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I INTRODUCTION

Recent measurements on the fine structure of hydro-
gen by Lamb and Hetherford (1* have indicated that the energy
levels of the hydrogen atom as calculated in the usual way on
the basis of the Dirac theory of the electron are not correct.
At the same time, measurements by Kusch and Foley(z
have indicated that the energy of an electron situated in a
magnetic field differs from that calculated using the Dirac
theory. If we assume that the spin magnetic moment of the
electron is not one Bohr magneton but greater than 1 by an
amount /20 (&= e®/hc = 1/137) then we reach agreement
with these measurements. This assumption would also remove
the greater part of the discrepancy between the calculated
and measured hyperfine splitting of the ground states of

hydrogen and deuterium as reported by Nafe, Nelson and Rabi(:5

and by Nagel, Julian and Zachariass4
These results suggest that calculations on the basis

of the Dirac theory should be modified but do not necessarily

indicate a failure of the theory. For a stationary state in

the absence of fields the Dirac equation is
{c&.f)'\\ ‘Rmcg - E}’P’ - 0
> .
When external fields characterized by A,1> are applied we have

* A list of references is given on page 73.
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the usual transformations
- - -—
Pp—>p - ed/c , E—E -¢e¢

The equation then becomes

jed.D + )Bmoz - E - ec.Ain eqﬂllf = 0
The terms -e %.X and e represent the interaction of the
electron with the applied field. For the present let us con-
sider the -e X.A term. In calculating the energy levels of
a system of electrons in an electrostatic field whose potential
is & it has been customery not to include an %.K term. On
the other hand it has long been appreciated that to calculate
for example the rate of spontaneocus emission from an excited
state of such a system we must include this term where.z in
this case 1s the veetor potential representing the radiation
field . This term is effective even when no light quanta are
present. It will be remembered that the pure radiation field
can be represented as a system of (quantized)oscillators. The
wave function for the system of particles plus radiation field
now becomes a function not only of the coordinates of the part-
icles but also of the coordinates of the radiation field ,
for example the occupation numbers of the various modes of
oscillation of the field. It now happens that the matrix elem-
ents of Z.K are not all zero when the occupation numbers are
zero and thus -eiZ.K is an effective perturbation even when
no light quantea are present in the field,

Thus we can see that when the term representing the



radiative coupling is properly inserted in the Dirac equation
the energy levels of the system should in general be different
from those caleculated in the usual way without this interact-
ion term. The difficulty however is that the energy values
thus calculated are found to involve divergent integrals.Thus
each energy is infinite and moreover the difference of energy
between two levels will in general be also infinite. It is for
this reason of course that the interaction has been omitted
in the usual calculation. It is however very significant that
the energy levels calculated with omission of the radiative
coupling are only very slightly different from those observed
experimentally. Thus, though the coupling gives rise to infin-
ite level shifts, yet in a very real sense it behaves as a
small perturbation.

It was suggested some time ago by Schwinger and by
Weiwskopf that a meaning could be asoribed to the infinite
energy which arises because of radiative coupling. Their sugg-
estion is that this infinite energy in the case of a free
electron can be regarded as representing an electromagnetic
mass whieh is included, along with the "true" mechanicel mass,
in the measured mass. The fact that this electromagnetic mass
appears to be infinite is not unduly distuEPing. The infinity

d
always appears as an integral of the type Kj:? where ck
represents the energy of a light quantum, and thus is due to

extremely high values of K . We may reasonably suppose however

that electromagnetic theory needs to be revised for extremely
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high energies and that if this could be done the integrals
occurring would not only be finite but would really show the
radiative coupling as & small perturbation, its smallness
being characterized by the faet that the electromagnetic mass
is of order om.

So far we have spoken only about the interaction
with the radiation field. It should be clear however that we
should include in the electromagnetic mass the electrostatic
self-energy of the electron, that is the energy due to its
Coulomb field.

A separate aspect of the problem i1s due to the fact
that the ordinary Dirac equation for one electron (which we
shall call the single electron theory) is incapable of explain-
ing pair production and other phenomena associated with pos-
itrons and is moreover plagued by the existence of the negative
energy solutions. The Dirac hole theory on the other hand
disposes of these difficulties and it is on this theory that
the present calculations will be made.

Now however our exemination of the self-energy prob-
lem must be modified. For we no longer have, when we discuss
the self-energy of an electron, a simple system of one elect-
ron plus radiation field. Instead we have a many electron
problem and we must consider ,as the perturbation to be added
to the usual Hamiltonian, the radiative interaction and the

electrostatic self-energy of each particle and also the

interactions between the particles.



It is well known that the introduction of hole
theory results in a logarithmic divergence of the self-energy
rather than the linear divergence which is characteristic of
the one electron theory. 4s a consequence of this, when we
consider the problem of an electron in an external field and
carry through the renormalization of mass in accordance with
the idea mentioned above (and also the renormalization of the
charge), we shall get finite level shifts due to fhe raediat-
ive coupling. This would not be true in the one electron
theory.

The other main result of the introduction of hole
theory is the phenomenon of vacuum polarization which leads
also to logarithmically divergent expressions. It has however
been long recognized that the principal effeet of the vacuum
polarization is a renormalization of the electron charge in
a fashion similar to that suggested above for the electron
mass. When this is carried through we get once again finite
values for the level shift caused by the polarization of the
vacuum. For an electron in an electrostatic field this was
first calculated by Uehling(s.

In the present work we shall consider an electron
in an external time-indépendent electromagnetic field. We shall
evaluate to the first non-vanishing order the perturbation
energy which results when we add to the Hamiltonian of the

system terms representing the radiative coupling and the el-

ectrostatic self-energy for each electron and the interaction



between the electrons. We shall then develop a procedure for
separating out of this result that part which may be regarded
as energy due to electromagnetic mass and we shall carry out
this separation. We shall also separate out the terms which
correspond to a renormalization of the charge. The residue
which will be finite will be regarded as the true level shift.

We summarize here the results which emerge from the
calculation:

1) A reasonable procedure is developed for separat-
ing from the total perturbation energy that part which is due
to eleotromagnetic mass. The separation of the charge renorm-
alization terms is done in the usual way.

2) An application to the case of an electron in a
low energy state of an external stationary electrostatic field
gives a level shift (where K.is given by Bethe'® and V = e )

n

- D
W o= (A2 (97] { ak -1n 2+;g}+ X ¢ [E.S<p]
SK{mc] av é X 0 T onZe2 av

3) For hydrogenic atoms this gives (where n is the
principal quantum number and Ry is the symbol for one Rydberg):

M

For L = 0 AV« B oOzF Ry% Sgg - .oeo}
3T 8 X
©
For L £ O AW = 1 o9z% Ry 1 (7 = L+1/2)
] no (T+1) (2L+1)
For L £ 0 oW = -\ ooZ¢ R (T = L-1/2)

- y 1
T nd L{2L+1)

For the 23% - 2p% separation in hydrogen we get as



the corresponding frequency 1045 megacycles/sec. This agrees
within experimental error with the measurement of Lamb and
Eetherford(l who give the freguency as being about 1000 mega-
cycles/sec.

4) The spin-orbit term in (2) suggests a surplus
magnetic moment due to spin, of magnitude °%/2W . This result
(whieh was previously given by Schwinger) agrees with experiment.

5) An application of the subtraction procedures to
the case of an electron in a stationary magnetic field gives

a verification of the magnitude of the surplus magnetic

moment.



II. GENERAL FORVMULAE FOR THE PERTURBATION ENERGY
2.1 We consider sn electron in a stationary state of an
externally applied time-independent electrostatie or magnetic
field. The state of the vacuum in this system will be that
where all the negative energy states are filled. Thus the
physical situation in whiech we shall be interested will be
that where'all the negative energy states and one positive
energy state are filled.

We shall regard as a perturbation term the inter-
action of all the electrons with the radiation field and with
each other (including the self-interaction which gives the
electrostatic self-energy) and we shall evaluate to the first
non-vanishing order the energy which is due to this perturd-
ation; the calculation will be done by the standard perturb-
ation ﬁethod.

As the significant energy we shall then take tre
difference between the energies of the two systems: Vacuum

Plus one electron in a positive energy state, Vacuum.

L anc-rl - Wiac

We shall call this the perturbation energy.
We describe the electromagnetic field (not including

->

the externally applied field) by potentials A,Q’ which satisfy

The longitudinal part of this field can now be replaced in the



usual way by the non-retarded Coulomb interaction of the elec-
trons plus the electrostatic self-energy. The transverse part
of‘the field can be represented by a new vector potential‘z
su;h that

Y A =0
We shall at first consider the two parts of the field separ-
ately. The energy due to the first part we shall call the
electrostatic energy and that due to the second the electro-

dynamic energy.

2.2 The Electrodynamic Energy ( WP

We expandlz by assuming periodicity on the surface
of a cubic volume V, V is then the normalization volume and
should appear at various places throughout the calculation.

We shall however not write V explicitly.
- (.Kr LKr
- ) B«e{ Mo + ¢ /”‘lru"k

A=1,2
-~
In this expansion €, is a unit polarization vector and we have

I R - s A
é;—=| éq-éz = én'K = é)_K =0
We have alsoB, = [21fﬁzc]%. The sum over K will be replaced

« AC
eventually by an integral and € 2 B F(K) e SCLK FU‘)

dK = K’“d.K<LUOK
The wave function for the system is now a function

both of the coordinates of the electrons and of the occupation

numbers Y).\) which give the degree of excitation of the various
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radiation oseillators (i.e. the number of quanta present).

@ = IP’ (electrons) q)(photons)

The lr,[\ﬁ and k:uzlare operators which act on CP according to
‘s‘:&) qj ( D) ) = ﬂ;(\,p't)ﬂ q) ( &= )
Thus L\*:&) k}&) (P( M) ) < DK CP (D& )

The Hamiltonian for the system is H » H(electrons) +
H(photons) + H(interaection).

H(electrons) = 2 c&.(i;-elo/c)«— ch2 +ed, = ZHO say.
elect.

where Io, 4). correspond to the external field.

H(photons) = cZK(r;\E) & = Z N,&) K

AR . s
H(interaction) = -e Z By oL, a QL-\’(.('/.‘;\ @+ 0 R (o
q}ect.
where ol = 84-2\:’?‘

We shall always concern ourselves with physical
situations where no photons are present (all Y\,.l‘(’) =0 ). Ve
regard H(int.) as a perturbation and shall evaluate the energy
anc+l for the system in the state : all negative energy
states filled, one electron in a positive energy state T° ,no

photons present. From this we subtract the energy Wyge for the

System in the state: all negative states filled, no photons.
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Since the |09 have no diagonal elements the first
order perturbation energy vanishes. The intermediate states
for the second order perturbation energy must be states with
one photon (K » ) present. But we have (using the symbol ¢ )

for matrix elements)
<<5( O& IR Pl L&) - {HOHB ) ko ¢ (o 1=

and these are the only matrix elements of I ’ b’which will
appear. We may thus conveniently ignore the \¢ ,h} operators
and also the dependence of ¥ on the radiation field. We then

use
>

H(interaction) = ~-e Z BK o()‘Q_i L\(.t‘/‘k

elect.
for emission leading into the intermediate state (-), or ab-
sorption leading from the intermediate state. In the inter-
mediate state the radiation energy is cKk so that the total
energy i1s E(electrons) + ck .In the physical state, the radi-
ation energy is of course zero. Ve shall always use the symbol
E to refer to the energy of the electrons alone.
For the energy due to the perturbation we have
R = EH{interaction).

w =Z BpiRip p = Physical state.
E

p-Ei-cx i = Intermediate state.

It is convenient to introduce the second quantizat-
ion operators for the electrons. Let q)s and Eg be the eigen-

functions and eigenvalues of Hg,. We write
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X'Zasqfs X*‘Zagqﬁs*
s s
We write the wave function for the electrons as C{ ny ng . . )
where ny (= O or 1) is the number of electrons in the 1B

gtate. Then

aic( ,D.l, ) - pd nic( ’l-ni’ )
af¢{ ,ny, ) =2(l-nyc( ,1-n;, )
i - nio a;ai + aiai - 1.
H(interaction) now transforms as follows;

H(inter.) > <{(X*RX)} = -e > afag R:S( K ) By
T,s
R

where R?S(K) = { Bl QiLK‘r/R 7

b N

We write CO and E° for the physical state, C, and E®

for the intermediate states. Then

Z Ry Re Res €2 a%2.CaV(Crata, )

AK E°.E'-cx
KQrs o
S R- R.rs <_Q' CLK qhaCchls(: >
412 Es Ee-cx

KQrs

The diagonal combinations of the a*, a operators are

NkNr (k=Q, T==s) and Ng(1-N,.) for k = s ,Q=r.
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Then N N N N
W - Q(CI Sc‘gjz Z Rsr Rrs Ns(l-— Nr) _ Rrr Rss Ns Ne
4‘“'2 K ’AS‘(’ ES’E('-QK Q\(

Applying this result we have Wv«n - W vac

) S—
S W . Séﬁ %Z Bosze | § Alsze -°£Si§}di&n
-, < N ~ K -2 ry
AT 3+ Eo-E3-cX el Ezy-Es-cx AT J K —

where we define ﬁlgm“ = (qi: ol e.u(«r/-y\ T \}J:O(,,Q - A‘g—‘">

and ji indicates a sum over the states of X eneray.
= The first two terms have an obvious significance.

They indicate that the energy of the vacuum plus one electron
is on the one hand increased over that of the vacuum because
the added electron can make (virtual) transitions to the PosS~-
itive unoccupied states while on the other hand it is decreas-
ed because the presence of the electron in the state ¥, elim-
inates the vacuum transitions to that state.

We shall designate the first two terms together as

the electrodynamic exchange energy WDX

and the third term as
WDN
the electrodynamic non-exchange energy . The reason for
this separation and nomenclature will become plain later.
We now write WDN in a different form. Expanding the

WY 's in free electron solutions -
Us r-r

B TG -3 dGe

\n-’
(where U-ﬁ\») is a normalized Dirac spinor ) we have
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A
Aklmn

:th:L},j Q.Z(f; +K) C‘l‘.",‘,, @5) Q\:@G-To (\:"Ct:) ol U&F re) M \I&i)d, \ﬁ%‘i) );

We define Bklmn = Si Grdh ol T Sty oL,.tPtrJ)K Trﬁ:\

where i } denotes the spin scalar product.

Then B?]
P ‘/’ P
ZCL cr)q,é%)q c%)Q“TKUL &f)o( us))(\x‘q)ogu;r)\ 4zd
\6’-}’-4
The value of the inte 2 2 % X =9-p
gral is 4T A %,r-m where K = ~t>
\<2
Using this we get - 2 A
B - 4T 4% A = 1 -
klmn "}i == “*Klmn s A
P K* ar S%ﬁA%imn
Then WDN - -ezjz; B:SJJ
I, =02
To summarize:
W W ™
by
W‘ngigsgz Alsa3e & = E5 =*1
47t J K =
" )\J_: 2 Ee- E;--:&gs \Es|
x4 A
WDN = "9.‘5.84_&2 ngggs = ~QQZB YY)
2
an ) & = =
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S
2.3 The Electrostatic Energy ( W )
When the longitudinal part of the field (derived
- -
from <b end A(long.) where ¥x A(long.) = 0 ) is eliminated
the result is to add to the Hamiltonian of the system a term

1/22 e> . For i # j the terms of this sum represent simply
Tij
the non-retarded Coulomb interaction., For i = j the terms are

meaningless as they stand but when properly interpreted rep-
resent the energy which an electron has because of its Coul-
omb field. By use of the X operator introduced previously
both parts together can be represented as the average value

in the physical state of the operator

by - £ DCXBY LY 20

This is reminiscent of the classical expression %gﬁ?) j\?')d__;?_c_i;f'

ie- 'l
But in the present case the Xts are non-commuting quantities
and as a result WS will be found to involve terms of an "ex-
change®character as well as terms which have a direct class-
ical analogy. As before we shall separate the two types of

terms and write
S I
W . wE 4+ g

¥ > > *> D Y * 31
Introducing the quantity B‘%klmn = si ‘}kﬁ') ?QW)B{'}H\T') 9—{,&[") _’rc}..r
|-l
A
in analogy to the Byjpp introduced previously, we have
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2 o ko pE
Wop e 1/2 e Z ax8yara By
In this case the first order perturbation energy is not zero.

We thus need the average value of wop in the physical state.
For any state C( nj N, o« . )

W - 1/2 ezz Bﬁlmn {C* ajayapa 0
Then by the same argument as before,

Wz 1/2 e Zﬂk(l"nm)B%hnmk + 1/2 32§ I({kNmBﬁkmm

Applying this we have

2 4 2 4
Wiac+1 - Wyace = v =1/2 e ZBOJJOJ‘T T e zBooJJ
3 3

where once again we use the symbol AI - Y 1 according as %
is & state of ¥ energy. As before we label the first term
as the electrostatic exchange energy ( woX ) and the second
as the electrostatic non-exchange energy ( WSN ).

The relationship derived previously between Aklmn
and Byypp clearly holds in this case also. Finally we have

(defining Al%lmn in the obvious fashion) :
W Wk oa g
>
wx “GSCL*KZ 4455, 33 = 1/223213;%3;,033
T

X0
4T ) K 3

N "z 4 Z 2 L4

. :1\3 Sé.-KE ASoTT = e” BooJJ

3 J°
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2.4 Symetric Form for Electrodynamic and Electrostatic Energy

The expressions for WD and WS are in rather differ-
ent form corresponding to the fact that we have divided the
total field into two parts and have treated the two parts in
a rather different fashion. This separation is of course not
a Lorentz-invariant one. A different procedure is to expand
and quantize the total field. The difficulty with this is

that the Lorentz condition

V.1 o+ 1/cd =0
must be treated as a supplementary condition whieh connects
the two types of longitudinal quanta.

We shall now convert WD+ WS into the symetrical

form which would have emerged from this procedure. This is
of 1ittle importance in calculating WD1-WS since the two met-
hods will of course give the same result (the second is how-
ever somewhat simpler). But the difference in the two proced-
ures will be found to be of great importance when we later
eonsider the subtraction procedure which will eliminate the
energy due to electromagnetic mass.

We consider the sum l/cxj{AgJJOJE which occurs in

J

WS. Let H be the Hamiltonien and Ey, Ej the energies corresp-

onding to ¥,, ¢ j. Then

- - > - >
> - > - (KY (K. G ~ = -~ —» \K.(
HqLK.r/k _ QLK-f/k H = cd.',e 4‘_ /)"CO(T\ = Col.Ke A

> >
LK
(the other terms of H commute with @ Vk. )



BrE/A - C e -k

TR/ -e colke

Similarly HeQ
But < \}: [ H QrLK‘r/T&et e H] Ew)’ (Ex- Em) <qf ‘7 $n)

T, v, 2 &gy
We have then (En-En) (gﬂe <h ?fn>= i‘CK({’No(KQ /R&’ro

> 5
where o/, = l/K ol K

We use also the arithmetical i1dentities:

4= (k.- EJ)_(E ‘ _ (Eo-E7)

Ko Eo-Ey-oK & ¢&
LEQ—Ex)L__ l } \ .\.(EQ"EJ)
CIK" EO‘- E,- cK Q?_K‘l-

Applying these results

4
WSX gd_\( [z ﬁ eJIJo %CE E:‘) } z Je ('EV‘EJ‘)‘
4:;( 3 Eo-Er-cxkdr 7 NS

The last term of this gives

Z/\E _.LK(_/-R§ \<%;-»—> e lhg;> <§:°ZZ§;°>=°

c i

T cK®

% _ &a.\( z o) { Rogge- 03.3%

Then

‘FN

> >
where in Al%lmn’ °(x is replaced by ch(.K = 0(«
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We can now write, using the convention that
/

z F(N) = F(1)+F(2)+PF(3) - F(4),
2 /

> A -
R g‘—}'—‘—‘- Aorze
T T4t ) K - (E,- Es-ckda)

=Y
In evaluating the sum over A = 1, 2, 3 we can replace 3.-6. ’
> » f - > >
of- € s /|<°(-K by the components of ™ along the axes of any
other orthogonal coordinate system. Most simply we can take
04. ’ 0(2. ) °‘3 .
q
To combine WDE and WSN we observe that ASoJJ = 0.

For this involves the matrix element
Kot/
- LK-V - % TUERU/AR A =
<k£ Dé\‘ k?o) =(E°-E.)<%6Q $°>QK

Then / a1
DN > > o2 c &.rcir

Y- ).
W ‘\-W WN = =€ z 00JdJ = S{i(ﬂﬁwj ) QzJo \r_‘_
AT
A
The last step follows immediately from the definition of Byyp.,

-
and the 1dentification of ¢ o as the velocity operator. 9°
S
and ), ere here the charge and current densities due to the

electron in the state \I’, ;i P and are the densities

-
neg .)neg
due to the electrons in the negative energy states. As usual

the effects of retardation are included in Wx.



Finally we have, as the symetrical form of the

perturbation energy:

" B SR

> f A
WX _ &C;"'-— gci'ﬁ- z H T Jo
- 4.-'“-2' K T )\(EQ - E;r °QKSJ")

/ ! 2 - - B U
o - okt A‘EZ A “‘Z L {?Er’) @)=L (@ @yldede
T ap "E—-Aﬁ“”“e  Boosa= | Sy OIS,

J I

A
The definitions of Aklmn and B;imn are given

below for convenience: ( note that we take <i4.= 1)

* - - » +L?\F
B = (oot NThg) (T N,

AN E R - FR-T- S LA \E.ﬁ’)f;‘;".
—~c

The terms in W for A = 1,2 give the electrodyn-

amic energies; the terms for A

344 glve the electrosta-

tic energies.,
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I1I. EXCHANGE ENERGY (WX) FOR THE ELECTRON IN AN APPLIED FIELD

3.1 We now take up the problem of calculating the energy
WX, the general expression for which is given in the previous
section. We shall leave until later any consideration of the
non-exchange energy WN. We take the case where the unperturbed
system includes a stationary external field, which may be
electrostatic or magnetic. Thus the unperturbed system will
have one electron in a positive state ¥ ; the vacuum elect-
rons will occupy all the negative states U3-. ¥ and %3 will
be eigenfunctions and Eo and EJ the corresponding energy val-

ues of the equation
i c?t.;+ch2+U-E}@: 0

Here Ua V- €% , or U = ~e % .k for the electrostat-
ic or magnetic cases respectively where ¢ or'ﬂ describes the
applied field. It will not be necessary to consider combined
electrostatic and magnetic fields since the results of inter-
est will involve only the first order in the fields.

We shall alwayg concern ourselves with states which
are "non-relativistic", that is states whose energy, exclusive
of the rest mass energy, is small compared with mcz. Then too,

for the average momentum p we have

S é(}L ( )L = me)

We have now
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f A
WX __—. gCLK ﬂ ©JJa
47" (E - Er-cxdy)

e
4T+

i Z ( Erelad ) Getpe VTR EY
(Eo*Es-C05)

In evaluating this expression we shall treat I,
exactly. The intermediate states will however be expanded in
powers of U, regarding U for these states as a perturbation
on a free particle Hamiltonian., Clearly this procedure will
not be accurate for\low~lying intermediate states but will
be satisfactory for higher states in the continuum. To cirec-
umvent this difficulty we shall at first restrict ourselves
to values of the light quantum momentum X (and we use this
term even for the longitudinal field) which are greater than
<§P~ . It will be satisfactory to consider d ~ 1/137. In
this way the only effective intermediate states will be those
whose average momentum Si is greater than A}L .

For X< 3); we shall be able very easily to make the
calculation in a manner similar to that of Bethe(s. The two
parts of the result will join correctly so that there will be

no doubt concerning the correctness of the procedure.

We expand ‘Ps as

2. $G) M%HZ( ‘&“‘k i ¢’3’%">
E™

(EX Q- P@E) uk“) EL@)(EEE) E@g))
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where Cbs(i) - Uu‘k)Qk Nk is a Dirac free electron solution.
EJGG) = césbﬁﬂ‘t E@E;SS
u\"s : r;;.; <S>
SERC IR o)

For brevity we define

S AN Q&‘?/ R &%})

70
4
L]

RS, <$®&£&H“£>

&t

3 (12 39)

&s‘:‘k): EL‘Q- Eecgs"'cK

We insert the intermediate state expansion into WX
and collect together the terms of zero, first and second order

in U.

Zero Order

& . &Y R RE s
ﬂ" g XZ% @E)

First Order

. Jo To 33 J
7 =-°£€§4£Z§R 80 Y L R R U }
ﬂ : N K\:‘EJ)%\P KE*-E")B@@

4 &

.‘%
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In the first term of this we interchange J, J' and q, q'.

We use

{ J JI g -\ J, J' both +or both-
)

E%HE\P qu BGG L‘k)B\%)
- L Jd, J'" mixed in sign
U Vg
where L = 1+ L, = 1+ ACK
EGkH-E%’)
T :4_93343_2 Re; Uy R (didi v dde)
4% .}\ EJ(‘k) R3 @k’
- o (4R Z LRZ Uy 3L (d3 37 3733
v ¥

Second Order

A

e t \ + ] l
4:.“:. g K X \EJ“ EJ )( ET‘ ET ) BT ) (EJ‘E:’)(EJ\-ET) B{P
TI'T

ck%‘ %. + LLI'J" u&':‘ RJ“O ReT Js
(F- EXE-E7) By

CL.\Z 2 % U..ST Rl‘o th”“ u-T' I<§$ KJ'o RQJIP'"I'U;J‘:’JS

In the first term let J ,q¢' —> J ,q; J,a—>J,q" ; _J:Q"'*J‘:q“

In the second term let J,a'—>J, ¢ ; J, ¢ — J, ¢

{ 1
__ i—\z %3 :s‘us‘z“ 3% 33 : ‘
Then Wy :‘_: S TZ R™W R {(EJ‘- E)(E-PIF

I3 ‘3 . + 3'“ + A J
Y FoeIEeF @ -OEER
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L1

We now find thet { } \

R%k) %3“%\)31\%.‘) (all J's+)

-\

8% 33‘@5') %3"%*)

(211l J's—~)

\_/

z —‘L‘.ngdiz S W R (333+33"—3 33'33'
@k) R ')B%)

i, ds
+ terms involving <3 , 93 mixed.

It will now be convenient to write the expressions
X
for W as the expectation values in the state \I’o of certain

operators.

o s

We expand ¥, as ¥, = Zo.“f) &)

The expression in brackets then becomes

Z,C;_QL%) q—L\F) { &Q‘P ol \_LTL‘, ¥ u}" (r ) ol u_\r»

E({a X) - Eocg;y +CK

e
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We introduce now the projection operators G* which
we shall use all throughout the calculation. When operating
on free electron states of momentum '13-'7( , these operators

select the states of * energy.

G* = L’ " ci.i+8mcz-cl.? =1 + E_] say.
2).1‘ E(p-K ) ol

B

We write ( E(g-z) ¥ E, + cx )

The expression then becomes < 5o, G .G ]"(a %)
BY B

We proceed in the same way for W}f ’ Wg « We then get

/
WX--ocaSé-_‘_‘_Z 1* G - G
°- 41"0 K <Lk° od"[ﬁ" ]'3"] L \'E)
*
P P j(g*d’*é’ g _ Gud _ GUg
1 4 N* ? - e 7‘}~.+§++-§—-E‘+'——-“-B3°Z> LI°>

0o bd
L]
'
&
le)
f¢]
n
Ry
A
LG
o
¥
X
r—A
'8"
194
wIQ,
]
19,
19,
IR,
|
2
b4
A
°
~

+~ -
+ Terms involving G, G mixed.
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The second term of WX must be interpreted in a spec-

1
ial way. Lo which was originally defined as 2¢ K now
E{a)+E(q)
becomes 2 K « In this the term in p must be

E(3- %) « E(P-% )
understood as standing to the left of U and the term in p!
as standing to the right of U. This will however cause no
difficulty.

We should note again that the Gi'Operators select
intermediate free electron states of * energy. Thus, for ex-
ample the term daéhd;g_will correspond to a transition as
follows: 1). The electron leaves %. and goes to a positive
free state, with emission of a photon. 2). It is transferred
to another free state by means of U. 3). It returns to %,

with absorption of the photon.

3.2 The Divergent Part of Wx.

We shall not at this stage evaluate explicitly the
expressions given above for Wo, Wf, Wﬁ.For the calculation
will be considerably easier after we have removed from WX
the part which we will consider as corresponding to the elect-
romagnetic mass.

WX is of course divergent. It is worth while however
to examine the coefficient of this divergence. We shall then
find that not only is WX itself divergent but also the diff-
erence between the values of WX evaluated for two different

states 1s in general divergent. Thus since the divergence

depends in general upon the state, a new physical idea will
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be needed to give finite values for the difference in energy
of two levels.

We shall simply sketech this calculation here. An
examination of the general calculation to be given later will

make clear the procedure which is being used.

We use the definitions of B, and G¥ = 1/2 [1 s H_l

- - - = 2 - -»
where H = ¢ ol.p - LK + ?mc , and E = E(p~X ).We find also

But expanding B+ B. E, we have
Q&ELL+lI mr&ﬁ \+if]
E
Integrating over wagives
ngd (€ -S Tt 3% (eooapue-c}]
The divergent part of W% is then
=]
'_EL_iE-4 me? - o .p g&bﬁ
X ° F p]av K

(There is of course no divergence at X =0.)
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X
] - We also have divergent terms in Wl.

\ \

~S

Ry 4 cr* I\+ E'K‘E_]

]
Thus any terms in Z o/,GUG, which behave like 1 or K .p
kN

will diverge.

%GOG, = %a,[u +Bv vl %U%]%

s fas]

The terms in U H and H U have no divergence, the highest
E E

power of K in these being !k oK .

But HUH 1 {(Hy=cod.k) U {Hy - c.¥)

~J
0 oK2

B
B

The divergent term of this is -3(- LK WK

Let us now, for convenience, restrict ourselves to

electrostatic fields, U « V. Then

P
—\\Zi_ ol-k Wel-K =V

For the divergent parts we have then

Z'OL,@UG%\, le/z V=V = Z&,G‘m‘o(,

! - -
TG, = I LG, = O
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ad
The divergent part of w% is then o (V] Sd___.l(
27 av.ox

It is easy to check that Wg and all the terms of
higher order are convergent. Using the fact that
| Eo =[c§.'f3+s§mc2+ v av
we have the result that,for an electron in the state <. under
the influence of an electrostatic field given by V- e ¢ ,

the divergent part of WX is

The same result of course holds for the free elect-
ron. For this case it was given first by Weisskopf(7

Since the average value of P depends on the state
we see that in general the difference in energy between any
two levels will be divergent. There is however a special case
of some interest.

For the Dirac equation with electrostatic field

V=e¢ , we may construct a virial theorem,
-
U pme s VaTivv - E),, =0

For the Coulomb field, this reduces to [pme®], = E, .fhis

is however not a gauge-invariant way of stating the result).

We see then that for the special case of the degen-
erate states of hydrogen ( e.z. nsi , npy ) the interaction
with the radiation field does produce & non-infinite splitting

of the degeneracy, which in fact will be found to be of the
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same order as the Lamb and Retherford‘splitting. This result
is however not very useful. In the light of the subtraction
procedure to be described, we may say that it corresponds to
the fact that the electromagnetic mass of the electron in the
two degenerate states differs by a non-infinite amount.

We should add finally that consideration of the

non~-exchange energy WN, which will be made later, will not

change the results above.
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IV. THE ELECTROMAGNETIC MASS

We must now consider the expression for the pertur-
bation energy and decide what part of it can be regarded as
corresponding to an electromagnetic mass to be subtracted away.
The essential point of this procedure is easily demonstrated;
if we have a system of electrons under the influence of an ex-
ternal field given by'Z,§’, the Hamiltonian, without the rad-
iative coupling, is

Zc&.i + e[ -2 .E+q] - cha'
elec.

Suppose now that when we consider the radiative coupling we

find, in the perturbation energy, terms of the form

- - 2
J‘z e [-x.444] oy  2nd ézz[ﬁmc ]av
elec, elec.
where 3, and < are of order ez/hc = oL . Insofar as these
terms are concerned the effect of the radiative coupling can
be described, to a first approximation in o by echanging the

Hemil tonian to
- -5 S Y 2
} Colep =+ e(l*é| )["th*¢] +* Fm(l*éz)c

But the effect of the additional terms is unobserv-
able for they indicate that the original charge and mass are
effectively increased by the radiative coupling by factors

(1+d,) end (14d:) respectively. The experimentally observed
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values would be these increased or "renormalized" values.
Thus we should remove and discard the parts of the perturbat-
ion energy which correspond to this renormalization.

The restriction that J,,3,~ o (or smaller) is very
important. For, if this is not so, the renormalization terms
cannot be accommodated by the above change in the Hamiltonian.

It will turn out in most cases that cL , 3; are of the form
°‘§%§ and thus divergent. Our fundamental belief however is

that the divergence is illusory and that a proper modificat-
ion of the theory at ultra-relativistic energies would give
3,» 3, as truly of order &, This belief is founded on the
facts: 1). That omission of the radiative coupling leads
€.8. to energy values in close agreement with experiment.

2). The subtraction procedure based on this belief
is successful in giving even closer agreement with experiment.

The subtraction procedure is very simple for the
charge renormalization terms and we need give no further dis-
cussion of it now. It will be discussed when we encounter
such terms in the calculation.

The mass renormalization terms however cause more
trouble. We first note that the non-exchange energy WN cont~-
ains no mass renormalization energy. For the form of WN shows
that it contains only the energy of interaction between sep-

arate electrons and thus cannot be derived from an additional



term in the Hemiltonian involving only one-particle operators
(without the radiation field).
As a next step we consider the exchange energy WX

in terms of its expansion in powers of U,

. ?J§+WX+WX+..

1 2

All the mass renormalization energy is contained in w§ + For
the higher terms in the expansion correspond to {virtual)
transitions in which U has an explieit role. (See page 27

where,as an example, the transition corresponding to the term
d\&bd‘.&, is described).

We now remark that,for a free electron, the pertur-
bation (the self-energy) should manifest itself exclusively
as a mass-like term. (This we can see by considering a Lorentz
transformation whieh brings the electron to rest). We have

already evaluated the divergent part of the self-energy as

o0
g [pmot] , [4
This then hes the correct form. The finite terms however are
found not to have this form. This failure we can regard as a
consequence of the divergent nature of our theory. We shall
later refer briefly to some recent work of Feynman (as yet
unpublished) which defines in a Lorentz-invariant fashion the
way in which the integrals over K are to be evaluated. For

the moment however we shall ignore this failure and proceed
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on the basis that in any case the error should be in the same
direction and of about the same magnitude for Wf and the quan-
tity we shall subtract from it as the mass energy.

Let us now consider in more detail the physical sit-
uation represented by one electron in the (non-relativistic)
state §,, all negative energy states filled. In considering
intermediate states we shall, as usual, restrict ourselves
to light queanta of momentum k such that k »3p . We can now
divide all the states into two groups according as their av-
erage momentum is less than <%A(group 1) or greater than J)L
(group 2). We may now reasonably neglect the momentum compon-
ents of ¥, in region (2). It is then quite easy to prove the
reasonable result that we may ignore all states in (1) except

¥, (whether they are occupied or not). This is because our
restriction on k effectively eliminates all transitions betw-

een ¥. and these states. Moreover in the zeroth

approximation
in U the states in group (2) are free particle states and it
is this epproximation in U which gives W% which as we have
seen contains the electromagnetic mass energy.

Thus W% may be considered as arising from the partial
system: one electron in %, , all negative states filled ;both
the negative states and the intermediate states are free part-
icle states.

This is completely analogous to the system which

gives the self-energy of a free electron, the only difference

being that the electron is in a state %, rather than a definite
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free electron state. The self-energy for a free electron may

be written
P - [} A -
a2 ) kLS E{p-k)-H{p)+ck Elp-k)+H(p)+ck
av

T - > 2 y
where E(p) = coc.p+—Pmc and this 1s to be interpreted in the
obvious way as * E(p).

Following the analogy we therefore define

W «%e? __'gz [o( .Gl 1 - LG, 1 ]LE,
4“-2 kL E{p-k)-E(p)+ck "E(p-X)+ B(p)= ok

and this we shall regard as the electromagnetic mass term to
be subtracted from WX, the residue {except for charge renorm-
alization terms) to be regarded as the level shift due to the
exchange part of the perturbation energy.

In reaching the expression for WM we have used the
symetrical form of the perturbation energy as given in II-4,.
It was there pointed out that the symetrical (Lorentz gauge)
and the non-symetricel ( Y.i - 0) formulations give the same
results for WX and W'. But this does not hold for W and con-
sequently we have & certain arbitrariness. The reason for the
disagreement is that ya involves not only diagonal matrix
elements of the self-energy operator {for which the equivalence
does hold) but also non-diagonal elements (for which it does

not) . These non-diagonal elements correspond to transitions
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in which the electron leaves the component '¢r(§) of ¥, with

emission of a qguantum but returns on reebsorption to a compon-

ent ¢3(P) where r, s are of opposite energies. (The energy

for transitions with r, s of the same energy but opposite
spin vanishes.)
The amount of arbitrariness can in fact be evaluated.

With some manipulation, we can show that for non-relativistic ‘¥,

! (Lorentz gauge) - WM( V .k 0 gauge) = % (e PPg" pd.p] ED
3mm

For the electrostatic case U = V this equals (in the notation
of V) 2
A [T
av
Then the V. a O gauge formulation will lead to a
surplus magnetic moment OU/6T evaluated by considering the
electrostatic case and to a different value evaluated by con-~
sidering the magnetic case. The results from this formulation
are therefore not Lorentz-invarient.

Thus, as we might expect, the Lorentz gauge formul-
ation,which avoids the non-Lorentz-invariant division of the
total field into transverse and longitudinal parts, gives
more reasonable results.

Finally we should mention that the work of Feymman

referred to above indicates that for a correct result the Lor-

entz gauge formulation must be used. The essential point of
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Feynman's procedure is that the electromagnetic interaction
is modified by the introduction of a parameter and the self-
energy with the modified interaction is finite. After calcul-
of the self-energy the parameter may be allowed to vanish
thus returning us to the usual theory but without the diffic-
ulty of non-Lorentz-invariance referred to above. It is not
certain at present what modification this Lorentz-invariant

"eut-off" procedure may make in our present theory.
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V. THE CALCULATION OF AWX FOR THE ELECTROSTATIC CASE

5.1 %e define as the Level Shift AAWX due to the excha-

nge energy

X L S S S

1 2

We now proceed to calculate AWE for the case U =V =ed .
As emphasized before, we shall concern ourselves with non-
" relativistic states ¥, whose energy, exclusive of the rest
energy, is small compared with me?.,

In anticipation it may be said that the order of

the level shift will be

ﬁ’z"[pzv]av ~ ;:—“g(vzlav
- Thus 1t will be seen that in the expansion of WX we should
consider only terms up to Wg. On the other hand the only
terms not smaller than the order of the level shift which can
come from Wg will be terms 1n.[V2]av. This is however not a
gauge-invariant quantity and thus we should expect these
terms to be cancelled exactly. We shall indeed see that this
will happen.

It is convenient to combine the four terms, three
of which are divergent as they stand, into other terms all of
which are convergent.

We combine Wg and ﬁM, end noting that (B, -H(p))¥ =V&,

we get

-~

W: -W" ‘°Lg— gég Z(‘E‘ E&xg‘*a : ‘ + olnG ol ' ]V ‘}o}
4%*) K N gt sq:-zs- \-\l‘s)w\( Ly &r-iy +Hp)ex
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To eliminate the operator H(p) in the denominetors
we introduce the operators H* which decompose ¥, into its pos-

itive and negative energy parts.

Hlos sipet] - (L. )

J »
Let D° = E(p-k) -E(pMds +ck . Then L = 1 -E
et (p-k) -E(p)ds + ¢ en L L (_Lg)_o)&
Now W§ - ﬁM =
- ole dx k}_* o(,\G*' ] +°L>.Q°<>«“ + B ve)
4T g 2< [ L5 B"B'l

s ga_xig*[oa PG _ oaG ol - Gt STt l@ E)VEY
t Rv b+ kv BEr e

4

2
= W 4 Wé say. Since(E(p) - Eg))V ~ V we note that Wy is

X ]
of the seme order as W, . We shall combine W; with W% and

2
|
W, with Wy .
Since HY - 1 - B~

Wy g géuz(q: [04,% N ouio(,, _E‘Ig] HVE) —u

(Y R fegn s ugn]vn

For the last term we use the simple result
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Ve VLo L [ VEG-X) - E(pk) V] 1_

Jd

T
vs
(o)

L
BY

)
Then Wl - (1)

+ oA Sa\cz (T Ks*f (E(F-\c)\l -V Ep- \«)-.+G (V- By L ‘}i -2

We finally combine the last term above with Wf
and we then have

AWE

(1) + (2) + (3) + (4) + Wy + W,

13

where

(3)

Y e

(4) - -ac‘g S Z(x} o, [GB:VG +GBvc¢ [+ ]o{ .5

A

All these terms are separately convergent. %e shall

now show that the second order terms give no contribution.
After this the other four terms will be calculated separately.

In Wé, since ( E(p)-Eo )V ~ p2V, any operators

multiplying this which are smaller than ~ 1 (i.e. of order
po* or pa4£- may be placed equal to zero. Thus we may neglect



terms arising from the expansions of the denominators. For
+ -

the same reason we may take i = G, Also oL,,Gt~ G*l, and

¢'C e 0. Pinally (& GV %) ~[p? V2] _~ O .

Using these results we have

o, GG ~ oG Geln = O

dox Gloly G~ ~ ¢¢&  ~ 0

dyG 3G ~ oG Gdn ~ O
- 4 + +

s Gﬂl}G ~ GG ~ 1

Thus only the second term of Wé need be considered. In this

term we may take D" ~ B", We get then, using the fact that
((E(p) -Eo)v] av = - {vzlav ’

1 > 2
Ay = - _.*czgéi Lv ]av
2n* )kR?

Now consider Wg The terms involving G ,G mixed
vanish. For

J rl 3.. I T ;,Il
AKGV GV Gody ~ ATV GGG Vo, = 0 if the J's are mixed.

Also oG VGV @i ~ Voo G,V ~ VGV ~ p2V2 ~ 0

- - - - P2
WGV GV Gy~ VGV ~ V¥

L}

X
Then Wz

o o2 gcuz v?,,

2= |k g?

We see that the two second order terms cancel. Thus



awX = (1) +~ (2) + (3) + (4), where these terms are given
above.

¥We now proceed to calculate each of the terms. The
procedure will be to expand the quantities B, E in powers of
E;E keeping as many terms as will contribute to the effect.
We then integrate over directions of E and finally over the
magnitude of k. To simplify notation we shall often omit wri-
ting V; in this case we identify B, p ete. as B, p ete. if
they stand to the left of V and as B', p' etec. if they stand
to the right of V.

Since we are concerned only with non-relativistic
states ¥ it will be satisfactory to use at various places
the Pauli approximation tc the Dirac equation in order to
reduce various operators which will occur to their non-relat-
ivistic equivalent. The Pauli approximation states that if we

write the four-component Dirac wave function ¥ in terms of

two-component functions X , ¢ (where <P includes the small

e [

then for positive energy states we have to a first approxim-

b TPX & - 76%

2 p

components)

ation

We shall not need the second approximetion. Using this to

reduce relativistic operators, we shall find that all the



operators occurring will eventually reduce to & combination

of the two operators
V'Y , SV - 1/f YV.Tx3

The following identities, which are readily derived
by using the commutation rules for the Dirac operators, will

be required:
t - -
1/e) oA Hoky = =4Bw  -2cl.D + 2: .k
P

' - ey - e
1/¢2) oL E H'ol, = 2Q® - 2P+ 4T.D' -2 PP’ + 2D A.K
A

Here @ = [M+k” + p® Ve write Asm (3o Eg4 k ). We note

]
that Q, cA are simply E and B without the angular dependence.

We need the following expansions, valid for all k.

2
g = %‘[ 1. §%g ] S = ﬁ%’l: 1. §§R R ééﬂ" 1
%:%[1+&2..] %;:-:ﬁ,— 1+§_i3+%'..]
E = Q[ 1-kp- (kp)® ]

c Qa 2Q4

‘= ' - KeP - KXo % 20

;E%-QQ[JL ko - kp'y K27 4 Kipep ']



45

Except in terms which are larger than the order of
the effect we are computing we may write @ = Q' and we have
done this above.

We need the following simple theorems:

2y . v _
[p v Vp :}av =
(Zopv - V:.p] ay = O
L PVL.D = p.Vp-Hhesy (. V3 - 2225 Ve
- - _ 2 _ 2 2
(3. vy -p2v],, = 1/242(9°V] _

Finally we need the following integrals. In each
case the range of integration is from k = Jdm (3 = 1/137) to
k = o . All the integrals are of the form s K K

—
Q™ ALAL
which we shall write (kmr s ). By 1 we shall mean
A%ar
1 + 1,1 + l . Similarly in other cases.
A A3 A%a_ A%,

(1102 -(1120) =1fJin2+1nd]. Y (1211) a- 1felnd .
(2311) = 1/42{1/2-1/2 1n 27 . (3230)-(3203)= 1£[1/2 1n2+ 1/4]
(3240)#(3204) = 12| -3/2 1n 2-1nd -1/4].

(8302)-(3320) = 1/ 1n 2-1] . (3340)-(3304)= 1/)9[-2111 2 -1n3]

Z5321)= 1/},@[111 2]. 2(5411) = 14@[1/2]
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(3430)-(3403) = 1/ {1n 2 - 1/4]. (3412)-(3421) =14 [1n 2 -3/4]
(4421)+(4412)= 142(1/2 1n 2 - 1/4). (4511)= 142 [5/12 -1/2 1n 2]
(4512)-(4521)= 143 12/3 - 1n 2].

Calculation of (4)

(4) = o™ gdxhog(m\ —eE)

(A 'RX
low®) K &> EE ThE e 3—3+ Ay

?ol(:_-:'g&x[ioz (we'- EHM*""‘M\% B‘—a- 5\*8* B*Rﬂav

1
_]___Zo{,(HH'-EE')o(, = 2%0,2 - QQ' - pB + 2DP.P' ~«(.Po¢.DP' -k.D
2

“‘kop’ "1/3 ﬁ (P-p""pg) + d.apﬁéok + Q‘.uk Q(op’}

QZ
S L VZV§ 1- k2 ipzhz SV 4+ 2olePolek +2 olek ofeP'-2k.P-2k.D"
302
Then 2 )
oL " Ef
il g@uz ~( WH-EE ),
47k N EE' R
2
.vzvi‘ -AK ?S zsv{‘ -2k _axE
AN SR ) FAA  Iovan SR 3Aa”

The first term of (4) therefore gives

- ii(ﬁ“‘ 4fghe)f L {Zgﬁﬁ«i"“;“%;a%

AR SJetan'




g 7=

2 V2V At SV - - -
=%%(néf5\){ Vlvi -g_lna %3 + S¥ _52:;1113 :19: 1n z}]

For the second term of (4) we have

B ’:.&(Kt,-u\-,)w('; le E\(‘u el\(\( KKE

{
1 Z%(HE'-EH’ Yol
2
¢

B [k.p' - k.
g8 [kep' - kop]

The terms in o/.pk.p' etc. vanish on integration over d.Wg
while the terms in o .kk.p' etc. lead to [o.pV - VL], o = O
then

S<)J.0 zoL (WEe'- EH)°(>\-<\-;¢\( (_L _L rr r-..)

4"*\ > EE'BR IGAR @A qa ’&

The second term of (4) gives then

%LWLVJNPX(S% _S\@d_& ‘S

N2 A Q*n- ﬁ’:

- _o_s_(_@_)z ¢V 1n2-§_§
3W \mc 4

We thus have

(4)= %‘i(ﬁ%)z[ V'TV{-;_ 1nd + 1n 2 'g‘} + s—v{-_s_an -1 - 1n zﬂ

4 2 2
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Calculation of (l)

L -
(1) = (ﬁ &a\{(.\. s - m_)uv]ﬁv

o (AR T L L \S -
+—87‘_rigd;é('IE(Bl’ BE)Zo("HcL’“H V]nv

We show now that the first term does not contribute since

HY~ 0 in N.R. approximation.

ZH‘-I—cE¥ %Mc (1}3)....%_1-“,12
P I

By Pauli approximation | (1- })V]av =1 [:;.V'S - 5% sv]

[-:LE V] = l__):-pzv - .7 p + &% sv]

—C_'z_: d - 1—-3-3 1—3" =
T gdA&)KZ xHEO;:H \Y ;‘L _q_FM _2&_\[, -\-% &o( r-\-%gidr]ﬂ \Y)
L™ -
=C-?-\-‘;1_12.+%:\F%- 4-%%]0('»“ \"

The last step comes from the fact that - RWE'V = X.p HV (N.R)
For(oL +P+BM)E V w M(2H' -1)EV = -pHV ~ 0,
In Pauli approximation we find that

> > - 2 2
(. PEV]_ = fi_vzv - %FSV
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Then

(1)= MK’I_LT VST SCL\(‘}_ 3.3 2K WK e
€KLy LSy 3.-3a e K
3T m LY > H Q S(A»« A QA qnt QA Qﬂ-ﬂ

=_9% ) [ V‘V{ 51né‘-§1n z..gi aigln3+§ln2 -;_}]

Calculastion of (5)

(s):e_t_C_‘_S&\c oy (W= EE Jobn L § 14—+ S
{Z HH'-EE Jolx B, 5. B—B'f]

b EE
> {
.\ %Jd_;_(\g[zo(x HE-EH)d, L. i@*— B*B'SLV

The L, term in (9% - 52) does not contribute. Then except for
the terms which arise from the expansion of L, we obtain the
value of (3) by multiplying the terms of (4) which have mixed
denominators (4 ,A. etc.) by k/Q before integrating over k.

Beside® these we need the terms which arise from

o d -9-0

k (k.;~+k ') in L,. The second part of (3) has no such terms.
2Q5
For these terms in the first part of (3),

1 Zo(, HH'-EE')d,L, gk (K.prk.p") (Z.B

02)

-

el
-
t
1

(Z.D&.p'-3.

-
-
-

Sl

2
3
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Thus the extra terms which arise from the angular dependence

- oL RSV

Yd
o K'dK

of Lo are ———S
T AB-

Then the first part of (3) gives

T — 2 dy. ¢ (r-2¢ )_‘_Q-?_K‘}
v V{de <03 )g = SV{ A QT 3R 3%)

=2L({né)2[ v {1 -1z} . S

] o
]
'-I
H
o
Do
[ S
NS

The second part of (3) gives

zY]a P-{SEA—:LL _L_A_)s

_‘T & A+R- Ao e

S ORAT ]

i_g)”[ﬁ{@-glnz} 4 é?r{% -;_lnz}]

So (3)= (
3W\me

Calculation of gzz

(2)= :-_(%:_ gd-‘(' [LE E ){ B+B+ —é_:-g'-}lnv
+;i_§_ S‘L;‘E[Z""x“d*(g‘gj‘?i BBy )ﬂ‘“

For the first part 1/c¢{(E-E')= (Q-Q')4 (k.p'-k.p) 4 (k.p'?-(k.p)2
) Zg3 293
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= 1/Q { k.p'-k.p ) since the other terms lead to | VpZ -pzv]av.o

Then 9_—1&&»&5&5)_\_= L % ’E’ ")X
a4 B iy \

Eii%*tylv since we need only terms with A = A'.
C @ |

The first part of (2) gives then

£ KTV § (e ()]

“He) [TV mpee -]

For the second part of (2),
{ 25 -
1/e) ol Holy = -4fm  -22.p+ 23k  ® -4p
A

This step follows because (E-E') .; ~ 0, & JX(E-E') will
lead to [ o .pV - Vl.p] - = 0, and g = g in N.R. approxim-

ation. Then, just as above,

dw S oL HeE-E) - —2HW*V[mIK . &
‘Hrg 2 E&® 3 ] iq‘a‘* Q»ﬁg

The second part of (2) gives then

- ok K[V, Scimé -l
3w p cpﬁ», QA
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..g%_[‘_n%f [ ﬁ%\lné'e ln 2 + _ﬂ]

50(2).%&‘_&%12[ V—"_V’{%lné-u-%_lnz *é‘}]

Finally, adding the four terms, we get for the level
shift JAWX, due to the exchange terms in the perturbation
energy and considering only light quanta of energy greater

then d me® ( 3= 1/137)

o gl [T gy - T )]

I

This value for the level shift includes of course
the shift due to the electrodynamic exchange terms (AWDXETX=1,2)
and the shift due to the electrostatic exchange terms
( ag% =X\ m 3,4). We record below the results of the separate
calculation of AWPX and AWPX for k >,3;u .

S“[mh] [ vzv j_% -ln2.+%_} + s_v{%_s:\
e LT ) P ]

Before discussing the results we shall first evaluate

the contribution to the level shift from light quanta of energy

less than c’mcz and thus remove the restriction on the value of k.
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This part of the calculation has already been done by Be—:"che(6
As suggested by Bethe, we can ignore retardation

for these frequencies. We can also omit, as would be natural
in a non-relativistic theory, any consideration of negative
energy states. In light of the calculation above this can be
immediately verified. For the only terms which can contribute
to the lower limit are those with denominators of the type B*
which behave like k for small k. These terms occur only for
positive energy states. Moreover the results above show that
only the electrodynamic part of the perturbation energy will
contribute for small k. Thus we take only A = 1,2. Since

c SZ = ; we make the replacement o, = Pa .

me

Then from pasge ( 20 )

x L 2 (RS (B E) LS paE)
" T 4w S Z (Eo- s-e\a)ﬁ

')\il'}.

= 2t &Kd\cZCE;‘F E) S5 F ¥.) where this is to be
AT — understood as a
I Eo-E3-e9) scalar product.

= -2 (e (& PR+ 2t XCLK (CE BN E®)
5 3wme (Eo-E3 ~)

The first term is easily seen equal to ﬁM in this approximation.

Thus when we subtract ﬂu this term 1is cancelled. The second
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term gives,exactly as in Bethe's paper

K,
wray? v (ax
3ilme v k

where ky is the arbitrary upper limit of integration and ko,
the lower limit, is established as very nearly [Ej - Ej] oy

for the system. We note that if we take ky =<¥» then this
result joins on correctly to ours as given above.,

We shall ecall ck, the Bethe lower limit. Its value
for the 2s state of hydrogen has been given by Bethe as 17.8
Rydbergs (1 Rye 1/2 «®me®). It seems probable that a more
accurate calculation may change this value slightly. With
this value for ck, we have ’Shd_i = 7.63 and we shall use this

Ko

in giving numerical results for the case of hydrogen.

5.2 Discussion of Results.
Before examining the results we shall add to AWX

the value for the level shift AWN due to the non-exchange
part of the perturbation energy. The calculation of AWN is
given in VII.

Then

M
AW = o vzv{ dk - 1n 2 4 5 ;_} 1[ 9V.T _]
s“mc][ ék 0245 -el(v x 3], {3

(8]



n
- 2 - E.5xp
S Uoff - oo e (ESG],

c . om2c¢?2
M 094R
We may note that % (dk - .060} may be written ak
K K
Xo Ko

The first term, which we may c&ll the scalar term
is similar to the result of Bet:l:vs:(6 who used a completely
non-relativistic theory but arbitrarily excluded light quanta

2 in order to obtain a finite result.

of energy greater than mec
The egquivalent upper limit, according to our theory,is .24 me?,

The second term has the characteristic form of a
spin-orbit coupling energy and suggests that the electron may
be regarded as having a surplus spin magnetic moment due to
radiative coupling.

If we regard the electron as possessing a surplus

spin magnetic moment & eh_ (where e is as usual the algebraic
fne

charge) we must add to the non-relativistic Hamiltonian a term

> - -
Jg_h_ 3 o{ H« _:L-E?“;B = J{ e_ S.H + _€
2me ¢

->
In the present case H = 0. From the spin-orbit term we identify

J as o . Thus one effect of the radiative coupling is to
ax

increase the effective spin magnetic moment of the electron to

1 . _;ogk Bohr Magnetons
i 2T |

This corresponds to a new g factor: g = 2 { 1 + ji%
2w



In section VI weshall calculate the energy of an el-

ectron in a magnetic field and thus obtain an independent iden-

tification of 3 « The two methods give the same result indic-
ating that in this respect our theory is well behaved. Finally
it should be said that the value of the additional magnetic

moment was first derived,in a different fashion, by Schwinger‘8

5.3 Application to Hydrogenic Atoms.

For L = 0 (s states) (ne principal quantum no.)

[_ﬁ 2LV V], = 4T[_& 2 2e2|%w|” - Bx? z* ry
me mo n3

E.Sap -0
—Zgg-c-é[ *P] oy

For L £ 0

(2] 17 Wy = ©

1
> 2 (L"‘l, ‘21“"1) J= L"l/g
5] [EaS%p] - Q(Z _Z_i Ryx/
2,2 av 3 AN 1 T
2m~e n T ’+1 = L-1/2

We have then

3 4 b
AW (L=0) = 8 «° Z Ry{ Sg_lg - .oeok
k

BN 0 )
1 J= L+1/2
(L+1) (21+1)
W (L{o) = 1 ® _Z_‘: Byx/
T 3 N~ -1 Ja I-1/2

LeL+l
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We may write these results in terms of the corres-
ponding frequencles y , Where h Yy = AW ., For AW = 1/,,-0(5 Ry
we have )Y = 407.1 megacycles/sec.

Then for hydrogen, V(zsl/z) 1030 mges/sec.

- 17 mges/sec.

y(Zpl/g)

V(zps/z) 8 mges/sec.

Thus the 281/2 state, which by the usual Dirac theory is
exactly degenerate with the 2p1/2 state, will on the present
theory be higher by an energy corresponding to about 1045
megacycles/sec. This is in agreement with the measurement of
Lemb and Retherford(l who report a value of about 1000 mges/sec.
sub ject however to a possible error of perhaps 100 mgcs/sec.
Future experimental work will probably provide results which

will make possible & closer check of the theory.
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X
VI THE CALCULATION OF AW FOR THE VMAGNETIC CASE

Ve repeat the calculation for the case of an elect-
ron in a stationary magnetic field. Our principal econcern will
be to verify the magnetic moment result derived from consid-
eration of the electrostatic case and thus check the consist-
ency of our theory.

We have for the applied field U = ?(.1 where, for
convenience, we have taken'z = -e x Vector potential. The order
of magnitude of the additionel energy due to radiative coup-
ling will be

. N
At = o[ f.H] = e/he [ol.A]av

av

where ;1 is the magnetic moment operator. (It is trusted that
no confusion will arise between & = ez/ﬁe and <>_2 the Dirac
velocity operator). We may thus neglect terms in A2 and pZA.
Expanding the intermediate states in powers of U

it will be sufficient to consider the terms of order zero and
one. Since of, does not now cormmute with U, the manipulations
used for the electrostatic case in order to write A\WX as the
sum of individually convergent terms will not be convenient.
This however will cause no difficulty.

In the same notation as before we have W{ = Wf - WM.

I - - @
Wos - ga.-EZUEZ [o@c*eg HY 4+ o Gol WY+ W (LR R
47" ) K N B: B_?_- R+B-
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GrorAS & GTolAG - Grol-AGT ~ G AGH | gy
Wf:%sdxi<% d’i B 5 25 & & & B
- o 2y (el [ G CHAS LT
4T " v

X ! X

We now calculate each of these terms. We shall not
use the Pauli approximation in the course of the calculation.

We shall often use the identity

- - g -y -~ -

- > > aed - -
MQPMQA * .Ad-p = A. 4+ P +4holH

-—
{where H = fo. ). Besides the integrals given previously, we
shall need the following (the notation is as before):

(1ozo)+(1ooz)=[1/25g§ -1n 2 - 1nd -1/4]

(1020)+(1002) -2(1011)=[- 1n 2 - 1nd -1/2]
(2111)=[1/4§°g% - 1/8} (3221)-(3212)= 14 [1/2 1n 2 - 1/4]

(4511)=[1/4.§dk +1/2 1n 2 - 5/8] .(4321)-(4312) =1/ [-1n 2+ 3/4]

Y (3211) = [S—q - 1n 2].

The integral Sdk which appeers above is divergent but will

eventually cancel out.

Calculation of Wi.

+ +
Using the definitions of G , H  we write



The first term gives then

<>

QL_{H":L.A]!W% gk ax[ 1,1 - g___] - gc[H‘o? .I] i-ln 2-1nd -13
n 22 a2 AL - av 2

The second term gives

——————

- S - - of
-l .4 S( kdk[1l .1 g = %o LA % -1(dkx +1n 2+1n$+;_§
‘Ki lav S [Aé +A§] .“.[ ]av 2S Q? 4

For the third term we have 1l/c Zd)ﬁot, = -4 PA -2el.p + 2cl.k
I\
B =z 1/2[1 +R 4 oc.p]
rL
Then

' -
LYo Ho, E' R 2-(1+B) (2 otid +atup £.4) + (1-B) ot kot d
c . R

» =-J4pol.A + (-1) oL op w.A-4H ,&M.A}*(l-ﬁ ) o ok ol A
The first part of this gives

%[4&.1“(}-1)04.’&2«.4& -4H o LA av{ -1n 2 -1n<$§

For the second part

giga.‘ub\g °(‘K°l’ﬁ = 0( d'ﬁ
4T ER>



This then gives

L Bowpea] b} S8 Lo "3 B

1¢ p-u&?p&.l]

Collecting the terms we have

Woe o [weA],§ -(dk -21lm2 -21nd. 1
= & . -\ax =~ n - e + L
L™= av{ SQ 23

oL[Hd 2], f2 J -
*'ﬁ[ 2 Llgefz 1n 242 103 -1}

+ E"l% [(‘3-1)8_2_{:%52_.3]&?% -ln 2 -1nd 4 %3

Caleulation of wf

We write the first term of w’f in the form

‘Ufg ( o R ‘—SL:g é: ~Bl“_s'*-é‘_é'*§]ﬂv

+olSE Sd_\t [ Zd (RerRs { R. 8. \;3‘_3] Av

oW

R [ ey, -1

+ t:‘ &d.\t [z A, Rwo( { B4R, 3-B~ +B%-3‘~ +'é'_3'+§1 AV

In this expression,



S
Ry = o.A
- e d -~ - - . B =~ 2 —-
Rz :gd—.& ; HQ“.A" dOLd.A‘ k d,.pd.A
E Q Q I
Ry = &.‘A% = ZAHg - .Adk - k2 2423
< 3Q°
R, =Ho.AH sl {Ho.BH, -1 k2oL.A -2k pu[ £.3+3.4] -2RpA. Kk
E E Qz 3 5Q2

where Ho = &.33 +\’>;A . The equivalent forms for the R's are
found by expanding E and keeping terms which will contribute
to aW. Then

- 2
Ry+R, = ;{ (1 - K2)(2ep+peb ot G.H)} - 2h.k
< 3Q2 <
Ro~Rg & 1 { olholk - o(,.kut.A}
Q
We perform the integrations over -1: and write each
term as '
APENRY
40 % » av
Rl terms
Tl = o(.ASkdk[;_+ 1 -2 ] = d.A{-lna-an-Q__}
2 2
A% A AA,

Rpo+ R terms
e (L2AK dwi = J;ﬁ{
] 3

4 QRE A A

=)

Thus the terms in A.k give

]



=
fav]
"

3
-% ig.\“r.ﬂ“jgd.\(z? -F\{i‘-t?

'

[}
[ab]
-
b
.
J
+
v
&
ey

[
=
o
o
+
=

The other(Rs+ Bs)terms give

Uaps poo o han] (K (-3 ) (i)

[Ap+p.asn a.H] L i -21n 2 -lnd -1
[ 3 3

R, - K, terms

di_m& (ol-Aok—ot-Ka-A)= K" § ~ol-haA+d-Acl-} +hA- A
4% J qpg 3eAn' _ET " i FE ?M

These terms give T, = Lt\q'ugd.\( S S -
Q ﬁ-‘A A'\' Q'

- 24 O.H i;lnz -_1_7]
3 M 2 4
1_24 terms
<t (~2pnkdude 1@% A+ RAp
4% g QR B - 3 g AR ﬂﬁl

= g_i[fsk.p +?p.A]i 1n 27)
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For the other Ry terms we use

HO o« A HQ = ﬁMAQP + &MpoA *}lﬁp g.H - }E%cﬁ.

So T6=S{)~LHSG‘H*(§ARF fmrg)(\_lm o(‘l\(u‘+-§\<'—)} :_%A_l;'

= %BW.Hi-lnéﬁ +[$A.p+}3 P.4) %S{-lné’ -_3_3

od

.\.o{.Ai 1nd -1{dk.,1l1n 21S
Q@ 3

To sum over A\ we use the following easily derived

identities:

Z,;(,d.a oy = -2ol.A leogA.p oy, = 2A.p
Z&,V.Hd, s -2C.H Z&,‘; Lp = -4Bhup
ze'lm H = 0
S

H b

Then, collecting terms, we have for the first part of

o0
o [ot.a] igln2+}_+;gdk7x., oL'ﬁO'.H} il 1n 2+1n5+1}
2% 3 2 3J°Q 2

+§%[ .g;p.k]avi-ln 2 -1nd -27] +9L 3A.p+g;g }avinn 2+ 21nd 4 273

We now evaluate the second part of wX, For the terms
which do not arise from the angular dependence of Lo we mult-

iply the A,A_ terms above by k/Q before integrating. For the
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terms arising from the expansion of L, we need only consider

the -2B A.k term in R,. The other terms contribute nothing;

but “g 2ZRAKLodioe = -Ligar+%r ]

Q A, A. Q‘—H*A-

These give T, = -2 [ gA P+ pP. A.] p\g k% ax
Caha

For the second part of W{ we have then

T~ a.n&uw g-z-ag-;\g}ﬂ-tq—a&dm ST

R4 A- g 39 Chep P A
: . dw. k" Sk L -
*[PMHYH"MPH"\S Q:(:P.- T .375;-4-2 st

Integrating and summing over N\ gives

-> > )
oL [o.a] ¢2(dk - 21n 2 1} L RO LE 2 1n 2 -;_}
1 lavafs'sq 5 C tEltE ]avi 3 2

> - -
+£‘_[BA-D+¢D.A] %glnz -__“ﬁ
v ' av ]

For the energy shift we thus get

awt - %“.[:L.I]avi-2ln 2 -21nd+ %_?X,, %{-‘?[ﬁa:'ﬁ]av {1n 2+ 1n33

L[R2 D+Do ."] iln 2 -1nd -1‘3 2 &I.i-r}% 2.1 o {21n 2 +21n3}

2|\

-—- D
N égﬁ[H ol +4] avizan +2ln 2 -1}

2“[(}-1) c(.p’:t Zl i-an -1ln 2+1}



We may now apply the Paull approximation to reduce
this to its non-relativistic equivalent. Then

W odly, = 1/2 [Z.L‘ﬁ.lme.‘ﬁlav
Ipz‘glav = [E‘ilav [@.f"zlav * ﬁ"hav
(EoL L], = 0 Up-Dapak] = o
WX _. o
and A _9_%\:{1 av?ﬁ A;g De ] a’]

It will be rememberad that we have defined Z. -e x
Vector potential (e= algebraic charge) and ﬁ = Y= K. Returning
now to the usual notation I = Vector potential, I-I’ = Magnetic
field, we have

AWX--oc eﬁ[o*.H]&v - o _e

s - - >
A. -~ Pc * ﬁ 0- oH
2T Zme 21 me { ]av

o

We immediately note that this result is not gauge-
invariant and we can recognize by this the fact that it cont-
ains an energy corresponding to a charge renormalization. If
one effect of introducing the radiative perturbation is to
change the effective charge to e+Jde the energy of the system
increases on this account by an emount -d e ®.A (which is of
course not gauge-invariant). In terms of the reduced equation

the additional energy is

- de[ L5 Bhand ]
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In the case above we therefore identify Jea %6% e. Subtr-
acting out the energy corresponding to this in accordance
with our interpretation outlined in IV we get for the true

energy shift

AW = AW - - o _eh [T.H]
2T 2me a

We anticipate here the fact that the non-exchange terms will
give no contribution in this order.
The energy can be interpreted as due to an additional

magnetic moment, the total spin magnetic moment being now
{ 1+ _9_5_)} Bohr magnetons.
2n

This agrees with the result of the electrostatic caleculation.
We may note finally that the orbital magnetic moment is not
affected.
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VII. THE NON-EXCHANGE ENERGY ( WN )

It will be remembered that we have separated the
total perturbation energy, which results from consideration
of the radiative coupling, into two parts W° ang W™ corresp-
onding respectively to exchange and non-exchange phenomena,
We have considered in V and VI the effects due to w& and we
now consider ﬁn. We have pointed out that W contains no mass
renormalization terms. It will be found however to contain
{divergent) charge renormalization terms and when these are
subtracted out the residue will give a finite level shift.

This phenomenon has been considered by various
authors, originally for the electrostatic case by Uehling(s.
In particular, Weisskopf (9 has given a treatment using a
procedure closely akin to that we have used above for the
non-exchange terms. For the sake of completeness we shall
sketch the treatment.
W { S0 S’,\(g') - é;f]'f) 'I‘F" drdd
where fi, j: are the charge and current densities due to the
electron in the state ¥, and ?nég , ],neg the densities due
to the vacuum electrons.

?neg end jneg will be expanded in powers of U
(UaVaed ors-ea.h where ¢ ,A § external field). The

terms independent of U will represent the densities of the
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vacuum electrons unperturbed by the applied field and, follow-
ing the usual procedure of hole theory, the energy correspond-
ing to these will be discarded &s being without physical int-

erest, We shall omit these terms from the start.

7.2 The electrostatic case, U = V.

Expanding $; as before,we have

fne g = ;%f; \:EJS
oY 14 +ez e [i FodpVe - (F ) v;;;]
i .

We omit the first term (independent of U). In the third term

we interchange J, J' and q, o'. Then

fneg :-Q(Z +2)§ | <t>3' )BV‘&%

. v R R
. =%
-t ﬂ' + -» *3s I o "J-Z»_-. I
- _Q(Z +Z) e~ V§) { Wi Wi (Wig-hup)
I 3';‘6 L3 [E‘&)* E@k-ﬂ)
J

. -
SR %
-5
where we have written VY=< Zv'ﬂ)e

The sum over J, J' is readily done (eg by the

method of spurs ) and we get
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°k/*--t: 2 qt_ o & O
PO R s L PRETES S

X EQ+E§-I Eqp EG-9

For our purpose we shall be concerned only with

N BB s - - N
g ~p. For Wl\‘ involves the integrals Setfg[tr\-r).r-j.r] <L?‘d.r'
=3

where P, "ia' are momenta in the spectrum of ¥, .The integrals
venish unless € = p' =P ~ D . But in summing over g there
will be no contribution for q << M . We may therefore take

qQ > g. As a more convenient notation we write a g'fc. Then

- 02 kz -Keg + 2)
'EIk)E"‘(k-g)! -

Expanding the integrand in powers of g and integr-

= =8 V(g)e
Snee amon® -52

"1/h éo% -
Sdk 1
E(k)+E(k-g)

ating over the directions of E gives

2wk cagz{; -1 cgkz] N 04g4[— 1.1 25 %2 - 21 ot ]w(gs
& 6 2 E%(x) 24 E¥(x) 40 ES(K)

For the g° terms (which are divergent) we note that
- . -i/A BT
) V(@e g%z -4% TV o 4THZ e F(e)

3

where § (e) is the external charge density which produces V,

{e.g. the proton charge density in the case of the hydrogen

atom) . These terms then correspond to the field-independent
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paert of the vacuum polarization. We may regard them as charge

renormalization terms (they lead to an energy term of the

type <ES V&) ) .
4

For the g% terms,
-i/h g.r
ZV(é)e gt - 2% Y ( ¥V) - -avate v F(e)
3
o"'gka dk{-_;+ 25 o2k - 2 41{‘1}: 1 {-; +§_-_:§__} - -1
Then for the physically interesting induced charge
we have
=__ e V(YY) = - % (8)\%2 V*S(e)
?neg 15w (mc)

60T e
This induced charge causes a finite level shift which we
shall call AW.

= - o _ﬁ_)g vV in agreement With the result
lST(me (5

of Uehling
For the electrostatic case the induced current
density vanishes as would be expected and thus ZSWN given
above is the total level shift due to the non-exchange terms.
This can be verified in many ways ; e.g. if we replace V %t
5 33

by (&.A)%% then the expressions vanish when we sum over

J, J' as above.
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7.3 The Magnetic Case.,

When the external field is a stationary magnetic
field the induced charge density vanishes and we need only
consider the energy arising from the interaction of the
current due to the electron in the state Y and the physically
meaningful part of the induced vacuum current.

We shall not outline the calculation here. It proec-
eeds exactly as in the electrostatic case. After subtracting
out the current due to the unperturbed vacuum electrons and
that corresponding to the (divergent) field-independent magn-

etiec polarizability of the vacuum, we get as we might expect

- >
1 = a2 ¢+ V* 1)
r j neg 601(’-(51'5

On interaction with jL this leads to an energy inv-
olving | V* 4] ay Which is smaller in order than the energy
corresponding to the surplus magnetic moment in which we are
interested. For our purposes we may therefore omit the non-
exchange energy in the case of an external stationary magnetiec

field .
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6)
7)
8)
9)

-7 R

REFERENCES

.Lamb and Retherford, Phys. Rev. 72, 241, (1947).

Kusch and Foley, Phys. Rev. 72, 1256, (1947).

Nafe, Nelson and Rabi, Phys. Rev. 71, 914, (1947).

Nagel, Julian and Zacharias, Phys. Rev. 72, 971, (1947).
Uehling, Phys. Rev. 48, 55, (1935).

Bethe, Phys. Rev. 72, 339, (1947).

Weisskopf, Zeits. f.Physik, 89, 27, (1934); 90, 817, (1934)
Sehwinger, Phys. Rev. 73, 416, (1948).

Weisskopf, Kgl. Danske Vid. Sels.,Math-fys. lledd. 14-6,(1936).



BIOGRAPHY

The author was born in St. John's, Newfoundland
on Nov. 13, 1921. After attending St. Bonaventure's College
he entered Memorial University College, St. John's in 1938
and Dalhousie University in 1940. He graduated from Dalhou-
sie in 1942. After a short period with the National Research
Council of Canada he entered the Royal Canadian Navy from
which he was discharged in October, 1945. Since November,
1945 he has attended M.I.T., first as a full-time student
and later as Teaching Fellow and Research Associate. Two
years ago he married Helen G. Harquail of New Brunswick,

Caneda.



