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Abstract

A new technique for identification and control of systems with

unknown parameters is developed. The optimum open-loop control input

for identification using an augmentedKalman filter is obtainedfrom a set

of necessary conditions that result when a cost function consisting of

combinations of the control, the state, and the covariance matrix is min-

imized. A first-order gradient technique is developed to solve the non-

linear necessary conditions and is applied to simple examples of identifi-

cation. The improved performance in identification and in the estimates

of the states themselves leads to consideration of a new technique for

closed-loop control of stochastic nonlinear systems. It is assumed that a

linear perturbation estimator-controller combination can keep the system

near a nominal trajectory. The given cost function is then expanded in a

power-series around the nominal and in taking the expected value a deter-

ministic cost results which is then minimized. The nominal open-loop

control is determined from a set of necessary conditions that specify the

nominal trajectory as a function of the deterministic cost and covariance

matrices. A simple example is then given that shows a significant im-

provement in performance over the quadratic synthesis approach. Then
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Chapter 7 gives the design of entry controller for the uncertain Mars

atmosphere using this new control technique. Significant improvements

in terminal position and velocity uncertainties result.

'Thesis Supervisor: John J. Deyst, Jr., Sc. D. (Chairman)

Title: Assistant Professor of Aeronautics and Astronautics

Thesis Supervisor: Walter Wrigley, Sc. D.

Title: Professor of Instrumentation and Astronautics

Thesis Supervisor: James E. Potter, Ph. D.

Title: Associate Professor of Aeronautics and Astronautics

Thesis Supervisor: Donald C. Fraser, Sc. D.

Title: Assistant Director, Charles Stark Draper Laboratory, M. I. T.

iv



A cknowledgement

I wish to express my appreciation to my thesis committee:

Professors John Deyst, Walter Wrigley, James Potter, and Dr. Donald

Fraser for their many comments and suggestions during the course of

this research. In addition, special thanks are due to Professor Wrigley

for his precise guidance and navigation of the author through his doctoral

program.

The Charles Stark Draper Laboratory has provided a stimulating

and professional atmosphere for this research. The author expresses

gratitude to Mr. A. Laats, Mr. J. E. Miller and Mr. L. Wilk, present

and former Staff members, who at various times provided both encourage-

ment and support for the author and helped make this thesis possible.

The author expresses his thanks to Miss. D. Farrell who carefully typed

this report. Mr. W. Bean, Mr. W. Eng, and Mr. R. Weatherbee helped

in the editing and preparation of the report and their help is appreciated.

This report was prepared under DSR Project 55-23890,

sponsored by the Manned Spacecraft Center of the National Aeronautics

and Space Administration through Contract NAS 9-4065.

The publication of this report does not constitute approval by the

Charles Stark Draper Laboratory or the National Aeronautics and Space

Administration of the findings or the conclusions contained herein. It is

published for the exchange and stimulation of ideas.

V





Table of Contents

Chapter Page

1 Introduction

1. 1 Statement of the Problem 1

1. 2 Investigation Summary and Relationship to

Previous Research 2

2 Formulation of the Optimum Identification Problem

2. 1 Introduction 10

2. 2 The Kalman Filter 10

2. 3 Application of the Kalman Filter to Nonlinear

Systems 13

2. 4 Identification Using Augmented Kalman Filters 16

2. 5 Formulation of the Optimum Identification

Problem 18

2. 6 Other Optimization Problems 20

2. 7 Summary 21

3 Derivation of the Necessary Conditions

3.1 Introduction 22

3. 2 Terminal Cost Functions and Fixed Terminal

Time 23

3. 3 Linear Terminal Constraints on x(T) and

Controllability 28

3. 4 Illustrative Example 1 - State Dependent

Noise 32

3. 5 Illustrative Example 2 - Integrator With

Unknown Gain 37

3. 6 Free Terminal Time Problems 40

3. 7 Problems With Constraints 41

3. 8 Summary 41

vii

111mlen1 ililil



Table of Contents (Cont'd)

Chapter Page

4 Numerical Solution Techniques

4.1 Introduction 42

4. 2 Problems With No Terminal Constraints 43

4. 3 Problems With Linear Terminal Constraints 46

4.4 Illustrative Example 53

4. 5 Free Terminal Time Problems 55

4. 6 Problems With Constraints 56

4. 7 Summary 57

5 Optimum Input Design For Identification

5.1 Introduction 58

5. 2 Equilibrium Identification in a First-Order

System 59

5. 3 Transient Identification 67

5. 4 Transient Identification in a Second-Order

System 71

5. 5 Performance of the Algorithm 81

5. 6 Summ ary 82

6 Closed-Loop Control of Stochastic Nonlinear

Systems

6. 1 Introduction 83

6. 2 Transformation of the Performance Index 86

6. 3 The Necessary Conditions 92

6. 4 Case 1. Free Terminal Time Problems 97

6. 5 Case 2. Terminal Constraints 97

6. 6 Case 3. Differentiability Problems 98

6. 7 Case 4. Quadratic Performance Index,

Linear State and Linear Measurements 99

viii



Table of Contents (Cont'd)

Chapter Page

6 6. 8 Case 5. Nonlinear Criteria, Linear State and

Linear Measurements 100

6. 9 Case 6. Terminal Cost Only, Nonlinear State,

and Nonlinear Measurements 100

6. 10 Case 7. Quadratic Cost, Nonlinear State and

Nonlinear Measurements 101

6. 11 Effect of Incorrect Statistics 103

6. 12 Example. Closed-Loop Control of a First-

Order System With Unknown Time Constant 104

6.13 Summary 113

7 Optimum Entry Control With An Unknown Atmosphere

7.1 Introduction 114

7. 2 Vehicle Dynamics 115

7. 3 Atmospheric Density Model 118

7. 4 Measurement System 122

7. 5 The Constraining Differential Equations 124

7. 6 Choice of Cost Function 126

7. 7 Numerical Results 128

7. 8 Comments on the Algorithm 145

7. 9 Summary 146

8 Contributions, Recommendations and Conclusion

8. 1 Contributions of the Thesis 147

8. 2 Suggestions for Further Research 148

8.3 Conclusion 149

ix



Table of Contents (Cont'd)

Appendix Page

A Statistical Properties of the Estimator-Controller

Combination 150

B A List of Gradient Matrices 156

C Necessary Conditions for Free Terminal Time

Problems 157

D Gradient Method for Free Terminal Time Problems 160

E Gradient Method for Closed-Loop Controller 164

F Numerical Values for the Mars Entry Problem 168

References 172

Biography 177

x



List of Figures

Figure Page

3-1 Integrator With Driving Noise 32

3-2 Performance for Different Cost Functions 36

5-1 State History 64

5-2 Estimation Performance 65

5-3 Control History 65

5-4 State Estimation Performance 66

5-5 Covariance History 66

5-6 State History 68

5-7 Control History 68

5-8 Estimation Performance 69

5-9 State Estimation Performance 69

5-10 Covariance History 70

5-11 Nominal Position History 77

5-12 Nominal Velocity History 77

5-13 Control History 78

5-14 Position Estimation Variance 78

5-15 Velocity Estimation Variance 79

5-16 a Estimation Variance 79

5-17 b Estimation Variance 80

6-1 Optimal Control Input 110

6-2 Covariances For x - Quadratic Synthesis 111

6-3 Covariances For x - Combined Optimization 111

6-4 Covariances For Inverse Time Constant 112

6-5 Optimum Trajectory For x 112

7-1 Control Input 132

7-2 Altitude Versus Time 133

7-3 Altitude Versus Range 134

7-4 Velocity 135

xi



List of Figures (Cont'd)

Figure Page

7-5 7light Path Angle 136

7-6 Aerodynamic Load Factor 137

7-7 Heat Rate Input 138

7-8 RMS Range Deviation 139

7-9 Components of Range Error 140

7-10 RMS Altitude Deviation 141

7-11 RMS Velocity Deviation 142

7-12 Velocity Gain 143

7-13 Range Gain 144

List of Tables

Table Page

5-1 Estimation Performance 76

7-1 Density Versus Altitude 119

7-2 Scale Height Versus Altitude 119

7-3 Comparison of Terminal RMS Deviations 131

xii



Chapter 1

Introduction

1. 1 Statement of the Problem

This thesis addresses the problem of optimum identification and

control of systems with unknown parameters. Many systems have char-

acteristics that are either unknown or highly variable. The control-system

designer must take this into account in order to achieve satisfactory results.

Examples of systems where identification of unknown parameters

is of main concern are the estimation of the center of mass in the LM dur-

ing lunar ascent and estimation of the activation energy in a nuclear reactor

(Wells, 1969). In these systems the controller must not only direct the

controlled member to some desired state, but also learn the character-

istics of the system.

In some situations a closed-loop control law is desirable for a sys-

tem with unknown parameters. The controller must identify the unknowns

and apply an appropriate response based on the present values of the quan-

tities. Since practically every system has some unknown variables, a

practical and efficient control-system design method can be a valuable con-

tribution. Of course, not every system need be optimized with the unknown

characteristics in mind; generally, it is a matter of engineering judgement

and experience in determining just how critical these effects may be. How-

ever, a valuable tool would be the optimum control law that considers these

parameters in order to provide a base line for performance of any sub-

optimal controller.

The basic intent of this thesis, then, may be stated as follows:

develop a practical method for the determination of optimal identification

and control for systems with unknown parameters. The general solution
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offered will, in fact, be applicable to a wider range of problems, that of

open and closed-loop control for stochastic nonlinear systems since the

identification and control of systems with unknown parameters will be

shown to be a nonlinear problem.

1. 2 Investigation Summary and Relationship to Previous Research

In order to determine optimum identification and control programs

for systems with unknown parameters, it is appropriate to first consider

the technique that will be used to identify the parameters in the face

of noisy, incomplete measurements of the system state. Prior to 1963,

identification techniques - such as cross-correlation measurements, sin-

usoidal response measurements, spectral- density measurements, and

numerical deconvolution - were used in a basically off-line manner to

estimate system parameters. Sage and Cuenod (1968) give a detailed

summary of these approaches and the errors in each.

In 1963 Kopp and Orford used the newly developed Kalman filtering

approach to give a practical method of doing the identification, both opti-

mally and on-line. In this approach the Kalman filter state is enlarged to

include the unknown parameters and this augmented filter approach has been

used by Wells (1969 and 1970), as well as others, in a wide variety of prac-

tical identification problems. The on-line capability of the filter as well as

its linearity will be useful in the development of a closed-loop control

scheme for stochastic systems.

The Kalman filter itself was developed primarily by Kalman (1960

and 1961) although Swerling (1963) claims priority for the filter equations.

A history of least-squares estimation from Gauss to Kalman is given by

Sorenson (1970).

In Chapter 2 of this thesis it is shown how the Kalman filter is applied to

stochastic systems with unknown parameters. Although the filter algorithm

was originally derived for linear systems, in practice, since systems with un-

known parameters are nonlinear, it is applied by linearization around the cur-

rent estimate or around nominal conditions. When linearization is used, the covar-
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iance matrix of estimation errors becomes a function of the nominal con-

ditions so that estimation performance is directly affected by their choice.

In Chapter 2 it is shown how an optimization problem for optimum identi-

fication of unknown parameters in a dynamic system can be formulated to

determine the best values of the nominal conditions.

By best nominal conditions is meant the optimum open-loop control

input signal that will drive the state vector to its desired terminal condition

while enabling the estimator to learn the characteristics of the system. The

optimization comes about by attempting to minimize an artificial cost func-

tion that weights not only the energy put into the system but also the esti-

mation uncertainty in the unknown parameters as reflected by some of the

diagonal elements of the covariance matrix.

Other researchers have also formulated problems where estimation

performance is of prime importance. In the field of navigation, optimum

nominal trajectories can be designed to improve navigation information.

The problem is nonlinear because of dependence of the system coefficient

matrix or measurement matrix on the nominal trajectory. Vander Stoep

(1968) and Sutherland (1966) considered trajectory shaping to improve nav-

igation performance.

In the field of radar-signal design, Athans and Schweppe (1967)

formulated an optimization problem to determine modulation signals re-

sulting in minimum variance estimation tvhen control is available over the

measurement matrix. The cost function to be minimized was a linear

function of the elements of the covariance matrix at the terminal time.

Meier, Peschon, and Dressler (1969) treat a more general problem of

control over a measurement subsystem within a feedback control system.

In the field of optimum identification, Nahi and Wallis (1969)

attempted to find an optimal deterministic input for estimation of system

parameters by postulating the existence of an efficient estimator. Analyti-

cal difficulties connected with their Bayesian approach are overcome by
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essentially separating the problem into estimation and control and defining

a set of sensitivity equations that result in large computational burden in

order to obtain a solution.

In this thesis, the form of the estimator is specified as that of

Kalman and the matrix Riccati equation is viewed as another differential

equation constraint. This approach leads to an easily formulated optimi-

zation problem with the restriction of an optimal linear estimator.

The cost function for identification formulated in Chapter 2 is to

be minimized subject to the constraining differential equations describing

the propagation of the state and the covariance matrix. In Chapter 3 the

necessary conditions for optimization of performance indices involving

functions of the state, the control, and a covariance matrix are derived.

The approach also considers free and fixed terminal time problems and

cases with constraints. It extends the work of Athans and Schweppe (1967),

Sutherland (1966), and Vander Stoep (1968) who considered various special cases

of the general optimizationproblem. The filter is not specified as Kalman.

The necessary conditions are shown to result in vector and matrix

adjoint differential equations. Controllability conditions are derived for

problems involving linear terminal constraints. Since the optimization

problem is of necessity nonlinear, a numerical solution procedure is re-

quired. However, Chapter 3 presents two examples in which it is possible

to obtain an analytical solution. The first example treats a simple inte-

grator system driven by noise that depends on the output of the integrator.

The optimum solutions that minimize control expenditure and the mean-

squared deviation in the output are presented. The second example mini-

mizes a combination of control expenditure and mean-squared state error

at the terminal time for an integrator with a constant but unknown gain.

Chapter 4 considers numerical solution procedures for the vector-

matrix two-point boundary value problem that results from the necessary

conditions. A. first-order gradient method is invented and applied to

identification problems in Chapter 5. The original work on the gradient
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or steepest-descent method was done by Kelly (1960) and Bryson and

Denham (1962) and applied to vector two-point boundary value problems.

The application of the gradient method to problems involving vectors and

matrices could be approached by partitioning the matrices into vectors.

However, a much more convenient approach is developed which does not

require the partitioning and allows easy computer programming. The re-

sult is no more complicated than the conventional gradient method.

Chapter 5 uses the optimization formulation developed in Chapter 2,

the necessary conditions developed in Chapter 3, and the numerical solu-

tion procedure developed in Chapter 4 in two representative identification

problems. These represent the first formal optimal identifiers using the

techniques developed in the thesis.

In the first case the optimum identification of the inverse-time

constant in a first-order system is formulated by minimizing the uncer-

tainty in the time-constant estimate versus the amount of energy used in

meeting the terminal constraints. It is shown that, with measurements

proportional to system position, larger excursions of the state away from

minimum-energy solutions in the direction of increasing values of the state

result in improved estimates of the inverse -time constant at the terminal

time. - Furthermore, the uncertainty in the state estimate is less than that

of the minimum-energy solution at the terminal time because of improved

knowledge of the unknown parameter.

The second example considers optimum identification in a second-

order system. The example verifies the improved estimation of the un-

known parameters and of the system states (position and velocity) when the

optimum identification procedure is used. By designing the open-loop

control to improve estimation of the unknown parameters, the designer

also improves the estimation of the system states at the terminal time.

Chapter 5 also shows that rapid convergence to a near-optimum solution

is achieved by using the numerical procedure developed in the thesis.

In Chapter 6 attention is directed to developing an optimum closed-

loop control law for systems with unknown parameters. The examples in

5
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Chapter 5 showed that it is possible to develop open-loop control laws that

minimize an artificial cost function composed of, in part, estimation

error and, in turn, decrease the estimation uncertainty in the system

states. Such an approach needs modification when developing a closed-

loop controller. First, because the designer would like to work with a

less artificial cost function and, secondly, because the designer is inter-

ested in minimization of actual deviations in the states rather than estima-
tion errors in the states. However, the foundation developed in Chapters

2, 3, and 4 is directly applicable to the problem.

Previous researchers have approached the problem in two ways..

First, it is possible to study the effect of the unknown parameters on

system performance and to try to design a controller so these effects are

minimized. This is called the sensitivity approach -- see Kahne (1968).

In this method the cost function is artificially augmented with sensitivity

terms that relate how the cost function is affected by changes in the un-

known parameters. Differential equations must be developed for each

unknown parameter.

Three drawbacks to sensitivity theory are evident. First, how

does one justify in physical terms an appropriate weighting to attach to the

sensitivity measure? Second, this approach neglects statistical effects;

in particular, statistics associated with the unknown parameters which

may be available. Third, a vector differential equation must be computed

for each unknown parameter.

The second approach is the adaptive approach as represented in

the books by Sworder (1966) and Aoki (1967). In this case one attempts

to make continuous measurements of system behavior to determine the

dynamical characteristics and then adjust the controller parameters based

on these measurements. For the general case of a stochastic nonlinear

system and nonlinear measurements no practical efficient method exists

for solving problems that have a realistic complexity.

The solution offered in Chapter 6 lies in-between the sensitivity

and adaptive approaches and represents a practical method of control for
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systems with unknown parameters. The technique can handle a priori

statistical information about the unknown parameters and does not require

an artificial augmentation of the cost to cause the controller to consider

the unknown parameters. The computation burden is large in that matrix

equations must be developed in order to solve the problem. The controller

is partially adaptive in the sense that the deviations in the unknown quan-

tities are estimated and control action taken. However, the controller

gains are determined from nominal values of the parameters and nominal

values of their statistics rather than from the present values of the ob-

served quantities. An advantage of the technique is that all feedback con-

trol and estimator gains may be precomputed.

The approach is based on using practical engineering assumptions

to achieve a solution to the control problem. The system is nonlinear be-

case of the unknown parameters and is assumed subject to independent

white noise. Some nonlinear measurements corrupted by white noise are

available and are related to the state of the system. It is desired to min-

imize the expected value of a cost function that measures the performance

of the system. Three assumptions are then made that permit a solution

to this general problem.

It is assumed that a perturbation controller can be built that will

keep the actual state vector near a pre-planned value so that the expected

values of first-order state deviations are zero. Second, the perturbation

controller is to be a linear function of estimates of these deviations. Third,

the estimates are to be obtained from a linear filter. This implied separa-

tion of perturbation estimation and control is valid for the linearized system.

The first assumption allows an expansion of the cost function to be

correct to second-order. Then, in taking the expected value, first-order

terms are zero and the second-order terms are covariance matrices, Thus,

the cost function is actually evaluated in terms of a deterministic part due

to the pre-planned trajectory and calculatable covariance matrices due to

the statistical effects. The cost function consisting of covariance matrices

and deterministi terms is the same form as used in the open-loop con-

troller design except that now a clear physical interpretation of the terms

is available.

7
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The cost function is then minimized using the necessary conditions

developed in Chapter 3 and a numerical solution procedure based on

Chapter 4 is developed.

Three important results appear in Chapter 6. First, the best

linear filter turns out to be formally given as the Kalman filter. Second,

the optimal perturbation controller is identical in form to that obtained by

quadratic synthesis as given by Bryson and Ho (1969). These first two re-

sults are a direct consequence of the second and third assumptions above.

The third and most important result shows that the necessary conditions

defining the pre-planned trajectory specify the trajectory as a function of

the covariance matrices as well as the deterministic part of the cost. This

result is different from quadratic synthesis which picks the pre-planned

trajectory on deterministic criteria alone and then uses perturbation esti-

mation and control to follow it. Defining the procedure used in the thesis as

the combined optimization approach, the control engineer has a set of

necessary conditions that can be straightforwardly applied to practical

design problems.

The most closely related research on this problem was performed

by Denham (1964). He considers a slightly more general nonlinear state,

where the noise does not enter additively,but with only terminal costs. His

results are not applicable to systems linear in the control, since his ex-

pansion is in the Hamiltonian rather than the cost. He retains higher-

order terms in the state-vector deviation equations which result in a set

of extremely complicated necessary conditions that require calculation of

the expectation of first-order quantities. Fitzgerald (1964) considered the

same case as Denham with a more general noise model. Feldbaum (1965)

calls this approach the dual-control problem. The analysis is in all cases

extremely involved and has, to the author's knowledge, never been used on

a realistic system. The approach used in Chapter 6 - of immediately

transforming the cost function to a deterministic quantity and viewing the

covariance matrices as additional constraints - leads to a particularly

simple solution with a clear interpretation of the results for a wide variety

of optimization problems.

S
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The technique is illustrated by two sample problems. The first

problem presents the design of a controller for a first-order system with

an unknown time constant. For the criteria used, the quadratic synthesis

approach would give 24. 270 more cost and 9716 more mean-squared term-

inal error over the combined optimization procedure. It is shown that

the controller automatically designs the best controller to minimize the

effects of the unknown time constant.

In Chapter 7 the second example is presented. The problem is

concerned with achieving a desired set of terminal conditions after entry

into the atmosphere of Mars. The unknown parameter is considered to be

the atmospheric density. The problem dimension is of order five and re-

presents a challenging test of the theory and the computational algorithms.

It is shown that the combined optimization approach results in a substantial

decrease in the uncertainty in the desired range over a quadratic-synthesis

approach based on a constant-lift-to-drag-ratio flight. The latter results

in approximately 25%o more range error over the combined optimization

results.

Finally, Chapter 8 presents what the author feels are the signifi-

cant contributions of the thesis and recommendations for further research.

9



Chapter 2

formulation of the Optimum Identification Problem

2. 1 Introduction

The well-known Kalman linear-filter algorithm has proven to be a

practical engineering solution to a wide class of estimation problems. The

algorithm was originally derived for linear systems, but in practice, since

most dynamic and measurement systems are nonlinear, the optimal filter

has been applied to nonlinear systems by linearization around nominal

conditions or by updating a linearization around the current estimate. When

this technique of linearization is used, the covariance matrix of estimation

errors becomes a function of the nominal conditions so that estimation

performance is directly affected by their choice. This chapter shows how

an optimization problem for optimum identification of unknown parameters

in a dynamic system can be formulated to determine the best values of the

nominal conditions.

Section 2. 2 reviews the basic Kalman filter equations for linear

systems; Section 2. 3 describes the application of linear filtering to non-

linear systems. In Section 2. 4 the identification of unknown parameters

using Kalman filtering is shown to result in a nonlinear estimation prob-

lem which can then be formulated as an optimization problem in Section

2. 5. In Section 2. 6 reference is made to other technical problems in

which optimization of estimation performance is the design criterion.

2.2 The Kalman Filter

The optimum linear filter developed primarily by Kalman (1960

and 1961) has proven to be a practical solution as well as the theoretical

optimum filter for estimation in nonstationary linear stochastic systems.

The dynamical system obeys

x = F(t) x + G(t) u + n (2.2-1)

10



where

x is the n-dimensional state vector

u is the m-dimensional control input vector

n is an n-dimensional vector of independent zero-mean

white-noise processes

F(t) is the n x n plant coefficient matrix

G(t) is the n x m control input matrix

The second-order statistics of the driving noise are represented

by

< n (t) nt')T > = Q(t) 6(t-t') (2. 2-2)

and the multidimensional probability density for the initial state at time

zero is assumed Gaussian with a mean < x()> . And a priori minimum-

variance estimate of the state at t = 0 is denoted by a hat and

A = < x(0) > (2.2-3)

The statistics of this estimate are assumed to be Gaussian with

< x(0) - x (0) > = 0

< (A T
< (x (0) - x (0)) (x (0) - x (0)) > = E (0)

(2. 2-4)

(2. 2-5)

where E(0) is the covariance matrix of the error

zero.

in the estimate at time

With the start of the physical process described by Eq. 2. 2-1,

noisy continuous measurements of x are obtained from

11



(2. 2-6)m = M(t) x + v(t)

where

m(t) is the m-dimensional measurement vector

M(t) is an m x n observation matrix

v(t) is an m-dimensional independent white-noise vector with

< v(t) > = 0 (2. 2-7)

< v(t) v(t')T > = U(t) 6(t-t') (2. 2-8)

The propagation of the initial estimate of the state given by

Eq. 2. 2-3 is according to Kalman:

F ' + G u + K(t) m - M (2.2-9)

The optimal filter is thus a model of the system that is linearly corrected

with the difference between the observed measurement and the filter's

estimate of the measurement. The gain matrix K(t) is obtained from

K(t) = E MT U~1 (2.2-10)

where the covariance matrix is integrated from its initial value given by

Eq. 2. 2-5 according to

T T -1
E = FE + EF + Q - EM U~ ME (2.2-11)

A most valuable property of the filter is that this choice of the gain

matrix results in the estimate and the error in the estimate being uncorre-

lated for all time if the initial correlation is zero. However, if errors

are made in modeling the physical plant or in the assumptions for the sta-

tistics, the filter is no longer optimal and additional equations can be de-

veloped that determine the filter's performance. (See Chapter 4 of Leondes,

1970.)
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The estimation error as represented by the covariance matrix is

completely independent of the estimate of the state, the control input, and

the actual state. It is, therefore, not possible to control the quality of

the estimation by changing these variables. In fact, the optimal gains

depend only on time and may be precomputed before the start of the process.

The Kalman filter can be applied to nonlinear systems and in that case it will

be shown that it is possible to control the quality of estimation.

2. 3 Application of the Kalman Filter to Nonlinear Systems

The classical application of Kalman filtering to nonlinear stochastic

systems of the form

x( , u , t) + n(t) (2.3-1)

with nonlinear measurements

ma = h (x , ua , t) + v(t) (2.3-2)

was in the field of astronautical guidance (Smith et al., 1962). However,

many other important engineering problems are represented by nonlinear

processes and the applications of "quasi-linear "optimal filtering have been

extensive.

In this technique a reference trajectory and nominal control are

assumed and Eq. 2. 3-1 and 2. 3-2 are linearized to first-order around

these conditions:

6x = f 6x + f 6u + n(t) (2.3-3)
- .x -- -

and

6m = h 6x + h 6u + v(t) (2.3-4)
x ... .. u 2 -

13



where the partial derivatives are evaluated on the nominal conditions.

Strictly speaking, n(t) and v(t) should be written as 6 n(t) and 6 v(t), but

the statistics of the variations are the same as those of the quantities so

no distinction will be made. Their statistics are

< n(t) n(t')T > = Q 6(t-t') , < v(t) v(t')T > = U 6(t-t') (2. 3-5)

Also define

F =f x

G =f u.-u

M =h -x

M= h-u

(2. 3-6)

(2. 3-7)

(2. 3-8)

(2. 3-9)

,so that Eq. 2. 3-3 and 2. 3-4 become

6x = F 6x + G 6u + n

6m = M 6x + M' 6u + v

(2. 3-10)

(2. 3-11)

-- Assuming the perturbations from the reference trajectory are

small allows the construction of a Kalman filter since Eq. 2. 3-10 and

2. 3-11 are linear equations. The filter equations are

6x = F 6x + G 6u + K (6m - M 6x - M' 6u)

E = FE + EFT + Q-EMT U ME

(2. 3-12)

(2. 3-13)

14



and

K = E T U-1 (2.3-14)

Two important results can be observed from Eq. 2. 3-9 - 2. 3-14.

First, calculation of the gain matrix K depends only on the reference con-

ditions. It is therefore possible, as in the linear estimation case, to

compute the optimal gains before the start of the process.

The remainder of this thesis rests upon the second observation that

the quality of the estimation, as represented by E(t), depends on the choice

of nominal conditions used in evaluating the partial derivatives. Thus,

by control of the nominal conditions one can, in fact, control the estimation

performance. This is not possible for the linear system discussed in

Section 2. 2.

In a number of applications it is possible that the optimal filter

linearized around a reference solution will suffer degraded performance

as time involves if the actual trajectory is not "close" to the nominal. If

this is determined. during the design of the system, a convenient estimation

technique is to linearize around the present estimate of the state and the

present control. The filter equations have the form

x= f (x, u, t) + KI m - h (x , u, t)] (2.3-15)

E = FE + EFT + Q - EMT U~ M E (2. 3-16)

and

K = EMT U 1  (2.3-17)

where the partial derivative matrices are now evaluated using the best

estimate of the present state x and the value of the present control. Un-

fortunately, in this formulation it is not possible to precompute the optimal

15



gains, since the coefficients are evaluated on the present estimate of the

actual state. It is still possible to control the quality of the estimation by

choice of the nominal control.

Some practical nonlinear systems may not lend themselves to ac-

curate linearized descriptions and the linearized Kalman estimator of either

type may not be adequate. A. number of researchers have proposed alternate

formulations for these situations; unfortunately, these solutions tend to be

very impractical, since they typically depend on the calculation of higher-

order derivatives or tensors and may result in growing memory filters.

(See for example; Phaneuf, 1968 and Leondes, 1970.) They all, however, have

associated with them a covariance matrix which depends on nominal conditions.

The first part of this thesis will use linear filters only; however, the gen-

eral results of techniques developed to improve estimation performance

by control of the nominal conditions will be applicable to any estimation

scheme whose performance is measured by the propagation of the covar-

iance matrix.

2. 4 Identification Using Augmented Kalman Filters

The techniques for identification of linear-system parameters are

numerously described in the literature. These techniques involve, for

example, cross- correlation measurements, sinusoidal response measure-

ments, spectral- density measurements, numerical deconvolution, and

learning models. (See for example; Sage and Cuenod, 1968. ) Most of the

recent attention has been centered around the techniques developed by

Kopp and Orford (1963) that enlarge the state space of a Kalman filter to

include the unknown parameters. In augmented Kalman estimation the com-

putations are done on-line and the filter has been applied to a wide variety of

practical identification problems (Wells, 1969 and 1970). In this section, aspects

of the identification problem using augmented Kalman filters are investigated.

For simplicity, assume the system under study may be modeled

as

.a aa a
* a =Fa xa + Ga Iu + n (2.4-1)
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The word "identification" is taken to mean the estimation of unknown system

parameters; for example, the location of a pole in a linear system. Thus,

the identification problem deals with the estimation of some of the elements

in Fa or Ga in Eq. 2. 4-1. Let ba represent a p-dimensional vector con-

sisting of the unknown parameters. In augmented filtering the equations

(for unknown constant parameters)

a = 0 (2.4-2)

are considered to be part of a new state vector of dimension s (s = n+ p):

xa
a[ -1 (2. 4-3)

Given noisy measurements of a it may be possible to estimate the unknown

parameters (Ho and Lee, 1964). For example, suppose it is desired to es-

timate the inverse time constantba inthe first-order system

a - ba ya +ua +n (2.4-4)
X ~ b 1 1 1

using noisy measurements of the form

m = h x + v (2.4-5)

An augmented filter approach is to design a Kalman filter such that the state
a a

variables are the deviations of x1 and b away from their nominal values x and b:

6 x

6x = [ (2. 4-6)
~6b

where the original system is now considered to be nonlinear

-baa ua n

a f (xa, ua) +(t) = . = + + (2.4-7)
-- - - ..- - b 0 0 0

The nominal value x is found from Eq. 2. 4-4 using nominal values of band uwith

the noise set to zero.
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Assuming a Gaussian distribution for the initial estimation error, the

covariance matrix obeys

= F E + E FT + Q - E MT U~ 1 ME (2. 4-8)

where

M =h 0 (2. 4-9)

and
b -x

F = f (2.4-10)

-0 0 .

a
Alternately, an estimator of the present value of x can be designed accord-

ing to Section 2. 3. The identification problem is clearly nonlinear. From

Eq. 2. 4-4 and 2. 4-5 it is evident that more information about ba is obtained
a Ifxa awith larger values of x . If x were zero, no information at all about b could

be obtained. Thus, the character of identification is that the quality of

estimation of unknown parameters is related to the magnitude of the other

state variables. This nonlinear nature of the problem allows the formula-

tion of an optimum identification strategy.

2. 5 Formulation of the Optimum Identification Problem

The previous section illustrated the property that identification is

basically a nonlinear estimation problem. If the quality of the identification

process using a Kalman filter is measured by the diagonal elements of the

covariance matrix, it is possible to control the quality by proper choice

of the nominal state variables and control inputs since the partial- derivative

matrices are evaluated on these nominal condicions.

The nominal s-dimensional augmented state vector obeys

x = f (x , u , t) (2. 5-1)

1.8



with an assumed given initial condition x(O). As a somewhat arbitrary

distinction, two types of identification are considered. In the first type,

which might be called equilibrium identification, some components of the

nominal state vector are to be returned to their original value after the

identification process. An example might be the deflection of airplane

elevators during equilibrium flight in order to determine the dynamic para-

meters of the aircraft. In the second type of problem, which might be

called transient identification, some components of the nominal state are

to be driven to some desired terminal conditions during the identification

process. Both problems are summarized by the terminal condition at

time T:

xi(T) specified ; i= 1, . . , q;q<n (2. 5-2)

The propagation of the s-dimensional covariance matrix governing

the quality of identification of the aug mented state deviation vector assoc-

iated with Eq. 2. 5-1 is governed by

E = FE + EFT + Q - E MT U~l ME (2. 5-3)

with

E (0) given .(2. 5-4)

and the partial derivative matrices are evaluated on the nominal conditions

for the state vector, the control, and the unknown parameters.

Associated with the identification problem is a cost function J to be

minimized. For example,

T

J = trace [C E(T)] + fL (x, u, E, t) dt (2. 5-5)

0

The matrix C would determine which elements of E(T) would be minimized

in relation to the intearal part of the performance index. Typically, L
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Tmight consist of terms involving uu - the amount of energy used in the

identification process - and could involve weighting elements of x and E.

For unspecified terminal-time problems, the cost could involve the amount

of time used.

The optimization problem is then to minimize Eq. 2. 5-5 subject to

the vector and matrix differential constraints Eq. 2. 5-1 and Eq. 2. 5-3

with a specified terminal condition Eq. 2. 5-2. The necessary conditions

for optimality for problems of this type are presented in Chapter 3. Since

the problem is nonlinear, appropriate numerical solution techniques are

developed in Chapter 4. Some illustrative identification problems are pre-

sented in Chapter 5. Before addressing these problems, we present some

problems from other engineering fields which can be formulated as optimi-

zation problems involving covariance matrices.

2. 6 Other Optimization Problems

One need not look far from the identification problem to discover

fields where optimization of estimation performance is of prime importance.

In the field of navigation, optimum nominal trajectories can be

designed to improve navigation information. The problem is nonlinear be-

cause of dependence of F or M on the nominal trajectory. Vander Stoep

(1968) and Sutherland (1966) considered trajectory shaping to improve

navigation performance.

In the field of radar-signal design, Athans and Schweppe (1967)

formulated an optimization problem to determine modulation signals re-

sulting in minimum variance estimation when control is available over the

measurement matrix M. The cost function to be minimized was a linear

function of the elements of the covariance matrix at the terminal time.

Techniques developed in this thesis for optimum identification are

directly applicable to these areas of research. The presentation of the

necessary conditions in the next chapter and numerical solution techniques

in the following chapter are derived far problems involving optimization

of general performance indices with vector and matrix differential equations
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as constraints without specification of the particular application. In

Chapter 5 specific examples from the field of identification are presented.

2.7 Summary

This chapter has reviewed the application of Kalman filter tech-

niques to linear and nonlinear problems with attention directed to identi-

fication in systems with unknown parameters. Since that problem is non-

linear, it is possible to formulate an optimization problem involving

minimization of estimation error. The next chapter derives the necessary

conditions for optimality using the calculus-of-variations approach.
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Chapter 3

Derivation of the Necessary Conditions

3.1 Introduction

In the previous chapter it was shown how optimization problems

involving vector and matrix differential equations can be formulated in the

study of identification of system parameters. It was indicated that other

fields of technical interest also involve problems with optimization of

systems of matrices and vectors. The necessary conditions for optimization

of performance indices involving functions of the state, the control, and

the covariance matrix are derived in this chapter. It is assumed that all

differentiability conditions necessary for the application of the minimum

principle of Pontryagin are satisfied (Athans and Falb, 1966). The approach is

general rather than tied to specific problems and extends the work of

Athans and Schweppe (1967), Sutherland (1968), and Vander Stoep (1968) who

considered various special cases of the problem.

In Section 3. 2 the necessary conditions for optimality in problems

with integral cost functions and terminal cost functions on the state and

covariance matrix at a fixed terminal time are derived by means of the

calculus-of-variations approach. The necessary conditions are shown

to result in vector and matrix adjoint differential equations. For prob-

lems involving linear terminal constraints, the controllability conditions

and adjoint variable relationships are derived in Section 3. 3. Sections

3. 4 and 3. 5 present two examples in which it is possible to obtain an

analytical solution to the optimization problem. The first example treats

a simple integrator system driven by noise that depends on the output of

the integrator. The optimum solutions that minimize control expenditure

and the mean-squared deviation in the output are presented. The second

example minimizes a combination of control expenditure and mean-squared

state error at the terminal time for an integrator with a constant but unknown

gain. Section 3. 6 presents the transversality condition for problems in-

volving free terminal time; Section 3. 7 discusses problems with inequality

constraints on the controls and the state variables.
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3. 2 Terminal Cost Functions and Fixed Terminal Time

The cost function is

T
J = tr [C E(T)j + k Ix(T) +f L (x, U, E , t) dt (3. 2-1)

0
where:

C is a given constant positive symmetric matrix

k is a terminal cost involving some of the elements of x(T)

L is the scalar penalty function

T is the fixed terminal time

The state vector is constrained to obey the n-dimensional differ-

ential equation

x = f (x, u, t) (3. 2-2)

where u is an m-dimensional control vector and

x(O) specified (3.2-3)

The symmetric s-dimensional covariance matrix obeys a differential

equation of the form

E = V (x, u, Et) (3.2-4)

with

E(O) specified (3. 2-5)

The covariance matrix may result from any linear or nonlinear estimation

or control problem.

The minimization of Eq. 3. 2-1 subject to the constraints and boundary

conditions Eq. 3. 2. 2 - 3. 2-5 may be accomplished by the calculus-of-var-

iations. Adjoin to the cost function J, the system equations by means of

arbitrary multipliers

p for the n-dimensional vector x

P for the s-dimensional matrix E.
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Then
J = tr [C E(T) + k x(T)]

dt (3.2-6)+ L + pT (f - x ) + P (V - E)
0 i=1j=1

A more convenient notation is to write the double summation as a trace

operation

s s

i 1l P j (V -k..) = tr P (V - E)T (3. 2-7)

Since V and E are symmetric, Eq. 3. 2-6 becomes

J = tr [C E(T)]

( L

x(T)

T+ p (f- x) + tr P (V - E)] j dt

tr P (V - E)

define the scalar Hamiltonian H as

H = L + p f +

= tr (P V) - tr (P E)

then Eq. 3. 2-8 becomes

J = tr [C
T

+ f
0

E(T)

1H -

+ k x(T)]

p x- tr (P E)

24
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0

(3. 2-8)

(3. 2-9)

tr (P V) (3. 2-10)

dt (3. 2-11)



Using the fact that

dtr (P E)
dt

= tr I (P E)=
L dt

tr (P E) + tr (P E)

Equation 3. 2-11 can be integrated by parts

j = tr LC E(T)] + k Lx(T)i + p(0)T x(O) - p(T) Tx(T)

- tr LP(T) E(T)] + tr [P(o) E(O)]

T

+f H + p x + tr (PE)] dt (3. 2-13)

A variation in the control 6u causes first-order changes in the cost 6J,

6x, the terminal state 6x(T), the covariance matrix 6E, and

With fixed initial conditions, E(O) and x(O), Eq. 3. 2-13 becomes

6J = tr [C 6E(T)

- T 6x(T) -

T
(H + p

j +k 6x(T)

tr P(T) 6E(T)j

T
)6x + tr [(HE+P) 6E]

For convenience, require the arbitrary adjoint variables to satisfy

T
- x, p(T) = kT

- x

25
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the state

6 E(T).

+ Hu 6u dt (3. 2-14)

(3. 2-15)



and

P = - E P(T) = C

Note, since C and HE are symmetric, then P is also symmetric.

Equations 3. 2-14 now reduces to
T

6J = H 6u dt

0
and for arbitrary variations in u(t), optimality requires

H =0
u

(3. 2-16)

(3. 2-17)

(3.2-18)

If u is constrained then, of course, the optimal control is the one that
absolutely minimizes H rather than satisfying Eq. 3. 2-18.

Thus, the necessary conditions for minimization of
T

J = tr [C E(T)] + k [x(T)

with constraints

x = f (x, u, t)

E = V (x, u, E, t)

p= Tx

+ L (x., u, E , t) dt

x(0) given

E(O) given

p(T) = kT
- x

P = - HfE

H = L + p T f

P(T) = C

+ tr (P E)

and for optimality

Hu 0 = L + pT f +u _U [tr
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(3. 2-19)

are

(3. 2-20)

and

(3. 2-21)

where

(3. 2-22)

(3. 2-23)

(3. 2-24)

(P E) (3. 2-25)

,



A

The optimal control of dimension m is found by solving the m

equations represented by Eq. 3. 2-25. These values are substituted into

Eq. 3. 2-20 through 3. 2-23 resulting in a two-point boundary value problem

(TPBVP) of dimension 2n + 2s. Using the fact that E and P are symmetric,

the problem can be reduced to dimension 2n2 + s2 + s. An appropriate

numerical procedure to solve the nonlinear TPBVP is presented in the next

chapter. Appendix B gives a list for derivatives of traces of matrices.

For illustration, when the covariance matrix represents an optimal

estimator

E = FE + EF + Q - EM U ME

H = L + Tf + tr (P E)

SLTx
f p -- [tr (P E) T

the adjoint variables satisfy

- HT =H~-x

(3. 2-26)

(3. 2-27)

(3. 2-28)

P = -HE = -
LE - (F - E MT U M)T P-P (F - E MT U~

1 M) (3. 2-29)

When the covariance matrix represents a linear filter

K independent of E,

I = (F-KM)E + E(F-KM)T+KUKT+Q

p=LT T~ p-tr (P E)j

P = LE - (F - K M) T P-P (F-KM)

with a gain

(3.2-30)

(3. 2-31)

(3. 2-32)

For other filtering processes described by a covariance matrix suitable

derivatives can be defined.

In the next section, the necessary conditions for optimization with

terminal constraints are considered.
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3. 3 Linear Terminal Constraints on x(T) and Controllability

It is assumed that the first q components of the state vector at

the terminal time are specified. Then, the optimization problem is to

minimize the performance index J by choosing a control vector u(t) that

insures the correct terminal state x(T). If xq (the q-th component of the

vector x) is specified at t = T, it follows that the admissable variations

must produce 6 xq(T) = 0 in Eq. 3. 2-14. Thus, it is not necessary that

qq k xq - Pq (T) = 0 (3.3-1)

Essentially, this boundary condition has been traded for another, x (T)

given, so that the TPBVP still has 2n boundary conditions. The adjoint

variables corresponding to the specified values of x (T) are unspecified,

but are not arbitrary as will be shown.

Besides the performance index J, which is still to be minimized,

a q-dimensional vector performance index z is defined as

z(T) = . = x (T) (3. 3-2)

x q(T)

As occurred with J, any variation of the control modifies the value of

this performance index. Since z(T) is specified, it is required that

6z(T) = 0 for matching terminal constraints (3. 3-3)

and

6J = 0 for minimizing J (3. 3-4)

Because z(T) is specified, 6u(t) is not completely arbitrary; to determine

the admissable variations a set of influence functions for z(T) are first

determined.
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Adjoin to Eq. 3. 3-2 the system constraints

z(T) = x (T) +
T
f R
0

T (f . x) dt

where R is a matrix of dimension n x q.

Define a q-dimensional vector H

H = R T f

and integrate Eq. 3. 3-5 by parts

T 'T
z(T) = x (T) - R(T)T x(T) + R(0)T x(0)

-q

+ f(H + RT x) dt

0
A variation in control produces T

6z(T) = 6x (T) - R(T) 6x(T) + R(O) 6x(0)

T . T
+ f(H + RT) 6x + H u6u dt

0
With x(0) specified, we choose

T
R -H x

with boundary condition at t = T,

where

.j .

which results in

T
6 z(T) H 6u(t) dt

Equation 3. 3-11 represents the effects of 6u on the changes in the boundary
- T

conditions. Now multiply Eq. 3. 3-11 by a row vectorT and add the result

to Eq. 3. 2-17

TT
6J + 6z(T) = H u

0

+ T H 6u dt-

29

(3. 3-5)

(3.3-6)

(3. 3-7)

(3. 3-8)

(3. 3-9)

(3. 3-10)

(3. 3-11)

(3. 3-12)

1.
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But, by definition

H =L
u u

+ pTf +
...- u

and

H = RT f..... u 3-u

Then Eq. 3. 3-12 becomes

6J + 6z(T) =
TfT

0I Lu+(P+Rf)Tfu+[Itr

Now choose a 6u that decreases J; i. e., produces 6 J < 0 and satisfies

the q terminal constraints. An appropriate choice for bu is

6u = - w {L
+(pR 2 T +tr (PE)]+ (p + R f)T f + tr(E)- - -u

(3.3-16)

where w is a positive scalar constant. Then Eq. 3. 3-15 becomes

6J + T 6z(T) = -w
T

L +(p+ R;)

O

T f + tr (P )] 2

which is negative unless the integrand vanishes over the whole integration

interval. In that case 6u is zero and the optimal control has been found.

Next, determine J so as to match the terminal constraints by

substitution of Eq. 3. 3-16 in Eq. 3. 3-11.

0 = 6z(T) =
TT
TR T f

....u
{tr (P )] T + f T (p + R) + L Tj dt (3.3-18)

Define the q-dimensional vector g

T

f=
0

RT f I[tr (P E)] T +fT p
-u -

and the q x q matrix D
TT T

D = RT T R dt
-u -..

}RTf fTRdt0 - -
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tr (P E)] (3. 3-13)

(3. 3-14)

(P E) I 6u dt (3. 3-15)

dt (3. 3-17)

LT dt
u

(3. 3-19)

(3. 3-20)



then Eq. 3. 3-18 becomes

g + D = 0

If D~ exists (the controllability condition), it is possible to determine f
such that the terminal constraints can be met.

Thus, a 6u(t). history has been constructed that decreases the

performance index and satisfies the terminal constraints. From Eq. 3. 3-17

the only time the performance index cannot be decreased is when the

integrand is zero. Thus, a stationary solution requires

L + (T + RT)Lu + tr (P E) = 0 (3.3-22)

Since the influence equations are linear, the necessary conditions may

be summarized as follows:

For minimization of

J = tr C E(T)] + k x(T)] +

x = f (x, u, t)

E = V (x, u, E, t)

T
f L (x, u, E, t) dt
x x -

x(0) and x 1 (). . . xq( specified

, E(O) specified

(3. 3-23)

(3. 3-24)

(3. 3-25)

the necessary conditions are

, pi(T) = kx. + j

1, . . . , n

j = i for i 5 q

= 0 for j > q

P =HE , P(T)= C

H L + p If + tr (P E)

and for optimality

H = 0 = L +u u
pT f + [tr (P E) u
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(3. 3-21)

with

and

= - T
p

where

(3. 3-26)

(3. 3-27)

(3. 3-28)

(3. 3-29)
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I

Also, f. can be determined from Eq. 3. 3-21, 3. 3-20, 3. 3-19, 3. 3-10 and

3. 3-9.

In the next section a simple example will demonstrate the

appropriate calculations for a simple problem in which the driving noise

is dependent on the nominal state; the following section presents an example

of an integrator with unknown gain. Both examples will be solved analyti-

cally.

3. 4 Illustrative Example 1 - State-Dependent Noise

n

Figure 3-1 Integrator With Driving Noise

The actual system obeys

= u + n

A. nominal system representing Eq. 3. 4-1 is

x = u

and the deviation between the two systems is

6x = n

(3. 4-1)

(3. 4-2)

(3.4-3)

If the white noise has statistics which depend on the nominal solution

< n(t) n(t') > = Q 6(t-t') = x 6(t-t') (3. 4-4)

for x > 0, the covariance matrix of first-order state deviations is given by

E = x (3. 4-5)

With assumed nominal conditions x(0) = 0, x(1) = 1, and E(0) = 0,
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three optimization problems will be formulated to illustrate the effects

of including the covariance matrix in the cost. First, the minimum energy

solution is presented. Then the integral of the covariance matrix is in-

cluded in the cost; finally, the covariance matrix at the terminal time is

included in the cost.

a) Minimum energy. Minimize

J =0. 5 u 2dtfud

0

subject to Eq. 3. 4-1 - 3. 4-5.

The Hamiltonian is

With

(3. 4-6)

(3.4-7)
H = 0. 5 u2 + pu + Px

H 0 = u + p - u = -p
u

p = - HE 0 - P = constant

P(t) = 0 - P(t) = 0

p = -H =-P -p = constant
x

The optimal control that satisfies the boundary conditions is

u = 1

which results in a nominal state and covariance of

x(t) = t

E(t) = t 2/2

(3. 4-8)

(3. 4-9)

(3.4-10)

(3. 4-11)

(3.4-12)

(3. 4-13)

(3. 4-14)
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b) The cost includes E so that penalty is attached to the integral of the

mean-squared deviations during the operating time

(3. 4-15)
12

J = (0. 5 u2  + E) dt

0

H =0. 5u 2+ E+ pu+ Px (3. 4-16)

Hu
= 0 = + p W.

P = - HE

p

u = - p

P(1) = 0-'1

= - H = - P p(l) unspecified

Applying the boundary conditions yields for optimal conditions

u = -0. 5 t2 + t + 0. 667

x = - 0. 166 t3 + 0. 5 t 2 + 0. 667 t

E = - 0. 041 t4 + 0. 166 t3 + 0. 333 t2

P = 1 - t

p =0. 5 t 2 - t - 0. 667

c) A. terminal cost. Minimize

J = E (1) +
1

10.5

0

u2 dt

(3. 4-17)

(3. 4-18)

(3. 4-19)

(3. 4-20)

(3. 4-21)

(3. 4-22)

(3. 4-23)

(3. 4-24)

(3. 4-25)

The Hamiltonian is

H = 0.5 u +

Then

with

pu + Px (3.4-26)
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and the necessary conditions are

H = 0=p

p - H =x

+ u W. u = - p

- P

P = - HE = 0

The optimal conditions are

u = t + 0.5

x = 0. 5 t 2 +

p(l) unspecified

P(1) = 1

0. 5 t

E = 0. 166 t 3 + 0. 25 t 2

P =1

p = - t - 0. 5

Figure 3-2 shows the differences between the three cases. The cases,

that involve weighting of the covariance matrix in the cost, attempt to

keep x small for as long as possible, since the covariance matrix obeys

E = x (3.4-35)

In fact, for

J = E(1) + 0. 5 u 2 dt

0

which could be written as

J = (0. 5 u 2 + x) dt

0

(3. 4-36)

(3. 4-37)

it is obvious that the area under x(t) is part of the cost to be minimized.
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3. 5 Illustrative Example 2 - Integrator with Unknown Gain

For the simple integrator system with zero initial condition

described by the equations

*a ax =b u+n (3.5-1)

(3. 5-2)

it is desired to generate a nominal open-loop control that takes x from

0 to x(T) and minimizes a combination of energy and the mean-squared

miss distance at time T.. The actual system cannot meet the terminal

condition exactly because of the driving noise and the unknown gain.

The unknown gain is a constant from a Gaussian distribution with a mean
2

of b and variance a b. If the deviations of the state and of the unknown

gain are small, the covariance matrix representing the mean-squared

deviations propagates according to

TE =FE +EF + Q

where

and

0

F =

q

0

0

E (0) =

0

u

0:

' O

0

2
(lb.

(3. 5-3)

(3. 5-4)

(3. 5-5)

(3. 5-6)
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The nominal state obeys

x = b u , x(0) = 0 , x(T) specified

The cost function is

T

O
J = tr [C E(T)

C =

0

+ 0. 5 c dt

01

0

and c weights the amount of energy used for control.

The Hamiltonian becomes

H = L + p f + tr (P E)

H = 0. 5 e u2 + pbu +

H = 0. 5 c u2 +

tr (P E)

pbu + 2uP 1 1 E 1 2
+ 2u P12 E22

For optimality

Hu = 0 = c u + pb + 2 P12 22

or

u = - (pb + 2 P 1 1 E 1 2
+ 2P 12 E 2 2 ) /c

The adjoint variables satisfy

p -H =x

P 1 1

0

= 0 , P 1 1 (T) = C
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where

(3. 5-8)

(3. 5-9)

(3. 5-10)

(3. 5-11)

(3. 5-12)

(3. 5-13)

(3. 5-14)

=1

(3. 5-15)

(3. 5-16)= - H Eg 1



Corrections to:

A New Technique for Identification and Control of Systems

with Unknown Parameters

Sc.D. Thesis, Course 16, 1971

George T. Schmidt

s:?x

x(7 C

LaW

x CT) -U
f q~

x ~ct')

-q

' 2 Tb ') -t /c:--

-a
'Tt, -L / C-

1.3



F2= - 2u P 1 1

P2 2 = - 2u P12

P12(T) = 0

22(T)

(3. 5-17)

(3. 5-18)= 0

Solving Eq. 3. 5-15 and 3. 5-16 yields

p =d

P =
11

Differentiating Eq. 3. 5-14 yields

u = -(b p+ 2P 12 + 2E 12 P 1 1 + 2 12 E 2 2 + 2P 12 2 2 )/c

(3. 5-19)

(3. 5-20)

(3, 5-21)

and making use of Eq. 3. 5-15 through 3. 5.17 and

= 0 E = .2
22 b

= uE 2 2 =

22

2 a2
2cbu = b-
C

(3. 5-22)

(3. 5-23)ua 2
b

u (3. 5-24)

Solving Eq. 3. 5-24 together with Eq. 3. 5-7 results in

u = T
b T

2
C 

2 ab T/c

2 T 2
Yb

2a 2 t/c
-)+ e b

for the optimal control input and in

x(t) = x(T) - b

- 2cr2b

22 T/c
(e 'b -1

t

T

2 2 T/c
(e+cb

2 .2
b
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2
for the optimal nominal trajectory. As the ratio c/ ab -w-w (the minimum

energy case)

1 x(T) (3. 5-27)
b T

2
and x increases linearly from 0 to x(T). As the ratio c/ab -0 (infinite

uncertainty in b)

u --- 6 (t' - T) (3. 5-28)
b

where the 6 in Eq. 3. 5-28 represents the impulse function and x increases

instantaneously at t = t' from 0 to x(T). The exact time of the application

of the impulse is arbitrary since it does not affect the cost.

3. 6 Free Terminal-Time Problems

If the terminal time is not specified, a constraint is now missing

and needs to be replaced by another one. Consider the cost function

T

J = tr C(T) E(T) + k x(T), t + fL (x, u, E , t) dt (3. 6-1)

0

C(T) and k can be explicit functions of time. For the same class of

problems treated in Section 3. 3, it is shown in Appendix C that the optimum

terminal time is found from the transversality condition

kt + tr [Ct E(T)] + H(T) = 0 (3. 6-2)

where the subscript t denotes partial differentiation with respect to time

evaluated at the terminal time. All other necessary conditions given by

Eq. 3. 3-24 through 3. 3-29 remain the same.
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3. 7 Problems With Constraints

As was stated in Section 3. 1, it has been assumed that all differ-
entiability conditions necessary for the application of Pontryagin's

minimum principle are satisfied. Thus, problems involving inequality

constraints on the control variables are minimized by finding the

absolute minimum of the Hamiltonian with respect to the controls.

Since the Hamiltonian is given by

H = L .+ T f + tr (P E) (3.7-1)

and the controls can appear in L, f or E, the task of analytically finding

an absolute minimum of H is bound to be difficult, especially since the

problem is already nonlinear. This problem can be successfully solved by the

numerical procedure suggested in the next chapter.

Problems with inequality constraints on the state variables have been ex-

tensively treated in the literature. BrysonandDenham (1963) derive the

necessary conditions for extremal solutions for a large class of problems

involving inequality constraints by means of adjoining the constraints to

the performance index by Lagrange multipliers. Further comments on

this problem will be given in Chapter 4.

3. 8 Summary

This chapter has derived the necessary conditions for optimization

of performance indices subject to general vector and matrix differential

equations as constraints. By application of the calculus-of-variations it

was shown that a set of straightforward equations for optimality result.

Two simple analytical examples of the technique were presented; in general,

numerical procedures are necessary to solve the nonlinear optimization

problem. Appropriate numerical techniques are developed in the next

chapter.
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Chapter 4

Numerical Solution Techniques

A. 1 Introduction

Since only a small number of the type of optimal control problems

presented in Chapter 3 may be solved in closed form, it is necessary to

consider the technique of solution by computer. There are two general

approaches one can take to this task: indirect methods and direct methods.

In the indirect-method approach the TPBVP is converted into a se-

quence of initial value problems. The unknown initial conditions are guessed

and the equations are integrated. In general the resulting final conditions

do not match. It is then necessary to change the guesses of the initial condi-

tions in such a way that the final conditions will be met. Unfortunately, this

technique results in equations that are always unstable to some degree (Kip-

iniak, 1961). This instability is associated with the particular difficulty of

"getting started" - see Bryson and Ho, 1969 - and this method is usually onlyprac-

tical for finding neighboring extremal solutions after one extremal solution

is obtained by some other method. For examples of this approach see

Balakrishman and Neustadt (1964).

Various direct methods, which minimize the cost function directly

by considering changes in the control, are among the more successful com-

putational approaches to the TPBVP. The best known of these is the Bryson-

Kelley-Denham gradient method presented in Kelly (1960) and Bryson and Den-

ham (1962). This technique has been extended in a number of directions, and

applied to many problems. One of the first extensions was to the case of bounded

controls (Kelly, Kopp, and Mayer, 1961). It has also been modified to include state-

variable constraints by various means (Bryson and Denham, 1964). The major

difficulty with this method is its slow convergence near the optimum. An effective

way of accelerating convergency is through the use of the second variation (Break-

well, Speyer, and Bryson, 1963 andJacobson and' Mayne, 1970) at the expense of

an increased computational burden.

If there is a standard method for computing optimal controls, the

gradient method is it. It converges slowly but reliably from even extremely
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poor starting conditions. This technique will be applied to the TPBVP

involving vector and matrix differential equations.

The application of the gradient method to problems involving

vectors and matrices could be approached by partitioning the matrices

into vectors and using the standard approaches. It is more convenient,

however, to develop an approach which does not require the partitioning.

As will be shown, using first-variation techniques results in a computation-

ally simple extension of the gradient method to the case involving matrices.

No simple second-variation approach has been developed that can solve the

matrix-vector optimization problem.

In Section 4. 2 the gradient method for problems with no terminal

constraints and fixed terminal time is presented. Section 4. 3 treats a

more general problem that includes terminal constraints on some of the

state variables; Section 4. 4 illustrates the calculations by numerically

solving the example from Section 3. 4. Section 4. 5 deals with problems

involving free terminal time; Section 4. 6 presents techniques useful for

problems with constraints.

4. 2 Problems With No Terminal Constraints

The first-order gradient technique for fixed terminal time in prob-

lems with no terminal constraints is particularly simple. Suppose it is

desired to minimize

J = tr C E(T) + k x(T) + L (x, u, E, t) dt (4.2-1)

0

for the system

x = f (x, u, t) , x(O) given (4.2-2)

E = V (x, u, E , t) , E(0) given (4.2-3)
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With an initial guess for u(t) the system,Eq. 4. 2-2 and 4. 2-3,is integrated

forward and the results stored. The adjoint equations are then integrated

backward

= -HT p(T) = k (4.2-4)
p - kT

P - HE , P(T) = C (4.2-5)

In general,

H =0 (4. 2-6)

will not be satisfied by the initial guess. If a change in the control ( 6u)

is made, then the incremental first-order change in the cost is

6 T H 6u dt (4.2-7)

0

as was demonstrated in Chapter 3. If we wish to make the largest change

in 6J, we would calculate the gradient H and then make 6u directedu
opposite to the gradient

6u = - W(t) HT (4.-2-8)
u

If W(t) > 0, J becomes smaller with each iteration and the proced-

ure is repeated until either the control or the cost function does not change

significantly from iteration to iteration. Convergence is slower as the op-

timum is approached so that, generally, W must be increased. Sage (1968)

suggests W might be picked by using the past value, one-half the past value,

twice the past value, and ten times the past value to determine four new

values of bu and J. The value of W which produces the smallest J is

then used for the next iteration.
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It is also possible to use this technique in problems with linear

terminal constraints. For example, if x(T) = 1 is specified, then one

might consider augmenting the original cost, Eq. 4. 2-1, with a quadratic

weighting

i= d [x(T) - 1 2 + J (4. 2-9)

where d would be picked such that x(T) approaches 1 to the desired accuracy.

However, if d is chosen too large, the algorithm may tend to concentrate

more on satisfying the constraint than minimizing the original performance

index.

There is a different variation on the first-order gradient method

that is no more complicated but has the ability to converge to an exact

optimum solution. In this technique, it is assumed that the state and

adjoint equations have been integrated using u*. Furthermore, it is as-

sumed that H = 0 can then be evaluated to yield u c, the value of u which

would cause Hu to be 0 on this last iteration. The algorithm is then to

choose

6u = - d (u .. c) (4.2-10)

where d is a decimal fraction between 0 and 1. d = 1 is the best estimate

of the 6u that will drive Hu * all the way to zero on the next iteration.

In this method 6u is picked to lie along the chord of Hu* and 0;

in the gradient method 6u lies along the slope of H . Of course, if Huu
is constant, then both methods are identical if W = f 1 and d = 1.

uu

The next section treats the more general optimization problem in-

volving terminal constraints.
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4. 3 Problems With Linear Terminal Constraints

The optimization problem considered is to minimize during a

fixed operating time.

- -l T
J=tr C E(T) + k x(T) + fL (x.,

0

with constraints

E , u, t) dt

x = f (x, u, t)

E = V (x, u, E , t)

x(O) specified

z(T)
zx (T

E(O) specified

In the first-order gradient method a nominal control history is guessed.

With this guess the system equations 4. 3-2 and 4. 3-3 are integrated for-

ward. This initial guess will not, in general, satisfy the boundary con-

ditions or result in a minimum cost. Adjoint equations are then determined

using the results of the forward integration.

h= L + pT f + tr (P E) (4.3-4)

and

H = RT f . (4.3-5)

then the adjoint equations are

p = - h T p(T) = k (4.3-6)
x -

P = -E , P(T) = C (4. 3-7)

and

T1 - H x R(T) = 6..
i= 1,... ,nI (4. 3-8)
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The quantities p(t), P(t), and R(t) predict how changes in the con-

trol histories, 6u(t), will change the cost and the q terminal conditions

z(T). From Eq. 3. 2-17, the change in cost is

6J = L + PT f + [tr (PE)] 6u(t) dt (4. 3-9)

and from Eq. 3. 3-11, the changes in terminal conditions are

6z(T) = RT f 6u(t) dt (4.3-10)

0

The problem is to pick an appropriate 6u that will satisfy the linearization

and which will decrease the cost while constraining the size of 6z(T).

Since Eq. 4. 3-9 and 4. 3-10 are linearized relations, there is no minimum

for 6J subject to constraints on the size of 6z(T). A simple way to create

a minimum is to add a quadratic integral penalty function in 6u(t) to

Eq. 4.3-9:

6J = 6J + 0. 5 uT W 6u dt (4.3-11)

0

where W(t) is an arbitrary m x m positive-definite weighting matrix. The

minimization of Eq. 4. 3-11, subject to constraints on the change in the

terminal conditions Eq. 4. 3-10, is solved by adjoining Eq. 4. 3-10 to

Eq. 4. 3-11 with a q-dimensional constant multiplier :

6J1 = L + pT f + [tr (P E) }u dt
1 u - u

T T
+ 0.5f 6u W 6u dt

0

+ fT RT f 6u dt - 6z(T) (4. 3-12)

The change in 6J1 due to a change in 6 u, neglectingthe change in

the coefficients, is given by



6(6Jf) = 7
0

+ PT f + tr (PiE)Iu

W 6 (6u) dt

Clearly, the optimum change occurs when

6u = - W1 L + (p + R f) f +
-u u [tr (P E) I T

6u =- W hT - W~ H T
u u

Substituting Eq. 4. 3- 15 into Eq. 4. 3- 10 yields:

6z(T) = - RT f W-l hT dt -
f -u u
o0~

H = R T f

define the q-dimensional vector

T

Ikj f (H W-1h T
j _ _u

0

TT1
RT f W Hfdt

--0-

dt

and the q x q matrix

I = H W~I HT dt
kk .u u

o0 ~

Then Eq. 4. 3-10 may be written

6z(T) = I -
- ... kj 'kkL
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1

+ T RT f + SuT
u

(4. 3-13)

or

(4. 3-14)

(4. 3-15)

With

(4. 3-16)

(4. 3-17)

(4. 3-18)

(4. 3-19)

(4.3-20)



if Ik exists, Eq. 4. 3-20 may be solved for the required I that will yield

the specified 6z(T):

-- S6z(T) + Ikj

Substituting Eq. 4. 3-21 and 4. 3-15 into Eq. 4. 3-9, the predicted change

6J is

6J= .- h W h H

0

1
k

Now define a scalar

I.. = h hT dt

0

and a q-dimensional row vector

= h W HT dt

0

Then

+ I I 6z(T)iJ = + T kk

ISz(T) + kj] I dt

= T
+ kj

+ 
k

or

T -1 )+ IT -1 z
SJ = - (I~ -- I kj) + ~ Ik Sz(T)

ikj Ikk -k k ~

As the optimum solution is approached

6 z(T) .. 0

then, from Eq. 4.3-15,

h + fT H 0
U -_u

,49

(4. 3-21)

(4. 3-22)

(4. 3-23)

(4. 3-24)

(4. 3-25)

(4. 3-26)

(4. 3-27)

(4.3-28)



from Eq. 4. 3-26,

T -1 0
jj ~ -kj kk -kj

and from Eq. 4. 3-21

- I kj

Note that Eq. 4. 3-28 may be interpreted as

H = h + ,T H
u u ...- u

if

H =h + j T H

(4. 3-29)

(4. 3-30)

(4.3-31)

Now the first-order gradient method for the problem given by

Eq. 4. 3-1 - 4. 3-3 may be summarized as follows:

Step 1.

Estimate a set of control histories u(t).

Step 2.

Integrate the system equations forward

x = f (x, u, t)

E = V (x, u, E, t)

x(0) given

E(0) given

and record x(t), E(t), u(t), and x(T).

Step 3.

Determine the influence functions by backward integration using

the values obtained in Step 2 with
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h = L + pT f +

H = T

p(T) =kT
- x

R(T) = 6..

P(T)= C

tr (P E) (4. 3-35)

(4. 3-36)

(4. 3-37)

(4.3-38)

(4. 3-39)

i = 1,

j = 1,

Step 4.

Simultaneously, compute using an appropriate W,

T

T

fT

f

H W~ HT dt-u -u

H W~ hT dt
u u

h W~ 1 hT dt
u u

(4. 3-40)

(4. 3-41)

(4. 3-42)

Step 5.

Choose a value of 6z(T) to cause the nominal solution to be closer

to the desired values x (T).

z(T= - d terminal conditions in step 1 - xq(T)]

with

5,1

p = - hT
x

T

P= -h E

kk

I..33i

(4. 3-43)



0 < d < 1

Then determine

= kk [6 z T + Ik]
(4. 3-45)

Step 6.

Repeat Steps 2

adding to the previous

- 6 using an improved estimate of u(t) formed by

control the vector

6u(t) = - W hT + H (4. 3-46)

Stop when

(4. 3-47)

and

(4. 3-48)I.. - IT -1 I . 0

ja ....k Ikk .... 3 N-

to the desired degree of accuracy.

The best choices of W and d are not determined a priori. A. pos-

sible way to choose W is to compare the actual 6J and 6z(T) with the

predicted values from Eq. 4. 3-25 and 4. 3-20. If there is too large a

difference, W should be increased; if the difference is small, it is possible

to take larger steps and W should be reduced.
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4. 4 Illustrative Example

Consider the problem of Section 3. 4 for which an analytical

solution was obtained.

with

u

The cost function was

( u2

x(0) = 0

+ E) dt

x(1) = 1

(4. 4-1)

(4. 4-2)

and

h = x

the first iteration

E(0) = (4.4-3)0

through the gradient method equations is as follows:

Step 1.

Guess u(t) = 1. Pick W = 1 (4. 4-4)

Step 2.

Integrating the system equations,4. 4-2 and 4. 4-3,forward yields

x(t) = t

E(t) = t 2 /2

h u 2 /2

H = Ru

+ E + pu + Px
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Step 3.

With

(4. 4-5)

(4. 4-6)

(4. 4-7)

(4. 4-8)



and

p x

P = hE

R-H _x

p(1) =

P(1) = 0

R(1) = 1

backward integration results in

p =0. 5 - t + t 2/2

P = 1 -t

R =1

Step 4.
With W = 1

'kk dt = 1

0

1

Ikj =

1
I.. = [4

JJJ
0Step 5.

(1 +

3

1- t + t 2/2) dt
2

t + t 2 /2) 2 dt=

6z(T) is zero since the boundary condition

-1k
= - 7/6

is met and

(4. 4-18)

Thus, the incremental change in u is
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0 (4. 4-9)

(4. 4-10)

(4. 4-11)

(4. 4-12)

(4.4-13)

(4.4-14)

(4. 4-15)

= 7/6 (4. 4-16

83/60 (4. 4-17)

Step 6.

I



6u = - W 1 [hu + H (4.4-19)

6u = - I + t - t2/2 (4.4-20)
3

so

2
U= 2 + t- t (4. 4-21)

3 2

and

I.. - I I - 1(4. 4-22)
jj jk kk kj 45

We have actually found the correct optimal control in only one

iteration through Steps 1 - 6. Another pass through Steps 2 - 6 would verify

6u = 0 and Eq. 4. 4-22 equals 0.

4. 5 Free Terminal Time Problems

For problems with linear terminal constraints and free terminal

time, the gradient method is modified to account for the fact that one more

free parameter needs to be determined. For the optimization problem

J = tr [C(T) E(T)] + k x(T), T + TL (x, u, E, t) dt (4.5-1)

0

it is shown in Appendix D that the optimum change in the estimate of the

best terminal time, at each iteration, is

dT = - b tr [Ct E(T)] + kt + H(T) (4. 5-2)

where H(T) is obtained from Eq. 4. 3-32. The details of the method are

explained in Appendix D; it is important to note that another weighting

factor, b, must be chosen a priori.
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4. 6 Problems With Constraints

The algorithms discussed in this chapter have applied only to prob-

lems in which there are no inequality constraints on the control and/or state

variables. The simplest approach to such problems is to use integral pen-

alty functions. If the inequality constraint

c (x ,u,t) 0 (4. 6-1)

is specified for all time, the performance index may be augmented as

follows:

T -
J= J + d f Ic (x, u, t) 2 I(c) dt (4. 6-2)

0

where

0 e < 0 (4. 6-3)

1 c > 0

If d is picked too-large, the gradient algorithm will tend to concentrate

more on satisfying the constraint rather than minimizing the cost. As a

result, convergence may be slow.

A more effective approach to solving such problems is to join to-

gether constrained and unconstrained axes. Unlike the integral penalty

approach, this approach is capable of finding the exact solution and uses

less computer time. However, one must guess beforehand the sequence

of constrained (c = 0) and unconstrained ( c < 0) arcs, and the computer

programming is more complicated; the problem is even more difficult

for cases in which the inequality constraint is

c (x, t) < 0 (4. 6-4)

because, in general, the adjoint variables are discontinuous at the entry

and exit points of any constrained arc. The reader is referred to Bryson

and Ho (1969) for further details.
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4. 7 Summary

This chapter has presented algorithms for the solution of general

optimization problems involving vector and matrix differential equations

as constraints. These algorithms should provide a convenient and useful

technique for solving such general problems as trajectory shaping and

open-loop signal design.

In the next chapter, attention is redirected to the specific problem

of this thesis: identification and control of systems with unknown para-

meters.

57



Chapter 5

Optimum Input Design For Identification

5.1 Introduction

In Chapter 2 the method of using Kalman filtering to identify un-

known system parameters was introduced. The technique is amenable

to a formal optimization approach because the identification problem is

nonlinear. The necessary conditions for optimality and numerical solu-

tion techniques were presented in Chapters 3 and 4, respectively. This

chapter applies these previous investigations to representative identifica-

tion problems.

In Section 5. 2 the equilibrium identification of the inverse-time

constant in a first-order system is investigated; in Section 5. 3 the trans-

ient identification case is considered. In both cases, performance

indices are used that weight uncertainty in the inverse-time constant

estimate versus the amount of energy used in meeting the terminal con-

straints. It is shown that, with measurements proportional to system

position, larger excursions of the state away from minimum-energy

solutions in the direction of increasing values of the state result in im-

proved estimates of the inverse-time constant at the terminal time.

Furthermore, the uncertainty in the state estimate is less than that of

the minimum-energy solution at the terminal time in the transient case

because of the improved knowledge of the unknown parameter.

In Section 5. 4 a more interesting example of identification in a

second-order system is presented. The example verifies the improved

estimation of the unknown parameters and of the states (position and

velocity) when the optimum identification procedure is used. Such an

approach is not, however, necessarily the appropriate design for a con-

trol system. In that case, the designer is interested in minimization of

actual deviations in the states instead of estimation errors in the states.

The control problem is the subject of the next chapter.
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The second-order system also serves as an ideal test for the use-

fulness of the numerical procedure. Some particular difficulties, such

as violation of the assumed linearization, are discussed and practical

solutions presented. It is shown that rapid convergence to a near optimum

for the oscillatory system is achieved.

Similar investigations with double integrator plants and plants

with two real roots show the same general results when identification is

formulated as an optimization problem. Space limitations prohibit pre-

senting these latter results.

5. 2 Equilibrium Identification in a First-Order System

In this section the identification of the inverse-time constant in a

first-order system is solved as an optimization problem. The system

is initially at rest and is to be returned to rest at the end of the identifi-

cation interval.

The actual system obeys

S= -ba xa + u + n (5.2-1)

The inverse-time constant b a is assumed to be a Gaussian distributed

random constant that has a mean of b.

An open-loop control input is to be designed for the noise-free

system

x - bx + u (5. 2-2)

with specified boundary conditions

x(0) = 0 , x(T) 0 (5.2-3)

Thus, the nominal state vector is of dimension 1.
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The covariance matrix of estimation errors is associated with

the best estimate of the deviations 6x and 6b away from the nominal

values x and b. The matrix differential equation obeys

E = FE + EFT + Q-EM T U~ ME (5.2-4)

where

-b

(5. 2-5)

0

x

0 .

The assumed nominal value of b is 1.

It is assumed that linear

available; the matrix M is then

M = [ 1

The assumed values for t

matrices are

U=1

measurements of the actual state are

0] (5. 2-6)

he measurement and driving-noise

(5. 2-7)

and

S= K
0]

01

(5. 2-8)

Finally, the initial covariance matrix of the errors in the estimates of

the deviations is
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1 0

E (0) = (5. 2-9)

_ 0 5.

The cost function is chosen to trade-off the amount of energy

used in moving the nominal system away from 0 versus the uncertainty

in the estimate of the deviation in b at the terminal time.

J = tr C E(T) + 0. 5 u2 dt (5. 2-10)

0

where the terminal time equals 10 and

0 0

C = 1 (5. 2-11)

0 C 22

Defining

h = L + pT f + tr (P E)

h = 0. 5 u - pbx + tr (P E) + pu (5.2-12)

then the adjoint variable p satisfies

p = - h = b p - [tr (P E)I

= b p . tr P (F E + E F T) (5. 2-13)

where
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0-
F = (5. 2-14)

x

.0 0 _

and

p(T) = 0 (5. 2-15)

The adjoint variable P satisfies

T-1 T T 1
P = -hE =-(F-EM U M) P-P(F-EM U~ M) (5.2-16)

and

0 0

P(T) = (5. 2-17)

0 C2 2

Finally, the influence function R obeys

l = - = bR (5. 2-18)

and

R(T) = 1 (5. 2-19)

The gradient method for numerical solution proceeds by first

guessing an initial u. Then Eq. 5. 2-2 and 5. 2-4 are integrated forward.

Equations 5. 2-13, 5. 2-16, and 5. 2-18 are integrated backward. The

remaining steps follow according to Eq. 4. 3-36 through 4. 3-44.
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Figure 5-1 shows the nominal state trajectory for C22 = 0. 1, 1,

and 10. As more weight is attached to the value of the terminal uncer-

tainty, larger excursions of x away from 0 are required to satisfy the

optimality conditions. The resulting uncertainty in the estimate is shown

in Figure 5-2 and the corresponding control in Figure 5-3.

The performance of the estimator can be better understood by

examining the covariance matrix equation (5. 2-4) in component form.

E - 2E - E 2  + 1 - 2x E (5.2-20)
11 11 1112

12 E12 x22 E 12 (5. 2-21)

- - E 2  (5. 2-22)
22 12

For x zero, Eq. 5. 2-20 shows that E 1 quickly reaches a steady-state

value of 0. 414. E 1 1 is displayed in Figure 5-4. The measurements

quickly reduce the initial uncertainty to the steady-state value; then, as

x is driven away from zero, the uncertainty increases only to return to

the steady-state value as x returns to 0. In Figure 5-5 the covariance,

E12, is displayed. Since it is always negative, the last term in

Eq. 5. 2-20 shows that the uncertainty in x will always increase due to

this term. However, from Eq. 5. 2-22, larger values of the covariance

result in a decrease in the uncertainty associated with the inverse-time,

constant. The final values of E22 are 2. 7, 0. 69, and 0. 34. The physical

explanation for these results can be found by looking at Eq. 5. 2-2 in

variational form

6x = - b 6x - x 6b (5.2-23)
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For x zero, variations in b have no input to the variation in x. However,

as x increases, the effect of an unknown time constant becomes a driving

term. The variance equations, 5. 2-20 - 5. 2-22, physically represent

this phenomena.

The uncertainty in the state at the terminal time is practically

identical for all cases, since as soon as x returns to near zero, the

measurements quickly reduce any uncertainty to the steady-state value.

As will be shown in the next section, if the terminal condition on x is

not 0, but rather 1, substantially different performance is achieved in

the estimate of the deviation in x.

-1

0Z

0

TJME

0 1 2 3 4 5 6 7 9 10

Figure 5-1 State History
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Figure 5-2 Estimation Performance
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Figure 5-3 Control History
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Figure 5-4 State Estimation Performance
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Figure 5-5 Covariance History
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5. 3 Transient Identification

This section treats the identical problem as in the previous

section except that the boundary conditions, Eq. 5. 2-3, are

x(0) = 0 , x(T) = 1 (5. 3-1)

The nominal system is to be driven to a particular terminal condition

while the estimator is "learning" the unknown parameter.

Figure 5-6 shows the nominal state history for different values

of C 2 2 . Since,

T T
x(T) -b fx dt + fu dt (5. 3-2)

0 0

it is clear that more knowledge about b is gained by increasing the area

under the x versus t curve. The corresponding controls are shown in

Figure 5-7 with smaller values of C2 2 giving solutions tending towards

the minimum energy (C 2 2 = 0) case.

The variances corresponding to the unknown inverse-time con-

stant and the state are shown in Figures 5-8 and 5-9, respectively. Note

the very significant result that, at the terminal time, the uncertainty in

the state deviation estimate is less for those cases with increased

weighting on the uncertainty in the inverse-time-constant deviation es-

timate. This is partially due to the decrease in the covariance (Figure

5-10) for those cases. ThefinalvaluesE (T )are 0;'72, 0. 85, and 0. 91.

Other computer runs indicated obvious trends for different num-

erical values of the assumptions. For example, if the driving noise is

increased, the estimates are all poorer. If the measurement noise is

decreased, solutions tend more toward the minimum-energy solution.

In the next section a more complicated identification problem is

considered - that of estimating unknown parameters in a second-order

system.
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Figure 5- 6 State History

Figure 5-7 Control History
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5. 4 Transient Identification in a Second-Order System

This section considers the optimum transient identification in
a second-order system; the following section discusses the performance
of the computation algorithm for this example.

The system considered is described by

-a + aa a + ba ya = u + n (5.4-1)

The constants aa and ba are assumed to be Gaussian distributed with

means of a and b, respectively.

An open-loop control is to

that represents Eq. 5.4-1:

xl

x 2

0 1

-a -b

be designed for the noise-free system

xl

x
2

+

01

u

(5. 4-2)

or

x = f (x, u)

The boundary conditions are specified

x 1 (0) = 0

x 2 (0) = 0

x 1 (T)

x 2 (T)

= 10

=0

Thus, the system is to be moved from 0

velocity - a very exacting constraint.

to 10 and arrive with zero

(5.4-3)

(5.4-4)

(5. 4-5)
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The covariance matrix representing the performance of the

optimum estimator is of dimension 4 and corresponds to estimation of

the deviations in the augmented state vector with elements xi, x 2 , a

and b. Then, the F matrix in the differential equation

= FE + EFT + Q - EMT U~ 1 ME

0 1 0 0

-a -b -x 1  -x2

0 0 0 0

0 0 0 0

(5. 4-7)

The nominal values of a and b are chosen to be 2. 51 and 3. 15 which

correspond to a critically damped system and natural period of 3. 9

seconds.

It is assumed that linear measurements of the actual position

are available; the matrix M is then

M = [1 0

The assumed values for

matrices are

(5. 4-8)0 0]

the measurement and driving-noise

U = 0. 05 (5. 4-9)

and

0 0 0

0.005 0 0

0 0 0

0 0 0

7.2

E

is

(5. 4-6)

0

0

0

0

(5.4-10)



The initial covariance matrix of the errors in the estimates of

the deviations is chosen as

0 0 0

0. 1 0 0

0 0.2 0

0 0 0-2 _

(5.4-11)

The cost function is again chosen to trade-off the amount of

energy put into the system versus uncertainties in the estimates at the

terminal times.

J = tr [C E(T)] + 0. 5
T2
fu2 dt (5. 4-12)

where the terminal time equals 10.

Defining

h = L+pT f + tr [Ei]
or

h = 0. 5 u 2 + pT f + tr [P E

where f is the right-hand side of Eq. 5. 4-2 and E is given by Eq. 5. 4-6.

The 2-dimensional adjoint variable p satisfies

p = h T
p-- F TF1

(5. 4-15)p- tr (P E) ]

tr IP (F x E + EFTx

tr [P (F E + E FT
x

2
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0. 1

0
E=

0

L 0

(5. 4-13)

(5.4-14)

or

T
i p

(5.4-16)



F =

0

= 0
x

0

0

0

0

0

11

.bi_

(5. 4-17)

(5.4-18)

0 0 0

0 -1 0

0 0 0

0 0 0

0 0 0

0 0 -1

0 0 0

0 0 0

The 4-dimensional adjoint variable P satisfies

- h = (F - EMT U I1 M)T P-P(F-E MT U~ M)

P(T) = C

Finally, the n x q (2 x 2) influence function R obeys

T
R -H x

T= - FR

(5. 4-19)

(5. 4-20)

(5. 4-21)

(5. 4-22)
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F
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p =



and

10

R(T) = (5. 4-23)

. 0 1.

The gradient method for numerical solution proceeds by first

quessing an initial u. Then Eq. 5. 4-2 and 5. 4-6 are integrated forward.

Then integrate Eq. 5. 4-16, 5. 4-20, and 5. 4-22 backward. The remain-

ing steps follow according to Eq. 4. 3-36 through 4. 3-44.

Figures 5-11 through 5-17 give the results of the optimization

procedure for two cases: the minimum-energy solution C = 0 and the

case corresponding to also weighting the terminal uncertainty in the

estimate of the deviation in b where C is chosen as 1000. Even though

the system must meet strict terminal constraints on position and velocity,

substantial estimation performance is achieved in all components as

opposed to the minimum-energy case. The increase in the energy inte-

gral is only from 798 to 830 or approximately 4%. For this small in-

crease in the amount of energy spent, significant improvement is esti-

mation performance is achieved. Table 5-1 compares these results

with an additional case involving weighting on the terminal uncertainty

in a (C 3 3 = 1000).
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Estimation Performance

. a + a a a a
y + a y + b Y =u+n

Initial Variance

T= 0

Minimum Energy

T = 10 (C = 0)

a Weighting
C 3 3 = 1000

T 10

b Weighting
C 4 4 = 1000

T = 10

Variance
Position
Estimate

0.1

0. 126

0. 115

0. 093

Variance
Velocity
Estimate

0. 1

0. 506

0. 377

0. 215

Variance

a

0. 2

0.048

0. 024

0. 024

Variance

b
i

0. 2

0. 123

0. 075

0. 049
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Energy
Integral

798

817

830
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Figure 5-11 Nominal Position Velocity
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5. 5 Performance of the Algorithm

The numerical solution to the second-order example involved

some typical problems which will now be discussed.

The choice of an initial guess for the control and an associated

weighting matrix and constant d must be made with a certain amount of

care. If the weighting matrix is chosen too small, large changes in

control can occur and the procedure seems to have difficulty in finding

an improved control since the linearization inherent in the gradient

method is violated. This is not so much a fault of the procedure; the

problem itself is very nonlinear. A practical solution was found to be

basing the choice for the weighting matrix on its previous value and the

value of the change in the control at the terminal time. The previous

value of the weighting matrix was scaled so that it would have given a

10% change in the final value of the control. Such a procedure limits

the allowable control changes and, while increasing the computer time,

helps to guarantee convergence to an optimum.

The choice for an initial u was the solution to the minimum-

energy problem as described by Bryson and Ho (1969). The numerical

procedure then took seven iterations to reach the solution to the case

C3 3 = 1000. Using that solution for the next guess, it took only 6 steps

to reach the solution for C = 1000. The stopping conditions in each

case were the sum of the absolute values of position and velocity errors

less than 0. 25 and Eq. 4. 3-27 less than 0. 05.

It was found useful to build into the computer program as many

internal checks as possible, while at the same time a most useful test

is verifying its capability to find the well-known minimum-energy solu-

tion.

It was also convenient to choose as large as possible a time step

for integration of the differential equations. Although the second-order

system has a natural period of 3. 9, the choice of a time step is more

involved than simply choosing a smaller number than 3. 9. In
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fact, the governing equation is the covariance matrix equation. With

excellent measurements, one must choose a time step such that the

term due to the measurements does not make the matrix go negative.

For this problem, a time step of 0. 25 using a fourth-order Runge-Kutta

integration scheme was found to give satisfactory results.

5. 6 Summary

This chapter has considered the optimum open-loop identification

of unknown parameters. The examples involving first- and second-order

systems were efficiently solved using the gradient method developed in

Chapter 4. As was previously mentioned, this optimization procedure

has been applied to other sample problems with an equal amount of

success.

In the next chapter attention is directed to closed-loop control

of systems with unknown parameters. In that case the objective is not

minimization of estimation errors; but rather minimization of actual

state deviations.
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Chapter 6

Closed-Loop Control of Stochastic Nonlinear Systems

6. 1 Introduction

This chapter considers the closed -loop control of systems with un-

known parameters. Since linear systems with unknown parameters may be

considered nonlinear systems, the solution offered in this chapter effectively

treats a much wider class of problem - control of stochastic nonlinear sys-

tems. Problems in this category include optimum guidance and navigation sys-

tems for space and terrestrial vehicles and optimum closed-loop process

controllers. The examples used to illustrate the control technique in this chap-

ter and the next, however, involve only unknown parameter problems. Many

systems have characteristics that are either unknown or highly variable. The

control- system designer must take this into account in order to achieve satis-

factory results.

There are two ways of approaching the problem which have been found

useful. First, it is possible to study the effect of these unknown changes on

system performance and to try to design a controller so these effects are

tolerable. This is called the sensitivity approach. Second, if it is possible

to make continuous measurements of system behavior and determine the

dynamical characteristics, the controller parameters can then be adjusted

based on these measurements. This is called the adaptive approach.

The adaptive approach is well documented in books by Sworder

(1966) and Aoki (1967). The sensitivity approach is generally less well-

known. As a simple example, consider a linear system given by

x = Fx + Gu (6. 1-1)

and a quadratic performance index

J = x(T)T S(T) x(T) + (xT Ax + uT Bu) dt (6.1-2)

0

Then a sensitivity vector can be defined by



s .C (6. 1-3)
~~ da

where a is a parameter of the system in the F matrix. In the sensitivity

approach -- see Kahne (1968) -- differential equations are then developed

which describe the propagation of s with time. The original cost function

is augmented by
T T

J =J + f (s D s) dt (6.1-4)

0

and minimized by using optimal control theory.

Three drawbacks to sensitivity theory approach are clearly evi-

dent. First, how does one justify in physical terms a choice of D?

Second, this approach neglects statistical effects; in particular, statis-

tics associated with the unknown parameters which are generally available.

Third, an n-dimensional vector must be defined for each parameter,

thereby increasing the computational burden.

The solution offered in this chapter lies somewhere in between

these two approaches. The technique developed can handle a priori sta-

tistical information about the unknown parameters and does not require

an artificial augmentation of the cost to cause the controller to consider

the unknown parameters. The dimension is the number of state variables

and unknown parameters. The controller is partially adaptive in the

sense that the unknown quantities are estimated and control action taken.

However, the gains used are determined from nominal values of the para-

meters and nominal values of their statistics rather than basing the gains

on the present-observed quantities. Given an infinitely fast computing

machine, this could be done but is impractical at the present time.

The approach in this chapter is based on using practical en-

gineering assumptions to achieve a solution to the control problem. The

system is assumed nonlinear and subject to independent white noise. Some

nonlinear measurements corrupted by white noise are available and are

related to the state of the system. It is desired to minimize the expected



value of a cost function that measures the performance of the system. The

first practical assumption made in Section 6. 2 is that a controller can be

built that will keep the actual state vector near a pre-planned value during

the operation of the system so that the expected value of the first-order

state deviations is zero. Second, the assumption is made that the con-

troller that keeps these perturbations small is a linear function of the

best estimate of these deviations. Third, the best estimate is to be ob-

tained from a linear filter. The cost function is then expanded in a power

series around the pre-planned trajectory. Because the deviations are

held to first-order, the expansion is correct to second-order. Then, in

taking the expected value, first-order terms in the expansion are zero

and the expected value of second-order terms are covariance matrices.

Thus, the cost function is actually evaluated in terms of a deterministic

part due to the pre-planned trajectory and calculatable covariance ma-

trices due to the statistical effects. The differential equations that de-

scribe the propagation of these covariance matrices are derived in

Appendix A.

The cost, once evaluated, is to be minimized, subject to the con-

straining differential equations. In Section 6. 3 the calculus-of-variations

approach is used to determine the necessary conditions for optimality.

It is first shown that the optimal linear filter is a Kalman filter used to

estimate the deviations. Second, the optimal perturbation controller is

identical in form to that obtained by quadratic synthesis as given by

Bryson and Ho (1969). The third and most important result shows that

the necessary conditions defining the pre-planned or deterministic tra-

jectory specify the trajectory as a function of the covariance matrices

as well as of the deterministic part of the cost. This latter result is

different from the quadratic synthesis approach which picks the pre-

planned trajectory on deterministic criteria alone and then uses pertur-

bation estimation and control to follow it. The combined optimization

procedure defined in this chapter gives a set of necessary conditions that

can be straightforwardly applied in practical problems to design the best

trajectory considering the statistical nature of the problem. A. numerical

technique useful in solving the necessary conditions is given in Appendix E.
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Sections 6. 4 -- 6. 10 give the necessary conditions for a class of

special problems and Section 6. 11 develops the results for evaluating

the effects of incorrect a priori statistics used in the design. Section

6. 12 presents the design of a controller for a first-order system with an

unknown time constant. For the criteria used, the quadratic synthesis

approach would give 24. 2% more cost and 97% more mean-squared terminal

error over the combined optimization procedure. It is shown that this procedure

automatically designs the best controller to minimize the effects of the unknown

time constant. In Chapter 7 a higher- dimensional problem involving landing on

a planet with an unknown atmosphere is considered.

6. 2 Transformation of the Performance Index

Consider a stochastic nonlinear system subject to independent

zero-mean white noise n

-a X a )Ua
x a a , t) + n(t) (6.2-1)

Continuous measurements are available, subject to independent zero-

mean white noise v

ma = h (x , ua, t) + v(t) (6. 2-2)

Explicit control over the state and the measurements is allowed through
a

u. It is desired to minimize a cost function of the form

J = J (xa , ua , t) (6. 2-3)

Because of the stochastic nature of the problem, it is appropriate to con-

sider minimization of the expected cost

<J > = <J (xa, a , t) > (6.2-4)

Define a system of identical dynamics to that of Eq. 6. 2-1 except

for the white noise
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x = f (x ,ut) , x(0)

and let

6x = xa - x

6u = ua - u

(6. 2-6)

(6. 2-7)

Assuming continuous first and second derivatives of J with respect to x

and u exist, the cost Eq. 6. 2-3 can be expressed in an infinite series

around a cost associated with the noise-free dynamics Eq. 6. 2-5

J = J (x, u, t) + J 6x + J 6u
1 - - x - u -

+ 0.5 6xT J 6x + 0.5
- xx -.

T
+O0.5 Su J 6x+O0.5

- ux -

uu
6u

T6x J Su
- xu ..

+ more terms of higher-order (6. 2-8)

where the partial derivatives are understood to be taken with respect to xa and

ua and are evaluated on the noise..free dynamics. In general, an infinite number

of terms must be considered for Eq. 6. 2-8 to adequately represent the cost func-

tion. It will, therefore, be specified that there exist a suitable control law that

makes the system with noise approximate the noise-free dynamics;i. e. , a con-

troller that guarantees that a first. order representation of 6 x is valid where

Eq. 6. 2-1 is linearized as in Appendix A to give

6x = f 6x + f 6u + n (6.2-9)

0 0 0 0

= <x a (0) > (6. 2-5)



or

6x = F 6x + G 6u + n (6.2-10)

Representation of 6x to first-order retains J correct to second-

order

= J (x, u, t) + J 6x + J 6u

+ 0. 5 6x + 0. 5 6uT J 6u
- x- - uu -

+ 0. 5 6 uT J. 6x + 0. 5 6 xT J 6u (6. 2-11)
- ux -- xu _

This equation is valid for any control system that has the ability to exert

tight control such that the effects of noise can be overcome. In the pres-

ence of noise this surely requires feedback. Thus "small" noise is not

explicitly assumed, but, rather, the existence of a suitable perturbation

controller that exerts "reasonable1 " values of 6u in keeping 6x small.

It should be noted that, for those states which are controllable, their

perturbations are controllable through Eq. 6. 2-9. For uncontrollable

states, their perturbations are also uncontrollable, so that their devia-

tions must remain small for Eq. 6. 2-11 to be a valid representation of

the cost.

At this point two practical constraints are imposed which then

provide an elegant solution to this control problem. They are:

(1) The control perturbation to be applied is a linear

function of an estimate of the state perturbation

6u = - C 6x (6.2-12)

where the gains C depend on the noise-free system

and are to be determined in some optimal way. It

A-



will be seen that, when the gains are picked in an

optimal manner, they are independent of any un-

controllable states, but the control does depend on

those states through the estimates of them. Further-

more, it is assumed that ou can be applied exactly,

although the method of analysis to be used can be

easily extended to the case where this is not true.

A
(2) The estimate 6x is to be obtained from an unbiased

linear estimator that has the property

< e(t) > = 0 (6. 2-13)

where the error in the estimate is defined as

A
e = 6x - 6x (6.2-14)

and the form of the perturbation estimator is spec-

ified as

AA A
6x = F 6x + G 6u + K (6m - h 6x - h 6u) (6. 2-15)

... .... -. x - -u -

with K to be determined in an optimal fashion.

With the constraint of Eq. 6. 2- 15, the initial conditions,

< 6x(O) > = 0 (6.2-16)

A
< 6x() > = 0 (6. 2-17)

the linearized measurements as derived in Appendix A,

6m = h 6x + h 6u + v (6. 2-18)
- x - -u -
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and the perfect knowledge of 6u, Eq. 6. 2-15, 6. 2-12, and 6. 2-10 yield

for all time:

< 6x(t) > = 0

< 6x(t) > = 0

< 6u(t) > = 0

(6. 2-19)

(6.2-20)

(6.2-21)

Using these last two conditions in taking the expected value of the

cost function Eq. 6. 2-11 results in the elimination of the expected values

of 6x and bu:

Ji > = J (x , u, t) + 0. 5 < 6xT J 6x >

+ 0. 5 < 6uT J 6u > + 0. 5 < 6xT J 6u >

T+ 0. 5< bu J 6x > (6. 2-22)

Equation 6. 2-22 can be rewritten, using the general relationship for any

y, w, and V,

yT V w = tr (V w yT) (6.2-23)

so that

> = J (x , u , t) + 0. 5 tr (J -< 6x 6xT >

+ 0. 5 tr (J < 6u 6 uT x)

+ 0.5 tr (J <6x 6 uT >)
ux ... ...

+ 0.5 tr (J <6u 6x T>)
xu - ...
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A
Now, using the control law 61 u -C 6x and defining

E =<e e T >

A A AT
X =<6x6x >

AT
Z =<e 6x >

X =<6x6xT >

where, from e =

= cov. of the estimation error

= cov. of the estimate

= cross-cov. of the error and the estimate

= cov. of the actual state deviation

A
6x - 6x and Eq. 6.2-25 -- 6.2-28

X = E + X - Z - ZT

then Eq. 6. 2-24 becomes

< J > = J (x , u , t) + 0. 5 tr J (E +
A
x - Z - ZT )]

+ 0. 5 tr J 

- 0. 5 tr J

C X C T]

A
C (X

- 0. 5 tr J
Iux

A
(X -Z)

ZT)

CT]

(6.2-30)

The original expected value of the cost function has now been evaluated

in terms of a deterministic part J(x, u, t) and second. moments. This

cost is to be minimized, subject to the differential constraints on x, and

the covariance matrices must also obey differential equations. A~s de-

rived in Appendix A., they are

E = (F - KM) E + E (F - KM)T + KUKT (6.2-31)

A A A T T T T
X = (F - GC)X + X (F - GC) -KMZ-Z K +KUK (6.2-32)
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(6. 2-25)

(6. 2-26)

(6. 2-27)

(6. 2-28)

(6.2-29)



Z = (F - KM) Z + Z (F -G C)T - E MT KT + KUKT

with given initial conditions and

M = h
-.x

Q 6 (t-t') =

U 6 (t - t') =

< n(t) n(t')T >

< vMt v(t')T >

(6. 2-33)

(6.2-34)

(6. 2-35)

(6. 2-36)

The optimization problem is to minimize Eq. 6. 2-30, subject to

Eq. 6. 2-31, 6. 2- 32, 6.2-33, and 6. 2-5, by finding the optimal control u,

the optimal linear feedback controller gains C, and the optimal linear

filter gains K. The original statistical measure of performance is re-

flected in the cost by the appearance of covariance matrices.

6. 3 The Necessary Conditions

The derivation of the necessary conditions for optimality proceeds

in the usual calculus-of-variations approach. First, for convenience,

assume the original cost function was to be minimized over a fixed time

and was of the form

< Ji > = <k [a(T)] +
T
fL (xa

0

au , t) dt >

S(T) = k

A (x, u, t)

B (x, u, t)

N (x, u, t)

and define

(6. 3-1)

=L
xx

=L uu

(6. 3-2)

(6. 3-3)

(6. 3-4)

(6. 3-5)
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Then Eq. 6. 2-30 becomes

= k [x(T)] +
T
f L (x , u , t) dt

0

+ 0. 5 tr S(T) iE(T) + X(T) - Z(T) - Z(T)

T A T T
+ 0. 5 tr LJ(AE + AX - AZ - AZ + BCXC

0
A T TA TT T

-NCX + NCZ N XC+N ZC)dtj (6. 3-6)

First, viewing K as a control parameter to be picked, the varia-

tion in cost due to a change in K is

A
= 0. 5 tr IS(T) 6 E(T) + 6 X(T) - 6 Z(

0. 5 tr f(A6E + A6X - A.6Z

0
AC T

+ BC6XCT - NC6X + NC6Z

- N 6X C

T) - 6 Z(T)T

- A 6ZT

+ NT 6 Z CT) dt

From Eq. 6.2-31, 6.2-32, and 6.2-33

6E = (F - KM) 6E + 6E (F - KM)T

-6K ME - EMT 6KT + 6KUKT

A
6X

+ KU6KT

A A T
= (F - GC) 6X + 6X (F - GC)

- 6K MZ - KM 6Z - ZT MT 6KT

-6ZT MT KT + 6KUKT + KU6KT
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< J >

6 <J1 > 1i

(6. 3-7)

(6.3-8)

(6.3-9)
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6Z = (F-KM) 6Z + 6Z (F-GC)T

- 6K MZ - 6E MT KT EMT 6KT

+ 6K U KT + K U 6K T (6. 3-10)

A
With 6Z(0) = 6X(0) 6E(0) = 0 and an assumption that the initial

error and the estimate are uncorrelated (Z(0) = 0), by choice of

K = EMT U~

A
Z (t) = 0 = 6E tW = 6 X(t) = 6Z tM

(6. 3-11)

(6. 3-12)

6 < J > = 0 (6, 3-13)

The cost is optimized (stationary) with respect to changes in K. Further-

more, this choice of K for the optimal linear filter results in the estimate

and the error in the estimate being orthogonal for all time. This K

corresponds to the Kalman filter and the cost function now reduces to

' J > = k x(T) +

+ 0. 5 tr ST)

T
+ 0. 5 tr

O

TJ L (x , u, t) dt

0

E(T) + 0. 5 tr S(T) X(T)

A A A A
(A.E+AX+BCXCT - NCX -NT XC C)dt] (6. 3-14)

subject to
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x = f (x , u, t)

TE = FE + EF + Q

A A
=(F -G C) X+ X(F

- E MT U~ ME

- G C)T + EMT U ME

The derivation of the necessary conditions for optimality now pro-

ceeds in the usual calculus-of-variations approach. Adjoin to the cost the
A

constraints (X, k, and X) by means of arbitrary multipliers (p, 0. 5 P,

0. 5 S) and define a Hamiltonian

TH = L + p f + 0. 5 tr (PE)
A

+ 0. 5 tr (S X)
A A T A

+ 0.5 tr (A.E + AX + BCXC - NCX

The adjoint variables must satisfy

p= Tx

P = - 2 HE

S =- 2 HqA-X

p(T) = kT
x

P(T) = S(T)

S(T) =k

The optimal control parameters (u and C) are determined from

H =0u

H = 0

Using Eq. 6. 3-21 first, results in
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(6. 3-15)

(6. 3-16)

(6. 3-17)

TA T- N XC (6. 3-18)

(6. 3-19)

(6. 3-20)

(6. 3-21)

(6. 3-22)

(6. 3-23)



S =-(F - GC)T ST T (F - GC)+NC+ CT N - CT BC - A.

(6. 3-24)

Since the boundary condition Eq. 6. 3-21 is symmetric, S is symmetric

for all time, or

S =-(F - G C)T S - S (F - G C) + N C + C-T NT - CT B AC A (6.3-25)

Similarly application of Eq. 6. 3-20 yields

P =-(F - EMT U M)T P - P(F - EMT U M)

-MT U~1 MES - SEMT U-I M -A (6.3-26)

A
Application of Eq. 6. 3-23 yields for arbitrary X

C = B~ (GT S + NT) (6.3-27)

and substituting into Eq. 6. 3-25 gives

S -FT S - SF + (GT S + NT )T B~ 1 TS + NT) -A. (6.3-28)

The feedback-controller gains C are identical to those that would

be obtained by using quadratic synthesis around a given reference trajectory.

However, application of Eq. 6. 3-19 and 6. 3-22 shows quite clearly that the

noise-free system must be chosen to include the effects of the stochastic

nature of the problem:

H = 0 = Lu + pT G + 0.5 tr (P E)] + 0.5 [tr (SX)]

+0.5 [tr (AE + AX + BCXC - NCX -N XC )U

(6. 3-29)

T T T T_ ^ T
= H = L - F p - 0. 5 tr (P) - 0. 5 tr (SX]x

A A T A TA T~T
-0.5 tr(AE+AX+BCXC -NCX-N XC )

(6. 3-30)
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Only for the case of a linear system with linear measurements, quadratic cost,

and noises independent of the state or control are the terms involving the de-

rivatives of traces equal to zero, and in that case the noise-free trajectory

maybe designed without regard for the statistics. This section has shown that,

under practical engineering constraints of linear perturbation estimation and

feedback control, the overall optimization procedure results in a set of nec-

essary conditions that can be straightforwardly applied in practical design

problems.

Finally, the end result of the optimization program will be an

optimal control history u(t), an optimal trajectory x(t), a set of feedback

controller gains C(t), and a set of estimator gains K(t). All of these quan-

tities can be calculated a priori and implemented into the system. In the

following sections some special cases will be considered.

6. 4 Case 1. Free Terminal Time Problems

The transversality condition for optimization problems involving

free terminal time is analogous to the conditions in Chapter 3:

kt + 0. 5 tr f St [E(T) + X(T)] + H(T) = 0 (6.4-1)

from which the optimal terminal time is obtained. S and k are differen-

tiated if they are explicit functions of t evaluated at the terminal time.

6. 5 Case 2. Terminal Constraints

In the case where the first q components of x 6() are specified,

a q-dimensional linear constraint vector is defined

z(T) = 0 (6. 5-1)

and the.first q components of x(T) must satisfy Eq. 6. 5-1. Then, in gen-

eral, k xa (T) would contain only those unspecified components of xa(T).

Thus, the term k would not account for the fact that the terminal condi

tions can not be i~et exactly in the presence of noise and would not call for

any perturbation control on these states. A simple solution is to augment

the cost function such that
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S(T) = P(T) = k + zT Y z (6.5-2)
xx .- x ... x

where Y is a positive-definite symmetric matrix whose elements are se-

lected (by experimentation) to give acceptable values of the mean-squared

deviations in those components that the noise-free solution must satisfy

exactly.

6. 6 Case 3. Differentiability Problems

Throughout this analysis it has been assumed that all necessary

derivatives exist. In a number of practical cases this may not be true.

For example, if B~ 1 = 00 , then no weight is attached to the amount of

perturbation control used. A natural approach would again be to aug-

ment the cost function with a value of B chosen to give acceptable mean-

squared perturbation control by experimentation.

Other difficult cases may arise because of explicit nonlinearities

in the state or cost. For example, if

T
< > = < f uaI dt > (6. 6-1)

0

it might be appropriate to consider minimizing

> T T AT
< i = |ul dt + 0.5tr [ BCXCT dt (6. 2-2)

0 0

where again B would be chosen to give acceptable experimental perform-

ance. The optimal control u would be found by application of the mini-

mum principle to the Hamiltonian.
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6. 7 Case 4. Quadratic Performance Index, Linear State and Linear

Measurements

For this case the Eq. 6. 3-29 and 6. 3-30 become

0 = L + p G (6.7-1)

and

p- p T kT
LT F T p(T) = k (6.7-2)

x x

which means that the optimal deterministic control is designed without

regard to the statistical nature of the problem. The perturbation con-

troller and estimator still obey the previous equations

A 1 T T A
6u=- C 6x=- B (G S+ N )x (6. 7-3)

where S is the solution to the matrix Riccati equation. It is well known,

see Bryson and Ho (1969), that the optimal solution to Eq. 6. 7-1 and

6. 7-2 can be formulated in a closed-loop fashion as

u = - Cx (6.7-4)

Thus, the actual control applied is

a A
u = - C (x + 6x) (6.7-5)

A a
But 6x + x is simply the optimal estimate of x, which is obtained from

a optimal linear estimator, so

a Aau = C x (6.7-6)

Thus, the solution presented in this chapter reduces to the quadratic

synthesis solution which optimizes the deterministic performance index

to give a feedback law and uses an optimal filter to generate an estimate

of the state.
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6. 8 Case 5. Nonlinear Criteria, Linear State, and Linear

Measurements

In this case the perturbation estimator-controller exists as prev-

iously defined, but the optimal deterministic portion of the control is ob-

tained from

0= Lu+ G+0.5 tr (AE+AX+BCXC -NCX-N CT u

(6. 8-1)

T T ^ AT A TA T)-T
p=-L -F p-0.5 tr(AE+AX+BCXC -NCX-N XC )

(6.8-2)

where the derivatives are taken of the functions with explicit dependence

on x or u; that is, A, B, and N. Necessary conditions for problems in

this case, without the practical assumptions made in this chapter, have

been shown to be partial integrodifferential equations which are extremely

difficult to solve (see Deyst, 1966). The assumptions made in this chapter

allow solution by using the numerical procedure to be presented in

Appendix E.

6. 9 Case 6. Terminal Cost Only, Nonlinear Stateand Nonlinear

Measurements

In this case the cost must again be augmented by a matrix B for

the definition of the perturbation controller. The optimum deterministic

control is obtained from

TA0 p G + 0. 5 [tr (P E)]u + 0. 5 [tr (SX)] u (6. 9-1)

and

p= FT p - 0. 5 tr (P ) T - 0. 5 [tr (S ) T (6.9-2)
x x
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The most closely related research on this problem (and to this

chapter) was performed by Denham (1964). He considers a slightly more

general nonlinear state but with only terminal costs. His results are not

applicable to systems linear in the control, since his expansion is in the

Hamiltonian rather than the cost. He retains other terms in the expansion

for 6_x, resulting in a set of extremely complicated necessary conditions

that involve calculation of terms such as <e > , <6x > and < 6m:>

(See for example, his Section VII. ) The approach used in this chapter -

immediately transforming the cost function to a deterministic quantity and

viewing the covariance matrices as additional constraints - lends itself to

a particularly simple solution with a clear interpretation of the results for

a wide variety of optimization problems. Fitzgerald (1964) considered the

same case as Denham with a more general noise model.

6. 10 Case 7. Quadratic Cost, Nonlinear State and Nonlinear

Measurements

This is the most common case found in engineering since minimi-

zation of mean squared control and/or state has a wide variety of physical

interpretations. The same perturbation estimator-controller structure re-

sults as previously and the optimal deterministic control is determined from

0 = L u+ p G +0. 5 tr (P E)] + 0. 5 Itr (S X) (6.10.1)

and

p - L FTp 0. 5 [tr (PE) - 0. 5 [tr (SX)] (6.10.2)

-The noise-free and perturbation systems must clearly be designed simul-

taneously as indicated by Eq. 6. 10-1 and 6. 10-2.

The ''standard approach" to problems of this form has previously

been to determine the open-loop control from
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0 =L + p G (6.10-3)

and

=LT Tp - F p (6.10-4)x-

and then use the perturbation controller-estimator combination presented

here. Such an approach is not correct, since the terms involving the

trace in Eq. 6. 10-1 and 6. 10-2 are omitted. In Section 12 of this chapter,

it is shown for a sample problem that this standard approach costs 24%

more than the optimum defined by Eq. 6. 10-1 and 6. 10-2.

In previous chapters, optimum open-loop control signals have been

determined to minimize cost functions composed of, in part, the covar-

iance matrix. In those cases, part of the necessary conditions had as

equations

0 = L + p G + 0. 5 [tr (P E) (6. 10-5)

and

p- L T FT p - 0. 5 [tr (P E)] (6. 10-6)
- -

It was thought that a possible closed-loop controller could be the optimum

open-loop signal as defined by Eq. 6. 10-5 and Eq. 6. 10-6, together with

an optimal estimator controller as defined by quadratic synthesis. Such an

approach is not correct, since, in a closed-loop system, the interest is in

minimization of mean-squared state errors, not in minimization of esti-

mation error. Although comparing Eq. 6. 10- 5, 6. 10- 1, and 6. 10- 3 could

lead to the belief that this approach would be a step in the right direction,

such a conclusion is unfounded. In fact, for the sample problem in Section

12, the approach is shown to give poorer performance than even using

Eq. 6. 10- 3 and 6. 10-4.
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One additional comment should be made. The optimal determin-

istic portion of the control has not been constrained to be open-loop. That

is, it may be possible to formulate the deterministic control as a feedback

on the noise-free state. Generally, this will not be possible because of

the nonlinear nature of the problem. (Of course, it could be constrained

to be so by the same method as the perturbation controller.)

6.11 Effect of Incorrect Statistics

Suppose, for a problem under consideration, the optimum control

u, the optimum trajectory x, and the optimal gains C and K have been

determined. The minimum value of the cost Eq. 6. 3-14 has been found.

Suppose the controller design was based on incorrect statistics; that is,

the true values were E(O) , U0 , and Q . The actual cost can be evaluated,

providing the system still represents an effective closed-loop controller,

with the added complication that the estimate and the error in the estimate

are no longer orthogonal because of the now suboptimal gains. The actual

expected value of the cost with the incorrect statistics is found by evaluat-

ing Eq. 6. 3-6

+ 0. 5 tr I S(T) [E(T) + X(T) - Z(T) - Z(T)

T A AT
+ 0. 5 tr [f(A.E +A.X- A.Z- AZT +B CXCT

0
A T TA T T T 1

- NCX + NCZ -N XC +N ZCT) dtj (6.11-1)

using

x = f (x , u , t) (6.11-2)
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to evaluate first two terms and integrating the following equations with the

correct initial conditions

E = (F-KM)E+E(F-KM)T + KUKT +Q 0 (6.11-3)

A A A T T T T o T
X = (F-GC)X+X(F-GC) -KMZ-Z M K +KU K

(6. 11-4)

(F - KM) Z + Z (F - G C)T - E MT KT + KUUKT (6.11-5)

to evaluate the remaining terms, where all matrices S(T), M, Q, A, etc.,

are evaluated on the model of the system.

6. 12 Example. Closed-Loop Control of a First-Order System With

Unknown Time Constant

As an illustration of the new control technique, a closed-loop con-

troller will be designed for the stochastic first-order system

ya = a a + ua + n (6.12.1)

The inverse-time constant b a is assumed to be an unknown constant picked

from a Gaussian distribution with mean b. Thus, the state variable differ-

ential equation is of dimension 2.

y a . x [x ua n

x + + (6.12-2)

T a x 0se o0

The noise-free system obeys
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xii

x =2 [
-x

2  1 I

0

u

0

+ (6. 12-3)

with the assumed initial conditions

x2(0) = <ba> =

x (0) =< x (0) >

b = 1 (6. 12-4)

(6. 12-5)= 0

Furthermore, it is assumed that the expected value of ya at the terminal

time is specified as

x1 (T) - < ya(T) >

The matrices F and G are

-x
2

0

~x1

0

= 1

G =:

-0_

(6. 12-6)

(6. 12-7)

Linear measurements of ya corrupted by white by white noise are

available to the controller

ma = y a + v

then
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M = 1( 0]

The stochastic cost function to be minimized is

< J > = 0.5 

Taking the expected value wi

and control results in

< J > = 0. 5

T a
f (ua) 2 dt > (6. 12-10)

th the assumption of perturbation estimation

fu2 dt + 0. 5 tr BCXC dt (6.12-11)

where

B = Lu 1 (6. 12-12)

From Eq. 6. 12-11 it is clear that no penalty would be attached to devia-

tions in x a(T) away from specified nominal x1 (T). Thus, the cost is aug-

mented to weight terminal mean-squared deviations in the perturbation

controller

< Ji > =0. 5 fu2 dt + 0. 5 tr fB CXCT dt
0 -o0

+S)
+ 0. 5 tr I S(T) [UT) + X(T)]j

-
(6. 12-13)

This problem may be catagorized as quadratic cost with nonlinear

state (Case 7). The necessary conditions are

x = f (x , u)

x(O)T = [0 b] x(T)T = 1 b]

(6. 12-14)

(6. 12-15)
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)]T
p -. 5 [tr (P E)

0 = Hu = u + pT G

T T -1
E =FE +EF + Q-EM U- ME

E (0) given

-iT A A -T
X = (F - GB~ GT S) X + X (F - GB~ GT S)T

+ EMT U'~ ME

A
X (0) = 0

P -(F-EMT U- M)T P- P(F- EM U M)

- M U~ 1 MES - SEM T U- M

P(T) = S(T)

S= FT S - SF + SGB ~GT S

S(T) = S(T)

The numerical values used in the solution to this problem were

T = 10,

E(0) =

L0

0:

5 .

(6.12-26)

107

(6. 12-17)

(6. 12-18)

(6. 12-19)

(6. 12-20)

(6. 12-21)

(6. 12-22)

(6.12-23)

(6. 12-24)

(6.12-25)

^ T
5 Itr (S X)] xp = - F T (6. 12-16)



1 0

Q (6. 12-27)

0 0

U =1 (6. 12-28)

and

2 0~

S(T) = (6. 12-29)

0 0 _

The necessary conditions were solved numerically, using the gradient

method presented in Appendix E. The results of this combined optimiza-

tion approach will be compared with the quadratic-synthesis approach. In

this latter case the nominal trajectory is determined from the same nec-

essary conditions Eq. 6. 12-14 -- 6. 12-25 with the exception that the nom-

inal trajectory is picked without regard to the statistics, so that Eq. 6. 2-16

becomes

> FT p (6. 12-30)

as a result of minimizing

T 2
0.5 fu dt (6. 12-31)

0

without the covariance terms. The time constant is being identified.

The optimal deterministic control signals are shown in Fig. 6-1.

The quadratic-synthesis approach results in a control u = 2 exp (t-10),

minimizing the energy integral Eq. 6. 12-31 with a value of 1. 00. The

combined optimization approach yields a value of 1. 31 for the energy in-

tegral. However, the quadratic-synthesis approach yields a value of 1. 51

for the remaining matrix terms in the cost Eq. 6. 12-13 as opposed to 0. 71

for the combined optimization. The total average cost is thus 2. 51 versus

2. 02; the quadratic synthesis approach actually costs 24. 2% more. Such a

substantial improvement in performance in a more practical problem would

be significant.
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The difference in cost between the two approaches is due prim-

arily to the performance in minimizing the mean-squared deviation in the

state at the terminal time. Figures 6-2 and 6-3 show the difference be-

tween the two cases in this respect, 1. 36 versus 0. 69. Figure 6-4 gives

the covariances for the inverse-time constant. Note that the estimation

of the inverse time constant is poorer in the combined optimization case.

(4. 42 versus 3. 37) This is because the control system tends to minimize

the sensitivity to the unknown parameter.

This last statement can be better understood from Fig. 6-5. The

final value of x can be written as

T T
x 1 (T) = - b x dt + f u dt (6. 12-32)

0 0

Clearly, variations in x1 (T) with respect to changes in b are minimized,

if the area under the x1 versus t curve is minimized. The combined op-

timization procedure attempts to do just that, as is shown in Fig. 6-5,

completely automatically as opposed to the senstivity-theory design

approach to problems of this type.

Furthermore, in Chapter 5 it was shown that the best optimum

open-loop control input for identification of the inverse-time constant

resulted in a trajectory lying above the minimum-energy solution. Such

an input signal maximized the effect of the unknown inverse-time constant;

this is not desired in the closed-loop controller and in fact results in per-

formance much worse than simply designing a minimum energy controller.

The optimum open-loop control input is not even a local minimum for this

problem.
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Figure 6-2

Figure 6-3
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Figure 6-4 Covariances for Inverse Time Constant
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6.13 Summary

This chapter has presented a new technique for the control of

stochastic nonlinear systems. For the sample problem considered, the

procedure was seen to offer substantial improvements in system perform-

ance as compared to the quadratic synthesis approach. Certainly the main

disadvantage of the procedure lies in the fact that it is only appropriate in

situations where the reference-trajectory concept is valid. One situation

where this is true is in atmospheric-entry problems where the reference-

trajectory concept is well-established. The next chapter treats a timely

problem - entry into the atmosphere of the planet Mars.
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Chapter 7

Optimum Entry Control With An Unknown Atmosphere

7. 1 Introduction

The application of the stochastic control theory presented in

Chapter 6 depends on being able to use the reference trajectory concept.

In entry problems this concept is well-established, as in the Apollo entry

control system, and this chapter presents the design for an entry controller

when the atmosphere is subject to density uncertainties. The example is

based on a Mars entry but the parameters can be changed for another

planet.

The Mars entry problem is interesting in that trajectories obtained

by applying aerodynamic forces are particularly sensitive to deviations in

the parameters of the Mars atmosphere (Shen and Cefola, 1968). Also,

the present estimates of the atmospheric parameters cover a wide range

of values; for example, scale heights from 3 to 14 miles (Evans, et. al. ,1968)

Such a wide variation in parameters would be a problem in designing an

entry guidance scheme where the control effectiveness, as well as the tra-

jectory, is subject to large perturbations. Thus an effective guidance,

navigation, and control system will be necessary to compensate for atmos-

pheric parameter deviations if the entry vehicle is to operate for all atmos-

pheric possibilities.

The objective of the proposed guidance scheme will be to minimize

the errors in a set of pre-specified terminal conditions whatever the at-

mosphere encountered on Mars. More specifically, the problem of mini-

mizing the errors in range and altitude at a specified range and attitude

above the planet's surface will be considered.

The entry vehicle is assumed to be capable of a maximum lift-to-

drag ratio of 1. 0. This ratio may be achieved either by varying the angle

of attack of a winged vehicle or, as in Apollo, flying at constant angle of

attack but rolling back and forth around the velocity vector to create less
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than maximum lift-to-drag ratio. The vehicle is also assumed to have a

terminal slow-down capability after the specified final altitude is achieved.

The method of aoproach to this problem is summarized in the next paragraph.

A nominal model of the Martian atmosphere and the nominal vehicle

parameters are used to generate a trajectory that meets the specified term-

inal conditions. A convenience choice is a constant lift-to-drag ratio flight

of 0. 5 which results in a range of 1257 miles. This trajectory gives sat-

isfactory heating and g loading characteristics. Quadratic synthesis, in-

cluding identification of the density, would then result in a set of rms posi-

tion errors for the given cost function. The combined optimization approach

is then applied to the same cost function; i. e. , the nominal trajectory is

determined by minimizing the rms deviations. The resultant trajectory is

found to give essentially the same heating and g loading as the constant

lift-to-drag ratio flight, but the latter case gives approximately 25% more

range error than the combined optimization approach.

In Section 7. 2 the two-dimensional planar equations of motion are

presented for the lifting entry. In Section 7. 3 models for the atmosphere

and variations in density are derived. Section 7. 4 describes the onboard

measurements and Section 7. 5 gives the constraining differential equations

for the nominal state, the covariance matrix of the estimate, and the covar-

iance matrix of the error in the estimate. Section 7. 6 presents the cost

function to be minimized using the numerical values of the parameters

given in Appendix F and Section 7. 7 presents the computational results.

Additional comments on the performance of the computational algorithm

are given in Section 7. 8

7. 2 Vehicle Dynamics

Assuming the motion of the vehicle may be adequately described as

that of a point mass about a spherical non-rotating Mars, the planar equa-

tions of motion are
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h = v siny (7. 2-1)

6= v Cos Y (7.2-2)
r + h

v = f - g sin -Y (7.2-3)

- fY g COS 'Y v Cos -Y
f-- - + (7.2-4)
v v r+h

where

h = altitude above the surface

Y = flight path angle measured positive above

the horizon

v = velocity relative to Mars

r = radius of Mars

g = gravity at altitude h calculated from

g = g0  r 2  (7. 2-5)
(r+h)

where g0 is the surface gravity

and where fv and f are the aerodynamic specific forces acting on the

vehicle. These forces may be written as

2

2
f = p a v c (7.2-7)

where

p - atmospheric density

a = cross-sectional area of the vehicle

m = mass of the vehicle

cd = drag coefficient

c = lift coefficient
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Generally, lift and drag coefficients are nonlinear functions of

angle of attack, sideslip angle, Mach number, Reynolds number, and the

angular rates of the vehicle. At the high velocities to be encountered

during entry, the coefficients may be assumed dependent only on the angle

of attack and sideslip angle. Since this is a planar analysis and range con-

trol of the vehicle is likely to be obtained by rolling the vehicle around the

velocity vector to achieve less than maximum range, the specific forces

are more conveniently written as

2
f p a v cd (7.2-8)

v 2md

2
f = p a v c u (7.2-9)

2m d

where u is the controlled lift-to-drag ratio.

Defining cd a/m as the parameter b, there results for state

equations

h v sin y (7. 2-10)

v cos P (7. 2-11)
r+ h

2

-S+ 0. 5 b v u (7. 2-12)
(r + h)

- g0 cos y r2vcos y +0 7 -3

v (r + h) r + h

It is specifically assumed that the effects of random winds, un-

steady motion of the vehicle about the aerodynamic trim, and disturbances

in the aerodynamic forces due to unsteady flow around the vehicle are

negligible. Effects due to variations in the atmospheric density are dis-

cussed in the next section.
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7. 3 Atmospheric Density Model

A recent model for the atmosphere of Mars given by Evans, Pitts,

and Kraus (1967) has found common usage in a variety of studies using

aerodynamic braking to achieve a set of desired terminal conditions. Ex-

amples of these studies are Garland (1969a, 1969b, 1968) and Repic and

Eyman (1969). The density characteristics of this atmosphere are given

in Table 7-1. Typically, these studies have designed a guidance scheme

based on the mean density model and then the design is tested against both

the upper and lower density models. The intent of this section is to develop

an appropriate model for the density variations that can be used in the entry

controller design.

As can be seen in Table 7-1, density varies considerably among the

three models which are assumed to be representative of the whole atmos-

phere of Mars. That is, variations that depend on season, latitude, and

temperature fluctuations are neglected. As a minimum effort, a model

for the atmosphere should take into account the spread between the three

models of Table 7-1.

To begin with, the nominal atmospheric density model is chosen to

be exponential

e0 -h (7.3-1)

where the parameters P0 and /3 are picked to fit the mean density model.

Any density perturbation from the nominal would probably be highly corre-

lated with altitude, yet different values of the random variations could be

expected with different altitudes. Since the uncertainty in density would

not change rapidly with altitude, it could not be assumed to be white noise,

but a shaping filter can be constructed to represent the correlation with

altitude as

d 1 1- (6p) = - - 6p + - n, (h) (7. 3-2)
|dh| hP hp
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Table 7-1 Density Versus Altitude

High Density Model
(slug/ftJ)

2.

2.

1.

1.

5.

2.

1.

1.

1.

1.

79

25

79

06

70

77

23

31

38

68

x 10-5

x 10-5

x 10-5

x 10-5

x 10- 6

x 10- 6

x 10- 6

x 10~ 7

x 10- 8

x 10~ 10

Mean Model
(slug/ft 3 )

2.85 x 10-5

2. 17 x 10-5

1.61 x 10-5

7. 91 x 10- 6

3.06 x 10- 6

1.00 x 10-6

3. 12 x 10~

1.73 x 10-8

1.00 x 10~9

3.78 x 10-12

Low Model
(slug/ft 3 )

2.40 x 10-5

1.66 x 10-5

1.09 x 10-5

3. 29 x 10-6

8.07 x 10~

1. 86 x 10~7

4.01 x 10- 8

6.03 x 10-10

4.73 x 10-12

Table 7-2 Scale Height Versus Altitude

High Density Model
(ft)

78415

74478

69885

55120

49871

42653

39043

36091

36747

37731

Mean Model
(ft)

62995

58073

52824

39043

30185

27888

28216

28544

28872

29857

Low Model
(ft)

45934

41668

36091

23951

22967

21982

20998

18373

15748

15420
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Height
(ft)

0

16405

32810

65620

98430

131240

164050

246075

328100

492150

Height
(ft)

0

16405

32810

65620

98430

131240

164050

246075

328100

492150

m m m m 0 W



where &P is the uncertainty in density, hA is the correlation altitude, and

n is a white noise with statistics

< n (h) > = 0

< nO (h) nA (h') > = q, (h) 6(h-h')

(7. 3-3)

(7. 3-4)

and the absolute value sign is necessary to insure stability of the shaping

filter. Steinker (1966) takes this same approach.

Since the model of the vehicle dynamics employs time as the inde-

pendent variable, Eq. 7. 3-2 is transformed to the same independent var-

iable by multiplying by the altitude rate h to obtain

- P
|dhi

- -- 6p + .- n, (h)
h hP

With a linearity assumption, the delta function may be transformed

to

6(t-t') = hL 6(h-h') (7. 3-6)

Then, treating the entire forcing function

time, n(t), we obtain

in Eq. 7. 3-5 as white noise in

6p - 6 p +

h
p

n(t) (7.3-7)

where

< n(t) > = 0

< n(t) n(t r) > = q P (t) 6(t-t')

(7.3-8)

(7. 3-9)

Since we have essentially no knowledge of how density perturbations

propagate with altitude, we assume the correlation altitude to be equal to

the scale height #~ 1 to obtain
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60= - Ih 6p. + n (7.3-10)

The forced solution to Eq. 7. 3-10 may be written as

t -3 h t-I
6p (t) = e 'I (t-t 1) n(t1 ) dt1  (7. 3-11)

and hence the variance of 6p is

2t t - h~ (t-t) - hi (t-t 2 )

a-42 = dt fdt2 e e q(t 1 ) (t2 -t )
-00 -0

(7.3-12)

On a quasi-stationary basis, we treat h and q, as constants to allow

integration of this function between 0 and oo to obtain

.2 2 f3 (7. 3-13)
' A = 2 # hl

Thus, the amplitude of the covariance of the white-noise needed to

produce, on a quasi-stationary basis, a density uncertainty of 6p2s
given by

q = 2 Ih -, (7. 3-14)

From Table 7-1 it is clear that the density variance should at

least have the characteristic of increasing with decreasing altitude. One

way to achieve this is to make the variance proportional to the actual value

of the density

2
2= c p (7. 3-15)

Equation (7. 3-14) can then be written

q = cp (7.3-16)

where c is to be experimentally chosen to give acceptable mean-squared.

errors in the nominal density model to correspond to Table 7-1.
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7. 4 Measurement System

Onboard the vehicle is a measurement system for navigation. For

convenience, it is assumed to be an inertial measurement unit. The in-

ertial reference maintained by the gyros is assumed to be aligned at the

start of entry with one axis radially directed away from Mars, one axis

in the plane of motion perpendicular to the radial direction, and the third

axis completing the triad. Accelerometers measure specific force in this

inertial frame during the entry. Since planar motion is considered, we

only consider the measurements received from the accelerometers in this

plane.

The information from the accelerometers, m, is related to the

specific forces fv and f by

m = T f + v (7.4-1)
-s -

where

[ Cos (.7) sin (0- (7.4-2)

T s in (--y) cos (0-y)

2
p av c d

v 2md
f = (7. 3-3)
-s 2

f p av c u
- 2m d

and v is an independent white noise vector with statistics

< (t) > = 0 (7.4-4)

< v(t) vAt) T> = U 6 (t-tV) (7. 4-5)
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Variations in the measurement vector due to noise and to pertur-

bations in the state vector, which is defined as

.h ~
0

x= v (7.4-6)

may be written as

6m = 6T f
--- -S

65T = [-sin (6-Y)

-cos (6-y)

6T = T
-1 0

6T f = (66-6,Y) T-S

+ T 6f-s

cos (6- (6
i(6n-6Y)

-sin (6 -,)

(6 0 -6,y)

f v

0 -f 0

6x
0 f 0V J

6f in Eq. 7. 4-7 may...S be written as
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where

(7.4-7)

or

(7. 4-8)

or

(7. 4-9)

then

(7.4-10)

0

6T f =T
-s 0

f
-y

-f

The term

(7.4-11)



0 0

6f =-s

0 0

2 f v 0 f0 ..
v P

2 f f
- 0 7

v

Thus, using Eq. 7. 4-11 and 7. 4-12, Eq. 7. 4-7 may be written as

6m = T T' 6x + v

6m = M 6x + v

0

0

I

-f

2 f f

2 f f

fv pv V P

(7. 4-15)

7. 5 The Constraining Differential Equations

It is now possible to define the constraining differential equations:

the nominal state, the covariance matrix of estimation errors, and the

covariance of the estimate.

The nominal state is 5-dimensional:

xl = h = v sin y

x = & = vCos-
2 r + h

x 3

go sin y r

(r + h) 2 . bpv

(7. 5-1)

(7. 5-2)

(7. 5-3)
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6x (7.4-12)

or

(7. 4-13)

where

(7. 4-14)-
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2g 0 cos yr v Cos Y
_y + + +

v (r + h) r + h

= P = - 3 p v sin 'y

x = f (x , u)

The covariance matrix of estimation errors propagates according

to

= FE + EFT - EMT U~ 1 ME

Q=

0

0

0

0

0

0 0 0

(7. 5-8)

Cp

M is defined in Eq. 7. 4-14 and F = f .

The covariance matrix of the estimate of the deviation in the state

propagates according to

A A T T 1
= (F- GC)X + X (F- GC) +EM U~ ME (7. 5-9)

where C represents the feedback gains for the perturbation controller and

G = f =

.5

0

0

0

b p v

0

(7. 5-10)
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0. 5 b pv u (7. 5-4)

(7. 5-5)

(7. 5-6)

where
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The initial conditions for these differential equations, as well as

the magnitude of the noises and the values of the constants.to be used in

this study, are presented in Appendix F.

7. 6 Choice of Cost Function

Most of the early work on optimization of trajectories for Earth

entry was concerned with cost functions that attempted to minimize the

integral of stagnation point heat rate input while constraining the decelera-

tion loading below a tolerable value- see Bryson, et. al. , (1962b). For

example, one might consider a deterministic cost function

J T [ci (0.5 v 2 ac) + c2 (A1/2 v ) dt (7. 6-1)
2 m

which trades off the deceleration along the flight path versus stagnation

point heat rate input (Loh, 1963). By appropriate adjustment of the values

of c 1 and c 2 the maximum deceleration can be limited to a tolerable level.

If we were to consider applying the combined optimization technique

to Eq. 7. 6-1, we would take the expected value of the stochastic cost func-

tion identical to Eq. 7. 6-1 but with actual values pa and va replacing p

and v to obtain 02an vt otanT 0. 5 p v 2a c dl 1/2 3<J>= [c ( ) +d c 2 (/ v3) dt

~ T
+ 0. 5 tr f (A E + A X) dt (7. 6-2)

- 0o

where A = L . Since the terminal altitude and range are specified, the

cost functionEq. 7. 6-2 would have to be augmented to weight deviations

in those quantities. Furthermore, additional augmentation of the cost

function to weight the amount of perturbation control used would benec-

essary and thus result in
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T 2T 0.5 p v 2a c
< J > = c (d ) + c 2 P1/2 v3) dt

2m+

~T 
A

+ 0. 5 tr f(AE + AX + BCXC ) dt

+ 0. 5 tr S(T) IX(T) + E(T) (7. 6-3)

subject to the constraints Eq. 7. 5-6, 7. 5-7 and 7. 5-9.

While such an artificially constructed cost function could be mini-

mized by the combined optimization procedure, a difficulty arises in

attempting to compare that result with the standard quadratic synthesis

approach. In the latter case one would minimize the deterministic cost

function as given by Eq. 7. 6-1 and then design a perturbation controller

based on minimizing

<62 J> = 0. 5 <6 x(T)T S(T) 6x(T)> + 0. 5 < f (6x A 6x + 6u B 6u) dt>

0 (7.6-4)

The first difficulty arises in that there is little justification for

using the same values of S(T), A, and B as in Eq. 7. 6-3, particularly

since A only involves weighting of density and velocity deviations. Another

difficulty is in the fact that the two terminal times need not be the same.

For some preliminary studies the quadratic synthesis approach actually

yielded 500% more range error than the combined optimum approach, yet

the comparison is essentially meaningless because the cost functions are

different.

The basic problem is that the original cost function Eq. 7. 6-1,

while perhaps appropriate for Earth entry, is not appropriate for Mars.

Because of the thin atmosphere, the assumed vehicle can fly a wide variety

of entry trajectories - from ballistic to high lift-to-drag ratios - without

occurring decelerations greater than 4 or 5 g's. The heat input load is

also significantly less than that of an Earth entry. Therefore, the cost

function ought to Eontain different quantities for a Mars entry. The cost

function finally chosen was based on the above considerations and the

following reasoning.
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Given a desired terminal range and altitude, a deterministic tra-

jectory will be found that meets these constraints. If that trajectory gives

acceptable g loading and heat input rate, a quadratic synthesis controller

(which includes identification of the density) will be designed that weights

terminal miss versus the integral of the perturbation control used, where

the weighting will be chosen to keep the sum of the deterministic control

and rms perturbation control well below the maximum available u.

Using that same weighting a combined optimization approach will

be used to find the best trajectory to minimize

< J > = 0. 5 tr { S(T) [X(T) + E(T)]

FT  A T
+ 0. 5 tr BCXC dt (7. 6-5)

which trades off terminal errors versus perturbation control.

The result of this optimization will be checked to insure that g loading

and heat rate input are acceptable and that no more than maximum u will

be called for.

The next section presents numerical results for such a comparison

of the two methods.

7. 7 Numerical Results

To summarize the problem the combined optimization cost function

to be minimized is given as

< J > = 0. 5 tr {S(T) X(T) + E(T)

+ 0. 5 tr B C X CT dt (7. 7-1)

- 0

subject to the constraining differential equations

x = f (x, u) (7.7-2)

T T U
E =FE +EF + Q -EM U ME (7. 7-3)
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A A T T 1X = (F-GC)X + X(F-GC) + E M U~ ME (7. 7-4)

where f is given by Eq. 7. 5-1 - 7. 5-5, Q by Eq. 7. 5-8, G by Eq. 7. 5-9,
M by Eq. 7. 4-14, U by Eq. 7. 4-5 and F = f . The actual numerical

values are given in Appendix F and the adjoint variables obey Eq. 6. 3-19

- 6.3-21.

The solution obtained by the application of the gradient procedure

to the problem is compared to quadratic synthesis around a constant lift-

to-drag trajectory in Figures 7-1 through 7-3.

The optimum open-loop control shown in Figure 7-1 results in

only a slightly different trajectory, as indicated in Figs. 7-2 and 7-3,

from a constant lift-to-drag ratio flight, yet the latter trajectory will be

shown to give 24. 2% more rms range error. During the initial pull-up

maneuver a slight decrease in lift-to-drag ratio causes the vehicle to go

slightly lower into the dive thus loosing kinetic energy due to drag and

not reaching as high an altitude on the up-phase of flight.

The large increase in control near the terminal time causes the

vehicle to perform a horizontal maneuver at a higher altitude and then

the control rapidly decreases to cause a less steep final descent to the

target at a higher velocity as shown in Figures 7-4 and 7-5. As will be

shown the higher horizontal maneuver results in a decrease in the rms

altitude uncertainty. The change in control is also related to the fact

that the terminal constraints must be met at the fixed terminal time of

915 sec. The large terminal velocity (1300 ft/sec) reflects the need to

meet these constraints since the horizontal maneuver was performed at

a lower velocity. Although the velocity is large, it is in the range of

those obtained in a previous study by Garland (1969a).

It was judged that the constant lift-to-drag trajectory gave an

acceptable maximum load factor of 3. 5 g and acceptable maximum heat

input rate where heat rate input = 10-8 a1/2 v3. As shown in Figs. 7-6

and 7.-7, the combined optimum approach does not significantly alter

these values and is an acceptable alternate trajectory.
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Since the cost function for the problem trades-off terminal errors

in altitude and range versus the amount of perturbation energy used, the

resultant trajectory should physically represent this trade-off except for

the final terminal maneuvers in meeting the terminal constraints. A

choice of B=0.1 made the rms perturbation control on the order of 10-3

which is almost insignificant since it is approximately . 2% of the nom-

inal control. Then, the cost is almost entirely made up of rms position

errors. As a rule of thumb, one generally picks B to create a 10%o rms

value for the perturbation control in order to allow better tracking of any

perturbations. This approach reflects the iterative nature of optimal

designs and could be used in further investigations of this entry problem.

The rms range error shown in Figure 7-8 is always less for the

combined optimization approach. The measurements at a lower altitude

tend to increase the initial information about range although the more

important effect is the changed feedback gains which directly affect the

coefficients in the matrix equation for the covariance of the estimate.

This later equation, rather than the covariance of the errors equation,

shows a large decrease and, thus, when adding diagonal terms to find

the rms uncertainty, there results a substantial improvement.(Fig. 7-9)

The rms altitude error shown in Figure7--10 behaves as expected

in that the combined optimization approach gives more error when initially

at a lower altitude since the density uncertainty increases and the mea-

surements are not directly sensitive to altitude. The uncertainty later

decreases as the combined optimization makes its terminal maneuver at

a higher altitude. These effects depend directly on the driving noise

and measurement uncertainties and are automatically taken into account

by the procedure.

The rms velocity error is shown in Figure 7-11. The combined

optimization approach gives a larger uncertainty during all phases of the

flight until the final higher speed descent to the target. Although the

terminal velocity error is less this is probably not important for the
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actual design since the terminal landing scheme will of necessity have

to compensate for altitude and velocity errors.

The final values of the rms errors are listed in Table 7-3.

Table 7-3 Comparison of Terminal RMS Deviations

Combined Optimum Quadratic Synthesis % Increase

RMS Range 4, 232 ft 5, 942 ft 24. 2%

RMS Altitude 16, 193 ft 16, 937 ft 4. 6%

RMS Velocity 5. 35 ft/sec 28. 7 ft/sec 440%

RMS Flt. Path Ang. 0. 0015 rad 0. 0074 rad 390%

The substantial decrease in range uncertainty is the most important re-

sult of this study since it is assumed that the vehicle has a limited lateral

movement capability at the terminal time.

The practical implementation of the combined optimization solu-

tion should be no more difficult than a quadratic synthesis controller.

The feedback gains, two of which are displayed in Figures 7-12 and 7-13,

are essentially of the same shape and can probably be approximated by

polynomials. The open-loop control could also be fit by a curve during

the significantly different portions of the flight but probably a more prac-

tical approach would be to fit a constant pulse control to the large change

near the end of the flight. The amplitude and width could be adjusted to

give acceptable simulation results.

The results of this numerical study are of sufficient interest to

justify further investigation of the combined optimization approach. The

terminal time can be freed since it was fixed in this problem only to pro-

vide a standard basis for comparison. Additionally, one might want to

change the weighting on terminal position errors versus perturbation

control or perhaps specify some final value of velocity. For any varia-

tion of the problem the gradient algorithm should provide a reasonable

computational solution. Its performance is discussed in the next section.
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Figure 7- 11 RMS Velocity Deviation
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7. 8 Comments on the Algorithm

The first-order algorithm exhibited the same consistent ability

to achieve successive decreases in the cost at each iteration as was

evident in the previous examples presented.

The fundamental problem encountered was in integration of the

matrix differential equations. Both the forward and backward integra-

tions tend to exhibit instability for the first few time steps; that is,

errors due to simply taking too large a first step appear. The choice of

an appropriate time step is especially difficult. The entry problem was

915 sec long and the author arbitrarily decided to use an integration step

of 5 sec. Unfortunately, in order to prevent instability, a smaller time

step of 1 sec was used for the first few steps in each direction as well as

during the high g portion of the flight. This latter result came about after

many frustrating cases of achieving a few successful iterations and then

having a matrix, such as the covariance matrix, become other than posi-

tive semi-definite.

As an aid to diagnosing difficulties with the program, a check was

made on each matrix diagonal term that should be positive at every time

step. If a negative value appeared, the program immediately was made

to print out most of the variables involved as well as storing the control

history used for the previous successful iteration. In this way the data

were saved and allowed the programmer to pick up the iterations at a

point close to where the difficulty occurred.

Additional capability was initially built into the program to verify

correct reading and writing of data into the data file for the first few and

final steps of any differential equation integration. Previous experience

indicated an almost inevitable error would occur in this part of the pro-

gramming, particularly since, in an effort to save computation time, all

matrices that must be computed and used repeatedly are calculated with

the forward integration of the state and stored in the data file.
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Finally, the program required approximately one minute per

interation using an IBM 360-75 for the computations.

7. 9 Summary

This chapter has shown the ability of the combined optimization

approach to achieve substantial improvement in operating performance

over the quadratic synthesis approach for a problem of realistic com-

plexity. The computational algorithm provided a reasonably efficient

method of achieving a near-optimal solution. Because the entry problem

was of large dimension and extremely nonlinear, this chapter shows the

combined optimization concept deserves attention as a possible approach

for practical problems in stochastic nonlinear control.
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Chapter 8

Contributions, Recommendations and Conclusion

8. 1 Contributions of the Thesis

It is with some hesistancy that the author writes this section.

What constitutes a contribution is probably better answered in the future

rather than at the time of this writing since the thesis is clearly a engin-

eering thesis rather than a theoretical one. As such, it should be judged

by the use of its ideas and techniques presented, as well as the further

research it inspires. With this thought, the author believes he has made

the following contributions in order of presentation in the thesis.

In Chapter 2 the formulation of the identification problem as an

optimization problem is new. Since one of the usual proposed applications

of optimal control theory is process control, and judging the importance

that unknown parameters play by the work of Wells (1969 and 1970), the

formulation that allows the identification process to be optimally achieved

should be useful to the design engineer.

Recognizing that in other fields minimization of estimation error

is also important, the author feels that the set of necessary conditions

derived in Chapter 3 as well as the algorithms of Chapter 4 should enable

design engineers in other specialties to use the concepts and techniques in

solving their problems in a practical manner.

The examples of Chapter 5 contribute to an overall understanding

of the physical processes involved when one includes covariance matrices

in the cost function.

Chapters 6 and 7 are probably the most important in the thesis in

that they give a practical solution and realistic examples in the field of control

of stochastic nonlinear systems. The physical connection between the deter-

ministic cost function minimized and the original cost function helps in the

understanding of the problem. Furthermore, the ease with which problems
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can be formulated, and solutions obtained for this very complicated prob-

lem, lead the author to believe that this is the most significant result of

the thesis.

8. 2 Suggestions for Further Research

A.n essential piece of research that would aid the application of the

ideas presented in this thesis would be the development of improved com-

putational algorithms for vector-matrix optimization problems. The first-

order method presented here achieves the desired optimum solution at the

expense of a substantial number of iterations. Perhaps a second-variation

technique as given by Bryson and Ho (1969) or a technique similar to that

of Jacobson and Mayne (1970) could be developed to speed convergence. Of

course, the technique must be able to work with vectors and matrices with-

out any partitioning.

The extension of both the open-loop and closed-loop design prob-

lems to discrete systems could be a valuable piece of future research.

This would represent a straightforward, but not necessarily trivial, ex-

tension of the ideas presented in this thesis.

The optimization technique as applied to estimation performance

can be used with any filtering scheme whose performance is judged by a

covariance matrix. Application to various nonlinear filters, as described

in Chapter 7 of Leondes (1970), might show an even greater dependence on

the nominal conditions. Similarly, there is no theoretical reason why these

results can not be extended and applied to any linear or nonlinear smoothing

technique as described in Chapters 8 and 9 of Leondes (1970).

Simple extensions of this work to closed-loop control systems that

involve correlated noises, cross-correlation between plant and measure-

ment noise, and control-application induced noises are possible and can

be derived using the techniques developed in this thesis.

A important contribution could be a method for predicting and correct-

ing the difficulties associated with integrating the matrix Riccati equations

as discussed in this thesis.
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Finally, one may consider the question: when is optimal control

theory useful? As seen in this thesis, any attempt at optimization re-

sults in a complicated process that involves computer time, money, and

manpower. In many cases the optimal designs may not even be used other

than to give a baseline for performance. Is it possible to develop a figure

of merit to tell when the combined optimization procedure will be useful ?

8. 3 Conclusion

This thesis has presented a new formulation for the optimum iden-

tification and control of systems with unknown parameters by using a prac-

tical design approach based on linear estimation and linear feedback con-

trollers.

In the chapters on optimum identification the mathematical proced-

ures and numerical solution techniques were developed and then shown to

be effective in producing optimal control signals for the examples in Chapter

5. Furthermore, these techniques were directly applicable to the closed-

loop control problem considered in Chapter 6 where an example demonstrated

the significant improvement in performance over the quadratic synthesis

approach.

The entry problem of Chapter 7 further demonstrated the applica-

bility of the design technique to practical problems of significant difficulty

such that the application of the techniques presented should be considered

by the design engineer involved with stochastic nonlinear systems.
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Appendix A

Statistical Properties of the Estimator - Controller Combination

This Appendix develops the statistical properties of the pertur-

bation estimator - controller combination discussed in Chapter 6.

The dynamical system obeys

a a ax =f (x U u 0 t + n(t) (A-1)

and, when linearized around a nominal, the perturbation equations are

6x = F 6x + G 6u + n , < 6x(O) >

n is independent zero-mean white noise with

< n(t) n(t') = Q (t-t')

0 (A- 2)

(A.- 3)

The measurements are given by

ma = h (xa , u , t) + v(t) (A.- 4)
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where v is independent zero-mean white noise with statistics

< v(t) v(t') T > = U 6 (t-t')

Linearizing the measurements around a nominal

6m = h 6x + h 6u + v
.- -x - -u .-. -

Also, let

M = h-x

The linear estimator is required to have the form

6x
A

=F 6x + G 6u + K (6m - -h 6u)-. u ...

with

A
< 6x(O) > = 0
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It is assumed that 6u is known, so that substitution of Eq. A.- 6 into

A.- 8 results in

A A
6= F 6x + G 6u + K [M (6x -6x) + v] (A.- 10)

The perturbation controller is required to have the form

6u =
A

- C6x (A-11)

Substituting this into Eq. A-2 and Eq. A-10, the perturbation state and

estimator are coupled

A
6x = F 6x - G C 6x + n

A A A
6x = F 6x - G C 6x + K LM (6x

A
- 6x) + vI

- -.

or, in terms of e =
A

6Ax -
6 x,

e = (F-KM)e + Kv-n

6x =

(A- 14)

(A-15)A
(F - G C) 6x . K Me + K v

It is desired to develop differential equations for the covariance

of the error in the estimate and the covariance of the estimate, i. e.,

k = d ( < e eT

Ax

> ) / dt

A AT
= d(< 6x 6x > )/dt

as well as for the cross- covariance

ATZ = d (< e 6x > )/dt
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With

= <ee > + < e

Substituting Eq. A.-14

E = (F - K M) E + E (F - K M)T + K < v eT >

+ <e vT > KT - < n eT >-<e nT >

Using e =
A

&X- 6x, it is well known - see Brock (1965) or Denham (1964)-

that the last two terms combine to give Q. In an analogous calculation

given by Denham and Speyer (1964), the third and

KUKT, so that

fourth terms result in

T T
E = (F-KM)E+E(F-KM) +KUK

A
Using a similar calculation for X

A A AT A AT
X = < 6x 6x > + < 6x 6x >

and substituting from Eq. A.- 15

A A A TX = (F - G C) X + X (F - G C)

AT
K M < e 6x >

A T T T
- <6x e > M K

AT A T T
+ K < v 6x > + < 6x v > K

The last two terms combine to give KUKT (Denham

and using the definition of Z in Eq. A-18

A A A T
X = (F-GC)X + X (F-GC)

T T T
- K MZ -Z M K + KUK T

and Speyer, 1964)

(A.- 24)
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The expression for Z is similarly evaluated.

Z = <e 6x > + < e 6T >

Using Eq. A.-14 and A-15

T T TZ = (F -K M)Z +Z(F -G C) ~EMTKT

< AT+ K<v6x> AT T T<n 6x > + <e v >K

The fourth and sixth terms give KUKT and the fifth term is zero.

Z = (F - K M) Z + Z (F - G C)T - E MT KT + KUKT

(A-26)

Thus,

(A.-27)

Finally, an expression for the mean-squared deviation in the state
is

TX = < 6x 6x >

A A
X = < 6 x 6xT >

AT
X = X Z - Z

A A T
= < (6x -e) (6x- e) >

AT A T
< <e 6x > - < 6x e > + < e eT >

It should be noted that in most cases

AT
Z(0) = < e(0) 6x(0) > = 0 (A-29)

that is, the error in the estimate and the estimate at t = 0 are orthogonal.

Then, if the linear filter gains are chosen as

K = EMT U~ (A -30)

Z(t) = 0 for all time. The error and the estimate are uncorrelated. For

this case

154

(A-25)

(A.-28)



X = X + E

T TUME =FE +EF + Q EM U ME

= (F-GC)X+X(F-GC)T +EMTU ME
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Appendix B

A List of Gradient Matrices

The following operations hold when the elements of X are independent.

The derivative of

1. tr (X)

2. tr (AX)

3. tr (AXT

4. tr (AXB)

5. tr (AX TB)

6. tr (AX)

7. tr (AXT

8. tr (AXB)

9. tr (AX TB)

10. tr (AXBX)

11. tr (AXBXT

with respect to

x

X

x

X

X

XT

XT

XT

X T

x

X

is

I

AT

A

ATBT

BA

A

AT

BA

T T

A TB

A.T XT B T+BT XT AT

A TX B T+AXB

(This list is from Athans, 1968. )
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Appendix C

Necessary Conditions for Free Terminal-Time Problems

This problem is identical in character to the class of problems

treated in Chapter 3 except that the terminal time is free. One constraint

is now missing and needs to be replaced by another one. For convenience,

choose to optimize

J = tr C(T) E(T) + k x(T) , T] + L (x u , E , t) dt

0 (C-1)
where there are no terminal constraints. C(T) and k can be explicit func-

tions of time. The subscript t with C(T) and k denotes partial differentiation

with respect to t evaluated at the terminal time. If C(T) and k are not explicit

functions of time, these partial derivatives would be zero.

Adjoin to the cost the system constraints and use the definition of

the Hamiltonian to obtain

J = tr [C(T) E(T)] + k [x(T) , T]

T - T+ f H - P x - tr (P E) dt (C-2)
0

The differential of Eq. C-2, taking into account differential changes in the

terminal time T, is

dJ = tr [C d E(T)] + tr [Ct E(T)] dT

+ k dx + k dt + L(T) dTx -. t

T-
+ H 6x + H 6u + tr (HE 6E)

0
- p T 6x - tr (P 6E dt (C-3)
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Integrating Eq. C-3 by parts, with E(O) and x(O) fixed, gives

dJ = tr C d E(T) +

- tr P(T) 6E(T)]

+ kt dT +

tr [Ct E(T)] dT

+ k dx - p(T)T 6x(T)

L(T) dT

+ T) 6x + tr (HE + P)6E] + H 6u dt

As previously, choose p and P such that

p = -
x

P = - HE

p(T) =k T
x

P (T) =C

and make use of the facts that

dx(T) 6x(T) + x(T) dT

and

dE(T) = SE(T) + E(T) dT

so that Eq. C-4 becomes

dJ = tr [Ct E(T)] + kt + L(T) + tr

+ k x(T) dT

H 6u dtu-
T

+ f
o

A58

(C-8)

[C E(T)

(C-9)

(H
+

(C-4)

(C-5)

(C-6)

(C-7)



For optimality, it is required that

H =u

and

tr Ict E(T)] + k + L(T) + trt [C E(T) + k
x x(T) = 0 (C-11)

Equation C-11 can also be written as

+ H(T) = 0 (C-12)

which is usually called the transversality condition.

For the case with linear terminal constraints on the first q state

variables, Eq. C-12 is still the transversality condition, but the boundary

condition on p(T) is given by Eq. 3. 3-26.
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Appendix D

Gradient Method for Free Terminal Time Problems

This algorithm is quite similar to the algorithm derived in

4 for fixed terminal time. From Eq. C-9, the differential change

for changes in the control and in the terminal time is

dJ = ftr [Ct E(T)] + kt + H(T) 1 dT +
T I 6u
0

dt

Chapter

in cost

(D-1)

Define the q-dimensional constraint vector z(T) corresponding to

the specified linear terminal constraints and use Eq. 3. 3-11 to write the

changes in the boundary conditions for changes in the control as

(D-2)dz = RT f 6u dt
f -u -

As in Chapter 4, quadratic penalty functions in

Eq. D-1. Then Eq. D-2 is adjoined to Eq. D-1

f to obtain:

2
dJ dJ + 0. 5 b (dT) + 0. 51

+ T [ RT f 6u dt - dz
- o u

4T

f0

u(t) and dT are added to

with constant multipliers

6uT W 6u dt

(D-3)

The first variation of Eq. D-3, neglecting the change in coefficients,

is

d(dJ1 ) = tr [Ct E(T)] + kt + H(T) + b dT d(dT)

TT
+ IL + p f + tr (PE)1u + T R

u u u --
fu + 6uT W } 6(6u)dt

(D-4)
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from which it is clear that the minimum in dJi occurs if

6u = - WI L + (p + Rr)T f + [tr (Pi)] u T

I tr ICt E(T)]
+ kt + H(T)

Substitute Eq. D-5 and D-6 into Eq. D-2 and use the definitions of

Ikj and Ikk in Chapter 4 to obtain the changes in the terminal conditions:

dz = - I kj - kk (D-7)

Provided the required inverse exists, I can now be determined:

- 1 (dz + Ikj ) (D-8)

The predicted change in dJ can be found by substitutin of Eq. D-6

and D-7 into Eq. D-3:

dJ = - tr [Ct
E(T) + kt

2

+ H(T)I

(D-9)

with I.. defined as in Chapter 4 and f determined by Eq.

As the optimum is approached, it follows:

from Eq. D-5, that

H = h + T

D-8.

H - 0u (D-10)

from Eq. D-6, that

tr [Ct E(T)] + H(T) + kt--.O

a61

and

dT .= -

(D-5)

(D-6)

(D-11)

I.. - L T.
JJ ~KJ

-



from Eq. D-8, that
-1

- - - Ikk

and from Eq. D-9, that

Ikj (D-12)

(D-13)I. - I T 1 k 1
jj ~kj kk k

Then the gradient method for free terminal time problems is as

follows:

Step 1.

Guess a nominal control u(t) and a terminal time T.

Identical to Step 2 in fixed T problem.

and kt'

Also record tr [ C t E(T 1'

Determine the influence functions as in Step 3 of the fixed T

problem.

Step 4.

Identical to Step 4 of the fixed T problem.

Step 5.

Identical to Step 5 of the fixed T problem except

by dz(T) and

f = - Ikk
-kk

(dz + I .
-kj

6z(T) is replaced

) (D-14)
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Step 6.

Repeat Steps 2 - 6 using an improved estimate of u(t) formed by

adding to the previous control the vector

- W~L + (p + Rf)T f +_u

T

Itr (P E) u

Also, improve the estimate of the terminal time with

dT = - b1 Itr [Ct E(T)] + kt + H(T) (D-16)

where

H(T) = h(T) + j H(T)

Stop when

and

dz - 0

tr [Ct E(T)] + kt + H(T) -- 0

I.. - IT 1-1 .
ja -k *Ik -kj

(D-17)

(D-18)

(D-19)

(D-20)

The choice of b and W can be made to limit the size of the first

step in the algorithm by comparing the actual dz and dJ with the predicted

values from Eq. D-7 and D-9. If there is a large discrepancy, b and W

should be increased; if there is a small discrepancy, it is possible to take

larger steps, and b and W can be reduced.
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Appendix E

Gradient Method for Closed-Loop Controller

The first-order gradient method for solution of the optimization

problem

< J> = k [x(T)] +
T
fL (x , u , t) dt

T
+0. 5 tr f

A A T
(A E + A X + B C X C

+ 0. 5 tr [S(T) E(T)]

A TA T
-NCX-N XC )

+ 0. 5 tr [S(T) X(T)]

with the first q components of x(T) specified, proceeds directly as in

Chapter 4 with the addition of two matrix differential equations.

Step 1.

Guess a control history u(t). Pick a weighting matrix W.

Integrate forward

x = f (x ,u, t) , x(0) given

E = FE+EF T + Q - E MT U~ 1 ME , E(0) given

Integrate backward

T T TT -1 T T
S=-SF -F S +(G S +N ) B (G S+ N)A.

P = (F - E MT UM)T P - P (F - E MT U~ 1 M)

- MT U~' MES - SE MT U~1 M -A
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dt]

(E-1)

Step 2.

Step 3.

(E-2)

(E-3)

(E-4)

(E-5)



S(T) = P(T) = k + zT
-x x

Y z
-x (E-6)

where z(T) = 0 is a q vector that represents the linear terminal

constraints.

Step 4.

Integrate forward

F - G B- (GT

+ EMT U~ M

S + NT) X +X F

X(0) =

- GB~ (G T

0

Step 5.

Define

Th = L +p f + 0. 5 tr (P E) + 0. 5 tr (S
A A T+ 0.5 tr(AE+AX+BCXC

X)
A TAT

-NCX-N XC

H = R T f

Integrate backward

p=- hT

T
R =-H

-x
= - F T R

, p(T) = k T

R .(T) = 6. n
1i1 3=1, . q

Step 6.

Compute

H W~ HT
-u u dt

W hT dt
U

-1 T
W hT dt

(q x q matrix)

(q row vector)

(scalar)
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A
x S + NT)]T

(E-7)

(E-8)

(E-9)

(E -10)

(E-11)

T

0
'kk

-k

I..
33

T

= 
H

0

= h .

0

(E-12)

(E-13)

(E- 14)



Step 7.

Choose a value of 6z to cause the next nominal solution to be

closer to the desired values z(T) = 0. Pick

6z = - d z(T) (E-15)

with

0 < d < 1 (E-16)

Step 8.

Then determine the incremental change in u

u [ - H -1 (6z + IT)....u k - -. ...kj (E-17)

Step 9.

Repeat Steps 2 through 8 using an improved estimate of u(t) from

Step 8 until

6 z --- 0 (E-18)

I T - I I 0
33~ kj Ikk 0k--*- (E-19)

to the desired degree of accuracy.

The best choices for W and d can only be determined by experi-

mentation. Unfortunately, their choice strongly affects the covergence

rate of the algorithm, so that the numerical solution procedure is

largely an art.
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It has usually been found to be worthwhile to compare the cost

from Eq. E-1, once the optimal has been found,with the cost

T
< J> = k [x(T) + fL (x , u , t) dt

+ 0. 5 tr S(O) E(0) + 0. 5 tr f (SQ + CT BCE)dt (E-20)

using the same optimal solution. This latter expression should be equal

to Eq. E-1. If the two costs do not agree, then a programming problem

exists. Equation E-20 is from Bryson & Ho (1969).

Another check on the programming can be made using the fact

that the mean-squared deviation in uncontrollable states cannot change

unless those states are noise-driven or have dynamics associated with

them. Thus, the sum of the corresponding diagonal elements of E and X

must remain constant.

The extension to variable terminal time cases proceeds as in

Appendix D.
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A

Appendix F

Numerical Values for the Mars Entry Problem

The numerical values used in the Mars entry problem of Chapter 7 are

presented in this appendix.

Mars surface gravity and radius . (Shen and Cefola, 1968)

go = 12.3 ft/sec2

r = 10.86 (10)6 ft

(F-1)

(F-2)

Vehicle Parameter. The vehicle parameter was chosen to be represent-

ative of the vehicles studied by Garland (1969a,

c d a

m
1.023 ft 2 /slug

1969b, 1968).

(F-3)

Surface density and inverse scale height. A surface density value of

P0 = 4.8 x 10-5 slug/ft
3

(F-4)

was used in the nominal model. This value gives the same density as the

mean model of Table 7-1 at 32, 810 ft when

9- 1 = 30, 000 ft (F-5)

The latter value is approximate for altitudes greater than 65, 000 ft as seen

in Table 7-2.

vehicle.

These altitudes include all the significant maneuvers of the

Nominal Initial Conditions. These are chosen as representative of the

entry problems studied by Garland
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= 328, 000 ft

= 0

= 15, 000 ft/sec

S- 0. 19 rad

8 x 10~0 slug/ft3

Initial Covariance Matrix. The position and velocity errors are repre-

sentative of presently achievable accuracies in navigation.

= 25 km 2 = 2. 56 x 108 ft2

= 2. 56 x0 rad2

[r+ h(0)]

2
-1. 0 (m/sec) = 10 (ft/sec)2

= 4. 44 x 10-8 rad2

= 8. 55 x 10- 1 2 (slug/ft 3)2

(F-11)

(F-12)

(F-13)

(F- 14)

(F-15)

The uncertainty in flight path angle is determined by assuming the velocity

errors are isentropic.

Terminal Conditions. For convenience the terminal range was chosen as

O(T) = 0. 5983 rad (1257. 1 miles) (F-16)

since it can be reached by flying at a constant lift-to-drag ratio of a 5.

The terminal altitude was chosen as

169

Ali

h(0)

0(0)

v(0)

y(0)

p(0)

(F-6)

(F-7)

(F-8)

(F-9)

(F-10)

E 1 1 (0)

E 2 2 (0)

E 33(0)

E g(0)

E 5 5 (0)



h(T) = 5. 6 miles = 29, 600 ft

to give sufficient remaining altitude for the terminal landing scheme.

Density Driving noise. The constant in Eq. 7. 3-16

qp = cp (F- 18)

was experimentally determined to be

c = 4.5x10-6 slug (F-19)
ft J sec

which gives acceptable density errors along the trajectory.

Measurement Noise. The noise in the accelerometers was assumed to

generate a noise covariance.

U = 0.02ft /sec (F-20)
0 0.02.

For example, if the accumulated velocity outputs of the accelerometers

have a mean-squared uncertainty of 0. 1 ft/sec over one second, and the

correlation time, r-, associated with this uncertainty is 0. 1 sec, then U

could be evaluated as

U1  = 2 - (0.1) = 0.02 ft 2 /sec 3  (F-21)

Cost function weighting. The terminal weighting on altituae and range

deviations was identical (note, range is in radians)

1'70

(F- 17)



0

1.39 x 10 10

0

0

0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0-

The weighting on the perturbation control was chosen as

B = 0.1

By trading-off B versus S(T) different weighting is attached to terminal

error versus mean-squared perturbation control.
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S(T)

2. 78 x 103

0

0

0

0

(F-22)

(F-23)
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