quantify the total welfare. Since the Jacobian matrix on cost function depends on

the output level, we will use R* and RN to distinguish the matrix evaluated at q*

and qN respectively.

Lemma 4.3.1 Under Assumptions 4.2.1 to 4.2.5, there exists a unique solution to

both the coordinated and unregulated problems. In particular, the welfare generated in

the social optimal setting and the unregulated setting are given by

W(q*) = (q*)T( B + R*)q*, and
2
1

W(qN) (q N)T( B+FB + FN)qN2R

4.3.1 Lower bound on W(qN)/W(q*)

We begin with a lemma that compares the output level in the unregulated setting

and the social optimum by making use of the convexity of the cost function and the

optimality conditions derived in Lemma 4.3.1.

Lemma 4.3.2 When cost 1(q) = (li(q), - , ln(q)) is a convex function (componen-

twise),

(B + B +R + RN N ; (B + R* + RN )q*.
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Remark When the cost function 1(q) is an affine function of q, then R is independent

from the output level q and Lemma 4.3.2 becomes an equality.

Now we are presenting the first main result in this chapter. We establish a constant

lower bound on the efficiency of an unregulated oligopoly with self-contained cost.

Theorem 4.3.3 When there is only self-contained congestion, under Assumptions

4.2.1 to 4.2.4, the welfare in the unregulated setting with nonlinear convex cost is at

least 3/4 of the optimal welfare, i.e., W(qN) > 1. The bound is tight when service

providers are noncompeting and have a constant marginal cost.

Proof of Theorem 4.3.3. With Lemma B.5.1 and Lemma 4.3.1, we have a lower

bound on W(qN)/W(q*):

W(qN) (qN)T (B + 2fB+ 2 N)qN

W(q*). - (qN)T(B + rB + I + RN)(B + 2RN)-1(B + B + RN)qN

(4.3)

In the absence of spillover, RN ]pN. Since all quantities are the Nash equilibrium

quantities in this proof, we drop the superscript on matrices for simplicity:

W(qN)> (qN)T(B + 2fR+ 2B)qN

W(q*) - (qN)T(B + 2 FR + FB)(B + 2]FR)- 1 (B + 2 rR + FB)qN

Denote G =- 0 5B - 5 B B = - (B + 21 R) B0 5 . This is a symmetric, nonnegative

positive definite matrix. We will first rewrite the right hand side of the inequality in

terms of matrix G and identity matrix I:

(qN)T( +2 B)qN

(qN) T (B + FB)B 1 (B + PB)qN

(qN)Tf0.5-0 5 (B + FB +2 BO. 5 f 5 qN

(qN)TFO.5-0.5(B + FB)5-1(B + B F0.5p 5qN

(qN)TF. 5 (G + 2I)]rO5 qN

(qN)Tro .5 (G + I)G- 1(G + I)FLO 5 qN

(qN)TrO.5 G-0.5 GO.5 (G + 21) GO 5G-0 O.5 qN

(qN)TJ7 .5G-0 5 G0 5 (G + I)G-(G + I)G 0 5 G-0.505 qNB B
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w TG0 5 (G + 21)G 0 .5w Nwhere w =G- T O-q.
wTGO5(G + I)G-'(G + I)GO5 w' B

If this ratio is at least 3/4, it implies that

4wTGO.5 (G + 21)G 0 5 w - 3wTGO. 5 (G + I)G- 1(G + I)G0 5 w 2 0, or equivalently,

wT (4G 0 .5(G + 21)G 0 5 - 3G0 '5 (G + I)G- 1(G + I)G0 5 ) w > 0. (4.4)

To prove this statement, we will use the fact that for any given vector x, if the matrix

A is nonnegative component-wise, then xTAx > 0. To show the composite matrix

in Equation (4.4) is nonnegative, we express it as follows,

4G 0 5 (G + 21)G 0 5 - 3G4 5 (G + I)G- 1 (G + I)G4.

= 4(G 2 + 2G) - 3(G -I) 2

= 4G 2 +8G-3G2 - 6G - 31

= G 2 + 2G - 31

= (G - I)(G + 31). (4.5)

Given matrix G is a nonnegative matrix, the second term which is a sum with an

identity matrix is clearly nonnegative. Now consider the first term, G - I. The off-

diagonal elements fij/( ii/ 3 ij) are nonnegative under Assumption 4.2.2, where /ij

is the ij-th element of matrix B. Its diagonal elements are given by ( 3 ii + 2rij)/i =

1 + 2rij/#i3i > 1, where rij is the i-th diagonal element of the Jacobian matrix R.

Therefore, G - I must also be nonnegative. We have shown that the composite

matrix in Equation (4.4) could be expressed a product of two nonnegative matrices.

Therefore, this composite matrix must also be nonnegative and we have shown that

the statement in Equation (4.4) holds true and the ratio is bounded from below by

3/4.

Lastly, to show that the bound is tight, note that with noncompeting service

providers, B = TB- Since 1(q) is a vector independent of q, by Equation (B. 1) and

(B.3), we see that qN - lq*. Substituting this condition into the welfare function
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derived in Lemma 4.3.1, it is straightforward to show that the ratio is exactly 3/4.

This result is surprising, especially when it is compared to other works which

have analyzed performance degradation caused by selfish behavior. Roughgarden and

Tardos (2002) and Roughgarden (2005) consider the selsh behavior of noncooperative

network users. The authors prove that if the latency of each edge is an affine function

of its traffic, then the total latency of the routes chosen by selsh network users is at

most 4/3 times the minimum possible total latency. They also show that performance

degrades as the degree of the latency functions increases. We can cast our model to

show the "similarities" between our model and those works: a network with n routes,

each owned by a profit-maximizing provider and each offers a different marginal utility.

Users choose which route to take based on a full price (the price paid to travel and

disutility li(qj), where qj is the traffic on route i). Theorem 4.3.3 quantifies the welfare

degradation (producer surplus and consumer surplus) caused by the selfish behavior of

noncooperative providers and users to the maximum possible welfare. In our setting,

we have shown that regardless of the nonlinearity on the latency function, a constant

bound of 3/4 is achieved.

In the next theorem, we present the efficiency analysis for an unregulated oligopoly

in the presence of spillover cost. Let fi be the cost-to-benefit ratio evaluated at the

social optimal output level, i.e., p = maxi EO r* /#ij, where rj* = alj /qlq=q*. We

are going to show in the next theorem that in contrast to the case where costs are

fully internalized, performance degradation with spillover costs can be unbounded.

Theorem 4.3.4 With spillover congestion cost, Under Assumption 4.2.1 to 4.2.5,

the welfare in the unregulated setting depends on the the maximum spillover cost-to-

benefit ratio p and can be bounded by:

Whe f51,W(qN)> 3.When < 1, W(q*) 4ny

When p> 1, W(qN) 1- ( ) , where K' is the Jacobian similarity factor.W(q*-) - re ~ l

Proof of Theorem 4.3.4. From Lemma 4.3.2, we have (B + rB + 1TN + RN N

(B + R* + RN)q*. Denote E = B + FB + N + RN and <D = B + R* + RN, thus,

90



EqN > <pq*. Note the vectors on both sides of the inequality are nonnegative. By

Lemma 4.3.1, we obtain the following,

W(qN) (qN)T(jB + LB + F )qN _ (q N)T -1(jB + rB + pN )E1 qN

Replacing EqN with 4q*, we obtain a lower bound on W(qN)) i.e.,

W(qN)

>(q*)TbE-1(-B + LB + N --1 *
2 R

=(q*) (B+R*+RN)(B+TB+rTR +RN -1 B+rB+ R)

(B + TB + TN R N)-1 (B + R* + R N )*.

By making using of the Jacobian similarity properties on matricesFN and RN

exists ,' such that

W(qN)

> (q*)T (B + R* + R*)(B + LB + * + R*)<(l B + R
R 2 R

there

= (q*)T (B + 2R*)(B + LB + L' + R*)l( B + LB + r*

(B + TB + R* + R*)~1(B + 2R*)q*

Note that by using the definition of the minimum eigenvalue of a positive semidefinite

matrix, 1/K' can be bounded as follows,

Amin{(B + R* + RN) 2 (B + 2R*) 2 (B + LB + N + RN)-2(B + LB + R* + R*)2

(-B+ B + N) B+ LB + r '

If costs are affine, i.e, RN = R*, then K' = 1. Combine the result with W(q*), notice

that it is all in the optimal q* space, therefore we will drop the superscript in this
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proof. Denote B = B + 2 FR,

W(qN)

W(q*)

1 (q*)T(5 + 2Roff)(5 + IFB + Rff)-'(N + 2FTB)(5 + FB + Rff)- (B + 2ROff)q*

-' (q*)T(5 + 2Roff)q*

Denote G = -0 .5 B 0 5 and E = -0 -5 Roffr0, the expression becomes

W(qN)

W(q*)

1 (q*)TG0 5(G + 26)(G + I + -)- 1(G + 21)(G + I + )-1 (G + 26)G0 q*
- K' (q*)TGO. 5(G + 2E)GOq*

Using the Rayleigh-Ritz Theorem, the lower bound is given by the minimum eigen-

value of the following composite matrix,

W(qN)

W(q*)
1

>-Amin{(G + 21)(G + I + ) 1 (G + 26)(G + I + 6)-1}

1
Amin{(G + I+ E + I - E)(G + I+ +

1 (G+ + I+ E)(G +I+ ) + }

1
=Amin{(I + (I - ")(G + I+ 5)1)(I - (I - E)(G +±I + )-)}

1
=-Amin{I - ((I - E)(G + I + =)~1))21

1
(1 - Amax{((I - 6)(G + I + 6)-1))2

Since matrix G is a nonnegative and positive definite matrix,

Amax{((I - E)(G + I + 6.)~1))2} < Amax{((I - b)(I + %)1))2

To understand the lower bound, we have to consider two cases based on how "big"

the matrix E is. Consider a function f(x) = (1 - x)2 /(1 + x)2 with x E [x, )t]. When

X > 1, f(x) increases in x. Thus, max f (x) = f (t). Thus, when all eigenvalues of the
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matrix S exceeds 1, or, equivalently, when Amax{=} > 1,

0.4 04 1 2 Ama{E}7 - 12
Amax{((I - )(G + I + 6)-1))2 max . (4.6)

(Amax{ =} + 1)

Note that the matrix 5 -0. 5"OffB is a symmetric matrix and it is similar

to a matrix FB1 Roff, which shares the same set of eigenvalues. By Gergsgorin Disc

Theorem, the maximum eigenvalue of a symmetric matrix could be bounded by its

radius, i.e.,

Amax{~j} Amatx{F- 1Roff} :5 max Ejiri= maxp (4.p.

Substitute this to Equation (4.6), we have obtained the desired lower bound for the

case when 0 > 1: (q N > (-1 )2)

Next, let's focus on the lower bound when p:5 1. In fact, f(x) = (1 - x) 2 /(1 + x) 2

decreases in x when x < 1, which implies that max f(x) = f(x). However, it simply

suggests that when all eigenvalues of matrix S are smaller than 1, an upper bound on

Amax{((I - %)(G + I + 6)d))2} is 1 (i.e., when (Amax{} = 0, i.e., no spillover), or

equivalently, W(qN)/W(q*) > 0, which is unfortunately, not a very useful bound. In

fact, to prove that W(qN) > (3/4r)W(q*), when p 1, we have to utilize a similar

approach to prove the constant lower bound in Theorem 4.3.3 when costs are fully

self-contained: When we expand the composite matrix, we will have 2 parts instead,

one part is shown in Equation (4.5) and another part term in terms of G and E. This

is guaranteed to be nonnegative when P > 1. FO

The main difference between Theorem 4.3.3 and 4.3.4 is that the performance

degradation in the presence of spillover could potentially be unbounded. The loss of

efficiency depends on the maximum spillover cost-to-benefit ratio P and increases for

all p > 1. To interpret this result, note that P > 1 is a sufficient condition which

states that congestion occurs in the unregulated setting, i.e., qN > q*. It implies

that when an additional user is enrolled, the increase in spillover cost outweighs the

welfare gain, resulting in a net negative welfare change. Therefore, as p > 1 increases,
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the gap between the unregulated setting and the social optimum widens.

When i < 1, the output level in the unrelated setting is below the social optimal

level. The welfare improvement brought by each additional user offsets the slipover

cost, inducing a net positive welfare gain. The worst case happens when the output

level is at its lowest compared to the optimal level, which happens with noncompeting

service providers.

4.3.2 Upper bound on W(qN)/W(q*)

In this section, we focus on finding the best performance that can be achieved in an

unregulated setting. In the rest of this section, we will use the competition index and

maximum cost-to-benefit ratio evaluated in the social optimum, i.e., 7 = ' (q*), and

i = f(q*) and derive an upper bound on the efficiency of the unregulated oligopoly

in terms of these quantities.

Lemma 4.3.5 When cost 1(q) = (11(q), - , 4n(q)) is a convex function (componen-

twise),

(B + B + ]NR N < (B + 2R*)q*.

Proof. By Assumption 4.2.2, function 1(q) = (li(q),..., ln(q)) is convex componen-

twise with q.

1(qN) - I(q*) > R*(qN - q*)

-> 1(q N) - R*qN > (q*) - R*q*

I -l(qN) + R*qN < -9(q*) + R*q*

]p - l(qN) + R*qN p - g(q*) + R*q*.

After substituting the optimality conditions from Equation (B.1) and (B.3), we obtain

the desired result. 0

To obtain the upper bound on W(qN), we use convexity to express it in terms of

q* and R* with the help of the Jacobian similarity factor.
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Lemma 4.3.6 W(q) ( - Amin{((I - E)(G + I + )-1))2}), where K > 1 is the

Jacobian similarity factor, G = r- 0 5 (B + 2 )F-0. 5 and E = 11- 0 5R* r-0. 5.

Proof of Lemma B.6.1.

W(qN)

From Lemma 4.3.1, we obtain that

where IQ = B-+FB+ N + R*. Making use of Lemma 4.3.5 which shows that

IF qN < (B + 2R*)q*, it follows that

W(qN)

<(q*)T (B + 2R*)(B + FB + N + RN-1(lB + PB + N)(B + NB + + -1
R ~2 B+IB R(+Br+

(B + 2R*)q*

<r,(q*)T (B + 2R*)(B + FB + TFR + R*)-1(B + RB + Fj) (B + B + RL + R*)-1

(B + 2R*)q*,

where we obtain the last inequality by using the Jacobian similarity property that

we discussed for matrix F(q) = FN and r > 1. In particular, an upper bound on r,

is given as follows, based on the definition of the maximum eigenvalue of a positive

semidefinite matrix,

1
k Amax{(B + rB + rN + RN)-2(B + B + * + R*)2 ( B +

R R 2

(-B + FB + r*)-Y1 .
2

B + N)

(4.8)

Combine this result with W(q*) shown in Lemma 4.3.1, we obtain an upper bound

W(qN) (q*)T (B + 2R*)(IB + FfB + F)(B + 2R*)q*

W(q*) < (q*)T(B + B + R* + R*)(IB + R*)(B + EB + FR + R*)q*

As all quantities are in the social optimum setting, we will skip the superscript on

matrices. Denote G = 1FB 5 (B + 2PR)FB0 5 and S = Ti 0 5 RRgff -5 , the expression
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becomes

W(qN) (q*)T0.5(G + 2I)pO5 q*
W(q*) - (q*)TFTS 5 (G + I + E)(G + 22)- 1 (G + I + =)]Oq*.

Using the Rayleigh-Ritz Theorem, the upper bound can be simplified as the follows.

We skip some derivations as they follow exactly the same steps in the proof for

Theorem 4.3.4.

W(qN + 2I)(G + I + 0)(G + 2")(G + I + E)-}
W(q*) -

K -(1 Amin{((I - d)(G + I+ b)))2)

D

Theorem 4.3.7 When costs are fully self-contained, under Assumptions 4.2.1 to

4.2.4, the welfare in an unregulated oligopoly is bound above by

W(q N)

W(q*) -(2 + ) 2>

where K is the Jacobian nonlinearity factor. The tight with symmetric service providers

with affine costs (i.e., K = 1).

Proof of Theorem 4.3.7. When there is no spillover, Ron' 0 or E 0 and the

upper bound in Lemma B.6.1 can be simplified to

W(qN)
W(q*) < K (1 - Amin{(G + I)21)W (q*)

=K ( 1 Amax(G + I)2)

< r, 11 (4.9)
- K(-(1 + Amax{G})2 (

where an upper bound on K is given in Equation (B.6). Note G = B 0 .5-(B + 2'R) F 0.5

is a symmetric, positive definite matrix. By the property of similar matrices, this ma-

trix is similar to T-'(B + 2FR). Thus, they share the same set of eigenvalues. Using

96



the Gershgorin Disc Theorem, we can upper bound the maximum eigenvalue of a

matrix, i.e.,

Amax{G} = Amax{FB 1(B + 2UR)} < 1 + max

< 1+ max
i

= 1 +7.

Substituting these two inequalities into Equation (4.9), we obtain the the desired

bound.

In order to show that the bound is tight, note that with affine cost, K = 1.

In addition, the inequalities in Lemma 4.3.5 and Lemma B.6.1 become equalities.

Moreover, with symmetric service providers -yj = for all i, one can show that the

maximum eigenvalue of matrix G is exactly equal to 1 +,;y-. E

Theorem 4.3.7 shows that the efficiency of the unregulated setting increases as

the intensity of competition in the facility increases. The worst case happens when

the service providers are independent with monopolistic power, i.e., i' = 0. As the

competition among the service providers intensifies, the efficiency gap between the

unregulated setting and the social optimum diminishes. For example, with affine cost

(r,= 1), when -y = 1, the gap is reduced to 11.1%; as ' increases to 2, the gap

becomes only 6.25%. One could argue that the unregulated setting is quite efficient

when there is a fair amount of competition among the service providers.

Based on the analysis with only self-contained cost (Theorem 4.3.3 and 4.3.7), the

results are somewhat comforting as the worst welfare loss is bounded and this number

could be considerably smaller when there is competition among the service providers.

An explanation is that when only self-contained cost is present, the only distortion

in the unregulated setting is due to the oligopolistic power of the service providers,

which leads to higher prices and lower output level as compared to the optimum.

Competition reduces the market power of the service providers, thus, diminishing

the distortion and closing the efficiency gap. Consider the extreme example of per-

fect competition, where -+ oc, the total welfare obtained under the two settings
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converges, i.e., W(qN) - W(q*).

Theorem 4.3.8 With the presence of spillover costs, under Assumptions 4.2.1 to

4.2.5, when the maximum cost-to-benefit ratio < 1, the welfare in the unregulated

setting can be upper bounded by

W(qN)

W(q*)
<Ks1

2+ -+p '))

where , is the Jacobian nonlinearity factor. The bound is tight with symmetric service

providers with affine costs (i.e., , = 1).

Remark When there is no spillover, i.e., p = 0, Theorem 4.3.8 coincides with the

upper bound in Theorem 4.3.7 with only self-contained cost.

Proof of Theorem 4.3.8. When there is spillover, an upper bound on the com-

parison of welfare achieved in the two settings are given by Lemma B.6.1, i.e.,

W(qN (1 - Amin{((I - E)(G + I + 2)1))2
W(q*) -

Note matrix G is positive definite and the minimum eigenvalue of the composite

matrix is bounded below by

Amin{((I - =)(G + I + 2)-1))2 > min 1
A{s} Amax{G} + 1 + Af{E}/I

Consider a function g(x, y) = ((x - 1)(X+y +1))2 with x c [x, 2], where x > 0. If

t < 1, the function decreases in x. Thus, for a fixed y, the minimum of the function

is achieved with t. Therefore, we obtain the following:

When Amax{E} < 1,

Amax{} - 1
Amax{G} + 1+ Amax{E} ) 2

Since Amax{E} < P and Amax{G} 1+ -y, we can further lower bound the eigenvalue
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Figure 4-1: W(qN)/W(q*) with respect to spllover cost-to-benefit ratio P for sym-
metric service providers with affine cost, where i is set to zero (non-competing service
providers).

of the composite matrix by

Amin{((I - 5)(G+I+E)-)) 2 + P; )

To obtain the tightness result, note that with symmetric service providers, Amax{E}

5 and use the same argument in the proof for Theorem 4.3.7. D

Theorem 4.3.8 states that the efficiency of the unregulated setting increases with

competition level -y and the maximum spillover cost-to-benefit ratio when p < 1.

Competition is beneficial to an unregulated setting as it reduces the distortion created

by the oligopolistic power. When p < 1, it implies that enrolling an additional user

bring a net positive welfare to the society (additional consumer surplus is larger than

the spillover cost). As a result, the efficiency of the unregulated setting also improves

with this ratio.

Figure 4-1 shows the W(qN)/W(q*) for symmetric noncompeting service providers

with affine costs (i.e., r = 1 and -y = 0). The plot shows the effect of p on the effi-

ciency of the unregulated setting. It starts at 75% because of noncompeting service

providers. Then it first increases with p albeit at a decreasing rate and decreases as
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f becomes large.

We would like to note that the upper bounds use p and ,' evaluated at the optimal

output level q*. The system welfare maximization problem is a strictly concave

maximization problem, which is easier to solve compared to obtain a Nash equilibrium

in the decentralized problem.

4.4 Simulation Experiments

So far, we have developed several bounds in terms of the efficiency analysis. We show

that the bounds are tight for the special cases such as noncompeting or symmetric

service providers and with affine costs. This section addresses a natural question,

how "good" are our bounds? In this subsection, we will evaluate the performance of

the bounds with nonlinear costs and asymmetric service providers via simulations.

4.4.1 Effect of nonlinearity and competition

In Theorem 4.3.3 and 4.3.7, we have shown that when costs are fully self-contained,

the welfare in the unregulated setting is bounded between } W(qN) ( - 1 )2,

where r, is the Jacobian nonlinearity factor with an upper bound as shown in Equation

B.6 and ;y is the competition index with the component on the self-contained cost

evaluated at the q*.

To isolate the impact of nonlinearity on the cost function, we restrict to symmetric

service providers with marginal utility function given by pi(q) = Pi - #jj qj + aiq cq

(and we will discuss the impact of asymmetry in the next subsection). Because of

symmetric service providers, we will drop the subscript. For this experiment, the

number of downstream retailers is fixed to 5 and # = 5. We consider a cost function

of the following form, l(q) = cqk, where c > 0 is the cost coefficient and k is the

degree of this monomial. We run the experiment with the degree of the cost function

ranging from 0 to 10 for both noncompeting (a = 0) and competing service providers

(a = 1). The results are shown as the two curves labeled as "Exact" in Figure 4-

2. It is clearly shown that the efficiency increases as service providers compete for
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Figure 4-2: A simulation experiment to illustrate the impact of nonlinearity in the
cost functions.

all degrees k. Moreover, Figure 4-2 also shows that for all k > 0, the efficiency of

a decentralized system is strictly greater than 75%, which occurs with a constant

marginal cost and no competition. The two dotted curves labeled as "Bound" in

Figure 4-2 are computed by using the upper bound derived in Theorem 4.3.7. The

differences between the exact values and the bounds are quite small. To compute

the bound, we need to find out the maximum marginal self-contained cost evaluated

in the system solution q* which is easier to compute given the welfare maximization

problem is standard concave maximization problem.

Figure 4-3 records the result of another experiment which evaluates the bound in

Theorem 4.3.7 with competing service providers. We choose a cost function modeled

after a standard M/M/1 queue where 1(q) = M, and y > q. We use the same

marginal utility function as described in the previous experiment with # = 5. Com-

petition among service providers increases with the number of service providers, n.

Meanwhile, for a fixed number n, competition also increases with a. Figure 4-3 de-

picts the actual efficiency ratio in the solid line and the upper bound in dotted line by

adjusting the number of service providers from 1 to 20, and by varying a = 0.1, 1, 2
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Figure 4-3: A simulation experiment to illustrate the impact of competition with
self-contained cost 1(q) = q.

and 3 respectively. This experiment shows that efficiency of an unregulated setting

clearly improves with competition. Moreover, the upper bound becomes tighter as a

and n increase.

4.4.2 Effect of asymmetry

In this experiment, we focus on a setting with linear cost but asymmetric service

providers. Figure 4-4 reports the result of a simulation experiment with 500, 000

instances. For each instance, a random number between 2 to 25 is first drawn to

represent the size of the market. Next, various inputs (such as matrices B and R) are

generated to represent the asymmetric service providers (Jacobian R is independent of

q since costs are affine). For this experiment, we restrict p (see Definition 4.2.8) to be

equal or less than 1 so as to assess the quality of the upper bound we have developed

in Theorem 4.3.8 (similar behavior is observed for the comparison with the upper

bound when p > 1). We first solve the problem in the unregulated and the social

optimal settings respectively and compute the exact quantity. Next, we determine
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the corresponding upper bound in terms of ~7 and p. We summarize the differences

between the exact quantity and the lower bound in the histogram as shown in Figure

4-4. The experiment suggests that the upper bound provides a fairly accurate estimate

of the exact quantity. For most of the 500,000 instances, the differences between the

two quantities are within 0.05. Similar observations are also obtained for the other

bounds developed in the previous two subsections.
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Figure 4-4: A simulation experiment with 500,000 samples to illustrate the strength of
the upper bound in Theorem 4.3.8 where p < 1. The x-axis represents the differences
between the exact value of W(qN)/W(q*) and the upper bound grouped in bins. The
y-axis represents the relative frequency of the instances within the bin size.

4.5 Impact of Mergers Between Service Providers

Recently, talks on several mega-mergers have created a stir in the media, e.g., AT&T

with T-Mobile in the mobile marketplace, as well as United with Continental in

the airline industry. The common argument against mergers claims that consumers

could be at a disadvantage as the reduced competition leads to price increases. Views

which support merges argue that cost synergy derived from a merger could lead to

an improvement in the total social welfare. In this section, we will evaluate the

impact of mergers on the total welfare in the absence of cost synergy. For this part

of the analysis, an additional assumption of affine costs (i.e., l(q) = l4(0) + Ej lijqj)

is imposed so as to isolate the impact from mergers on the welfare. When service
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providers are also symmetric, then we will drop the subscripts, i.e., li(O) = 1(0) for

all i, and lij = l for all i and j,

Consider a pre-merger setting with n > 2 firms. Every firm competes against

each other by offering a single service. The firm determines its equilibrium service

level which maximizes the profit. We denote the two indices for all firms, namely, the

competition index adjusted with internalized congestion effect and the external-cost-

to-benefit ratio, as follow, yPre = ('r,... 'e) and Ire (nre,... , ) Suppose

m service providers decide to merge, where n > m > 2. Thus, in the post-merger

setting, there is a total of n - m + 1 firms in the market, i.e., the merged firm with

m types of services, together with n - m other firms, each providing a single service.

Without the loss of generality, let firms {1,... , m} be the merged firm. Denote

the two indices in the post-merger setting as -yPost and pPost respectively. Note that

the two indices in the post-merger setting are modified to capture the fact that the

merged firm has to determine the service levels which maximize the total profit from

all m types of services. The derivations can be found in the Appendix B.7.1. We

will use Wpre and WPost to denote the total welfare achieved in the pre-merger and

post-merger settings respectively.

Proposition 4.5.1 With symmetric service providers who offer homogeneous ser-

vices, in the pre-merger setting: yF" = (n -1 + 21)/0 and pi (n - 1)l/0 for all

i E {1,... , n}. In the post-merger setting:

" For the firms which are not involved in the merger, the competition index and the
post pre os re

congestion cost-to-benefit ratio remain the same, i.e., yo = ", o

for all j E {m + 1, ... , n};

" For the merged firm, for alli {1,. . ., m},

- when congestion effect is self-contained, 7POst = (n - m + 21)( 1 + m) <

pre

- for the merged firm, when congestion has the spilling effect, piost (n -

m)l/(# - 1 + m) < pre and y9o
5t = (n - m + 2ml)/(# - 1 + m).
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For the firms which are not involved in the merger, since there are still n - 1 homoge-

nous services in the market, the relative price change with respect to quantity change

stays the same, i.e., the competition index remains the same. The same argument also

applies to the external-cost-to-benefit ratio for those firms. For the merged firm, with

the self-contained congestion, the competition index of any of its services strictly de-

creases, because there are fewer "competitors" (numerator decreases), and his impact

on prices increases (denominator increases). Similarly, consider its external-cost-to-

benefit ratio, the uninternalized congestion is reduced from (n - 1)1 to (n - m)l as the

merged firm internalizes more congestion. Moreover, being a larger firm, it also offers

more marginal benefit to the society, i.e., it increases from 3 to 3 - 1+ m. Combining

both effects, the external-cost-to-benefit ratio for the merged firm strictly decreases.

However, with the spilling congestion effect, "competition" faced by the merged firm

could potentially increase after it is adjusted by the self-contained congestion effect.

As shown in Proposition 4.5.1, when the marginal congestion cost l is high enough

(i.e., for l > 1/2(1 + n/(# - 1)), it is possible that rp"' > re, for i E {1, ... , m}.

After the merger, although the merged firm enjoys higher pricing power, at the same

time, it also has to bear more congestion cost, which increases from 21 to 2ml due to

its larger size. Thus, if we include the additional cost which the merged firm has to

internalize, it is plausible that it could be at a disadvantage after the merger.

Proposition 4.5.2 When costs are fully self-contained, when service providers are

symmetric, WPst < WPre, for all n > m > 2.

The result coincides with the conventional view on mergers, that is, without con-

sidering cost synergies, mergers reduces competition in the market and it leads to

leads to a decreases in the total social welfare. As shown in Theorems 4.3.3 and 4.3.7,

the main distortion in the unregulated setting is the oligopolistic power which leads

to "underproduction" compared to the socially optimal level. When congestion is

self-contained, a merger strictly increases the power of the merged firm, resulted in

more welfare loss in the unregulated setting.

Proposition 4.5.3 With spilling congestion effect, when pPre > 1, in the absence of
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cost synergies, mergers lead to an increase in the total welfare when service providers

are symmetric. When ppfr < 1, depending on how much congestion cost the merged

firm internalizes, the total welfare after the merge could either increase or decrease.

The result suggests that without cost synergies, it is still possible for the society to

benefit from mergers. It happens when the unregulated setting is the "bad" regime

before the merger, where the external uninternalized congestion exceeds the external

benefit of enrolling an additional user. We have shown in Proposition 4.5.1 that

one of the effects of the merger is that the decrease in external-cost-to-ratios. Thus,

the society benefits from the decrease in the external cost as a result of a merger.

The impact on the total welfare when Pre < 1 is less conclusive. From Theorem

4.3.8, when the competition index stays fixed, decreasing pPost leads to a welfare loss.

However, if the merged firm internalizes a substantial amount of congestion effect such

that the competition intensity actually increases after it is adjusted for the congestion

cost, the society could still benefit from the merger.

The results seem to provide some (at least partial) explanations to the decisions

made for the two merger proposals recently. On September 1st, 2011, the U.S. Justice

Department filed a law suit in the federal court to block the merger between the

country's second- and fourth-largest wireless carriers, AT&T and T-Mobile. In a

statement released by the Justice Department, the combination would reduce wireless

communication competition in the U.S., driving prices higher, making service worse

and offering fewer products for U.S. consumers. Our result agrees with the decision

as we have shown in the wireless market where congestion effect is self-contained,

mergers between the carriers reduce the total welfare in the absence of cost synergy.

On the other hand, the merger between United Airlines and Continental has re-

ceived its clearance from the Justice Department since August 2010. The department

said the airlines would combine "largely complementary networks, which would result

in overlap on a limited number of routes where United and Continental offer com-

peting nonstop service." While our analysis does not consider the benefit stemmed

from network effect of the merger, the results based on our model suggest that the

merger could benefit passengers and airlines (the merged airline and all other airlines
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operating in the same airport) in the regions with congested airports.

4.6 Effectiveness, Attractiveness and an Alterna-

tive Implementation

In this section, we address some of the issues which traditionally have made the

adoption of congestion pricing a challenging task in practice. We focus on the spilling

congestion effect as we have shown in the earlier section that the potential welfare

loss in the unregulated setting could be huge (an alternative interpretation is that

the potential gains from implementing congestion pricing are high). As opposed to

focusing on the aggregate impact such as the total social welfare, the main emphasis

of this section is on the individual impact of congestion pricing on service providers

and users respectively. We demonstrate that the surplus of the service providers and

the users almost always decreases after implementing congestion pricing, unless the

revenue collected from congestion pricing is utilized efficiently. Thus, it puts a lot

of emphasis on how to use the revenue from congestion pricing. Moreover, in order

to attract support for congestion pricing in reality, we attempt to design the scheme

which appeals to the self-interest of individual participants.

4.6.1 Using the revenue from congestion pricing

The economic theory behind congestion pricing relies on using the revenue collected

to improve the efficiency of the facility (recall the total welfare is the sum of consumer

surplus, producer surplus and the revenue collected from congestion pricing). In the

context of an airport, the revenue collected can be invested in infrastructure such

as constructing more runways and/or technological improvement in air control which

would increase the capacity of the airspace and reduce the impact due to bad weather.

In reality, the facility manager might only intend to use part of the revenue for that

purpose. It could also happen that the revenue collected is spent unwisely such that

only part of the expected gain is realized. To model this, we introduce a parameter
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# E [0, 1], called the revenue utilization rate, to denote the fraction of the revenue

which ultimately benefits the society. The total welfare with congestion pricing would

depend on #, W(q, #) = CS(q) + PS(q) + #TR(q).

In the earlier section, we have quantified the welfare impact from congestion pric-

ing by focusing on the ideal scenario with # = 1, that is, all the congestion pricing

proceeds have been used to boost the social welfare. In the next two propositions,

we take another look at this impact without being overly optimistic on the revenue

utilization.

Proposition 4.6.1 The optimal congestion pricing charged to the service provider,

t*(#), increase in #.

The result spells out the relationship between the size of congestion pricing and the

facility manager's ability to utilize the tax revenue to improve the social welfare. It is

intuitive as the amount that a facility manager is allowed to charge should be directly

related to his ability or commitment to utilize the revenue. Higher charge is only

justified when the facility manager is capable of utilizing a significant amount of the

revenue proceedings.

Proposition 4.6.2 There exists a q such that W*(#) > WN, for all >

The result imposes a criterion on a facility manager's ability in order to justify conges-

tion pricing. While it is straightforward to see that the total social welfare increases

with the revenue utilization rate #, Proposition 4.6.2 suggests that the intervention

from the manager could possibly lead to a welfare decrease when the utilization rate

is is low. In particular, if at most $ of the revenue is planned to benefit the soci-

ety (airlines and/or passengers in the context of airports), congestion pricing should

not be implemented. With symmetric service providers, the condition boils down to

having 0 > (3 + rmax)/(2 + rmax + Pmax). It increases with the competition among

the service providers and decreases when the external congestion cost outweighs the

external benefit. 0 is below 1 only when pmax > 1, implying a rather stringent require-

ment on the regulator's ability of utilizing the proceeds in order to justify imposing

congestion pricing.
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4.6.2 Individual impact of congestion pricing and welfare

sharing

As most individuals are somewhat concerned with aggregate performance metrics

(such as total welfare) and are more interested in their individual impact, we inves-

tigate the impact of congestion pricing on the individual service providers and the

users respectively in this subsection. Let us denote the producer surplus and con-

sumer surplus in the unregulated setting as PSN and CSN and the corresponding

quantities and the revenue collected with congestion pricing as PS*, CS* and TR*

respectively.

Figure 4-5 shows producer surplus and consumer surplus with respect to the

external-cost-to-benefit ratio (p) for the symmetric service providers for both the un-

regulated and regulated settings. When p < 1, PS* > PSN and CS* > CSN. Note

that when p < 1, the optimal congestion pricing is negative. With the subsidy from

the facility manager, it increases the profit margins of the service provider who sees

an increase in his profit. Meanwhile, lower prices also encourage more users from en-

rolling which leads to a higher consumer surplus. The reverse happens when p > 1 as

PS* and CS* are strictly less than their counterparts in the unregulated setting as the

facility manager imposes a positive charge on every service. Intuitively, PS* decreases

because the profit-maximizing service providers experience lower profit margin due to

the positive access fee. A lower consumption level results in a lower CS*. The classic

definition of total social welfare in economics with taxation is defined as the sum of

producer surplus, consumer surplus and the tax revenue (W* = PS* + CS* + TR*).

Therefore, in the settings with a positive congestion pricing (p > 1), the welfare

improvement is accrued as the "revenue" collected by the facility manager, at the

expense of both the service providers and the users. It is not surprising that when

all participants experience a surplus decrease, there is little desire for them to adopt

the scheme.

Suppose the facility manager would like to share the revenue between the service

providers and the users with the goal that every participants can do better than
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Figure 4-5: Producer surplus and consumer surplus with respect to the marginal
spillover congestion cost-to-benefit ratio, p for the identical service providers, where
# = 10, 1 = 2, P - I= 10.

in the unregulated setting. In particular, suppose ai is the portion of the revenue

TR* that is given to service provider i and #i portion of the revenue that is given

to the users enrolling under service provider i, where E(ai + 03) = 1. We denote

the new producer surplus and consumer surplus after the welfare redistribution as

PSj and CSj respectively, whereby PSj = PS + a iTR*, and CSj = CS* + iTTR*.

While every participant would like to obtain a larger share of the pie, we define the

following welfare-sharing rule such that everyone can benefit.

Proposition 4.6.3 Suppose W* = OWN, where 4 denotes the total welfare increase

after the implementation of congestion pricing. If the revenue TR* is shared according

to ci and 0j, where

PIN - PS! @CSN - CS*
ae r= j and A = - I

TR* ' TR*

then PS, > PSN and CSj > CSN for all i.

The welfare-sharing rule ensures a Pareto-efficient outcome, i.e., Ei(PS,+CSi) =
W*. Moreover, it also guarantees collective individual rationality as both producer

surplus and consumer surplus experience an improvement compared to their coun-

terparts in the unregulated setting. We would like to point out the surplus obtained
u tN CSNunder the welfare-sharing rule, i.e., PS2 = ; OrW* and CSj = _: W*is equivalent to
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using the proportional value as an allocation rule in a n-person bargaining game with

their outside option as their gain in the unregulated setting. The welfare-sharing rule

also captures a notion of "fairness": It scales each entity's surplus in the unregulated

setting by a same factor, 0, which represents how much benefit the society as a whole

reaps from congestion pricing. It then compares that quantity (@PSfN or @CSf)

with every entity's corresponding surplus after congestion pricing and compensates

each participant accordingly.

In the context of airport congestion pricing, FAA has to compensate airlines and

traveling passengers by giving back the revenue collected. To compensate airlines,

FAA could give discounts on existing charges such as counter and baggage claim rental

fees. To redistribute the revenue to passengers, one remedy is to reduce airport tax

or passenger facility fees. Passenger facility charges (PFC) are special taxes which

airports collect from individual airline passengers. A PFC is imposed each time a

passenger passes through an airport eligible to collect a PFC (only a small number

of airports in the United States do not collect a PFC). The PFC is actually added to

the price of an airline ticket, and airlines are forced to collect the tax for airports at

the time the passenger pays for their ticket. Nonetheless, we recognize the difficulties

associated with implementing the proposed scheme due to the administrative burden

on both FAA and airlines.

In the following proposition, we explore another implementation of congestion

pricing which guarantees that each participant experience a welfare improvement

without going through the hassle of collecting congestion pricing and later redis-

tributing the revenue.

Proposition 4.6.4 There exists a new marginal utility function fiL(q) = Oi-n_ I 3jqj,

such that producer surplus and consumer surplus earned in the unregulated setting are

the same as the target level, PSj and CS respectively.

Under this new utility function, without any intervention from the facility man-

ager, the service providers and the users could achieve the target surplus level in an

unregulated setting, and all participating entities experience a surplus increase. Com-
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pare this new demand function with the initial model (where ui (q) = Pi - E #ijqj),
the only difference is that the maximum willingness of a representative user to pay

for i's service is changed from pi to Oj. It suggests an "easy fix" as an alternative im-

plementation of congestion pricing and welfare redistribution: For every service, the

facility manager mandates a surcharge (O8 - pi) which alters its base price. Once

the surcharge is imposed, the service providers determine their respective profit-

maximizing service level and get to keep all the revenue earned. Because of the

new higher base price, some users will choose to leave the facility and this relieves

the congestion problem. For the service providers, despite serving fewer users, they

benefit from a higher profit margin per user (due to the surcharge) and reap higher

profit. Meanwhile, the remaining users derive higher utility from using the service,

therefore, they also experience higher surplus. More importantly, this implementa-

tion bypasses the difficulties of actual implementation of congestion pricing and the

subsequent welfare-redistribution.

4.7 Conclusions

In this work, we have considered a setting where several services providers compete

for users who are sensitive to both prices and congestion by providing multiple differ-

entiated services. We have provided tight parametric bounds on the welfare loss of the

unregulated setting. We have shown that with self-contained costs, the unregulated

setting could be quite efficient and the maximum welfare loss is capped at 25%, even

with highly nonlinear convex costs. With spillover cost, the efficiency of the unregu-

lated setting highly depends on the relative magnitude of the marginal external cost

and the marginal benefit associated with enrolling an additional user. We have also

shown that the congestion pricing charged to service providers with market power is

lower than that of the traditional "road toll". Contrary to conventional wisdom that

mergers reduce social welfare, we show that in a setting with severe spilling conges-

tion effect, mergers could lead to a social welfare improvement, even in the absence of

cost synergy. Lastly, based on a welfare-sharing scheme, we proposed an alternative
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implementation of congestion pricing such that both the users and service providers

can enjoy higher surplus.

113



114



Chapter 5

Price of Anarchy in Joint Ventures

5.1 Introduction

A proliferation of joint ventures has been witnessed across the globe in the recent

years. A joint venture takes place when two or more business partners pool their

resources and expertise to achieve a particular goal for a contractual period of time.

Joint ventures stand in the middle ground between non-cooperative competition and

merging. They provide companies with the opportunities to gain new capacity and

expertise, enter related businesses or new geographic markets, gain new technological

knowledge access to greater resources, and share risks with other venture partners.

In this work, we consider a setting where multiple entities take part in a joint

venture and each of them contributes one type of resources. We distinguish two types

of resource pooling in joint ventures, depending on whether the resources are het-

erogeneous or homogeneous. When resources are heterogeneous, they are not fully

substitutable. Thus, the effective capacity of a joint venture is limited to the the

minimum level of an individual contribution. In other words, the lowest contribution

by one partner becomes the bottleneck in planning the capacity for the joint ven-

ture. This is in contrast with homogeneous resource pooling, where the resources are

perfectly substitutable and the overall capacity of a joint venture is determined by

aggregating all individual contributions.

One example that demonstrates the success of a joint venture with heterogeneous
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resource sharing is Massachusetts Eye and Ear Infirmary (MEEI), a hospital special-

ized in providing patient care for disorders of the eye, ear, nose, throat, head and

neck in downtown Boston. With the vast majority of its services is outpatient in

nature, MEEI experiences lower profit margins than a regular hospital and has been

pressured to increase its patient volume so as to strengthen its financial status. Since

2005, MEEI has established five satellite clinics through joint ventures by collabo-

rating with community hospitals in the suburbs. A typical agreement specifies that

MEEI provides expertise (physicians and nurses) and its brand name' while the com-

munity hospital is responsible for providing facility and other necessary hardware.

The two types of resources, i.e., expertise and facility, are not interchangeable. The

maximum number of services that can be supported in such a satellite clinics is lim-

ited by MEEI's input as well as the space constraints such as the number of operating

rooms available in the new location.

In 2003, US-based car rental firm Avis has set up a joint venture in Shanghai,

China. The new company named Anji Car Rental and Leasing, 50-50 owned by Avis

Europe and Shanghai Automotive Industry Sales Corporation, takes over the existing

fleet of 1,000 vehicles from Shanghai Anji Car Rental and operates it under the Avis

brand name. The venture expects to establish more than 70 outlets nationwide. This

is a typical joint venture with homogeneous resource sharing, where the capacity in

the new company is supported by aggregating the number of vehicles from the two

companies.

Besides the healthcare industry and car-rental industry, another sector which has

been a flurry to establish joint ventures is the airline industry. An airline alliance is

an agreement between multiple independent partners to collaborate in various activ-

ities to streamline costs while expanding global reach and market penetration. The

presence of alliances in the airline industry has followed an increasing trend since

the first large airline alliance was formed in 1989 between Northwest and KLM. By

March 2009, the three major alliances (Star, Sky Team and Oneworld) combined flew

around 73% of all passengers worldwide (Hu et al. 2012). On the cost side, there are

'The satellite clinic located within the community hospital is labeled as a MEEI branch.
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strong incentives for airlines to operate large networks as the evidences on economies

of scale have been well documented (Caves et al. 1984, Brueckner and Spiller 1994,

Keeler and Formby 1994, etc). On the revenue side, one of the fundamental attrac-

tions of an airline alliance is the ability to offer codeshare fights. Code sharing is

an agreement between two carriers whereby one carrier allows a different carrier to

market and sell seats on some of its flights. Based on empirical evidences, Brueckner

(2003) conclude that codesharing among Star Alliance partners yielded an annual

benefit of around $20 million. Morever, the information comes with codesharing can

be tremendously beneficial. Jain (2010) show that sharing information on bid prices

yields higher revenues of the order of $100 million for every big partnering carrier in

the alliance.

5.1.1 Results and Contributions

In this work, we study both types of joint venture models and address some issues

pertinent to the success of joint ventures. When several companies agree to a part-

nership, disparate interests often exist as each participant is more concerned with his

or her own gain. Given the misalignment in incentives and uncertainties in demand,

we are interested in measuring the performance of a joint venture by quantifying

the difference in the investment level and the total profit attained with respect to a

system optimal outcome.

We have shown that in a joint venture with heterogeneous resource pooling, de-

spite the existence of asymmetric parties, the equilibrium induces an equal capacity

contribution from every partner. Although multiple Nash equilibria could exist, we

show that there always exists a unique strong Nash equilibrium. In addition, we show

that there exists a fair and efficient way to share revenue such that an optimal invest-

ment decision could be reached in a Nash equilibrium. Next, we also consider Nash

Bargaining model which is a natural framework to define and design fair assignment

of the capacity investment levels between multiple players. We show that the same

revenue sharing scheme could also be used in a Nash Bargaining model to induce the

optimal decision. This optimal revenue sharing scheme indicates that the awarded
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each party receives must be proportional to his marginal cost.

For joint ventures with homogeneous resource pooling, we first prove some struc-

tural properties on the effective capacity under any demand distribution with convex

costs. The analysis is challenging as the investment of each player could only be

determined by solving a system of implicit equations. We show that joint venture al-

ways underinvests as the effective capacity is always lower than that of a coordinated

setting.

We then focus on quadratic-linear cost functions and show that, through an

intercept-argument, the effective capacity in a joint venture with respect to any rev-

enue sharing ratio is at least 1/n of the optimal level, where n is the number of

participants. Moreover, the ratio between the capacity level could be upper bounded

in terms of the cost asymmetry between the two players and the revenue sharing ratio.

While we show that there does not exist a fixed marginal revenue sharing contract

which can coordinate the players, we propose an interval for the revenue sharing ratio

which induces an outcome that is guaranteed to achieve at least 50% the optimal

profit for a 2-player model. This interval depends on the cost asymmetry between

the two players and the demand concentration.

Lastly, we consider general convex cost in the homogeneous resource pooling model

with an arbitrary number of asymmetric players. We show that a lower bound to the

efficiency of the original setting with the nonlinear convex costs is that of a modified

setting with linear costs, where the coefficients are equal to the marginal cost of each

player evaluated in the Nash equilibrium of the original problem. As a result, we show

that the comparative analysis on profit can be reduced to analyze the joint investment

level made in the Nash and the system in the setting with the linear costs.

The rest of the chapter is organized as follows. We begin with a review on related

literature in Section 5.1.2. Section 5.2 describes the two models and assumptions.

We analyze and present the main results on capacity sharing and substitution model

in Section 5.3 and Section 5.4 respectively.
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5.1.2 Related Literature

This paper studies strategic capacity management under uncertainty. In the opera-

tions management literature, there is a vast body of work using the classic newsvendor

model or some variations to capture uncertainties. Federgruen and Zipkin (1986) is

the classic reference for capacitated inventory management. Papers including Ka-

puscinski and Tayur (1998), Angelus and Porteus (2002), Bradley and Glynn (2002),

Van Mieghem and Rudi (2002) consider capacity investment decisions in capacitated

Newsvendor networks. Van Mieghem and Dada (1999) take a different approach at

capacity management and address how the relative timing of the decisions on capac-

ity, inventory, and price impact the sensitivity and profitability. We refer readers

to Van Mieghem (2003) for an excellent survey paper on the recent development on

capacity management. In this work, the capacity of a joint venture depends on the

contribution of multiple participants. Depending on the nature of the resources, the

effective capacity can be the minimum or the sum of individual contributions.

In many settings, capacity-investment decisions are the results after interacting

with other economic agents. Thus, it seems natural for capacity investment models

to incorporate the strategic behavior of self-interested agents. Cachon and Lariviere

(1999) consider the manufacturer's capacity investment and allocation decisions to

several downstream retailers that have private information. Caldentey and Wein

(2003) present contracts that are linear in backorder, inventory, and capacity levels

to coordinate a manufacturer and retailer production-inventory system, including

the capacity decision. Examples on single-resource, multiple-agent also include Carr

and Lovejoy (2000), Porteus and Whang (1991), Kouvelis and Lariviere (2000), etc.

Bassok et al. (1999) and Netessine and Rudi (2003) explore the impact of substitution

in an inventory context, and its effects are likely to be similar in capacity problems.

In this work, the strategic behavior of participants involving in a joint ventures is

captured in a noncooperative game, as each entity determines his level of contribution

with the goal to maximize his profit. While the revenue each party receives depends

on the effective capacity of the joint venture, the incentive of each entity might not
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be correctly aligned to one which maximizes the collective return. We consider a

fixed rate revenue sharing contract described in Cachon and Lariviere (2005) to split

revenue among the participants. To capture the high capital investment incurred in

joint ventures in the healthcare industry, we consider general convex cost function

so as to capture the diminishing returns, in contrast to linear cost function which

is common in the operations management literature (e.g., Bernstein and Federgruen

2007, Cachon 2003, Corbett et al. 2005, Martinez-de Alberniz and Simchi-Levi 2009).

In this setting, we show that an "optimal" coordinating contract which enables the

parties with self-interests to behave as a coordinated entity does not necessarily exist

with homogeneous resources. We then propose a range for fixed revenue sharing ratio

which induces reasonably good outcomes.

Standing in the middle ground between non-cooperative competition and merg-

ing, one of the most fundamental building blocks of joint ventures is negotiation.

Empirical studies suggest that "the power of a joint venture is only as strong as the

negotiation behind it" (Y. and 0. 2002, Lin and Germain 1998). The topic on ne-

gotiation has gained a lot of attraction in the economics literature since Nash (1950)

(e.g., Myerson 1979, Binmore et al. 1986, Rubinstein 1982, etc). In the fast few years,

more results on negotiation have become known in the field of operations manage-

ment (see for example, Reyniers and Tapiero 1995, Miller 1992, Chod and Rudi 2006,

etc). Nagarajan and Sosic (2008) present an excellent survey paper on cooperative

game theory in the field of supply chain management. In this work, utilizing the

bargaining model, we propose a revenue sharing scheme which induces an outcome

which is coincides with the system optimum.

Lastly, our work which measures the performance of an unregulated setting with

respect to a centralized system is related to a stream of literature on price of anarchy,

popularized by Koutsoupias and Papadimitriou (1999). It compares the performance

of the worst-case Nash equilibrium with respect to the centralized system. The con-

cept has been used in transportation networks (Roughgarden and Tardos 2002, Correa

et al. 2004, 2007, Roughgarden 2005), network pricing (Acemoglu and Ozdaglar 2007,

Weintraub et al. 2010), oligopolistic pricing games in a single tier (Farahat and Per-
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akis 2010a,b), and supply chain games with exogenous pricing (Perakis and Roels

2007, Martinez-de Alberniz and Simchi-Levi 2009, Martinez-de Alberniz and Roels

2010).

5.2 Model Formulation

In this section, we first present the model for a joint venture with n players as an

uncoordinated game. As a benchmark, we also present the model in the system

setting, i.e., n entities were merged and coordinated as a single entity with the goal

to maximize the total return.

5.2.1 Joint-venture: an uncoordinated game

Consider a joint venture with n profit-maximizing players with asymmetric cost func-

tions. The joint venture generates a joint revenue R(p, K) where p is the fixed price

and K = (Ki, . . . , K,) captures the resources contributed by each player. A revenue-

sharing contract dictates that player i receives revenue #iR(p, K). Let fi(Ki) be

the convex cost associated with investing Ki resources by player i. Based on a pre-

negotiated revenue-sharing ratio A = (#1,... , #), player i tries to maximize her profit

ri (#) A #3R(p, K) - fi(Ki) by choosing her own investment level Ki, which leads to

a Nash equilibrium (NE).

5.2.2 Merger: the system optimum

Consider the centralized system in which n players are merged and coordinated as

a single player. The merger generates the highest possible profit Ir * R(p, K) -

i> fi(Ki) by collectively choosing the resource investment K. This yields the first-

best or system optimal solution.
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5.2.3 Resource-sharing models

We consider two types of resource-sharing models depending on the nature of the

resources pooled from different players. The nature of the resources determines the

effective capacity in a joint venture, which in turn affects the revenue function R(p, K).

We formally define them as follows:

Definition 5.2.1 Heterogeneous resource-sharing. The aggregate revenue gen-

erated by the joint venture is given by R(p, K) = pE(min(D, mini(K))).

The type of resource provided by each player is heterogeneous and not fully sub-

stitutable. A service can only be performed with a complete portfolio of resource

types. The effective capacity supported by the joint venture is therefore limited to

the minimum capacity level invested by the players.

Definition 5.2.2 Homogeneous resource-sharing. The aggregate revenue gen-

erated by the joint venture is given by R(p, K) = pE(min(D, Z>(Ki))).

The type of resource provided by each player is homogeneous to each other and hence

fully substitutable. A service can be performed by using the resource contributed by

any (possibly single) player. The effective capacity supported by the joint venture is

therefore the sum of capacity level invested by each player.

In the next two sections, we will study both types of resource-sharing models and

present the differences in the capacity investment and the total profit generated in a

joint venture to those in a system optimum.

5.3 Heterogeneous Resource-sharing Models

With heterogeneous resources, the effective capacity is limited by the minimum ca-

pacity invested among all players, which becomes the bottleneck capacity. Consider

the merger setting, the central planner tries to maximize the aggregate revenue by

122



collectively choosing the capacity investment K, i.e.,

n

r* AmaxpE[min(K, D)] - fi(Ki), s.t. K < Ki, i = 1,. . . , n. (5.1)
K,Ki

Let K* and K*, ... , K,* be the system optimal solution.

Lemma 5.3.1 At system optimality, the capacity invested by each player is the same,

Z.e., K* = Ki for all i = 1,...,n, where K* solves P(D < K*) = 1 - 'li fi(K*)/p.

Proof of Lemma 5.3.1. Without loss of generality, if there exists a pair of players

i and j such that KZ < Kj, we can decrease the capacity invested by player j from

Kj to Kl. By doing so, the profit increases by reducing the cost while maintaining

the same revenue. Hence, we reach a contradiction. At system optimality, K* = Kl

for all i = 1, ... , n, and (5.1) reduces to a single variable optimization in which K*

can be obtained by the first-order condition. 0

In the system optimum, each individual capacity investment Ki must be reduced

to the bottleneck capacity K* when resource-sharing is heterogeneous, since any fur-

ther investment beyond the bottleneck capacity only increases the total cost and

decreases the total profit.

In a joint-venture with a pre-negotiated revenue-sharing contract #, player i tries

to maximize her profit by choosing her profit-maximizing capacity investment level

Ki based on other players' strategies K_i, which leads to a Nash equilibrium, i.e.,

7rN (0) A max #ipE[min(K, D)] - fi(Ki), s.t. K < Kj, j = 1,... ,n
SK,Ki ;K-i

Now, let KN and K',... , KN be the Nash equilibrium solutions.

Lemma 5.3.2 In joint-ventures, any KN(O) = Kf (O) = ... = KN(C) < min1 k n(Ak)

are Nash Equilibria, where Ak solves

fl( Ak)
P(D < Ak) = 1 - fk .

OP
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In particular, KSN() = KIN () KnSN(O) = min,<k<n (Ak) is a unique

Strong Nash equilibrium.

Proof of Lemma 5.3.2. Without loss of generality, if there exists a pair of players

i and j such that Kf,(#) < KjN(#), player j can decrease its capacity investment

from K7(#) to Kf'(3) lowering her cost and improving her profit. Thus, at Nash

equilibrium, all players must have the same capacity investment level, i.e., KN (3)

Kf(#) for all i= 1, ... , n.

Now assume that minl<kn(Ak) = Am. Now if Am < KN( 3) = Km(#), player m

always has incentives to unilaterally lower her investment level to Am since Am is her

profit-maximizer. This forces all players to invest at Am. Any capacity investment

level Am such that 0 < Am < Am is also a Nash equilibrium since no player has

incentives to unilaterally deviate from Am. In particular, KSN(3) = K SN(O)

K SN (0) Am is a unique Strong Nash equilibrium in which no coalition, taking the

actions of its complements as given, can cooperatively deviate in a way that benefits

all of its members. D

Lemma 5.3.2 indicates that the capacity invested by each player must be the

same in a joint venture. Since the revenue received by player i depends solely on

the bottleneck capacity KN () when resource-sharing is heterogeneous, any further

investment beyond the bottleneck capacity only increases her cost and decreases her

profit. Lemma 5.3.2 also implies that Ak is the profit-maximizing capacity for player

k. Since the resource-sharing is heterogeneous, the player m with the lowest profit-

maximizing capacity (i.e., Am = minlk<,(Ak)) can unilaterally choose to invest

at her profit maximizing capacity, forcing all other players to invest at the same

capacity level. Note that any capacity investment level no greater than Am is a Nash

equilibrium whereas any capacity investment level above Am is not. As a result, it is

easy to see that with the existence of multiple Nash equilibria, it is possible for a joint

venture to achieve an arbitrarily bad outcome compared to the system optimum.

So far, we have modeled the decision making process in a joint venture as a Nash

Equilibrium. Next, we will propose an alternative model where the players participate
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a Nash bargaining game to determine their respective investment decisions for a given

revenue sharing ratio #.
Nash Bargaining Solution (NBS). The Nash Bargaining Solution (see Ap-

pendix C) is a natural framework that allows us to define and design fair assignment

of the capacity investment levels between n players, which can derive desirable proper-

ties such as Pareto efficiency and proportional fairness. Based on a particular revenue

sharing contract #, n players choose their capacity investment levels according to a

Nash Bargaining game, i.e.,

n

max r T'(O), s.t. K < Kj, j =1...,n,
i=1

which is equivalent to solving

n

max log 7F r(#), s.t. K < K, j =1, ... , n. (5.2)
K,Ki

Let KB and K, . .. , Kn be the Nash Bargaining Solution from solving (5.2).

Theorem 5.3.3 There exists a unique revenue sharing contract,

fil(K*)

_=1 fj(K*)'1

such that the Nash Bargaining Solution, the unique Strong Nash equilibrium, and the

system optimal solution coincide, i.e., K B(*) = KSN (f*) = K*.

Proof of Theorem 5.3.3. Observe that (5.2) is equivalent to a single variable op-

timization,

N

max log (#ipE[min(K, D)] - fi(K)) . (5.3)

The first-order condition gives us

N 
B B3pIF(D > K) f(K) 0 (5.4)

(#ipE[min(KB, D)] - fi(KB))
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By Lemma 5.3.2, at Nash Equilibrium, KN < min15ksn(Ak), where Ak solves

P(D > Ak) = fk(Ak)
Okp

This implies that

#ipP(D > KN) - f/(KN) > 0, for all i = 1, ... , n. (5.5)

Suppose that there exists a solution -y to both the Nash Bargaining game and the

Nash equilibrium, i.e., -y = KN - KB(#).

simultaneously, implying that

Then -y must satisfy (5.4) and (5.5)

ipP(D > -y) - f21(-y) = 0 for all i = 1, ... , n. (5.6)

If such -y exists, -y = KSN(), i.e. -y is the unique Strong Nash equilibrium since

y = A1  ... = An= min1<k<n(Ak) by (5.6).

Now summing (5.6) over all players and E" 1i = 1, we have

(5.7)pP(D >)- f (y) = 0.

By (5.6) and (5.7), we know that # must be of the following form,

= f i' ()

Moreover, note that by Lemma 5.3.1, (5.7) implies that -y = K* Since K* is the

unique system optimal solution, there exists a unique revenue sharing contract

f (K*)

n 1 fj(K*)'

such that -y = K* = KSN(0*) = KB (3*). FD
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Theorem 5.3.3 shows that when resources are heterogeneous, there is a way to

rely on the revenue sharing contract to eliminate the incentive misalignment among

the players and induce the system optimal outcome. In addition, the way to do so

is the same when the players' behavior is predicted by a Nash equilibrium as well as

the Nash bargaining solution.

In addition, besides inducing the efficient decision, the optimal revenue sharing

contract in Theorem 5.3.3 also embodies the notion of proportional fairness. For an

investment level K*, player i bears a marginal cost f4(K*) and the aggregate marginal

cost is given by summing up the marginal cost of every player participating in the

joint venture, >j fj(K*). Theorem 5.3.3 specifics that the marginal revenue ratio

which player i is entitled to receive (#3 ) should be equal to the proportion of his

marginal cost to the aggregate marginal cost (fj(K*)/ EZ f(K*)). In simple words,

"fairness" in this context suggests that every participant in a joint venture should be

awarded "proportionally" to the risk (cost) she has to undertake.

5.3.1 Numerical Examples

We conduct numerical studies to compare our approach with the existing approach

adpoted by some joint-ventures (such as MEEI). In the existing model, joint-ventures

set their capacity investment level according to the long-run average demand, i.e.

KEX - ]E[D]. In addition, they split the revenue based on how much each party

invests in total capacity. More specifically, they set the revenue sharing parameter to

be

EX _ (KEX)

- = fj(KEX)

We consider a 2-player game with unit service price p = 1200. Assume that the

demand follows a normal distribution, and the cost functions to be quadratic, i.e.

fi(Ki) = aiK2/2 + biKi + ci for i = 1, 2. Without loss of generality, we let ai = 1,

a2 = 0.5, bi = b2= 100 and ci = C2= 0. Table 5.1 shows the simulation results.

The simulation results show that our approach outperforms the existing approach

127



Demand Player 1 Player 2 Total
Share Profit (x 105) Share Profit Profit (x 105)

RS EX RS EX % RS EX RS EX % RS EX %
N(800,100) 63.8% 62.5% 2.19 1.70 29% 36.2 37.5 1.11 1.01 8.8% 3.30 2.72 21%
N(800,200) 63.5% 62.5% 2.06 1.40 47% 36.5 37.5 1.06 0.84 26% 3.12 2.24 39%
N(800,300) 63.3% 62.5% 1.86 1.10 69% 36.7 37.5 0.96 0.66 46% 2.83 1.77 60%
N(700,100) 63.5% 62.1% 2.12 1.77 20% 36.5 37.9 1.09 1.08 1.2% 3.21 2.84 13%
N(700,200) 63.3% 62.1% 1.92 1.47 31% 36.7 37.9 1.01 0.90 12% 2.93 2.37 23%
N(700,300) 63.0% 62.1% 1.69 1.17 45% 37.0 37.9 0.89 0.72 24% 2.58 1.89 37%

Table 5.1: Numerical results comparing the revenue-sharing contract (RS) with the existing contract (EX).
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by increasing the profit of both players. The profit increases in the variability of

the demand distribution. Moreover, we observe that the proportional sharing scheme

based on marginal costs (our approach) gives slightly more weight to the less cost-

effective player as compared to the proportional sharing scheme based on total costs

(the existing approach).

5.4 Homogeneous Resource-sharing Models

When resources are homogeneous, they are completely substitutable for one another.

The effective capacity is therefore the sum of the individual capacity invested by

each player. The alliances among airlines and car rental companies are some of the

applications of this model.

In a merger (system), the central planner tries to maximize the aggregate revenue

by collectively choosing the capacity investment K, i.e.,

n
maxpE[min(L, D)] - fi(Ki).

7T-Ki
i=1

where the total capacity investment L is the sum of all Ki's, i.e., L A Ke with e

being the column vector with all one's.

Lemma 5.4.1 Define an auxiliary function

n

g(L) : maxpE[min(L, D)] - f (Ki), s.t. L < L.
Ki

Then g(L) is concave in L where L is the budget on total capacity investment.

Proof of Lemma 5.4.1. Suppose L* is the optimal solution to the system problem.

It is easy to see that for all L > L*, g(1L) = 7*. For all L < L*, the budget constraint

becomes tight. It suffices to show that

ni n

h() =min fi(Ki), s.t. Ki=
i=1
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is convex in L. For any A E [0, 1],

n

- A)L 2) =min f2(AKi
Ki, Ki._

+ (1- A)Kj) s.t. Ki = Z ,

and

n

Ah(L 1 ) + (1 - A)h(L 2) = min A fi(K) + (1 - A) fi (K)
Ki,K.

n n

s.t. SKi =ZL1 , -K =Z 2.
i=1 i=1

By convexity of function fi for i = 1, . . . , n, for any Ki, we know that

fi(AKi + (1 - A)Kj) > A f (Ki) + (1 - A)fi(Kj).

Taking the minimum with respect to the same constraints preserves the inequality,

we have

h(AL, + (1 - A)L2) > Ah(L 1 ) + (1 - A)h(L 2).

This completes the proof. D

In a joint-venture with a pre-negotiated revenue-sharing contract /3, player i tries

to maximize her profit by choosing her profit-maximizing capacity investment level

Ki based on other players' strategy K_i, i.e.,

7r () max
SK,Ki;K-i

#ipE[min(L, D)] - fi(Ki),

which leads to a Nash equilibrium.

Lemma 5.4.2 The total capacity investment level in a joint-venture is no greater

than that in a merger (system), i.e., i= K < (_= K|.

Proof of Lemma 5.4.2. Suppose that, without loss of generality, Kf ;> K*. Then
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we have

Op - f(f ) <p - fj(K*) <p - fj(K*)
#3p - #p ~ p

Take F- 1 on both sides (F-1 is monotonely increasing, so the sign does not change),

then we have E l KN < J' Kl. D

The result in Lemma 5.4.2 does not depend on demand distribution or symmetry

among the players. It shows that the effective capacity in a joint venture is always

lower compared to a system optimum. However, when the players have asymmetric

costs, it is likely that some players over-invest as compared to their counterparts in

the optimal setting. In particular, the individual contribution depend on the revenue

sharing ratio #.

In contrast to the heterogeneous resource sharing case where an optimal revenue

sharing method exists, one can show that there does not exist a fixed revenue sharing

method which will induce the system optimal actions in the Nash equilibrium. In

other words, there does not exist 0 such that 7r(/3) = r.

In the rest of the section, we will investigate the following questions: (1) For a

fixed revenue sharing ratio #, how is performance in a joint venture compared to the

optimum. (2) How to choose / such that we can have some performance guarantee.

We will first restrict ourselves to linear quadratic costs. We begin with a 2-player

game and extend our results to a n-player setting. In the end of this section, we will

consider n-player setting with general convex costs.

5.4.1 2-player game with linear-quadratic cost functions

Assume that the cost functions are linear-quadratic, i.e.,

f,(K 1 ) = a,(K, + b,)2 + c1 , f 2 (K 2 ) - a2 (K 2 + b2 )2 + c 2.2 2
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Without loss of generality, assume that ai 2 a 2. Now define R1 = Ki + b1 and

K 2 = K2 + b2, and their corresponding modified total capacity investment levels,

LN _ LN +b 1 +b 2, * = L*+b1+b 2.

Lemma 5.4.3 For a 2-player game with any demand distribution D and linear-

quadratic cost functions, for all 01 < 0.5, the ratio of the total capacity investment

level in the system to that in the joint-venture is upper and lower bounded by

LN / 1a2 + 02al >
1 2 - > 2>-

L* a 1 +a 2  2

CDF )

0 LN LA B C L

Figure 5-1: A graphical proof for Lemma 5.4.3.

Proof of Lemma 5.4.3. The lower bound is proven by Lemma 5.4.2. Now we show

how to obtain an upper bound by utilizing an intercept argument. By optimality

conditions, we have

ND K1p - a1(K " - b1) _ /2p - a 2 (K2N - b2)
P(D < K + K22P

By changing of variables,

N ~- 1 pNal= 022p - a2 K2N
P(D +b 1 +b 2 K $1 + K2N) 01P /2P
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Then #2ai11N = O1a 2R 2N and we have

- N O1a2 +0$2al N - N 31a2 + 2al NL = or L = /2 -
lia2 02al

Thus, we have

P(D + b1 + b2 < LN) =1! ( a1a2  LN. (5.8)
p #1 a 2 + 02ai/

By the similar transformation of the first-order condition in the system optimal, we

have

P(D + bi + b2<*)=1-- a1a2  * (5.9)
p (ai + a 2

As shown in Figure 5-1, the horizontal axis is the modified total capacity investment

level and the vertical axis is the cumulative distribution function of the demand. The

upward sloping curve (cumulative distribution function) represents the left hand sides

of (5.8) and (5.9), and the two downward sloping lines represent the right hand sides

of (5.8) and (5.9). Thus, LN and P can be solved graphically. We also observe that

L* B C a1+a2
LN - LN A -1a2+02a1

where the points C and A are the x-intercepts which can be evaluated from (5.8) and

(5.9). R

Lemma 5.4.3 shows that for a 2-player game with linear-quadratic costs, the ef-

fective modified capacity in a joint venture depends on both the cost asymmetry as

well as the revenue sharing ratio. However, the worst case, *= 2LN, can happen

under two circumstances: (1) equal revenue sharing (#1 = 02) and independent of cost

asymmetry, and/or (2) with symmetric players (ai = a2) and independent of revenue

sharing contracts (with the assumption that 31 < 0.5. Intuitively, dividing revenue

equally among asymmetric entities sounds like a bad idea. It is surprising to see that

having symmetric players in a joint venture could lead to the worst outcome, and
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having different revenue sharing contracts might not mitigate its impact. Note that

when #1 > 0.5, it is easy to construct examples that worst case becomes unbound.

Lemma 5.4.3 also highlights a notable difference between the homogeneous and

the heterogeneous resource pooling. Note that in Theorem 5.3.3 for the heterogeneous

resources, we have shown that the optimal revenue sharing rule suggests that every

player should be compensated proportionally to his share of the marginal cost to the

aggregate marginal cost. That if, if ai a2 , the optimal way to share revenue must

follow that #1 #2. Lemma 5.4.3 implies the exact opposite, i.e., in order to have

the worst case performance guarantee, given a1 > a2, then #1 < /32!

The intuition is that for heterogeneous resource pooling, the effective capacity of

the entire system is constrained by a bottleneck capacity due to certain key players.

To induce these players to produce at K*, they have to be awarded such that they

are willing to produce at K* but not lower. Now consider homogeneous resource

pooling, every player can contribute to the effective capacity, the only difference is

the cost. Therefore, one should encourage the cost efficient player to produce more

and discourage those with higher cost. It is captured by a lower revenue sharing ratio

for the player with higher marginal cost.

This observation on a 2-player game can be generalized to a n-player game as

shown in the following proposition.

Proposition 5.4.4 Consider a n-player game with cost structure a1 > a2 - -- a,

and revenue sharing contract #1 _< #2 - - -O . Under any demand distribution D

and any linear-quadratic cost functions, the ratio of the total capacity investment level

in the system to that in the joint-venture is upper and lower bounded by

L N Zi=1~

IaN-L* -E - n

With n-players, the worst case in terms of the effective capacity is L* = , i.e.,

the worst case of a joint venture decreases as the number of participants increases. The

result is intuitive as with more parties involved, it becomes increasingly challenging to

coordinate the joint venture. Similar to the 2-player game studied earlier, the worst
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case occurs with symmetric players and/or equal sharing of the revenue when players

are asymmetric.

In the next theorem, we will show that the profit generated in a joint venture can

be bounded by the optimal profit.

Theorem 5.4.5 For a 2-player game with any linear-quadratic cost functions and

any demand distribution with mode m, we have

7rN (#3) 1

7r - 2)
for all ai > a2 and #3 1 mp+1

[2mp + (a1/a2 + 1)'

Moreover, the optimal #* that maximizes the total joint-venture profit falls in the

following interval,

#1*' E
1 mp+ 1

ai/a 2 + 1' 2mp + (ai/a2 + 1)I
Proof of Theorem 5.4.5. By Lemma 5.4.3, we know that

LN -_ 1 a2 + / 2al N N _31a2 +,32al Nor Lf K2ai

The Nash profit functions can be expressed as functions of LN i.e.,

(ala 202 + a2a /2 \2
7r(#p) = pE[min(LN -b 1  b2  a + a 2 ) 1 2  _ N 1 _ c2 -2) 1 - (~2 (a201 + a1#2 )2)-C2 (5.10)

If we impose a budget constraint L < LN on the system optimal, the budget-

constrained system optimal profit can also be expressed as functions of LN i.e.,

_ pE[min(LN - b1 - b2, D)] - 2 aia2 )

(2(a2 + ai))
LN2 - c 1 - C2,

Observe that g(L N) = 7r'(3) when #1 = 1. By Lemma 5.4.3, we know that for all

01 < }, L < 2. In addition, g(L) is concave in L by Lemma 5.4.1. Thus, we have

g ( 1 = 1)

g(IL*)
?grN (#1 = ( )

-2g(L*/2)
7r- (#1 = j)
-2g(LN)
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Now let D = D + bi + b2 . Since

IP(D L N)l
1 ( ala2 LN

p #1a2 + (1 - #1)ai )
dLN

d#1i

L N al-aa2 (al-a2)
p (1a2+(1--1)ai)2

p
aja2

81a2+(1-01)ai

We have by (5.10),

d7r (#1)
d#1

-(1 - P(T) < LN)L N ala2(al -a2)

ffD(LNv) + al (la 2 7~~
N #1Oa2+(1 #1j)ai

a a 2(1 -2#1) N2  (12

(a201 + ai(1 - #1))3 (1a2 +
LN 2

(/312 + (1 - #1)ai)3

a2a2(1 - ol)2

(1 - #1)ai) 2 )
1 2 (a - a2)(al + a2 )1 -

p(#3a2 + (1 - #1)al)fb(LN) +

LN N

d#1

01)+a2a2
+ a2a1(1ala 2

If the mode of D is m, then 7r (#1) is decreasing in #1 for all

C mp + a2

[2mp + ai + a 2 2

and 7ry(#1) is increasing in #1 for all

-0'ai + a2l

Thus, the optimal 0* lies in the following interval

X (E a 2  mp + a 2

ai + a 2 2mp + ai + a2

This completes the proof. D

In Theorem 5.4.5, we propose an interval for which the aggregate Nash profit is

guaranteed to achieve at least half of the optimal profit. The interval depends on

the cost asymmetry between the two players and the mode of demand. In particular,

the interval shrinks as the two players have more similar cost structure, i.e., with two
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fully symmetric players, the best revenue sharing ratio asks for an equal division of

the revenue. On the other hand, the interval widens as the mode of demand increases,

i.e., if the demand distribution is flatter, our proposed revenue sharing contracts have

more rooms for error in capturing the peak demand.

For a n-player game, we show that an equal revenue sharing scheme could guar-

antee a worst case performance of at least 1/n of the optimal profit as shown in the

following proposition.

Proposition 5.4.6 For a n-player game with any linear-quadratic cost functions and

any demand distribution, if we choose #j = 1/n, i.e., dividing the aggregate revenue

equally among all the players, we have

7rN (3) 1
7* -n

Proof of Proposition 5.4.6. From a 2-player setting, one can see that the profit

functions can be expressed as functions of L,

7rT(L) = pE[min(L + bi + b2 ,D)] - a1 ) -- ci - c 2.(2(a2 + ai))f

Note that it is equivalent to 7r(# 1 , #2) when #1 = 02 = 0.5, where

Nir.N1(aja 2 32 + a 23 2
7N (0) = pE[min(LN + bl +b 2,D)] - i + 12 L N2 - c1 - C2-2(a2#1 + a1#2)2)

In Lemma 5.4.1, we have shown the concavity of 7rT(L). Then by making use of the

bound on investment level as shown in Proposition 5.4.4, we obtain the desired result.

5.4.2 n-player game with general convex costs

We consider n-player games with asymmetric convex cost functions. Denote f =

(fi(Ki)) 1 as general convex cost functions. Let irN(f) and 7*(f) be the Nash and

system profit of n players with respect to the general cost f, respectively. Define the
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Price of Anarchy with respect to f as

7N (f)
POA(f)= N

7r*(f)

We first show that POA(f) can be lower bounded by POA(f) where f is a set of

modified linear cost functions.

Proposition 5.4.7 The price of anarchy on the total profit of a joint venture is lower

bounded by

POA(f) N Nf =POA(f),
7r*(f)

where f = (f1, fn) are linear cost functions such that fi = ai - Ki where a =

f!(Kf).

Proof of Proposition 5.4.7. By convexity of fi for all i - 1,. n, we know that

f (Kz*) > f. (KN) + fz'(KN)(Ki - KN

Therefore

POA(f)
pE[min(LN, D)] - Z" f=(Kf)
pE[min(L*, D)] - =1 fi(K,)

pE[min(LN, D)] - En f (K)

pE[min(L*, D)] - Z_'" (fi(Kf) + fi(Kf)(Ki - K ))

(5.11)

Since

0 = fi(0) > f (Kf) + fj(K )(-K) => fi(Kf) - fi(Kfl (K) < 0

we add (5.12) onto both the numerator and denominator of (5.11),

POA(f)

(5.12)

pE[min(LN, D)] + E" (-fi(Kf) + fi(Kf)

pE[min(L*, D)] + E" =(-fj(Kf) - fl(Kf)(Ki - K )
- fj(Kf)(Kf))

+ f,(Kf) - f;(i
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pE[min(LN, D)] - E' f(K[)(Kf)
- pE[min(L*, D)] - E fi(Kf)(Ki*)

Now let kfj" and kR be the Nash Equilibrium solution and the system optimal solution

with respect to the same problem but with the modified linear cost functions such that

i= a-Ki where ai = fj'(Kf). Correspondingly, 1LN - Z k and I* = =1 kl.

Since kj = K (having the same set of first-order conditions), we have

n n
pE[min(LN, D)] - 1 f!(Kf )(K ) = pE[min(LN, D)] - aik.

i=1 i=1

Because Rf is the optimal capacity investment level for the modified problem, it

implies that

n

pE~min(L*,I D)] - E~ fz(KV)(KZ*) < pIE [min(.L, D)] - aiki.

Thus, we have

POA(f) > pE[min(LN,D)] - E'" aik
pE[min(L*, D)] - EI aiKi ~

This completes the proof.

7rN(f) = POA(f).
7r*(f)

F

By making use of Proposition 5.4.7, we can obtain a lower bound on the profit by

using the cost asymmetry factor and the ratio between the investment levels in the

Nash and the system optimum.

Lemma 5.4.8 Price of anarchy on the total profit of a joint venture is lowered

bounded by

POA(f)=
7rN(f)

7r* (f)

1N

> a
-L*

where the cost asymmetry factor is given by

mini a
a = <1.

maxi a
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F(x))
1

am/P

0 x

Figure 5-2: A graphical proof for Lemma 5.4.8.

Proof of Lemma 5.4.8. Assume that, without loss of generality, am = ai a2 <

... K a,, am. Define the set P = { aj = am}. If |PJ = s, s symmetric players

invest in the system optimal solution and therefore L* = sk* for i E P.

LN - ~

POA(f) = fLNo F (d - i 1 aska
S F(x)dx + f LN FD(x)dx - amLN

1N LN 1 a
>N 1 N * =

_ Z= aiLN E= i - L N)k- amL*
_ a (LN _ kN)

iZ=1 aiL* - cxmL*

am(n - )LN >LN

aM(n - 1)L* I*

where the cost asymmetry factor d = am/am < 1. This completes the proof. F

Note that equal revenue sharing induces equal marginal costs for every player in a

Nash equilibrium, since #i = ai/ En a. Therefore, & = 1, and the comparison

between the profit can be reduced to a comparison between the total investment

level, i.e, >'

Next, we will present the how the profit in a joint venture can be bounded from

below by the system optimum. Define the demand spread

~ m max fD(x)

OM min fD(y)

where x < LN y <

140



Theorem 5.4.9

POA(f) ;> d ~,
1 - nf + (n- 1)6

where f = maxi ak/p, and N> 1 measures the demand spread.

F(x)
1

0

1- a m / p

x

Figure 5-3: A graphical proof for Theorem 5.4.9.

Proof of Theorem 5.4.9. First we lower bound the ratio of LN to L*.

LN

I*
LN

LN + (E 1 ai - am)/(6Omp)

(1- E a/p)/M
.(1 - E l /p)/OM + (Z. 1 ai - am)/(Omp)

p E-n_ ai + (E_ n ai - am)N

p - naM

p - naM + (n - 1)aMO

1 - nr

1 - nf + (n - 1)f5'

where = aM/p. This result then follows from Lemme 5.4.8. l

Note that when D is uniform, the demand spread 0= 1, we have

1 -n
POA(f) ;> _

Figure 5-4, 5-5 and 5-6 show the lower bounds on POA with uniform demand,

normal demand N(400, 100) and exponential demand exp(400), respectively. The
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lower bound on POA decreases as the number of players increases or the marginal

cost to price ratio increases. We also observe that the lower bound on POA has a

steeper rate of decrease when the demand spead is higher. Note that in our simulation,

the exponential demand has the highest demand spread (0 = 7.35), followed by the

normal demand (= 3.86) and then the uniform demand (0= 1).

Lower Bound on POA
1T

0.9 -

0.8 -

0.7- -

0.6- n =3
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0.3-

0.2- n = 5

0.1 -

0LL
0 0.05 0.1 0.15 0.2

marginal cost to price ratio (r)

Figure 5-4: Lower bound on price of anarchy for uniform demand.

5.5 Conclusion

In this work, we study resource pooling and capacity planning in joint ventures under

uncertainties. We distinguish two types of resources pooling, based on whether the

resources are heterogeneous or homogeneous. When resources are heterogeneous, the

effective capacity in a joint venture is constrained by the lowest level of contribution

from one participant. We have shown that every participant is committed to make

an equal contribution in a joint venture with heterogeneous resources. We have also

shown that, there exists a same efficient and fair revenue sharing scheme in both

Nash equilibrium and Nash Bargaining solution. The optimal scheme rewards every

participant proportionally to his marginal cost. When resources are homogeneous,

however, there does not exist a revenue sharing scheme which induces actions to
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Lower Bound on POA
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Figure 5-5: Lower bound on price of anarchy for normal demand.

achieve the optimum. Nonetheless, we propose some methods to share revenue with

the worst case performance guarantee. The methods suggest that the reward should

be inversely proportional to the marginal cost of each participant with homogeneous

resources.
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Lower Bound on POA
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Figure 5-6: Lower bound on price of anarchy for exponential demand.
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Chapter 6

Conclusions

Inefficiency caused by decentralization has been the subject of extensive research in

operations management in recent years. In this thesis, we studied its impact on supply

chains, congested systems and joint ventures.

The study on supply chains has revealed that when downstream retailers compete

with substitutes, product substitutability promotes output levels, channel profit and

social welfare. Although asymmetry deteriorates the performance, a decentralized

supply chain with substitutes is fairly efficient. The opposite happens for comple-

ments. Although asymmetry has some countervailing effect, a decentralized chain

with complements exhibits a significant loss of efficiency, which suggests that large

potential gains could be achieved through coordination. In addition, a decentralized

supply chain is relatively more efficient compared to its optimal counterpart when

the demand is concave rather than convex.

An important take-away from our analysis is that for substitutes, price-only con-

tracts are often "good enough" in the sense that there is limited room for potential

gains from implementing other more complex contracts. In addition, as price-only

contracts disproportionately favor the supplier, she has less incentive to adopt other

contracts. The results provide some partial intuition that may help explain the pop-

ularity of price-only contracts in practice. Nevertheless, our results suggest that com-

plex coordinating contracts should be applied to decentralized supply chains with

complementary products as the loss due to lack of coordination could be huge. One
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could also argue that in this case, both channel members have an incentive to coor-

dinate as they both could benefit from a profit increase.

The analysis on congested systems with profit-driven service providers shows that

the impact of decentralization primarily depends on the nature of costs. When the

costs are fully self-contained, maximum welfare loss is limited to 25% of the social

optimum, even in the presence of highly nonlinear convex cost. The inefficiency

decreases further with competition among the service providers. However, with the

spillover cost, the potential welfare loss could be arbitrarily severe. The results provide

some evidences on the usefulness of airport congestion pricing as potential gains from

coordination could be huge.

The last topic in this thesis focuses on capacity planning and resource pooling in

joint ventures under demand uncertainties. We have shown that the performance of a

joint venture heavily depends on the nature of resources. In particular, when resources

are heterogenous or not fully substitutable, the effective capacity in a joint venture

is constrained by the lowest level of contribution from one participant. The optimal

revenue sharing scheme rewards every participant proportionally to his marginal cost.

When resources are homogeneous, however, there does not exist a revenue sharing

scheme which induces actions to achieve the optimum. Nonetheless, we propose some

methods to share revenue with the worst case performance guarantee. The methods

suggest that the reward should be inversely proportional to the marginal cost of each

participant with homogeneous resources.

The methodology that we utilize is a departure from traditional approaches and

thus gives rise to new and interesting theoretical and computational challenges. To

establish the analytical bounds in this thesis, we have utilized tools from matrix

analysis such as Cassini ovals of eigenvalues, M-matrix and copositivity (Horn and

Johnson 1985). We believe the methodology proposed in this thesis could potentially

be used in other problems.
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Appendix A

Appendix for Chapter 2

A.1 Useful Matrix Analysis Results

Proofs in the paper utilize a number of results from matrix analysis. For complete-

ness, we state them in the following lemmas (see Horn and Johnson 1985 for more

information) .

A.1.1 M-matrices

A square matrix whose off-diagonal elements are nonpositive is called a Z-matrix. A

symmetric Z-matrix is a M-matrix if and only if it is positive definite. M-matrices

enjoy several structural properties some of which are listed below.

Let A be an M-matrix and B be a Z-matrix such that A < B:

" A 1 exists and A 1 > 0;

* B is an M-matrix and B 1 < A-1 ;

" AB- 1 and B- 1A are M-matrices;

* Any sum of M-matrices is still an M-matrix;

" Any principle submatrix of A is an M-matrix.

" If D is a positive diagonal matrix, then DA and AD are M-matrices.
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A.1.2 Inverse binomial theorem

If A, U, B, V are matrices with appropriate dimensions, then(A + UBV) 1 =

A-' - A-'UB (B + BVA-'UB) 1 BVA-1, provided A and B + BVA 1 UB are

nonsingular.

Lemma A.1.1 (Inverse of M-matrices) If A and B are M-matrices and B > A,

then B- 1 < A- 1 .

Lemma A.1.2 (Brauer's Ovals Theorem) Let A be a square matrix, Ri(A)

aj I, for 1 i < n. Cassini ovals are defined as, Oi= {lz - aiiI|z - ajj I

Ri (A)Rj(A)} for all i # j. Then, all the eigenvalues of A lie inside the union of the

Cassini ovals, i.e., A(A) E Uj jOjj.

A.2 Preliminary Results: Bounds on the Mini-

mum Eigenvalue

Lemma A.2.1 The minimum eigenvalue of matrix G = -1/ 2Br- 1/2 is bounded by

Amin(G) > 1 - r( 2)(B) > 1 - r(l)(B).

Proof of Lemma A.2.1. The matrix G and T--1BT are similar matrices, thus,

Amin(G) = Amin(LT BT). Notice Ri(T-BT) =i= ri(B). By Brauer's

theorem (Lemma A.1.2), we can write down the following:

(1 - Amin(FT BT)) 2 < max r (B)rj(B)

- Amin(FlBT) > 1 - r(2).(B)

Since r(2)(B) < r(1)(B), it completes the proof. R
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A.3 Proof for the Results in the Paper

A.3.1 Proof of Theorem 2.3.1 eTqd/eTqc

Upper bound

Let X be a diagonal matrix with positive diagonal elements such that Xe = pc - c.

e Tq _ e TB(B+ )-'TXe
eTqc eTBXe

wT(B)- 1/2B(B + F) 1 FX(B)-1/ 2w

wTw
, where w = (B) 1/ 2e

< Amax ((B)- 1 / 2 B(B + r)-'TX(B)-1/2)

= Amax ((B + )'F)

Amin (L-1 (B + IF))
1

1 + Amin(T- 1B)

( By similar matrices)

Because the bound is decreasing in Amin(-'B), we can upper bound it by lower

bound the eigenvalue. By Lemma A.2.1, it implies

eT qc

eTqc

1- 2< 2- r(2)(B) - 2 - r (1)(B)*

Lower bound

To prove the lower bound that eTgq is always larger than 1/2, we are trying to provee q,

e Tqd eTB(B + F)-lFXe> 1
eTqc eTBXe - 2

4 2eTB(B + P)-'FXe - eTBXe > 0

+ (qa)T (2B 1'(B + F)-X-1 - B-'(B + F)T~1 X-1 BF-1 (B + F)B- 1 ) qd 2 0,

D(B)
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that is, it is equivalent to prove <b(B) is nonnegative. To see this, rewrite <b(B) as

follows,

= B-(B+ F)FX (21 - BF- 1(B + F)B')

= (F- 1 + B- 1 )X~1 (21 - (MF-' + I))

= (F-' + B- 1)X 1 (F - B- 1) F-1

<b(B) is clearly nonnegative because it is a product of four positive/nonngative ma-

trices. 0

A.3.2 Proof of Theorem 2.3.1 CSd/CSc and TSd/TSc

Preliminary work

Given the demand function in terms of prices as q(p) = q(O) Bp, its corresponding

demand function in quantities is given by p(q) = p - B'q, where p = B'p(O).

Consumer surplus (CS) is the difference between the utility which a representative

consumer derives from consuming q units of products (U(q) = PTq - jqTBlq) and

the cost he spends on acquiring them (qTp).

CS - U(q) - pTq(p) = Iq(p)TB-q(p). (A.1)

The total surplus (TS) is defined as the sum of consumer surplus and producer surplus

which is the channel profit in the model.

TS = PS(p) + CS(p) = (p(q) - c)T q(p) + Bq(p)TBlq(p).
2

Upper bound

From Equation (A.1), the ratio between the consumer surplus is given by

CSd 1/2(qa)TB-lqd

C, 1/2(qc )TB-lqc

(A.2)
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wTB-1/ 2 F(B + F)-'B(B + F)-'FB-1 /2 w
wTW

, where w = B /2(pc - c)

<Amax ((B 1 / 2 (B + F)lrB-1/ 2)T (Bi/ 2 (B +)-'TB-1/2))

- Amx(Bi/ 2(B + r)"TB/

SAax((B + ) F')

1

A2min (F- (B + r))
1

(1 + Amin( (-B))2

(By similar matrices)

. Now consider the total surplus defined in Equation (A.2),

TSd (Pc - c)T (4B + 3F)(B + F)- 1 B(B + r)'T(pc - c)
TSc (Pc - c)T3B(pc - c)

Denote w = B 1/ 2 (pc - c), then the expression becomes

A

TSd
TSc

1 wT B-1/ 2 (4B + 3F)(B + F)-'B(B + T)-'TB-1/2'W
3
1

< 1Amax(A)
-3

wTw

= Amax ((4B + 3T)(B + F)-1 (B + F)~1F)
3
1

= Amax ((41 - F(B + F)-1 )(B + F)- 1 F)

= Amax (4(F'B + I)-1 -
3

(F- 1B + I)-2).

The function 4/x + 1/x 2 decrease in x, thus the maximum eigenvalue of matrix A is

obtained at the minimum eigenvalue of matrix F- 1B + I.

TSd < 1 4

TSc - 3 11 + Amin(F-1B)

1

(1 + Amin(T -1B))2
_ 4Amin(FL'B) + 3

3(1 + Amin(r-1B))2

The ratio is decreasing in Amin(- 1B), thus, we can upper bound the ratio by using

Lemma A.2.1 to obtain the desired upper bound for CS and TS.
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Lower bound

To prove the lower bound, i.e., Csd > , it is equivalent to prove the following,

q TB-lqd 1

qTB-lqc - 4

e 4qdB--lqd - q B 1 qc 2 0

q (4B- 1 - B 1 (B + F)F-1 B- 1 (B + F)B-1 ) qd 0

<b(B)

To prove that matrix <b(B) is nonnegative, notice that

<D(B) = 4B- - (B- 1 + 1X)B(B- 1 + r-1)

= 4B' - (-' 1BT-1 + 2F-1 + B 1 )

= 3B- 1 - 2r-1 - r-'BI-

= (3B-1 + F- 1)(I - BT- 1).

<D(B) is the product of two nonnegative matrices, thus, it is also nonnegative.

To prove the lower bound that Tsd > 7 , it is equivalent to prove 4(B) = B-(B+

r)r - 1 (4(4B + 3r)(B + F) 1 - 7BF -(B + F)B 1 ) is nonnegative.

(qa)T<D(B)q > 0

-- (Pc - c)T (4(4B + 3F)(B + r)- - 7BF-1 (B + P)B- 1 ) B(B + F)-TF(pc - c) 0

- (Pc - c)T (4(4B + 3P)(B + F)'B(B + <TIT - 7B) (Pc - c) > 0

(Pc - c)T(4B + 3r)(B + F)-B(B + F)-i(pc - c) >7
(pc - c)T (3B) (Pc - c) 12

TSd> 7
TSe 12

Similarly, we express <D(B) as rT1/2<1(G)Fi/ 2 and prove <D(G) is copositive.

<((G) = G-1 (G + I)(4(4G + 31)(G +I) - 7(G + I))

= 4G 1 (4G + 31) - 7G-1 (G + 1)2
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= 161 + 12G 1 - 7(G + 21 + G- 1)

= 21 - 7G + 5G 1

= (I - G)(5G- 1 + 71)

<D(G) is a product of nonnegative matrices and that has established the bound. 0

Proof of Proposition 2.3.3

Given the setting, r( 2)(B) = n-= J/vk. By Theorem 2.3.1, rd/7c(B) < +2 /

where the uppe bound decreases in k, i.e., when the asymmetry factor k > 1,

ra/rc(B) +/ < 3 /k)2 (2+)2 = 7rd/7rclk=1. The last equality holds as the bounds are

tight for symmetric retailers where k = 1. 0

Proof of Proposition 2.3.2

We first derive the profits earned by the retailers (7d)R and the supplier (7rd)s respec-

tively. For complements,

n

(7rd)R = (7d) ri

i=1

= (pd - w)Tq

- ((B + F)-1(2B + F)(pc - c) + 2c - (pc + C)) qd

= ((B + F)- 1(2B + F)(pc - c) - (Pc - ) T q

= ((B + F)~1 ((2B + F) - I)(pc - c))T g

= ((B + P)-1 B(pc - c))T qd

= (Pc - C)TB(B + F)-1 B(B + F)<'(pc - c)

(rd)s = (wd - c)Tqd

1
- (Pc - c)TB(B + F)-IF(pc - c)
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Let w = B1/2(B + F) 1F(pc - c), then we obtain

(7rd)

(7d) s

wT B-1/2 (B + r)F- 1 B(B + F)"Bi/2W

wTB-1/ 2 (B + F)F 1 (B + F)(B + F)- 1 B1 / 2w

The lower bound is obtained by noticing

Q

S wT AGA-lw where A = B-1/2

wTA(G + I)A- 1 w'
zT z where Z Qi/2w

ZT (I + Q- 1) w'
1

Amax (I + Q- 1)
1

1+ ()Xi(Q)

Amin(Q)
Amin(Q) + 1

Amin (G),
Amin(G) + 1

(B + F) and G = -B

The bound is increasing in Amax(G), thus, it is can be lower bounded by lower

bounding Amin(G) by using Lemma A.2.1, we obtain the two lower bounds, i.e.,

1 - r( 2)(B)

2 - r(2)(B)

1 - r(i)(B)

- 2-r( 1 )(B)

To prove the upper bound that (d)R < , it is equivalent to prove that matrix
(7rd) S - 2'

<D(B) is copositive, where <k(B) = B- 1(B + F)L- 1 (I - 2B(B + IF)). To see this, by

definition of copositivity,

(q)Tb(B)q > 0

- c)) T <D(B) (B(B + L)-'F(pc - c)) > 0

(Pc - C)T B(B + F)-L'(pc - c) > (Pc - c)T2B(B + F)- B(B + F)- F(pc - c)

(Pc - c)TB(B + F)- 1B(B + F)- 1 F(pc - c) 1

(pC - )TB(B+ FV)-F(pc - c) - 2
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(7rd)s

since Amin(Q) = Amin(AGA 1 ) = Amin(G)

(rd)

(rd)s

== (BB + r) Fr(pc



(7d)R 1

(7d)s 2

<b(B) = (B- 1 + 1 )(I - 2B(B + F)-)

= (B-1 + -1)( - B)(B + )-1

= (I - F- 1B + B-IT - I)(B + r)~ 1

= (I - F-1 BI- 1 B)B-lT(B + r)-

= (I - -17B)(I + r- 1B)B-iT(B + r) 1

= (I - F-1 B)(B-iT + I)(B + )-1

=(r - B)(B-1 + T-1)(B + r)-I

We have shown that <D(B) is a nonnegative matrix by expressing it as a product of

three nonnegative matrices, thus, the upper bound of - holds for substitutes. El2
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Appendix B

Appendix for Chapter 4

B.1 Proof of Proposition 4.2.9

Proof. For every access fee per service, t = (ti, ..., t,), the corresponding output

level in a subgame perfect equilibrium, qSPE (t), must satisfy the following profit-

maximizing condition for every service provider i for all i, pi - tj - E 3i q7PE (tj)

3iiqSPE(ti) - Oci(q)/0qi q qSPE(t) = 0.

The total social welfare is given by

W(q)CS(q) + PS(q) + TR(q) = jqj(Pj - Y 3qj) - Eci(q).

One way to find out the optimal congestion pricing is to substitute qSPE(t) into the

profit-maximizing condition, i.e., W(qSPE(t)), and maximize it with respect to t.

Alternatively, we can first determine the optimal service level, q*, that should be

maintained in this facility so as to maximize the total welfare. The optimal service

level, q*, must satisfy, pi - E ojqj - ac (q)/8qj = 0|q=g.. By comparing it with

equilibrium condition, we obtain the desired result on the access fee as a function of

output level q and satisfies qSPE(t*) _q*
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B.2 Proof of Lemma 4.3.1.

Proof of Lemma 4.3.1. The welfare objective is given by

1
W(q) = qT (P - Bq - 1(q)).

2

The optimality condition can be written as VW(q) = p - Bq - 1(q) - Rq = 0,

where matrix R denotes the Jacobian matrix of function 1(q). It is important to note

that the matrix R depends on the output level q. Since VW(q*) = 0, we get

p - l(q*) = (B + R*)q*, or (B.1)

(B.2)q* = (B + R*)-l(p - 1(q*)).

Substitute Equation (B.2) into the welfare objective, we obtain the following:

W(q*) = (q*)T P - 1(q*) - IB(B + R*)-l(p - I(q*))

= (q*)T(-B + R*)(B + R*)-(p - 1(q*))
2
1

= (q*)T(-B + R*)q*.
2

The profit function of service provider i is given by 7ri = qi(pi - EZ #ijqj - li(q)).

The equilibrium condition for all service providers can be written in the matrix form:

p - Bq - 1(q) - FBq - FRq, where FB and FR represent the diagonal matrix of B

and R respectively. Since qN satisfies the equilibrium condition, we obtain

N) = (B +q B or

qN = (B + FB + CN)-1(p - 1(qN)).

(B.3)

(B.4)

Substituting Equation (B.4) into the welfare objective gives rise to the welfare achieved

in the unregulated setting:

W(qN) (q N)T _ (qN) 1 B(B + LB + ]CN)- _ (qN))
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= (qN )T( B+B +
2 R)(B+ rB + - N

Proof of Lemma 4.3.2. By convexity on cost function 1(q) = (11(q), - - - , 1,(q))

(Assumption 4.2.2),

1(q*) - l(qN) > RN (q* - N)

1(q*) - RN q* N (q N) - RN qN

S-1(q*) + RN q* < -(qN) + RN qN.

Adding a positive vector p to both sides maintains the inequality, i.e,

p -1(q*)+ RN q* <p-1(qN)+RNq N.

After substituting the optimality conditions derived Equation (B.1) and (B.3), we

obtain the desired result: (B + rB + FN + RN )qN > (B + R* + RN)q* 11

B.4 Proof of Lemma 4.3.5

Proof. By Assumption 4.2.2, function 1(q) = (li(q),... , 1,(q)) is convex componen-

twise with q.

l(qN) - 1(q*) > R*(qN - q*)

I 1(qN) - R*qN > 1(q*) - R*q*

= -l(qN) + R*qN < -l(q*) + R*q*

p - I(qN) + R*qN < p - 1(q*) + R*q*.
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After substituting the optimality conditions from Equation (B.1) and (B.3), we obtain

the desired result. 0

B.5 Lemma B.5.1 and its proof

Lemma B.5.1 The optimal societal welfare is bounded by the following,

W (q*) < -(q N T (B + TB + RN) (B + 2R N -1(B + TB
2

Proof of Lemma B.5.1. Denote Q = B + FB + IN + RN andE= B + R* + RN.

By Lemma 4.3.2, we know that QqN > Eq*. Note that both QqN and Eq* are two

nonnegative vectors. By Lemma 4.3.1,

(q*) = (q*) I -1 B + R*)E-'Eq* < (qN T -(B + R*)E- q
2 -2

where we have replaced Eq* by QqN. Expand this expression further,

W(q*)

<(qN)TQE-1(B + 2R*)E-lqN
2

= (qN)T T(B + 2RN -0.5 (B + 2R N)0.5E-1 (B + 2R*)E -1(B + 2RN)0.5

(B + 2RN)-0.5 qN.

By the definition of the maximum eigenvalue, this expression is upper bounded by,

W(q*) -AmaxfA}(qN)TG(B + 2RN)-lfqN
2

(B.5)

Now let us focus on this composite matrix A. By the property of similar matrices,

Amax{A} = Amax{E2 1(B + 2R*)E-l(B + 2RN)}. Under the Assumptions 4.2.1 and

4.2.2, it is clear that matrix Amax{A} > 0 since A is positive semi-definite. Expand
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this matrix,

Amax{A}

=Amax{(B + R* + RN)-1(B + 2R*)(B + R* + RN)-1(B + 2RN)}

=Amax{(I + (B + R* + RN-1(R* - RN)) (I + (B + R* + RN)-1(RN - R*))

=Amax{I - ((B + R* + RN)-1(R* - RN)) 2

=1 - Amin{((B + R* + RN-1(R* - RN)) 2.

It is clear that Amin{ ((B + R* + RN)-1 (R* - RN)) 2 > 0 because it is also a positive

semidefinite matrix. As a result, Amax{A} 1. From Equation (B.5), W(q*) <

1(qN)TO(B + 2RN)-1gqN.

B.6 Lemma B.6.1 and its proof

Lemma B.6.1 W(q) (I - Amin{((I - E)(G + I + )1))2}), where K > 1 is the

Jacobian similarity factor, G = ]p0.5 (B + 2F &)F-- 5 and = 60.5R r-0.5

Proof of Lemma B.6.1. From Lemma 4.3.1, we obtain that

_ N)T( + 1 'B + Jj)qN _ (qN)TIF -11( B +
2

where T = B + FB + TN + R*. Making use of Lemma 4.3.5 which shows that

xWqN < (B + 2R*)q*, it follows that

W(qN)

<(q*)T(B + 2R*)(B + rB + r N + RN)- 1 ( 1 B + FB + F)(B + B +R ~2 rR(+B N + RN)-1

(B + 2R*)q*

:s(q* )T (B + 2R*)(B + TB + F* + R*)-( IB + rB + Fh)(B + rB + F* + R*)-1

(B + 2R*)q*,
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where we obtain the last inequality by using the Jacobian similarity property that

we discussed for matrix F(q) = pN and t > 1. In particular, an upper bound on ,

is given as follows, based on the definition of the maximum eigenvalue of a positive

semidefinite matrix,

<Amax{(B + TB + I + RN)-2(B + rB + T + R*)2 (B + rB + FN)

(-B + rB + IF*~}. (B.6)

Combine this result with W(q*) shown in Lemma 4.3.1, we obtain an upper bound

W(qN) (q*)T (B + 2R*)(IB + rB + RF)(B + 2R*)q*
W(q*) ~ (q*)T(B + FB + FR + R*)(IB + R*)(B + rB + FT + R*)q*

As all quantities are in the social optimum setting, we will skip the superscript on
Denoe G= ]- 0 .5 ( +2r-P 0 .5 and = '- 0 5 R 0 .5 th

matrices. Denote G = (B + 2FR) B and S = RofrF' the expression

becomes

W(qN) (q*)TF0 5 (G + 2I)LOB5 q*
W(q*) - (q*)TFr 5 (G + I + E)(G + 2-")(G + I + E)f~ 5 q**

Using the Rayleigh-Ritz Theorem, the upper bound can be simplified as the follows.

We skip some derivations as they follow exactly the same steps in the proof for

Theorem 4.3.4.

W(q Ama(G + 21)(G +1 + ) 1 (G + 26)(G + I + 6)-}

W(q*)-

< i(1 - Amin{((I - E)(G + I + )-))2)

0
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B.7 Proof for Proposition 4.5.1

B.7.1 Preliminary result: two indices for the post-merged

(multiple-product) setting

In the pre-merger setting where each service provider only provides a single service,

the competition index adjusted with internalized congestion effect can be written as

follows, rpre - e . . .,) = |B (Bof + 2PR)1, where 1.1i is the L1 norm (the

row sum of absolute values of the elements in a matrix). The external-cost-to-benefit

ratio can also be written in a compact form, i.e., pPre - ('e,... gre) = B lRof|1.

When the firms merge, the merged firm needs to make decisions on the service

011 -. - - r1

level for all m types of services. Matrix BM =. ; C Rmxm represents

Lmi ... Omm_
the merged firm's price change of all m products with respect to a unit change in the

quantity of these products. Let FBP"'t assembles each firm's own quantity sensitivity

coefficients into a block diagonal matrix and BOffP"' - B - FBP"' represents each

firms's price change with respect to his competitors' output change. Similarly, as

the merged firm determines his service level, he also takes into the congestion effect

experienced by all m types of services. We define FRP"'t and ROffPost in a similar way.

BM RM

1 'B p /m+1,m+1 , FRpost m+1,m+1 , where

L/gnn JLinnJ

ii . .. 1m

RM =.

[m1 -. -1 mmJ

Thus, the competition index for each service in the post-merger setting can be writ-

ten as rooSt _ (r ost, ... I no) = I(Bpos t ' -(BoffPOSt + 2FR1pos) Similarly, the
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post-merger external-cost-to-benefit ratio is defined as EPost - ( 0Most, . .. ") -

(PBPOS) lRoffPostr

B.7.2 Proof for Proposition 4.5.1

We use one property of block diagonal matrices to prove this result: An inverse of

a block diagonal matrix is still a block diagonal matrix. In particular, (FBpOst) 1

Bm-1

1/#m+1,m+1 , where Bm- 1 =f-- _ (I- H) E Rmxm, where

1/#nn

I is an identity matrix and H is a matrix of all Is. Given the definitions for rPost and

plost, it is straightforward to show the desired results. E

B.8 Proof for Proposition 4.5.2

Firstly, we observe that for a market with n types of services, the optimal total

welfare, W*, remains the same before or after the merger as W* is the outcome

when a central planner jointly determines the service level for all types of services,

irrespective of who owns them. With symmetric service providers and self-contained

congestion effect, the lower bound on efficiency loss in Theorem 4.3.7 is tight, i.e.,

1 - WPre/W* = 1/(2 + rPre)2 , where rpre = (n - 1 + 2l)/#. After the merger, the

service providers are no longer "symmetric" due to the differences in their sizes. Thus,

Theorem 4.3.7 serves as a lower bound to the quantity 1 - WPost/W*. By Proposition

4.5.1, r' < rP'e for all i. Thus, 1 - WPost/W* > 1/(2 + rPre) 2 , which leads to the

conclusion that WPost < Wpre. 0

B.9 Proof for Proposition 4.5.3

The bound on 1- WN/W* < (P-1)2 is tight for symmetric service providers as shown

in Theorem ?? when p > 1. After the merger, pPos' decreases, indicating a welfare
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improvement. When p > 1, the bound depends on both p and r. For a given pPost,

one could construct examples by varying rPoSt to have WPost which could be higher

or lower than the pre-merger value. L

B.10 Proof for Proposition 4.6.1 and Proposition

4.6.2

With the utilization rate #, the societal welfare W(q, #) is given by

W(q, #) = CS(q, #) + PS(q, #) + #TR(q, #)

- qT(p - I - B/2q - Rq) + (# - 1)qTt

- qT(jp - T - B/2q - Rq) + (# - 1)qT( -I- (B + R + FB + FR)q)

We can then show that the optimal service level, q*(#) is given by

q*(#) = ((2 - 1/#)B + 2R + 2(1 - 1/#)(FB + R))' -( )

which decreases in #. Since the optimal congestion pricing is given by t* = p - I -

(B + R + TB - FR)q*, it follows that t* increases with #. Moreover, the optimal

societal welfare is given by

W*(#) = W(q*, #) = 1/2(p - I)T ((2 - 1/#)B + 2R + 2(1 - 1/#)(FB + FR)> 1 (P

which also increases in #. O

B.11 Proof for Proposition 4.6.3

When we redistribute the revenue collected from congestion pricing as suggested,

producer surplus for service provider i becomes PS = PS* + aiTR* = PS* +

ZPS.s; TR* = @PSN. Similarly, we can show that CS2 = V)CSN. Since V) =
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W*/WN > 1, both the service providers and the users are better off than their

counterparts in the unregulated setting after the revenue is redistributed. O

B.12 Proof for Proposition 4.6.4

Consider a new marginal utility function fi(q) = 64 - E' #ijqj, where O represents

a representative user's maximum willingness to pay for service i. Under this demand

function, producer surplus of service provider i in the unregulated setting is given by

PSj = qi(6i - i - E±(ij + lij)q,). The goal is to have PS = PSj, i.e., the value

which service provider i receives in an unregulated setting equals to target surplus

level. In the unregulated setting, the equilibrium service level with the new demand

function satisfies E4N = (B + R + FB + FR)-(E -i). There exists a 02 which satisfies

Ps = 4N (6 - 1I - EZ (Oi, + lij))4j), or equivalently, PS = (64 - li) E Mig(O - lj),

where M= (B+R+rB + rR>'(FB + R)(B + R±+ B + R> -

166



Appendix C

Appendix for Chapter 5

C.1 Nash Bargaining Game

A n-person Nash Bargaining game consists of a pair (K, w), where K C R' is a

compact and convex set and w E K. Set K is the feasible set and its elements give

utilities that the n players can simultaneously accrue. Point W is the disagreement

point - it gives the utilities that the n players obtain if they decide not to cooperate.

Game (K, w) is said to be feasible if there is a point v E K such that vi > wi and

v2 > w2 . The solution to a feasible game is the point that satisfies the following four

axioms,

1. Pareto optimality: No point in K can weakly dominate v.

2. Invariance under affine transformation of utilities

3. Symmetry: The numbering of the players should not affect the solution.

4. Independence of irrelevant alternatives: If v is the solution for (K, w), and

S C RS is a compact and convex set satisfying w E S and v E S C K, then v

is also the solution for (S, w).

Nash Bargaining Solution (NBS) If game (K, w) is feasible then there is a

unique point in K satisfying the axioms stated above. This is also the unique point

that maximizes R~> (vi - wi) over all v E K.
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