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I INTRODUCTION

Recent measurements on the fine structure of hydro-

gen by Lamb and Retherford {1 have indicated that the energy

levels of the hydrogen atom as calculated in the usual way on

the basis of the Dirac theory of the electron are not correct.

At the same time, measurements by Kusch and Foley(2

have indicated that the energy of an electron situated in a

magnetic field differs from that calculated using the Dirac

theory. If we assume that the spin magnetic moment of the

electron Is not one Bohr magneton but greater than 1 by an

amount 4/2*( (o4: e 2 /hc z 1/137) then we reach agreement

with these measurements. This assumption would also remove

the greater part of the discrepancy between the calculated

and measured hyperfine splitting of the ground states of

hydrogen and deuterium as reported by Nafe, Nelson and Rabi 3

(4and by Nagel, yulian and Zacharias.

These results suggest that calculations on the basis

of the Dirac theory should be modified but do not necessarily

indicate a failure of the theory. For a stationary state in

the absence of fields the Dirac equation is

lc oL.p + mc2 - EV7f 0

When external fields characterized by A, f are applied we have

* A list of references is given on page 73.
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the usual transformations

P-- p - eA/c , E -+E -e4

The equation then becomes

10 OZ + [mc2  - E - e. e< = 0

The terms -e oC.A and e + represent the interaction of the

electron with the applied field. For the present let us con-

sider the -e 6.CA term. In calculating the energy levels of

a system of electrons in an electrostatic field whose potential

is 4 it has been customary not to include an Eo.A term. On

the other hand it has long been appreciated that to calculate

for example the rate of spontaneous emission from an excited

state of such a system we must include this term where A in

this case is the vector potential representing the radiation

field * This term is effective even when no light quanta are

present. It will be remembered that the pure radiation field

can be represented as a system of (quantized)oscillators. The

wave function for the system of particles plus radiation field

now becomes a function not only of the coordinates of the part-

icles but also of the coordinates of the radiation field ,

for example the occupation numbers of the various modes of

oscillation of the field. It now happens that the matrix elem-

ents of x .A are not all zero when the occupation numbers are

zero and thus -e a.A is an effective perturbation even when

no light quanta are present in the field.

Thus we can see that when the term representing the



radiative coupling is properly inserted in the Dirac equation

the energy levels of the system should in general be different

from those calculated in the usual way without this interact-

ion term. The difficulty however is that the energy values

thus calculated are found to involve divergent integrals.Thus

each energy is infinite and moreover the difference of energy

between two levels will in general be also infinite. It is for

this reason of course that the interaction has been omitted

in the usual calculation. It is however very significant that

the energy levels calculated with omission of the radiative

coupling are only very slightly different from those observed

experimentally. Thus, though the coupling gives rise to infin-

ite level shifts, yet in a very real sense it behaves as a

small perturbation.

It was suggested some time ago by Schwinger and by

Weiskopf that a meaning could be ascribed to the infinite

energy which arises because of radiative coupling. Their sugg-

estion is that this infinite energy in the case of a free

electron can be regarded as representing an electromagnetic

mass which is included, along with the "true" mechanical mass,

in the measured mass. The fact that this electromagnetic mass

appears to be infinite is not unduly disturbing. The infinity

always appears as an integral of the type where ci
K.

represents the energy of a light quantum, and thus is due to

extremely high values of K . We may reasonably suppose however

that electromagnetic theory needs to be revised for extremely
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high energies and that if this could be done the integrals

occurring would not only be finite but would really show the

radiative coupling as a small perturbation, its smallness

being characterized by the fact that the electromagnetic mass

is of order 0Cm.

So far we have spoken only about the interaction

with the radiation field. It should be clear however that we

should include in the electromagnetic mass the electrostatic

self-energy of the electron, that is the energy due to its

Coulomb field.

A separate aspect of the problem is due to the fact

that the ordinary Dirac equation for one electron (which we

shall call the single electron theory) is incapable of explain-

ing pair production and other phenomena associated with pos-

itrons and is moreover plagued by the existence of the negative

energy solutions. The Dirac hole theory on the other hand

disposes of these difficulties and it is on this theory that

the present calculations will be made.

Now however our examination of the self-energy prob-

lem must be modified. For we no longer have, when we discuss

the self-energy of an electron, a simple system of one elect-

ron plus radiation field. Instead we have a many electron

problem and we must consider ,as the perturbation to be added

to the usual Hamiltonian, the radiative interaction and the

electrostatic self-energy of each particle and also the

interactions between the particles.



It is well known that the introduction of hole

theory results in a logarithmic divergence of the self-energy

rather than the linear divergence which is characteristic of

the one electron theory. As a consequence of this, when we

consider the problem of an electron in an external field and

carry through the renormalization of mass in accordance with

the idea mentioned above (and also the renormalization of the

charge), we shall get finite level shifts due to the radiat-

ive coupling. This would not be true in the one electron

theory.

The other main result of the introduction of hole

theory is the phenomenon of vacuum polarization which leads

also to logarithmically divergent expressions. It has however

been long recognized that the principal effect of the vacuum

polarization is a renormalization of the electron charge in

a fashion similar to that suggested above for the electron

mass. When this is carried through we get once again finite

values for the level shift caused by the polarization of the

vacuum. For an electron in an electrostatic field this was

first calculated by Uehling .

In the present work we shall consider an electron

in an external time-independent electromagnetic field. We shall

evaluate to the first non-vanishing order the perturbation

energy which results when we add to the Hamiltonian of the

system terms representing the radiative coupling and the el.-

ectrostatic self-energy for each electron and the interaction
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between the electrons. We shall then develop a procedure for

separating out of this result that part which may be regarded

as energy due to electromagnetic mass and we shall carry out

this separation. We shall also separate out the terms which

correspond to a renormalization of the charge. The residue

which will be finite will be regarded as the true level shift.

We summarize here the results which emerge from the

calculation:

1) A reasonable procedure is developed for separat-

ing from the total perturbation energy that part which is due

to electromagnetic mass. The separation of the charge renorm-

alization terms is done in the usual way.

2) An application to the case of an electron in a

low energy state of an external stationary electrostatic field

gives a level shift (where K. is given by Bethe (6 and V = e )

W = .CdL 2  'av dk -ln 2 +19 + e [E.SIP
3av k 30 22 av

KO 2m a

3) For hydrogenic atoms this gives (where n is the

principal quantum number and Ry is the symbol for one Rydberg):

For L. 0 AW 8 ot jRy dk - .060
31 n3 KOkI

For L 0W _ ot3Z Ry 1 (J L +1/2)
In n3 (L+1)(2L+1)

For L 0 OW - c3Z4 Ry 1 (J = L- 1/2)
'W n3 L(2L+l)

For the 2sx - 2p separation in hydrogen we get as



the corresponding frequency 1045 megacycles/sec. This agrees

within experimental error with the measurement of Lamb and

R"etherford who give the frequency as being about 1000 mega-

cycles/sec.

4) The spin-orbit term in (2) suggests a surplus

magnetic moment due to spin, of magnitude a/2W . This result

(which was previously given by Schwinger) agrees with experiment.

5) An application of the subtraction procedures to

the case of an electron in a stationary magnetic field gives

a verification of the magnitude of the surplus magnetic

moment.



II. GENERAL FORMULAE FOR TEE PERTURBATION ENERGY

2.1 We consider an electron in a stationary state of an

externally applied time-independent electrostatio or magnetic

field. The state of the vacuum in this system will be that

where all the negative energy states are filled. Thus the

physical situation in which we shall be interested will be

that where all the negative energy states and one positive

energy state are filled.

We shall regard as a perturbation term the inter-

action of all the electrons with the radiation field and with

each other (including the self-interaction which gives the

electrostatic self-energy) and we shall evaluate to the first

non-vanishing order the energy which is due to this perturb-

ation; the calculation will be done by the standard perturb-

ation method.

As the significant energy we shall then take the

difference between the energies of the two systems: Vacuum

plus one electron in a positive energy state, Vacuum.

vac+ 1 ~ vac

We shall call this the perturbation energy.

We describe the electromagnetic field (not including

the externally applied field) by potentials A, # which satisfy

V.A + 1/. 0

The longitudinal part of this field can now be replaced in the

_ASiktM3ftN- __
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usual way by the non-retarded Coulomb interaction of the elec-

trons plus the electrostatic self-energy. The transverse part

of the field can be represented by a new vector potential A

such that
A :0

We shall at first consider the two parts of the field separ-

ately. The energy due to the first part we shall call the

electrostatic energy and that due to the second the electro-

dynamic energy.

2.2 The Electrodynamic Energy ( W )

We expand A by assuming periodicity on the surface

of a cubic volume V. V is then the normalization volume and

should appear at various places throughout the calculation.

We shall however not write V explicitly.

In this expansion Cis a unit polarization vector and we have

We have alsoK 2 fjici. The sum over will be replaced

- 9K Fai - 4te :K aeventually by an integral and e I (

cl_K =KM cK <E u3

The wave function for the system is now a function

both of the coordinates of the electrons and of the occupation

numbers Y.N) which give the degree of excitation of the various
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radiation oscillators (i.e. the number of quanta present).

(electrons) 4 (photons)

The l(s14t and &s'OCare

trh ) <p(
Thus i(:1z K) (

operators

NMI

N)

which act on 4 according to

) +1

)LK) ( nryKJ

The Hamiltonian for the system is H a H(electrons) +

H(photons) + H(interaction).

H(electrons) : ca.(p-e' /0)+ me + e C40  HO say.

elect.

where Ao, 4) correspond to the external field.

H(photons) = cZK () 9 3

-A

H(interaction) -e + + Q + K)

elect.

where , (
We shall always concern ourselves with physical

situations where no photons are present (allTAa . 0 ). We

regard H(int.) as a perturbation and shall evaluate the energy

Wvac+1 for the system in the state : all negative energy

states filled, one electron in a positive energy state k, ,no

photons present. From this we subtract the energy Wvac for the

system in the state: all negative states filled, no photons.

)
)
)
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Since the () have no diagonal elements the first

order perturbation energy vanishes. The intermediate states

for the second order perturbation energy must be states with

one photon ( t X ) present. But we have (using the symbol ( )

for matrix elements)

and these are the only matrix elements of (r , t which will

appear. We may thus conveniently ignore the kr , L operators

and also the dependence of Y on the radiation field. We then

use

H(interaction) a -e 3 K c Lj

elect.

for emission leading into the intermediate state (-), or ab-

sorption leading from the intermediate state. In the inter-

mediate state the radiation energy is ex so that the total

energy is E(electrons) + cK .In the physical state, the radi-

ation energy is of course zero. We shall always use the symbol

E to refer to the energy of the electrons alone.

For the energy due to the perturbation we have

R a H(interaction).

W = RpiRip p a Physical state.

Ep-Ei-e, i s Intermediate state.

It is convenient to introduce the second quantizat-

ion operators for the electrons. Let "Vs and Es be the eigen-

functions and eigenvalues of- Ho. We write



-~--

. as @ -X.* z a* 9 *

s a

We write the wave function for the electrons as C( n, n2 - -

where ni (. O or 1) is the number of electrons in the ith

state. Then

aiC( ,ni, ) = ± niC(

aIC(

)

)

a*ai : ni. atai + aiaf : 1.

H(interaotion) now transforms as follows;

H (inter.) -R-- (C R X.>

where Er s(K)

. -e ja as Rrs( K")BK
r,s

rd"

We write C0 and E for the physical state, Cn and

for the intermediate states. Then

AK
KQK rs

K. rs

The diagonal combinations of the a*, a operators are

NkNr ( k a Q , r a s ) and Ns(1-Nr) for k : s , : r.

-12-

,1-ni,

,ni, ) = *- (1-ni)C( , 1-ni,

.



-13-

Then "A

\N a, eR'a IRe NIS -tqS Ntc) P k rRSN

Applying this result we have vOC4 I -

4_1 JE E.-E -CK

where we define (Mo

and indicates a sum over the states of i energy.

The first two terms have an obvious significance.

They indicate that the energy of the vacuum plus one electron

is on the one hand increased over that of the vacuum because

the added electron can make (virtual) transitions to the pos-

itive unoccupied states while on the other hand it is decreas-

ed because the presence of the electron in the state 9. elim-

inates the vacuum transitions to that state.

We shall designate the first two terms together as

the electrodynamic exchange energy WDX and the third term as

the electrodynamic non-exchange energy WDN. The reason for

this separation and nomenclature will become plain later.

We now write WN in a different form. Expanding the

T 's in free electron solutions

(where U.>) is a normalized Dirac spinor ) we have
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Aklimn

We deffine B<.=j ")

where denotes the spin scalar product.

Then B "

=c i-% 4g

The value of the integral is 47 f2 VK

Using this we get ,

B k4i A

Then -WfN -e'I B -A

K p

To summarize:

D W+ WDN

K TE.,-lI -ecds

,DN - (. y
W ac 33

Ex =±

= .- M oo

where K



2.3 The Electrostatic Energy ( WS )

When the longitudinal part of the field (derived

from ) and A(long.) where Vx 7L(long.) = 0 ) is eliminated

the result is to add to the Hamiltonian of the system a term

1/2 e 2 For i z j the terms of this sum represent simply
I ij

the non-retarded Coulomb interaction. For i J the terms are

meaningless as they stand but when properly interpreted rep-

resent the energy which an electron has because of its Coul-

omb field. By use of the XKoperator introduced previously

both parts together can be represented as the average value

in the physical state of the operator

op 2

This is reminiscent of the classical expression ) 3\-')
__1%-a~Ir- r'

But in the present case the X's are non-commuting quantities

and as a result WS will be found to involve terms of an "ex-

change"character as well as terms which have a direct class-

ical analogy. As before we shall separate the two types of

terms and write

W , 6 + WSN

Introducing the quantity Bj )

in analogy to the Bkmn introduced previously, we have
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* 1/2 e2  a4ala a B m

In this case the first order perturbation energy is not zero.

We thus need the average value of Wop in the physical state.

For any state C( n, n2 . * *

W : 1/2 e klm (0* aka aanC)

Then by the same argument, as before,

W : 1/2 e2 Nk(1-Nm)Bkk + 1/2 e2 NkTmBk4

Applying this we have

Wvac +1 - Wvac :W 5  1/2 e2 B4 is + e2 BJ

where once again we use the symbol 37 1 according as

is a state of k energy. As before we label the first term

as the electrostatic exchange energy ( W ) and the second

as the electrostatic non-exchange energy ( WSN ).

The relationship derived previously between Aklmn

and Bklmn clearly holds in this case also. Finally we have

(defining A n in the obvious fashion)

wS WSX I WSN

ws4 /p 4LK,_TO3,A;

wax . A=.T <- 2Oj
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2.4 Symetric Form for Electrodynamic and Electrostatic Energy

The expressions for WD and e are in rather differ-

ent form corresponding to the fact that we have divided the

total field into two parts and have treated the two parts in

a rather different fashion. This separation is of course not

a Lorentz-invariant one. A different procedure is to expand

and quantize the total field. The difficulty with this is

that the Lorentz condition

A + 1/cf :0

must be treated as a supplementary condition which connects

the two types of longitudinal quanta.

We shall now convert WD+ W into the symetrical

form which would have emerged from this procedure. This is

of little importance in calculating W+ I since the two met-

hods will of course give the same result (the second is how-

ever somewhat simpler). But the difference in the two proced-

ures will be found to be of great importance when we later

consider the subtraction procedure which will eliminate the

energy due to electromagnetic mass.

We consider the sum 1/cK A4 ggA which occurs in

W . Let H be the Hamiltonian and Eo, Ej the energies corresp-

onding to q!0 , G. Then

KK-ffg

(the other terms of H commute with Q. . )



-18-

Similarly
-&Q -4
-L t ~:b-~

But NQ~ ~N)

We have then

where ) K

S*to/ -Is

YK 'Is

We use also the arithmetical identities:

L C
Z E-5K

- - ) 2- CQKc

Applying these results

WSxWS :..2
-4- --

J-
F o 4

The last term of this gives

<I' - -

2~

3~

(E.- E -Y-j

4- ~o

weX is replaced by YKctif : Owhere in Almn'

-I

-z

Then

4-03:r.7% eEs

wsx 5al Ii-V

L X
A] I M = (EN

I

Tx

I
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We can now write, using the convention that

F(X) : F( 1 ) + F( 2 ) + F( 3 ) F( 4

W DX +WSX =WI lr

In evaluating the sum over 1, 2, 3 we can replace C-1 ,

6 C1, to-K by the components of oe along the axes of any

other orthogonal coordinate system. Most simply we can take

o04, o3 ,

To combine iN and # we observe that AZ3 0.

For this involves the matrix element

<~~%-LK CK

Then

WDN SN : : e BJ

The last step follows immediately from the definition of Bklmn

and the identification of c oC as the velocity operator. .

and J, are here the charge and current densities due to the

electron in the state . ; neg and neg are the densities

due to the electrons in the negative energy states. As usual

the effects of retardation are included in WI.
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Finally we have, as the symetrical form of the

perturbation energy:

w - WX + 7N

WX c

WN __c

below for

033= £-es on

The definitions of n and B are given

convenience: ( note that we take o4. 1 )

Aklmn k C >-n

Blmn r
tr-r't

The terms in W for :X 1,2 give the electrodyn-

amic energies; the terms for X :: 3,4 give the electrosta-

tic energies.
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III. EXCHANGE ENERGY (WX) FOR THE ELECTRON IN AN APPLIED FIELD

3.1 We now take up the problem of calculating the energy

W , the general expression for which is given in the previous

section. We shall leave until later any consideration of the

non-exchange energy WN. We take the case where the unperturbed

system includes a stationary external field, which may be

electrostatic or magnetic. Thus the unperturbed system will

have one electron in a positive state To ; the vacuum elect-

rons will occupy all the negative states @r3- . T and 'i will

be eigenfunctions and E0 and Eg the corresponding energy val-

ues of the equation

cL.> + me + U - E 0 : 0

Here U. : eV , or U = -e o.A for the electrostat-

ic or magnetic cases respectively where # or A describes the

applied field. It will not be necessary to consider combined

electrostatic and magnetic fields since the results of inter-

est will involve only the first order in the fields.

We shall always concern ourselves with states which

are "non-relativistic", that is states whose energy, exclusive

of the rest mass energy, is small compared with me2 . Then too,

for the average momentum p we have

p <fme)

We have now

-1-- .
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In evaluating this expression we shall treat i.
exactly. The intermediate states will however be expanded in

powers of U, regarding U for these states as a perturbation

on a free particle Hamiltonian. Clearly this procedure will

not be accurate for low-lying intermediate states but will

be satisfactory for higher states in the continuum. To circ-

umvent this difficulty we shall at first restrict ourselves

to values of the light quantum momentum K (and we use this

term even for the longitudinal field) which are greater than

JfL . It will be satisfactory to consider Je ~ 1/137. In

this way the only effective intermediate states will be those

whose average momentum p. is greater than

For K< lJ. we shall be able very easily to make the

calculation in a manner similar to that of Bethe (6. The two

Parts of the result will join correctly so that there will be

no doubt concerning the correctness of the procedure.

We expand 9.T as

~ I t4 cilly



is a Dirac free electron solution.

For brevity we define

=~~~~~K CS(Q*g/~

We insert the intermediate state expansion into WX

and collect together the terms of zero, first and second order

in U.

Zero Order (

ITxI
o al I Rto

First Order

2-
1kC 2. l

( II

~% ~I) ~

-3 -4
L 14 IT-*

T., C J, " Q %

i ( I -V 3-T)

where .32

L) CN - E c

K :

IT I
I 's

to I %I

E



In the first term of this we interchange J, W' n

We use

-1

~ ) ~3'~V~
i, J' both +or both-

J, J' mixed in sign

Then
Ix

4- I
ir

'S

-1

LR

Second Order

Wx2 e & R~ K

+4-

(' dJ '

*1-<13
LEJ~~)E~E7 FTc

+ J" 1 3' p"o

In the first term let J ,q -+ j ,q; I, -+ J , ,~q' -+Jq

In the second term let qq-J,

Then 2 KLT ~

q ; j, q -*

R t"

+
( +

)+

where L : 1 +L

cv~Ic~%

and q, q'I.

1 + A+
Li

-TU

jj- E h - --"a-



We now find

Then WI
2

4Ve

-1

- ~ ~Xc~)

S 0IZx;1% e

(all i's - )

3.1 :U cVID

K

-+ terms involving J + mixed.

It will now be convenient to write the expressions

for W as the expectation values in the state 9 of certain

operators.

Xw
0 S

We expand

K

as

T x

x -I 4A

- *

E )- .J0 e c

The expression in brackets then becomes

I.) oC . ) * -1

-EAT +CK

that {

-V +J j I .T z I

(all J' s -t)

T IT

I V

- VIC

1 34
%T %

L
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We introduce now the projection operators G twhich

we shall use all throughout the calculation. When operating

on free electron states of momentum i-K , these operators

select the states of 2 energy.

G:1t 4  c .+ mc 2 - cc.J = {l m + _ A
2 -Ep- )2 - Ej

say.

We write

The expression then becomes < Ic* oo

We proceed in the same way for , . We then get

2 (a
- N'~

IG

z-6 0 : 4

B.B B-B- '- B

- oCLc2

4 TV

2 - e 24# 0

Q~ *L 0 + - - )h P-et l- L GJG SGGJ0.,L
BB- B3-B+

1- +

JK I'*B B--B/

+ Terms involving G, G mixed .

X
W, IX

( E p- ) - E, + ca ) :Bt

4 'K

K ,

G
lr ] C ->. T, )



The second term of WX must be interpreted in a spec-1
ial way. Lo which was originally defined as 20 K now

becomes 20K . In this the term in p must be
iTFTT) F )

understood as standing to the left of U and the term in p'

as standing to the right of U. This will however cause no

difficulty.

We should note again that the G operators select

intermediate free electron states of t energy. Thus, for ex-

ample the term O&,GUoLk, will correspond to a transition as

follows: 1). The electron leaves T. and goes to a positive

free state, with emission of a photon. 2). It is transferred

to another free state by means of U. 3). It returns to 9.

with absorption of the photon.

3.2 The Divergent Part of W.

We shall not at this stage evaluate explicitly the
X XX

expressions given above for W0 , W1 , W2 .For the calculation

will be considerably easier after we have removed from WX

the part which we will consider as corresponding to the elect-

romagnetic mass.

is of course divergent. It is worth while however

to examine the coefficient of this divergence. We shall then

find that not only is WI itself divergent but also the diff-

erence between the values of evaluated for two different

states is in general divergent. Thus since the divergence

depends in general upon the state, a new physical idea will



be needed to give finite values for the difference in energy

of two levels.

We shall simply sketch this calculation here. An

examination of the general calculation to be given later will

make clear the procedure which is being used.

We use the definitions of B and G 1/2 H
E 

where H :: a Ap - 0 l. me2 and E = E(p'--K).We find also

c4 of.H o(.
c.

-4 P. + 2 2.p - 2oL-K

0

4X +-- c-

~j~L 4 E 54 S-

But expanding B+ , B , E, we have

10 -9

011a

Integrating over A-Kgives

.- 4 MC - CI

The divergent part of $ is then

- : Eo - 4 mc2 . S
2-it II avJK

(There is of course no divergence at K =0.)
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.
x

We also have divergent terms in Wi

ar~. 
--

I

Thus any terms in LoNGUG, which behave like 1 or K .>

will diverge.

o, GUGo( 4 U + U + U H
4 L E ' E 'E EJ

The terms in U H and H U have no divergence, the highest

power of K in these being YK .K

But H U H 1 ( H0  - ao . ) U ( a- c"' . )

where H: o.p + mc2

The divergent term of this is -L A % ca

Let us now, for convenience, restrict ourselves to

electrostatic fields, U a V. Then

For the divergent parts we have then

, GUG o(. 1/2 V :

Ih GUG c4,.G
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I
The divergent part of W, is then __ V

av21 avK

It is easy to check that W and all the terms of

higher order are convergent. Using the fact that

EO { c.p + mc2 + y] av

we have the result that,for an electron in the state W. under

the influence of an electrostatic field given by V :e ,

the divergent part of W" is

30t (mc2) av S

The same result of course holds for the free elect-

ron. For this case it was given first by Weisakopf (

Since the average value of depends on the state

we see that in general the difference in energy between any

two levels will be divergent. There is however a special case

of some interest.

For the Dirac equation with electrostatic field

V : e # , we may construct a virial theorem,

mc 2 + V + r. V V - E0 1 av 0

For the Coulomb field, this reduces to [rimc 2 av Eo .('his

is however not a gauge-invariant way of stating the result).

We see then that for the special case of the degen-

erate states of hydrogen ( e.g. nej , npg ) the interaction

with the radiation field does produce a non-infinite splitting

of the degeneracy, which in fact will be found to be of the
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same order as the Lamb and Retherford splitting. This result

is however not very useful. In the light of the subtraction

procedure to be described, we may say that it corresponds to

the fact that the electromagnetic mass of the electron in the

two degenerate states differs by a non-infinite amount.

We should add finally that consideration of the

non-exchange energy which will be made later, will not

change the results above.
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IV. TEE ELECTROMAGNETIC MASS

We must now consider the expression for the pertur-

bation energy and decide what part of it can be regarded as

corresponding to an electromagnetic mass to be subtracted away.

The essential point of this procedure is easily demonstrated;

if we have a system of electrons under the influence of an ex-

ternal field given by A, , the Hamiltonian, without the rad-

iative coupling, is

* 02
c04.p + e [-Co..14] 4 m2

e ec.

Suppose now that when we consider the radiative coupling we

find, in the perturbation energy, terms of the form

<:t e -. A4and me
elec, elec.

where < and <lXare of order e2/hc = oc . Insofar as these

terms are concerned the effect of the radiative coupling can

be described, to a first approximation in oc by changing the

Hamiltonian to

0OoC.q) + e (14 )-.+ + m (1+< c

But the effect of the additional terms is unobserv-

able for they indicate that the original charge and mass are

effectively increased by the radiative coupling by factors

(1 +A, ) and (1+J2 ) respectively. The experimentally observed
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values would be these increased or "renormalized" values.

Thus we should remove and discard the parts of the perturbat-

ion energy which correspond to this renormalization.

The restriction that c:IY, ce (or smaller) is very

important. For, if this is not so, the renormalization terms

cannot be accommodated by the above change in the Hamiltonian.

It will turn out in most cases that J, , J% are of the form

oc54 and thus divergent. Our fundamental belief however is

that the divergence is illusory and that a proper modificat-

ion of the theory at ultra-relativistic energies would give

32 J. as truly of order o . This belief is founded on the

facts: 1). That omission of the radiative coupling leads

e.g. to energy values in close agreement with experiment.

2). The subtraction procedure based on this belief

is successful in giving even closer agreement with experiment.

The subtraction procedure is very simple for the

charge renormalization terms and we need give no further dis-

cussion of it now. It will be discussed when we encounter

such terms in the calculation.

The mass renormalization terms however cause more

trouble. We first note that the non-exchange energy cont-

ains no mass renormalization energy. For the form of W shows

that it contains only the energy of interaction between sep-

arate electrons and thus cannot be derived from an additional
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term in the Hamiltonian involving only one-particle operators

(without the radiation field).

As a next step we consider the exchange energy WI
in terms of its expansion in powers of U.

.X W$ X +$. .0 1 2~

All the mass renormalization energy is contained in W . For

the higher terms in the expansion correspond to (virtual)

transitions in which U has an explicit role. (See page 27

where,as an example, the transition corresponding to the term

GUG is described) .

We now remark thatfor a free electron, the pertur-

bation (the self-energy) should manifest itself exclusively

as a mass-like term. (This we can see by considering a Lorentz

transformation which brings the electron to rest). We have

already evaluated the divergent part of the self-energy as

00
3 OL <j mc2
2T av K

This then has the correct form. The finite terms however are

found not to have this form. This failure we can regard as a

consequence of the divergent nature of our theory. We shall

later refer briefly to some recent work of Feynman (as yet

unpublished) which defines in a Lorentz-invariant fashion the

way in which the integrals over K are to be evaluated. ror

the moment however we shall ignore this failure and proceed
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on the basis that in any case the error should be in the same

direction and of about the same magnitude for WX and the quan-

tity we shall subtract from it as the mass energy.

Let us now consider in more detail the physical sit-

uation represented by one electron in the (non-relativistic)

state S4, all negative energy states filled. In considering

intermediate states we shall, as usual, restrict ourselves

to light quanta of momentum k such that k >,3y. We can now

divide all the states into two groups according as their av-

erage momentum is less than JK (group 1) or greater than JA.

(group 2). We may now reasonably neglect the momentum compon-

ents of q. in region (2). It is then quite easy to prove the

reasonable result that we may ignore all states in (1) except

L4 (whether they are occupied or not). This is because our

restriction on k effectively eliminates all transitions betw-

een q. and these states. Moreover in the zeroth approximation

in U the states in group (2) are free particle states and it

is this approximation in U which gives W7 which as we have

seen contains the electromagnetic mass energy.

Thus W0 may be considered as arising from the partial

system: one electron in L., all negative states filled ;both

the negative states and the intermediate states are free part-

icle states.

This is completely analogous to the system which

gives the self-energy of a free electron, the only difference

being that the electron is in a state C. rather than a definite
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free electron state. The self-energy for a free electron may

be written

Wself' - dk G"G E 1 o(,o. 1
412 k E(p-k) -H(p)+ck Epk) +H(P)+ck

av

where H(p) = co..jgmo and this is to be interpreted in the

obvious way as t E(p).

Following the analogy we therefore define

V, -2t d~l o , G;4I 1 - oaG /,1
4T(L 12 k E(p-k)-H(p).+ck Ef(p k ( + ok]

and this we shall regard as the electromagnetic mass term to

be subtracted from , the residue (except for charge renorm-

alization terms) to be regarded as the level shift due to the

exchange part of the perturbation energy.

In reaching the expression for V we have used the

symetrical form of the perturbation energy as given in 11-4.

It was there pointed out that the symetrical (Lorentz gauge)

and the non-symetrical ( V.A = 0) formulations give the same

results for W and WN. But this does not hold for and con-

sequently we have a certain arbitrariness. The reason for the

disagreement is that V involves not only diagonal matrix

elements of the self-energy operator (for which the equivalence

does hold) but also non-diagonal elements (for which it does

not). These non-diagonal elements correspond to transitions



in which the electron leaves the component #r(P) of 'iwith
emission of a quantum but returns on reabsorption to a compon-

ent +'(p) where r, s are of opposite energies. (The energy

for transitions with r, a of the same energy but opposite

spin vanishes.)

The amount of arbitrariness can in fact be evaluated.

With some manipulation, we can show that for non-relativistic k,

W'(Lorentz gauge) - ( V .An 0 gauge) : (T*[ p2  Pr..0
Z1rm

For the electrostatic case U = V this equals (in the notation

of V )2 I
-6 roC 1 97 - SV
Zil'm m 4 av

Then the 9 . . 0 gauge formulation will lead to a

surplus magnetic moment O/61 evaluated by considering the

electrostatic case and to a different value evaluated by con-

sidering the magnetic case. The results from this formulation

are therefore not Lorentz-invariant.

Thus, as we might expect, the Lorentz gauge formul-

ation,which avoids the non-Lorentz-invariant division of the

total field into transverse and longitudinal parts, gives

more reasonable results.

Finally we should mention that the work of Feynman

referred to above indicates that for a correct result the Lor-

entz gauge formulation must be used. The essential point of

INN
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Feynman's procedure is that the electromagnetic interaction

is modified by the introduction of a parameter and the self-

energy with the modified interaction is finite. After calcul-

of the self-energy the parameter may be allowed to vanish

thus returning us to the usual theory but without the diffic-

ulty of non-Lorentz-invariance referred to above. It is not

certain at present what modification this Lorentz-invariant

"cut-off" procedure may make in our present theory.
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V. THE CALCULATION OF 6 FOR THE ELECTROSTATIC CASE

5.1 We define as the Level Shift AWX due to the excha-

nge energy

is - I W + W.

We now proceed to calculate AW 1 for the case U V e<

As emphasized before, we shall concern ourselves with non-

relativistic states '1. whose energy, exclusive of the rest

energy, is small compared with mc2,

In anticipation it may be said that the order of

the level shift will be

Ot p2Iav ott2 av
mc

Thus it will be seen that in the expansion of WX we should

consider only terms up to W . On the other hand the only

terms not smaller than the order of the level shift which can

come from WI will be terms in (V2 av This is however not a2 a

gauge-invariant quantity and thus we should expect these

terms to be cancelled exactly. We shall indeed see that this

will happen.

It is convenient to combine the four terms, three

of which are divergent as they stand, into other terms all of

which are convergent.

We combine and WY, and noting that (E0 -H(p))=.

we get

\~~-V~t S ~~OL>4O,+ t 1i>
0~
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To eliminate the operator H(p) in the denominators

we introduce the operators H- which decompose T' into its pos-

itive and negative energy parts.

H a 1.D + 2

Let D': E(p-k) -E(p)17 + ek . Then 1_=
DJ

t

1_ (E (P)-End0
BJ Be DJ

Now W WM -

(C-7 - D- I+D * -8+D

__ (C

Wi + WI2
say. Since(E(p) - Eo))V ~ V2 we note that W2 is

of the same order as W . We shall combine W with and

W with W

Since H* 1 - H~

40

4 c4ic~
-~W I iV.) -(I)

+ ~~L~ .

For the last term we use the simple result
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1V - V 1 V E(p-k) -E(pk) V] 1
B3 B B3  B3

Then W(

We finally combine the last term above with W

and we then have

AWX (1) + (2) 4 (3) +(4) + W + W

where

(3) :- o s AKo : L. - +LOGV
KB

(4) -- - C

All these terms are separately convergent. We shall

now show that the second order terms give no contribution.

After this the other four terms will be calculated separately.

In W2 since ( E(p)-Eo )V ~ p2V, any operators

multiplying this which are smaller than ~ 1 (i.e. of order

P/ or p may be placed equal to zero. Thus we may neglect



terms arising from the expansions of the denominators.

the same reason we may take H- G7 Also oG ~ Gco ,

G 4 G. 0. Finally (p f ' .V g [p 2 V2 1 av 0

Using these results we have

et, Gfat G-

Ck4 G aol G ^

c4G GoL~h

GG

G G

Thus only the second term of W' need be considered. In this

term we may take D~ - B-. We get then, using the fact that

(p) -Eo av = - f lav 9

2 J lV2Ja2ir' )Ke

Now consider . The terms involving G+ ,G mixed

vanish. For

CdGG V G XV G ls-~oV GT G G V d>,

Also

: 0 if the T's are mixed.

od.,G IrV GeV GrV, -- V do, Ge.1Y Vv V G V ~ p2V2 ~ 0

oCG O V G V Go~V G V ~

W2

V2

os c2 LV21
E ji 16av

We see that the two second order terms cancel. Thus

For

and

-0

~0

,G~- G ok^ ~ 0

e. l

Then



W - (1) +- (2) + (3) + (4) , where these terms are given

above.

We now proceed to calculate each of the terms. The

procedure will be to expand the quantities B, E in powers of

k.p keeping as many terms as will contribute to the effect.

We then integrate over directions of k and finally over the

magnitude of k. To simplify notation we shall often omit wri-

ting V; in this case we identify B, p etc. as B, p etc. if

they stand to the left of V and as B', p' etc. if they stand

to the right of V.

Since we are concerned only with non-relativistic

states To it will be satisfactory to use at various places

the Pauli approximation to the Dirac equation in order to

reduce various operators which will occur to their non-relat-

ivistic equivalent. The Pauli approximation states that if we

write the four-component Dirac wave function T in terms of

two-component functions 2L , 4 (where + includes the small

components)

then for positive energy states we have to a first approxim-

ation ..

We shall not need the second approximation. Using this to

reduce relativistic operators, we shall find that all the
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operators occurring will eventually reduce to a combination

of the two operators

VV , S V :1/fi VV.G x p

The following identities, which are readily derived

by using the commutation rules for the Dirac operators, will

be required:

: 242

+ 2 o.kc

-2a..p + 2at .k

- 2p2+4 , -2a

* p -4k.p -

Here Q :$N k2 + pT' We write At. (Q ; Eo + k ). We note

c
that Q, cA are simply E and B without the angular dependence.

We need the following expansions, valid for all k.

= 1 1 +k

. 1 1 +
A

EE' QQ' 1-
L2

LO: 2ek =

. .11

-0.11

a2 1 14+

ac2 = 1- +

__ _L_ +
BB' A'

k*-+
Q

2

QA QA

ka - (kep) 2  -
2 4 J

k"D - k ' 4 k2P2

9 q2 3q4

+ k p 2

4P

0

E

2.
B

i
.3

1/c 2'og, H og:-4 fu.

1/c2 o4)H H'ot;,

4-0p .-

+ k *#R
3Q4

-p21k (L1 + k.P, k.D'
i 242- W
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Except in terms which are larger than the order of

the effect we are computing we may write = Q' and we have

done this above.

We need the following simple theorems:

LP2v - vp2 ] av = 0

1 .p V - O.p =av 0

o4Op V (4 .p : p. Y p - V 2* gy ( p = 42

p. Y /24 2 { y]V av

Finally we need the following integrals. In each

case the range of integration is from k = 2.& ( J - 1/137) to

k = oa . All the integrals are of the form

which we shall write (k m r s ). By 1_

AA

we shall mean

1- + -- . Similarly in other cases.

A3+ A:! A2A. A A,

(1 1 0 2) (1 1 2 0) 14 ln 2+ ln . (1 2 1 1) - 1/ ln .

(2 3 1 1) 1/1/2-1/2 in 21 . (3230)-(3203). 14[1/2 ln2+ 1/4

(3240)+(3204): 1/>-3/2 in 2-lnJ -1/4].

(3302)-(3320)= l/ ln 2-1 . (3340)-(3304)n 1/)[-21n 2 -ln Il

(3411) =1/ 1/21X3321)z 1/ IAln 23.
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(3430)-(3403): 1/p Iln 2 - 1/4).

(4421)+(4412)= 1/ (1/2 in 2 - 1/

(4512) -(4521): 1/p t \2/3 - in 21.

(3412) -(3421)=1/g {in 2 -3/41

(4511). 1/g [ 5/12 -1/2

Calculation of (4)

(4)
4+

4- --
-8 t

+ -

P14 - -V

~~S-zEEO vs- AV4~I~~

= 2 q2 . -k.p

+- at.p og.k-kp' -1/3 k2 , p2)
C2

01 1- k2 +'262 SV + 2 o0.. p

3q21

o4*k + 2 oC.k a4.p'-2k.p-2k.p'

4-ili
MQ oa( H-B- EEJ~

E '

(

vi' I '3 A 't 3 f B j

The first term of (4) therefore gives

+4( i's 3cg-[,QIr v lyffa' virv,-

in 2)

+ C.ek ot p

Then

E E',k , ' -

I
1 c ,(HH ' -EE t
02 ,

. 2 + 2p.p' -0otpo49p'

1 ,2 19 . V

3 FlA' <f A'

-Z J!
S coA-IT

KA.IC

Aft I



-3 ln ;
4

- ln 2371

For the second term of

4)A
: 4 q-

(4) we have

[k.p' - k.p]

The terms in ot.pkp'

while the terms in ot.kk.p'

etc. vanish on integration over

etc. lead to Q(.pV - Vo"lpav=

then

e ,Ix~ve EE'EOd 39A1AeATC FE 9. eA

The second term of

I7VX

(4) gives then

K3cLI

2 V Iln 2

We thus have

(4) = 21
3'l me

+ n 2 -7 +
81

-3lns
2

-1 - ln 2
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c _
+ lnj -1

2T

9

(-A ~i~}~- ~L)

-
1

SY -1

olX(HE'"-EH'o :~- ( .V9 (.K '..- )+ o(

96L

03<LV-

a C4 ( A)3T me

"14



Calculation of (1)

(1) -_-' ) Pv3

-.TL r E tj X pv

We show now that the first term does not contribute since

H~Y cr 0 in N.R. approxiviation.

2 H U 1 - f.. - ( ) +..
E(p E(p)

-~ ~,

M

By Pauli approximation ):(1- P )Vlav = 1 *
2 s-4.I av

-" -*: vIav = _1_ )I-9 - V + 2
2 -p ' P V av

Adding the terms gives ( HV]av 0

For the second term,

The last step comes from the fact that - x HJ = 't .p H~T

F or(2. + ) H~ .V p.L(2H+ -1)HI V . - IHV Ir 0.

In Pauli approximation we find that

1 .w H~V av
4 &

(N.R)

Q - 4-W'1'C:Wk4O1wA-v
41 >1

+ Vr A 3 4ir RC?

2 -



Then

Cj 2 7 - lnn 2.4 4 ln<+3 ln 2 -3
3T1me 4 4 81 224

Calculation of (3)

(3): otC <L

-+'C *-3- L o,(wt-es)t L
6- K' r > E E

The L term in (p 2 -2) does not contribute. Then except for

the terms which arise from the expansion of Lo we obtain the

value of (3) by multiplying the terms of (4) which have mixed

denominators (AA... etc.) by k/Q before integrating over k.

BesideA these we need the terms which arise from

k (k.p +k.7>') in Lo. The second part of (3) has no such terms.

2q 3

For these terms in the first part of (3),

1 o(, (HE I -EE) eLo Ek_(kp k p"' '') ( ;Z . p of.* o-t . .p-k- k .p)

2 Q 3

S-3 -p pl) -2 fi2 SV
UQ 3 Q,3



Thus the extra terms which arise from the angular dependence

of L0
are

~OL
fl,'

Then the first part of

5K4 C

(3) gives

C V~V s~ 4 0- 2

2

31
13
24

- 1 in
2

2j .

CL. K 1. ~t

4~q# RA 4

-1 In 2

The second part of (3) gives

KYCCL

t4 ; 2 X

So (3): = /_ 2 [

Calculation of (2)

2
3S

In 2

24

I
3 ln
2

21

(2)~ e~~c?
4~ir

d. E- Jj~4~ ~(-E4J .

For the first part i/c(E-E')= *(k.p' -(k.p)
2 g3 ?q3

4 Sv {1
2

-1
2

in 2

+

(~ V
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: 1/Q ( k.p'-k.p ) since the other terms lead to (Vp2 -p2y~av10

Then CL

V since we need only terms with A a A'.

The first part of (2) gives then

bIve AAV

-naJ 3 ln 2
4

For the second part of (2) ,

0. - + 2 .k

-2,bt p + 2d .k a -4 p

This step follows because (E-E'). .p '=' 0, c2.k(E-E') will

lead to at .pV - V O . av = 0, and y a . in N.R. approxim-

ation. Then, just as above,

o o(E-E')

The second part of (2) gives then

- -... v "V <iK --...- A
Q9(+

C A)2

l (MO -i33

1/1 c4 H ek -.4}

-d QT7VI)p. Je _ le_
T It4q't A



2 In + ln 2 1

So ( 2) . _ V V _l. ln C 1 ln 2 8J.

Finally, adding the four terms, we get for the level

shift AWX, due to the exchange terms in the perturbation

energy and considering only light quanta of energy greater

than imc 2  ( < 1/137)

2 r V dk n- in 2 SV-

This value for the level shift includes of course

the shift due to the electrodynamic exchange terms (AWX ) =1, 2)

and the shift due to the electrostatic exchange terms

( = * a 3,4). We record below the results of the separate

calculation of AWDX and ax for k

wDX 2 V~v" /A2 4 ~
&W 0 -A V .dk - n 2 .4 1. .5 i _

31 cJ k T

'NWSX h2[ 19 .W SV

Before discussing the results we shall first evaluate

the contribution to the level shift from light quanta of energy

less than J mc2 and thus remove the restriction on the value of k.



This part of the calculation has already been done by Bethe

As suggested by Bethe, we can ignore retardation

for these frequencies. We can also omit, as would be natural

in a non-relativistic theory, any consideration of negative

energy states. In light of the calculation above this can be

immediately verified. For the only terms which can contribute

to the lower limit are those with denominators of the type B4

which behave like k for small k. These terms occur only for

positive energy states. Moreover the results above show that

only the electrodynamic part of the perturbation energy will

contribute for small k. Thus we take only ) 1,2. Since

C oC v we make the replacement c4,: .
mc

Then from page ( 20 )

W K
T C'2

. (. )where this is to be
3 9 J I -understood as a

E- -. scalar product.

The first term is easily seen equal to W in this approximation.

Thus when we subtract this term is cancelled. The second
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term gives,exactly as in Bethe's paper

K,

_o& [_f. 2 V2. dk
ZTlmei k

where kj is the arbitrary upper limit of integration and ko,

the lower limit, is established as very nearly (Eg - Eol av

for the system. We note that if we take k1 , Jy then this

result joins on correctly to ours as given above.

We shall call oko the Bethe lower limit. Its value

for the 2s state of hydrogen has been given by Bethe as 17.8

Rydbergs (1 Rye 1/2 t2mc2 ) . It seems probable that a more

accurate calculation may change this value slightly. With

this value for cko we have dk a 7.63 and we shall use this

K. k

in giving numerical results for the case of hydrogen.

5.2 Discussion of Results.

Before examining the results we shall add to A

the value for the level shift AO due to the non-exchange

part of the perturbation energy. The calculation of 6WN is

given in VII.

AW & AWX +aWN

M I12  V2 VE
3% Le 5

Then

d r = ChT Sdk - ln 2 -, 1 +1 ( VV.' x *av 3
3 e 61Kok 5 4



o~} liVL VI -- POO ~~cd- .0 60 e.

We may note that k - .0601 may be written dk
K"O Ko

The first term, which we may call the scalar term

is similar to the result of Bethe(6 who used a completely

non-relativistic theory but arbitrarily excluded light quanta

of energy greater than mc2 in order to obtain a finite result.

The equivalent upper limit, according to our theory,is .94 mc2

The second term has the characteristic form of a

spin-orbit coupling energy and suggests that the electron may

be regarded as having a surplus spin magnetic moment due to

radiative coupling.

If we regard the electron as possessing a surplus

spin magnetic moment S efL (where e is as usual the algebraic
2mc

charge) we must add to the non-relativistic Hamiltonian a term

2eh H + 1 Exv e_ S.H + e S.E*%p
2mo me m202

In the present case H . 0. From the spin-orbit term we identify

A as _' . Thus one effect of the radiative coupling is to
21

increase the effective spin magnetic moment of the electron to

1 + Bohr Magnetons
21

This corresponds to a new g factor: g a2 +
2T1
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In section VI weshall calculate the energy of an el-

ectron in a magnetic field and thus obtain an independent iden-

tification of * The two methods give the same result indic-

ating that in this respect our theory is well behaved. Finally

it should be said that the value of the additional magnetic

moment was first derived,in a different fashion, by Schwingerj8

5.3 Application to Hydrogenic Atoms.

For L = 0 (s states) (na principal quantum no.)

2jp YVav = - Ze2l

e me% p0

e.20p av = 0
2Fom2 c2

For L O

9pI* 2 8 o( 2 Z4 Ry
n

r E2NV1 Yav = 0
Lmo

.4 .. .. (L+1) (2L+1)
E {ES -Ap3av C 42 4 Ryx,

2m202 3-1

We have then

AW (L:0) 8 o/.3 Z Ry dk 060
3 3k

n K

W (o) = L 3 Z4 R(L+1) (2L1l)

-([L - 1
n3 L L+1

Ja L-+1/2

.T: L-1/2

J= L+1/2

T. L-1/2
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We may write these results in terms of the corres-

ponding frequencies V , where h Y AW For A W = l/go(3 Ry

we have y : 407.1 megacyoles/sec.

Then for hydrogen, V(2s1 /2 - 1030 mges/sec.

Y(2p1 /2 ) - 17 mgos/sec.

y(2p3/2) 8 mgcs/see.

Thus the 2s1/2 state, which by the usual Dirac theory is

exactly degenerate with the 2pl/ 2 state, will on the present

theory be higher by an energy corresponding to about 1045

megacycles/sec. This is in agreement with the measurement of

Lamb and Retherford(l who report a value of about 1000 mgcs/sec.

subject however to a possible error of perhaps 100 mgcs/sec.

Future experimental work will probably provide results which

will make possible a closer check of the theory.
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TI THE CALCULATION OF AW FOR THE MAGNETIC CASE

We repeat the calculation for the case of an elect-

ron in a stationary magnetic field. Our principal concern will

be to verify the magnetic moment result derived from consid-

eration of the electrostatic case and thus check the consist-

ency of our theory.

We have for the applied field U = a.A where, for

convenience, we have taken A : -e Y Vector potential. The order

of magnitude of the additional energy due to radiative coup-

ling will be

AW C [ .H] av e/i 0.Lav

where A is the magnetic moment operator. (It is trusted that

no confusion will arise between oL: e2/;hc and c4 the Dirac

velocity operator) . We may thus neglect terms in A2 and p2A.

Expanding the intermediate states in powers of U

it will be sufficient to consider the terms of order zero and

one. Since o4l does not now commute with U, the manipulations

used for the electrostatic case in order to write AWX as the

sum of individually convergent terms will not be convenient.

This however will cause no difficulty.

In the same notation as before we have Wi W= - T.

Wl c , GJo/JL c-, H+T.

4 7= K ' ~ U
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1 - Jt-

WAW

We now calculate each of these terms. We shall not

use the Pauli approximation in the course of the calculation.

We shall often use the identity

..W -a* - -f -- f .Ib -b - ~ -

oL.po.A + o.AcL.p A.p +p .A +f c. H

(where H = Vs.A ). Besides the integrals given previously, we

shall need the following (the notation is as before):

(1020)-+(l002)4[1/25dk - in 2 lnJ -1/4]

(1020)+(1002)-2(lOll):(- in 2 lnJ' -1/23

(2111):[1/4dk - 1/81 (3221)-(3212): 1 / (1/2 in 2 - 1/4]

(4311) =1/4dk +1/2 In 2 - 5/83 .(4321) - (4312)zl/ [-ln 2 + 3/4]

(3211)[ - In 2].

The integral dk which appears above is divergent but will

eventually cancel out.

Calculation of W{.

Using the definitions of G~ H~ we write



£*~*1i~ ~

-l - LIt §~~LJ+F~ AV

The first term gives then

.k f.A] av kdk +1 - 2 : 4 H .AJav -l 2-1nJ

A+ A2  AA_ -n

The second term gives

-ot o.A]a -1din 2+1n+1
+A 2 T a 2c Q 4

-OS'av jk dk [ _
A+

For the third term we have 1/c =oH ol, = -4 A -2 ot . p + 2 ot .k

H + 1/2 1 __

Then

1'H( H o .A -(I+ )(2).ol.A +ot.p o(.A) + (1- )o.k o( .A
-14got.A + (1) ot .p oz.A-4H'ot .Aj-+ (1- ) o.ko(.A

The first part of this gives

_U4of.A+ ( -l) o( .p o.A -4Hoc .A] av -1n 2

For the second part

T IE e
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W :a!,,

-L -+ .
-a- (q 9fi

1
4



This then gives

*Lr AVI~
wi q P

41 I av

Collecting the terms we have

W+ : 4 *oA]av -ink -2 in 2 -2 n 4

+ H-' .'Ia4 2 ln 2 +2 ln<I -l
21V

+ (-1)2 >, . -ln 2 -nJ + 1.
ga1 y - av2

Calculation of W911

We write the first term of W in the form

R

I1 K
11 ~ R3)Z.j ~- iB-]'v

Ah

X~~~ R-~)o~ 4-~-

-A ApL + j
__, 'T+I 1

In this expression,

fl
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R2  H ot .A

R3 :4.A H

R4 :H .A H
E E

4~ -

Q

ot AHo

- ol.kcLt.A

sA k

Q

1 Ho l.AHO -l k 2 C

Q2 3

- k2

3q3

- _k2

3q3

where HO : R..p +y . The equivalent forms for the R's are

found by expanding E and keeping terms which will contribute

to &W. Then

R2 R3 - 2 A.p +.p.A vfi -2Ak
9'

o.A ao.k - c.kol.Aj

We perform the integrations over k and write each

term as
4C c4 T.(
4Y NIJ av

R_ terms

T, = o(.A k dk

A2

I

A2 A+.A

.oA I-in 2 -lnJ -

R+RR3 terms

Thus the terms in A.k give

.A -2k A-f Ip -. A
342

-2qjA.c

oa-.H )



-+, A A L

- A.p +p.A]
3sA.

The other(R2 + R3 )terms give

A* p + p.A +i cr.H) 1.

S &L~w (.t .x-ou -cta-a)C ws'

These terms give

3

R terms

- ,-4-

Then T5

3L

T4 . Z
3

3-2-

-2 in 2
3T

34a-

-in -

oL4~c1.A 4C~O(t

A

T- .13
r~+

In 2 -_
F 4

- PF r

P-A LKa

in 2

T
T2
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S. in 22

4 p.A4 I



For the other R4 terms we use

Ho oC.*A Ho A.p + wp.A *p1 '. - o.A

So T6- ) - A(+ K

_ .Hj-lnJ 4 Aop+ p.A J-ln<: -l_

3 Q 3

To sum over X we use the following easily derived

identities:

lot. ~ x= oIA.pc. o p

A.p

2A.p

- -4 A.p

Then, collecting terms, we have for the first part

o t.AIav 2 in 2 + 1 + dk ... tHlav 1in
2O 3 2 3 2Qj yI W 3

2 + lnJ 2J

+ O A.pp.A av-ln 2 -ina - + .LA[- . av 4ln 2+ 21n.+

We now evaluate the second part of WX. For the terms

which do not arise from the angular dependence of Lo we mult-

iply the A*A. terms above by k/Q before integrating. For the

-2 o.A

-2 (r.H

= 0

of W.

-064-

I

7_04TOH*A
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terms arising from the expansion of Lo we need only consider

the -2P A.k term in R4 . The other terms contribute nothing;

but

These give T, a - A.p+ p.A k dk
3 5 tA

For the second part of W we have then1

-T. a-A K(

K ( - I +%- l

Integrating and summing over >gives

O.sA av dk - 21n 2
2T 3 JQ 3

+ 1 - I- A. ]++ -. Aj 2
2W u av3

+ .H 2 in 2 - 1
3 21 yav

In 2 - 2 1

For the energy shift we thus get

L ."1avj21n 2 -21nhJ+ 4 + at 1 0 -H In
3 21 L av

2 + lna

+ L A&4-iIA -n 2 -lns 1Aop -,
2n-iV I X I T -1 Ja I21n 2 + 2lnaI

HoL.Zai3 v21nc+ 21n 2 -1 ( -ln 2+}

T. jA
3

4'F *R-



-66-

We may now apply the Pauli approximation to reduce

this to its non-relativistic equivalent. Then

CO .A13av = 1/2 (Aep + p.A + fl av

DI-Na I' %*lav 11*av * *av

S .L-av 0 (p-1) capat. o* . =

and W T GV.H av a [i +jKpav

It will be remembered that we have defined A - -e x

Vector potential (en algebraic charge) and H = VJA. Returning

now to the usual notation A : Vector potential, H Magnetic

field, we have

AW §- c efiH[- .H~av -oG e A.p p.A+fi ~H
2'1 2mc 21 mc L v

We immediately note that this result is not gauge-

invariant and we can recognize by this the fact that it cont-

ains an energy corresponding to a charge renormalization. If

one effect of introducing the radiative perturbation is to

change the effective charge to e+Je the energy of the system

increases on this account by an amount -Je o&,A (which is of

course not gauge-invariant). In terms of the reduced equation

the additional energy is

p p [av



-67-

In the case above we therefore identify 44es I/6i e. Subtr-

acting out the energy corresponding to this in accordance

with our interpretation outlined in IV we get for the true

energy shift

AW A: - o, efi [-.H
21 2mc av

We anticipate here the fact that the non-exchange terms will

give no contribution in this order.

The energy can be interpreted as due to an additional

magnetic moment, the total spin magnetic moment being now

1 + oo Bohr magnetons.
21

This agrees with the result of the electrostatic calculation.

We may note finally that the orbital magnetic moment is not

affected.



-68-

VII. THE NON-EXCHANGE EIMGY ( WN )

It will be remembered that we have separated the

total perturbation energy, which results from consideration

of the radiative coupling, into two parts WX and WN corresp-

onding respectively to exchange and non-exchange phenomena.

We have considered in V and VI the effects due to wX and we

now consider W . We have pointed out that contains no mass

renormalization terms. It will be found however to contain

(divergent) charge renormalization terms and when these are

subtracted out the residue will give a finite level shift.

This phenomenon has been considered by various

authors, originally for the electrostatic case by Uehling(5.

In particular, Weisskopf 9 has given a treatment using a

procedure closely akin to that we have used above for the

non-exchange terms. For the sake of completeness we shall

sketch the treatment.

N -) Y (r') - )o -J r)

where f., o are the charge and current densities due to the

electron in the state . and in~g a neg the densities due

to the vacuum electrons.

f neg and J neg will be expanded in powers of U
-0

(U . V a e4 or . -eod.A where + ,A ; external field) . The

terms independent of U will represent the densities of the
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vacuum electrons unperturbed by the applied field and, follow-

ing the usual procedure of hole theory, the energy correspond-

ing to these will be discarded as being without physical int-

erest. We shall omit these terms from the start.

7.2 The electrostatic case, U = V.

Expanding '- as before,we have

. neg

We omit the first term (independent of U). In the third term

we interchange J, J' and q, o'. Then

eg ~E Q +f+ 3%

ctj

where we have written
-ig

The sum over J, J' is readily done (ag by the

method of spurs ) and we get

r-z

EL-E

= -42
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Yneg
Eg)+ EC1-9 Ep Ej-*

For our purpose we shall be concerned only with

g ~ p. For WN involves the integral ' elLd.r

where p, p' are momenta in the spectrum of '. .The integrals

vanish unless g p' -p ~ p . But in summing over q there

will be no contribution for q << We may therefore take

q >> g. As a more convenient notation we write q z k. Then

-0 -a.

-ilt gor(dk 
i 2(k2 -k. g +2

E(k)+E(k-g) ~ Elk)E(k-g)
neg -e V() e

4 3 fi3 .,

Expanding the integrand in powers of g and integr-

ating over the directions of k gives

21k2 2 2[l -1 c 2 k 2 4 . ceg4 [- 1 1 25 c 2 k 2 - 21 ck 4 1+0(g6
2 6 E 2 (k)J 2 E2 (k) 24 E4 (k) 40 E6(k)J

For the g2 terms (which are divergent) we note that

COg)e g - 62 qi V = 4If- 2 e (e)

where ? (e) is the external charge density which produces V,

(e.g. the proton charge density in the case of the hydrogen

atom). These terms then correspond to the field-independent



part of the vacuum polarization. We may regard them as charge

renormalization terms (they lead to an energy term of the

type (4fw V%)).

For the g4 terms,

v(g)e-/6 gr 4  V7 ( V) -4fi4e V (e)

c k2 dk -1. 25 2k2. -21 4  1 + 5 -3 -1
E5(k) 2 24 E2( 40 E4(k) 3

1 A2, 24 40 30k

Then for the physically interesting induced charge

we have

~neg 2f V_ 2-V t e)
604 2l 5im

tc

This induced charge causes a finite level shift which we

shall call Aw.

6012 00)

,'2 T in agreement with the result
15'l 1 (5-of Uehling

For the electrostatic case the induced current

density vanishes as would be expected and thus AWWN given

above is the total level shift due to the non-exchange terms.

This can be verified in many ways ; e.g. if we replace V

by (ot.A) g then the expressions vanish when we sum over

i, J' as above.
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7.3 The Magnetic Case.

When the external field is a stationary magnetic

field the induced charge density vanishes and we need only

consider the energy arising from the interaction of the

current due to the electron in the state T. and the physically

meaningful part of the induced vacuum current.

We shall not outline the calculation here. It proc-

eeds exactly as in the electrostatic case. After subtracting

out the current due to the unperturbed vacuum electrons and

that corresponding to the (divergent) field-independent magn-

etic polarizability of the vacuum, we get as we might expect

c neg

On interaction with jo this leads to an energy inv-

olving (v 2 Alav which is smaller in order than the energy

corresponding to the surplus magnetic moment in which we are

interested. For our purposes we may therefore omit the non-

exchange energy in the case of an external stationary magnetic

field .

_Mq
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