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[1] Atmospheric models include land surface parameteriza-
tions of heat and moisture fluxes. Most parameterizations
derive from early models of layered soil and vegetation canopy
that account for liquid, vapor and heat diffusion, radiation pro-
cesses, and surface turbulence. The number of parameters in
thesemodels ranges roughly from10 to 50. Some parameters are
known to vary over a small range and/or not significantly impact
predictions. Others are highly influential (e.g., Leaf Area Index),
but are currently well estimated from satellite data. Many
parameters, however, are highly influential, vary over a large
dynamic range, cannot be estimated from satellite data, and
cannot be readily upscaled from in‐situmeasurements. For such
parameters (e.g., maximum stomatal conductance and soil
hydraulic conductivity), values are assigned based on look‐up
tables sorted by land cover and soil texture. Here we present a
method for estimating these parameters by minimizing a mea-
sure of nonstationarity of model‐predicted moisture state vari-
able tendencies. This method has advantages over calibration:
1) it does not require flux data (e.g., evapotranspiration); and
2) the tendency terms are evaluated at the model grid and thus
yield parameters that are effective for that scale. The method is
demonstrated with the Noah Land Surface Model, using
remotely‐sensed soil moisture, at a site in California. Prelimi-
nary results indicate that the method is robust and performs
better than both: 1) calibration to soil moisture observations,
which can lead to large, compensating errors in drainage and
evaporation; and 2) minimizing the sum of squares of innova-
tions of soil moisture updates. Citation: Salvucci, G. D., and
D. Entekhabi (2011), An alternate and robust approach to calibration
for the estimation of land surface model parameters based on
remotely sensed observations, Geophys. Res. Lett., 38, L16404,
doi:10.1029/2011GL048366.

1. Introduction

[2] Most land surface models embedded within climate
and weather models (Noah LSM, SIB, MOSAIC, CLM etc)
are broadly similar, having been derived from early work in
layered models of soil and vegetation canopy that account
for liquid, vapor and heat diffusion, radiation processes, and
boundary layer turbulence. Values for free parameters in
these models (e.g., the maximum stomatal conductance, the

ratio of heat to momentum roughness lengths, and soil
hydraulic conductivity) are typically assigned based on
look‐up tables sorted by dominant land cover and soil
classifications. The values in these tables [e.g., Dorman and
Sellers, 1989] are typically based on a few field or labora-
tory measurements, or in some cases, educated guesses.
[3] In a recent paper [Sun et al., 2011], we have presented

a method for estimating land surface model parameters by
maximizing a measure [Salvucci, 2001] of stationarity of
model predicted tendencies (the time derivative of land
surface moisture and temperature states with time). The
measure is formed by conditionally averaging the tendency
term by the state, which Salvucci [2001] showed to be zero
for stationary systems. This measure has distinct advantages
over calibration metrics. The model tendency terms are
evaluated at the relevant scale with measured forcing (e.g.,
precipitation, wind, radiation) and measured state variables
(e.g., remotely‐sensed surface soil moisture and tempera-
ture). Lack of stationarity in the resulting tendency terms
arise from structural model error and mis‐specification of
parameters. Minimizing the lack of stationarity thus esti-
mates land surface parameters that are consistent with the
measured forcings, at the appropriate scale.
[4] The proposed method is an alternative to calibration

based on fitting model simulated time series of soil moisture
and/or measured fluxes to observations [e.g., Scott et al., 2000;
Gupta et al., 1999; Hogue et al., 2005]. The main strength of
the proposed method is that it does not require measurements
of the actual surface fluxes (e.g., latent and sensible heat flux,
soil water drainage or capillary rise) for calibration. Such
measurements are too scarce (even with the advent of the
FLUXNET network [Baldocchi et al., 2001]) to use for esti-
mating continuousmaps of surface parameters. As by Sun et al.
[2011], the method was demonstrated at FLUXNET sites,
using a land surface model similar to the Noah LSM [Ek et al.,
2003], but simplified to a single soil layer. Here the tendency
terms is calculated directly from the current version of the
Noah LSM (public release version 2.7.1) ensuring that the
resulting parameter estimates are compatible with the NOAA
WRF model and are applicable to atmospheric models that
employ the Noah LSM.
[5] Below we demonstrate the method at the Vaira Ranch

Ameriflux site [Ryu et al., 2008] using field measured atmo-
spheric forcing and remotely sensed soil moisture (AMSR‐E
derived LPRM [Owe et al., 2008] product) and Leaf Area
Index (MODIS level 4 product available through the USGS
Land Processes Distributed Active Archive Center). To keep
the parameter estimation manageable for large scale applica-
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tions, we start with default soil and vegetation parameters
sets and then further refine key parameters within these sets.

2. Methodology

[6] The basic idea presented here, by Salvucci [2001] and
by Sun et al. [2011] is as follows: Using conditional aver-
aging, the relation between soil moisture and precipitation (P)
can be studied in place of the relation between soil moisture
and evapotranspiration (ET), and drainage plus runoff (D+RO,
which we will here denote as Q). The benefit of doing this is
that very few long term and/or spatially distributed data sets
exist for evapotranspiration and drainage, but many exist for
precipitation and soil moisture. Furthermore precipitation and
indices of surface soil moisture can be estimated from satellite
data with global coverage. To accomplish this we apply
conditional averaging to the water balance equation for soil
water storage (8) per unit area of land: d8dt = P − ET − Q, and
exploit the condition that E d8

dt

��8� �
= 0 for stationary systems.

As a first step, we review the derivation of this property.

2.1. Conditional Averaging of the Water
Balance Equation

[7] Salvucci [2001] demonstrated (through mathematical
derivation, monte‐carlo studies, and observed data sets) that
E d8

dt

��8� �
= 0. There are a few complementary ways to see

why this is so. The simplest is to note that if E d8
dt

��8� �
depended on 8, and an estimate of this dependence were
approximated through a polynomial‐series regression func-
tion (e.g., say E d8

dt

��8� �
= a + b8 + c82 + …), then each of the

coefficients (a‐c, …) could be found using least squares
regression by solving a set of equations whose right‐hand
side involved the terms E 8nd8dt

� �
for n = 0 to 2 (in this exam-

ple). But each of these terms can be re‐written, using the chain
rule as 1

nþ1E
�
d8nþ1

dt

�
. Stationarity of the statistical moments of

8, however, requires that these all be zero, thus the estimates
of the coefficients are zero, demonstrating E d8

dt

��8� �
= 0.

[8] Another way to demonstrate this key result is to con-
sider representing 8 as a Fourier series. The rate of change of
8would then be another series (with sines replaced by cosines
and vice‐versa), which, because of the orthogonality of the
trigonometric series, will be uncorrelated with 8. Finally, it
can also be seen from a sampling perspective. For a time
series of 8, if 8 is stationary, then for any level of 8 (e.g., the
75th percentile, which we denote 875), the difference between
the number of upcrossings (from 8 less than 875 to greater)
and downcrossings (8t > 875 > 8t+dt) will be at most one.
Taking these crossings as samplings of d8dt , they balance in the
long term mean. Note that all of the above statements remain
valid in the presence of a seasonal cycle (in fact, it is evenmore
straightforward to demonstrate for the seasonal cycle of 8
since both 8 and d8

dt can be represented by deterministic Fourier
components, and they by definition will be orthogonal).
[9] Now, if we return to the water balance equation:

d8
dt

¼ P � ET � Q ð1Þ

and take the conditional average with respect to 8, i.e.:

E
d8
dt

����8
� �

¼ E Pj8½ � � E ET j8½ � � E Qj8½ � ð2Þ

and then invoke the stationarity condition E d8
dt

��8� �
= 0, and

rearrange, we find:

E Pj8½ � ¼ E ET j8½ � þ E Qj8½ � ð3Þ

2.2. Adaptation of Method for Estimating
Noah LSM Parameters

[10] Our previous application of the stationarity‐based
parameter estimation was in the context of a relatively
simple land surface model. In that model [Sun et al., 2011],
there was a single root zone moisture storage, and the fluxes
of evapotranspiration, drainage, runoff and capillary rise
to the root zone were parameterized based on that single
storage state.
[11] The challenge here is to apply the same concepts

to a modern, multi‐layer soil‐vegetation‐atmosphere transfer
model, complete with canopy retention and evaporation, soil
water redistribution, bare soil evaporation and transpiration,
and snowpack physics. The significant difference is that the
fluxes in this case depend on both the (observable) surface
states, and also on deeper‐layer, unobserved, moisture and
temperature states. The solution we demonstrate below is
simply to integrate the LSM forward in time, but update the
surface states (here, soil moisture) when data are available
(e.g., at satellite crossing time). Below we do this with a
hard‐update, but future work will assess if a data assimila-
tion approach will improve results enough to justify the
added complexity and computation required.
[12] The updated soil moisture is the (observable) top soil

layer (nominally 10 cm in the community version Noah
LSM). The input into the layer is thus liquid precipitation
net of canopy storage plus snow melt, and the outputs are
root zone extraction from this layer, bare soil evaporation,
and flow to and from the soil layer below. However, when
evaluating the stationarity of the system using equation (3),
we take 8 to be the total storage integrated over all layers,
and the fluxes to be defined by that choice. The basic idea
behind the parameter estimation strategy is that the Noah
LSM parameters most consistent with the observed forcing
and state‐variables will be those for which E d8

dt

��8� �
= 0 for

the model run with periodic updates to the surface state.
[13] As is illustrated in an example below, if the para-

meters are not consistent with the forcings and measured
states, the model dynamics will drift, violating the statio-
narity condition. When this happens, the conditionally‐
averaged tendency terms are not zero, and instead reflect the
moisture‐dependent errors in the fluxes (or temperature‐
dependent errors when evaluating the heat storage tendency
terms). This can be seen by re‐writing equation (2) in terms
of modeled fluxes (denoted with an asterisk superscript),
and subtracting equation (3), yielding an estimate of the
moisture‐dependent error ":

E "j8½ � � E ET*� ETð Þ þ Q*� Qð Þf gj8½ � ffi E
d8*
dt

����8*
� �

ð4Þ

Minimizing the error term (and thus estimating model
parameters), can thus be accomplished by calculating the
right‐hand side of equation (4). The model tendency term�
d8*
dt

�
is readily extracted from the LSM (for those familiar
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with the Noah LSM, the SRT subroutine calculates the
tendency implicitly for use in the tri‐diagonal system of
equations for time stepping). The tendency term is then
saved, and after the integration (e.g., 5 years of integration,
exclusive of spin ‐up), the mean value of d8*

dt is calculated
in each of ten “bins” of 8*, thus forming an estimate of

conditionally‐averaged tendency E d8*
dt

���8*h i
.

[14] In order to better equalize the variance of d8*
dt in each

bin, we first transform the storage variable using a cumulative‐
distribution function mapping [Calheiros and Zawadzki,
1987], as has been done previously for soil moisture [e.g.,
Saleem and Salvucci, 2002; Reichle and Koster, 2004], and
we normalize d8*

dt by its standard deviation (s). The former
insures that the same number of values is used in each bin
when calculating the conditional‐mean tendency, and the
latter insures that low variance model runs are not preferred
over high variance runs. The stationarity‐objective function
can thus be written as:

OBJstationarity ¼
XNbins
i¼1

E
d8*
dt

	
�

d8*
dt


 �� �
i


 �2

ð5Þ

Also note that because in every time step the model conserves
mass at all layers (to within the numerics of the model), the
conditionally‐ averaged tendency term is equal (to within
the natural statistical variability of 8) to the conditionally‐
averaged innovations (the soil moisture update required to
nudge the system to the observed moisture). However, the
objective function (5) is not the same, and is not proportional

to, the sums of squares of innovations. By conditioning on
moisture, (5) detects, and can thus minimize, structural (i.e.,
moisture‐dependent) errors, whereas the sum of squares of
innovations cannot. The proposed method is thus distinct from
methods that simultaneously assimilate observations and esti-
mate parameters through minimization of innovations [e.g.,
Caparrini et al., 2004].
[15] The procedure described above is repeated for each

trial parameter set. Specifically, the model is integrated
(with soil moisture updating), and the objective function
(equation (5)) is evaluated, for each of the seven basic soil
texture groups, the two most reasonable a priori estimates of
vegetation class, and a set of adjusted parameters within
each of these default groups. The parameters that are further
adjusted within the groupings are the maximum stomatal
conductance, the saturated hydraulic conductivity, and the
exponent of the bare soil evaporation efficiency function
(a power law model in Noah). Adjusting these refined
parameters in four to eight increments over a reasonable
range of values (for each default soil texture class and two
vegetation classes) requires approximately 2500 model runs.

2.3. Example of Methodology

[16] In this example, we apply the method to the Vaira
Ranch data set of the Ameriflux network [Ryu et al., 2008]
where measured evaporation flux data is available for ver-
ification. The site is located in California (N38.4067/
W120.9507, elevation 129m). The soil type is rocky silt‐
loam. The site is a grazed C3 grassland opening in a region
of oak/grass savanna. The climate is Mediterranean. Forcing

Figure 1. Demonstration of the stationarity‐objective function calculated for the Vaira Ranch Ameriflux site using the
AMSR‐E based LPRM [Owe et al., 2008] remotely sensed soil moisture forcing for the top layer of the Noah LSM.
The green circles correspond to the log of the objective function (equation (5)) for approximately 2500 different parameter
sets. The parameter set for which the Noah LSM model output is most consistent with the meteorological forcing and
observed soil moisture yields the lowest stationarity‐objective function (red diamond). Note that the bias between the
measured ET at Vaira ranch and the model simulated ET for this stationarity‐chosen parameter set is close to zero,
demonstrating the potential of the proposed methodology. The root‐mean square error of the daily‐averaged ET for the
chosen parameter set is approximately 0.04 cm/day (12 watts/square meter) and the mean bias is less than 0.005 cm/day
(1.5 watts/square meter).
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and validation data from 2003 to 2007 are used in the
analysis. In this application, the Noah model was forced
with half‐hourly Ameriflux‐observed meteorological data
(wind speed, air temperature, humidity, pressure, down-
welling longwave and shortwave radiation, and precipita-
tion), and remotely‐sensed surface soil moisture from the
AMSR‐E derived LPRM data set [Owe et al., 2008]. For
broader applications (i.e., beyond testing the method at
Ameriflux sites), we suggest using the North American Land
Data Assimilation System (http://www.emc.ncep.noaa.gov/
mmb/nldas/) for gridded values of the required forcing data
(including merged gauge‐radar precipitation estimates).
[17] To illustrate the capability of the method in a simple

way, Figure 1 plots the log of the stationarity‐objective
function (5) against the bias of the estimated ET (i.e., the
model‐estimated ET minus the observed ET), for approxi-
mately 2500 parameter sets. Note that the methodology
chooses a parameter set minimizing (5) which produces a
modeled mean ET very close to the measured value (red
diamond, Figure 1). The chosen parameters corresponded
to a silty loam with a conductivity of 3.5E‐6 meters/sec, a
bare soil evaporation efficiency exponent of 5, and a max-
imum stomatal conductance of 5 mm/sec.
[18] The key point to remember here is that the proposed

parameter estimation method does not use measurements of
turbulent fluxes (such as evapotranspiration). It indirectly
estimates these fluxes by selecting model parameters for
which the measured forcings (e.g., precipitation) and states
(e.g., soil moisture) are in statistical equilibrium with the
model’s moisture tendency.

[19] In Figure 2, we plot the corresponding time series of
(daily‐averaged) measured (black lines) and modeled
(magenta lines) ET. With the parameters estimated by the
proposed stationarity‐objective function, the model does a
convincing job of capturing the seasonal and synoptic
dynamics of ET. The blue lines of Figure 2 are discussed in
section 2.4.
[20] To best understand how the stationarity‐based

method discriminates among the various parameters, we
plot in Figure 3a the conditionally averaged tendency term

E d8*
dt

���8*h i
for ten bins and for 3 parameter sets: The chosen

set, and two non‐optimal sets (one producing too much ET
and too little drainage and runoff (blue line), and the other
producing toomuch ET, drainage, and runoff (red line)). Note
that all three are approximately in water balance. But the two
sub‐optimal cases show trends in E d8*

dt

���8*h i
. As discussed in

the methodology section, E d8*
dt

���8*h i
must approach zero (to

within statistical fluctuation) for natural, stationary systems, in

each bin. The trends in E d8*
dt

���8*h i
apparent in the red and

blue off‐optimal cases are indicative of moisture dependent
errors due to poor parameter choice (see equation (4)). The
right panel (Figure 3b) shows the conditionally‐averaged
fluxes that contribute to the change in total column moisture
storage. For clarity, only the optimal case is plotted. The net
of the precipitation (black), deep drainage (cyan), surface
runoff (blue), and evapotranspiration (red), forms the tendency
term (green). The tendency term is the same as is plotted in
Figure 3a. To be more precise, the plotted conditionally

Figure 2. Time series of daily‐averaged measured ET (black line) and the daily‐averaged ET produced by the Noah LSM
with the parameters chosen via the stationarity objective function (magenta line). The root mean square error of the statio-
narity‐chosen modeled ET flux is 0.04 cm/day (about 12 watts/square meter). The anomaly correlation at one day lag is
approximately 0.5, indicating the presence of persistent, structural error. Considering that the stationarity‐objective function
does not use measured ET fluxes, i.e., it is only based on forcing and surface soil moisture state, this is a significant result.
The blue line corresponds to the parameter set for which the simulated surface soil moisture demonstrated the largest rank‐
correlation with the AMSR‐E soil moisture. It is severely biased.
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averaged precipitation is actually the precipitation net of
canopy and snow storage, and augmented by snowmelt.
Likewise, the plotted conditionally‐averaged ET is bare soil
evaporation plus transpiration from all soil layers (i.e., it does
not include direct canopy evaporation). These are the fluxes
which form the tendency of soil moisture storage.
[21] We assess the robustness of the results with respect

to forcing measurement errors. In this test, 20% random
noise is added to the precipitation forcing, and the estima-
tion procedure is repeated four times. In each case, the root‐

mean‐square error stayed under 15 watts/square meter, and
the bias stayed within +/−3 watts per square meter. The
stationarity method thus appears, at this point, robust to
forcing errors.

2.4. Comparison of Proposed Stationarity‐Method
and a Soil Moisture Calibration Approach

[22] For comparison, we estimated the Noah parameters
by maximizing the correlation of simulated and measured
soil moisture, i.e., single‐criteria soil moisture calibration.

Figure 3. (a) Demonstration of conditionally‐averaged tendency term for chosen (green), and sub‐optimal (red and blue)
parameter sets. (b) The fluxes which form the tendency term, plotted for the optimal case. The green line is the same in each
panel, and corresponds to the black line minus the blue circles of Figure 3b.
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Previous studies [e.g., Gupta et al., 1999] indicated that
single‐criteria fitting, for example to soil moisture, is not
robust. In essence, such a single‐criteria fit could yield a
predicted trace of soil moisture that is well correlated with
the observed values, but poorly correlated with the fluxes,
due to compensations between drainage, runoff and evapo-
transpiration. For Vaira Ranch, we find similar results to
Gupta et al. [1999]. The parameter set yielding the best‐
correlated time series of soil moisture yields a highly biased
and poor estimate of ET. This prediction of ET is plotted as
the blue line in Figure 2. Note that in this comparison, the
model was not updated with observed soil moisture during
the model integration.
[23] We also tested whether simply minimizing the total

sum of squares of innovations (the updates required to force
the Noah LSM top node moisture to match the observed
moisture at the observation times) could be used to estimate
the parameters. Similar to the results of soil moisture cali-
bration, model parameters leading to large biases (and large
root mean square error) were selected. It appears that the key
distinction is in the soil moisture conditional averaging of
the tendency (or the innovation). This is the step that
identifies the systematic (as opposed to random) errors in
fluxes, and thus leads to robust parameter estimation.

3. Summary and Conclusions

[24] We conclude from these preliminary experiments that
the stationarity‐objective function is robust and that it
extracts more information about the system, and thus yields
better parameter estimates, than solely calibrating to soil
moisture or minimizing the sum of squares of innovations.
More information is extracted because the data are analyzed
in a way that highlights the covariance of the forcings and
responses, and their moisture dependence. Thus, a soil
parameter set that is too “sandy”, for example, will drain too
much at (relatively) large moisture, and thus have a different
correlation with precipitation (and thus non‐vanishing con-
ditionally‐averaged tendency), than the proper soil, even
though it might (through a compensation of reduced
evapotranspiration), yield a highly correlated time series of
soil moisture and small innovations.
[25] As has been pointed out in previous studies [Gupta

et al., 1999; Hogue et al., 2005], it should be noted that
parameter values estimated by any optimization method,
including that proposed here, do not have universal validity.
For example, the values can and will change if: 1) different
land surface models are forced with the same data; 2) sub-
sets of parameters are allowed to vary while others are held
constant; 3) different subsets of training data are used; and
4) the numerical resolution (vertical or horizontal) is altered.

[26] Acknowledgments. This study was funded by the NASA Energy
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