
Lecture 4


Dense Linear Algebra


4.1 Dense Matrices 

We next look at dense linear systems of the form Ax = b. Here A is a given n × n matrix and 
b is a given n-vector; we need to solve for the unknown n-vector x. We shall assume that A is a 
nonsingular matrix, so that for every b there is a unique solution x = A−1b. Before solving dense 
linear algebra problems, we should define the terms sparse, dense, and structured. 

Definition. (Wilkinson) A sparse matrix is a matrix with enough zeros that it is worth taking 
advantage of them. 

Definition. A structured matrix has enough structure that it is worthwhile to use it. 
For example, a Toeplitz Matrix is defined by 2n parameters. All entries on a diagonal are the 
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Definition. A dense matrix is neither sparse nor structured. 
These definitions are useful because they will help us identify whether or not there is any 

inherent parallelism in the problem itself. It is clear that a sparse matrix does indeed have an 
inherent structure to it that may conceivably result in performance gains due to parallelism. We will 
discuss ways to exploit this in the next chapter. The Toeplitz matrix also has some structure that 
may be exploited to realize some performance gains. When we formally identify these structures, 
a central question we seem to be asking is if it is it worth taking advantage of this? The answer, 
as in all of parallel computing, is: “it depends”. 

If n = 50, hardly. The standard O(n3) algorithm for ordinary matrices can solve T x = b, 
ignoring its structure, in under one one-hundredth of one second on a workstation. On the other 
hand, for large n, it pays to use one of the “fast” algorithms that run in time O(n2) or even 
O(n log2 n). What do we mean by “fast” in this case? 

It certainly seems intuitive that the more we know about how the matrix entries are populated 
the better we should be able to design our algorithms to exploit this knowledge. However, for the 
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purposes of our discussion in this chapter, this does not seem to help for dense matrices. This does 
not mean that any parallel dense linear algebra algorithm should be conceived or even code in a 
serial manner. What it does mean, however, is that we look particularly hard at what the matrix 
A represents in the practical application for which we are trying to solve the equation Ax = b. By 
examining the matrix carefully, we might indeed recognize some other less-obvious ’structure’ that 
we might be able to exploit. 

4.2 Applications 

There are not many applications for large dense linear algebra routines, perhaps due to the “law 
of nature” below. 

“Law of Nature”: Nature does not throw n2 numbers at us haphazardly, therefore there are • 
few dense matrix problems. 

Some believe that there are no real problems that will turn up n2 numbers to populate the 
n × n matrix without exhibiting some form of underlying structure. This implies that we should 
seek methods to identify the structure underlying the matrix. This becomes particularly important 
when the size of the system becomes large. 

What does it mean to ’seek methods to identify the structure’ ? Plainly speaking that answer 
is not known not just because it is inherently difficult but also because prospective users of dense 
linear algebra algorithms (as opposed to developers of such algorithms) have not started to identify 
the structure of their A matrices. Sometimes identifying the structure might involve looking beyond 
traditional literature in the field. 

4.2.1 Uncovering the structure from seemingly unstructured problems 

For example, in communications and radar processing applications, the matrix A can often be mod­
elled as being generated from another n× N matrix X that is in turn populated with independent, 
identically distributed Gaussian elements. The matrix A in such applications will be symettric and 
will then be obtained as A = XXT where (.)T is the transpose operator. At a first glance, it might 
seem as though this might not provide any structure that can be exploited besides the symmetry 
of A. However, this is not so. We simply have to dig a bit deeper. 

The matrix A = XXT is actually a very well studied example in random matrix theory. Edelman 
has studied these types of problems in his thesis and what turns out to be important is that in 
solving Ax = b we need to have a way of characterizing the condition number of A. For matrices, 
the condition number tells us how ’well behaved’ the matrix is. If the condition number is very high 
then the numerical algorithms are likely to be unstable and there is little guarantee of numerical 
accuracy. On the other hand, when the condition number is close to 1, the numerical accurarcy 
is very high. It turns out that a mathematically precise characterization of the random condition 
number of A is possible which ends up depending on the dimensions of the matrix X. Specifically 
for a fixed n and large N (typically at least 10n is increased, the condition number of A will be 
fairly localized i.e. its distribution will not have long tails. On the other hand, when N is about 
the size of n the condition number distribution will not be localized. As a result when solving 
x = A−1b we will get poor numerical accuracy in our solution of x. 

This is important to remember because, as we have described all along, a central feature in 
parallel computing is our need to distribute the data among different computing nodes (proces-
sors,clusters, etc) and to work on that chunk by itself as much as possible and then rely on inter-node 
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Year Size of Dense System Machine 

1950’s � 100 
1991 55,296 
1992 75,264 Intel 
1993 75,264 Intel 
1994 76,800 CM 
1995 128,600 Intel 
1996 128,600 Intel 
1997 235000 Intel ASCI Red 
1998 431344 IBM ASCI Blue 
1999 431344 IBM ASCI Blue 
2000 431344 IBM ASCI Blue 
2001 518096 IBM ASCI White-Pacific 
2002 1041216 Earth Simulator Computer 
2003 1041216 Earth Simulator Computer 

Table 4.1: Largest Dense Matrices Solved 

communication to collect and form our answer. If we did not pay attention to the condition number 
of A and correspondingly the condition number of chunks of A that reside on different processors, 
our numerical accuracy for the parralel computing task would suffer. 

This was just one example of how even in a seemingly unstructured case, insights from another 
field, random matrix theory in this case, could potentially alter our impact or choice of algorithm 
design. Incidentally, even what we just described above has not been incorporated into any parallel 
applications in radar processing that we are aware of. Generally speaking, the design of efficient 
parallel dense linear algebra algorithms will have to be motivated by and modified based on specific 
applications with an emphasis on uncovering the structure even in seemingly unstructured problems. 
This, by definition, is something that only users of algorithms could do. Until then, an equally 
important task is to make dense linear algebra algorithms and libraries that run efficiently regardless 
of the underlying structure while we wait for the applications to develop. 

While there are not too many everyday applications that require dense linear algebra solutions, 
it would be wrong to conclude that the world does not need large linear algebra libraries. Medium 
sized problems are most easily solved with these libraries, and the first pass at larger problems are 
best done with the libraries. Dense methods are the easiest to use, reliable, predictable, easiest to 
write, and work best for small to medium problems. 

For large problems, it is not clear whether dense methods are best, but other approaches often 
require far more work. 

4.3 Records 

Table 4.1 shows the largest dense matrices solved. Problems that warrant such huge systems 
to be solved are typically things like the Stealth bomber and large Boundary Element codes1 . 
Another application for large dense problems arise in the “methods of moments”, electro-magnetic 
calculations used by the military. 

1Typically this method involves a transformation using Greens Theorem from 3D to a dense 2D representation of 
the problems. This is where the large data sets are generated. 
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It is important to understand that space considerations, not processor speeds, are what bound 
the ability to tackle such large systems. Memory is the bottleneck in solving these large dense 
systems. Only a tiny portion of the matrix can be stored inside the computer at any one time. It 
is also instructive to look at how technological advances change some of these considerations. 

For example, in 1996, the record setter of size n = 128, 600 required (2/3)n3 = 1.4 × 1015 

arithmetic operations (or four times that many if it is a complex matrix) for its solution using 
Gaussian elimination. On a fast uniprocessor workstation in 1996 running at 140 MFlops/sec, 
that would take ten million seconds, about 16 and a half weeks; but on a large parallel machine, 
running at 1000 times this speed, the time to solve it is only 2.7 hours. The storage requirement 
was 8n2 = 1.3 × 1013 bytes, however. Can we afford this much main memory? Again, we need to 
look at it in historical perspective. 

In 1996, the price was as low as $10 per megabyte it would cost $ 130 million for enough memory 
for the matrix. Today, however, the price for the memory is much lower. At 5 cents per megabyte, 
the memory for the same system would be $650,000. The cost is still prohibitive, but much more 
realistic. 

In contrast, the Earth Simulator which can solve a dense linear algebra system with n = 1041216 
would require (2/3)n3 = 7.5 × 1017 arithmetic operations (or four times that many if it is a complex 
matrix) for its solution using Gaussian elimination. For a 2.25 GHz Pentium 4 uniprocessor based 
workstation available today, at a speed of 3 GFlops/sec this would take 250 million seconds or 
roughly 414 weeks or about 8 years! On the Earth Simulator running at its maximum of 35.86 
TFlops/sec or about 10000 times the speed of a desktop machine, this would only take about 5.8 
hrs! The storage requirement for this machine would be 8n2 = 8.7 × 1014 bytes which at 5 cents a 
megabyte works out to about $43.5 million. This is still equally prohibitive athough the figurative 
’bang for the buck’ keeps getting better. 

As in 1996, the cost for the storage was not as high as we calculated. This is because in 1996, 
when most parallel computers were specially designed supercomputers, “out of core” methods were 
used to store the massive amount of data. In 2004, however, with the emergence of clusters as a 
viable and powerful supercomputing option, network storage capability and management becomes 
an equally important factor that adds to the cost and complexity of the parallel computer. 

In general, however, Moore’s law does indeed seem to be helpful because the cost per Gigabyte 
especially for systems with large storage capacity keeps getting lower. Concurrently the density of 
these storage media keeps increasing as well so that the amount of physical space needed to store 
these systems becomes smalller. As a result, we can expect that as storage systems become cheaper 
and denser, it becomes increasingly more practical to design and maintain parallel computers. 

The accompanying figures show some of these trends in storage density, and price. 

4.4 Algorithms, and mapping matrices to processors 

There is a simple minded view of parallel dense matrix computation that is based on these assump­
tions: 

• one matrix element per processor 

a huge number (n2, or even n3) of processors • 

communication is instantaneous • 
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Figure 4.1: Storage sub system cost trends


Figure 4.2: Trend in storage capacity


Figure 4.3: Average price per Mb cost trends
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Figure 4.4: Storage density trends 

Fastest Memory Register 

Fast memory Cache 

Slow Memory Memory 

Figure 4.5: Matrix Operations on 1 processor 

This is taught frequently in theory classes, but has no practical application. Communication 
cost is critical, and no one can afford n2 processors when n = 128, 000.2 

In practical parallel matrix computation, it is essential to have large chunks of each matrix 
on each processor. There are several reasons for this. The first is simply that there are far more 
matrix elements than processors! Second, it is important to achieve message vectorization. The 
communications that occur should be organized into a small number of large messages, because of 
the high message overhead. Lastly, uniprocessor performance is heavily dependent on the nature 
of the local computation done on each processor. 

4.5 The memory hierarchy 

Parallel machines are built out of ordinary sequential processors. Fast microprocessors now can 
run far faster than the memory that supports them, and the gap is widening. The cycle time of a 
current microprocessor in a fast workstation is now in the 3 – 10 nanosecond range, while DRAM 
memory is clocked at about 70 nanoseconds. Typically, the memory bandwidth onto the processor 
is close to an order of magnitude less than the bandwidth required to support the computation. 

2Biological computers have this many processing elements; the human brain has on the order of 1011 neurons. 



Preface 45 

To match the bandwidths of the fast processor and the slow memory, several added layers of 
memory hierarchy are employed by architects. The processor has registers that are as fast as the 
processing units. They are connected to an on-chip cache that is nearly that fast, but is small 
(a few ten thousands of bytes). This is connected to an off-chip level-two cache made from fast 
but expensive static random access memory (SRAM) chips. Finally, main memory is built from 
the least cost per bit technology, dynamic RAM (DRAM). A similar caching structure supports 
instruction accesses. 

When LINPACK was designed (the mid 1970s) these considerations were just over the horizon. 
Its designers used what was then an accepted model of cost: the number of arithmetic operations. 
Today, a more relevant metric is the number of references to memory that miss the cache and 
cause a cache line to be moved from main memory to a higher level of the hierarchy. To write 
portable software that performs well under this metric is unfortunately a much more complex task. 
In fact, one cannot predict how many cache misses a code will incur by examining the code. One 
cannot predict it by examining the machine code that the compiler generates! The behavior of real 
memory systems is quite complex. But, as we shall now show, the programmer can still write quite 
acceptable code. 

(We have a bit of a paradox in that this issue does not really arise on Cray vector computers. 
These computers have no cache. They have no DRAM, either! The whole main memory is built of 
SRAM, which is expensive, and is fast enough to support the full speed of the processor. The high 
bandwidth memory technology raises the machine cost dramatically, and makes the programmer’s 
job a lot simpler. When one considers the enormous cost of software, this has seemed like a 
reasonable tradeoff. 

Why then aren’t parallel machines built out of Cray’s fast technology? The answer seems 
to be that the microprocessors used in workstations and PCs have become as fast as the vector 
processors. Their usual applications do pretty well with cache in the memory hierarchy, without 
reprogramming. Enormous investments are made in this technology, which has improved at a 
remarkable rate. And so, because these technologies appeal to a mass market, they have simple 
priced the expensive vector machines out of a large part of their market niche.) 

4.6 Single processor condiderations for dense linear algebra 

If software is expected to perform optimally in a parallel computing environment, performance 
considerations of computation on a single processor must first be evaluated. 

4.6.1 LAPACK and the BLAS 

Dense linear algebra operations are critical to optimize as they are very compute bound. Matrix 
multiply, with its 2n3 operations involving 3n2 matrix elements, is certainly no exception: there is on 
O(n) reuse of the data. If all the matrices fit in the cache, we get high performance. Unfortunately, 
we use supercomputers for big problems. The definition of “big” might well be “doesn’t fit in the 
cache.” 

A typical old-style algorithm, which uses the SDOT routine from the BLAS to do the compu­
tation via inner product, is shown in Figure 4.6. 

This method produces disappointing performance because too many memory references are 
needed to do an inner product. Putting it another way, if we use this approach we will get O(n3) 
cache misses. 

Table 4.6.1 shows the data reuse characteristics of several different routines in the BLAS (for 
Basic Linear Algebra Subprograms) library. 
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=X 

Figure 4.6: Matrix Multiply


Instruction Operations 

BLAS1: SAXPY (Single Precision Ax Plus y) 2n 
BLAS1: SAXPY � = x . y 2n 
BLAS2: Matrix-vec y = Ax + y 2n2 

BLAS3: Matrix-Matrix C = AB + C 2n3 

Memory Accesses 
(load/stores) 

3n 
2n 
n2 

4n2 

Ops /Mem Ref 

2 
3 
1 
2 
1 
2n 

Table 4.2: Basic Linear Algebra Subroutines (BLAS) 

Creators of the LAPACK software library for dense linear algebra accepted the design challenge 
of enabling developers to write portable software that could minimize costly cache misses on the 
memory hierarchy of any hardware platform. 

The LAPACK designers’ strategy to achieve this was to have manufacturers write fast BLAS, 
especially for the BLAS3. Then, LAPACK codes call the BLAS. Ergo, LAPACK gets high perfor­
mance. In reality, two things go wrong. Manufacturers dont make much of an investment in their 
BLAS. And LAPACK does other things, so Amdahl’s law applies. 

4.6.2 Reinventing dense linear algebra optimization 

In recent years, a new theory has emerged for achieving optimized dense linear algebra computation 
in a portable fashion. The theory is based one of the most fundabmental principles of computer 
science, recursion, yet it escaped experts for many years. 

The Fundamental Triangle 

In section 5, the memory hierarchy, and its affect on performance, is discussed. Hardware architec­
ture elements, such as the memory hierarchy, forms just one apex of The Fundamental Triangle, 
the other two represented by software algorithms and the compilers. The Fundamental Triangle is 
a model for thinking about the performance of computer programs. A comprehensive evaluation 
of performance cannot be acheived without thinking about these three components and their rela­
tionship to each other. For example, as was noted earlier algorithm designers cannot assume that 
memory is infinite and that communication is costless, they must consider how their algorithms 
they write will behave within the memory hierarchy. This section will show how a focus on the 
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Figure 4.7: The Fundamental Triangle 

interaction between algorithm and architecture can expose optimization possibilities. Figure 4.7 
shows a graphical depiction of The Fundamental Triangle. 

Examining dense linear algebra algorithms 

Some scalar a(i, j) algorithms may be expressed with square submatrix A(I : ∃ + NB − 1, J : 
J + NB− 1) algorithms. Also, dense matrix factorization is a BLAS level 3 computation consisting 
of a series of submatrix computations. Each submatrix computation is BLAS level 3, and each 
matrix operand in Level 3 is used multiple times. BLAS level 3 computation is O(n3) operations 
on O(n2) data. Therefore, in order to minimize the expense of moving data in and out of cache, 
the goal is to perform O(n) operations per data movement, and amortize the expense over ther 
largest possible number of operations. The nature of dense linear algebra algorithms provides 
the opportunity to do just that, with the potential closeness of data within submatrices, and the 
frequent reuse of that data. 

Architecture impact 

The floating point arithmetic required for dense linear algebra computation is done in the L1 cache. 
Operands must be located in the L1 cache in order for multiple reuse of the data to yield peak 
performance. Moreover, operand data must map well into the L1 cache if reuse is to be possible. 
Operand data is represented using Fortran/C 2-D arrays. Unfortunately, the matrices that these 
2-D arrays represent, and their submatrices, do not map well into L1 cache. Since memory is one 
dimensional, only one dimension of these arrays can be contiguous. For Fortran, the columns are 
contiguous, and for C the rows are contiguous. 

To deal with this issue, this theory proposes that algorithms should be modified to map the 
input data from the native 2-D array representation to contiguous submatrices that can fit into the 
L1 cache. 
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Figure 4.8: Recursive Submatrices 

Blocking and Recursion 

The principle of re-mapping data to form contiguous submatrices is known as blocking. The specific 
advantage blocking provides for minimizing data movement depends on the size of the block. A 
block becomes adventageous at minimizing data movement in and out of a level of the memory 
hierarchy when that entire block can fit in that level of the memory hierarcy in entirety. Therefore, 
for example, a certain size block would do well at minimizing register to cache data movement, and 
a different size block would do well at minimizing chach to memory data movement. However, the 
optimal size of these blocks is device dependent as it depends on the size of each level of the memory 
hierarchy. LAPACK does do some fixed blocking to improve performance, but its effectiveness is 
limited because the block size is fixed. 

Writing dense linear algebra algorithms recursively enables automatic, variable blocking. Figure 
4.8 shows how as the matrix is divided recursively into fours, blocking occurs naturally in sizes of 
n, n/2, n/4... It is important to note that in order for these recursive blocks to be contiguous 
themselves, the 2-D data must be carefully mapped to one-dimensional storage memory. This data 
format is described in more detail in the next section. 

The Recursive Block Format 

The Recusive Block Format (RBF) maintains two dimensional data locality at every level of the one-
dimensional tierd memory structure. Figure 4.9 shows the Recursive Block Format for a triangular 
matrix, an i right triangle of order N. Such a triange is converted to RBF by dividing each isoceles 
right triangle leg by two to get two smaller triangles and one “square”(rectangle). 

Cholesky example 

By utilizing the Recursive Block Format and by adopting a recursive strategy for dense linear 
algorithms, concise algorithms emerge. Figure 4.10 shows one node in the recursion tree of a 
recursive Cholesky algorithm. At this node, Cholesky is applied to a matrix of size n. Note that 
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Figure 4.9: Recursive Block Format 

n need not be the size of the original matrix, as this figure describes a node that could appear 
anywhere in the recursion tree, not just the root. 

The lower triangular matrix below the Cholesky node describes the input matrix in terms of its 
recursive blocks, A11, A21, andA22 

• n1 is computed as n1 = n/2, and n2 = n − n1 

• C(n1) is computed recursively: Cholesky on submatrix A11 

• When C(n1) has returned,L11 has been computed and it replaces A11 

• The DTRSM operation then computes L21 = A21L11T 
−1 

• L21 now replaces A21 

• The DSYRK operation uses L21 to do a rank n1 update of A22 

• C(n2), Cholesky of the updated A22, is now computed recursively, and L22 is returned 

The BLAS operations (i.e.DTRSM and DSYRK) can be implemented using matrix multiply, 
and the operands to these operations are submatrices of A. This pattern generalizes to other dense 
linear algebra computations (i.e. general matrix factor, QR factorization). Every dense linear 
algebra algorithm calls the BLAS several times. Every one of the multiple BLAS calls has all of 
its matrix operands equal to the submatrices of the matrices, A,B, .. of the dense linear algebra 
algorithm. This pattern can be exploited to improve performance through the use of the Recursive 
Data Format. 

A note on dimension theory 

The reason why a theory such as the Recursive Data Format has utility for improving computational 
performance is because of the mis-match between the dimension of the data, and the dimension 
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Figure 4.10: Recursive Cholesky 

the hardware can represent. The laws of science and relate two and three dimensional objects. 
We live in a three dimensional world. However, computer storage is one dimensional. Moreover, 
mathmeticians have proved that it is not possible to maintain closeness between points in a neigh­
borhood unless the two objects have the same dimension. Despite this negative theorem, and the 
limitations it implies on the relationship between data and available computer storage hardware, 
recursion provides a good approximation. Figure 4.11 shows this graphically via David Hilberts 
space filling curve. 

4.7 Parallel computing considerations for dense linear algebra 

Load Balancing: 
We will use Gaussian elimination to demonstrate the advantage of cyclic distribution in dense 

linear algebra. If we carry out Gaussian elimination on a matrix with a one-dimensional block 
distribution, then as the computation proceeds, processors on the left hand side of the machine 
become idle after all their columns of the triangular matrices L and U have been computed. This 
is also the case for two-dimensional block mappings. This is poor load-balancing. With cyclic 
mapping, we balance the load much better. 

In general, there are two methods to eliminate load imbalances: 

• Rearrange the data for better load balancing (costs: communication). 

• Rearrange the calculation: eliminate in unusual order. 

So, should we convert the data from consecutive to cyclic order and from cyclic to consecutive 
when we are done? The answer is “no”, and the better approach is to reorganize the algorithm 
rather than the data. The idea behind this approach is to regard matrix indices as a set (not 
necessarily ordered) instead of an ordered sequence. 

In general if you have to rearrange the data, maybe you can rearrange the calculation. 
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Figure 4.11: Hilbert Space Filling Curve
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Figure 4.12: Gaussian elimination With Bad Load Balancing
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Figure 4.13: A stage in Gaussian elimination using cyclic order, where the shaded portion refers to 
the zeros and the unshaded refers to the non-zero elements 

Lesson of Computation Distribution: 
Matrix indices are a set (unordered), not a sequence (ordered). We have been taught in school 

to do operations in a linear order, but there is no mathematical reason to do this. 
As Figure 4.9 demonstrates, we store data consecutively but do Gaussian elimination cyclicly. 

In particular, if the block size is 10 × 10, the pivots are 1, 11, 21, 31, . . ., 2, 22, 32, . . .. 
We can apply the above reorganized algorithm in block form, where each processor does one 

block at a time and cycles through. 
Here we are using all of our lessons, blocking for vectorization, and rearrangement of the calcu­

lation, not the data. 

4.8 Better load balancing 

In reality, the load balancing achieved by the two-dimensional cyclic mapping is not all that one 
could desire. The problem comes from the fact that the work done by a processor that owns Aij 

is a function of i and j, and in fact grows quadratically with i. Thus, the cyclic mapping tends to 
overload the processors with a larger first processor index, as these tend to get matrix rows that 
are lower and hence more expensive. A better method is to map the matrix rows to the processor 
rows using some heuristic method to balance the load. Indeed, this is a further extension of the 
moral above – the matrix row and column indices do not come from any natural ordering of the 
equations and unknowns of the linear system – equation 10 has no special affinity for equations 9 
and 11. 

4.8.1 Problems 

1. For performance analysis of the Gaussian elimination algorithm, one can ignore the operations 
performed outside of the inner loop. Thus, the algorithm is equivalent to 

do k = 1, n 
do j = k,n 

do i = k,n 
a(i,j) = a(i,j) - a(i,k) * a(k,j) 

enddo 



Preface 53


enddo

enddo


The “owner” of a(i, j) gets the task of the computation in the inner loop, for all 1 → k →
min(i, j). 

Analyze the load imbalance that occurs in one-dimensional block mapping of the columns of 
the matrix: n = bp and processor r is given the contiguous set of columns (r− 1)b+ 1, . . . , rb. 
(Hint: Up to low order terms, the average load per processor is n3/(3p) inner loop tasks, but 
the most heavily loaded processor gets half again as much to do.) 

Repeat this analysis for the two-dimensional block mapping. Does this imbalance affect the 
scalability of the algorithm? Or does it just make a difference in the efficiency by some 
constant factor, as in the one-dimensional case? If so, what factor? 

Finally, do an analysis for the two-dimensional cyclic mapping. Assume the p = q2, and that 
n = bq for some blocksize b. Does the cyclic method remove load imbalance completely? 




