
XMESS: A GRAPHICAL VOICE-MAIL INTERFACE

by

Lorne David Berman

SUBMITTED TO THE DEPARTMENT OF PHYSICS IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

BACHELOR OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1990

Copyright @ Massachusetts Institute of Technology, 1990. All rights reserved.

Signature of Author
Department of Physics

June 4, 1990

Certified by Mct Iq 0
Christop er Schmandt

Thesis Supervisor

Accepted by

Chairman,
M;ASSACHUSETTS INSTITUTE

Professor Aron Bernstein
Undergraduate Thesis Committee

AUG 2 7 1990

LIBRARIES

ARCHIVES

1 -.1

k

XMESS: A GRAPHICAL VOICE-MAIL INTERFACE

by

Lome David Berman

Submitted to the Department of Physics on June 4, 1990 in partial fulfillment of
the requirements for the degree of Bachelor of Science.

Abstract

This paper describes XMess, an X-windows based application that controls a graphical user
interface to an interactive voice-mail system. The audio interface and voice-mail server are
handled by a separate process, Phone Slave. The interaction between these two processes
provides the user with a complete voice mail system which is accessable from any
workstation capable of running X-windows. Additionally, XMess is compatible with other
"Conversational Desktop" applications, such as an electronic rolodex (XRolo), and a
telephone interface (XPhone).

Thesis Supervisor:
Title:

Christopher Schmandt
Principal Research Scientist

i

Table of Contents
Acknowlegements
1. Introduction

1.1 The Original Phone Slave
1.2 The Conversational Desktop
1.3 XMess and the New Phone Slave
1.4 Documentation Layout

2. XMess Instructions
2.1 Startup
2.2 Main Functions

2.2.1 Accessing Messages
2.2.2 Selecting Outgoing Messages
2.2.3 Known User Functions
2.2.4 Realtime Call Functions

3. XMess Windows
3.1 Basic Setup
3.2 Icon Window
3.3 Main Display Window

3.3.1 Creating Call Widgets
3.3.2 Placing and Manipulating Call Widgets

3.4 Known User Window
3.5 Outgoing Message Window
3.6 Incoming Call Window

4. Interprocess Communication
4.1 Why Ethernet?
4.2 Establishing a Connection
4.3 Receiving, Sending and Parsing Data

5. XMess and Phone Slave Databases
5.1 Calls, Users and Motd
5.2 Loading a Common Database
5.3 Callsdb format
5.4 Users db format
5.5 Motddb format

6. Walking Through XMess
6.1 Startup Procedures

6.1.1 Loading Calls
6.1.2 Connecting to the Sound Server

6.2 Main Loop Events
6.2.1 Phone Slave Command Actions
6.2.2 XMess Command Actions
6.2.3 Playing a SoundViewer

7. References

1
2
2
3
5
8
9
9
9

10
12
12
14
16
16
16
17
18
21
22
24
24
26
26
26
28
31
31
31
33
36
38
41
41
42
43
44
45
47
48
50

ii

Figure 1-1:

Figure 1-2:

Figure 1-3:

Figure 2-1:

Figure 2-2:

Figure 2-3:

List of Figures
XRolo - A pull-down menu is used to recall another
card.
XPhone - Cascading menus allow several methods of
dialing.
XMess Main Window - Incoming messages are being
played.
XMess Outgoing Message Window - A new message is
being recorded.
XMess Known User Window - Sending personalized
messages
XMess and Phone Slave allow the monitoring of
incoming calls.

4

5

7

11

13

14

1

Acknowlegements

This work has been made possible by a grant from Sun Microsystems Inc.

And Geek, thanks.

i

2

1. Introduction

1.1 The Original Phone Slave

XMessl is an application designed to replicate some of functionality found in the

original Phone Slave. The original project consisted of an audio and graphical interface

to a telephone messaging system. The audio component was much like the present day

voice-mail systems, but with somewhat more functionality. For example, Phone Slave

was more than a simple telephone answering machine with regard to its message taking

abilities. Phone Slave would ask a caller a series of questions, such as:

e Who's calling?

" What's this in reference to?

* At what number can he reach you?

" When will you be there?

e Can I take a longer message?

At sometime during this exchange, an actual outgoing message recorded by the

owner would be played.

This message sequence served two purposes. It encouraged the caller to leave a

message, and it allowed the owner of the system to access specific information, such as

the caller's phone number, quickly. In addition, Phone Slave recognized a number of

known callers who were identified by of voice recognition. These people were not

subjected to the Phone Slave's normal message sequence. Instead, they were able to send

and receive personalized messages [1].

To gain access to the message recording and playback system, the owner had the

1XMess: X-windows telephone Messaging system

3

option of calling the Phone Slave and using the audio interface, or sitting at his terminal

and using the graphical interface. Through the use of a touch-sensitve display, message

segments could be played by touching a "sound bar"--an iconic representation of the

duration of a sound. By touching the screen, one could play entire messages or groups of

message segments (e.g. all of the "name" message segments).

Besides message recording and playback, the graphical interface included access to

a rolodex and to the telephone. Each known user had an associated rolodex card which

contained information such as the the address and telephone number. Phone Slave could

serve as an auto-dialer, dialing by a rolodex name, or dialing through normal keypad-type

input. In addition, Phone Slave had some other features, such as electronic mail access,

which will not be discussed.

1.2 The Conversational Desktop

XMess is an application designed to perform as a graphical interface to a new

implementation of the Phone Slave project. This new system is actually a series of

independent applications, which together, provide similar functionality to the original

Phone Slave system. Collectively, the programs are part of the "Conversational

Desktop"--a concept of integrating audio into the workstation environment. The four

programs which constitute some part of the "Phone Slave system" are as follows:

* Phone Slave - a term now reserved for the audio interface messaging
system.

e XMess - an application that uses a graphical interface to display Phone Slave
messages.

e XRolo - an independent rolodex system.

" XPhone - an auto-dialer. Features include dial by name, number, and pull-
down menu [2].

There are reasons why the new Phone Slave system is separated into several

4

applications, not the least of which is the ease of development. Each application could be

programmed independently, as long as each could be integrated at a later time. The

original Phone Slave project was one large process, which made it harder to maintain and

debug, while the new system's individual applications are smaller and easier to manage.

Because of the need for each of the processes to communicate, a well-defined

communications protocol was developed and adopted by each application. Since the

code for this task now exists, the integration of new applications to the Conversational

Desktop environment becomes almost trivial.

Additionally, some of the applications, such as XRolo and XPhone, are noteworthy

C Steve Casner
D
E David Cuddy
F 4
8 + Cards: 35 Sj+ 4

Name: Chris Schmandt

User id: geekemedia-lab

Company: MIT Media Lab

L - Address: E15-327

@Work 20 Ames St.
0I Cambridge, MA 02139
1) Phone: (617) 253-5156

R Q Address: 15 Martin Rd.
S @ eHome Milton, MA 02186
T

Phone: (617) 698-2021

W s Fax: (617) 258-6264

X Remarks: Speech Group project director
Y 4
Z +

Create Copy|Remv UnRem |Save Load Link:| By

Figure 1-1: XRolo - A pull-down menu is used to recall another card.

5

Phone Stack x3-8316

x3- 'i 9
-Weather 225-9491
United
Alice Markunas
Malinda Thibodeau
Peter Randlette
Barry at home
Eric Hulteen
Eric at home

Figure 1-2: XPhone - Cascading menus allow several methods of dialing.

in their own right. As complete, independent programs, they may be used on

workstations that do not have the capability to run the entire "Phone Slave"

environment. The only requirement is for the workstation to run X-windows, which is

widely available on a variety of different machine architectures.

Perhaps most important, a system is simply easier to use when separated into small,

easily manageable components. The screen becomes less "cluttered" and access time is

reduced. For example, in order to paste a known user's address into a document, a user

would not have to access the entire telephone messaging system--a click on the XRolo

pull-down menu would suffice. In other words, each application could develop its own

efficient graphical user interface.

1.3 XMess and the New Phone Slave

Phone Slave provides a messaging system and an audio interface similar to the

original version. Callers are still greeted with a series of questions, and the recorded

answers are stored in independently accessable sound files. The owner and known caller

functions are also implemented, using keypad instead of voice recognition.

6

All data that XMess and Phone Slave generate and use are stored in a number of

databases. These databases are managed by a network wide server, Netdb, which allows

multiple processes to access the information simultaneously [2]. In this setup, three

databases are shared--one each for incoming calls, outgoing messages and known users.

XRolo also has access to the known users database which it uses to display any rolodex

cards upon the request of the XMess user. In addition, when XMess and Phone Slave are

running simultaneously, they employ a method of realtime communication through the

network using the X-windows selection mechanism.

XMess uses a system of windows to display the various types of incoming and

outgoing calls. All input is done via mouse and keyboard, which is different than the

touch screen interface used by the previous version. It seems in recent years the mouse

has gained almost universal acceptance as the primary method of controlling window

systems.

The top-level window allows the user to access the incoming messages in much the

same way as the original implementation. Calls are stacked vertically, with their

individual message segments arranged horizontally in columns. The sound segments are

represented by "sound viewers", which offer significantly more flexibility than the

"sound bars" previously mentioned. A sound may be started, stopped and even scanned

with a few simple mouse motions. These sound viewers are to be used in all

Conversational Desktop applications whenever a sound is to be displayed. Another

feature of the sound viewer is its ability to be "selected", so that sounds may be moved

between different applications.

Each column in top-level window has a header, such as "Name" or "Phone

Number", which may be clicked on to play the column's message segments. The user

may also click on the call header located to the call's left, to play an entire message.

7

Finally, each segment may be positioned and played under the control of the mouse.

Another window is dedicated to known user functions. Users may be added, deleted

or have their logon IDs changed. The owner may record and playback any of the

personalized messages he wishes to send. Similarly, a different window contains a list of

the outgoing messages that may be played to a caller. The current message may be

changed to any sound segment found in the list, or a new message may be recorded.

When Phone Slave in running, a network message is sent to XMess, which in turn,

informs the user that "Phone Slave is answering an incoming call..." If the caller

identifies herself as a known user, XMess may display "Malinda is on the phone." In

either case, the user has several options. He may listen to the call-in-progress by

switching on the telephone speaker (which may be done in XMess), ignore the call, or

interrupt Phone Slave and handle the call manually.

XMESS

Mon May 14 21:39:53 1990 David Anderson Delete Old Save/Quit Known Users
LEFT: Play MIDDLE: XRolo RIGHT: Delete Ipaer:OFF Slave: ON Oing

Caller Info Name Reference Phone I When Long Message

Ross D. Snyder

(unknown)

(unknown)

David Anderson

(unknown) 1E
(unknown) =]

Figure 1-3: XMess Main Window - Incoming messages are being played.

8

1.4 Documentation Layout

The remainder of this paper is concerned with XMess documentation. Chapter two

describes XMess operation some detail, but there is no real substitute for just sitting down

and actually tinkering with the program. Before attempting this, however, the user must

read chapter five to become familiar with the variety of databases that are used. Chapters

four and six may be read at leisure, or when a problem arises with either the sound server

or Phone Slave communication. The programming details of the XMess window

functions are located in chapter three, which should only be read by those wishing to alter

actual code. Since XMess is only an interface to Phone Slave, however, perhaps the best

place to start is with that application's documentation [2].

9

2. XMess Instructions

2.1 Startup

Before starting XMess, the netdb server must be running. This server allows XMess

to load and share the three databases that it uses. Sections 4.3, 4.4. and 4.5 discuss these

databases in detail. It is recommended that the user become familiar with their respective

formats before attempting to use XMess.

Since the purpose of XMess is to display a graphical representation of Phone Slave

messages, a calls database constructed by that application is necessary. Additionally, to

understand the full functionality of XMess, Phone Slave should be run concurrently. The

instructions for Phone Slave may be found in the document Phone Slave II: A Modular,

Portable Reimplementation [3].

2.2 Main Functions

On startup, XMess displays its tape icon. The icon serves as a "message waiting

light" and is also used to toggle the popup state of the main window. Upon the arrival of

new messages, if the main window is closed, the icon flashes. Clicking on the icon opens

(or closes) the main window.

The main window has several smaller window areas. In the upper left corner, call

information is displayed. Directly below is another message area which displays basic

status information, such as "Please wait..." On the right is a layout of command buttons

with various functions, and below all of this is the call window. When Phone Slave is not

running, some of the command buttons (Such as "Speaker:ON/OFF") are "dimmed" to

show their state of inactiveness.

10

2.2.1 Accessing Messages

The call window contains a vertical list of the incoming messages. The top line of

this window contains a series of headers corresponding to each segment of a message.

Clicking on a header causes XMess to play every sound segment in that column. The

only exception is the first header, "Caller Info", which when clicked, plays each and

every message in its entirety.

Each call is made up of a call button, located on the left, and between zero and five

sound viewers following on the right. The call button is labeled with the name of caller

who left the message, or "unknown" if this information was not available (i.e. the caller

was not a known user). When the mouse pointer is placed on a call button, the date, time

and status of the message is displayed in the call information window. The status field

may contain an "N", "U" or a blank. New messages are represented by the "N", while

unread messages--those that existed since the last invocation of XMess or Phone Slave--

are depicted by the "U". Otherwise, the field is left blank.

There are three ways the user can play a message. First, the header buttons may be

used. This method, however, plays the entire series of messages. Second, the user may

click the left mouse button on the call button. The message's list of sound segments is

then played in sequence. Third, an individual segment may be played through the use of

the sound viewer. Every sound viewer in XMess is accessed in the same fashion; The left

button starts and stops the sound, while the middle button is used for positioning.

Anytime a sound is played, XMess must access the sound server. The sound server

is also used by Phone Slave, therefore, the two applications must negotiate for its control.

The "Slave:ON/OFF" command button reveals which one of the applications is

currently in control. If the label reads "Slave:ON", then Phone Slave may access the

server and take incoming calls. However, if Phone Slave is "OFF", then incoming calls

11

are not answered. In this situation, XMess may access the sound server and play

messages. Phone Slave may be manually turned on and off through the use of the

command button, or XMess may perform this task automatically whenever the user

requests that a sound be played. 2

Messages may also be deleted in three ways: Clicking the right mouse button on a

call button removes a single message. Pressing on the "Delete Played" command button

removes all read messages. Finally, deleting messages using the Phone Slave interface

will trigger their removal in XMess.

There also exists the option to popup the rolodex card corresponding to the label on

the call button. Assuming that XRolo is running and using the same database as XMess,

clicking the middle mouse button on the call button will perform this rolodex action.

OUTGOING-- LEFT: Play MIDDLE: Set

Outgoing Message: Recorded

RIGHT: Delete

zIIzIzzIRecord

Done

Use In meeti ng

Figure 2-1: XMess Outgoing Message Window - A new message is being recorded.

2This resource arbitration would be better done in an audio server such as that described in [4].

Generic 2

Out to Lunch

On Vacation

12

2.2.2 Selecting Outgoing Messages

In addition to playing the incoming messages that were recorded by Phone Slave,

the user has the option to select, delete, or record a new outgoing message. These

functions are supported in a popup window that appears when the user clicks on the

"Outgoing Messages" command button.

The popup contains two windows. The top window holds the list of all the available

outgoing messages. These messages, similar to the incoming calls, are arranged in

message button/sound viewer pairs. The message button is labeled with the name of that

particular message, while the name of the current outgoing message is printed at the top

of the window. Clicking the left mouse button on a message label plays the message

(which also may be played using the standard sound viewer actions), and the middle

mouse button selects a new outgoing message. Except for the first, the right mouse

button deletes any unwanted messages. The first message is reserved for Phone Slave

remote recording, and must always exist.

To record a new outgoing message, the user presses the "Record" command button

and begins to speak. When finished, the user may add the recording to the outgoing

message list by pressing "Use". Otherwise, the message may be re-recorded or aborted.

The message button obtains its label from the text area beside the "Record" button. The

user may wish to alter the default text that appears in that area before the message is

appended to the list.

2.2.3 Known User Functions

To open the known user popup, the user clicks on the "Known Users" command

button. This popup allows the user to add, delete and record messages for known users.

1:

To access a (potential) known user's status, his name (full name, username,

13

company, or a substring of any of these) is typed into the text field located to the right of

"Name". For a name to be valid, it must already exist in the known users database

which should be modifiable by XRolo. The existence of a name does not imply that the

person is recognized as a known user. That status is reserved for those who have a valid

telephone ID. The ID is displayed in the text area directly below the "Name" button. A

known user may be added, deleted (by simply removing the ID) or have her ID changed

by altering the text in the ID window.

Figure 2-2: XMess Known User Window - Sending personalized messages

A list of the known user's pending messages is found in the window below her

known user name and IIn To play these messages, the user must perform the appropriate

sound viewer actions. The recording of an additional personalized message is similar to

the outgoing message procedure. Since these messages do not have any associated

buttons, however, there exists no text area to label the message. All the messages for a

14

Figure 2-3: XMess and Phone Slave allow the monitoring of incoming calls.

particular user are considered to be a group and functions such as "delete message" are

not provided.

2.2.4 Realtime Call Functions

When Phone Slave detects an incoming call, it notifies XMess. XMess then pops up

a window, informing the user of this development. If the caller decides to identify

himself as a known user, XMess displays the caller's name.

At the completion of the call, the window is removed and XMess is returned to its

former state. The user may decide to remove the window manually by clicking on

"OK". However, since Phone Slave uses the sound server to record the call, until the

call is completed, the user is prohibited from performing any action that disturbs the

server--e.g. playing any sound.

Otherwise, the user has a myriad of choices concerning the call. The speakerphone

may be toggled with the command button "Speaker:ON/OFF". Note that this button is

duplicated in the main window. If the caller is a known user, the appropriate rolodex

card may be made to appear with the "XRolo" command button.

These previous functions are transparent to the caller. The user, however, may wish

to interrupt the Phone Slave process and handle the call directly himself. In this case, the

command button "Answer" is used. Phone Slave halts any process in which it was

XNESS--

George Vasilakos is on the phone...

-An s-er- --ngu p- X R o lo S p e a k e r : F F K

15

engaged, and allows the user to handle the call manually. Upon completion, the user

places the phone on-hook and presses the "Hangup" button to let both applications know

that the call has ended.

16

3. XMess Windows

3.1 Basic Setup

XMess is composed of five major windows. The first window appears on startup.

The only feature of this window is the XMess icon that it displays. Upon a left button

click, the second window, which is the main display for incoming messages and button

commands, is toggled. The third and fourth windows appear upon the mouse selection of

the command buttons "Known Users" and "Outgoing Messages" which are located in

the main window. The final window appears when an incoming call is detected. This

window can not be made to appear manually by the user.

3.2 Icon Window

The icon window, titled shell is the major parent window. To display the icon, a

label (widget type labelWidgetClass) is created inside a form (type formWidgetClass).

This label, as with all other XMess labels, is created with an argument list labe l_args.

This argument list, along with other arglists, is defined globally at the beginning of

XMess. The form widget is defined by top_f ormargs, as opposed to the other form

arglist form_args. The major difference between the two is that top_form_args

allows the form to be resized, as opposed to form args which does not. The arglist

topform args should be used in most ordinary situations, while formargs is

designed to be used inside a viewport. The XMess tape icon is a bitmap that is defined in

the include file "XMessjtape.bm". There is also a blank icon, "XMessalt.bm", that is

sometimes periodically switched with the tape icon, giving the illusion of a blinking tape

(which informs the user of new pending messages). The blinking is accomplished

through the use of an X interval timer and the callback flasht ime_proc () which

toggles the icon. Finally, the capture of a left button press is done through the use of a

17

translation table and an action table. These tables, along with the other tables, are

defined at the top of XMess.

3.3 Main Display Window

The main window is actually a popup shell of type transientShellWidgetClass. The

window is displayed through the use of XtPopup () with an argument of XtGrabNone

(to allow the icon window to receive events). The popup shell has only one child,

namely bigform. Bigform is the parent to topform and view. Topform is the

form that contains the main XMess control panel. Inside is a mass of widgets, consisting

of two label widgets and six command widgets. The label widgets are used to display

status information and warning messages. Note that these widgets are fifty characters

wide. The character used, however, is not a space, ' ', but rather the letter 'L'. This is to

ensure that in the case of a proportional font, the label size would not be based on the

smallest character in the set (space) but based on an averaged sized letter ('L'). The

command buttons are all set to the same width for the sake of aesthetics. The width is

determined by the width of the widest button, "Speaker:OFF". The command buttons

"Speaker:OFF" and "Slave:OFF" are only activated (sensitized) by

f ixs lave wids () if Phoneslave is connected.

Below Topform is view, a viewport that encompasses the widgets which

compose incoming messages. View has a child form which actually parents these

widgets. A viewport is used because the number of messages, hence the number of

widgets, to be contained in form is unknown. The viewport allows the scrolling of the

form through the use of a scrollbar. Therefore, view and the visible portion of form

can remain fixed in size while messages are added and deleted.

The top of form is composed of a series of command widgets. These widgets are

18

meant to title each possible segment of a message. When clicked on, the column of

sounds under the widget is played. Their titles are contained in a character array,

*title_label[MAXHORIZSV+1], which is located at the top of XMess.

MAXHORIZSV is currently defined to be 5, the maximum number of message

segments. The '+1' allocates storage for the first command button, which is not

associated with any particular sound segment, but is needed to title the command buttons

that accompany each message.

Below the titles is a series of vertically stacked incoming calls or messages. Each

call is composed of a series of horizontally arranged widgets. The leftmost widget is a

command widget, which labels the call with the name of the caller. To the right, there

are between 1 and MAXHORIZSV SoundViewer widgets, each in the appropriate

column designated by the title widgets.

3.3.1 Creating Call Widgets

To create the widgets needed to display a call, one uses:

create but and sv(bl, date, callnum,
names, lens, under, num)

char *bl;
char *date;
int callnum;
char names[MAXHORIZ_SV] [MAXSOUNDNAMELEN];
int lens[];
int under[];
int num;

The command button associated with each call is given the label *bl. To display the

time and date of the call (in the message widget), each call also stores a string, *date,

which contains this information. The callnum is an integer which is a handle to the

number of the call as referenced in the calls database. Each SoundViewer must have a

19

sound filename which is passed in by the array names [] [],and each sound file has a

length (in msec) which is passed in by lens []. Since a call may have between 1 and

MAX_HORIZ_SV sound segments associated with it, num contains the actual count.

Finally, the array under [I] contains the column at which to place the SoundViewer.

Normally, there are five (MAXHORIZSV) columns and five sound segments for a

call. The array under, therefore, should be {0, 1, 2, 3, 4 1, with each column

receiving a sound segment. Alternatively, a column number may be set to -1, telling

XMess to place the sound segment in the next available column. To place five segments,

one can also use an array set to { -1, -1, -1, -1, -1}. For this purpose, a global

array std_under [] is defined as such.

For the purposes of the window system, the call widgets (which are not actual

widgets) are all referenced by a button number. This number is defined as the element of

the array (Widget) but [] in which the command button is located. Each array

element of but [] is initialized to NULL, which indicates its unused state. A subroutine

(int) getnext_freebut () returns the number of the next available but. This

number is used for all references to any widget associated with that call. For example

each button has two other button numbers associated with it: amabovebut [] and

am belowbut []. This doubly-linked list allows the easy deletion and fast search

time of calls. Since createbutandsv () only creates buttons (it does not place

them), am above but [] = am below but [] = -2 to show that the button is

not yet placed.

The allocation of memory for sound segments is similar to that of the command

buttons. There is an array (Widget) sv [] to store sound widgets, and a subroutine

(int) getnext _freesv () to return the next available sv. The integer returned,

however, is not a handle to the command button. To find the button number of an SV

A

20

(and find the handle to the entire call), reference (int) myparentbut [svnumber]

which is set inside createbutandsv .

Both the button widget and SV widget are created with XtCreateWidget () as

opposed to XtCreateManagedWidget (. This is because

createbutandsv () only creates the widgets and returns a handle (the button

number). Creating a managed widget automatically maps that widget. This is

undesirable, because when a large number of widgets is displayed, it is better to format

them after they have all been created instead of displaying and then formatting them.

The latter method makes for a messy display.

The button widget is modified with the standard butargs, while the SV widget

uses (appropriately) svargs. The resource arguments that need to be modified for

each SV are as follows: XtNwidth, XtNwidgetDuration, and XtNsegmentDuration.

XtNwidgetDuration is the length of the entire SV in milliseconds, while

XtNsegmentDuration indicates the length of the sound (in msec) that is to be displayed in

the widget. Throughout XMess, these two resources are considered equivalent, for it is

desired to have the length of the widget entirely filled with its associated sound (with no

blankspace). XtNwidth sets the SV's actual length in pixels. XMess calculates the width

of a call segment through the use of the arrays (int) maxsv_time [] and

(int) max sv width []. The array max sv time [] is set with empirical values

of what constitutes the maximum sound length that a segment will encounter. A segment

with that sound length will be sized to the pixel length given by the array

max sv width []. Shorter sound lengths will be sized as a fraction of the maximum

pixel length. For example, if maxsv_t ime [0] = 20 0 0 and maxsvwidth [0]

= 10 0, the first sound segment of a call, if it were 1.5 seconds long, would be have a

widget length of 1500/2000 * 100 pixels. The defined constant MIN SV WIDTH

21

prevents a widget to be sized too small. In the event that a sound in longer than the

maximum time, the widget is sized to the maximum length and the sound is "squeezed"

to fit--i.e. the time scale indicated by the SV's tic marks is lengthened.

3.3.2 Placing and Manipulating Call Widgets

As mentioned, createbutandsv () only creates an instance of a call

widget. The placement and mapping of the call widgets is handled independently. The

subroutine placebutlast (butnum) takes as an argument the button number

returned from createbut and sv 0. This routine steps through the doubly-linked

list of button widgets (i.e. call widgets) finding the last one. Through the use of the

resource XtNfromVert, the button is installed in the proper place in the form, and the

linked-list (amabovebut [] and am below but []) is updated. In this release of

XMess, all call widgets are placed sequentially, with the latest calls placed below existing

widgets. The routine placebut_first (, therefore, is currently unused button

supplied in the event that future versions will have need of its function.

These placing functions only position the call widgets inside a form. After

placement, the widget is still not necessarily visible. Newly created widgets are created

but not managed by createbutandsv (). The function manageall () cycles

through all the call widgets (comprised of the buttons and SVs) and manages (which

maps) any that are unmanaged. This allows XMess to create and place a number of call

widgets without the accompanying screen clutter. A call to manageall () then

displays them almost simultaneously.

The last call widget manipulator function defined is kill but (but num).

Passed a button number, kill_but () removes the call widget from the linked-list and

then resets XtNfromVert for any widget that my be below. The form will automatically

-i

22

redisplay the widgets, filling the gap left by the removed widget. Finally,

XtDestroyWidget () is called, freeing the memory and resources used by the

widgets.

3.4 Known User Window

Through the use of XtPopup (), the known user window appears when the user

left mouse clicks on the "Known User" command button. The window is comprised of

a top level form, known_f orm, and several widget children. These children are the text

labels, "Name:" and "ID:", along with their respective text input widgets, the "Done"

command button, and knownview, a viewport which allows the display of multiple

SVs without resize.

Both of the text input areas are of type asciiStringWidgetClass and are modified

with the translation tables textTranslations and tidTranslations. Carriage

returns and linefeeds are used to pass control to callbacks, which allow XMess to act on

the text input. In this case, the "Name" text callback loads the ID and any current

messages associated with that known user, while the "ID" callback updates the known

user ID of the most recent name searched. The translations are also modified to allow

selection stuffing on button two. The "stuffing" is preceded by the erasure of any

current text in the field, and followed by the same callback used for a carriage return.

This allows the one button retrieval of both a known user's ID, and his/her messages.

Finally, in tidTranslations a leave window event is also bound to the carriage

return callback. This is to ensure that a known user's ID is always updated, even when

the user neglects to perform a carriage return.

The carriage return callback retrieves any sound names and sound lengths

associated with the known user's name. This function then calls

displayku_svs(basename, arrint)

23

char *basename;
int *arrint;

where basename is the common soundname shared between each of the user's

messages, and arrint is an array of sound lengths--each sound length corresponding to

one pending message.

The display of known user SVs is similar to the display of call SVs. Known user

SVs are stored in a widget array, known sv []. The function display ku svs ()

first checks to see if any SVs are displayed (i.e. if any element in known_sv [] is non-

NULL), and if they are, destroys them. Destroying a KU widget is not absolutely

necessary. In theory, it is possible to reuse widgets through the judicious use of

XtManageChild () and XtUnmanageWidget () while updating the widgets'

resource lists. Though in practice, the speed at which the XtDestroy () function

operates makes it quite unnecessary to program the extra code needed to perform the task

of juggling widgets.

The label widget known sv label, however, does use this technique. This

widget is set to post the notice "No pending messages" in the SV window when there

are no SVs to display (i.e. displayku_svs (NULL, NULL)). The message is

toggled with the functions XtManage Child () and XtUnmanageChild ().

The remainder of the code mimics create but and sv . The function

creates a series of SVs, each with a length dictated by *arrint. This length is

calculated with the same formula used in creating the call widgets. In this case, the

reference lengths used are the last values in max_svwidth [] and

max sv time []. The same SV callbacks, XtNstartSoundCallback and

XtNfinishedCallback, are attached to each widget.

24

3.5 Outgoing Message Window

The display of outgoing messages in a popup window is much the same as the

display of known user messages, although not nearly as elegant. The creation, setup and

display of all the outgoing message widgets is handled in display motd_svs ().

This function digs directly into the motd database, extracting the sound names, lengths

and titles of each outgoing message. From this information, it builds an SV and

command widget for each message. The length of the SV is determined by the usual

formula, with the maximum time and length (width) defined as MAXMOTDTIME and

MAXMOTDWIDTH.

The translations and callbacks for the SVs are set to their normal values, while the

translations for their associated command widgets are somewhat altered: the left button

simply plays the entire SV, the middle button sets the outgoing message, and the right

button deletes the message.

When deleting, butdelete motd () first verifies that the message is not one of

the defaults. If not, the database entry for that message is removed, and the remainder of

the messages are renumbered (that is, each message is numbered contiguously, message

0, 1, 2, ...). Finally, all the widgets are destroyed then redisplayed, using

displaymotd_svs (). This is not the most elegant method of deleting a widget,

(e.g. note the method used in the deletion of a call widget), but it is effective when

deletions are infrequent.

3.6 Incoming Call Window

When Phone Slave notifies XMess that it is taking an incoming call, XMess displays

a popup informing the user. The user must attend to the popup, for it grabs all input

using XtGrabExclusive and effectively blocks the user from performing any action on the

25

main window. Initially, the popup notifies the user that "Phone Slave is answering an

incoming call". In response, the user may: ignore the message (and wait for the call to

end), remove the message, or answer the call. If the message is removed by selecting the

"OK" command button, the user may again resume most normal operations except the

playing of an SV. The variable slave-busy is set True which disables any SV

actions. If the user decides to answer the call with the "answer" command button, the

answer button is desensitized and the hangup button is sensitized. Selection of the

"Hangup" button ends the call and removes the window. Additionally, XMess might

inform the user that "<name> is on the phone." In this case, the "XRolo" button is

sensitized and the user may popup the rolodex card (assuming that XRolo is running) that

corresponds to the person on the phone.

26

4. Interprocess Communication

4.1 Why Ethernet?

The sending of data from one process to another on a remote machine may be done

in several ways. One method employed by XMess and Phone Slave is the use of common

databases. This method, however, has one major drawback--namely, it does not allow for

asynchronous communication. To receive a message, a process would be forced to

timeout often and examine the database, which is a timely task. A more direct approach

would be the use of a serial line between the two computers. The obvious problem with

this method is that the serial line must exist, which is not always the case. The solution,

therefore, is to empoly ethernet, which is a system that supported in hardware and

software by all of our machines. The software exists on all Unix-based machines,

allowing the communication between any two machines that share the net.

4.2 Establishing a Connection

The software for establishing a communications link between XMess and Phone

Slave is located in "inetcomm.c", with a supporting header file "soccomm.h". Phone

Slave shares this header file with XMess, although it does use a slightly different source

code. The code only differs in program dependent functions, but the communications

software is the same.

The function inet_open () probes the net, attempting to find the machine that

hosts Phone Slave. The names of the machines XMess searches is defined in the array

(char *) hostlist []. Before probing remotely, XMess must create a socket (i.e. an

endpoint for communication). The function socket (AFINET, SOCKSTREAM,

0) returns an integer, sock, that is used to reference the connection. The parameters

passed to socket () define the format in which the data are to be sent, and the type of

27

communication allowed. AFINET is the Internet standard protocol, while

SOCK_STREAM is the communications type for two-way reliable data transfer.

The variable sock is a temporary handle to reference a communications port.

These ports--at least with respect to XMess and Phone Slave--are hard coded into each

machine. All potential hosts have a defined communications port which XMess and

Phone Slave use. To grab a handle to this port, inetopen () uses

getservbyname("foneChris", "tcp"). This function returns a structure

which contains the port number found to belong to "foneChris". Besides the address of

the port that the data is to be sent, the address of the recipient machine is also needed.

The address of the target machine returned by the function

gethostbyname (hostname). The port address and the target machine address are

then placed in the structure slavehost. The attempt is now made to open

communications with the target machine through the use of the function connect (,

which is passed sock and slavesock.

If the connection is successful, the socket connection is left open. Some additional

work with the function f cnt 1 () must be performed on the socket to ensure that data is

received asynchronously. At this time, XMess may recieve data through the port. To

avoid the issue of manually polling the socket for data, a mechanism is setup whereby

XMess automatically receives incoming data. When data arrives, the signal SIGIO is

activated. XMess traps any occurrence of this signal and automatically jumps to the

procedure inetdatain () when it arrives.

If the connection fails, however, another attempt is made to connect to the next

machine in hostlist. When all available machines have been probed, and a

connection still does not exist, it is assumed that Phone Slave is not running.

Nonetheless, it is important for XMess to listen on the socket in the event that Phone

28

Slave is started at a later time. In this case, the socket should listen to any machine

willing to communicate over the "foneChris" service port. The target machine address,

therefore, is set to INADDRANY. Instead of connecting to the port (which is not

possible), the socket is bound to the port with the bind () function whose format is

analogous to connect (). To listen for an attempt at a connection by Phone Slave,

XMess uses listen (sock, 1). When the connection is detected, XMess jumps to

inetconnin () because of the signal trapping set up through signal (SIGIO,

inet connin). In inet connin (),the connection is completed when XMess calls

accept () and retrieve the new socket address at which data may be exchanged.

Finally, the normal procedures of setting the socket to receive asynchronously with

fctnl (slavesock, FASYNC) and of trapping incoming data with

signal (SIGIO, inet datain) are performed.

4.3 Receiving, Sending and Parsing Data

The detection of data on the socket causes XMess to jump to inetdatain (.

This function basically retrieves the data through the use of read () and places the

contents into a string buffer. The buffer is then passed on to

inetparse_command () , where the appropriate action may be taken.

The messages that XMess expects to receive are all defined in the string array

s_commands []. The following sixteen commands are understood:

"O\nDie, please.\n"
"l\nHello, anybody home?\n"
"2\nCommand acknowledged/completed\n"
"3\nClosing connection\n"
"4\nCalls db has been modified\n"
"5\nHang up the phone\n"
"6\nStop waiting for a ring\n"
"7\nStart waiting for a ring\n"
"8\nKnown users db has changed\n"
"9\nMonitor calls\n"

29

"10\nStop monitoring calls\n"
"11\nIncoming call being taken\n"
"12\nIncoming call has ended\n"
"13\nPhone Slave is Idle\n"
"14\nPhone Slave is Active\n"
"15\nMotd db has been modified\n"
"16 %s\nKnown user with ID has identified himself\n"

The commands are referenced by their numbers as defined in "soccomm.h". See

chapter six for command details.

A switch statement allows XMess to act on each command it receives. All sixteen

commands, however, are not understood by XMess. Some, such as "Hang up the phone"

are never meant to be received, but instead, only meant to be given. All other commands

(e.g. "Calls db has been modified") are acted upon immediately.

To send a command, the function inetsendcommand () is called with the

command number. Those commands that are simple notifying messages, such as

"closing connection" or "Calls db has been modified" are sent immediately with the

write () function. Some "action" commands (numbers 5, 6, 7, 9, and 10), however,

require an acknowledgment (command 2) by Phone Slave. The last command sent,

therefore, is stored in the variable inetlastcommand, and when the

acknowledgment is received in inetparsecommand 0, XMess can perform the

appropriate action (e.g. notify the user that the task has been completed).

The action commands require Phone Slave to perform tasks that should not be

interrupted by further XMess action requests. In the event that XMess desires to send an

action command before Phone Slave has acknowledged the previous action command,

the command request is placed on a queue. The queue is written and read by the

functions inetpush () and inetpop (). When XMess finally receives an

acknowledgment, in addition to performing any actions required by

30

inet last command, inet parse command() retrieves and sends the next

action request on the queue.

31

5. XMess and Phone Slave Databases

5.1 Calls, Users and Motd

Phone Slave and XMess both maintain three common databases: callsdb, users-db

and motddb. The callsdb contains information about the incoming messages that

Phone Slave has recorded. The usersdb, which is also used by XRolo, contains the list

of known users, their personal outgoing messages, and a wealth of other information used

by the rolodex. The list of generic outgoing messages, or messages of the day (motd), is

found in motddb.

5.2 Loading a Common Database

Normally, a database is first created through the use of ndbcreate () and then

loaded with ndbreaddb_fromstream (). All references to that database are

made through the handle returned from ndb create (). Any additions, changes, or

deletions pertain only to the database with the given handle number. This normal

procedure for loading a database is undesirable to any program that needs to share

database information between different processes. For example, suppose both XMess and

Phone Slave independently create and load a callsdb. Once loaded from disk, any

operations performed on the callsdb by either of the programs would not be seen by the

other. Eventually, both programs would flush their own database to disk. A subsequent

load from disk would contain only the changes made by the last program to write the file.

The inevitable result would be a loss of data.

The solution is to allow both programs to alter the same database. Only the first

program to boot would actually read the database from disk. Subsequent programs

would receive the handle to the database, allowing them to read and change data at will.

Any of the processes may safely dump the database to disk, sure that all of the data

32

would be written.

The question then becomes, how do multiple processes obtain the handle to a

specific database? One possibility is through the use of socket communications. For

example, if Phone Slave boots before XMess, then it could send a message over the net to

XMess that contained the callsdb handle number (which is an integer). This is a simple

and efficient method for XMess and Phone Slave which already have a system of net

communications. Not all database clients, however, have such a system. For example,

xrolo needs to share the usersdb with XMess and Phone Slave, but it does not need net

communications system. It would be foolish to add another layer of complexity to the

program when the need is so minimal.

The solution is to use the system that all these programs share--namely, the database

manager (netdb) itself. Netdb maintains a common record whose handle is returned

through ndbgetcommonrec (). Any application may store or retieve data from

this record. By convention, the common record stores field/value pairs which allow any

program to retrieve the value of any globally defined variable. For example, each

database is given a unique identifier name. In the case of callsdb, the identifier is

"<name>'s calls db". The value of this field is the handle to the database. If no such

field exists, the database has not been loaded. The function

int getuseddb(key, dbp)
char *key;
DB *dbp;

performs this procedure. The variable key contains the identifier, and dbp is an address

where the function can place the handle to a new database if none already existed.

This function makes use of the netdb command netdbtestsetfield (.

This command expects to be passed a record, a field, and a value. If the field in the given

33

record exists, netdbtestset_field () returns a negative number. Otherwise,

the field is created and set with the given value, and the field handle is returned.

Getuseddb () first tries to set the field LOCK. The LOCK field is set by an

application when it first gains access to a database. In the event that the database is new,

the LOCK field prevents another application from trying to use the database until all data

has been loaded. The LOCK mechanism does not actually disallow any access to a

database. It only suggests to an application that if the field is set, the application should

wait until until the field is removed.

When the lock field is eventually set, getuseddb () grabs a new database

handle with dbp = ndb create () and then calls ndb test set value () with

the parameters ndbgetcommon rec (), dbp and "<name>'s calls db". If the

field already exists, the function removes the lock and returns. The application would

then examine the common record and extract the database handle from the correct field.

Otherwise, the application uses the handle returned in dbp to load in the database data

and then it removes the lock.

5.3 Calls_db format

The callsdb maintains the record of incoming calls. Each call is a separate db

record which contains such information as the date of the call, the number of the call and

the filenames of the recorded messages. The following is an example of a callsdb:

Start of DB {
Record {
{number of calls in db} {2\00}
{highest-numbered call} {1\00}
{Header record} {}
{number of call} {0\00}

Record {

34

{date of call} {Mon Apr 9 12:29:32 1990
\00}
{status flags} {D-\00}
{type of call} {Unknown caller\00}
{segment times} {950 1568 1584 2000 6540 \00}
{sound filename prefix} {\\lberman\\calls\\callO_\00}
{call date, UNIX time} {639678572\00}
{number of call} {0\00}
}

Record {
{date of call} {Mon Apr 9 12:45:55 1990
\00}

{status flags} {-N\00}
{type of call} {Known caller message\00}
{segment times} {9600 \00}
{caller name} {Chris Schmandt\00}
{caller phone id) {2021\00}
{sound filename prefix} {\\lberman\\calls\\calll_\00}
{call date, UNIX time} {639635461\00}
{number of call} {1\00}
}
}

The field labels (e.g. "highest-numbered call" or "Header record") for any Phone Slave

or XMess database are defined in "slave.h".

Every callsdb begins with a header record. The header record maintains the

number of calls in the db and the highest call number. Phone Slave updates the header

record for its own use--XMess has no need for the data.

The call records are composed of several essential fields. These fields, as shown

above, must be present in the record for the call to be valid. The verification of all the

records, including the header, is performed by the function verifycallsdb (). If

any of the required fields are missing in a call record, the call is deleted. The header, if

found to be inconsistant with the data, is reformed with setup_ calls he ader () .

1'

35

With the exception of "status flags", each field is created by Phone Slave at the

time of the incoming call and is not altered anytime thereafter. A description of these

fields is as follows:

Each call may be referenced through its call number (stored, most appropriately, in

"number of call"). The only guarantee is that a larger call number is more recent than a

smaller call number. A numeric sort on the "number of call" field

(ndb_sort_by_server(cdb, NDBSORTNUM, ''number of call''))

allows a logical ordering of the calls database. Initially, the call numbers are contiguous,

however, through deletions, gaps may be left in the call sequence. The renumbering of

the calls upon the occurance of a deletion would be too impractical because all sound

segments use these numbers in their filenames. Renaming each sound segment would be

monumentously slow. Note that the call number is only unique throughout the call's

lifetime. Once a call is completely deleted (i.e. erasedfrom disk as opposed to marked

deleted) the call number may be used again.

The field "type of call" may have one of three values: "Known caller message",

"Known caller hangup" or "Unknown caller". An unknown caller is a person who did

not identify himself/herself to Phone Slave via the telephone keypad login technique. It

is obvious, therefore, that the field "caller name" and "caller phone id" are not

expected to be present in that record. A known caller may or may not chose to leave a

message, hence the differentiation. The field "segment times" must be present in any

call that results in a message. The field value is a list of blank-space separated message

segment times in milliseconds. An unknown caller is expected to leave five message

segments--one for each question asked by Phone Slave--while a known caller may only

leave one. Any discrepancy is noted by verifysoundfiles 0, a function that

matches up the sounds recorded on disk with the sounds expected by the calls (and users)

36

databases. The message segments are stored under the filename dictated by "sound

filename prefix". Each segment is stored separately by appending the segment number

to the sound filename (e.g. "...)calllO, ...\calll_1 through ...\calll_4 for the five

segments of call one).

The date and time of the call are stored in two fields. In "call date, UNIX time",

the time is recorded in some esoteric unix format. This field is neither used by Phone

Slave or XMess. It is supplied, however, in the event future versions may need the

information. The field "date of call" records the information in an English readable

format. Again, Phone Slave does not use this information (though perhaps it should), but

XMess does make the information available to the user.

Finally, "status flags" contain the present state of the call: new, unread, or deleted.

Deleted calls, marked with a 'D' in the first position in the field, are calls that the user

wishes to remove but have not actually been deleted from the database or the disk.

Deleted calls do not appear on the XMess display, and it only becomes a matter of time

before they are completely erased with the function expungecalls (). New and

unread calls are marked with an 'N' or 'U' in the second position of the status field. New

calls are those that Phone Slave and XMess have not notified the user about. Unread calls

are those that the user knows exists (e.g. when Phone Slave announces "You have six

new messages") but has not yet read. The supporting functions for reading and setting

these fields are located in "flaghacks.c".

5.4 Usersdb format

The usersdb maintains a list of the known users and their personal messages. This

database is also shared by the rolodex application XRolo. All of the records and the fields

in users database, therefore, are not meaningful to XMess and Phone Slave. The extra

El

37

information in the database not needed is simply ignored. The following is an example

of a users-db (without any of the XRolo extraneous information that might normally

exist):

Start of DB {
Record {
{name} {Lorne Berman\00}
{username} {lberman\00}
{pending messages} {1\00}
{name sound} {Master Lorne\00}
{telephone id} {7635\00}
}

Record {
{name} {Chris Schmandt\00}
{username} {geek\00}
{telephone id} {2021\00}
{last message left} {1\00}
{sound filename prefix} {\\lberman\\snd\\2021.\00}
{segment times} {12548 \00}
}
}

The usersdb must have one entry corresponding to the owner. In this example, the

owner's record is the first entry. Both phone applications identify the owner record by

the user's username. Upon the startup of either XMess or Phone Slave,

getusersdb () finds the record that contains the username of the person who

started the program. If none exists, the application exits.

The full name of the owner (as well as any known user) may be found in the field

"name". The existence of this field, however, is not essential. Likewise, whenever the

dectalk voice synthesizer pronounces a name, it will use "name sound" if the field

exists.

The owner's list of new messages is stored in "pending messages", but XMess

38

makes no use of this field. Similarly, "last message left" contains the call number of the

user's last message, but XMess also ignores this field. Phone Slave uses it to inform a

known caller that his/her message has been read by the owner.

XMess identifies the record of a known user through the presence of "telephone

id". If this field does not exist (which may be true in many cases), then the record is

ignored until the field is added. This may be accomplished through the use of the known

users' popup, or one may simply edit the database manually.

If the owner leaves any personal messages to a known user, the filename header is

stored in "sound filename prefix" and the message lengths are placed in "sound

segments". Both these fields have the same function in usersdb as they do in callsdb.

The number of messages and their lengths may be extracted from the field "sound

segments", while their filenames may be constructed by appending the message number

to the filename prefix. The filename prefix, instead of conveying information about the

number of the call (e.g. "...Ncalll_0") contains the telephone ID of the user that will

receive the message. For example, a single personal message to Chris Schmandt would

have the filename ".../2021.0".

5.5 Motddb format

The motddb maintains the list of all possible outgoing messages and the number of

the current outgoing message. This database has only one record, as shown below.

Start of DB {
Record {
{current generic message} {2\00}
{O length} {2296\00}
{1 length} {2828\00}
{2 length} {3420\00}
{3 length} {4564\00}
{O name} {snd\\fldmotd.snd\00}
{1 name} {snd\\motd.snd\00}

39

{2 name} {snd\\motd2.snd\00}
{3 namel {snd\\motd3.snd\00}
{O title} {Recorded\00}
{1 title} {Generic 1\00}
{2 title} {Generic 2\00}
{3 title} {Out to Lunch\00}
I
}

Three fields are associated with each message: "name", "length", and "title".

The "name" field is the actual filename under which the message is stored. The length

contains the duration of the message in milliseconds. Finally, the title is used to "pretty

print" the name of the message. In the outgoing message popup, the title, if available, is

used to reference the message. This field exists because it is much more meaningful for a

user to encounter a button labeled "Out to Lunch" than a button that read "motd3".

On startup, if the function getmotd_list () does not find the motddb already

loaded or on disk, a default outgoing message must be created. The default is an empty

sound file which Phone Slave may use to store remotely recorded messages.

To gain access to the motd db, getmotd_list () may use one of three distinct

methods: grabbing, loading or creating. (This is in contrast to the two ways in which a

callsdb or usersdb may be accessed, e.g. grabbing or loading.) The function may grab

the motddb handle from the common record, if it exists. If not, the database may be

retrieved from disk. Finally, if both fail, the function creates an empty database which is

then filled with the backup-list information. Some functions always expect to find the

backup-list in the motd database, therefore, it would be incorrect to create or use a

database which violated this requirement.

Similar to the message segments in the callsdb and usersdb, the sounds in the

motddb have associated sound lengths. Although XMess requires this information for

40

the sound viewer widgets, Phone Slave has no such need. The motd sounds, therefore,

are checked in getmotd_list () for the presence of their lengths with the function

validatemotdlength (). This function returns the length of a sound from the

information in the database, or if this is not available, it queries the sound server for the

sound length, places the datum in the motddb and then returns the length.

The motd db, similar to the callsdb and users-db, has a self-cleaning mechansim.

Any sounds found in the motd directory that are not present in the motddb are deleted

from the sound server. This task is performed by the function verify_motd_db ()

which may be called at startup or exit to avoid any delays that usually accompany such

deletions.

41

6. Walking Through XMess

The purpose of this chapter is to step through XMess operation from start to finish.

Hopefully, this will reveal to the programmer how the individual pieces (described in the

previous chapters) interact to form the whole network of XMess operations.

6.1 Startup Procedures

As described in chapter two, XMess sets up the basic window display--e.g. the icons

are loaded, the popups are created and the translations are modified. These window

operations, which occur in main (), only form the "frame" of XMess windows. Still

lacking are call, known user, and outgoing message widgets. The creation of these

widgets is segmented into distinct procedures which may be called upon anytime during

program execution. This allows XMess to handle most any database modifications that

Phone Slave may perform while its running.

XMess then calls inetopen () in an attempt to contact Phone Slave. In that

procedure, the global variable inet conn is set according to the state of Phone Slave.

This information is used in four instances: communicating with Phone Slave,

communicating with the sound server, determining when XMess should delete files, and

widget display. At this time, it is the widget display which is affected by inetconn.

The function fix slave wids () is called, which "sensitizes" (i.e. allows the

selection of) the "slave:on/off" widget and the "speaker:on/off" widget. Both these

buttons are enabled if Phone Slave is connected, otherwise they are disabled.

At this time, the calls and users databases are opened with opencallsdb 0.

This function first sets up the connection with the netdb server, and then uses

getcalls_db () and getusersdb () (as described in chapter five) to load or

grab the handle to the databases.

42

6.1.1 Loading Calls

Any calls pending in in the callsdb are ready to be displayed. The procedure

loadcallsdb () serves this purpose, and is called at this time. This function

examines each call record, and any calls that are not displayed or deleted (i.e. have its

"deleted" status flag set) have a call widget created with

createbutand_svfromdbrec (). If any calls exist in the XMess domain

but are marked deleted, the widgets for the call are destroyed with kill_but () . Non-

deleted calls which are found in both callsdb and XMess are left undisturbed. After the

examination of the calls databse, if any new calls have been created, XMess begins

flashing its icon while the new calls are displayed with manageall (). Because of

the non-destructive nature of loadcallsdb (), this function may be called at any

time during XMess execution to update the display without disturbing normal operation.

The purpose of createbutandsv_fromdbrec () is to examine a call

record and produce the proper parameters needed for createbutandsv (). First,

the function determines the type of the call, either known or unknown user. This allows

the button label field to be set. If the call type is a known user with no message, the

function only has to set the date field and jump to createbutand_sv ().

Otherwise, the message segment field must be parsed. From each segment, the sound

name and sound length parameters are built. If the number of segments is at a maximum,

then the standard placement of the messages (one segment under each title) is used. The

only exception is when a segment seems particularly short (length < MINSOUNDLEN),

in which case the segment is not displayed and appropriate field is left blank. When

XMess encounters a message with only one segment (e.g. a known user who left a

message) the sound is placed in the last column. This function returns after it positions

the newly-created call widget at the bottom of the display queue with

43

placebutlasto.

6.1.2 Connecting to the Sound Server

The sound server is the device (presently an IBM XT with a Dialogic sound board)

that allows XMess to play and to record digitized sound. Unfortunately, the present

sound server is only capable of performing one task at a time, with no provisions for

queueing multiple requests. This creates a problem when two processes, such as XMess

and Phone Slave, need to share the same sound server. In this situation, the two

processes must negotiate for control of the server. The negotiation is accomplished via

the socket connection. Whenever XMess wishes to access the sound server, the socket

command "Stop waiting for ring" is sent to Phone Slave. At its convenience Phone

Slave responds with an acknowledgment. In this mode, Phone Slave is "off'. It can not

answer any incoming calls, nor may it request for the control of the sound server. It must

wait until XMess passes the control back with the socket command "Start waiting for

ring".

In the function getpc (, which is called after the loading of the call widgets,

XMess opens a connection to the sound server. Before this is possible, XMess must be

sure that Phone Slave (if running) is not engaged in answering a call. XMess, therefore,

waits for the arrival of either "Phone Slave is idle" or "Phone Slave is active"--one of

which Phone Slave sends upon the opening of the socket connection. If XMess receives

the former, Phone Slave is off and XMess may proceed. Otherwise, if Phone Slave is on,

it must be turned off before XMess accesses the sound server. This is done immediately

if Phone Slave is not currently answering a call, or delayed if Phone Slave is recording a

message--which is the situation if XMess receives "Incoming call being taken".

While Phone Slave is off, getpc () performs a variety of tasks which involve

44

communicating with the sound server. First, a handle to the server is obtained. If

successful, XMess "greets" the server by asking for its name. The server directory

(which should contain the subdirectories calls, snd and sounds for the incoming

calls, outgoing messages and greeting sounds, respectively) is then set to the owner's

username. Finally, the functions get motd list () and verify mot d-db () are

called to load and verify the outgoing calls. These procedures are located here, instead of

near the callsdb and usersdb loading functions, because of the possibility that they may

need to access the sound server--getmotd list () calls

verify motd length () and verify motd db () uses s rm () (remove sound

file). Before returning, get pc () returns Phone Slave to its prior state (on or off) at the

beginning of the function.

Upon return, XMess calls displaymotd_svs () for the final display setup, and

performs some basic housekeeping tasks. These tasks include initializing variables,

realizing widgets, and setting the resource XtNinput to True for all of the shells.

6.2 Main Loop Events

After XMess finally performs all the necessary startup routines, it sits and waits in

XtMainLoop (), because, as with all properly programmed X applications, XMess is

event driven. In this case, there are three distinct classes of events that XMess

recognizes:

1. Normal window operations

2. Timer expirations

3. Signal 10

Window events (such as a button press) are handled with standard callback and

translation table mechanisms. Timers are also triggered with a special type of callback.

-9

45

Strictly speaking, the 10 signal handled by inetdatain () is not an event. Such a

signal is transparent to the X server, and the event dispatching routines in

XtMainLoop () have no knowledge of its existence. Nonetheless, regardless of its

origin, a S IG10 is handled in much the same way as an X event. The remainder of this

chapter is devoted to explaining the various functions XMess performs when handling

these events.

6.2.1 Phone Slave Command Actions

When Phone Slave sends a command, it is eventually parsed by XMess in

inetparsecommand (. The recognized commands are listed and explained

below:

"Die, please" -- Phone Slave is exiting. XMess closes the connection and calls

f ix_slavewids () to notify the user of this development. If Phone Slave originally

initiated the connection, XMess needs to call inetopen () to. set up the socket (in the

event Phone Slave comes back on line). Otherwise, the socket is in proper order and

connection attempts are routed through inet connin () .

"Phone Slave is active" -- Phone Slave is on and waiting for a call. This

command may be sent by Phone Slave when either of the applications are booted to

notify XMess of its state. The widget "Slave" is changed to read "Slave:ON".

"Phone Slave is idle" -- Phone Slave is off and in an idle state. If appropriate, this

command is also sent when one of the programs is started.

"Incoming call being taken" -- Phone Slave is about to answer the phone. XMess

sets the variable slavebusy to True and then calls inetsaysincall ()

which pops up the incoming call window. While slavebusy is True, XMess does

not attempt to gain control of the server. This act would disconnect the call.

46

"Known user has been identified" -- The current caller has identified herself with

the telephone keypad login technique. XMess strips off the caller's telephone ID which is

appended to the front of the command string. With this information, the usersdb is

scanned for the caller's name, which when found, is printed in the incoming call window.

The "XRolo" button is then sensitized to allow the display of the caller's rolodex card.

"Incoming call has ended" -- Phone Slave is finished with the call. XMess returns

the variable slavebusy to the False state and then calls

inet saysendcall () which pops down the incoming call window.

"Calls db has been modified" -- Phone Slave sends this command after each

incoming call. XMess simply performs a loadcallsdb () to update any changes

that have been made.

"Motd db has been modified" -- This is received by XMess after Phone Slave

modifies the motddb. Since the only motd function Phone Slave performs is the

recording of a new outgoing generic message, the only change in the database would be

in the length of motd #0. XMess updates the outgoing message window by calling

display motdsvs().

"Command Acknowledged" -- After performing a request sent by XMess, Phone

Slave returns this command. Only when XMess receives the acknowledgement does it

perform any actions which pertained to the command sent. This is accomplished through

the use of inetlastcommand. This variable is examined so that XMess knows the

source of the acknowledgment, and then the appropriate functions are called.

47

6.2.2 XMess Command Actions

The following is a list of commands, their functions, and the process in which they

are invoked by the user:

"Monitor Calls" -- This command tells Phone Slave to turn on the speaker-phone.

It is invoked when the user attempts to toggle the "Speaker:OFF" widget which is

located on both the main display and incoming call windows. On acknowledgement,

XMess changes the button to read "Speaker:ON".

"Stop monitoring calls" -- Similar to "Monitor calls", this command instead tells

Phone Slave to turn the speaker-phone off.

"Motd db has been modified" -- This command notifies Phone Slave that the

motddb has been altered by XMess. After the user records or deletes of an outgoing

message, the command is sent. The motddb is the only database for which Phone Slave

caches any information. XMess, therefore, never sends "Calls db has been modified"

because Phone Slave extracts call data directly from callsdb. Similarly, no command

exists to notify either application that the usersdb has been changed because neither

program caches any known user information.

"Hang up the phone" -- When Phone Slave is taking a message and receives this

command, it immediately stop recording and halts its dectalk output. The phone,

however, is actually kept off-hook to allow the user to pick up the receiver (or speaker-

phone) and converse with the caller. The command name, therefore, is somewhat of a

misnomer. This action is performed when the user clicks on the "Answer" button inside

the incoming call window.

"Stop waiting for ring" -- This command effectively turns Phone Slave off. In

this mode, Phone Slave sits idle and ignores any incoming calls. There are two situations

48

where XMess will send this command. First, the user may manually toggle Phone Slave

off with the command button "Slave:ON". Upon the acknowledgment that this has been

done, XMess (or rather inetparsecommand ()) changes the button label to

"Slave:OFF". Second, if XMess needs to access the sound server, it must first send this

command to avoid possible conflict with Phone Slave.

"Start waiting for ring" -- Phone Slave is turned (back) on with this command.

The phone, if off-hook, is placed back on-hook and any call is disconnected. Any

detected incoming calls are answered. There are three situations where this command

will be sent. First, through the use of the "Slave:OFF" button. Second, after the user

"9answers9s the phone, eventually he will finish the call with "hangup". The "hangup"

callback uses this command to place the phone on-hook. Third, if XMess halted Phone

Slave because it needed to access the sound server, this command may be sent to turn

Phone Slave back on. This is accomplished through the use of the X timer mechanism.

When the sound server finishes playing a sound, a timer is set. Upon its expiration--

assuming the sound server has not been accessed in that time--Phone Slave would be set

to its initial state (i.e. the state it was in before XMess used the sound server).

6.2.3 Playing a SoundViewer

The SoundViewer is the most prolific of widgets in all of XMess. Three of the

major windows use them. The functions that control the SVs, therefore, must be general

enough to accomodate all of their different enviornments.

In all cases, before a SoundViewer begins to play, XMess must be sure that it has

exclusive access to the sound server. In all the callback routines that start a

SoundViewer, the status of Phone Slave is examined with checkslave 0. If the

Phone Slave is idle (i.e. "Slave:OFF"), the function continues as normal. Otherwise,

49

Phone Slave must be turned off by sending "Stop waiting for ring". XMess could sit

idly in a loop, continuously checking the return value of checkslave () and

proceeding with the function when Phone Slave has been turned off. This method is

undesirable because it wastes processor time and does not allow the dispatch of any

interim X events. XMess instead returns from the function after setting the variables

where_commgo--which contains an integer represention of the calling function--and

wherecommwid--which is the handle to the SoundViewer that will be played. When

the acknowledgment is received, inetparsecommand () examines

where_commgo and jumps to the appropriate routine. This method allows XMess to

execute XtMainLoop () while waiting for Phone Slave to be turned off, which is most

acceptable.

50

7. References

1. Christopher Schmandt and Barry Arons. Phone Slave: A Graphical
Telecommunications Interface. Digest of Technical Papers, IEEE
International Conference of Consumer Electronics, 1984.

2. Christopher Schmandt and Stephen Casner. Phonetool: Integrating
Telephones and Workstations. Proceedings of GlobeCom '89, IEEE
Communications Society Conference, November 1989.

3. David Anderson. Phone Slave II: A Modular Portable Reimplementation.
Bachelor's Thesis, MIT, September 1989.

4. Christopher Schmandt and Barry Arons. Desktop Audio. Unix Review,
October 1989.

