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[1] Soil moisture information is critical for applications like landslide susceptibility
analysis and military trafficability assessment. Existing technologies cannot observe soil
moisture at spatial scales of hillslopes (e.g., 100 to 102 m) and over large areas (e.g., 102 to
105 km2) with sufficiently high temporal coverage (e.g., days). Physics-based hydrologic
models can simulate soil moisture at the necessary spatial and temporal scales, albeit
with error. We develop and test a data assimilation framework based on the ensemble
Kalman filter for constraining uncertain simulated high-resolution soil moisture fields to
anticipated remote sensing products, specifically NASA’s Soil Moisture Active-Passive
(SMAP) mission, which will provide global L band microwave observation approximately
every 2–3 days. The framework directly assimilates SMAP synthetic 3 km radar
backscatter observations to update hillslope-scale bare soil moisture estimates from a
physics-based model. Downscaling from 3 km observations to hillslope scales is achieved
through the data assimilation algorithm. Assimilation reduces bias in near-surface soil
moisture (e.g., top 10 cm) by approximately 0.05 m3/m3 and expected root-mean-square
errors by at least 60% in much of the watershed, relative to an open loop simulation.
However, near-surface moisture estimates in channel and valley bottoms do not improve,
and estimates of profile-integrated moisture throughout the watershed do not substantially
improve. We discuss the implications of this work, focusing on ongoing efforts to improve
soil moisture estimation in the entire soil profile through joint assimilation of other
satellite (e.g., vegetation) and in situ soil moisture measurements.

Citation: Flores, A. N., R. L. Bras, and D. Entekhabi (2012), Hydrologic data assimilation with a hillslope-scale-resolving
model and L band radar observations: Synthetic experiments with the ensemble Kalman filter, Water Resour. Res., 48, W08509,
doi:10.1029/2011WR011500.

1. Introduction

[2] There is currently no technological platform that
allows for the observation of soil moisture at hillslope scales
(e.g., 100 to 102 m), over large areas (e.g., 102 to 105 km2)
with sufficiently high temporal coverage (e.g., 1–3 days).
Despite this gap in the hydrologic observing system, in
many intensively monitored watersheds throughout the
world soil moisture has been shown to vary at hillslope
scales [Seyfried and Wilcox, 1995; Grayson et al., 1997;
Jencso et al., 2009; Kim, 2009; Williams et al., 2008]. At
the same time, knowledge of soil moisture at spatial scales

of hillslopes is critically important to a number of applica-
tions like slope stability assessment [Simoni et al., 2008],
soil erosion and slope stability in burnt areas [Bovolo et al.,
2009], and soil carbon assessment in complex terrain
[Gessler et al., 2000].
[3] Existing and emerging technologies allow for mea-

surement of soil moisture across spatial scales ranging from
effectively points (e.g., 10�2 m) to individual hillslopes (e.g.,
102 m). Some of the most promising new techniques include
electrical resistivity tomography [e.g., Brunet et al., 2010],
distributed temperature sensing [Selker et al., 2006; Tyler
et al., 2009], measurement of neutron thermalization due to
interactions of primary cosmic rays with atmospheric nuclei
[Zreda et al., 2008], and noise characteristics of ground-
based Global Positioning System (GPS) receivers [Larson
et al., 2010]. Despite these advances, ground-based obser-
vation of soil moisture over large watersheds at hillslope
scales is unlikely in the foreseeable future.
[4] Space-based satellites are the best platform from

which soil moisture may be observed globally and over large
areas. The L band microwave region of the electromagnetic
spectrum (i.e., 1–3 GHz) is particularly useful for measure-
ment of soil moisture because soil electrical properties par-
ticularly sensitive to moisture content [Njoku and Kong,
1977; Ulaby et al., 1986]. As a result, L band microwave
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observation has proven a powerful tool for global observa-
tion of soil moisture [e.g., Njoku and Entekhabi, 1996; Crow
et al., 2001; Kerr et al., 2001; Paloscia et al., 2006;
Entekhabi et al., 2010]. Passive L band microwave radi-
ometry technology is vital to both the European Space
Agency’s Soil Moisture and Ocean Salinity (SMOS) mission
[Wigneron et al., 2000; Pellarin et al., 2003] and NASA’s
Soil Moisture Active-Passive (SMAP) mission [Entekhabi
et al., 2010]. Passive L band microwave observations are,
however, associated with coarse spatial resolutions—
approximately 50 km for SMOS and 40 km for SMAP. The
SMAP mission also uses an imaging radar operating at a
central frequency of 1.26 GHz. The principal advantage of
active remote sensing of soil moisture is a considerable
improvement in the resolution of radar products; the SMAP
mission calls for a 3 km soil moisture product [Entekhabi
et al., 2010]. Like passive L band microwave observations,
L band radar observations are sensitive to the soil dielectric
constant and therefore soil moisture [Dobson and Ulaby,
1986; Wang et al., 1986; Engman, 1991; Evans et al.,
1992]. Relative to passive observation, however, soil mois-
ture retrieval algorithms for radar observations are more
complex [e.g., Eom and Boener, 1986; Fung et al., 1992;
Fung, 1994; Tabatabaeenejad and Moghaddam, 2006].
Radar observations are also more sensitive to roughness at
the surface [Fung et al., 1992] and water contained in veg-
etation, which attenuates and scatters transmitted microwave
radiation [Dubois et al., 1995; Njoku et al., 2002].
[5] Progress in the observation of soil moisture has also

been accompanied by improvements in physically based
modeling of soil moisture. Integrated hydrologic models
have improved process representation and computational
efficiency, allowing simulation of watersheds ranging in
scale from 101 km2 to 104 km2 [e.g., Maxwell and Miller,
2005; Kollet et al., 2010; Qu and Duffy, 2007; Kumar
et al., 2009; Ivanov et al., 2004a, 2004b, 2008a, 2008b].
A key strength of these integrated hydrologic models is that
they synthesize diverse sources of data to represent topog-
raphy, soils, vegetation, and environmental forcings in the
area being simulated. But uncertainties in these input data,
however, ultimately result in uncertainties in the predicted
hydrologic states and fluxes.
[6] Leveraging the strengths of both hydrologic obser-

vation and modeling to combat these uncertainties, data
assimilation methods—the algorithmic fusion of observa-
tions and models—have proven important for estimating
soil moisture [e.g., Margulis et al., 2002; Reichle et al.,
2002, 2008; Crow and Wood, 2003; Dunne and
Entekhabi, 2005, 2006; Merlin et al., 2006; Kashif Gill
et al., 2007; Parada and Liang, 2008; Crow and Ryu,
2009; Pan and Wood, 2010]. Reichle et al. [2001] impor-
tantly demonstrated that data assimilation can be used to
effectively disaggregate passive microwave data from 40 km
to 1 km scales. Similarly, Merlin et al. [2006] improved
estimation of near-surface soil moisture through assimilation
of disaggregated synthetic SMOS observations into a soil-
vegetation-atmosphere transfer model. Parada and Liang
[2008] found that assimilation of even coarse (25 km) pas-
sive microwave observations yielded improvement in near-
surface soil moisture estimation within a macroscale hydro-
logic model. With the notable exceptions of van Loon and
Troch [2002] and Camporese et al. [2010], however, these
studies have mostly targeted the macroscale (i.e., 103–104 m)

because of the influence of soil moisture on surface energy
fluxes estimates, to which weather forecasting models are
sensitive.
[7] The purpose of this study is to construct and test a data

assimilation system for estimating soil moisture at hillslope
scales using an integrated hydrologic model with synthetic
observations roughly consistent with those expected from
SMAP. We use the tRIBS-VEGGIE model to simulate soil
moisture conditions at hillslope scales within the Walnut
Gulch Experimental Watershed in southeast Arizona, USA,
during a synthetic 27 day period in August. An ensemble
Kalman filter (EnKF) algorithm is used to assimilate syn-
thetic SMAP radar measurements with a 3 km spatial reso-
lution. The remainder of the paper is organized as follows:
(1) an outline the methods, (2) an overview of the synthetic
experiment framework, (3) results and interpretation, and
(4) discussion, implications, and conclusions. Although the
tRIBS-VEGGIE model is the focus here, we intend this
study to be broadly illustrative of the potential use of data
assimilation for improving hydrologic estimation at hill-
slope scales with models and remote sensing data.

2. Methods

[8] The lack of spaceborne L band radar observations
adequate for observing soil moisture approximately every 2–
3 days necessitates an Observing System Synthetic Experi-
ment (OSSE) approach. Within the framework of the OSSE
presented here, (1) a true distribution of bare soil moisture is
simulated by the hydrologic model, (2) an observational
model is used to synthesize L band microwave radar back-
scatter consistent with the 3 km spatial resolution and 3 day
temporal revisit of the SMAP satellite, and (3) the synthetic
backscatter observations are perturbed with noise that is
consistent with SMAP radar and used to update simulated
tRIBS-VEGGIE soil moisture states using the ensemble
Kalman filter (Figure 1). The particular set of experiments
presented here represent a multiple truth OSSE in which the
workflow shown in Figure 1 is replicated four times with
different sets of observations and results are considered in
aggregate. Benefits and shortcomings of this multiple-truth
OSSE approach are outlined in the discussion.
[9] Here we present (1) a brief discussion of the hydrologic

model used in these experiments, (2) an outline of the L band
microwave radar scattering model, (3) a review of the
ensemble Kalman Filter algorithm used, (4) a review of the
treatment of uncertainty in the model parameters and envi-
ronmental forcings, and (5) a description of the experiment
setting, details, and simplifying assumptions.

2.1. The tRIBS-VEGGIE Model

[10] The ecohydrology model used in this data assimila-
tion study is the tRIBS-VEGGIE model [Ivanov et al.,
2004a, 2004b, 2007, 2008a, 2008b]. The tRIBS-VEGGIE
model is a spatially distributed mass, energy, and carbon
balance-resolving model that takes as input precipitation
and meteorological forcings, as well as the topographic and
soil boundary conditions. A full treatment of the tRIBS-
VEGGIE model is beyond the present scope of work and
the reader is directed to the work of Ivanov et al. [2004a,
2004b, 2007, 2008a, 2008b].
[11] The tRIBS-VEGGIE model simulates the spatial

distribution of soil moisture by solving the one-dimensional
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Richards equation for a sloped surface, allowing lateral
gravitational drainage in the unsaturated zone in the direc-
tion of steepest topographic descent and driven by the local
topographic slope. The bottom of the soil column is set
as a free drainage boundary condition, consistent with the
assumption of significant depth to the saturated zone in the
semiarid environment for which the model is currently most
applicable.
[12] Inputs to the tRIBS-VEGGIE model can be catego-

rized into four kinds of data: (1) hourly hydrometeorological
forcings, (2) soil hydraulic and thermal properties, (3) vege-
tation parameters, and (4) a static elevation field representing
watershed topography. Hydrometeorological forcings for
tRIBS-VEGGIE include hourly (1) precipitation, (2) sky
fractional cover or incoming solar radiation, (3) air temper-
ature, (4) dew temperature, and (5) wind speed. In this study,
hydrometeorological forcings to tRIBS-VEGGIE were gen-
erated by a stochastic weather generator [Ivanov et al., 2007].
Soil hydraulic and thermal parameters are similar to those
common to many land surface models [e.g., Liang et al.,
1994; Chen et al., 1996; Koster and Suarez, 1996; Peters-
Lidard et al., 1997; Oleson et al., 2004] and available in
published soil databases such as the STATSGO or SSURGO
products. Soil parameters required for a water and energy

balance solution include (1) saturated hydraulic conductivity,
(2) saturation moisture content, (3) residual moisture content,
(4) Brooks-Corey parameters pore distribution index and air
entry pressure, (5) specific volumetric heat capacity, and
(6) thermal conductivity.
[13] The study domain is the Walnut Gulch Experimental

Watershed (WGEW) in southeast Arizona, USA. Established
by the U.S. Department of Agriculture (USDA) in 1958,
WGEW is approximately 150 km2 in area, and is located at a
transition between the Chihuahuan and Sonoran deserts
[Moran et al., 2008]. The semiarid watershed has a mean
annual temperature of 17.7�C, while mean annual precipita-
tion is 312 mm [Moran et al., 2008]. The North American
Monsoon System (NAMS) brings approximately 60% of the
mean annual precipitation in the months of July through
September, and summertime rainfall events tend to be
localized and of high intensity [Moran et al., 2008].
[14] Watershed topography is represented as a network of

Voronoi polygons derived from a TIN representation of input
static digital elevation models (DEMs). Recommendations of
Vivoni et al. [2004] were followed to obtain a TIN mesh for
tRIBS-VEGGIE from a U.S. Geological Survey 30 m Digital
Elevation Model for the WGEW area using the ArcInfo
Geographic Information System (GIS) package developed

Figure 1. A flowchart depicting the workflow for one OSSE. Gray boxes show the steps followed to
produce the synthetic true states and observations. Black boxes show the EnKF loop.
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by ESRI. Attempts to delineate floodplain features following
the techniques used by Vivoni et al. [2004] revealed little
discernable floodplain structure, and the final TIN mesh is
composed of 19,447 computational nodes. Each tRIBS-
VEGGIE pixel is formulated with 10 finite element soil
layers with thicknesses that increase exponentially with
depth. Layer thickness increases exponentially from 25 mm
at the atmosphere-adjacent layer to 845 mm in the bottom
layer. Total thickness of the soil column is 3155 mm.
Properties of the computational mesh are summarized in
Table 1.

2.2. The Integral Equation Model for L Band Radar
Backscatter

[15] The forward geophysical model used to simulate
L band microwave radar backscatter is the integral equation
model (IEM) [Fung, 1994; Altese et al., 1996; Chen et al.,
1995; Hoeben and Troch, 2000]. Altese et al. [1996] previ-
ously used the IEM with a linearized version of the Richards
equation and an extended Kalman filter to estimate soil
moisture. The IEM allows for modeling backscatter with
information about (1) the radar sensor, (2) the roughness
features of the area, and (3) the near-surface moisture con-
ditions. Owing to its sensitivity to roughness, the IEM is most
applicable for sparsely vegetated and/or unvegetated surfaces
[Dubois et al., 1995]. As such, we assume bare soil condi-
tions. Although this assumption is an important departure
from reality, it eliminates the need to address volume scat-
tering from water stored in vegetation. Scattering models that
account for effects of vegetation water content on backscatter
have been developed, but require additional parameters
related to the type and water content of the vegetation canopy
[e.g., Bindlish and Barros, 2001].
[16] The like-polarized dimensionless backscatter coeffi-

cient, spp
0 , is expressed as

s0
pp ¼

k2w
2
e�2k2z s

X∞
n¼1

s2n Inpp

��� ���2 Wn �2kx; 0ð Þ
n!

; ð1Þ

where the wave number (kw) is equal to 2p/l (l is the
wavelength), s is the surface roughness parameter, kz =
kwcosql, kx = kwsinql, ql is the local incidence angle [radians],
and W(•) is the power spectrum of the surface roughness. In
equation (1) spp

0 represents the ratio of backscattered energy;
backscatter is typically presented in units of decibels, such
that spp

0 [dB] = 10log10 spp
0 . The assumed radar frequency is

1.26 GHz, corresponding to a wavelength of approximately
24 cm. The subscript pp denotes the copolarization state (i.e.,

hh or vv for horizontally or vertically copolarized states,
respectively). The function Ipp is defined as,

Inpp ¼ 2kzð Þnfppe�s2k2z þ knz
2

Fpp �kx; 0ð Þ þ Fpp kx; 0ð Þ� � ð2Þ

The copolarized Kirchoff coefficients ( fvv and fhh) are
defined as

fvv ¼ 2Rvv=cos ql
fhh ¼ �2Rhh=cos ql

ð3Þ

and the copolarized complementary field coefficients (Fvv

and Fhh) defined as

Fvv �kx; 0ð Þ þ Fvv kx; 0ð Þ ¼ 2 sin2ql
cos ql

$
1� ɛ cos2 ql

ɛ � sin2 ql

� �
1� Rvvð Þ2

þ 1� 1

ɛ

� �
1þ Rvvð Þ2

%
ð4Þ

Fhh �kx; 0ð Þ þ Fhh kx; 0ð Þ ¼ 2 sin2 ql
cos ql

4Rhh � 1� 1

ɛ

� �
1þ Rhhð Þ2

� �
ð5Þ

where ɛ is the effective soil dielectric constant (dimension-
less). The soil dielectric model used in this study is an
empirical model relating the effective dielectric constant ɛeff
to volumetric soil moisture qv (m

3/m3) [Topp et al., 1980] as
follows:

ɛeff ¼ 3:03þ 9:3qv þ 146q2v � 76:7q3v : ð6Þ

The surface roughness spectrum, W(u, v), is related to the
surface roughness correlation function, r(z, x), through its
Fourier transform,

Wn u; vð Þ ¼ 1

2p

Z∞
�∞

Z∞
�∞

rn x; zð Þe�jux�jvzdxdz ð7Þ

For simplicity, we assume an exponential function roughness
correlation function as in Fung et al. [1992], Chen et al.
[1995], and Altese et al. [1996], which is a function of only
the roughness correlation length L. Noting that the roughness
parameters of the IEM are often normalized by kw, the nth
power of the roughness spectrum is then

Wn kwð Þ ¼ L

n

� �2

1þ kwL

n

� �2
" #�1:5

ð8Þ

Topography plays an important role in soil moisture remote
sensing, particularly at the 1–3 km resolution of the SMAP
radar [Mätzler and Standley, 2000; Kerr et al., 2003;Mialon
et al., 2008; Sandells et al., 2008; Flores et al., 2009].
Mätzler and Standley [2000] and Flores et al. [2009] provide
a framework through which the local incidence angle and the
aggregation of hillslope-scale elements to the viewing reso-
lution can be calculated from digital elevation data. At a
tRIBS-VEGGIE pixel at which backscatter is modeled the
local incidence angle is a function of the azimuth angle
(zS, rad) and zenith angle (dS, rad) from the pixel to the

Table 1. Characteristics of tRIBS-VEGGIE Computational Mesh

Property Value

Watershed area (km2) 148
Number of pixels Np 19,447
Effective resolutiona (m) 87.2
Number of soil layers 10
Number of soil textures 27
Minimum/maximum/

mean elevation (m)
1222/1933/1420

aEffective resolution is defined as the square root of the watershed area
divided by Np.
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satellite, and the local topographic slope (ar) and aspect
(zr),

cos ql ¼ cos ar cos dS þ sin ar sin dS cos zS � zrð Þ; ð9Þ

and the rotation of the linear polarization by an angle, 8, is
calculated as

sin 8 ¼ sin zS � zrð Þ sin ar= sin ql: ð10Þ

Local (i.e., hillslope-scale) incidence and polarization rota-
tion angles are used to compute reflectivity in both horizon-
tally and vertically copolarized states through the Fresnel
equations. Hillslope-scale backscatter is computed based on
this local reflectivity and aggregated to a regular 3 km grid,
accounting for effects of topographic slope and aspect [see
Flores et al., 2009; Mätzler and Standley, 2000].

2.3. The Ensemble Kalman Filter

[17] The ensemble Kalman filter (EnKF) is an extension
of the Kalman filter that allows for the use of nonlinear
system models by approximating the prior state error statis-
tics using Monte Carlo simulation [Evensen, 1994, 2003,
2004]. It is important to recognize that because the state
error covariance matrix is approximated through Monte
Carlo simulation, the state estimate will be inherently sub-
optimal. Despite departures from the requirements of the
Kalman Filter, the EnKF has seen broad applicability in
hydrology, meteorology, and oceanography.
[18] Several update (or “analysis”) schemes have been

developed to deal with problems frequently encountered in
geophysical data assimilation. This study uses the analysis
scheme outlined in Evensen [2004, section 7.4.2]. Let xk(t)
denote the ns-dimensional tRIBS-VEGGIE model state
vector (i.e., all soil moisture pixels within the areal extent of
each watershed and all vertical soil moisture layers at each
pixel) for the kth of K members of an ensemble of model
states simulated at a time t when a SMAP observation is
available. More explicitly, the vector xk(t|t � 1) is a replicate
of a K-member unconditional forecast of soil moisture, given
a K replicate ensemble that was previously conditioned on
observations at time t � 1, xk(t � 1|t � 1). Each replicate is
obtained from,

xk t t � 1j Þ ¼ f xk t � 1 t � 1j Þ; uk ;fkð Þðð ð11Þ

where the function f(•) represents the tRIBS-VEGGIE model,
uk is the kth realization of the uncertain hydrometeorological
forcings between time t� 1 and t, and fk is the kth realization
of the uncertain soil hydraulic and thermal properties. Drop-
ping the explicit dependence on time t, and denoting each
vector of the unconditional ensemble forecast with a super-
script ‘f ’ (“forecast”), we collect the K replicates of the fore-
cast ensemble into the ns � K matrix Xf,

Xf ¼ x f
1 x f

2 x f
3 … x f

K

h i
ð12Þ

The ns � 1 sample mean vector of this forecast ensemble, �x f ,

is computed and used to form the ns � K matrix, �Xf , which
contains K copies of �x f.

[19] The radar backscatter model outlined above trans-
forms the input state xk

f into an m � 1 vector of predicted
observations

z f
k ¼ H x f

k

	 

ð13Þ

In data assimilation applications where the dimensionality of
the state vector is large, computing the full ns � ns estimate
of the state error covariance is difficult or intractable. For
this reason, a series of so-called square-root analysis
schemes, which instead only require construction of a matrix
containing an ensemble of perturbations from the ensemble
mean, have become popular. This analysis scheme is sum-
marized here, with slight modifications from the notation of
Evensen [2004].
[20] The ensemble of predicted observation perturbations,

S, is

S ¼ H Xf � �Xf
	 


≈ H Xf
� �� H �Xf

	 

ð14Þ

in which H(•), Xf, and �X
f
have been previously defined. It is

important to note that this approximation to S, although
necessary, assumes that backscatter varies with soil moisture
in only a weakly nonlinear fashion. The m � K matrix S is
factored using the singular value decomposition (SVD) into

U0S0V
T
0 ¼ S ð15Þ

An intermediate matrix X0 is then constructed as

X0 ¼ Sþ
0 U

T
0E ð16Þ

where the matrix S0
+ is a diagonal matrix in which diag

(S0
+) = (s1

�1, s2
�1,…, sK�1

�1 , 0), the elements of which are the
reciprocal of the corresponding diagonal elements of the
matrix S0. The SVD is performed on the matrix X0,

U1S1V
T
1 ¼ X0 ð17Þ

and an intermediate matrix X1, computed as

X1 ¼ U0SþT
0 U1 ð18Þ

The ns � 1 analyzed ensemble mean vector (�xa ) is then
computed via the following five-step process of matrix-
vector multiplications:

y0 ¼ XT
1 z�Hx f
� �

; ð19aÞ

y2 ¼ IþS2
1

� ��1
y0; ð19bÞ

y3 ¼ X1y2; ð19cÞ

y4 ¼ STy3; ð19dÞ

�xa ¼ �xf þ Xf � �X
� �

y4; ð19eÞ
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A subsequent sequence of matrix operations is performed to
compute the analyzed ensemble of state perturbations, X′a.
First, an intermediate matrix X2 is computed as

X2 ¼ IþS2
1

� ��1=2
XT

1 S ð20Þ

and factored via the SVD to obtain

U2S2V
T
2 ¼ X2: ð21Þ

Finally, the matrix of analyzed ensemble perturbations is
computed as

X′a ¼ Xf � �X
� �

V2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I�ST

2S2

q
QT ð22Þ

where the random orthonormal matrix Q is composed of
the right singular vectors from a SVD performed on a
random K � K matrix. The purpose of the matrix Q is to
spread the variance reduction across the ensemble members.
Recent studies suggest that this random rotation can poten-
tially induce a bias in the analysis ensemble [Wang et al.,
2004; Sakov and Oke, 2008]. While Livings et al. [2008]
provides some diagnostic tools to assess the degree to
which this rotation induces bias, we have not addressed this
issue for the OSSEs presented here and leave this to future
study.
[21] The square root analysis used in this study is ideally

suited to m ≫ K. In the numerical experiments described
below, m is much less than K. The employed analysis
algorithm used here, therefore, is more computationally
expensive than other square root analysis algorithms. The
majority of the cost in our numerical experiments is associ-
ated with integration of the tRIBS-VEGGIE model and the
increased cost of the analysis scheme used is miniscule.

2.4. Treatment of Uncertainty in Model Parameters
and Forcings

[22] We assume uncertainty in the simulated soil moisture
state arises from two principal sources: (1) imperfect char-
acterization of the soil hydraulic and thermal properties and
(2) errors in and sparsity of the measurement of the hydro-
meteorologic forcings of the tRIBS-VEGGIE model. We
briefly describe here how these sources of uncertainty are
treated in the developed data assimilation framework.
2.4.1. Development of Synthetic True and Ensemble
Model Forcings
[23] The hydrometeorological forcings for this synthetic

study were designed to broadly replicate experiment condi-
tions that might be encountered in an application where, for
example, hydrometeorological forcings are remote sensing
observations or downscaled outputs of numerical weather
prediction or climate models. As such, we assume there are
macroscale or synoptic-scale hydrometeorological condi-
tions that are input to a stochastic downscaling scheme to
develop forcings for a watershed model. In practice, we use
a modified version of the weather generator of Ivanov et al.
[2007] to generate both true and uncertain hydrometeoro-
logical forcings for this study. Modifications to the weather
generator of Ivanov et al. [2007] include (1) a Bartlett-Lewis
model to generate hourly precipitation forcings [Islam et al.,
1990] and (2) a stochastic multiplicative cascade model to
disaggregate hourly rainfall forcings in space to a 4 km grid
[Ferraris et al., 2003]. Note that this is coarser than the 3 km

scale observations, but consistent with existing weather
radar rainfall products and contemporary numerical weather
prediction models. Outputs of the weather generator are
hourly rainfall; air temperature; dew point temperature; wind
speed; cloud fraction; incoming direct beam solar radiation;
diffuse solar radiation; and thermal radiation. Parameters for
the Bartlett-Lewis model were obtained for Tucson from
Hawk [1992], while the remaining parameters for the
weather generator were obtained from Ivanov et al. [2007]
for Tucson. Parameters for the multiplicative cascade were
taken from Ferraris et al. [2003] and ensure that disaggre-
gation is mass conservative in the ensemble mean sense.
Consistent with this experimental framework, the weather
generator parameters are fixed throughout all OSSEs and we
assume the timing of rainfall is known and does not change
between synthetic truths or ensemble replicates.
[24] A master set of hourly precipitation is obtained at

output from the Bartlett-Lewis rainfall generator. This pre-
cipitation time series establishes the timing of hourly rainfall
for the entire experiment. The hourly precipitation forcings
are perturbed with multiplicative noise to produce one syn-
thetic true precipitation sequence and supplied as input to the
weather generator to produce the remainder of the true
hydrometeorological forcings. Multiplicative perturbations
follow a lognormal distribution with a mean of 1, a standard
deviation of 0.4, and are assumed serially uncorrelated.
[25] The true hourly rainfall realization is perturbed again

with multiplicative noise with the same characteristics as
described above and the resulting rainfall time series input to
the weather generator to obtain the remainder of the hydro-
meteorological forcings and spatially distributed rainfall. This
set of hydrometeorological forcings serve as the observed or
forecast hydrometeorological conditions. Cumulative syn-
thetic observed precipitation is shown in Figure 2d. Synthetic
observed rainfall time series are input to the weather gener-
ator to obtain an ensemble of air temperature, dew point
temperature, wind speed, cloud fraction, incoming direct
beam solar radiation, diffuse solar radiation, thermal radia-
tion, and spatially distributed rainfall with a resolution of
4 km. Although the multiplicative cascade model we use to
disaggregate hourly rainfall volumes is designed to repro-
duce observed spatial correlation in rainfall fields, we made
no effort to impose a particular spatiotemporal correlation
structure on the ensemble of rainfall forcings. The relatively
small size of the watershed with respect to the rainfall forcing
grid (complete watershed coverage is achieved with a 4 �
7 grid at 4 km resolution as seen in Figure 2d) implies that,
while it is reasonable to expect that rainfall is highly corre-
lated in space, spatial correlation could not be captured in a
statistically significant way at the resolution of the rainfall
forcings. Moreover, based on the extent and resolution of the
rainfall grid, any spatial correlation imposed to the pertur-
bations could not be statistically distinguished from spatially
uncorrelated perturbations. Future experiments with either a
larger domain or a higher-resolution rainfall “product,”
however, would necessitate more careful consideration of
the spatiotemporal statistical characteristics of stochastically
generated or perturbed rainfall (e.g., following the technique
proposed by Margulis et al. [2006]).
2.4.2. Uncertainty in Soil Hydraulic and Thermal
Properties
[26] Treatment of uncertainty in the soil hydraulic and

thermal properties of the study area is based on the approach
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developed by Flores et al. [2010]. The authors of that study
used a Latin Hypercube-based sampling scheme that also
preserved empirically observed correlations between the soil
hydraulic and thermal properties in the metadata database of
Schaap and Leij [1998]. For a given soil textural class, the
algorithm produces an ensemble of hydraulic and thermal
properties that capture these correlations and also sample the
extremes of parameter distribution. By using this technique
to generate soil parameter ensembles for the tRIBS-VEGGIE
model, Flores et al. [2010] showed that the corresponding
simulated soil moisture ensembles were reproducible at
ensemble sizes that were substantially smaller than a more
simple sampling approach. We apply this technique to gen-
erate an ensemble of tRIBS-VEGGIE soil parameters for
each soil textural unit within the WGEW.
[27] The spatial distribution of soil textural units was

obtained from the Soil Survey Geographic (SSURGO)
database maintained and published by the U.S. Department
of Agriculture Natural Resource Conservation Service
(USDA-NRCS). The SSURGO database reveals several soil
textural units that are classified in more detail than the nine
classes used in the Restricted Pairing RP-based soil param-
eter generation technique developed by Flores et al. [2010].
To facilitate the use of their soil parameter stochastic gen-
eration scheme, the more finely classified soil textural units
in the SSURGO database for WGEW were reclassified to
the conceptually nearest of the nine soil textural classes used
in the approach developed by Flores et al. [2010]. For
instance, “stony sandy loam” would be reclassified as a
“sandy loam.” Distinct soil units sharing a textural class but
exhibiting distinct spatial coverage in the SSURGO spatial
database were treated as distinct and independent when

generating stochastic soil properties. Soil parameters are
spatially uniform within each soil unit. The spatial distribu-
tion of soil units is shown in Figure 2c, and the soil texture
associated with each soil unit is given in Table 2.

Figure 2. For the USDAWalnut Gulch Experimental Watershed, in southeast Arizona, USA, the spatial
distribution of (a) topography, (b) topographic slope, (c) soil textural units, and (d) stochastically gener-
ated cumulative rainfall during the experiment, averaged over all four synthetic observation scenarios.
Locations of intensively monitored tRIBS-VEGGIE pixels corresponding to Lucky Hills (pixel 3378)
and Kendall (pixel 4996) are indicated in Figure 2b.

Table 2. Soil Codes and Textures

Soil Code Texture

1 Sandy loam
2 Sandy loam
5 Sandy loam
10 Clay
11 Loam
13 Sandy loam
14 Clay
16 Silt loam
17 Loam
19 Loamy sand
20 Loamy sand
22 Sandy loam
23 Sandy loam
24 Clay loam
26 Sandy loam
29 Silty clay loam
30 Silty clay loam
31 Silty clay loam
32 Silty clay loam
33 Sandy loam
34 Sandy loam
35 Clay
36 Loam
37 Sandy loam
39 Sandy loam
40 Silty clay loam
41 Sandy loam
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2.5. Synthetic Experiment Setup and Simplifying
Assumptions

[28] One distinct feature of this OSSE is that it is a multiple
truth OSSE. That is, the workflow in Figure 1 is repeated four
times with four sets of hydrometeorological forcings, and
four sets of soil parameters that yield four realizations of
synthetic truth and observations. The four 27 day realizations
of the true soil moisture state were simulated using tRIBS-
VEGGIE for each of the four true hydrometeorological
forcings and four realizations of the soil parameters described
above. Soil parameters for the four true simulations were
generated using the technique described above. The four sets
of hydrometeorological forcings and parameters created
should yield corresponding true soil moisture and synthetic
observations that are statistically unbiased with respect to

each other because of the way they were generated (as an
independent ensemble). This may not be true in practice,
however, because of the small number of synthesized true
soil moisture states and observations.
[29] The OSSEs were set during a hypothetical 27 day

period in August. Dimensions of the data assimilation
experiments are given in Table 3. Four time sequences of
horizontally and vertically copolarized backscatter observa-
tions on a 3 � 3 km grid over the watershed were generated
at 72 h (3 day) intervals based on the synthetic true soil
moisture states at 0900 local time using the observing sys-
tem described in section 2.2. We assume the satellite azi-
muth angle (zS) equals 150�, consistent with an ascending
limb traverse of the site, and the off-nadir look angle dS
equals 40�. Allowing for the presence of radar pixels not
falling completely within WGEW, the spatial resampling of
synthetic observations to the 3 km square grid reveals that
WGEW is intersected by 30 pixels. Hence, the synthetic
radar backscatter observations of WGEW based on the true
states in both the horizontally and vertically copolarized
states produces 60 backscatter measurements (30 in each
copolarized state) every 72 h. Each set of observations was
perturbed with multiplicative noise to simulate the known
speckle of active observations with a variance of 0.5 dB
equal to the relative accuracy of the SMAP radar (e.g.,

Table 3. Dimensions of the Data Assimilation Experiments

Property Value

State vector dimension ns 194,470
Number of observations m 60
Number of EnKF replicates K 256
Number of analysis period NA 9
Number of OSSE experiments NE 4

Figure 3. Synthetic L band radar backscatter observations averaged temporally over the duration of the
experiment in (a) hh polarization and (b) vv polarization and (c) spatially averaged in both copolarized
states as a function of time. In Figure 3c open circles on the ordinate axis correspond to the occurrence
of rainfall events.
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Table 1) [Entekhabi et al., 2010]. There was no correlation
assumed between perturbations to hh and vv copolarized
observations The spatial distribution of backscatter obser-
vations in the hh and vv copolarized states are shown in
Figures 3a and 3b, respectively. The spatial average back-
scatter observations at each of the nine analysis times are
also shown in Figure 3c.
[30] For each of the four candidate sequences of obser-

vations, an EnKF experiment was performed to estimate soil
moisture with an ensemble size of 256 replicates. For com-
parison we performed an open loop (OL) ensemble simula-
tion (i.e., unconstrained to observations) during the study
period. The OL ensemble consisted of 1024 simulations
obtained by subjecting tRIBS-VEGGIE to uncertain hydro-
meteorological forcings and soil parameters. Forcings for
each EnKF and OL experiments were obtained as described
above using the stochastic weather generator.
[31] The OL ensemble is meant to characterize the “worst

case” hillslope-scale soil moisture estimation scenario as no
observational information is allowed to inform the state. In
both the EnKF and OL cases, we assume only knowledge of
the spatial distribution of categorical soil types as described
in section 2.4.2. For both the EnKF and OL experiments,
initial soil moisture conditions were obtained by performing
an initial 27 day ensemble spin-up of the model with sto-
chastically generated soil parameters and hydrometeorolog-
ical forcings. The true soil moisture simulations, however,
were initialized with hydrostatic conditions corresponding to
10% effective soil saturation. Although this impacts the first
couple analysis cycles, it does not appreciably affect the
overall conclusions.
[32] It is also important to note that the difference in size

between the EnKF and OL ensembles may impact inferences
from the respective simulations. At the relatively small
spatial scale of the experiments and given the described
methodology for generating hydrometeorological forcings,
however, the primary driver of variance in soil moisture is
uncertainty in soil hydraulic and thermal properties. Under
these circumstances, Flores et al. [2010] demonstrate little
change in the expected ensemble moments in ensembles
ranging in size from 16 to 1024.
[33] Conclusions of any particular OSSE are specific to

the synthetic true soil moisture used to produce the synthetic
observations. In this case the true soil moisture is the result
of a tRIBS-VEGGIE simulation subjected to particular
combination of SHTPs and hydrometeorological forcings.
The multiple-truth OSSE approach used here provides an
experimental procedure to assess the robustness of the data
assimilation system because it can be exercised with obser-
vations that correspond to noisy measurements of soil
moisture conditions that are potentially far from the open
loop ensemble mean. The robustness of the assimilation
system is revealed by assessing the error characteristics
averaged over all EnKF experiments. Because the true soil
parameters and hydrometeorological forcings are generated
with some degree of randomness, however, the results of any
single EnKF experiment are less informative than the col-
lection of experiments, considered together. To draw the
broadest inference about the performance of the data
assimilation system we constructed, the OSSEs presented

here consider an average over four potential true realizations
of the soil moisture state (i.e., a multiple-truth OSSE).

3. Results

[34] This study relies on synthetic experiments as a way
to elucidate potential reductions in prediction errors of
hillslope-scale predictions of soil moisture realized through
assimilation of anticipated SMAP products. The synthetic
nature of the experiments facilitates calculation of error
diagnostics relative to the simulated true states. Especially
useful is the comparison between error characteristics
arising from the EnKF experiments and those from the OL
experiments, in which no assimilation is performed.

3.1. Spatially Distributed Results

[35] At the watershed scale, the results of the assimilation
experiments focus on (1) the spatial distribution of errors
averaged over the nine analysis cycles and four OSSE
experiments and (2) the temporal evolution of area-weighted
average error characteristics at each analysis time. To facil-
itate deeper discussion of prediction errors in space and time,
we present the results in terms of soil moisture vertically
integrated in the near surface (i.e., top 10 cm) and soil profile
(i.e., �3000 cm). The absolute value of the bias between the
ensemble mean and synthetic true soil moisture at each
tRIBS-VEGGIE pixel, averaged over all four OSSEs and
analysis times, is computed as

BIAS ¼ 1

NA

XNA

i¼1

1

NE

XNE

j¼1

�qEns;i; j � qTrue;i; j
�� �� !

; ð23Þ

where �qEns,i,j is the EnKF or OL ensemble mean near surface
of profile-integrated soil moisture at the ith EnKF analysis
time and for the jth OSSE, qTrue,i,j is the corresponding true
near-surface or profile-integrated soil moisture, NA is the
number of analysis cycles (NA = 9, over 27 days at 3 day
intervals between observations), and NE is the number of
true simulations (NE = 4). The root mean squared error
(RMSE) averaged over all four synthetic true states and over
the nine analysis cycles is computed as

RMSE ¼ 1
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where qEns,i,j,k is the vector of near-surface or profile-
integrated soil moisture at the ith analysis time, jth EnKF or
OL experiment, and kth EnKF or OL ensemble replicate. It
should be noted that the bias and RMSE for the OL experi-
ments will vary between OSSEs even though the OL soil
moisture replicates and ensemble mean will not (because no
assimilation has been performed). This definition of RMSE
varies from that used in many other data assimilation studies,
which focus on the RMSE of each ensemble replicate
through time [e.g., Leisenring and Moradkhani, 2011;
Montzka et al., 2011]. This is largely because our applica-
tions of interest (military trafficability, landslide prediction,
etc.) are more sensitive to instantaneous errors in soil mois-
ture predictions. We temporally average instantaneous
RMSEs to obtain an expectation of the instantaneous error
over the time horizon of the experiment. Future studies
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geared toward discharge prediction and assimilation will
utilize the more traditional definition of RMSE.
[36] At each analysis cycle, the pixel area-weighted bias

can be computed as

BIAS ¼
XNp

p¼1

1

NE

XNE

j¼1

�qEns;p;j � qTrue;p; j
�� �� !

• ap

,XNp
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ap; ð25Þ

where ap is the area of each tRIBS-VEGGIE pixel and Np is
the number of pixels (Np = 19,447). Similarly, the pixel area-
weighted RMSE can be computed at each analysis as

RMSE ¼
XNp
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The average bias in near-surface soil moisture after the nine
EnKF analyses is less than 0.03 m3/m3 throughout virtually
the entire watershed, while areas of the watershed where bias

in near surface soil moisture is greater than 0.03 are limited
primarily to valley bottoms (Figure 4a). The watershed-
averaged bias in near-surface soil moisture, in fact, is less
than 0.01 m3/m3 at all nine analyses, regardless of whether
those analyses occur immediately after wetting or drying
events (Figure 4e). By contrast, the corresponding bias in the
OL estimate of near-surface soil moisture exhibits a spatial
distribution exhibiting organization at a number of different
scales (Figure 4c). The spatial arrangement of soil textural
units is the primary driver of variation in near-surface soil
moisture bias in the OL experiments, while valley bottoms
seem also to be associated with higher bias in near-surface
moisture. There is also a faint overprinting of the 4 � 4 km2

rainfall forcing grid that can be seen in the central region
of the watershed that explains some of the spatial variation
in bias in OL-derived near-surface soil moisture. The
watershed-averaged bias in OL-derived near-surface soil
moisture exhibits some sensitivity to rainfall forcings, with
rainfall events serving to decrease bias slightly (Figure 4e).
Comparing the EnKF and OL bias in near-surface moisture,
it is apparent that assimilation of the synthetic SMAP

Figure 4. Absolute bias, averaged over the nine analysis times, for (a) EnKF-derived near-surface soil mois-
ture, (b) EnKF-derived profile soil moisture, (c) OL-derived near-surface soil moisture, and (d) OL-derived
profile soil moisture. Spatially averaged bias at the nine analyses for (e) near-surface and (f ) profile moisture
with open circles on the ordinate axes depicting temporal occurrence of rainfall.
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observations leads to a significant reduction in bias across all
soil texture units and almost all topographic settings present
in the watershed.
[37] Bias in the EnKF estimate of profile-integrated soil

moisture is significantly higher than the bias in the EnKF
estimate of near-surface soil moisture, with a significant
portion of the basin exhibiting bias in profile-integrated soil
moisture between 0.03 and 0.06 m3/m3 (Figure 4b). While
the spatial arrangement of soil textures seems to explain
some of the organization in the bias, it also appears to exhibit
variability at the hillslope scale, particularly in the northeast
quadrant of the watershed. Interestingly, areas in the south
central portion of the basin that are associated with the
steepest slopes also seem to exhibit some of the lowest
bias in profile-integrated moisture. The bias in the OL
profile-integrated moisture throughout the watershed is
generally higher than the corresponding EnKF profile-inte-
grated moisture estimate (Figure 4d). Patterns in the spatial
distribution of bias in OL profile-integrated moisture are
primarily associated with the spatial arrangement of soil

units, although valley bottoms as areas of enhanced bias are
evident throughout almost the entire watershed. The spa-
tially averaged bias in OL profile-integrated moisture is
virtually constant throughout time, exhibiting virtually no
sensitivity to rainfall forcings at the surface (Figure 4d).
Importantly, the spatially averaged bias in EnKF profile-
integrated moisture is initially reduced significantly through
data assimilation, but asymptotically approaches the OL
bias in profile-integrated moisture.
[38] The spatial distribution of RMSE in EnKF near-

surface soil moisture averaged over the nine analyses shows
that most of the watershed exhibits an average RMSE of
0.03 m3/m3 or less, with much of the rest of the watershed
exhibiting an RMSE of between 0.03 and 0.06 m3/m3

(Figure 5a). In comparison, RMSE in OL near-surface
moisture is greater than 0.10 m3/m3 throughout nearly the
entire watershed (Figure 5c). Notably, in both the OL and
EnKF cases valley bottoms are areas of elevated RMSE.
Normalizing the RMSE in near-surface moisture from each
EnKF experiment by the RMSE in near-surface moisture

Figure 5. RMSE averaged over all four synthetic true experiments and temporally for the duration of the
experiment for (a) EnKF-derived near-surface moisture, (b) EnKF-derived profile moisture, (c) OL-
derived near-surface moisture, and (d) OL-derived profile moisture. Normalizing RMSE from EnKF
experiments by that of OL experiments yields the relative RMSE for (e) near-surface moisture and (f ) pro-
file moisture.
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from the corresponding OL experiment, and averaging over
all four experiments and nine analyses, provides a measure of
relative error representing the expected reduction in RMSE
attributable to assimilation. Throughout most of the water-
shed, RMSE in EnKF near-surface moisture is at most 40%
of the corresponding RMSE in OL near-surface moisture
(Figure 5e). Areas where significant RMSE reductions in
near-surface moisture are not realized by assimilating back-
scatter measurement are primarily associated with soil units
that are limited in areal extent and valley bottoms. However,
the average relative RMSE exhibits a faint overprinting of the
rainfall forcing grid in the northwest region of the watershed
in an area where the reduction in RMSE realized through data
assimilation is most dramatic. Averaged over the entire
watershed, the relative RMSE through time is fairly stable
and EnKF RMSE in the near surface is approximately 35% of
OL RMSE (Figure 6).
[39] In much of the watershed, RMSE in EnKF profile-

integrated moisture averaged over the nine analyses is
between 0.05 and 0.08 m3/m3 (Figure 5b). Spatial contrasts
in EnKF profile-integrated moisture RMSE are largely
associated with soil texture. The RMSE in OL profile-
integrated moisture exhibits similarity with RMSE in EnKF
profile-integrated moisture in both the range of variation
and spatial pattern, although valley bottoms throughout the
watershed tend to be associated with comparatively higher
RMSE (Figure 5d). Normalizing the EnKF RMSE for
profile-integrated moisture by the corresponding OL RMSE
and averaging over OSSEs and analyses, we find that at best
data assimilation leads to a 20% reduction in RMSE in pro-
file-integrated moisture (Figure 5f). Moreover, in much of
the watershed assimilating the synthetic backscatter obser-
vations produces no discernable improvement in predictions
of profile-integrated soil moisture. Again, averaged over the
entire watershed, the profile-integrated EnKF RMSE is
approximately 80% of OL RMSE over the duration of the
experiment (Figure 6).

3.2. Pixel-Scale Soil Moisture Dynamics

[40] Because the developed data assimilation system is
targeted toward applications that require soil moisture infor-
mation at intervals that may be finer than the satellite revisit,
it is important to understand soil moisture dynamics during
these intermediate times. To investigate the impacts of data
assimilation at times intermediate to analyses, we identify
two pixels in the computational domain for more detailed
monitoring during the EnKF experiments (Figure 2b).
Although these pixels correspond roughly to the location
of two intensively monitored sites within the WGEW (the
Lucky Hills site, pixel 3378; the Kendall site, pixel 4496) we
emphasize the synthetic nature of the true soil properties and
hydrometeorological forcings, which disallows any mean-
ingful comparisons with actual data. It should also be
underscored that the pixel-scale results presented here are
diagnostic only and that no additional assimilation was
performed at these sites. Important properties of each mon-
itoring pixel are summarized in Table 4.
[41] For all four EnKF experiments the ensemble mean

soil moisture as a function of depth and time varies signifi-
cantly between each EnKF experiment at both locations
(Figures 7c–7j). The ensemble mean soil moisture varies

Figure 6. The temporal evolution of spatially averaged RMSE from EnKF experiments normalized by
the corresponding RMSE from OL experiments. Open circles on the ordinate axis depict the temporal
occurrence of rainfall.

Table 4. Properties of Kendall and Lucky Hills tRIBS-VEGGIE
Observation Pixels

Property
Pixel 3378

(Lucky Hills)
Pixel 4996
(Kendall)

Soil unit code 22 (sandy loam) 17 (loam)
Elevation (m) 1378 1529
Slope ar (m/m) 0.114 0.099
Aspect zr (deg) 180�

(south facing)
315�

(NW facing)
Pixel area ap (m

2) 11,263 10,100
Pixel length scale

ffiffiffiffiffi
ap

p
(m) 106.1 100.5

Upstream contributing area (km2) 0.01 0.01
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from extremely dry and exhibiting little dynamic variation
beyond the near surface (Figure 7e) to being substantially
wetter with significant dynamic variation throughout the
entire profile (Figure 7d). It is again important to underscore
that the uncertain hydrometeorological and soil parameter
inputs to the model were the same across all EnKF experi-
ments. Hence, between-experiment contrasts in the spatio-
temporal dynamics of ensemble mean soil moisture reflect
the influence of particular sets of observations through the
successive updates.
[42] As expected, the data assimilation system leads to a

progressive reduction in the ensemble standard deviation
(visualized for simplicity as the ensemble standard deviation
for all depths and times, averaged across all four experi-
ments), sEnKF, during the duration of the experiment
(Figures 8c and 8d). The first update, which occurs 72 h after
the experiments begin, is particularly important in reducing
sEnKF (Figures 8c and 8d). Uncertainties in rainfall forcings
supplied to the model tends to increase the sEnKF between
updates, but subsequent updates are effective in reducing
sEnKF to the levels that preceded the rainfall events
(Figures 8c and 8d). Similarly, uncertainties in the

nonrainfall meteorological forcings to the model lead to an
increase in sEnKF in the top �100 mm, which grows as the
time since the reinitialization occurs increases (Figures 8c
and 8d). The areas with the lowest sEnKF are below the
evaporatively active horizons of the soil and tend to persist
throughout the experiment. Importantly, when normalizing
sEnKF by the corresponding ensemble standard deviation
from the OL experiment, sOL, it becomes apparent that the
EnKF updates are leading to successive and significant
reductions in the sEnKF relative to sOL (Figures 8e and 8f).
During and immediately after rainfall events sEnKF is on the
order of sOL(Figures 8e and 8f).
[43] Because these experiments are synthetic we again find

it useful to consider the soil moisture RMSE relative to the
synthetic true values and averaged across all experiments. At
pixel 3378 (Lucky Hills), RMSE in the top �500 mm of the
soil column decreases substantially from the beginning to the
end of the experiment (Figure 9c). Rainfall events of uncer-
tain magnitude tend to increase RMSE, but subsequent
analyses are effective at reducing these estimation errors
(Figure 9c). By the end of the experiment RMSE is typically
less than 0.04 m3/m3 in the top �500 mm of soil. Similar

Figure 7. (left) Pixel 3378 (Lucky Hills) and (right) pixel 4996 (Kendall). (a, b) True rainfall versus time.
Ensemble mean soil moisture is shown versus soil depth and time for (c, d) synthetic experiment 1, (e, f )
synthetic experiment 2, (g, h) synthetic experiment 3, and (i, j) synthetic experiment 4. In Figures 7c–7j
assimilation times are shown as black circles every 72 h at the surface.
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trends are seen at pixel 4996 (Kendall), although the reduc-
tions in RMSE are not as persistent between updates when
compared with pixel 3378 (Figure 9d). Normalizing RMSE
for the EnKF experiments with RMSE for the OL experi-
ment, data assimilation leads to a substantial reduction in
RMSE relative to the OL approach in the top �500–750 mm
of the soil column by the end of the experiment (Figures 9e
and 9f). However, at depths greater than 500–750 mm there
is not a corresponding reduction in 〈RMSE〉 relative to the
open loop approach (Figures 9e and 9f).
[44] The discrepancies between Figures 8c and 8d

(ensemble standard deviation) and Figures 9c and 9d
(ensemble RMSE) imply that there exists bias in the estimate
of soil moisture, both at the pixel scale and, presumably, more
broadly in the watershed throughout the experiment. The
spatiotemporal dynamics of bias at the pixel scale are not
shown for brevity, but absolute bias (computed as the absolute

value of the difference between the ensemble mean soil
moisture and synthetic true soil moisture) follows the RMSE
normalized by the RMSE for the OL experiment (i.e.,
Figures 9e and 9f ). That is, where the RMSE from the EnKF
experiments is on the order of the RMSE from the OL
experiments, the bias is correspondingly higher. Conversely,
the absolute bias tends to be lower where EnKF experiment
RMSE is substantially reduced relative to OL experiment
RMSE, between the surface and approximately 750 mm.
Potential reasons for this behavior are discussed below.

4. Discussion and Conclusions

[45] This narrowly focused proof-of-concept study is
meant to develop an algorithmic framework by which
coarse-scale observations—in this case 3 km synthetic
L band radar data—can be used to inform a hydrologic
model capable of resolving hillslope scales through data

Figure 8. (left) Pixel 3378 (Lucky Hills) and (right) pixel 4996 (Kendall). (a, b) True rainfall versus
time. (c, d) Ensemble standard deviation in soil moisture, averaged across all four synthetic experiments,
versus soil depth and time and (e, f) ensemble standard deviation in soil moisture, averaged across all four
synthetic experiments and normalized by the ensemble standard deviation in soil moisture for the open
loop simulation. In Figures 8c–8f assimilation times are shown as black circles every 72 h at the surface.
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assimilation. The novelty of the outlined study is threefold:
(1) backscatter observations are assimilated directly,
(2) downscaling of coarse backscatter observations from 3
km to hillslope-scale soil moisture estimates is achieved via
the filter rather than as a preprocessing step, and (3) the filter
allows information to propagate from the near surface to all
layers of the soil.
[46] Despite the relatively ideal conditions of the experi-

mental setup, there is little improvement in the estimate of
total moisture storage in the entire soil profile. Inspection of
the pixel-scale moisture dynamics reveals that, relative to the
open loop ensemble, significant improvement in estimation
of soil moisture from the surface through soil depths of
approximately 500–750 mm is seen, followed by a signifi-
cant decay in predictive skill at greater depth (e.g.,
Figures 9e and 9f ). We presume the results at these pixels to
be broadly indicative of behavior throughout the rest of the
watershed and arise for a number of important and

interrelated reasons. The total thickness of the simulated soil
column (�3 m) may, in part, explain the lack of improve-
ment in profile-integrated soil moisture relative to improve-
ment in near-surface moisture, particularly if the ensemble
spread is larger in deeper layers. The assumed depth is likely
unreasonably thick for WGEW and many other desert set-
tings, and a more realistic depth (and distribution) of soil
thicknesses will be used in future experiments. The signifi-
cant improvement seen at depths up to 500–750 mm sug-
gests that perhaps profile-integrated moisture estimation
with L band backscatter is a reasonable objective in thinly
soil-mantled landscapes. The lack of improvement in esti-
mation of profile-integrated soil moisture under the idealized
experimental setup, however, may also arise from the role of
process dynamics in vertical moisture redistribution. Soil
moisture in this arid hydroclimatic setting varies most
dynamically in the near surface, which is correspondingly
the region to which radar backscatter is most sensitive. The

Figure 9. (left) Pixel 3378 (Lucky Hills) and (right) pixel 4996 (Kendall). (a, b) True rainfall versus
time. (c, d) Ensemble RMSE in soil moisture, averaged across all four synthetic experiments, versus soil
depth and time. (e, f ) Ensemble RMSE in soil moisture, averaged across all four synthetic experiments
and normalized by the ensemble RMSE in soil moisture for the open loop simulation. In Figures 9b–9f
assimilation times are shown as black circles every 72 h at the surface.
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dynamic decoupling between soil moisture in the near sur-
face and in deeper layers may induce relatively small and
perhaps spurious correlations between soil moisture at depth
and the predicted observations. Analysis increments com-
puted in the EnKF update may not appreciably, therefore,
improve soil moisture profile predictions at depth. It may
also be that the short experiment length was not sufficient to
capture events that are sufficiently extreme to establish
hydrologic connectivity throughout the entire soil column or
to allow the development of spatial patterns and correlations
in soil moisture at substantial depths in the soil column.
Future experiments will test this hypothesis and, if con-
firmed, it may underscore the importance of continuity in
data assimilation systems and in the observations themselves.
In heavily managed or grazed lands, moreover, vertical
decoupling of soil moisture may arise from heterogeneity in
soil properties. In such settings it is unlikely that even long
experiments will allow for dramatic improvements in esti-
mation of profile-integrated moisture without additional
observational constraint.
[47] Despite the lack of improvement in the prediction of

profile-integrated soil moisture, the inspection of the pixel-
scale dynamics indicates some improvement in predictabil-
ity of soil moisture at depths greater than the penetration
depth of the radar. Future study will be devoted to under-
standing the factors (e.g., vegetation, soils, hydrometeorol-
ogy) that control the depth of soil where predictability can be
significantly improved through assimilation of radar (or
radiometer) measurements with relatively shallow penetra-
tion depths. This would necessitate defining what constitutes
a significant improvement, which may depend on the
application of interest. Such a study would probably benefit
from a more realistic treatment of the soils, vegetation, and
hydrometeorological conditions in the study area, for
example, using measured quantities to parameterize the
hydrologic model. Moreover, actual radar observations from
instruments like the Passive and Active L- and S-band
(PALS) instrument used in a targeted field campaign or
reanalysis of existing field campaign data (e.g., the North
American Monsoon Experiment [Higgins and Gochis,
2007]) would benefit any such study.
[48] There are attributes of the OSSEs presented here that

potentially complicate interpretation of the results presented
here and should be addressed in future studies. Specifically,
the way in which the true soil moisture and synthetic
observations are produced in this study could be causing
biased observations to be assimilated, a fundamental viola-
tion of the Kalman Filter assumptions. And because there
was only one large OL simulation, there may be consider-
able bias between the soil moisture statistics of the EnKF
and OL ensembles. A more robust approach and only a
slight modification of our experimental setup would produce
the soil parameter and hydrometeorological forcings using
the same methods, but use the ensemble mean soil moisture
from an OL simulation as the synthetic true from which
synthetic observations would be produced. A more robust
methodology for the multiple-truth OSSE would then extend
this same procedure multiple times for different soil param-
eter and hydrometeorological ensembles. A subsequent or
alternative experimental step would use a bias estimation
(e.g., de Lannoy et al. [2006, 2007]) or CDF-matching

approach to remove bias in the observations prior to the
Kalman update.
[49] In this study the soil parameters are not simulta-

neously updated with the model state. As a result the
developed data assimilation system is inherently suboptimal
and RMSE and bias in soil moisture predictions at soil
depths greater than 500–750 mm remain high. There are
several avenues through which this may be addressed in
future studies. State augmentation is a historically popular
way to jointly estimate the states and parameters of hydro-
logic models with data assimilation strategies [e.g., Bras and
Restrepo-Posada, 1980]. Vrugt et al. [2005] incorporated
the strengths of both global optimization techniques and data
assimilation into a single framework to simultaneously
estimate the states and parameters of a lumped hydrological
model. Moradkhani et al. [2005b] employed an EnKF to
first update the parameters of the HyMOD model, propa-
gated the model state using the updated parameters, and
updated the model state using another EnKF. Also using the
HyMOD model, Moradkhani et al. [2005a] used a particle
filtering approach to retrieve both states and parameters of
the HyMOD conceptual model and point out some important
limitations to Kalman update-based data assimilation pro-
cedures. More recently, Montzka et al. [2011] demonstrated
the utility of a particle filtering approach to estimate
hydraulic parameters of the HYDRUS 1-D model using
synthetic microwave soil moisture retrievals.
[50] Unique to this study are the implications of the data

assimilation process for estimation of soil moisture with
hydrologic models capable of resolving hillslopes and coarse
L band backscatter observations. This particular set of
experiments in this hydroclimatic setting seems to suggest
that assimilation of SMAP data is most useful in combating
uncertainties in the hydrometeorological forcings and soil
parameters input to the model in the near-surface environ-
ment. It is plausible that assimilation of L band radar data
could improve predictions of near-surface moisture in
steeper regions where the spatial distribution of near-surface
moisture is characterized by hillslope-scale variation to a
greater degree than observed in this study. However, topo-
graphic effects on radar aperture synthesis and satellite
geolocation errors may necessitate substantial preprocessing
and orthorectification of the raw radar data prior to assimi-
lation [Shimada, 2010]. We are preparing to apply the data
assimilation system in the Reynolds Creek Experimental
Watershed and Dry Creek Experimental Watershed in
southwest Idaho to investigate this further.
[51] The OSSE approach necessitated simplifying

assumptions to reduce the complexity of the problem. One
particularly important assumption is that the surface rough-
ness (equation (1)) and the length scale of the roughness
correlation function (equations (8)) are known. Character-
istics of surface roughness are well constrained in relatively
few locations because, in part, labor intensive technologies
like laser scanners or pin meters (see Bryant et al. [2007] for
a discussion of surface roughness measurement) are required
to measure them directly. Although some recent work sug-
gests that surface roughness can be retrieved from satellite or
airborne microwave imagery, these estimates are uncertain
and associated with spatial scales larger than hillslopes [Shi
et al., 1997; Rahman et al., 2007, 2008]. For the
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foreseeable future, therefore, it will be necessary to obtain
surface roughness characteristics through calibration or by
extrapolating statistical relationships between measured
roughness and spatially extensive landscape properties such
as soil texture. Future work will also investigate the poten-
tially important effects of scattering due to water stored in
the canopy through the use of forward models that explicitly
account for vegetation water content [Bindlish and Barros,
2001].

[52] Acknowledgments. This work was supported by U.S. Army
RDECOM ARL Army Research Office under grants W911NF-04-1-0119,
W911NF-09-1-0534, and W911NF-11-1-0310, NASA grants NNG05GA17G,
NNX10AG84G, and NNX11AQ33G, and the MIT Martin Family Society
of Fellows for Sustainability. The first author would like to thank Shawn
Benner and Jim McNamara at Boise State University for their comments
on the introduction and the associate editor and three anonymous reviewers
for their helpful comments.

References
Altese, E., O. Bolognani, M. Mancini, and P. A. Troch (1996), Retrieving

soil moisture over bare soil from ERS 1 synthetic aperture radar data: Sen-
sitivity analysis based on a theoretical surface scattering model and field
data, Water Resour. Res., 32(3), 653–661, doi:10.1029/95WR03638.

Bindlish, R., and A. P. Barros (2001), Parameterization of vegetation back-
scatter in radar-based, soil moisture estimation, Remote Sens. Environ.,
76(1), 130–137, doi:10.1016/S0034-4257(00)00200-5.

Bovolo, C. I., S. J. Abele, J. C. Bathurst, D. Caballero, M. Ciglan,
G. Eftichidis, and B. Simo (2009), A distributed framework for multi-
risk assessment of natural hazards used to model the effects of forest fire
on hydrology and sediment yield, Comput. Geosci., 35, 924–945,
doi:10.1016/j.cageo.2007.10.010.

Bras, R. L., and P. Restrepo-Posada (1980), Real time automatic parameter
calibration in conceptual runoff forecasting models, in Proceedings of the
Third International Symposium on Stochastic Hydraulics, pp. 61–70,
Organizing Comm. of the Third Int. Symp. on Stochastic Hydraulics,
Tokyo, Japan.

Brunet, P., R. Clément, and C. Bouvier (2010), Monitoring soil water
content and deficit using electrical resistivity tomography (ERT)—A case
study in the Cevennes area, France, J. Hydrol., 380(1–2), 146–153,
doi:10.1016/j.jhydrol.2009.10.032.

Bryant, R., et al. (2007), Measuring surface roughness height to parameterize
radar backscatter models for retrieval of surface soil moisture, IEEEGeosci.
Remote Sens. Lett., 4(1), 137–141, doi:10.1109/LGRS.2006.887146.

Camporese, M., C. Paniconi, M. Putti, and S. Orlandini (2010), Surface-
subsurface flow modeling with path-based runoff routing, boundary con-
dition-based coupling, and assimilation of multisource observation data,
Water Resour. Res., 46, W02512, doi:10.1029/2008WR007536.

Chen, F., et al. (1996), Modeling of land-surface evaporation by four
schemes and comparison with FIFE observations, J. Geophys. Res.,
101(D3), 7251–7268, doi:10.1029/95JD02165.

Chen, K. S., S. K. Yen, and W. P. Huang (1995), A simple model for
retrieving bare soil moisture from radar-scattering coefficients, Remote
Sens. Environ., 54, 121–126, doi:10.1016/0034-4257(95)00129-O.

Crow, W. T., and D. Ryu (2009), A new data assimilation approach for
improving runoff prediction using remotely sensed soil moisture retrie-
vals, Hydrol. Earth Syst. Sci., 13(1), 1–16, doi:10.5194/hess-13-1-2009.

Crow, W. T., and E. F. Wood (2003), The assimilation of remotely sensed
soil brightness temperature imagery into a land surface model using
ensemble Kalman filtering: A case study based on ESTAR measurements
during SGP97, Adv. Water Resour., 26(2), 137–149, doi:10.1016/S0309-
1708(02)00088-X.

Crow, W. T., M. Drusch, and E. F. Wood (2001), An observation system
simulation experiment for the impact of land surface heterogeneity on
AMSR-E soil moisture retrieval, IEEE Trans. Geosci. Remote Sens.,
39(8), 1622–1631, doi:10.1109/36.942540.

De Lannoy, G. J. M., P. R. Houser, V. R. N. Pauwels, and N. E. C. Verhoest
(2006), State and bias estimation for soil moisture profiles by an ensem-
ble Kalman filter: effect of assimilation depth and frequency, Water
Resour. Res., 43, W06401, doi:10.1029/2006WR005100.

De Lannoy, G. J. M., R. H. Reichle, P. R. Houser, V. R. N. Pauwels, and
N. E. C. Verhoest (2007), Correcting for forecast bias in soil moisture
assimilation with the ensemble Kalman filter, Water Resour. Res., 43,
W09410, doi:10.1029/2006WR005449.

Dobson, M. C., and F. T. Ulaby (1986), Preliminary evaluation of the SIR-B
response to soil moisture, surface roughness, and crop canopy, IEEE
Trans. Geosci. Remote Sens., 24(4), 510–516.

Dubois, P. C., J. van Zyl, and T. Engman (1995), Measuring soil moisture
with imaging radars, IEEE Trans. Geosci. Remote Sens., 33(4), 915–926,
doi:10.1109/36.406677.

Dunne, S., and D. Entekhabi (2005), An ensemble-based reanalysis
approach to land data assimilation, Water Resour. Res., 41, W02013,
doi:10.1029/2004WR003449.

Dunne, S., and D. Entekhabi (2006), Land surface state and flux estimation
using the ensemble Kalman smoother during the Southern Great Plains
1997 field experiment, Water Resour. Res., 42, W01407, doi:10.1029/
2005WR004334.

Engman, E. T. (1991), Applications of microwave remote sensing of soil
moisture for water resources and agriculture, Remote Sens. Environ.,
35, 213–226, doi:10.1016/0034-4257(91)90013-V.

Entekhabi, D., et al. (2010), The Soil Moisture Active Passive (SMAP) Mis-
sion, Proc. IEEE, 98(5), 704–716, doi:10.1109/JPROC.2010.2043918.

Eom, H. J., and W.-M. Boener (1986), Scattering from a layered medium
connected with rough interfaces: Matrix doubling method, IEEE Trans.
Geosci. Remote Sens., 24(6), 937–939, doi:10.1109/TGRS.1986.289709.

Evans, D. L., T. G. Farr, and J. J. van Zyl (1992), Estimates of surface
roughness derived from synthetic aperture radar (SAR) data, IEEE Trans.
Geosci. Remote Sens., 30(2), 382–389, doi:10.1109/36.134087.

Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte Carlo methods to forecast error statistics,
J. Geophys. Res., 99(C5), 10,143–10,162, doi:10.1029/94JC00572.

Evensen, G. (2003), The ensemble Kalman filter: Theoretical formulation
and practical implementation, Ocean Dyn., 53, 343–367, doi:10.1007/
s10236-003-0036-9.

Evensen, G. (2004), Sampling strategies and square root analysis schemes
for the EnKF, Ocean Dyn., 54, 539–560, doi:10.1007/s10236-004-
0099-2.

Ferraris, L., S. Gabellani, N. Rebora, and A. Provenzale (2003), A compar-
ison of stochastic models for spatial rainfall downscaling, Water Resour.
Res., 39(12), 1368, doi:10.1029/2003WR002504.

Flores, A. N., V. Y. Ivanov, D. Entekhabi, and R. L. Bras (2009), Impacts
of hillslope-scale organization in topography, soil moisture, soil temper-
ature, and vegetation on modeling surface microwave radiation emission,
IEEE Trans. Geosci. Remote Sens., 47(8), 2557–2571, doi:10.1109/
TGRS.2009.2014743.

Flores, A. N., D. Entekhabi, and R. L. Bras (2010), Reproducibility of soil
moisture ensembles when representing soil parameter uncertainty and
correlation using a Latin hypercube–based approach, Water Resour.
Res., 46, W04506, doi:10.1029/2009WR008155.

Fung, A. K. (1994), Microwave Scattering and Emission Models and Their
Applications, Artech House, Boston, Mass.

Fung, A. K., Z. Li, and K. S. Chen (1992), Backscattering from a ran-
domly rough dielectric surface, IEEE Trans. Geosci. Remote Sens.,
30(2), 356–369, doi:10.1109/36.134085.

Gessler, P. E., O. A. Chamran, F. Althouse, and L. Holmes (2000), Modeling
soil-landscape and ecosystem properties using terrain attributes, Soil Sci.
Soc. Am. J., 64(6), 2046–2056, doi:10.2136/sssaj2000.6462046x.

Grayson, R. B., A. W. Western, F. H. S. Chiew, and G. Bloschl (1997), Pre-
ferred states in spatial soil moisture patterns: Local and nonlocal controls,
Water Resour. Res., 33(12), 2897–2908, doi:10.1029/97WR02174.

Hawk, K. (1992), Climatology of station storm rainfall in the continental
United States: Parameters of the Bartlett-Lewis and Poisson rectangular
pulses models, MS thesis, Mass. Inst. of Technol., Cambridge.

Higgins, W., and D. Gochis (2007), Synthesis of results from the North
American Monsoon Experiment (NAME) process study, J. Clim., 20(9),
1601–1607, doi:10.1175/JCLI4081.1.

Hoeben, R., and P. A. Troch (2000), Assimilation of active microwave
observation data for soil moisture profile estimation, Water Resour.
Res., 36, 2805–2819, doi:10.1029/2000WR900100.

Islam, S., D. Entekhabi, R. L. Bras, and I. Rodriguez-Iturbe (1990), Parameter
estimation and sensitivity analysis for the modified Bartlett-Lewis rectangu-
lar pulses model of rainfall, J. Geophys. Res., 95(D3), 2093–2100,
doi:10.1029/JD095iD03p02093.

Ivanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi (2004a), Preserv-
ing high-resolution surface and rainfall data in operational-scale basin
hydrology: A fully distributed physically based approach, J. Hydrol.,
298(1–4), 80–111, doi:10.1016/j.jhydrol.2004.03.041.

Ivanov, V. Y., E. R. Vivoni, R. L. Bras, and D. Entekhabi (2004b), Catchment
hydrologic response with a fully distributed triangulated irregular network
model, Water Resour. Res., 40, W11102, doi:10.1029/2004WR003218.

FLORES ET AL.: DATA ASSIMILATION FOR HILLSLOPE-SCALE SOIL MOISTURE W08509W08509

17 of 19



Ivanov, V. Y., R. L. Bras, and D. C. Curtis (2007), A weather generator for
hydrological, ecological, and agricultural applications, Water Resour.
Res., 43, W10406, doi:10.1029/2006WR005364.

Ivanov, V. Y., R. L. Bras, and E. R. Vivoni (2008a), Vegetation-hydrology
dynamics in complex terrain of semi-arid areas: 1. A mechanistic
approach to modeling dynamic feedbacks, Water Resour. Res., 44,
W03429, doi:10.1029/2006WR005588.

Ivanov, V. Y., R. L. Bras, and E. R. Vivoni (2008b), Vegetation-hydrology
dynamics in complex terrain of semi-arid areas: 2. Energy-water controls
of vegetation spatiotemporal dynamics and topographic niches of favor-
ability, Water Resour. Res., 44, W03430, doi:10.1029/2006WR005595.

Jencso, K. G., B. L. McGlynn, M. N. Gooseff, S. M.Wondzell, K. E. Bencala,
and L. A. Marshall (2009), Hydrologic connectivity between landscapes
and streams: Transferring reach- and plot-scale understanding to the
catchment scale, Water Resour. Res., 45, W04428, doi:10.1029/
2008WR007225.

Kashif Gill, M., M. W. Kemblowski, and M. McKee (2007), Soil moisture
data assimilation using support vector machines and ensemble Kalman fil-
ter, J. Am. Water Resour. Assoc., 43(4), 1004–1015, doi:10.1111/j.1752-
1688.2007.00082.x.

Kerr, Y. H., P. Waldteufel, J.-P. Wigneron, J.-M. Martinuzzi, J. Font, and
M. Berger (2001), Soil moisture retrieval from space: The Soil Moisture
and Ocean Salinity (SMOS) mission, IEEE Trans. Geosci. Remote Sens.,
39(8), 1729–1735, doi:10.1109/36.942551.

Kerr, Y., F. Secherre, J. Lastenet, and J.-P. Wigneron (2003), SMOS: Analysis
of perturbing effects over land surfaces, in IGARSS ’03: Proceedings of the
2003 IEEE International Geoscience and Remote Sensing Symposium, vol.
2, pp. 908–910, IEEE Press, Piscataway, N. J.

Kim, S. (2009), Characterization of soil moisture responses on a hillslope to
sequential rainfall events during late autumn and spring, Water Resour.
Res., 45, W09425, doi:10.1029/2008WR007239.

Kollet, S. J., R. M. Maxwell, C. S. Woodward, S. Smith, J. Vanderborght,
H. Vereecken, and C. Simmer (2010), Proof of concept of regional scale
hydrologic simulations at hydrologic resolution utilizing massively paral-
lel computer resources, Water Resour. Res., 46, W04201, doi:10.1029/
2009WR008730.

Koster, R. D., and M. J. Suarez (1996), Energy and water balance calculations
in the MOSAIC LSM, NASA Tech. Memo., TM-104606, 9, 76 pp.

Kumar, M., C. J. Duffy, K. M. Salvage, and M. Karen (2009), A second-
order accurate, finite volume-based, integrated hydrologic modeling
(FIHM) framework for simulation of surface and subsurface flow, Vadose
Zone J., 8, 873–890, doi:10.2136/vzj2009.0014.

Larson, K. M., J. J. Braun, E. E. Small, V. U. Zavorotny, E. D. Gutmann, and
A. L. Bilich (2010), GPS multipath and its relation to near-surface soil
moisture content, IEEE J. Sel. Top. Appl. Remote Sens., 3(1), 91–99,
doi:10.1109/JSTARS.2009.2033612.

Leisenring, M., and H. Moradkhani (2011), Snow water equivalent predic-
tion using Bayesian data assimilation methods, Stochastic Environ. Res.
Risk Assess., 25, 253–270.

Liang, X., D. P. Lettenmaier, E. F. Wood, and S. J. Burges (1994), A simple
hydrologically based model of land surface water and energy fluxes for
GCMs, J. Geophys. Res., 99(D7), 14,415–14,428, doi:10.1029/94JD00483.

Livings, D. M., S. L. Dance, and N. K. Nichols (2008), Unbiased ensemble
square root filters, Physica D, 237(8), 1021–1028, doi:10.1016/
j.physd.2008.01.005.

Margulis, S. A., D. McLaughlin, D. Entekhabi, and S. Dunne (2002), Land
data assimilation and estimation of soil moisture using measurements
from the Southern Great Plains 1997 Field Experiment, Water Resour.
Res., 38(12), 1299, doi:10.1029/2001WR001114.

Margulis, S. A., D. Entekhabi, and D. McLaughlin (2006), Spatiotemporal
disaggregation of remotely sensed precipitation for ensemble hydrologic
modeling and data assimilation, J. Hydrometeorol., 7(3), 511–533,
doi:10.1175/JHM492.1.

Mätzler, C., and A. Standley (2000), Technical note: Relief effects for pas-
sive microwave remote sensing, Int. J. Remote Sens., 21(12), 2403–2412,
doi:10.1080/01431160050030538.

Maxwell, R. M., and N. L. Miller (2005), Development of a coupled land
surface and groundwater model, J. Hydrometeorol., 6(3), 233–247,
doi:10.1175/JHM422.1.

Merlin, O., A. Chehbouni, G. Boulet, and Y. Kerr (2006), Assimilation of
disaggregated microwave soil moisture into a hydrologic model using
coarse-scale meteorological data, J. Hydrometeorol., 7(6), 1308–1322,
doi:10.1175/JHM552.1.

Mialon, A., L. Coret, Y. H. Kerr, F. Secherre, and J.-P. Wigneron (2008),
Flagging the topographic impact on the SMOS signal, IEEE Trans.
Geosci. Remote Sens., 46(3), 689–694, doi:10.1109/TGRS.2007.914788.

Montzka, C., H. Moradkhani, L. Weihermuller, H. J. H. Franssen,
M. Canty, and H. Vereecken (2011), Hydraulic parameter estimation
by remotely-sensed top soil moisture observations with the particle filter,
J. Hydrol., 399(1–2), 410–421, doi:10.1016/j.jhydrol.2011.01.020.

Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser (2005a),
Dual state-parameter estimation of hydrological models using ensemble
Kalman filter, Adv. Water Resour., 28(2), 135–147, doi:10.1016/
j.advwatres.2004.09.002.

Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian (2005b), Uncertainty
assessment of hydrologic model states and parameters: Sequential data
assimilation using the particle filter, Water Resour. Res., 41, W05012,
doi:10.1029/2004WR003604.

Moran, M. S., et al. (2008), Preface to the special section on Fifty Years of
Research and Data Collection: U.S. Department of Agriculture Walnut
Gulch Experimental Watershed, Water Resour. Res., 44, W05S01,
doi:10.1029/2007WR006083.

Njoku, E., and D. Entekhabi (1996), Passive microwave remote sensing of
soil moisture, J. Hydrol., 184, 101–129, doi:10.1016/0022-1694(95)
02970-2.

Njoku, E. G., and J.-A. Kong (1977), Theory for passive microwave
remote sensing of near-surface soil moisture, J. Geophys. Res., 82(20),
3108–3118, doi:10.1029/JB082i020p03108.

Njoku, E. G., W. J. Wilson, S. H. Yueh, S. J. DiNardo, F. K. Li, T. J. Jackson,
V. Lakshmi, and J. Bolten (2002), Observations of soil moisture using a pas-
sive and active low-frequency microwave airborne sensor during SGP99,
IEEE Trans. Geosci. Remote Sens., 40(12), 2659–2673, doi:10.1109/
TGRS.2002.807008.

Oleson, K., et al. (2004), Technical description of the Community Land
Model (CLM), Tech. Note NCAR/TN-461+STR, Natl. Cent. for Atmos.
Res., Boulder, Colo.

Paloscia, S., G. Macelloni, and E. Santi (2006), Soil moisture estimates
from AMSR-E brightness temperatures by using a dual-frequency algo-
rithm, IEEE Trans. Geosci. Remote Sens., 44(11), 3135–3144,
doi:10.1109/TGRS.2006.881714.

Pan, M., and E. F. Wood (2010), Impact of accuracy, spatial availability,
and revisit time of satellite-derived surface soil moisture in a multiscale
ensemble data assimilation system, IEEE J. Sel. Top. Appl. Remote Sens.,
3(1), 49–56, doi:10.1109/JSTARS.2010.2040585.

Parada, L. M., and X. Liang (2008), Impacts of spatial resolutions and data
quality on soil moisture data assimilation, J. Geophys. Res., 113(D10),
D10101, doi:10.1029/2007JD009037.

Pellarin, T., J.-P. Wigneron, J.-C. Calvet, and P. Waldteufel (2003), Global
soil moisture retrieval from a synthetic L-band brightness-temperature
data set, J. Geophys. Res., 108(D12), 4364, doi:10.1029/2002JD003086.

Peters-Lidard, C. D., M. S. Zion, and E. F. Wood (1997), A soil-vegetation-
atmosphere transfer scheme for modeling spatially variable water and
energy balance processes, J. Geophys. Res., 102, 4303–4324,
doi:10.1029/96JD02948.

Qu, Y., and C. J. Duffy (2007), A semidiscrete finite volume formulation for
multiprocess watershed simulation, Water Resour. Res., 43, W08419,
doi:10.1029/2006WR005752.

Rahman, M. M., et al. (2007), A derivation of roughness correlation length
for parameterizing radar backscatter models, Int. J. Remote Sens., 28(18),
3995–4012, doi:10.1080/01431160601075533.

Rahman, M. M., et al. (2008), Mapping surface roughness and soil moisture
using multi-angle radar imagery without ancillary data, Remote Sens.
Environ., 112(2), 391–402, doi:10.1016/j.rse.2006.10.026.

Reichle, R. H., D. Entekhabi, and D. B. McLaughlin (2001), Downscaling
of radiobrightness measurements for soil moisture estimation: A four-
dimensional variational data assimilation approach, Water Resour. Res.,
37, 2353–2364, doi:10.1029/2001WR000475.

Reichle, R. H., D. B. McLaughlin, and D. Entekhabi (2002), Hydrologic
data assimilation with the ensemble Kalman filter, Mon. Weather Rev.,
130, 103–114, doi:10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.
CO;2.

Reichle, R. H., W. T. Crow, and C. L. Keppenne (2008), An adaptive
ensemble Kalman filter for soil moisture data assimilation,Water Resour.
Res., 44, W03423, doi:10.1029/2007WR006357.

Sakov, P., and P. R. Oke (2008), Implications of the form of the ensemble
transformation in the ensemble square root filters,Monthly Weather Rev.,
136(3), 1042–1053.

Sandells, M. J., I. J. Davenport, and R. J. Gurney (2008), Passive L-band
microwave soil moisture retrieval error arising from topography in other-
wise uniform scenes, Adv. Water Resour., 31, 1433–1443, doi:10.1016/
j.advwatres.2008.01.012.

FLORES ET AL.: DATA ASSIMILATION FOR HILLSLOPE-SCALE SOIL MOISTURE W08509W08509

18 of 19



Schaap, M. G., and F. J. Leij (1998), Database related accuracy and uncer-
tainty of pedotransfer functions, Soil Sci., 163, 765–779, doi:10.1097/
00010694-199810000-00001.

Selker, J. S., L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de
Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange (2006),
Distributed fiber-optic temperature sensing for hydrologic systems,
Water Resour. Res., 42, W12202, doi:10.1029/2006WR005326.

Seyfried, M. S., and B. P. Wilcox (1995), Scale and the nature of spatial
variability: Field examples having implications for hydrologic modeling,
Water Resour. Res., 31(1), 173–184, doi:10.1029/94WR02025.

Shi, J., J. Wang, A. Y. Hsu, P. E. O’Neill, and E. T. Engman (1997), Estima-
tion of bare surface soil moisture and surface roughness parameter using
L-band SAR image data, IEEE Trans. Geosci. Remote Sens., 35(5),
1254–1266, doi:10.1109/36.628792.

Shimada, M. (2010), Ortho-rectification and slope correction of SAR data
using DEM and its accuracy evaluation, IEEE J. Sel. Top. Appl. Remote
Sens., 3(4), 657–671, doi:10.1109/JSTARS.2010.2072984.

Tabatabaeenejad, A., and M. Moghaddam (2006), Bistatic scattering from
three-dimensional layered rough surfaces, IEEE Trans. Geosci. Remote
Sens., 44(8), 2102–2114, doi:10.1109/TGRS.2006.872140.

Topp, G. C., J. L. Davis, and A. P. Annan (1980), Electromagnetic determi-
nation of soil water content: Measurements in coaxial transmission lines,
Water Resour. Res., 16, 574–582, doi:10.1029/WR016i003p00574.

Tyler, S. W., J. S. Selker, M. B. Hausner, C. E. Hatch, T. Torgersen, C. E.
Thodal, and S. G. Schladow (2009), Environmental temperature sensing
using Raman spectra DTS fiber-optic methods, Water Resour. Res., 45,
W00D23, doi:10.1029/2008WR007052.

Ulaby, F. T., R. K. Moore, and A. K. Fung (1986), Microwave Remote
Sensing, vols. 1–3, 2162 pp., Artech House, Norwood, Mass.

van Loon, E. E., and P. A. Troch (2002), Tikhonov regularization as a tool
for assimilating soil moisture data in distributed hydrological models,
Hydrol. Processes, 16(2), 531–556, doi:10.1002/hyp.352.

Vivoni, E. R., V. Y. Ivanov, R. L. Bras, and D. Entekhabi (2004), Genera-
tion of triangulated irregular networks based on hydrological similarity,
J. Hydrol. Eng., 27, 959–973.

Vrugt, J. A., C. H. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten
(2005), Improved treatment of uncertainty in hydrologic modeling: Com-
bining the strengths of global optimization and data assimilation, Water
Resour. Res., 41, W01017, doi:10.1029/2004WR003059.

Wang, J. R., E. T. Engman, J. C. Shiue, M. Rusek, and C. Steinmeier
(1986), The SIR-B observations of microwave dependence on soil mois-
ture, surface roughness, and vegetation covers, IEEE Trans. Geosci.
Remote Sens., 24(4), 510–516, doi:10.1109/TGRS.1986.289665.

Wang, X., C. H. Bishop, and S. J. Julier (2004), Which is better, an ensem-
ble of positive-negative pairs or a centered spherical simplex ensemble?,
Mon. Weather Rev., 132, 1590–1605, doi:10.1175/1520-0493(2004)
132<1590:WIBAEO>2.0.CO;2.

Wigneron, J.-P., P. Waldteufel, A. Chanzy, J.-C. Calvet, and Y. Kerr (2000),
Two-dimensional microwave interferometer retrieval capabilities over
land surfaces (SMOS mission), Remote Sens. Environ., 73(3), 270–282,
doi:10.1016/S0034-4257(00)00103-6.

Williams, C. J., J. P. McNamara, and D. G. Chandler (2008), Controls on
the temporal and spatial variability of soil moisture in a mountainous
landscape: The signatures of snow and complex terrain, Hydrol. Earth
Syst. Sci. Discuss., 5, 1927–1966, doi:10.5194/hessd-5-1927-2008.

Zreda, M., D. Desilets, T. P. A. Ferré, and R. L. Scott (2008), Measuring
soil moisture content non-invasively at intermediate spatial scale using
cosmic-ray neutrons, Geophys. Res. Lett., 35, L21402, doi:10.1029/
2008GL035655.

FLORES ET AL.: DATA ASSIMILATION FOR HILLSLOPE-SCALE SOIL MOISTURE W08509W08509

19 of 19



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


