THE CRYSTAL STRUCTURE

of

DIGLYCINE HYDROBROMIDE

by

(Mrs.) ELSA PAULINE BARNEY

A.B., Syracuse University (1944)

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIRMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY (1947)

Signature of author.... Department of Geology, May 23, 1947 Certified by.... Thesis Supervisor Chairman, Department Committee on Graduate Students

The Crystal Structure

•

••

•

of

7

Diglycine Hydrobromide

Table of Contents

Ι Introduction I Literature and History of The Problem 2 Material 2 Figure I. Typical Habit of Crystals Experimental Method of Investigation 3 3 The Unit Cell 4 The Space Group Figure 2 Perspective View of Space Group Б 6 Figure 3 Derivation of Equi-points Determination of Parameters 7 7 First Patterson Projection (xy0) 8 Table I De Jong F and F values II Figure 4 Patterson Projection (xyo) 12 Preliminary Electron Density (xyo) 13 Sample Structure Factor Calculations **I4** Figure 5 Electron Density (xy0) 15 Second Approximation 23 Patterson Synthesis 23 Second Electron Density 23 Preliminary Comparison of Intensities 24 Figure 6 Patterson Projection (xy0) 25 Figure 7 Patterson Projection (oyz) 26 Figure 8 Patterson Projection (xoz) 27 Figure 9 Complete Patterson Projections 28 Electron Density Maps (xoz) and (oyz) 29 Figure IOa Electron Density (xyo) Figure IO Electron Density (oyz) Figure II Electron Density (xoz) 30 31 32 Figure 12 Complete Electron Density Maps 33 Atomic Positions Second Intensity Comparison 33 34 Final Electron Density Figure 13 Final Electron Density Map (xyo) 35 36 Table 2 Comparison of Observed and Calculated Intensities Under Three Conditions 43 Structure 43 Discussion 44 Figure 14 Projection of Determined Structure 45 Acknowledgment

Page

Introduction

Due to the possibilities of the use of diglycine compounds in glycine separations and identifications and their usefullness as therepeutic agents it would seem desirable to obtain information on the structure of one such compound. By X-ray analysis the arrangement of the atoms in the crystal unit may be determined and the properties of the crystal may be accounted for in terms of this arrangement. A crystal such as diglycine hydrobromide affords an excellent example of the use of a heavy atom in determining the phase constants which cannot be ascertained from experimental observations.

Briefly the steps in the structure determination consisted of the following:

I. Determination of the unit cell and space group.

2. Determination of the atomic positions.

Literature and History of the Problem

As far as is known no previous work has been done on the crystal structure of diglycine hydrobromide. The method of preparation of diglycine hydrobromide, diglycine hydrochloride

(I) Refers to two glycine molecules, not glycylglycine.

and diglycine hydriodide has been reported by Walter S. Frost.² Previous to this diglycine hydrochloride was reported by K. Kraut³ and F. Hertmann.

Material

Crystals and powder of diglycine hydrobromide (C_{4} H₀ Br N₂ O₄) were presented by Dr. W. S. Frost of the Eurnham Soluble Iodine Co, Auburndale, Mass. The material had been made by evaporation of water solutions of glycine and monoglycine hydrobromide and glycine and hydrobromic acid in theoretical quantities. Suitable crystals for x-ray work could not be found in this material so that crystals were grown by evaporation of a water solution of the diglycine hydrobromide powder. The crystals are stable in the dry condition, very soluble in water yielding free hydrobromic acid on dissolving in water and are insoluble in alcohol and ether. The average melting point in 163° - 165°.

The orthorhombic crystals are elongated parallel to the c axis and are almost equidimensional in cross section. The typical habit of the crystals is shown in Figure I.

(2) Walter S. Frost. Bis (Amino-Acid) Derivatives. I. Diglycine Halogen Addition Products. J.A.C.S. 64 (1942) 1286.

(3) K.Kraut and F. Hartmann. Ann 133 (1865) 101.

Experimental Method of Investigation

The colorless crystals of diglycine hydrobromide were investigated by means of the De Jong, Weissenberg, precession and rotation x-ray methods. X-ray work with the De Jong method was done by M. J. Buerger. For the determination of parameters the Weissenberg method was used for the hko and hol reflections using CuK_x radiation. The precession method was used for the okl reflections using MoK_x radiation. The Dawton⁴ ⁴/_m thod was used to determine the intensities.

The Unit Cell

A c-axis rotation photograph gave c = 5.40 Å. Measurements from a c-axis Weissenberg photograph gave a = 8.21 Å and b = 18.42 Å.

The number of molacules per cell is 4 and may be calculated as.

$$Z = \frac{Volume (density)}{-Formula weight (I.66 \times 10^{-24})}$$

$$\frac{(5.40)(18.42)(8.21) \times 10^{-24} (1.941)}{231.02 (1.66 \times 10^{-24})}$$

...

= 4.12

(4) Dawton, R.H.V.N. The Integration of Large Mumbers of X-ray Crystal Reflections. Proc. Phys. Soc. 50 (1938) 919-925.

(4) Klein, G.E. The Crystal Structure of Nepheline. Thesis M.I.T. (1947)

The Space Group

The space group $P_{2,2,2}$, was determined by M.J. Buerger using the Weissenberg photographs. Characteristic absences noted indicating this space group are:

hoo	where	h	odd
oko	where	k	odd
001	where	1	odd

5

Reflection	Condition for non-extinction	Interpretation of Extinction	Symbol of symmetry element
hoo	h = 2n	[001] screw axis, component ^{2/2}	2,
oko	k = 2n	[0I0] screw axis, component ^b /2	2,
ool	l = 2n	[001] screw axis, component ^{7/2}	2,

Only general positions occur in this space group. The equi-points with the conventional origin of this space group are:

 $xyz; \frac{1}{2}-x, \overline{y}, \frac{1}{2}+z; \frac{1}{2}+x, \frac{1}{2}-y, \overline{z}; \overline{x}, \frac{1}{2}+y, \frac{1}{2}-z.$

(5) M.J.Buerger. X-Hay Crystallography, John Wiley and Sons Inc. (1942) 83.

(6) Internationale Tabellen zur bestimmung Kristallstrukturen. I (Gebruder Borntraeger), Berlin (1935).

Figure 2. Perspective view of space group P2,2,2,. The symmetry elements consist only of horizontal and vertical 2-fold screw axes.

СЛ

Equi-points. x, y, z; ±+x, ±-y, z; ±-x, ±+y; ±-z; x, y, +2+z.

However, for this work the origin was taken on a two fold screw a_X is because for the prism zone reflections the B terms of the structure factor vanish. In general simplification of the structure results if the origin of the coordinates to which the positions of the atoms are referred is taken as a symmetry center of the space group. With this origin the equi-points are

x,y,z; \$\frac{1}{2}+x, \$\frac{1}{2}-y, \$\bar{z}\$; \$\frac{1}{2}-x, \$\frac{1}{2}+y, \$\frac{1}{2}-z\$; \$\bar{x}\$, \$\bar{y}\$, \$\frac{1}{2}+z\$.

The space group symmetry elements are shown in Figure 2. Figure 3 indicates the derivation of the equi-points of the general position as used in this work.

Determination of Parameters

First Patterson Projection (xyo).

Initially \mathbf{F}^{T} values from a De Jong photograph taken by M.J. Buerger were used to obtain a Patterson projection (xyo). The \mathbf{F}^{T} values were obtained directly as the intensities which are usually obtained experimentally were corrected for by means of a mechanical cam. The Patterson and Tunell⁷ method was used for all \mathfrak{T}^{T} the Patterson projections for this crystal. The $|\mathbf{F}|^{T}$ values for the various hko reflections used in this summation are given in Table I.

(7) R. L. Patterson and G. Tunell. A Method For The Summation of The Fourier Series Used in The X-ray Analysis of Crystal Structure. Amer. Mineral. 27 (1942) 655-679.

Table I.

De Jong $|\mathbf{F}|^2$ and \mathbf{F} values.

Reflection	Observed	10 F ² =	F	
	FZ	F used is series	signs based on Br.	
	······································			
020	.2	2	14	
040	I.2	12	34	
060	.2	2	14	
080	4.0	40	-64	
BIOO	I.I	II	-34	
0120	8.4	84	-92	
0140	5.4	54	-74	
• • • •	t e C	•-	87	
IIO	7.6	76	87	
120	0.0	0	0	
130	•5	5	22	
T40	T.2	12		
150	5.T	-~ 51	-05 7	
160	6.6	56		
170	¢.0	00		
	V •V	05	0	
100	0.0	00	-92	
190			-35	
TITO	TO*0	106	-103	
1110	2.0	20	-32	
1120	7.8	78	-88	
1130	•5	5	-22	
1140	0.0	0	0	
1150	4.1	4 I	⊷64	
200	•4	4	-20	
210	I.2	12	-35	
220	5.7	57	-75	
230	5.7	57	-75	
240	I.I	II	-33	
250	I.8	IB	-42	
260	I.8	18	-42	
270	15.8	I58	- I26	
280	2.9	29	54	
290	7.5	75	-87	
2100	8.5	85	92	
2110	I-6	16	_2 <u>0</u>	
2120	U	-0 T	-20	
2130	• - 3.9	30	10	
2140	5-3	53	-04	
2150	I.I	II	33	
(5 10	TT 77	ŢŢIJ	-109	
320	1 • T T) + - K	20	
330	•± 5 7	54 57		
340	υ.υ Τ 2	00 T 12	-10	
040 750	1.J	70 70		
05U	ũ•r	34	-07	

Table I (cont.-)

De Jong $|\mathbf{F}|^2$ and F values.

x

•

Reflection	Observed	iger ≥	F	
	F ²	F ² usectin series	on Br	
التي كان بين الشاعر عن المتشارك المتعارك المتعارك الم				
360	•8	8	28	
370	•9	9	-30	
380	•4	4	20	
390	3	3	17	
3100	4.2	42	65	
3110	7.I	71	84	
3120	•3	3	17	
3130	28.0	280	167	
400	•2	2	-14	
410	3.9	39	62	
420	•5	5	-22	
430	.3	3	17	
440	•4	4	-20	
4 50	8.0	80	89	
460	.9	9	-30	
470	13.0	130	144	
480	4	4	20	
490	9.7	97	98	
4100	0	0	0	
4110	13.6	136	117	
4120	-8	8	28	
	••	•		
510	5.7	57	75	
520		7	28 18	
530	TT.8	118	84 109	
500	2.9	29	I09 54	
550		4	54 2 9	
550	9 7	99	99	
500	0	0	0	
570	5.0	50	71	
500	JeU T T	50 TT	-33	
530	0 0 1 0	29	47	
5100	<i>K</i> • <i>K</i>	20 20	-70	
5110	4.07	47	-10	
600	5.4	54	74	
610	•4	4	-20	
620	6.0	60	77	
630	0	0	U	
640	4.5	45	67	
650	0	0	0	
660	•8	8	28	
670	5.I	51	-71	

.

The prism zones of this space group project as the plane group $G_{2\nu}^{"}$ which is shown in figure 3. Pertinent data for the interpretation of the Patterson projection of this plane group follows.^b

Group	No. Equi-pts	Coordinates of	Fourier Series	*F' S	eries	Data
-		equi-points	Data	Group	Wt.	Rep. Pts.
	2	(9) 00; 22	$(kx) = (-1)^{k+k} (\bar{h}k)$		2 27+	2×++2, 2; 12,29;+2.
" C 24		6) 20;0支	ho= 0, hodd	, C ₂₁	Z,	2x~,2y,.
	4	(c) x,y; 2-x,y+2;	ok= 0, Kodd		2Z-Zs	xr-xs, yr-ys; xr-xs+z,
		x,y; ±+x, ±-y.				yr+ys+z; ** **\$, yr+ys;
						¥r + Xs +5, Yr-Ys + 5.

The Patterson projection depends on F^2 and not on F. Thus it is independent of the phase constants. The distance from the origin to a peak corresponds to an interatomic distance in the crystals. The Patterson projection (xyo) of one fourth of the cell (the motif) of diglycine hydrobromide obtained is given in Figure 4. In wiew of the high atomic weight of bromine in the molecule undoubtedly the intense peaks 1127, 1260 and 543 represent the Br-Br interatomic distances. These points occur at the points $2x \frac{1}{2}, \frac{1}{2}; \frac{1}{2}, 2y \frac{1}{2};$ and 2x, 2y, respectively. With information from the above table the x and y parameters of the heavy bromine atom were determined as shown in the following table

(8) A. L. Patterson. Tabulated Data For The Seventeen Plane Groups. Zeits. Krist. vol. 90 (1935) 517-542.

200 114 .3 3' 398 1260 23 247 18% 2 88 \$33 \$7 15% 117 210 - 111 2) 363 394 .3 367 356 52 222 159 166 138 152 183 10% 173 49 85 30% AS. 307 162 45 185 164 15 6 197 271 249 257 205 K3 ıš 143 322 223 53 232 100 244 31 26 357 224 197 129 236 57 125 184 139 12.6 356 197 200 24 120 211 227 9'6 344 178 500 137 230 54 247 " 23K 336 ,40 752 102 37 355 \$12 259 10 311 114- 336 267 114 48 295 186 229 118 16 43/ 112.7 82. 244 78 20) 7. 158 166 179 208 45 189 36 1441 236 63 SI 9% +6 163 .88 317 68 45% 112 2'0 201 147 \$7 135 176 3 3 100 206 143 47! 260 115 259 329 943 264 1. P.S * 37 162. -5 307 95 49 196 250 12.7 61 225 391 573 1477 150 67. 17 137 77 251 331 32 128 274 257 474 728 263 207 1+ 153 -210 165 163 205 155 263 341 76 24 303 264 6 \$70

×

Figure 4

1"=1Å

Pesk	2x+ 1/2	2y+ 1/2	2 x	2y	x	у
543			20.5	4.35	.171	.036
II27	51.35				.178	
I260		34.1				.0342

Preliminary Electron Density ((xyo)

In view of the high atomic scattering power (f) of bromine compared with that of the other atoms o_xygen , nitrogen and carbon in the molecule it was assumed that the heavy bromine determined the phases. Since in projection the crystal is centrosymmetrical the phases will be either o or π i.e. + or =.

For the space group $P_{2,2,2,3}$, D_{z}^{+} , choosing the origin at a symmetry center the components of the structure factor for an atom in the general position are as follows:

$$\begin{split} A &= 4 \{ \cos 2\pi (h_{x} + ky + 1z) + \cos 2\pi (h[\frac{1}{2} + x] + k[\frac{1}{2} - y] - 1z) + \\ &\cos 2\pi (h[\frac{1}{2} - x] + k[\frac{1}{2} + y] + 1[\frac{1}{2} - z]) + \cos 2\pi (-h_{x} - ky + 1[\frac{1}{2} + z]) \} \\ B &= 4 \{ \sin 2\pi (h_{x} + ky + 1z) + \sin 2\pi (h[\frac{1}{2} + x] + k[\frac{1}{2} - y] - 1z) + \\ &\sin 2\pi (h[\frac{1}{2} - x] + k[\frac{1}{2} + y] + 1[\frac{1}{2} - z]) + \sin 2\pi (-h_{x} - ky + 1[\frac{1}{2} + z]) \} \\ \end{split}$$

For the various reflections these may be reduced to:

A	A	В
h+k = 2n	h+k = 2n+l	
4cos2nhxcos2nky	-4sin27hxsin27ky	0
40082"kxcos2"ky	4sin2Thxsin2Tky	00
k+1 = 2n	k+1 = 2n+1	
4cos2Tkycos2Tlz	-4sin2"kysin2"lz	0
4cos2Tkycos2Tlz	4sin2 ^T kysin2 ^T 1z	0
h+1 = 2n	h+1 = 2n+1	
$4\cos 2\pi h_x \cos 2\pi lz$	-4sin2Thxsin2Tlz	0
$4\cos 2\pi hx \cos 2\pi 1z$	4sin2 ⁿ hxsin2 ⁿ lz	0
	A h+k = 2n $4\cos 2\pi hx\cos 2\pi ky$ $4\cos 2\pi kx\cos 2\pi ky$ k+1 = 2n $4\cos 2\pi ky\cos 2\pi 1z$ $4\cos 2\pi ky\cos 2\pi 1z$ h+1 = 2n $4\cos 2\pi hx\cos 2\pi 1z$ $4\cos 2\pi hx\cos 2\pi 1z$	AA $h+k = 2n$ $h+k = 2n+l$ $4\cos 2\pi h_{x} \cos 2\pi ky$ $-4\sin 2\pi h_{x} \sin 2\pi ky$ $4\cos 2\pi k_{x} \cos 2\pi ky$ $-4\sin 2\pi h_{x} \sin 2\pi ky$ $4\cos 2\pi k_{x} \cos 2\pi ky$ $4\sin 2\pi h_{x} \sin 2\pi ky$ $k+1 = 2n$ $k+1 = 2n+l$ $4\cos 2\pi ky \cos 2\pi lz$ $-4\sin 2\pi ky \sin 2\pi lz$ $4\cos 2\pi ky \cos 2\pi lz$ $4\sin 2\pi ky \sin 2\pi lz$ $h+l = 2n$ $h+l = 2n+l$ $4\cos 2\pi h_{x} \cos 2\pi lz$ $-4\sin 2\pi h_{x} \sin 2\pi lz$ $4\cos 2\pi h_{x} \cos 2\pi lz$ $-4\sin 2\pi h_{x} \sin 2\pi lz$ $4\cos 2\pi h_{x} \cos 2\pi lz$ $4\sin 2\pi h_{x} \sin 2\pi lz$

Structure Factor Calculations

hko

if
$$h+k=2\pi$$
 en $\pi(h+k)>+1$
 $A=2\cos 2\pi(hx+ky)+\cos 2\pi(hx-ky)$
 $A=4\cos 2\pi \frac{1}{2}(hx+ky+hx-ky)\cos 2\pi \frac{1}{2}(hx+ky-hx+ky)$
 $A=4\cos 2\pi hx\cos 2\pi ky$.

if
$$k+k=2n+1$$
 $c_{B}\pi(h+k)=-1$
 $A=2c_{B}2\pi(hx+ky)-2c_{B}2\pi(hx-ky)$
 $c_{B}A-c_{B}B - -2sim\frac{1}{2}(A+B)sm\frac{1}{2}(A-B)$
 $A=-4sim 2\pi\frac{1}{2}(hx+ky+hx-ky)sm\frac{1}{2}(hx+ky-hx+ky)$
 $A=-4sim 2\pi hxsim 2\pi ky$

-

																												8				
	30	26	31	130	177	176	29	114	291	123	189	264	43	25%	\$1	122	36	270	199	94	145	34	45	111	157	44	209	134	7	18	187	282
	29	6	103	244	300	270	134	120	305	144	249	357	36	240	130	104	53	356	216	12	178	27	55	40	79	68	186	144	98	188	295	232
	25	62	192	329	372	319	173	\$3	280	129	281	431	105	217	127	90	50	380	393	59	154	73	45	33	24	47	137	97	126	255	290	94
	27	136	252	365	380	5/2	192	31	226	116	24	455	-64	183	149	68	25	360	441	161	70	רר	38	\$ 8	102	m	62	16	. 46	230	194	84
	26	184	259	328	3/3	251	190	45	132	86	455	426	187	164	166	51	20	289	448	252	9	62	23	112	148	105	92	150	27	146	46	217
	25	187	20%	234	94	148	165	127	18	50	170	350	172	148	175	44	83	192	407	318	84	38	6	110	140	15	150	1.10	-7.	48	105	713
	24	(33	122	141	15	21	105	158	18	4	11	245	137	118	169	46	1.55	78	327	322	141	4	21	14	140	310	15.5	14.3	4.2	75	226	275
	23	46	43	lets.	6	74	140	214	178	\$1	50	152	98	101	146	25	164	20	220	287	156	18	60	21	10	14	int.	160		10 1	201	200
	24	32	40	10		111	34	187	25 '	107	15	41	-55	10	124	24	165	107	78	178	11	54	111	15	;	71	124	8-3	115	110	300	57
	ນ	60	100	173	87	14	14	111	259	135	21	16	2.6	2	48	15	17/	157	28	57	24	120	125	1-1		45	1. 1		115	101	520	16
	20	32	171.	35	25%	46	140	34	120	181	45	10	17.	DI	~4	2	2	12.8	12.8	109	72	to u	112	6 1	2.6	80	112	100	275	37	1116	145
	"	43	1-81	in all	317	01	144	46	15 5	195	17	20	10	153	17		,	91	199	137	1.58		1.4	22	11	17	35	~ 10		100	1159	18
	n	148	384	554	181	242	85	11		181	118	47	100	201	145	¥ >	41	21	232	251	91		2	45	F1		"	247	301	80	47 %	1.5
X	"	313	38.4	1.5	452	201	35	84	-1	141	129	40	15	206	211	39	84	2	(-)	240	2		13	21	50	7%	2.	246	248	67	1180	200
R	-	1100	260 0		4.5	101		43	26	17	150	47	5-5	183	215	60	50		181	181		234		29		4.7	57	205	245	97	42.8	104
	P	7400	32	318	105	215	300	(RL	75	63	150	1	6-	21	200	7.4	-	14	145	103	14	378	12.	51	:05	57	9		121	79	240	00 4
	14	305	442	14	555	18.5	141	147	94	19	115		75	41	145	81	2	14	10)		235	347	156	53	122	76	21	151	57	1.	208	215
		18	102	15 50	1005	83	> 15	240	102	35	ID/	24	172	40	1.1	11.2	2	4	73	F5	517	310	171	135	144	17	41	8/	2	~~	108	158
		N	1200	2020	1381	4	10.01	297	125	65	112-	55	252	164	64	47	,	1,	81	15	270	555	72	155	18		47	71	20	100	41	13
	10	115	11161	2417	1516	107	533	18	164	11	47	36	501	231	25	01			INI	11	2,00	114	21	1119	1.54	2.5		21	104	15 5	2.2	30
		91	12.42	2241	1343	112	561	248	116	105	91	10	338	257	21	14	-		105		110		~	119	inn	10	84	74	110	11 3	~~	,,
			ould	128	9.5	59	100	(4)	219	1.6	82	10-	353	247	ul.	77	-	15	112	145	125	TV	- 25	71	727	3.0	12	69	27	142	89	27
	°	141	375	1510	765	11.0	Tel.			25	11	19.5	322	226	5.8	97		2,	162	274	158	> >	30	3	22	2	~	102	110	186	275	32
	.1	241	148	12/	2)	125	194	72	170	-1	.9	110	340	15 /	127	110	19	114	145	190	183	113	2	"	2.8	4.	76	137	21	153	152	133
	-	3/3	344	2%/2	210	21.6	25	93	26	102	4	257	307	78	147	112	32	14	115	120	122	90	20	114	73	1	57	a	90	84	186	187
	2	736	14 4	130	1417	21	16	\$1	70	154	41	268	247	144	136	65	46	25	78	15	35	72	29	152	120	9	34	. 49	135	16	136	184
		8.12	412	.78	1446	40		61	160	190	"	2.45	115	87	91	4	41	120	35	93	42	65	10	170	160	29	8	108	126	25	66	132
	,	94	230	1109	330	33	165	17	210	195	15	187	154	124	13	92	21	134		181	46	99	45	11.9	206	55	21	35	48	27	12	62.
		232		201	160	76	284	27	207	168	17	117	74	130	82	192	5	132		238	92	187	115	160	255	92	10	44	14	24	2	6
		282	147	18	9	134	209	44	57	11)	45	34	145	94	199	290	36	122	51	256	43	261	189	153	291	116	27	174	177	130	31	26
	-	0	1	2	3	4	5		1	8	9	10	I.	12	13	14	15	11	17	ĸ	19	2.0	21	22	2)	24	25	24	27	28	29	30
				Ч							·																			"=	0 A	

Figure 5. Electron Densily P(xyo)

A sample calculation of the determination of the phases is given below.

Reflection	Para	meters	Structu	re Factor /m	Phase
	X		cos2Thx	cos27ky	
220	.178	•034	618	.9IO	
130	.178	•034	•437	.802	+-

With the phase constants determined in the above manner and using the F values of Table I as obtained from the De Jong photograph an electron density e(xyo) was made. The electron density map e(xyo) of $\frac{1}{5}$ of the cell, the motif, is given in Figure 5. With 4 molecules per cell the position of 4 carbons, I bromine, 2 nitrogens and 4 oxygens (i.e. II positions) should appear in the electron density map of $\frac{1}{4}$ of the cell. In the electron density map obtained the bromine appeared where it was put in the structure. However, many more than IO other peaks are seen to occur indicating quite some error.

Second Approximation-

Due to the error just indicated it was necessary to obtain more x-ray data. This was done by means of the Weissenberg method for the hko and hol reflections using CuK_{∞} radiation and the precession method for okl reflections using MoK_{∞} radiation. The intensities were determined by the Dawton method and corrections to obtain $|F|^2$ are given below. Since intensities are obtained experimentally and F's or their squares are used as coefficients of a Fourier series for electron density maps and Patterson projections it is necessary to compute F's. As $\frac{1}{L_F}$ is a function of sin Θ

 $(L_{p} = \sin 20 \frac{2}{1 + \cos^2 0}$), sin must be calculated for all feflections. This

.

was done by means of the formula

$\sin 0 = \frac{1}{2} \sqrt{\mathbf{a}^* \mathbf{h}^2 + \mathbf{b}^* \mathbf{k}^2 + \mathbf{c}^* \mathbf{l}^2}$	$\mathbf{a}^{*} = \overset{2}{\delta} = \frac{1.539}{8.21} = .08375$
×	$C = \frac{\lambda}{2} = \frac{1.539}{5.40} = .2850$

Reflection	sin $^{\otimes}$	1 (9)	I	r =	4 F =	201 =
6K0	فبر	LP	Average	$\tau(z)$	Frused	Fusidin
				=	In Series	Services
						signs based o Br
626	.0835	.1688	I4. 95	2.52	10	32
040	. 1671	•3482	15. 6	5.43	22	47
060	•2506	•5500	• 55	.30	I	II
080	•3342	. 786I	5.83	4.58	18	- 43
0,100	• 4177	I.066I	•33	•35	I	-12
0120	•5013	I.39I 0	5.63	7.83	31	- 56
0140	•5848	I.7252	•93	I.60	6	- 25
0160	•6684	I.9664	.85	I.67	7	- 26
0180	.7519	I.9495	.10	.19	I	-19
0200	.8355	I.5873	.28	•44	2	-13
0220	.9190	.9823	•10	•098	0	6
110	.1026	.2085	4.2I	.88	4	19
130	.1565	.3246	5.75	I.87	7	27
I4 0	. 1915	•4046	9.43	3.82	15	-39
I 50	.2290	•4950	29.59	I4.65	59	77
160	.2675	• 5945	25.73	15.30	61	~78
170	.307I	.7050	.21	.15	I	- 8
180	.3470	.8258	I4 •35	II.85	47	- 69
190	.3875	.9593	.90	.86	3	-19
1100	.4280	I.I04I	6.58	7.26	29	- 54
IIIO	.4690	1.2612	.49	.62	2	- I6
1120	.5100	I.4265	I.7I	2.44	10	-31
1130	•5500	I.5893	•05	.08	0	- 6
1150	.6325	I.8843	.38	.72	· 3	- I7
1160	.6799	I.9832	.II	.22	I	9
1170	.7163	I.9979	.13	• 26	I	- IO
II8 0	.7576	I.9356	.51	.99	4	20
1190	.7987	I.7865	.08	.14	I	- 7
1200	.8407	I.5552	.8I	I.26	5	22
1220	.9238	0.9432	.32	.30	Ĩ	II

I ~ LPF2

(9) M.J. Buerger and G.E. Klein. Correction of X-ray Diffraction Intensities for Lorentz and Polarization Factors. J. App. Phys. Vol. I6 No. 7 July 1945 408-418. •

Reflection	sin O	tr	I Average	下 工(迄)	4 F	20 F
	· · · · · · · · · · · · · · · · · · ·				~	
200	.1874	•3950	1.33	•53	2	-15
210	•1920	.4057	6.19	2.51	10	-32
220	.2050	•4365	44.12	19.26	77	- 88
230	.2255	•4864	26.13	12.71	51	~71
240	.2510	.5510	2.20	1.21	5	-22
250	.2805	.6299	2.67	I.68	7	26
260	.3130	•7220	I.62	I.17	5	-22
270	•3474	.8268	20.91	17.29	69	-83
280	•383 8	•9443	I.60	1.51	6	25
290	•420	I.0746	3.37	3.62	14	-38
2100	•4579	I.2I78	2.94	3.58	I4	38
2110	.4964	I.37 II	.24	•33	I	-I I
2130	• 5745	I.6862	•4I	•69	3	- 17
2140	614	I.8282	.47	•86	3	19
2150	.6540	I.9387	•II	.2I	I	9
2160	.6942	I.9962	.14	.28	I	II
2180	.7799	I.8653	.29	•54	2	15
2190	.8155	I.7025	.22	.37	I	12
2210	. 8989	I.1559	.44	.5I	2	14
2230	.9789	•4348	.92	.40	2	13
310	.2840	.6394	37.86	24.2I	97	- 98
320	.2933	.6654	.36	.24	I	10
330	.3078	.707I	I0.00	7.07	28	-53
340	.3270	.7639	1.21	.92	4	19
350	-3503	.8362	2.65	2.22	9	-30
360	.3766	.9220	.29	.27	I	IO
370	4057	I.0230	.30	.31	I	- II
3100	.5037	1.4007	•76	I.06	4	21
3110	- 5386	I.5433	I.IO	I.70	7	26
3130	-6TI5	I_8I99	3.00	5.46	22	47
3150	-6868	I/9906	-43	-86	3	19
3170	.7638	1.9189	•73	I.40	6	24
400	.3749	.9163	.25	.23	I	- I 0
410	.3772	.924I	5.23	4.83	19	44
420	-3840	.9470	.36	.34	I	- 12
430	-3953	.9864	. 16	. 16	I	8
440	.4105	I-0402	• 05	.26	I	-10
450	4292	I.1085	4.40	4.88	19	44
460	4509	I.1906	. 14	.17	I	- 8
470	4755	I.2870	4.66	6.00	24	49
480	.5015	4.3918	- 06	.08	0	6
490	-5305	I.5I03	I.85	2,79	II	33
4110	- 5930	I.7556	I.59	2.79	II	33
1190	6960	I.8657	TA	_34	ī	12
4 T70	8030	I.7662	- 36	.64	3	-16
**/V /Ton	0000	T 660%	-00 To	AT .	Ť	 8
4 TOO	04VA	I ZATT	• • • •	6 AU	- x	- TA
4010 4120	•0778	T OUTT	•40	•0 • ∧∧	0	-17
42IU	•9540	•004U	• 30	• 4 U	~	TO

. .

Reflection	sin 9	× × ⁽⁹⁾	I	F	4 F	201
L KO	<u>.</u>	u LP	Average			
510	1705	T 96799	1 07	5 T2	20	45
520	A760	T 2000	40 7	υ. το	20 T	- <u>-</u> -2
530	0470U	T 3250	e = 1 Λ Ω77	6 46	26	51
540	●±002 /075	I 3755		0.0 ±0 0.0	20 A	20
540	●47/D ~#TgA	1.0799 T A706	• 7 -	• 30	4	~0
550	• P 100	1.4000 T ETAA	U T OO	2 05	τT	74
500	• 2010	1.0144 T.0000	1 +00	2000 T 00	11	04 91
500	• 5755	1.0900	•04 To	1.00	4 T	~T2.
590 FT00	•0000	1.0009	• 1 7	●Ŭ4 E9	 2	TA
5100	•0611	1.0420	• ~ 0	• DA 05	С Л	- 10
5110	•000U	1.9469	•47	•90	4 0	19
5130	•7173	1.9975	• 64	€40 To	ی ۲	-14
5150	•7852	1.8449	•10	• 18	1 T	- 8
5190	.9217	•9604	•39	•37	1	-12
5200	•9579	•6481	•75	•49	2	~14
600	• 56 24	I. 639I	I.22	2.00	8	28
610	•5639	I.6449	• 08	13	I	- 7
620	.5685	I.6590	I.20	I.99	8	28
650	.5867	I.7323	•64	I.II	4	21
660	6 156	I.8332	.10	.18	I	8
670	.6338	I.8880	•55	I.04	4	- 20
690	.6765	I.9786	. 19	.38	2	-12
6100	.7006	I.9990	.18	.36	I	-12
6120	.7536	I.9457	-48	.93	4	-19
6130	.7818	I.8582	.05	.09	Ō	- 6
6140	8114	T.724I	.74	I.28	5	-23
6160	.8735	I.3323	.45	•60	2	- 15
6170	19058	I.0882	.18	20	ī	-0
6180	9390	-8163	.45	.37	Ī	- 12
6190	.9728	.5016	.13	•07	Ō	5
720	66 TA	T 0530	66	T 20	5	93
720	6770	T 9797	•00 64	T 97	5	- 23
740	7023	T 0006	•0 1	T 59	5	- 25
7000	7761	T 0799	•15	70	3	- T9
700	• 100-1	T 0770	•	•15	0	20
M130	0257	I 6/57	• JU 9 T	• J J 7 5	-# T	- 20
7120	•0~01 0700	1 90%D	•~ •	•05 OT	<u> </u>	~ 1K
7140	•0109	1.2900	•01	•01	U	2
800	•7498	I.9544	•45	•88	4	- 19
820	•7544	I.9439	•26	•5I	2	-14
840	.7682	I.9053	•16	•30	I	-II
850	.7780	I.8723	.20	•37	I	-12
860	•7906	I.8226	. IO	•18	I	- 8
870	.806I	I.75II	•30	•53	2	-15
890	.8388	I.5669	.0I	•02	0	- 3
8100	.8582	I.5070	.16	.24	I	10
8I Z 0-	.8794	I.2894	.02	.03	0	- 3
8120	.9019	I.II87	• 23	.26	I	10
8140	.9509	0.712I	.92	•6 6	3	16

-

Reflection	sin O	LP LP	I Average	P	4 R ~~	2017	
910	. 8445	×1.5307	•50	•76	3	-18	
930	.8528	I.4764	.13	.19	I	-9	
940	.8599	1.4283	.15	.21	I	9	
950	.8690	I.3646	.06	.08	0	-6	
960	.8800	I.2850	.12	.15	I	8	
980	.9073	I.0764	.23	.25	I	IO	
990	9235	.9456	.10	.09	0	6	
9110	.9606	.6227	.20	.12	I	7	
1000		1 49599	0 _	0	0	0	
1010	.9382	8228	•05	•04	0	4	
1030	. 945I	.7630	.24	.18	I	8	
1050	9602	66266	.65	. 4I	2	13	
1070	.9818	•4008	•65	.26	I	10	,

hol Reflections

Reflection	sin a	(لام) (لدم)	I Average	F	4 F 2	20 F
002	.2850	.6423	28.97	18.61	74.44	86
004	.5700	I.6686	.97	I.62	6.48	-25
006	.8550	I.46I8	.83	1.21	4.84	-22
IOI	.17 06	•3564	I 3.15	4.69	I8 . 76	43
201	.2355	.5113	40.67	20.79	83.16	-9I
301	.3152	.7288	2,52	I.84	7.36	27
40I	.40II	I.0067	.31	.31	I.24	- II
50I	.4899	1.3448	I.7I	2.30	9.20	-30
70I	. 6714	I.9712	•90	I.77	7.08	- 27
90I	•855I	I.46II	.20	.29	I.I6	- II
102	•3000	•6 845	4.29	2.94	II.76	- 34
202	•34II	.8074	I.58	I.28	5,12	23
302	.4004	I.0042	2.93	2.94	II.76	- 34
502	•5485	I.5833	I.54	2.44	9.76	- 3I
602	•6305	I.8787	.10	. I9	•86	- 9
802	.8022	I.7700	.13	.23	.92	- I 0
902	•8904	1.2071	•33	•40	I.60	12
203	•4668	I.2587	6.II	7.65	80.60	- 55
403	• 5686	I.6634	I.76	2.93	II.72	-34
503	.6343	I.8894	.10	.19	.76	- 9
803	.863I	I.4062	.025	.035	. I4	4

.

Reflection Lol	sin [©]	'r Le	I Hveruge	F	4 F	20 F
104	.5776	I.6980	. I4	.24	•96	-10
206	.6004	I.7820	.18	.32	I.28	II
304	.6549	I.9404	I.36	2.64	I0.56	-32
404	.6822	I.9859	.09	.18	.72	8
504	.7379	I.9764	.33	•65	2.60	-16
604	.8007	1.7773	0	0	0	0
804	.9680	.5510	00	0	0	0
I 05	.7186	I.9970	.43	•86	3.44	- 19
205	.7367	I.9783	.05	.10	.40	 6
405	.805I	I.7560	.05	•09	.36	6
505	.8523	I.4797	.04	•06	.24	5
605	.9078	I.0726	•03	.03	.12	- 3
705	•9685	•5459	•7I	•39	I.56	12
200	.1875	.3952	• 53	.21	.84	9
400	.\$749	.9163	.15	.14	• 56	- 7
600	.5624	I.639I	I.05	I.72	6.88	- 26
800	•7498	I.9544	• 53	I.04	4.16	- 20
106	.860I	I.4269	0	0	0	0
206	.8753	1.3193	.28	.37	I.48	-12
306	.9005	1.1296	0	0	Û	0

•

okl	Re	fl	60	ti	ons
-----	----	----	----	----	-----

Reflection	sin	ly De L Mo P	(10) L. Iruphically	E I Average	F	2 15 F	/4 F
020	.0385	I.0030			I.32	2	-18
040	.0770	I.OII9	.74	3.36	2.52	4	24
060	. 1154	I.0270	I.IO	•67	.76	I	-14
080	. 1540	I.0485	I.40	I.88	2.76	4	-26
0100	.1924	I.0767	I.72	-88	I.63	2	20
0120	.2399	I.II22	I.97	4.58	10.04	15	- 50
0140	.2694	I.1555	2.18	2.07	5.2I	8	36
0160	.3079	I.2072	2.3I	I.30	3.63	5	- 28
0180	•3464	I.2677	2.38	•50	I.5I	2	20
0200	.3849	I.3376	2.32	.8I	2.5I	4	-26
031	.0875	I.0I54	.85	12,28	I0.55	16	- 52
041	II24	I.0256	•95	17.43	16.98	25	64
05I	.1165	I.0275	I.08	2.43	2.70	4	26
06 I	.1328	I.0360	I.24	27.79	35.70	54	-96
07 I	. I 498	I.0459	I.37	4.52	6.78	IÓ	-47
08I	.1674	I.0584	1.51	.97	I.55	2	20

Reflection	sin ^Q	I/p	I \T	I	٦. F	1.5 1	(Ç F
09I	.1852	I.07I0	I.65	•55	•97	I	I
0101	.2033	I.086I	I.78	2.43	4.70	7	-3
0130	.2587	I.I427	2 . II	•06	. I 5	.22	(
0180	.3524	I.2780	2.37	•72	2.18	3	2
0191	.3714	1.3120	2.35	•67	2.07	3	2
020I	.3904	I.3483	2.28	.76	2.34	4	-2
02II	4093	I.3868	2/19	•40	I.22	2	-1
0221	.4284	I.4278	2.06	.70	2.06	3	2
002	.1313	I.0350	I.22	7.I8	9.07	I 4	4
012	1327	I.0359	I.22	7.17	9.06	14	-4
022	1368	I.038I	I.23	2.30	2.94	4	2
032	. 1435	1.0420	I.3I	12.42	16.95	25	6
092	2173	T. 0989	T.88	2.15	4.42	7	3
0172	2/00	T TSTA	2 06	70	1.63	2	-2
0128	• 24 00	T TEAD	2 TC	90	T 00	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ະ ຈ
0179	• 2000	T TROT	~•±0 9 99	•00• 40	1.55 T 95	.	
0192	• ~ 0 ~ 4	1,1781	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	• 4 0		2. 7	0 T
0142	.2997	1.1955	2.29	-01 T 00	1.67	5	-2
0152	.3170	1.2207	2.34	1.20	3.43	Ð	-0
0162	•3346	1.2482	2.37	•22	•69	1	1
0172	•3524	1.2780	2.38	.13	•40	1	I
0192	•3884	I.3444	2.29	•25	.77	I	-1
013	.1979	1.0813	I.73	.62	1.16	2	-1
033	2052	1.0877	I.79	2.68	5.22	8	3
053	.2192	I.I007	I.89	3.33	6.93	IO	- 4
073	.2384	1.1201	2.02	3.20	7.24	II	4
093	. 262I	I.I468	2.13	2.23	5.45	8	- 3
0113	. 289I	I.1809	2.25	. I3	•35	I	
0193	.4153	I.3995	2,17	.47	I.43	2	- I
0213	•4494	I.475I	I.83	• 53	I.43	2	I
004	.2626	I.1474	2.13	I.43	3.50	Б	- 3
014	. 263I	I.I479	2.13	I.85	4.52	7	3
034	.2688	I.I548	2.17	I.69	4.24	6	- 3
064	.2868	I.I778	2.24	. I8	•48	I	I
084	.3042	1.2018	2.30	.20	.55	I	I
094	.3144	I.2167	2.33	.03	.09	0	~
0114	.3372	1.2524	2.36	.19	• 56	Ī	I
0124	.3497	I.2734	2.38	.03	.09	0	
0134	.3626	I.2959	2.35	.48	I.46	2	- I
0154	3902	T 3479	2 30	03	- 19	õ	
0174	.4192	1.4079	2.12	•00 •10	.30	õ	-
045	.3370	I.2520	2,37	.57	I.69	8	9
065	3478	I.270I	2.38	.45	I.36	2	
075	3547	I.2820	2.37	.40	I_22	r. 9	1 -
095	36.92	1.2054	2 36	• 	T.OT	~ 0	
005	•00 <i>50</i> 377T∩	Tatta	2 7 E	•00 To	~•∪- ⁄7T	<i>6</i>	~1
070	-01+V 7004	T 2900	N. UU 9 mm	• 1 V	T To	V	-
OTOD	•0004	T00020	~• 0 0	•00	T * 7Q	2	I

.

Reflection	sin o wo	I/p	I/L	I Hreeraye	F	13 F	\F
006	.3939	I.3554	2.26	•95	2 . 9I	4	28
026 /	.3958	I.3590	2.24	.20	.6I	I	-12
0462	.4013	I.3703	2.22	.13	.40	I	10
0106	4384	I.4504	I.90	.08	.22	0	8
0126	• 5466	I.4927	I.62	.20	.48	I	- II
0146	.4772	I.5406	I.08	•80	• 59	I	12

\$10) M.J. Buerger. The Photography og The Reciprocal Lattice. ASXRED Monograph No.I

.

.

Patterson Synthesis-

Patterson projections were obtained using the new above $|\mathbf{F}|'_{2}$. The three projections g(xyo), g(oyz), and g(xoz) for $\frac{1}{4}$ of the cell are given in Figures 6, 7 and 8. The Br-Br vectors are the ease- (xyo) projection are the same as obtained in the initial Patterson using De Jong values although the rest of the plot is different. The complete Pattersons for all three projections are given in Figure 9. The originsof the three projections are seen displaced as in each case the origin is on the symmetry element, the two fold screw axis, and the relation to one another may be seen from the space group representation of Figure 2.

8

Second Electron Density-

Using the new F values for hko reflections, a second electron density (xyo) was prepared. This second electron density resulted in the correct number of atomic position peaks. The first electron density (xyo) seemed to be much in error due to an insufficient number of terms having been used in the series. In the second electron density (xyo) I37 terms were used, whereas in the first one only 75 terms were used. See Figure 10 a

Preliminary Comparison of Intemsities-

A preliminary check of intensities for hko reflections was made using the atomic positions as indicated in the second electron density e(xyo) and assuming an average value of the atomic scattering factor (f) for the nitrogen, oxygen and carbon as it was impossible to determine which of these positions represented which atoms. A sample calculation of intensity fellows.

12. * #3 10% c4 З \$7 6. -4 7% n 32. Э X 2) 65-PL. 1. 5% " 10% 1. 15-

Figure 6. Patterson Projection (Xyo)

۰.

1509136 1199 19 54222 13 13 494943231911 0305 048223 394446 10844 2 3 1 2 2 1 2 2 1 0 5 23 20 17 9 3 24 16 20 15 14 15 24 42 9 53 3 7 7 7 2 17 4 36 3783 34440 38 364 40 38 36 49 25 19 11 1 30 7 2 3 2 1 1 3 1 9 44 35 22 8 * 4 50 4 52 55 55 4 4 4 5 3 4 3 4 7 4 18 84 74 58 50 373 8 24 6 4 8 いんぶひゃしらしりょれー 35 3 39 35 29 28 37 35 34 328 44 02 1 35 34 37 43 45 57 56 62 53 47 37 20 9 オオリシスシャノフレン いたチュ 6 17 18 16 16 3 11 4 2 2 23 4444 3373252383 33 36 35 35 35 35 35 35 35 32 22 22 18 5 2 2 4 9 4 17 1 8 0 13 1 54 54 44 44 44 4 4 IP 19 18 Y 8 5 4 7 7 8 11 7 13 23 13 72 5 5 3 3 17 8 1 844156513565373212 233334470 +1844 15 1 14 27 9 74 115 6 3 247 2 314 314 10 3 4 13 19 28 7 42 50 2252 2993 2823 9 . × 25 27 25 36 4 207 65 12 11 192 216 -55 L 14 4 6 0 28 30 29 29 29 29 29 29 29 14 19 20 22 D +

"= 1 A

Figure 7 Potterson Projection (043)

1=1Å

0

Figure 9. Patterson Projections

.

.

Reflection	Parametess		VLp mf	Structure	Factor/m	VI	
m atom	x	y		cos2Thx	cos2\ky'	+	
150							
Br	. 178	.036	4 1. 5I	•437	.426	7.75	
I	.093	.380	7.03	.834	.809	4.74	
2	. 108	.430	7.03	.779	•588	3.22	
3	417	.283	7.03	867	86I	5.25	
4	.067	. 180	7.03	.913	.809	5 . I9	
5	1 50	.191	7.05	.588	•960	3.97	
6	.470	.113	7.03	982	918	6.34	
7	.470	.213	7.03	982	.918		6.34
8	.417	.283	7.03	867	861	5.25	
9	.200	.333	7.03	.309	-,509		I.II
IO	.261	.430	7.03	 107	.588		•44

军 =+ 33.80

The atomic scattering factor, f, is determined for each atom for each reflection as a function of $\sin \infty$. The rough comparison of observed and calculated intensities is given in Table 2.

Electron Density maps e(xoz) and e(oyz)-

Electron density maps $e(x \circ z)$ and $e(v \circ z)$ using the same proceedure as was used for $e(x \circ z)$ were prepared and are given in Figure 10 and Figure II. The three complete electron density maps all drawn to the same origin are given in Figure I2.

(II) M.J. Buerger and G.E. Klein. Correction of Diffraction Amplitudes for Lorentz and Polarization Factors. J. App. Phys. Vol. 17 No. 4 April 1946 285-306.

(I2) Internationale Tabellen zur bestimmung Kristallstrukturen. I. (Gebruder Borntraeger, Berlin (1935).

(I3) M.J. Buerger. Numerical Structure Factor Tables. Geol. Soc. America Special Paper 33.

\$6 1. μ " 2) . 19 x n 3/ 9.8 \$41 ¥ \$5 y 1.5

Figure 10 a Electron Dansily Playo

"= IA

106432218433567754 1.7.14 5776772 2 3 5 9 10 44 3348376531(ハフロリケアしのうのうの74755885977254 52 2 778002144412231444443354213204680 アレスシン しんないりつ しえ からいち アメもち シア もちいうい 345 45 6 6 6 5 5 5 5 5 5 5 6 3 5 2 9 15 6 9 13 15 15 35 11 73 42 1 6 21 9 19 63 58 552501 212 81476 450 61 1572 760 527 348 22 12 08 2 33 47 59 46 02 474 9 10 12 14 11 19 1 192 1 19 18 77 28 38 38 37 39 18 4 43 44 17 4 5 5 7222875375545727 3743222 254444 3533 5407 8082 572 4462 578 5745209292924 1522 17 19 9 42 54 9 56 8 6 1 6 8 5 4 2 5 - 8 0 5 19 34 85 6 3 5 4 + 3.4 4 6 4 6 5 4 5 5 5 5 7 7 2857 7 6 4 1 1 1 1 3 3 1 1 8 4 28 1 4 517 6 7 9 6 2 87 21 32550774 491 396557775666971 1104 1390887752817 35 6 22 10 16 118 12 9 23 23 12 7 15 8 2 6 11 20 18 11 3 22 37 5 57 5 12

Figure 10 Electron Density glog3)

1'= 1 A

C

.

Figure 11 Electron Density p(x03)

Figure 12 Electron Density Maps.

Atomic Positions-

By comparing the three electron density maps and assuming the diglycine structure to be made up of glycine molecules of known structure¹⁴ which of the peaks represented the oxygens, which the nitrogens and which the carbons were decided upon. The atomic positions so obtained are:

Atomic positions as determined from the electron density maps

Atomic positions referred to the same origin

	~			7	~ 7	:	~	w		-
B	. 178	.035	.215	I67	.072.083	Br	.178	.035	.833	
C	.089	.380	.370	.333	-I6I .083	C	.089	.380	.833	
Č	.106	.430	.180	.120	.144 .370	C	.106	.430	.120	
N	.268	.430	.180	.158	.482 .092	N	.268	.430	.158	
0	.470	.112	.363	.183	.220 .433	0	.470	.112	.317	
0	.196	.333	.417	.542	.054 .092	0	.196	.333	.842	
C	.423	.283	.484	.017	.I73 .233	C	.423	.283	.517	
C	.065	.172	.422	.127	.315 .123	C	.065	. 172	.373	
N	.145	.193	.443	•342	.Io5 .408	N	. I45	.193	.158	
0	.475	.213	.037	.350	.225 .100	0	.475	.213	•650	
0	.423	.283	.037	.350	. 173 .400	0	.423	.283	•350	

Second Intensity Comparison-

Intensity calculations were made using the parameters as determined from the electron density maps. A comparison of the observed and calculated intensities using a specific atomic scattering factor, f, for each of the atoms for each reflection is given in Table 2.

(14) G. Albrecht and B. Corey. J. A. C. S. 61, 5 (1939).

Final Electron Density e(xyo)-

Only four sign changes were found from those determined by Br alone. The changes were for 0.320, 0.22 0, $6I0_{\Lambda}^{370}$ 940 reflections. An electron density map e(xyo) made with these 4 sign changes showed a slight shift of parameters as indicated in Figure I3. The new set of parameters from the final electron density (xyo)are:

	x	У
Br	. 178	.035
C	.095	.380
C	. I04	.428
N	.278	.430
0	.462	.IIO
0	.200	.338
0	.450	.267
0	.072	.170
N	. I 49	. 194
0	.472	.213
0	.41 8	.283

The agreement between observed and calculated intensities is somewhat improved with these new parameters as is shown for a few reflections in Table 2.

6D D 4% 18. 4(:5 +3 IDL 1.1 ID 4) 10% 4.5 SY (it) " :0 4% SI 1.7 74. +3 '07 10%

· 5

×

Figure 13 Electron Density Q(xyo)

1" = 1 A

Table 2

Comparison of Observed and Calculated Intensities Under Three Conditions

- Condition I. Bough comparison using an average scattering factor f, for oxygen, nitrogen and carbon in intensity calculations.
- Condition 2 Intensity comparison using correct f for oxygen, nitrogen and carbon as well as for bromine.
- Condition 3 Intensity comparison using final x and y atomic positions and condition 2.

Reflection	Observed I	Observed V401	Calc. $\sqrt{I}/4$ Condition	Calc. VI/4 Condition	Calc. $\sqrt{1/4}$ Condition
hko			•	~	J
220	44.I	42	40	41	42
310	37.9	39	34.9	36	37
150	29.6	34	33.8	31	29
230	26.I	32		33	32
160	25.7	32	23.3	29	31
270	20.9	29	30	29	31
040	15.6	25	23.3	25	25
020	15.0	24	22	21	21
I 80	14.4	24	27.I	25	24
330	10.0	20	20.9	22	22
140	9.34	19	21.1	25	23
1100	6.6	16	16.6	19	17.5
210	6.2	I 6	14.7	12	12
080	5.8	15	20.I	17	13
130	5.75	15	9.6	17	18.7
0120	5.6	15	20.6	20	18
410	5.2	14	14.9	18	IB
530	4.9	14	18.7	20	19
470	4.7	I4	15.8	19	17
450	4.4	13	20.I	19.8	19
IIO	4.2	13	II	II	12
510	4.I	13	17	I4	I 5
290	3.4	I2	12.9	I4.6	14.6
3130	3.0	II	16.3	17	17.8
2100	2.9	II	I4.7	15	14.3

Reflection	Observed I	Observed V40I	Galc. VI/4 Condition I	Calc. VI/4 Condition 2	Calc. $\sqrt{I/4}$ Condition 3
LKO					
250	2.7	TO	13.8	12	II
350	2.7	TO	13.5	I0.6	14
240	2.2	9	12.4	12.0	9.5
560	I.9	9	13.4	I4. 8	I4. 9
490	I.9	9	13.7	13	I5. 0
1120	1.7	8	13.4	13	I 5
260	I.6	8	7.6	10	I2.4
280	I.6	8	9.6	10	10.6
4110	I.6	8	12.8	13	14
200	1.3	7	12.5	10	I0.5
600	1.2	7	7.98	IO	10
340	1.2	7	7.8	6	7
620	I.2	7	13.2	13	12
3110	I.I	7	13.5	13	II
0140	-93	6	II.8	II	II.6
8140	.92	6		17	17.7
2230	.98	6		19	
190	.96	6	8.2	8	
0160	.85	6	9.8	I2.5	13
T200	.81	6	I5.9	15	
760	.79	6		13	
3100	.76	6	II.3	II	
5200	.75	5	12.5	13	
6140	.74	5		14	
3170	.73	5	I0.05	10	
540	.71	5	6.96	12	
720	.66	5		IO	
1050	.65	5			
1070	.65	5			
740	.64	5		12	
580	.64	5	8.36	7	
640	.64	- 5	7.88	8	
4210	.58	5		14	
060	.55	5	3.6	6	
670	.55	5	8.7	9	
7400	. 53	5		12	
II80	.51	5	9.7	IO	
910	.50	4		II	
IIIO	•49	4	5.0	6	
5110	.49	4		7	
4190	49	4		IO	
6120	48	4		9	
		-		-	

•

.

Reflection	Observed I	Observed V401	Calc. VI/4 Condition	Calc. VI/4 Condition	Calc. VI/4 Condition
rkd.			I	. 2	3
<u></u>	A F			70	
6180	•45	,		12	
800	•45			13	
6160	•45			11	
2210	• 44			11	
3150	•43			9	
2130	•41			8	
780	•40			7	
5190	•39			12	
1150	•38			7	
320	•36			3	
4170	•36			12	
420	•36			3	
0100	•33			5	
1220	•32			8.5	
870	.30			8	
370	•30			6	
360	• 29			7	
2180	•29			9	
5100	.28			4.5	
0200	•28	•		10	
820	.26			6	
400	.25			4.5	
440	•25			5	
5130	.24			9	
2110	.24			4.5	
980	. 25			I3.9	
8120	.23		•	IO	
2190	.22			7.9	
7120	.21			5	
17 0	. 2I			5	
9 II 0	.20			II	
850	.20			3	
690	.19			8	
590	. 19			7	
6100	. 18			6	
4120	•I8			3	
6170	.18			6	
8100	•16			7	
840	.16			7	
430	.16			5	
940	.15			II	
460	•I4			3.5	
520	• 14			5	
2160	. I4			5	
6190	.13			8.6	
930	.13			6	
1170	.13			6	
960	.12			5	
II60	.II			5	

•

•••

Reflection Observe 2150 .13 990 .10 4180 .10 5150 .10 660 .10 0180 .10 0180 .10 610 .00 480 .00	od I Od	served	401	Calc. VI/4	Calc. 1/4	Calc. VI/4
100 2150 100 990 100 4180 100 5150 100 860 100 660 100 0180 100 1190 000 610 000				Condition I	Condition 2	Condition 3
2150 .13 990 .10 4180 .10 5150 .10 860 .10 660 .10 0180 .10 0220 .10 1190 .00 610 .00						
990 .10 4180 .10 5150 .10 860 .10 660 .10 0180 .10 0220 .10 1190 .00 610 .00 480 .00	I				6.5	
4180 .10 5150 .10 860 .10 660 .10 0180 .10 0220 .10 1190 .00 610 .00 480 .00	C				6.8	
5150 .10 860 .10 660 .10 0180 .10 0220 .10 1190 .00 610 .00 480 .00	0				5	
860 .10 660 .10 0180 .10 0220 .10 1190 .00 610 .00 480 .00	0				5	
660 .10 0180 .10 0220 .10 1190 .00 610 .00 480 .00	0				6	
0180 .10 0220 .10 1190 .00 610 .00 480 .00	0				6	
0220 .IU II90 .00 6I0 .00 480 .00	0				2	
1190 •00 610 •00 480 •00	0				4	
6I0 .04 480 .00	8				3.6	
480 .00	8				3	
	6				2	
950 .0	6				7	
6130 •0	5				6	
1130 .0	5				4	
1010 .0	5					
8110 .0	2				5	
890 •0	I				4	
7140 .0	I				2	
4100 0						
3120 0						
390 0						
380 0						
2120 0						
4140 0						
4200 0						
550 0						
570 0						
5120 0						
5140 0						
6II0 0						•
6150 0						
T000 0						

•

Reflection	Calc. 1/4 Calc	Calc. I/10 ³	Observed I
06 T	<i>4</i> T	୭୩	28
04 T	34	78.5	77 - A
032	22		то A
035 031	00 3 T		±≈•± T9
001	01 07	10.4	16
002	27	11.6	7
012	28	12.5	7
071	19	5.7	4.7
0120	18	5.2	4.6
053	21	7.0	3.3
040	17	4.6	3.4
073	20	6 •4	3.2
033	17	4.6	2.7
051	II	I.9	2•4
DIOI	I 5	3.6	2.4
022	12	2.3	2.3
093	14	3.I	2.2
092	13	2.7	2.1
0140	T2	2.3	2.0
080	TA	3. I	I.9
014	 13	2.7	T-85
074	●₩ T5	~•1 3 6	T 7
034		5.0	
004	18•7 TT		⊥•4 T 7
0160	11	1.9	
0152	11	1.9	1.20
081	II	1.9	•98
006	20	6.4	895
0122	IO	I. 6	•8
0146	12	2.3	•8
0200	8	I.0	•8
0020			
0181	IO	I.6	•7
0221	IO	1.6	•7
0112	12	2.3	-7
0201	9	I.O	.76
OTOT	5		.7
	D A	• - 9 5	67
	4	• 20 A	•01
- ULO	5	● <u>4</u>	•0
0142	7	•8	• D
045	10	1.6	•65
091	7	•8	•55
0213	II	I.9	• 5
0180	3	•14	•5
0132	7	.8	• 5
0193	8	I.o	•5
0134	9	I.3	•5
065	15	3.6	• 5
0211	4	25	•4
075	9	I.3	_4
0105	å	 T_3	-4
DAE	7 K	4	.36
000	ยท	• •	95
V176 0169		• 0 A	•~U 9
UTD2	D	• 4	A•
084	5	•4	• 2

Comparison of Observed and Calculated Intensities under Condition(2)

0114	7	.8	.2
0126	9	1.3	2
064	3	.14	.2
0172	4	.25	.13
0113	2	• 16	.13
046	6	. 57	.13
0174	7	•8	•I
095	5	•4	•I
0131	3	• 14	•06
094	5	•4	•03
0124	7	•8	• 03
0154	9	I.3	• 03
0106	4	•25	• 08
024	4	•25	0

.

.

•

Reflection	Observed I	ObservedVI	Observed 6	Calo. VI
20I	40.67	6.38	38	36
002	28.97	5.38	32	31
IOI	13.15	3.63	22	29
203	6.II	2.47	15	25
102	4.29	2.07	12	13.5
302	2.93	I.7I	IO	19.5
30I	2.52	I.59	9.5	8.3
403	I.76	1.33	8	13
50I	I.7I	I.3I	8	1229
202	I.58	I.26	7.5	7.8
502	I.54	I.24	7.4	16
304	I.36	I.17	7.0	13
600	I.05	I.02	6.I	10
004	.97	.98	5.9	18.5
70I	290	.95	5.7	13
006	.83	.91	5.5	23
705	.71	•84	5.0	21
200	• 53	.73	4.4	IO
800	•53	.73	4.4	13
105	43	•66	3.9	7
902	.33	. 57	3.4	9
504	.33	• 57	3.4	9
40I	.31	• 56	3.3	6
206	. 28	• 53	3.2	6
90I	.20	.44	2.7	9
204	.18	.43	2.5	3
400	.15	.39	2.3	4
104	.14	.37	2.3	4
802	.13	.36	2.2	5
602	.10	.32	I.9	7
503	.10	.32	I.9	. 22
404	. 09	.30	I.8	2
205	•05	.22	I.3	7
405	.05	.22	I.3	5
505	.04	.20	I.2	8
605	.03	.17	I.I5	6
803	.025	. 16	.95	8.5
601	0	-	• • •	
402	Ō			
702	0			

•

Comparison	of	Observed	and	Calculated	Intensities	Under	Condition	(2)	١
------------	----	----------	-----	------------	-------------	-------	-----------	-----	---

Structure

Unit cell:

8	8.2I	A
b	I8.42	A
C	5.40	A

Space group:

P 2, 2, 2,

Atomic positions:

	*	3	Z
Br	.178	.035	• 833
C	.095	•380	.833
C	. 104	•428	. I 20
N	.278	.430	. 158
0	•462	.IIO	.317
0	.200	.338	•842
C	.450	.267	•5I7
0	.072	.170	.373
N	.149	. 194	. 158
0	.472	.213	.650
0	.418	.283	.350

Discussion

The above structure can only be regarded as an approximate structure. The atomic positions are in some error due principally to the overlapping of the atoms in projection. The atoms could not be further resolved as only zero level photographs were taken so that only projections of the cell could be obtained. No account has been taken so far of the position of the hydrogen atoms in the structure or of their contribution to calculated intensities. A projection of the determined structure on xyo is given in Figure 13. Here the shape of the glycine molecule may easily be seen.

f.,

E.

Figure 14 Projection of Structure on (240)

, Maria

Acknowledgment

١

The writer is indebted to Prof.M. J. Buerger for the suggestion of diglycine hydrobromide for orystal structure determination. Suggestions during the work and reading of the manuscript were most helpful.