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Robust Stochastic Lot-Sizing by Means of Histograms

Abstract

Traditional approaches in inventory control first estimate the demand distribution among a

predefined family of distributions based on data fitting of historical demand observations, and

then optimize the inventory control using the estimated distributions. These approaches often

lead to fragile solutions whenever the preselected family of distributions was inadequate. In this

work we propose a minimax robust model that integrates data fitting and inventory optimization

for the single-item multi-period periodic review stochastic lot-sizing problem. In contrast with

the standard assumption of given distributions, we assume that histograms are part of the input.

The robust model generalizes the Bayesian model, and it can be interpreted as minimizing history

dependent risk measures. We prove that the optimal inventory control policies of the robust

model share the same structure as the traditional stochastic dynamic programming counterpart.

In particular, we analyze the robust model based on the chi-square goodness-of-fit test. If

demand samples are obtained from a known distribution, the robust model converges to the

stochastic model with true distribution under generous conditions. Its effectiveness is also

validated by numerical experiments.

1. Introduction

The stochastic lot-sizing model has been extensively studied in the inventory literature. Most of
the research has focused on models with complete information about the distribution of customer
demand. However, in most real-world situations, the demand distribution is not known; only
historical data is available. A common approach is to hypothesize a family of demand distributions
and then to estimate the parameters specifying the distribution using the historical data. Once the
probability distribution has been identified, the inventory problem is solved following this estimated
distribution. This implies that the inventory policy is determined under the assumption that the
fitted distribution adequately characterizes the demand to be realized in the future.

The estimated demand distribution may not be accurate and hence the approach of fitting the
distribution and optimizing the inventory decisions sequentially may not work as expected. As
shown in Liyanage and Shanthikumar (2005) for the newsvendor model, such an approach may
generate suboptimal solutions. Besides, in distribution fitting, one needs to assume a parametric
family of a demand distribution in the first place, and this hypothesis may also go awry. For
instance, we may fit the historical data to a lognormal distribution while it actually follows a
uniform distribution.

The robust inventory models, without assuming a parametric family of distributions, provide an
approach to address ambiguity in the demand distribution. A brief review of these robust models
is provided in Section 1.1. These models adopt a minimax approach targeting to minimize the
worst case expected cost maximized over the set of distributions. Without exception, the existing
literature either considers a pre-specified set for demand distributions without detailed discussions
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about how to generate the set, e.g., Notzon (1970), or derives the set of distributions based on
certain statistics of the historical data such as the sample mean and variance, e.g., Bertsimas and
Thiele (2006) and See and Sim (2010). Comparing with the classical approach with separate fitting
and optimization, the robust models based on historical statistics may miss important information
about the demand distribution conveyed in the historical data set, e.g., the shape of the distribution,
which, in the separate, two-phase approach, is usually used to determine the parametric family of
the distributions.

In this paper, we merge the merits of both approaches, namely, (i) to fully utilize historical
data as in the classical approach and (ii) to concurrently optimize the demand distribution and the
inventory decision without assuming a distribution family as in the robust models. We analyze the
single-item stochastic finite-horizon periodic review lot-sizing model, under the assumption that the
demand is subject to an unknown distribution and only historical demand observations (given by
histograms) are available. As all practitioners in inventory control start with histograms and then
fit an underlying demand distribution, this assumption reflects the practical value of this research.

By adopting the minimax robust optimization approach, rather than first estimating the de-
mand distribution and then optimizing inventory decisions, we combine these two steps to minimize
the worst case expected cost over a set of demand distributions, which is defined as all possible dis-
tributions satisfying the chi-square goodness-of-fit test. The advantage of this approach is twofold.
First, the historical data is used in the same manner as in the goodness-of-fit test, thus we use all
the information conveyed by the historical data that can be utilized by the goodness-of-fit test in
distribution fitting. Second, we avoid the assumption about the parametric family of distributions,
which is a must in distribution fitting. We show that the (s, S) policy remains optimal, discuss the
behavior of the model as the number of samples increases, and demonstrate through a numerical
study that this model outperforms (i) the classical approach where distribution estimation and
inventory optimization are separate and (ii) a robust model where the set of distributions is defined
by sample mean and variance.

Our two main contributions are as follows. First, we develop a robust minimax model that only
requires historical data, and allows correlated demand. Note that most minimax models (see, e.g.,
Notzon 1970 and Ahmed et al. 2007) as well as Bayesian inventory models (e.g., updating demand
distributions as suggested in Iglehart (1964) in the literature can be interpreted as special cases of
our framework.

Unlike the classical inventory model, which solves a single-variate optimization problem in
each period, the robust model needs to identify the ordering quantity and probability distribution
represented by a vector of decision variables simultaneously. Despite this complexity, the optimal
policy of the robust model still shares the same structure as the corresponding policy in the classical
stochastic lot-sizing model. In particular, the optimal policy is a state-dependent base-stock policy
for the multi-period inventory problem without fixed procurement costs, and a state-dependent
(s, S) policy if the fixed procurement cost is considered.

While the first contribution mainly serves as an extension to existing models, the second major
contribution regards combining the statistical test in distribution fitting within a single inventory
control model. We consider a special case of the general robust framework when the set of demand
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distributions is directly related to the chi-square goodness-of-fit test. Such a distribution set can
be defined by a set of second-order cone constraints and hence it is tractable to compute the (s, S)
levels for each period. To the best of our knowledge, this is the first endeavor to integrate the
goodness-of-fit statistical test with inventory optimization and to explicitly consider the shape of
the distribution in a robust framework.

We also prove that the robust model based on the chi-square test converges to the stochastic
model with true demand distribution under generous conditions if samples are drawn from this
distribution and they grow indefinitely. In particular, if the demand distributions are discrete, the
robust model converges to the stochastic model with the true demand distribution as the number of
independent samples drawn from the true distribution for each period tends to infinity. Moreover,
the rate of convergence is in the order of 1/

√
k, where k is the number of samples. Slightly weaker

results are obtained for continuous distributions. These convergence results ensure the effectiveness
of the robust approach when the sample size is sufficiently large.

When the sample size is relatively small, the performance of the robust model is illustrated by
means of computational experiments. We argue that the robust model based on the chi-square
test outperforms the traditional approach, which optimizes the inventory decisions by using fitted
distributions, as well as the minimax robust model where the set of distributions is based on the
set proposed by Delage and Ye (2010). We also provide insights on the performance of the robust
model with different parameters and sample sizes.

In Section 2 we describe our robust model, which incorporates historical data, and present the
optimality equation in a compact form. The structure of the optimal policies is characterized in
Section 3. Section 4 considers a special case with robustness defined by the chi-square goodness-
of-fit test. We also discuss selected convergence results for the chi-square test based models in the
same section. The computational results are presented in Section 5. Finally, additional extensions
are presented in Section 6. We conclude the introduction with the literature review.

1.1 Literature Review

This work is built upon two streams of literature: stochastic inventory control and robust opti-
mization. The discrete-time stochastic inventory model has been studies since 1950s. Scarf (1960)
proposes the concept of K-convexity and proves that the (s, S) policy is optimal in the presence
of a fixed ordering cost. Since then, the research in this area has flourished. We refer the reader
to Zipkin (2000) for a detailed review. The concept of K-convexity has been generalized to attack
various problems related to inventory control, e.g., Chen and Simchi-Levi (2004). Efficient algo-
rithms, e.g., Guan and Miller (2008) and Halman et al. (2009), have also been proposed to solve
other more general stochastic inventory problems.

Robust optimization was pioneered by Soyster (1973), which proposes robust linear program-
ming formulations for linear programs with coefficient uncertainty. This line of research has enjoyed
popularity in recent years. Some of the important works include but are not limited to Ben-Tal
and Nemirovski (2000) and Bertsimas and Sim (2004) for robust linear programming, Ben-Tal and
Nemirovski (1998) for robust convex optimization, and Kouvelis and Yu (1997) and Bertsimas and
Sim (2003) for robust discrete optimization. More relevant to this research, Iyengar (2005) and
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Nilim and El Ghaoui (2005) develop a robust optimization framework for dynamic programming
models, extend the Bellman recursion to the robust counterpart, and investigate its computational
complexity. Delage and Ye (2010) propose a data-driven robust framework for any single-stage opti-
mization problem, which minimizes the maximum expectation over a set of distributions defined by
the sample mean and variance. They identify sufficient conditions under which the corresponding
robust problem is polynomially solvable and provide probabilistic arguments for using this model
by considering a confidence region for the mean and variance as a random vector.

In this paper, we apply the idea of robust optimization to inventory control models. This notion
of robust inventory control is not new in the literature. The earliest work in minimax inventory
control is attributed to Scarf (1958), where minimization of the maximum expected cost of the
newsvendor model over all distributions with a given mean and variance is considered. Gallego and
Moon (1993) present another proof of Scarf’s result and consider various extensions of the model.
The recent work by Natarajan et al. (2008) extends the result of Scarf (1958) by considering the
set of distributions with a given mean, variance and semivariance information. Perakis and Roels
(2008) minimize the maximum regret of the newsvendor model over a convex set of distributions
with certain moments and shape.

Notzon (1970) is among the earliest works that considers a minimax multiple-period inventory
model. The demand in each period is assumed to be independent and its distribution function
is ambiguous but within a specified class of distribution functions. The minimax control policy
minimizes the maximum expected cost. The optimality of the (s, S) policy is proved.

Bertsimas and Thiele (2006) analyze distribution-free inventory problems, in which demand in
each period is assumed to be a random variable that takes values in a given range. The demand is
assumed to be a random variable controlled only by two values: the lower and upper estimators.
To capture the trade-off between robustness and optimality, a parameter is defined to control the
budgets of uncertainty at every time period. They show that for a variety of problems, the structures
of the optimal policy remain the same as in the associated model with complete information about
the distribution of customer demand. A related model from the base-stock perspective is analyzed
in Bienstock and Özbay (2008).

See and Sim (2010) consider a factor-based demand model with given mean, support, and devi-
ation measures. To obtain tractable replenishment policies, the worst case expected cost among all
distributions satisfying the demand model is minimized by solving a second order cone optimization
problem.

Ahmed et al. (2007) propose an inventory control model which minimizes a coherent risk
measure instead of the overall cost function. They show that risk aversion treated in the form of
coherence risk measures is equivalent to the minimax formulations, and it is proved that the optimal
policies conserve the properties of the stochastic dynamic programming counterparts. They do not
consider demand dependent evolutions.

Liyanage and Shanthikumar (2005) first provide concrete examples in a single period (newsven-
dor) setting, which illustrate that separating distribution estimation and inventory optimization,
as done in the classical approach, may lead to suboptimal solutions. They propose the use of
operational statistics where it is assumed that the demand distribution function belongs to a spe-
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cific (predetermined) family and estimate the (single) parameter of the family within an inventory
optimization model.

In addition, selected recent papers also consider lost-sale inventory problems with censored de-
mand data, i.e., the observed historical demand data excludes the lost-sale information as the lost
sales are not observable. Huh and Rusmevichientong (2009) propose nonparametric adaptive poli-
cies to solve this problem and provide a bound for the asymptotic performance, which interestingly
is the same as the converenge rate of our model under discrete distributions.

The models by Notzon (1970) and Ahmed et al. (2007) do not take the historical data into
account, and they predefine the class of distribution functions. The robust optimization approaches
from Bertsimas and Thiele (2006) as well as See and Sim (2010) do not use any historical data
except to determine the support, expectation and deviation measures. On the other hand, Liyanage
and Shanthikumar (2005) use historical data but predetermine the family of distributions. In fact,
they consider only distributions characterized by a single unknown parameter. This is the only
work besides the one proposed in this paper that concurrently optimizes the ordering quantity
and applies techniques in distribution fitting to determine the demand distribution. Our research
combines both strategies by integrating distribution fitting with robust optimization. Specifically,
we consider the set of demand distributions that satisfy a certain data fitting criterion with respect
to historical data and characterize an optimal policy that minimizes the maximum expected cost.

2. Formulation of Robust Stochastic Lot-Sizing

The classical multi-period inventory problem considers a finite planning horizon of T periods. We
assume that all shortages are backlogged. For each period t = 1, ..., T , let D̃t be a random variable
representing demand in that period. The sequence of events is as follows.

At the beginning of each period t, the decision maker reviews the net inventory level xt, and
places an order for qt (possibly zero) units. The procurement cost in each period t = 1, ..., T − 1
includes two components: a fixed procurement cost K if qt > 0, and a unit procurement cost ct for
each unit ordered.

Assuming zero lead time, this order arrives immediately and increases the inventory level up
to yt, where yt = xt + qt. After observing demand D̃t, inventory holding cost is charged at a rate
of ht for any unit of excess inventory after satisfying demand D̃t, and a unit backorder cost bt is
incurred for any unit of unsatisfied demand. The net inventory at the beginning of period t + 1 is
reduced to xt+1 = yt − D̃t.

Thus, the total cost for period t given the net inventory levels before and after ordering (xt and
yt respectively) as well as demand D̃t in that period is

Ct

(
xt, yt, D̃t

)
= KI(yt − xt) + ct(yt − xt) + ht

(
yt − D̃t

)+
+ bt

(
yt − D̃t

)−
t = 1, ..., T, (1)

where x+ = max(x, 0), x− = max(−x, 0), I(x) = 1 if x > 0 and I(x) = 0 otherwise.
In the standard dynamic programming formulation, we consider Ṽt(xt), t = 1, ..., T , which

denotes the optimal expected cost over horizon [t, T ], given that the net inventory level at the
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beginning of period t is xt and an optimal policy is adopted over horizon [t, T ]. We assume
ṼT+1(xT+1) = 0. Let θ ∈ [0, 1] be the discount rate. The optimality equation reads

Ṽt(xt) = min
yt≥xt

{
E
[
Ct

(
xt, yt, D̃t

)]
+ θE

[
Ṽt+1

(
yt − D̃t

)]}
t = 1, ..., T. (2)

Note that the distribution of D̃t, t = 1, ..., T is required to solve this dynamic programming formu-
lation.

In practice, the demand distribution is not known. Rather, an inventory manager has at her
disposal only historical data. Depending on the realized past demand in the planning horizon, the
manager may choose different aggregations of historical data to forecast the demand distribution.
For example,

• the demand data of the last n observations are considered, which is analogous to the moving
average forecast, or

• the realized demand in periods 1 to t − 1 is accounted for when forecasting the demand in
period t.

Historical observations are often aggregated to a histogram with respect to unknown distribution
D̃t. The bins are [Dt,i, Dt,i+1), which denotes the ith possible range of the demand in period t (all
observations within a given range are indistinguishable). Let the vector dt = [d1, ..., dt−1] denote
the realized demand in periods 1 to t − 1, where dτ , τ = 1, ..., t − 1 corresponds to the realized
demand in period τ . The number of observations falling within the ith bin is a function of the
realized demand dt and is denoted by Nt,i(dt). Finally, we define nt(dt) =

∑
i Nt,i(dt), which

corresponds to the total number of available observations under realized demand dt. In practice,
the decision maker observes only these histograms, i.e., the historical samples.

We assume that Dt,1 = 0 and Dt,Mt+1 = +∞, where Mt corresponds to the number of bins in
the histogram for time period t. Let Pt,i = P

(
D̃t ∈ [Dt,i, Dt,i+1)

)
be the probability that demand

in period t falls in the interval [Dt,i, Dt,i+1) under the fitted distribution. Clearly, nt(dt)Pt,i is the
expected number of observations that fall in this interval according to the fitted distribution.

The classical approach to identify the best distribution representing the observed data is to use
a goodness-of-fit test. The objective is to fit a distribution that “closely” follows the observed data.
Under this criterion, there should be a set of distributions depending on dt, which satisfy the given
goodness-of-fit test. We denote this set by Pt(dt). Throughout this paper, we assume that Pt(dt)
is compact for any t and dt.

As defined in the dynamic programming field, a decision rule µt at time t is a function of net
inventory xt, which decides the ordering quantity at time t given xt, i.e., yt = µt(xt). We formally
state our problem in the context of a two-player game, which is also presented in Iyengar (2005).
The first player chooses the decision rule µt at time t and pays the cost. The second player chooses
a distribution of D̃t in Pt(dt) after observing the order quantity, and receives a reward equal to the
cost paid by the first player. Therefore, the second player may select a different distribution for
different xt and µt. Let Pt(xt, µt(xt)) denote the distribution chosen by player 2 at time t given
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net inventory xt and decision rule µt. The the set of all distributions available to player two is

Qµt = {P(xt, µt(xt)) ∈ Pt(dt) over all xt,dt} .

In Qµt we merely express that for each xt, µt, dt, we might have a different distribution. Moreover,
a policy π is defined as the decision rule to be used at every period, i.e., π = (µ1, ..., µT ). A policy
π also yields a set of distributions Qπ which can be used by the second player or adversary, where

Qπ = Qµ1 ×Qµ2 × · · · × QµT . (3)

As the second player will maximize her reward, given policy π, net inventory xt, and realized
demand dt, the cost paid by player one from period t to T is

V π
t (xt,dt) = max

Q∈Qπ
EQ,D̃

[
T∑

τ=t

θτ−tCτ

(
xτ , µτ (xτ ), D̃τ

)
+ θT+1−tVT+1(xT+1,dT+1)

]
,

where Cτ

(
xτ , µτ (xτ ), D̃τ

)
denotes the cost incurred in period τ in (1), and VT+1(xT+1,dT+1) is the

terminal cost. Also note that Q defines the distributions D̃τ , τ = t, ..., T . Unless stated otherwise,
we assume that VT+1(·) = 0. We also have

xτ+1 = µτ (xτ )− D̃τ and dτ+1 =
[
dτ , D̃τ

]
.

Since the first player will choose a policy that minimizes the cost, the optimal cost from period
t to T given net inventory xt at time t, and the realized demand dt from period 1 to t− 1, is

Vt(xt,dt) = min
π

max
Q∈Qπ

EQ,D̃

[
T∑

τ=t

θτ−tCτ

(
xτ , µτ (xτ ), D̃τ

)
+ θT+1−tVT+1(xT+1,dT+1)

]
, (4)

for t = 1, ..., T . Note that the model minimizes the maximum expected cost arising from any
distribution in the set Pt(dt) for any t, which is known as the minimax robust approach. We next
state an optimality equation, which is essential to establish the optimal control policies.

Proposition 2.1. The optimality equation of the robust model is

Vt(xt,dt) = min
yt≥xt

max
Pt∈Pt(dt)

{∑
i

Pt,i

(
Ct(xt, yt, Dt,i) + θVt+1 (yt −Dt,i, [dt, Dt,i])

)}
(5)

for t = 1, ..., T , where Pt(dt) is the set of distributions satisfying the goodness-of-fit condition at
period t, and Ct(xt, yt, Dt,i) is defined by (1).

Proof. It follows from Theorem 2.1 in Iyengar (2005) when Pt(dt) is arbitrary. If Pt(dt) is convex,
the proposition can also be proved by the Von Neumann’s minimax theorem (see, e.g., Von Neumann
1928).

An immediate observation from Proposition 2.1 is that we minimize the worst case expected
cost over a set of distributions. Therefore, our robust stochastic model may not be as conservative
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as the classical minimax models, where the worst case is defined by the realized demand instead of
distribution, e.g., the minimax model discussed in Section 2.4 of Notzon (1970).

Note that the Bayesian inventory models assume a prior demand distribution, and the posterior
distribution at time t is obtained by updating the prior distribution using dt, e.g., Iglehart (1964)
updates the demand distribution belonging to the exponential and range families after observing
realized demand information. Our model only requires the set of distributions Pt(dt) to be a
function of the realized demand dt. Therefore, we can define it as a singleton updated by a
Bayesian rule. In this case, the robust minmax model is reduced to a Bayesian inventory model,
which indicates that the Bayesian models are special cases of our minimax model.

Proposition 2.1 also gives us an interpretation of the robust model from a risk measure perspec-
tive when set Pt(dt) is convex. Ahmed et al. (2007) establish the correspondence between coherent
risk measures and minimax models over convex sets of distributions. From this perspective, our
minimax robust model essentially minimizes a coherent risk measure with respect to the total cost.
If we consider Pt(dt) ≡ Pt for any dt and t, i.e., the set of distributions is independent of any
realized demand in previous periods, then the minimax robust model (5) minimizes a coherent risk
measure in any period t and it reduces to the model considered in Ahmed et al. (2007). When the
set of distributions Pt(dt) depends on demand realization dt, model (5) also minimizes a coherent
risk measure in every period t. However, this model is different from that in Ahmed et al. (2007) in
the sense that the risk measure in period t is updated by the realized demand in previous periods.
Intuitively, if the decision maker lost a significant amount in the previous period, he or she would
tend to be more risk-averse in subsequent periods. Therefore, it is reasonable to adjust the risk
measure based on the realized demand information dt.

In addition, let constant pt denote the selling price of the product in period t. We can maximize
the expected total profit from periods 1 to T by subtracting term pt

∑
i Dt,iPt,i in the objective

function of (5). All of the results, such as the optimal policy and the convergence properties, still
hold for such an objective function. In addition, if we suppose that all the distributions in set Pt(dt)
could have the same expectation D̂t(dt), i.e., constraint

∑
i Dt,iPt,i = D̂t(dt) is included in the

definition of Pt(dt), then the models that minimize cost and that maximize profit are equivalent to
each other. However, as long as the demands follow certain distributions, which are not necessarily
known to the decision maker, the expected total revenue is independent of any inventory decision,
i.e., the order quantity in any period t. Therefore, it is sufficient to consider the cost minimization
model presented in (5).

3. Properties of Optimal Policies

In this section we study optimal policies of the general robust stochastic model (5). Notzon (1970)
and Ahmed et al. (2007) show the optimality of (s, S) policy when the set of distributions in the
minimax model is independent of the realized demand dt (Ahmed et al. 2007 also assume the set of
distributions is convex). Here we extend the optimality of (s, S) policy to the more general model
in (5).
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We assume that the reader is familiar with standard concepts in inventory theory such as
K-convexity and (s, S) policies (see, e.g., Zipkin 2000 and Porteus 2002).

Let us define

Ui(y,d) = ht (yt −Dt,i)
+ + bt (yt −Dt,i)

− + θVt+1 (yt −Dt,i, [dt, Dt,i]) , (6)

which corresponds to the expected cost incurred from period t to T if the inventory level after
receiving the order in period t is yt and the demand in period t is Dt,i. Consider the function

f(y,d) = max
P∈P(d)

∑
i

Ui(y,d)Pi.
1

Since optimality of the (s, S) policy follows directly from K-convexity, first we are going to establish
that the function f(y,d) is K-convex in y.

Lemma 3.1. If Ui(y,d) is K-convex in y for any given d, then f(y,d) is a K-convex function in
y for any given d.

Proof. Please refer to the Online Supplement.

Lemma 3.1 shows that K-convexity is preserved under maximization over a set of distributions.
Base on this property, we show the K-convexity of the cost-to-go functions.

Proposition 3.1. If Vt+1(xt+1,dt+1) is a K-convex function in xt+1 for any fixed dt+1, the cost-
to-go function Vt(xt,dt) is a K-convex function in xt for any fixed dt, and for any t = 1, ..., T .

Proof. The proposition is trivially true for t = T +1. Suppose that the proposition holds for period
t + 1, and consider period t.

To simplify the notation, let us define

ft(yt,dt) = ctyt + max
Pt∈Pt(dt)

∑
i

Pt,i

[
ht (yt −Dt,i)

+ + bt (yt −Dt,i)
− + θVt+1 (yt −Dt,i, [dt, Dt,i])

]
.

(7)
Therefore, the optimality equation in (5) is equal to

Vt(xt,dt) = −ctxt + min
yt≥xt

{KI(yt − xt) + ft(yt,dt)} .

According to Lemma 3.1, if Vt+1(xt+1,dt+1) is K-convex in xt, ft(yt,dt) is K-convex in yt. Let
St(dt) be a global minimizer of ft(yt,dt) for any given dt. Moreover, let st(dt) be the smallest
element of the set {st(dt) | st(dt) ≤ St(dt), ft(st,dt) = ft(St,dt)+K}. According to the properties
of K-convex functions (see, e.g., Zipkin 2000 and Porteus 2002), we have

Vt(xt,dt) =
{

K − ctxt + ft(St(dt),dt) if xt ≤ st(dt),
−ctxt + ft(xt,dt) otherwise.

K-convexity of Vt(xt,dt) follows from K-convexity of ft(yt,dt).
1Note that here we drop subscript t in order to simplify the notation.
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From the structure of Vt+1(·), we can derive an optimal policy.

Theorem 3.1. A state dependent (s, S) policy is optimal for the robust stochastic model. More
precisely, for any t and dt, there exists St(dt) and st(dt) such that St(dt)− xt units are ordered in
period t if xt ≤ st(dt) and no order is placed otherwise.

Proof. The structure of the policy follows directly from the proof of Proposition 3.1 and general
theory of K-convexity (see, e.g., Zipkin 2000 and Porteus 2002).

If there is no fixed cost, then Vt(xt,dt) is convex in xt for any t. Therefore, a state dependent
base-stock policy is optimal, and the base-stock level given the realized demand dt is St(dt).

A drawback from the practical point of view is the fact that st and St depend on dt. We next
characterize a special case where different values of dt correspond to the same (s, S) levels. Suppose
that dt and d′t denote two different demand realizations from period 1 to t− 1. Let us assume that
if demand realizations in periods 1 to t−1 are dt or d′t, then the same demand realization in period
t to T generates the same histogram in any period t, ..., T . Then vectors dt and d′t correspond to
the same (s, S) levels. To formalize this property, let st(dt) and St(dt) (respectively st(d′t) and
St(d′t)) denote the (s, S) levels corresponding to history dt (respectively d′t). For any τ ≥ t, let
the vector [dt, d̃t, d̃t+1, ..., d̃τ−1] denote the realized demand up to period τ − 1 where the demands
from periods 1 to t− 1 are aggregated in vector dt, and the realized demand in periods t to τ − 1
is labeled by d̃t, d̃t+1, ..., d̃τ−1, respectively.

Proposition 3.2. Let VT+1(xT+1,dT+1) = VT+1(xT+1,d′T+1) for any xT+1, dT+1, d′T+1, and
consider any τ = t, ..., T . Suppose that realizations dt and d′t give the same number of samples in
interval [Dτ,i, Dτ,i+1) for any i as long as the realized demand in periods t to τ −1 is the same, i.e.,

Nτ,i([dt, d̃t, d̃t+1, ..., d̃τ−1]) = Nτ,i([d′t, d̃t, d̃t+1, ..., d̃τ−1])

for any i and any realization [d̃t, d̃t+1, ..., d̃τ−1] of [D̃t, D̃t+1, ..., D̃τ−1]. Then we have st(dt) = st(d′t),
St(dt) = St(d′t), and Vt(xt,dt) = Vt(xt,d′t) for any xt.

Proof. Consider period T . According to the assumption stated, NT,i(dT ) = NT,i(d′T ) for any
i, and hence we have nT (dT ) = nT (d′T ) and PT (dT ) = PT (d′T ). By assumption on VT+1(·),
we obtain sT (dT ) = sT (d′T ) and ST (dT ) = ST (d′T ) from Theorem 4.1. Moreover, the result
VT (xT ,dT ) = VT (xT ,d′T ) follows from (5).

Suppose that the proposition is true for any period τ > t. Hence, Vt+1(xt+1, [dt, Dt,i]) =
Vt+1(xt+1, [d′t, Dt,i]) for any xt+1 and i. Moreover, we have Nt,i(dt) = Nt,i(d′t) for any i, which
implies nt(dt) = nt(d′t) and Pt(dt) = Pt(d′t). According to Theorem 4.1 and (5), the results hold
for period t.

Suppose that we use the same bin intervals [Dt,i, Dt,i+1) for any period t in the planning horizon.
Furthermore, let us assume that we update the histogram in time period t only based on the realized
demand in periods 1 to t − 1, or, for example, given a fixed n, we update the histogram in time
period t only based on realized demand in time periods t − n through t − 1. Observe that these
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two scenarios do not allow any forecasting based on the just realized demand. From Proposition
3.2, it now follows that the number of different (s, S) levels at time t cannot exceed the number of
bins to the power of t. This observation substantially reduces the computational burden.

4. Robust Models Based on the Chi-Square Test

The most widely used goodness-of-fit test is the chi-square test (see, e.g., Chernoff and Lehmann
1954) with the statistical test∑

i

(Nt,i(dt)− nt(dt)Pt,i)2

nt(dt)Pt,i
≤ χ2

t t = 1, ..., T,

where parameter χ2
t controls how close the observed sample data is to the estimated expected

number of observations according to the fitted distribution (Pt,i)i=1,...,Mt .
More specifically, suppose that k is the number of bins, c is the number of estimated parameters

for the fitted distribution (e.g., c = 2 for normal distributions due to the mean and variance), and
consider the null hypothesis H0 that the observations are independent random samples drawn
from the fitted distribution. Chernoff and Lehmann (1954) show that if H0 is true, the test
statistic converges to a distribution function that lies between the distribution functions of chi-
square distributions with k−1 and k−c−1 degrees of freedom. Let α denote the significance level,
and consider χ2

k−1,1−α such that F (χ2
k−1,1−α) = 1 − α, where F (x) is the distribution function of

the chi-square distribution with k − 1 degrees of freedom. It is often recommended that we reject
the null hypothesis at the significance level α if the test statistic is greater than χ2

k−1,1−α (see, e.g.,
Law and Kelton 2000). In our context, k = Mt and α, whose interpretation is as above, is given
by the decision maker.

Since Pt,i should define a probability distribution, we have
∑

i Pt,i = 1 and Pt,i ≥ 0. Let Pt

denote the vector of (Pt,i)i. The set of distributions that satisfy the chi-square test is

Pt(dt) =

{
Pt

∣∣∣∣∣AtPt = bt,
∑

i

(Nt,i(dt)− nt(dt)Pt,i)2

nt(dt)Pt,i
≤ χ2

t , Pt ≥ 0

}
t = 1, ..., T. (8)

The linear constraints AtPt = bt capture at least the fact that
∑

i Pt,i = 1. They can also be used
to model more complicated properties of the distribution set, such as constraints on the expected
value, any moment or desired percentiles of the distributions. It is straightforward to establish the
compactness of Pt(dt).

We next give an alternative optimality equation that exploits the structure of (8). We first
provide an alternative characterization of Pt(dt). We assume that every norm is the Euclidean
norm.

Lemma 4.1. The set of demand distributions Pt(dt) defined in (8) is equivalent to the projection
of the set{

(Pt,Qt)

∣∣∣∣∣AtPt = bt,
∑

i

Nt,i(dt)2Qt,i − nt(dt)2 ≤ nt(dt)χ2
t ,

∥∥∥∥[ Pt,i −Qt,i

2

]∥∥∥∥ ≤ Pt,i + Qt,i

}
on the space of Pt.
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Proof. Since
∑

i Pt,i = 1 and
∑

i Nt,i(dt) = nt(dt), we have∑
i

(Nt,i(dt)− nt(dt)Pt,i)2

nt(dt)Pt,i
=
∑

i

Nt,i(dt)2

nt(dt)Pt,i
−
∑

i

2Nt,i(dt) +
∑

i

nt(dt)Pt,i

=
∑

i

Nt,i(dt)2

nt(dt)Pt,i
− nt(dt).

As χ2
t and nt(dt) are finite, we have Pt,i > 0 for any i. Therefore,∑

i

Nt,i(dt)2

nt(dt)Pt,i
− nt(dt) ≤ χ2

t

is equivalent to ∑
i

Nt,i(dt)2Qt,i − nt(dt)2 ≤ nt(dt)χ2
t ,

1
Pt,i

≤ Qt,i, Pt,i, Qt,i > 0.

Obviously, we have

1
Pt,i

≤ Qt,i, Pt,i, Qt,i > 0 ⇐⇒ Pt,iQt,i ≥ 1, Pt,i, Qt,i ≥ 0 ⇐⇒
[

Pt,i 1
1 Qt,i

]
� 0.

Note that the eigenvalues of the matrix
[

Pt,i 1
1 Qt,i

]
are

Pt,i + Qt,i ±
√

(Pt,i −Qt,i)2 + 4
2

, there-

fore the positive semidefinite constraint is equivalent to

Pt,i + Qt,i −
√

(Pt,i −Qt,i)2 + 4
2

≥ 0 ⇐⇒
∥∥∥∥[ Pt,i −Qt,i

2

]∥∥∥∥ ≤ Pt,i + Qt,i,

which proves the proposition.

Lemma 4.1 shows that the set Pt(dt) can be defined by a set of linear and second order cone
constraints (see, e.g., Lobo et al. 1998). Note that the second order cone constraints are a special
class of positive semidefinite constraints and they have better computational properties than gen-
eral positive semidefinite constraints. This alternative definition of the set Pt(dt) also suggests a
compact optimality equation.

Proposition 4.1. The optimality equation of the robust stochastic model (5) is equivalent to

Vt(xt,dt) = min
yt,Ut,pt,ut,λt

KI(yt − xt) + ct(yt − xt) + pT
t bt − 2

∑
i

ut,iNt,i(dt)

+λt

(
nt(dt)2 + nt(dt)χ2

t

)
s.t.

∥∥∥∥[ pT
t − Ut,iAt,i − λt

2ut,i

]∥∥∥∥ ≤ pT
t − Ut,iAt,i + λt for every i

Ut,i ≥ ht (yt −Dt,i) + θVt+1(yt −Dt,i, [dt, Dt,i]) for every i
Ut,i ≥ bt (yt −Dt,i) + θVt+1(yt −Dt,i, [dt, Dt,i]) for every i
yt ≥ xt,

(9)

for any t = 1, ..., T .

Proof. Please refer to the Online Supplement.

Note that this is not the standard optimality equation since Vt+1(·) is present in constraints and
not the objective function. We use it later to obtain computationally tractable control policies.
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4.1 Computation of (s, S) Levels

Next we give a computational approach to compute st(dt) and St(dt).

Theorem 4.1. Let St(dt) be an optimal solution to the minimization problem

min
yt,Ut,pt,ut,λt

ctyt + pT
t bt − 2

∑
i

ut,iNt,i(dt) + λt

(
nt(dt)2 + nt(dt)χ2

t

)
s.t.

∥∥∥∥[ pT
t At,i − Ut,i − λt

2ut,i

]∥∥∥∥ ≤ pT
t At,i − Ut,i + λt for every i

Ut,i ≥ ht (yt −Dt,i) + θVt+1(yt −Dt,i, [dt, Dt,i]) for every i
Ut,i ≥ bt (Dt,i − yt) + θVt+1(yt −Dt,i, [dt, Dt,i]) for every i,

and let st(dt) be the smallest element of the set

{st(dt) | st(dt) ≤ St(dt), ft(st,dt) = ft(St,dt) + K},

where ft(yt,dt) is defined by (7).
A state dependent (s, S) policy is optimal for the robust stochastic model (5) with Pt(dt) defined

by (8), and the (s, S) levels are given by st(dt) and St(dt) respectively. If there is no fixed cost, a
state dependent base-stock policy is optimal, and the base-stock level given the realized demand dt

is St(dt).

Proof. The minimization problem to calculate St(dt) follows from the alternative optimality equa-
tion (9).

Consider the models where the historical data used for period t is independent of the realized
demand from periods 1 to t − 1, i.e., the number of observations Nt,i in the ith bin and the total
number of available observations nt are constant for any realized demand dt. Therefore, the set of
distributions that satisfy the chi-square test is defined by

Pt =

{
Pt

∣∣∣∣∣AtPt = bt,
∑

i

(Nt,i − ntPt,i)2

ntPt,i
≤ χ2

t , Pt ≥ 0

}
t = 1, ..., T. (10)

In this case, the optimality equation of the robust model is reduced to

Vt(xt) = min
yt≥xt

max
Pt∈Pt

{∑
i

Pt,i

(
Ct(xt, yt, Dt,i) + θVt+1 (yt −Dt,i)

)}
t = 1, ..., T, (11)

where Pt and Ct(xt, yt, Dt,i) are defined by (10) and (1) respectively.
Alternatively, it can be written as

Vt(xt) = min
yt,Ut,pt,ut,λt

KI(yt − xt) + ct(yt − xt) + pT
t bt − 2

∑
i

ut,iNt,i + λt

(
n2

t + ntχ
2
t

)
s.t.

∥∥∥∥[ pT
t − Ut,iAt,i − λt

2ut,i

]∥∥∥∥ ≤ pT
t − Ut,iAt,i + λt for every i

Ut,i ≥ ht (yt −Dt,i) + θVt+1(yt −Dt,i) for every i
Ut,i ≥ bt (Dt,i − yt) + θVt+1(yt −Dt,i) for every i
yt ≥ xt,

(12)
for any t = 1, ..., T .

The corresponding optimal (s, S) policy levels are also independent of the realized demand dt.
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Theorem 4.2. The (s, S) policy is optimal for the robust stochastic model (11). In particular, let
St be the optimal solution to the minimization problem

min
yt,Ut,pt,ut,λt

ctyt + pT
t bt − 2

∑
i

ut,iNt,i + λt

(
n2

t + ntχ
2
t

)
s.t.

∥∥∥∥[ pT
t At,i − Ut,i − λt

2ut,i

]∥∥∥∥ ≤ pT
t At,i − Ut,i + λt for every i

Ut,i ≥ ht (yt −Dt,i) + θVt+1(yt −Dt,i) for every i
Ut,i ≥ bt (Dt,i − yt) + θVt+1(yt −Dt,i) for every i,

and let st be the smallest element of the set

{st | st ≤ St, ft(st) = ft(St) + K},

where

ft(yt) = ctyt + max
Pt∈Pt

∑
i

Pt,i

[
ht (yt −Dt,i)

+ + bt (yt −Dt,i)
− + θVt+1(yt −Dt,i)

]
.

The policy is to order St − xt units in period t if xt ≤ st, and no order is placed otherwise.
Without fixed procurement cost, a base-stock policy is optimal, that is, St− xt units are ordered

in period t if xt ≤ St, and no order is placed otherwise.

4.2 Summary of Convergence Results

In this subsection, we explore the case of the bins in the histogram being defined by distinctive
values in the sample data, and we study the performance of the robust model when the number of
samples increase. The important results are summarized in the remaining part of this subsection,
and the details of the analysis are presented in Appendix A.

The majority of the results are built on the following convergence property: as χ2
t approaches to

0, the cost-to-go function Vt(xt,dt) of the robust model converges to the corresponding cost-to-go
function of the stochastic model where the demand distributions follow the empirical distribution
defined by the histogram (c.f. Proposition A.1).

If there exists no fixed procurement, then based on Proposition A.1, if (i) χ2
t converges to 0 and

(ii) the empirical distribution functions converge pointwise to the true distribution function, then
the cost-to-go function of the robust model converges to that of the stochastic model with the true
demand distribution (c.f. Proposition A.2). In particular, if the demand distributions for each time
period follow independent continuous distributions, the convergence of the robust model holds as
long as the sample size approaches infinity and χ2

t converges to 0 (c.f. Corollary A.1).
For the models with both fixed and variable procurement cost, we consider the case where the

demands follow a discrete distribution over a finite set. Similar to Proposition A.2, the cost-to-
go function of the robust model converges to that of the stochastic model with the true demand
distribution under the conditions that (i) χ2

t converges to 0 and (ii) the empirical distribution
converges to the true distribution (c.f. Proposition A.4). We have also identified a condition under
which the convergence holds without χ2

t approaching 0 (c.f. Proposition A.5). Moreover, if the
demand distributions are independent across different periods, as long as the sample size goes to

14



infinity, the cost-to-go function of the robust model converges to that of the stochastic model with
the true demand distribution, and the rate of convergence is O(1/

√
k), where k denotes the sample

size (c.f. Corollary A.3).
The convergence study not only provides the asymptotic performance of the robust model when

the sample size approaches infinitely, but also guarantees that the robust models with small bin
sizes and small χ2 values perform well in the presence of a significant number of samples.

5. Computational Results

In this section, we describe computational experiments and present numerical results to support the
effectiveness of the minimax robust model based on the chi-square test. In particular, the robust
model proposed in Section 4 is compared with (i) the approach which first fits the historical data
and then solves the inventory optimization model using the fitted distribution and (ii) the robust
model based on Delage and Ye (2010). These two comparisons are presented in the following two
subsections, respectively.

5.1 Comparison with Separated Data-Fitting and Inventory Optimization

As we have mentioned in the previous sections, the traditional approach is to fit the historical data
with a distribution and then apply stochastic inventory optimization using the fitted distribution.
The main objective of our experiments is to compare performances of this separated approach and
the studied minimax robust model with respect to optimality and robustness. At the same time, we
would like to assess sensitivity of the robust model to the choices of the bin sizes and χ2 parameters,
and provide an empirical approach to choose these values.

We consider inventory control problems without fixed ordering costs. Following the notation in
the previous sections, we let T denote the planning horizon and ct, ht, bt denote the variable order
cost, unit inventory holding cost, and backorder cost for any period t, t = 1, ..., T , respectively.
The demand distributions for any period t are assumed to be i.i.d. In the robust model, we restrict
ourselves to the case of equal bin sizes and these, together with χ2, are the same for every period
in the planning horizon. To simplify the notation, pair 〈ε, χ2〉 denotes the choice of the bin size ε

and χ2 in the robust model.
The procedure of the computational experiments is as follows.

Step 1. Suppose that the underlying demand distribution has support {0, 1, ..., D̄}. We randomly
generate a distribution among all distributions whose support is a subset of {0, 1, ..., D̄}. In
particular, we pick distribution

pi = P (D̃t = i) =
Ui∑D̄
i=0 Ui

,

for any i = 0, 1, ..., D̄, where Ui for all i are i.i.d. random variables uniformly distributed in
the interval [0, 1]. We refer to the distribution p = {pi}i as the true distribution.

Step 2. Generate n random samples according to the true distribution selected in Step 1.
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Step 3. Fit the samples obtained in Step 2 using Crystal Ball and then choose the l best-fitted
distributions according to the χ2 goodness-of-fit statistic.

Step 4. Solve the standard stochastic inventory control problem with distributions generated in
Steps 1 and 3.

Step 5. Solve the robust inventory control model using a set of bin-size and χ2 combinations.

Step 6. Evaluate the total expected cost with respect to the true distribution p corresponding to
the policies of the stochastic models and robust models computed in Steps 4 and 5. We use
this step to investigate the optimality of the robust models.

Step 7. The n samples generated in Step 2 define the empirical distribution p̂ such that

p̂i =
the number of times value i appears in the n samples

n

for any i = 0, 1, ..., D̄. Let δ = p − p̂. We generate m random permutations of vector δ

and denote the jth permutation of the coordinates by δj . Vector p̂j = p̂ + δj also defines a
distribution.2 Note that p̂j is equal to p if δj = δ, i.e., when δj is not permuted.

For each distribution defined by vector p̂j , we can evaluate the corresponding cost for each
policy computed in Steps 4 and 5. Therefore, we obtain m costs for each policy and we report
the conditional value-at-risk3 (CVaR) at the 5% level of the m costs for each policy. The
purpose of this step is to understand the robustness of different approaches.

Let us consider a 10-period problem. The support for the demand distribution is assumed to
be the set {0, 1, ..., 29}, i.e., D̄ = 29. The cost parameters ct, ht and bt are generated independently
according to uniform distributions within the intervals [12, 15], [2, 5] and [22, 25], respectively.
Following the computational procedure, we first draw n = 20 samples from the selected true
distribution. Fitting the samples using Crystal Ball, the three best-fitted distributions according
to the chi-square values are negative binomial, Poisson, and beta. The true distribution p, sample
frequency p̂ and the three distributions are displayed in Figure 1.

In Steps 4 and 5 of our procedure, we compute the base-stock levels corresponding to different
models: the stochastic model using the true distribution, the stochastic model using the three
best-fitted distributions, and robust models with different bin-size and χ2 value combinations. In
particular, the following set of bin-size and χ2 value combinations are considered: 〈3, 1〉, 〈3, 3〉,
〈3, 5〉, 〈5, 1〉, 〈5, 3〉, 〈5, 5〉.

As stated in our analysis, the robust model picks the demand distribution based on the on-
hand inventory after the order is received, i.e., the order-up-to level yt. Although we use the same
histogram in each period, the demand distribution returned by the robust model depends also on
t. We use the robust model with the bin-size/χ2 value 〈3, 3〉 to illustrate these properties.

2If p̂j contains any negative component, we set p̂j to be the positive part of p̂j plus a random permutation of its
negative part, and we repeat this process until p̂j ≥ 0.

3Given random variable X, the conditional value-at-risk at a quantile-level q is defined as E[X|X < µ] where µ is
defined by P (X < µ) = q.
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Figure 1: True Distribution, Frequency and Fitted Distributions with 20 Samples

Demand

Figure 2: Demand Distributions Returned by the Robust Model with Bin Size = 3 and χ2 = 3

In Figures 2 and 3, and Table 1, we use a simple representative sample of cost parameters.
Figure 2 shows the robust distributions for the last period t = 10 and the first period t = 1 when
the inventory levels after receiving the order yt are 0 and 20 respectively. For both periods, the
distributions returned by the robust model for yt = 20 have lower probabilities in the region 15 to
26 than those for yt = 0. The intuition behind this observation is that the robust model picks a
demand distribution maximizing the expected cost. For any possible value of the demand, we incur
a certain cost corresponding to Ut,i(yt,dt) defined in (6). Therefore, the robust model chooses a
lower probability for demand values with lower costs. Value yt = 20 is very close to the demand
when the demand falls in the region 15 to 26. The amount we over- or under-order is low and
hence the corresponding over- or under-order cost is also low.4 Therefore, the corresponding costs
associated with the demand values are lower than the costs corresponding to other demand values.
As a result, the robust model assigns lower probabilities in these regions compared with the case
when yt = 0.

If we compare the robust distributions when yt = 20 for period 10 and period 1, we observe
that the probability for period 10 is higher for small demand values. This can also be explained
by the tradeoff between the over- and under-order costs. In the last period, the over-order cost is
c10 + h10 and the under-order cost is b10 since we set VT+1(·) = 0. For any earlier period t < 10,

4In this section, the over-order (under-order, respectively) cost includes not only the inventory holding cost ht

(backorder cost bt, respectively) incurred in period t, but also the impact of over-order (under-order, respectively) in
period t based on the cost-to-go function Vt+1(·).
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Figure 3: Base-Stock Levels Computed Using Different Models

the over-order costs are significantly lower as we can carry the inventory to the next period and
save the order cost ct, but the under-order cost is bt + ct+1 since we not only pay the backorder
cost but also procure the product in period t + 1 to satisfy the unmet demand in period t. When
yt = 20, we pay the over-order costs when the demands are low (e.g., in the region 0 to 11), and
the under-order costs are incurred when the demand are high (e.g., in the region 21 to 26). As the
over-order costs are higher and the under-order costs are lower in the last period, it implies that
the ratio between the costs for low demands and the costs for high demands is greater in period
10 than period 1. This is the reason why the robust model assigns higher probabilities for low
demands in period 10.

On the other hand, the robust distributions when yt = 0 are almost the same for the two periods
with t = 10 and t = 1. In this case, we only have the under-order cost no matter if the demand is
high or low. Although the under-order cost is higher in period 1 than period 10, the ratios between
the costs for low and high demands are almost the same for periods 1 and 10. Therefore, the worst
case distributions are similar for these two periods.

The base-stock levels computed in Steps 4 and 5 are displayed in Figure 3. For any of the
stochastic or robust models, the base-stock level for period 10 is significantly lower than the re-
maining periods. As explained before, this is caused by the fact that the overorder cost is much
higher while the underorder cost is lower in period 10 because of VT=1(·) = 0, and thus we should
order less in that period. In addition, the base-stock level for period 4 is slightly lower for most of
the models since period 4 has the highest order and inventory holding cost while its backorder cost
is relatively low.

For the three robust models with the bin-size 3, the base-stock levels are nondecreasing with
respect to the χ2 value, since the sets of distributions are inclusion-wise increasing in the χ2 value.
In our instances, the backorder cost is much higher than the inventory holding cost. Intuitively,
the worst case distribution should assign higher probabilities for high demand values. Therefore,
the larger the χ2 value is, the higher the probabilities for high demand values in the worst case
distribution, and hence we should order more to minimize the worst case expected cost. As a result,
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the base-stock levels are higher for the robust models with greater χ2 values. However, if we set
the bin-size to 5 for the robust models, the base-stock levels are the same when the χ2 values are
equal to 1, 3 and 5. This observation indicates that the base-stock levels are less sensitive to the
χ2 values when we have larger bins.

We use Steps 6 and 7 to understand the performance of different models. The results are
summarized in Table 1. The first four columns correspond to the results for the stochastic models
using true distribution p and the three best-fitted distributions, respectively. The next four columns
show the results for the robust models. Note that the last column corresponds to the robust models
with bin-size 5 and χ2 values 1, 3 and 5. These three robust models have the same performance
for this example as they have the same base-stock levels. We show the expected cost for different
models with respect to the true distribution in the first line, which corresponds to the output of
Step 6. In the second line, we report the output of Step 7, i.e., the CVaR at 5% level for the costs
of m = 1000 distributions generated by p̂ plus random permutations of p− p̂. For the purpose of
comparison, the numbers in Table 1 are calculated by subtracting the cycle stock order cost, i.e.,(∑T

t=1 ct

)(∑D̄
i=1 ipi

)
, from the original cost or CVaR, and normalizing with respect to that of the

stochastic model using true distribution.

Stochastic Models Robust Models
True Best 2nd Best 3rd Best 〈5, 1 or
Dist Fit Fit Fit 〈3, 1〉 〈3, 3〉 〈3, 5〉 3 or 5〉

Cost 1 1.0595 1.1834 1.0582 1.0415 1.0211 1.0249 1.1511
CVaR 1 1.0486 1.1802 1.0511 1.0356 0.9774 0.9739 1.1662

Table 1: Performance of Different Models for the Instance in Figure 1

Obviously, the stochastic model using the true distribution gives the lowest expected cost. The
output of Step 7, CVaR, also indicates that this model is robust with respect to perturbations in
the input distribution as it has the third lowest CVaR, which is only 2.61% higher than the lowest
CVaR.

For the three stochastic models using fitted distributions, the models using the 1st and 3rd best-
fitted distributions have a very similar performance. The best-fit case has the best performance
among the fitted stochastic models as its CVaR is 0.25% better than the 3rd best-fit stochastic
model and the cost is only 0.13% higher than that. The performance of the model using the 2nd
best distribution is much worse compared with the other two. Its cost and CVaR values are at
least 12% higher than those of the remaining two models.

The three robust models with bin-size 3 outperform all of the stochastic models using fitted
distributions in terms of both optimality (cost) and robustness (CVaR). The robust models with
bin-size 5 also have better values of the cost and CVaR than the stochastic model using the 2nd best-
fitted distribution. In particular, the robust models with bin-size/χ2 value combinations of 〈3, 3〉
and 〈3, 5〉 are significantly better than the stochastic models using fitted distributions. They reduce
the cost by more than 3% and CVaR by more than 7% when comparing with the fitted stochastic
models. Among the robust models we prefer the model with bin-size/χ2 value combination 〈3, 3〉,
since it improves the cost by 0.38% at the price of a 0.35% increase in CVaR.
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There are mainly two reasons why the robust model outperforms the stochastic model with the
best-fit distribution. First, the sample size is relatively small and hence the fitted distributions
could be significantly different from the true distribution. The robust model, on the other hand,
recognizes the difference between the samples and the true distribution and corrects the error by
considering a set of distributions close to the empirical histogram. Second, although Crystal Ball
considers 16 families of commonly used parametric distributions, it is still possible that the true
distribution does not follow any one of these 16 families of distributions. In fact, most distribution
encountered in practice cannot be described using parametric families such as the uniform or Poisson
distributions. Therefore, as long as the true distribution does not belong to any parametric family
of distributions, the best-fit distribution does not match the true distribution even if the sample
size goes to infinity. The robust approach based on the chi-squared test, which does not make any
assumption regarding the parametric family of the underlying distribution, is much more flexible
in this perspective.

Next we repeated the experiment 10 times from Step 1 to Step 7, i.e., each time with a different
true distribution, demand data and cost parameters. Table 2 shows the average and standard
deviation of the cost and CVaR values for the 10 data samples for the stochastic model using the
true distribution, the stochastic model using the best-fitted distribution as well as the 6 robust
models already considered. All robust models have lower average and standard deviation of cost
and CVaR compared with the stochastic model using the best-fitted distribution. In terms of both
optimality (cost) and robustness (CVaR), the performance of our robust models is better on average
(smaller average) and more stable (smaller standard deviation) than the stochastic model using the
best-fitted distribution.

Stochastic Models Robust Models
True Best
Dist Fit 〈3, 1〉 〈3, 3〉 〈3, 5〉 〈5, 1〉 〈5, 3〉 〈5, 5〉

Cost Average 1 1.0902 1.0412 1.0361 1.0499 1.0725 1.0597 1.0570
Cost Std. Dev. 0 0.0893 0.0210 0.0302 0.0330 0.0736 0.0511 0.0519
CVaR Average 1 1.0894 1.0014 0.9745 0.9746 1.0648 1.0281 1.0212
CVaR Std. Dev. 0 0.1142 0.0507 0.0327 0.0355 0.0917 0.0639 0.0618

Table 2: Performance of Different Models in 10 Instances

The robust models with bin-size 3 have lower values of average and standard deviation of both
measures than the robust models with bin-size 5. Moreover, the robust models with higher χ2

values, e.g., when χ2 is set to 3 or 5, have lower CVaR than those with χ2 values set to 1. This
observation agrees with our understanding that increasing χ2 values can improve the robustness of
the models. However, it may also affect the cost of the models, e.g., the average cost for the 〈3, 5〉
robust model is 0.8% higher than that of the 〈3, 1〉 robust model.

The robust model with bin-size 3 and χ2 value 3 has the lowest average cost, lowest CVaR, and
lowest standard deviation of CVaR among all robust models, and its standard deviation of the cost
is the second lowest. This agrees with our suggestion drawn from Figure 1: the robust model with
bin-size/χ2 value combination 〈3, 3〉 should be the best among the robust models.
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Figure 4 shows the cost and CVaR values for the stochastic model using the best-fitted dis-
tribution and the 〈3, 3〉 robust model in each of the 10 instances. The cost values of the 〈3, 3〉
robust model are at least 7.5% lower than the stochastic model with the best-fitted distribution for
instances 5, 8, 9 and 10. The improvement in instances 9 and 10 even exceeds 20%. The cost values
of instances 2 and 3 are almost the same for both models. Instance 7 is the only case where the
cost of the robust model is more than 2% (2.04% to be exact) higher than the cost of the stochastic
model.

Instance

CVaR - Robust: <3,3>
CVaR - Stochastic: Best Fit
Cost - Robust: <3,3>
Cost - Stochastic: Best Fit
Cost & CVaR - Stochastic: True Distribution

Figure 4: The Stochastic Model Using Best-Fitted Distribution vs. the Robust Model with Param-
eters 〈3, 3〉 for 10 Instances

The values of CVaR for the robust model are less than one for 7 out of the 10 instances, they
are very close to one (at most 0.04% higher than one) for the other 2 instances, and the largest
value is 1.0150. On the other hand, the values of CVaR for the stochastic model with the best-fitted
distribution is less than one only for 3 instances and the largest value is 1.2923. We conclude that
the 〈3, 3〉 robust model is much more robust compared with the stochastic model using the true
distribution.

In order to understand the sensitivity of different models with respect to the number of samples
drawn from the true distribution, we ran 10 additional experiments in which we generated n = 40
samples from the true distribution in Step 2.

Table 3 summarizes the main statistics of the stochastic model using the best-fitted distribution
and our robust models. Similar to the result in Table 2 where we have 20 samples from the
true distribution, all of the robust models outperform the stochastic model with the best-fitted
distribution in both the average and standard deviation of the two measures.

Stochastic Models Robust Models
True Best
Dist Fit 〈3, 1〉 〈3, 3〉 〈3, 5〉 〈5, 1〉 〈5, 3〉 〈5, 5〉

Cost Average 1 1.0749 1.0278 1.0223 1.0364 1.0457 1.0317 1.0304
Cost Std. Dev. 0 0.0500 0.0232 0.0262 0.0346 0.0353 0.0297 0.0297
CVaR Average 1 1.0824 1.0146 0.9904 0.9832 1.0544 1.0170 1.0092
CVaR Std. Dev. 0 0.0768 0.0415 0.0272 0.0216 0.0445 0.0165 0.0126

Table 3: Performance of Different Models for 10 Instances and 40 Samples

As expected, the average cost of all robust models and the best fit stochastic model improves
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when the sample size increases from 20 to 40. The robust models with bin-size 5 have a slightly
greater improvement than the remaining models. For the other three statistics, we also observe
improvements for the stochastic model using the best-fitted distribution as well as the robust models
with bin-size 5 when the sample size is increased to 40. Again, the robust models with bin-size 5
show slightly better improvements in these statistics.

If we compare the robust models with different bin sizes, those with bin-size 3 still perform
better than those with bin-size 5. However, compared with the case of 20 samples, the differences
are slightly smaller for all statistics, which suggests that the robust models with bin-size 5 improve
faster as the sample size increases. Similar to the experiments with 20 samples, the increase in
χ2 values also helps to improve the robustness of the models, which is measured by CVaR. The
improvements in robustness as χ2 values increase are more significant for 40-sample experiments
than those with 20 samples. In addition, the increased χ2 may also increase the cost, e.g., the
average cost increases from 1.0278 to 1.0364 if we increase the χ2 value from 1 to 5 for the robust
models with bin-size 3.

The robust model with parameters 〈3, 3〉 has the lowest average cost, the second lowest average
CVaR and the second lowest standard deviation of the cost. Besides, its standard deviation of
CVaR is less than 3%. We still consider it as the most efficient model among all the robust models
and the stochastic model using the best-fitted distribution.

To summarize the numerical results, the computational experiments show that the robust mod-
els outperform the stochastic models using fitted distributions in terms of both optimality and
robustness. The robust models with a lower bin size perform better than those with a larger bin
size, but an increase in sample size may decrease the difference in performance caused by the choice
of the bin size. In addition, a higher χ2 value helps to increase the robustness but it may sacrifice
the cost of the robust models.

5.2 Comparison with the Robust Model Based on Delage and Ye (2010)

Delage and Ye (2010) propose a robust formulation for single-stage optimization problems, which
minimizes the worst-case expectation over a set of distributions defined by the estimates of the
mean µ0 and variance-covariance matrix Σ0 of the underlying distribution. Let ξ denote the κ-
dimensional vector of random parameters in the optimization problem and fξ the distribution of
ξ. The set of distributions considered in Delage and Ye (2010) is

D =
{
fξ ∈M

∣∣P (ξ ∈ S) = 1,
(
E[ξ]− µT

0

)
Σ−1

0

(
E[ξ]− µT

0

)
≤ γ1, E

[
(ξ − µ0)(ξ − µ0)T

]
� γ2Σ0

}
,

(13)
where M is the set of probability measures in Rκ, S ⊆ Rκ is a closed convex set containing the
support of ξ, and γ1 ≥ 0 and γ2 ≥ 1 are two parameters controlling the size of D. When µ0 and
Σ0 correspond to the sample mean and variance, Delage and Ye (2010) identify certain conditions
for γ1, γ2, and the sample size under which the probability that the distribution of ξ lies in D is
greater than a given confidence level.

Obviously, the set defined in (13) is also applicable to the robust inventory model discussed in
Section 2. Similarly to the computational settings in the previous part, suppose that the demand
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distribution is stationary and we have n samples drawn from the true distribution. Let µ̂ and σ̂2

denote the sample mean and variance, respectively. If the support of D̃t is contained in the set
{0, 1., ..., D̄} for any t, the set of distributions in (13) can be written as follows:

PDY =

P

∣∣∣∣∣∣
D̄∑

i=0

Pi = 1, −σ̂t
√

γ1 ≤
D̄∑

i=0

iPi − µ̂ ≤ σ̂
√

γ1,

D̄∑
i=0

(i− µ̂)2Pi ≤ γ2σ̂
2, P ≥ 0

 . (14)

Replacing Pt(dt) in (5) by PDY , we obtain a minimax robust inventory model. Without a fixed
ordering cost, the optimal policy is a base-stock policy and the base-stock levels can be computed
in a fashion similar to Theorem 4.2. Next, we apply this approach to all the instances generated
in Section 5.1, and use Steps 6 and 7 in Section 5.1 to evaluate its performance.

An important issue when applying the robust model based on Delage and Ye (2010) is to
determine the values of the parameters γ1 and γ2. We choose 10 pairs of γ1 and γ2 using a statistical
analysis similar to that in the computational experiments in Delage and Ye (2010). In particular,
we generated 1000 distributions as described in Step 1 in Section 5.1. Each of these distributions
is referred to as the jth distribution, j = 1, ..., 1000. The values of γ1 and γ2 are selected so that
set PDY in (14) defined by γ1, γ2 and the mean and variance of the jth distribution contains the
mean and variance of the (j + 1)th distribution with a confidence level cDY .5 Table 4 displays the
values of γ1 and γ2 for different cDY used in the computation.

cDY 99% 90% 80% 70% 60% 50% 40% 30% 20% 10%
γ1 0.1655 0.0668 0.0426 0.0261 0.0182 0.0115 0.0059 0.0028 0.0010 0.0002
γ2 1.3572 1.1916 1.1220 1.07450 1.0395 1.0034 0.9693 0.9315 0.8897 0.8381

Table 4: Values of γ1 and γ2 for the Robust Model Based on Delage and Ye (2010)

For the example discussed in Figure 1, we apply the robust model based on Delage and Ye for
different γ1 and γ2 corresponding to the values of cDY in Table 4. Table 5 shows the normalized
cost with respect to the true distribution in the second row and in the third row the values are the
CVaR at 5% level of the costs out of 1,000 distributions generated by permutations described in
Step 7 of Section 5.1.

cDY 99% 90% 80% 70% 60% 50% 40% 30% 20% 10%
Cost 1.2142 1.1505 1.1403 1.1352 1.1191 1.1206 1.1122 1.1003 1.0951 1.0868
CVaR 1.0693 1.0461 1.0423 1.0421 1.0380 1.0425 1.0385 1.0385 1.0550 1.0600

Table 5: Performance of the Robust Model Based on Delage and Ye (2010) for the Instance in
Figure 1

In general, the expected cost, which measures the optimality of the model, is decreasing in
the confidence level cDY , which is expected since the parameters γ1 and γ2, and hence the size of
the distributional set, are decreasing in cDY . However, the value of CVaR, which measures the
robustness of the model, is not increasing in cDY . The largest CVaR is obtained when cDY =

5In Delage and Ye (2010), the means and variances are computed from financial market data in 30 consecutive
days, and the confidence level is 99% confidence level.
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99%, which implies that the corresponding distributional set is too large compared with the set of
distributions generated by the permutations.

Compared with Table 1, for most parameters, except for cDY = 99%, the robust model based
on Delage and Ye (2010), has lower expected cost and CVaR than our robust model with bin-size
5. However, our model with bin-size 3 outperforms all results shown in Table 5. In particular,
the performance measures for the 〈3, 3〉 robust model are 1.0211 and 0.9774 respectively, while the
lowest expected cost for the model based on Delage and Ye (2010) is 1.0868 (when cDY = 10%)
and the lowest CVaR is 1.0380 (when cDY = 60%).

The robust model based on Delage and Ye (2010) with parameters in Table 5 is also applied
to the 20- and 40-sample instances in Tables 2 and 3. The statistics corresponding to these are
presented in Tables 6 and 7, respectively.

cDY 99% 90% 80% 70% 60% 50% 40% 30% 20% 10%
Cost Average 1.135 1.125 1.122 1.115 1.117 1.114 1.110 1.112 1.114 1.114
Cost Std. Dev. 0.049 0.052 0.050 0.047 0.045 0.047 0.045 0.053 0.061 0.064
CVaR Average 0.957 0.953 0.953 0.951 0.955 0.956 0.957 0.962 0.965 0.969
CVaR Std. Dev. 0.119 0.115 0.115 0.115 0.120 0.122 0.123 0.130 0.134 0.137

Table 6: Performance of the Robust Model Based on Delage and Ye (2010) for the 20-Sample
Instances in Table 2

cDY 99% 90% 80% 70% 60% 50% 40% 30% 20% 10%
Cost Average 1.144 1.130 1.126 1.118 1.115 1.109 1.106 1.103 1.100 1.100
Cost Std. Dev. 0.037 0.031 0.030 0.029 0.027 0.027 0.028 0.026 0.025 0.025
CVaR Average 1.009 1.004 1.002 1.001 1.001 1.000 1.000 1.002 1.001 1.005
CVaR Std. Dev. 0.067 0.066 0.065 0.064 0.064 0.063 0.062 0.063 0.061 0.069

Table 7: Performance of the Robust Model Based on Delage and Ye (2010) for the 40-Sample
Instances in Table 3

First, we compare the performance of our robust model in Section 4 with the robust model
based on Delage and Ye (2010) for the 20-sample instances. The average cost of the latter is from
1.110 to 1.135 while the corresponding cost in Table 2 is less than 1.073. On the other hand, the
model based on Delage and Ye (2010) have lower average CVaR, which varies from 0.951 to 0.969,
than our robust model, whose average CVaR is from 0.975 to 1.065. As for the standard deviations,
our robust model has a lower standard deviation in CVaR, and its standard deviation in cost is
comparable to the model based on Delage and Ye (2010).

We now discuss the 40-sample instances. The average cost of the model based on Delage and Ye
(2010) is almost the same as the 20-sample instances, but these statistics of our robust model are
on average 1.9% lower in the 20-sample instances. Moreover, our robust model has similar values of
CVaR for both 20- and 40-sample instances, while the CVaR of the robust model based on Delage
and Ye (2010) increases 4.6% on average when the sample size increases to 40. The two types of
robust models have similar standard deviation in cost, but our robust model has a lower standard
deviation in CVaR.
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The numerical results indicate that our robust model outperforms with respect to the solution
quality, which is mainly due to the distributional set derived from the chi-square test carrying more
information about the shape of the distribution compared with the distributional set (14) defined
only by the sample mean and variance. The model based on Delage and Ye (2010) is more robust,
but the difference in robustness of these two models decreases as we increase the sample size from
20 to 40.

In addition, we identified that the 〈3, 3〉 robust model based on the chi-square test has the best
performance among all of the six combinations of the parameters. For 20-sample instances, its
average cost is 7.3% lower than the lowest cost for the model based on Delage and Ye (2010) (when
cDY = 40%) and the corresponding average CVaR is only 2.3% higher than the lowest CVaR of that
model (when cDY = 70%). For 40-sample instances, the average cost and CVaR of the 〈3, 3〉 robust
model are lower than the lowest values of the model based on Delage and Ye (2010) (achieved when
cDY = 10% and cDY = 50%, respectively) by 7.8% and 1.0%, respectively. We conclude that the
〈3, 3〉 robust model achieves a better tradeoff between optimality and robustness than the model
based on Delage and Ye (2010).

6. Conclusions and Extensions

In this paper, we propose a robust stochastic model for the multi-period lot sizing problem, in
which the demand distribution is unknown and the only available information is historical data.
The convergence results for the chi-square test based models suggest that the solutions to the robust
approach are very close to the optimal stochastic programming solutions when the sample size is
sufficiently large. When the sample size is relatively small, the extensive numerical results show
that the robust model still obtains a close-to-optimal solution whose performance is insensitive to
the disturbances in demand distributions. This robust framework based on historical data can be
extended to many more general finite-horizon dynamic programming problems, and the convergence
properties can also be extended to more general problems.

Although we consider backorder models, most of our results can be extended to lost sales models.
In particular, for lost-sales models with only linear procurement cost and under the same technical
assumptions, the optimal policy under the robust model is a state-dependent base-stock policy.

A. Appendix: Convergence of Robust Models Based on the Chi-
Square Test

We assume that the demand random variables D̃1, D̃2, . . . , D̃T are subject to some multivariate
distributions. Although the distribution may not be known, we assume that histograms pertaining
to the robust model are obtained from samples from these distributions. We study the behavior of
cost-to-go functions as the number of samples increases.

Let d̃t =
[
D̃1, ..., D̃t−1

]
, and let Ft

(
Dt

∣∣∣d̃t = dt

)
denote the conditional cumulative distribution

function of demand D̃t given realized demand dt from periods 1 to t − 1. Assuming that the
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conditional distribution function is known for each t and dt, we can solve the corresponding dynamic
programming problem, and obtain V̄ (xt,dt) for each period t,

V̄t(xt,dt) = min
yt≥xt

{∫
Dt

(
Ct(xt, yt, Dt) + θV̄t+1 (yt −Dt, [dt, Dt])

)
dFt

(
Dt

∣∣∣d̃t = dt

)}
,

where t = 1, ..., T .
We investigate how accurately the value functions Vt(xt,dt) of our robust model approximate

the true cost-to-go function V̄ (xt,dt) if histograms are based on samples.
We start by analyzing the convergence of the robust model as χ2

t converges to 0. Let V̂t(xt,dt)
denote the cost-to-go function of the stochastic model with the distribution defined by

P
(
D̃τ = Dτ,i

∣∣∣d̃τ = dτ

)
=

Nτ,i(dt)
nτ (dt)

, τ = t, ..., T. (15)

Formally,

V̂t(xt,dt) = min
yt≥xt

{∑
i

Nt,i(dt)
nt(dt)

(
Ct(xt, yt, Dt,i) + θV̂t+1 (yt −Dt,i, [dt, Dt,i])

)}
, t = 1, ..., T.

Proposition A.1. If VT+1(·) = V̂T+1(·), then for any xt, dt, and t, we have

lim
χ2

τ→0,∀τ≥t
Vt(xt,dt) = V̂t(xt,dt).

Proof. Please refer to the Online Supplement.

Now suppose that for each period t, we have a sequence of samples. For any k = 1, 2, ... we
have the set of mk

t available samples for period t,

dk
t =

{
dk

t,1, ..., d
k
t,mk

t

}
.

The samples are drawn from the distribution D̃t conditioned on realized demand dt. Therefore,
given realized demand dt from periods 1 to t − 1, and the kth sample set dk

t for period t, we can
construct a histogram such that the total number of samples selected in the histogram is nk

t (dt),
the boundaries of bins are

{
Dk

t,1, ..., D
k
t,Mk

t

}
, and the number of samples falling in the ith bin

[Dk
t,i, D

k
t,i+1) is denoted by Nk

t,i(dt). This histogram naturally defines an empirical distribution

with the conditional cumulative distribution function F k
t

(
Dt

∣∣∣d̃t = dt

)
defined by

F k
t

(
Dt

∣∣∣d̃t = dt

)
=

1
nk

t (dt)

i∗(Dt)∑
i=1

Nk
t,i(dt),

where i∗ = i∗(Dt) is such that Dk
t,i∗ ≤ Dt < Dk

t,i∗+1.
Note that the kth set of samples dk

t , t = 1, ..., T , also defines a robust model V k
t (xt,dt) based

on the just described parameters nk
t (dt) and Nk

t,i(dt). In the remainder of this section we analyze
under what conditions V k

t (xt,dt) converge to V̄t(xt,dt), which denotes the cost-to-go function of
the stochastic model with respect to true distributions. We always assume that the distribution of
D̃t has finite support [0, Dmax

t ] for any t, and VT+1(·) = V̂T+1(·) = V̄T+1(·). We first study the case
with general distributions, and we derive stronger results when the distributions are discrete.
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A.1 General Distributions

We first show convergence under general distributions. We only need the distribution functions of
samples to converge pointwise to the distribution function of the true distribution and χ2

t → 0.

Proposition A.2. Suppose that for any dt and t we have

lim
k→∞

F k
t

(
Dt

∣∣∣d̃t = dt

)
= Ft

(
Dt

∣∣∣d̃t = dt

)
for every Dt. If there is no fixed procurement cost, then

lim
k→∞

lim
χ2

τ→0,∀τ≥t
V k

t (xt,dt) = V̄t(xt,dt).

Furthermore, the convergence is uniform with respect to k.

Proof. Please refer to the Online Supplement.

In the proof, we need some concepts from measure theory and a known result. A sequence of
measures µk converge to a measure µ weakly if

∫
fdµk

k→∞−→
∫

fdµ for every continuous bounded

function f . A sequence of measures µk converge to a measure µ setwise if µk(B) k→∞−→ µ(B) for
every measurable set B.

It is well known that convergence in distribution does not imply setwise convergence of the
underlying probability measures. Indeed, convergence in distribution is equivalent to weak conver-
gence. It is not difficult to see that setwise convergence implies weak convergence.

The following result can be found in Royden (1988).

Proposition A.3. Let µk be a sequence of measures converging setwise to a measure µ. Let
{fk}k, {gk}k be two sequences of measurable functions converging pointwise to f and g respectively.
Furthermore, let |fk| ≤ gk for every k and limk

∫
gkdµk =

∫
gdµ < ∞. Then

lim
k

∫
fkdµk =

∫
fdµ.

If Ft is continuous, then the following result is obtained.

Corollary A.1. If for any dt and t, F k
t

(
·
∣∣∣d̃t = dt

)
converge in distribution to Ft

(
·
∣∣∣d̃t = dt

)
and Ft

(
·
∣∣∣d̃t = dt

)
is continuous, then

lim
k→∞

lim
χ2

τ→0,∀τ≥t
V k

t (xt,dt) = V̄t(xt,dt).

Proof. Convergence in distribution implies that F k
t

(
·
∣∣∣d̃t = dt

)
converge to Ft

(
·
∣∣∣d̃t = dt

)
at any

point Dt where Ft

(
·
∣∣∣d̃t = dt

)
is continuous. Since by assumption Ft

(
·
∣∣∣d̃t = dt

)
is continuous, it

follows that F k
t

(
·
∣∣∣d̃t = dt

)
converge pointwise to Ft

(
·
∣∣∣d̃t = dt

)
and thus we can apply Proposi-

tion A.2.
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Now suppose that the demand distributions for each time period are independent, and let Ft(Dt)
denote the cumulative distribution function of D̃t. Let {dt,1, dt,2, ...} denote a sequence of random
samples drawn from the true distribution D̃t. We can define the kth sample set for period t as
dk

t = {dt,1, ...., dt,k}. Consider the robust model independent of realized demand. The histogram
for time period t is based on dk

t with the bins’ boundaries being all distinct elements in this set.
The corresponding empirical distribution is defined by

F k
t (Dt) =

1
k
× |{dt,j : dt,j ≤ Dt, j = 1, ..., k}|.

Let V k
t (xt) denote the cost-to-function of the robust model defined by the histogram based on the

kth sample set, and let V̄t(xt) denote the cost-to-go function corresponding to the stochastic model
given distribution functions Ft(Dt).

Corollary A.2. If Ft is continuous and there is no fixed procurement cost, then

lim
k→∞

lim
χ2

τ→0,∀τ≥t
V k

t (xt) = V̄t(xt) a.s.

Proof. As k → ∞, the Glivenko-Cantelli theorem (see, e.g., Billingsley 1986) shows that F k
t (Dt)

converges to Ft(Dt) uniformly a.s. at every point Dt where Ft(Dt) is continuous. The result follows
immediately from Corollary A.1.

A.2 Discrete Distributions

Under the setting of Proposition A.2, consider the case of D̃t being subject to a discrete distribution
with finite support {Dt,1, ..., Dt,Mt} ⊂ [0, Dmax

t ], and let P
(
D̃t = Dt,i

∣∣∣d̃t = dt

)
= pt,i(dt). Without

loss of generality, we let this finite support be the boundaries of the bins for all the histograms
associated with time period t. A result similar to Proposition A.2 is next proved for the robust
stochastic model with both fixed and variable procurement cost.

Proposition A.4. Suppose that for any dt, i and t, Nk
t,i(dt)/nk

t (dt) converge to pt,i(dt). Then
with fixed and variable procurement cost, we have

lim
k→∞

lim
χ2

τ→0,∀τ≥t
V k

t (xt,dt) = V̄t(xt,dt).

Proof. Please refer to the Online Supplement.

So far we assumed that χ2
t converges to zero. Next we establish a convergence result for any

fixed χ2
t . We must require that the number of samples goes to infinity.

Proposition A.5. Suppose that for any dt, i and t, Nk
t,i(dt)/nk

t (dt) converge to pt,i(dt), and that
the number of samples nk

t (dt) converges to infinity. Then for any fixed χ2
t and with fixed and

variable procurement cost we have

lim
k→∞

V k
t (xt,dt) = V̄t(xt,dt).
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Proof. Please refer to the Online Supplement.

Now consider the setting of Corollary A.2, where the demand distributions are assumed to
be independent, and the kth sample set is defined to be the first k elements in a sequence of
independent random samples drawn from the true distribution. Using Proposition A.4, we can
obtain a result analogous to Corollary A.2. We also establish the rate of convergence.

Corollary A.3. With fixed and variable procurement cost, we have lim
k→∞

V k
t (xt) = V̄t(xt) a.s., and

the rate of convergence is O(1/
√

k).

Proof. Please refer to the Online Supplement.
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Proof of Lemma 3.1. Consider the function

g(U,d) = max
P∈P(d)

UTP

Note that f(y,d) = g(U(y,d),d).
We first show that g(U,d) is an increasing function of U for any given d. Suppose that U1 ≤ U2

and g(U1,d) = UTP∗1. Since P∗1 ≥ 0,

g(U1,d) = UT
1 P∗1 ≤ UT

2 P∗1 ≤ g(U2,d).

Consider now the value of g(U+Ke), where e is the vector with all entries of 1. Let P∗ denote
the maximizer of g(U + Ke,d). We have

g(U + Ke,d) = (U + Ke)TP∗ = UTP∗ + KeTP∗ ≤ g(U,d) + K, (16)

where the last inequality follows from g(U,d) ≥ UTP∗ and eTP∗ =
∑

i P
∗
i = 1 as P∗ defines a

distribution.
For any y1 ≤ y2 and λ ∈ [0, 1], since Ui(y,d) is K-convex in y for any given d, we have

Ui((1− λ)y1 + λy2,d) ≤ (1− λ)Ui(y1,d) + λUi(y2,d) + λK.

As g(U,d) is increasing in U,

g(U((1− λ)y1 + λy2,d),d) ≤ g((1− λ)U(y1,d) + λU(y2,d) + λKe,d).

It is straightforward to show that g(U,d) is a convex function of U, as it is the maximum of linear
functions of U. Therefore,

g((1− λ)U(y1,d) + λU(y2,d) + λKe,d) ≤ (1− λ)g(U(y1,d),d) + λg(U(y2,d) + Ke,d).

According to (16) we have

g(U(y2,d) + Ke,d) ≤ g(U(y2,d),d) + K.

As a result, it follows

g(U((1− λ)y1 + λy2,d),d) ≤ (1− λ)g(U(y1,d),d) + λg(U(y2,d),d) + λK,

and therefore f(y,d) = g(U(y,d),d) is a K-convex function in y.

Proof of Proposition 4.1. The optimality equation defined in (5) is equivalent to

Vt(xt,dt) = min
yt≥xt,Ut

KI(yt − xt) + ct(yt − xt) + max
Pt∈Pt(dt)

∑
i

Pt,iUt,i

s.t. Ut,i ≥ ht (yt −Dt,i) + θVt+1(yt −Dt,i, [dt, Dt,i]) for every i
Ut,i ≥ bt (yt −Dt,i) + θVt+1(yt −Dt,i, [dt, Dt,i]) for every i.

(17)
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According to Lemma 4.1, the maximization problem maxPt∈Pt(dt)

∑
i Pt,iUt,i is the second order

cone problem and hence it is equivalent to its Lagrangian dual

min
pt,ut,λt

pT
t bt − 2

∑
i

ut,iNt,i(dt) + λt

(
nt(dt)2 + nt(dt)χ2

t

)
s.t.

∥∥∥∥[ pT
t − Ut,iAt,i − λt

2ut,i

]∥∥∥∥ ≤ pT
t − Ut,iAt,i + λt for every i,

(18)

where At,i denotes the ith row of matrix At (see, e.g., Lobo et al. 1998).
Note that (9) is obtained by replacing the maximization problem in (17) by (18). Therefore,

the proposition is equivalent to proving that problem (9) is equivalent to problem (17). Let z∗1 and
z∗2 denote the optimal values of problems (17) and (9), respectively.

We first show that z∗1 ≥ z∗2 . Let y∗t , U∗
t and P∗t denote an optimal solution for problem (17).

Problem maxPt∈Pt(dt)

∑
i Pt,iUt,i has a finite optimal value if we set Ut,i to U∗

t,i. Therefore, there
exists an optimal solution p∗t , u∗t , and λ∗t for its dual, problem (18), and the corresponding optimal
value is z∗1 −KI(y∗t − xt) − ct(y∗t − xt). Obviously y∗t , U∗

t , p∗t , u∗t , and λ∗t is a feasible solution to
(9) with the objective value z∗1 , and therefore we have z∗1 ≥ z∗2 .

It remains to show z∗1 ≤ z∗2 . Let y∗, U∗, p∗, u∗ and λ∗ be an optimal solution for prob-
lem (9). Problem (18) with Ut,i = U∗

t,i has a finite optimal value, and therefore the problem
maxPt∈Pt(dt)

∑
i Pt,iU

∗
t,i has an optimal solution P∗ with the optimal cost z∗2−KI(y∗t −xt)−ct(y∗t −

xt). Since y∗, U∗, and P∗ give a feasible solution to problem (17) and the corresponding objective
value is z∗2 , we have z∗1 ≤ z∗2 .

Proof of Proposition A.1. The proposition clearly holds for t = T + 1. Suppose that it holds for
any τ such that τ > t. To simplify notation, let

Ut,i(xt, yt) = Ct(xt, yt, Dt,i) + θVt+1

(
(yt −Dt,i)+, [dt, Dt,i]

)
(19)

and therefore

Vt(xt,dt) = min
yt≥xt

max
Pt∈Pt(dt)

{∑
i

Pt,iUt,i(xt, yt)

}
t = 1, ..., T.

According to the definition of Pt(dt) in (8), we have

Pt(dt) ⊂
{
Pt

∣∣∣∣(Nt,i(dt)− nt(dt)Pt,i)2

nt(dt)Pt,i
≤ χ2

t for every i

}
.

Let P t,i and P t,i correspond to the solutions of (Nt,i−ntPt,i)
2

ntPt,i
= χ2

t , i.e.,

P t,i(dt) =
Nt,i(dt)
nt(dt)

+
χ2

t

2nt(dt)
−
√

4Nt,i(dt)χ2
t + (χ2

t )2

2nt(dt)
,

P t,i(dt) =
Nt,i(dt)
nt(dt)

+
χ2

t

2nt(dt)
+

√
4Nt,i(dt)χ2

t + (χ2
t )2

2nt(dt)
.

It follows directly that

Pt(dt) ⊂ Pt(dt) =
{
Pt(dt)

∣∣P t,i(dt) ≤ Pt,i ≤ P t,i(dt) for every i
}

.
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Therefore we obtain

max
Pt∈Pt(dt)

{∑
i

Pt,iUt,i(xt, yt)

}
≤ max

Pt∈Pt(dt)

{∑
i

Pt,iUt,i(xt, yt)

}
=

∑
i:Ut,i(xt,yt)≤0

P t,i(dt)Ut,i(xt, yt) +
∑

i:Ut,i(xt,yt)>0

P t,i(dt)Ut,i(xt, yt).

Minimizing both sides over {xt|yt ≥ xt} yields

Vt(xt,dt) = min
yt≥xt

max
Pt∈Pt(dt)

{∑
i

Pt,iUt,i(xt, yt)

}

≤ min
yt≥xt

 ∑
i:Ut,i(xt,yt)≤0

P t,i(dt)Ut,i(xt, yt) +
∑

i:Ut,i(xt,yt)>0

P t,i(dt)Ut,i(xt, yt)

 .

Let y∗t ≥ xt be a minimizer of V̂t(xt,dt). Then

Vt(xt,dt) ≤
∑

i:Ut,i(xt,y∗t )≤0

P t,i(dt)Ut,i(xt, y
∗
t ) +

∑
i:Ut,i(xt,y∗t )>0

P t,i(dt)Ut,i(xt, y
∗
t ). (20)

Taking the limit on both sides yields

lim
χ2

τ→0,
∀τ≥t

Vt(xt,dt) ≤ lim
χ2

τ→0,
∀τ≥t

 ∑
i:Ut,i(xt,y∗t )≤0

P t,i(dt)Ut,i(xt, y
∗
t ) +

∑
i:Ut,i(xt,y∗t )>0

P t,i(dt)Ut,i(xt, y
∗
t )

 .

Note that
lim

χ2
t→0

P t,i(dt) = lim
χ2

t→0
P t,i(dt) =

Nt,i(dt)
nt(dt)

,

and by the induction assumption

lim
χ2

τ→0,∀τ≥t
Ut,i(xt, y

∗
t ) = Ct(xt, y

∗
t , Dt,i) + θV̂t+1

(
(y∗t −Dt,i)+, [dt, Dt,i]

)
.

By the definition of y∗t ,
lim

χ2
τ→0,∀τ≥t

Vt(xt,dt) ≤ V̂t(xt,dt).

Since the distribution defined by (15) is in Pt(dt), it is easy to verify that V̂t(xt,dt) ≤ Vt(xt,dt).
Therefore, we have

lim
χ2

τ→0,∀τ≥t
Vt(xt,dt) = V̂t(xt,dt).

Proof of Proposition A.2. Let V̂ k
t (xt,dt) denote the cost-to-go function of the stochastic model with

respect to the empirical distribution F k
τ

(
Dτ

∣∣∣d̃τ = dτ

)
for any τ ≥ t. As shown in Proposition

A.1 we have

lim
χ2

τ→0,∀τ≥t
V k

t (xt,dt) = V̂ k
t (xt,dt)

= min
yt≥xt

{∫ Dmax
t

0

(
Ct(xt, yt, Dt) + θV̂ k

t+1(yt −Dt, [dt, Dt])
)

dF k
t

(
Dt

∣∣∣d̃t = dt

)}
.
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Therefore, it is sufficient to show that

lim
k→∞

V̂ k
t (xt,dt) = V̄t(xt,dt).

Let us fix x0. Then under an optimal policy the inventory is always within[
x0 −

T∑
τ=1

Dmax
τ , x0 +

T∑
τ=1

Dmax
τ

]
. (21)

Therefore we can assume that yt and xt = yt− D̃t are always within this range for any t. It is easy
to show by induction that

∣∣∣V̂ k
t (xt,dt)

∣∣∣ ≤ M(x0) < ∞, where M(x0) is a constant depending only
on x0.

Note that as VT+1(·) = V̂T+1(·) = V̄T+1(·), the proposition holds for period T +1. Suppose that
for any τ > t, V̂ k

τ (xτ ,dτ ) → V̄τ (xτ ,dτ ) pointwise.
Let

fk
t (xt, yt,dt) =

∫ Dmax
t

0

(
Ct(xt, yt, Dt) + θV̂ k

t+1(yt −Dt, [dt, Dt])
)

dF k
t

(
Dt

∣∣∣d̃t = dt

)
,

ft(xt, yt,dt) =
∫ Dmax

t

0

(
Ct(xt, yt, Dt) + θV̄t+1(yt −Dt, [dt, Dt])

)
dFt

(
Dt

∣∣∣d̃t = dt

)
.

(22)

Note that V̂ k
t (xt,dt) = minyt≥xt fk

t (xt, yt,dt) and V̄t(xt,dt) = minyt≥xt ft(xt, yt,dt).
Let µdt

t,k be the Lebesgue-Stieltjes measure based on F k
t

(
·
∣∣∣d̃t = dt

)
,6 and we define similarly

µdt
t with respect to Ft

(
·
∣∣∣d̃t = dt

)
. By assumption, F k

t converge pointwise to Ft at any point. It

is now easy to see that as a result µdt
t,k converge setwise to µdt

t .
Let now gt,k(Dt) = M(x0), i.e., a sequence of constant functions, and fdt,yt

t,k (Dt) = V̂ k
t+1(yt −

Dt, [dt, Dt]). By definition we have
∣∣∣fdt,yt

t,k (Dt)
∣∣∣ ≤ gt,k(Dt). Let also gt(Dt) = M(x0). Clearly

gt,k converge pointwise to gt and by the induction assumption fdt,yt

t,k (Dt) converge pointwise to
fdt,yt

t (Dt) defined by fdt,yt
t (Dt) = V̄t+1(yt −Dt, [dt, Dt]).

Furthermore,
∫

gt,kdµdt
t,k = M(x0) =

∫
gtdµdt

t . Thus we can apply Proposition A.3, which
implies

lim
k→∞

∫ Dmax
t

0
V̂ k

t+1(yt −Dt, [dt, Dt])dF k
t

(
Dt

∣∣∣d̃t = dt

)
=
∫ Dmax

t

0
V̄t+1(yt −Dt, [dt, Dt])dFt

(
Dt

∣∣∣d̃t = dt

)
.

Note that this holds at every yt and dt.
Since setwise convergence implies weak convergence and since Ct(xt, yt, Dt) is continuous and

bounded, by weak convergence we obtain

lim
k→∞

∫ Dmax
t

0
Ct(xt, yt, Dt)dF k

t

(
Dt

∣∣∣d̃t = dt

)
=
∫ Dmax

t

0
Ct(xt, yt, Dt)dFt

(
Dt

∣∣∣d̃t = dt

)
.

6 µdt
t,k([a, b]) = F k

t

“
b

˛̨̨
d̃t = dt

”
−F k

t

“
a

˛̨̨
d̃t = dt

”
, and then µdt

t,k is extended by the Riesz representation theorem.
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Therefore, we have
lim

k→∞
fk

t (xt, yt,dt) = ft(xt, yt,dt).

Note that if finite convex functions fk(x) → f(x) pointwise, then fk(x) → f(x) uniformly on
each compact subset of the domain (see, e.g., Rockafellar 1996). Since there are no fixed costs, both
fk

t (xt, yt,dt) and ft(xt, yt,dt) are convex in both xt and yt. Therefore, given dt, fk
t (xt, yt,dt) →

ft(xt, yt,dt) pointwise implies that fk
t (xt, yt,dt) → ft(xt, yt,dt) uniformly.

Let yk
t (xt,dt) and y∗t (xt,dt) denote the minimizers of V̂ k

t (xt,dt) and V̄t(xt,dt), respectively.
Clearly, V̂ k

t (xt,dt) = fk
t (xt, y

k
t (xt,dt),dt) and V̄t(xt,dt) = ft(xt, y

∗
t (xt,dt),dt).

According to uniform convergence, for any ε > 0, there exists a positive integer K such that∣∣∣fk
t (xt, yt,dt)− ft(xt, yt,dt)

∣∣∣ < ε

for any xt, yt, and k > K. Therefore,

ft(xt, y
k
t (xt,dt),dt)− ε < fk

t (xt, y
k
t (xt,dt),dt) = V̂ k

t (xt,dt).

Note that ft(xt, y
k
t (xt,dt),dt) ≥ ft(xt, y

∗
t (xt,dt),dt) = V̄t(xt,dt) and therefore we have

V̄t(xt,dt)− ε = ft(xt, y
k
t (xt,dt),dt)− ε < V̂ k

t (xt,dt).

Also note that
fk

t (xt, y
∗
t (xt,dt),dt) ≥ fk

t (xt, y
k
t (xt,dt),dt) = V̂ k

t (xt,dt)

and
fk

t (xt, y
∗
t (xt,dt),dt) < ft(xt, y

∗
t (xt,dt),dt) + ε = V̄t(xt,dt) + ε.

Thus
V̂ k

t (xt,dt) < V̄t(xt,dt) + ε.

As a result, for any xt and k > K, we have∣∣∣V̂ k
t (xt,dt)− V̄t(xt,dt)

∣∣∣ < ε,

i.e., V̂ k
t (xt,dt) → V̄t(xt,dt) uniformly for any given dt, which completes the induction step.

Proof of Proposition A.4. Consider fk
t (xt, yt,dt) and ft(xt, yt,dt) defined in (22). Following the

proof of Proposition A.2, it is sufficient to show that fk
t (xt, yt,dt) → ft(xt, yt,dt) uniformly for any

fixed dt, under the induction assumption that V̂ k
τ (xτ ,dτ ) → V̄τ (xτ ,dτ ) uniformly for any given dτ

and τ > t.
As k → ∞, Nk

t,i(dt)/nk
t (dt) → pt,i(dt) uniformly with respect to i (note that there are only

finitely many i’s). That is, for any ε > 0, there exists a positive integer K1 such that∣∣∣∣∣Nk
t,i(dt)

nk
t (dt)

− pt,i(dt)

∣∣∣∣∣ < ε

for any i and k > K1.
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The induction assumption implies that for any ε > 0, there exists a positive integer K2 such
that ∣∣∣V̂ k

t+1(xt+1,dt+1)− V̄t+1(xt+1,dt+1)
∣∣∣ < ε

for any xt+1 and k > K2.
Consider k > max{K1,K2}. Given dt, for any xt and yt we have∣∣∣fk

t (xt, yt,dt)− ft(xt, yt,dt)
∣∣∣

=

∣∣∣∣∣
Mt∑
i=1

Nk
t,i(dt)

nk
t (dt)

(
ht(yt −Dt,i)+ + bt(yt −Dt,i)− + θV̂ k

t+1(yt −Dt,i, [dt, Dt,i])
)

−
Mt∑
i=1

pt,i(dt)
(
ht(yt −Dt,i)+ + bt(yt −Dt,i)− + θV̄t+1(yt −Dt,i, [dt, Dt,i])

)∣∣∣∣∣
≤

∣∣∣∣∣
Mt∑
i=1

(
ht(yt −Dt,i)+ + bt(yt −Dt,i)−

)(Nk
t,i(dt)

nk
t (dt)

− pt,i(dt)

)∣∣∣∣∣
+ θ

∣∣∣∣∣
Mt∑
i=1

(
Nk

t,i(dt)

nk
t (dt)

V̂ k
t+1(yt −Dt,i, [dt, Dt,i])− pt,i(dt)V̄t+1(yt −Dt,i, [dt, Dt,i])

)∣∣∣∣∣ .
According to (21), |ht(yt − Dt,i)+ + bt(yt − Dt,i)−| ≤ M ′(x0) < ∞ where M ′(x0) is a constant
depending on the initial net inventory x0. Also note that

∣∣∣Nk
t,i(dt)/nk

t (dt)− pt,i(dt)
∣∣∣ < ε, and

hence∣∣∣∣∣
Mt∑
i=1

(
ht(yt −Dt,i)+ + bt(yt −Dt,i)−

)(Nk
t,i(dt)

nk
t (dt)

− pt,i(dt)

)∣∣∣∣∣ <
Mt∑
i=1

M ′(x0)ε = MtM
′(x0)ε.

Since yt and Dt,i are bounded again by (21),
∣∣∣V̂ k

t+1(xt+1,dt+1)
∣∣∣ ≤ M(x0) < ∞. Also note that∑Mt

i=1 pt,i(dt) = 1,
∣∣∣V̂ k

t+1(xt+1,dt+1)− V̄t+1(xt+1,dt+1)
∣∣∣ < ε, and

∣∣∣Nk
t,i(dt)/nk

t (dt)− pt,i(dt)
∣∣∣ < ε.

We obtain ∣∣∣∣∣
Mt∑
i=1

(
Nk

t,i(dt)

nk
t (dt)

V̂ k
t+1(yt −Dt,i, [dt, Dt,i])− pt,i(dt)V̄t+1(yt −Dt,i, [dt, Dt,i])

)∣∣∣∣∣
≤

Mt∑
i=1

∣∣∣V̂ k
t+1(yt −Dt,i, [dt, Dt,i])

∣∣∣ ∣∣∣∣∣Nk
t,i(dt)

nk
t (dt)

− pt,i(dt)

∣∣∣∣∣
+

Mt∑
i=1

pt,i(dt)
∣∣∣V̂ k

t+1(yt −Dt,i, [dt, Dt,i])− V̄t+1(yt −Dt,i, [dt, Dt,i])
∣∣∣

<

Mt∑
i=1

M(x0)ε + ε = (MtM(x0) + 1)ε.

As a result, ∣∣∣fk
t (xt, yt,dt)− ft(xt, yt,dt)

∣∣∣ < MtM
′(x0)ε + θ(MtM(x0) + 1)ε,

and hence fk
t (xt, yt,dt) converge uniformly to ft(xt, yt,dt).
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Proof of Proposition A.5. Since V k
T+1(·) = V̄T+1(·), the proposition holds for period T +1. Suppose

that for any τ > t, V̂ k(xτ ,dτ ) → V̄τ (xτ ,dτ ) uniformly for any fixed dτ . Consider period t.
According to the definition of the distribution set Pk

t (dt) for V k
t (xt,dt), similar to the proof of

Proposition A.1, we have

Pk
t (dt) ⊂ P

k
t (dt) =

{
Pt

∣∣∣P k
t,i(dt) ≤ Pt,i ≤ P

k
t,i(dt) for every i

}
where

P k
t,i(dt) =

Nk
t,i(dt)

nk
t (dt)

+
χ2

t

2nk
t (dt)

−

√
4Nk

t,i(dt)χ2
t + (χ2

t )2

2nk
t (dt)

,

P
k
t,i(dt) =

Nk
t,i(dt)

nk
t (dt)

+
χ2

t

2nk
t (dt)

+

√
4Nk

t,i(dt)χ2
t + (χ2

t )2

2nk
t (dt)

.

(23)

Consider V̂ k
t (xt,dt) as defined in Propositions A.2 and A.4, which denotes the cost-to-go func-

tion of the stochastic model under the empirical distribution. Note that V̂ k
t (xt,dt) ≤ V k

t (xt,dt),
and hence

lim
k→∞

V̂ k
t (xt,dt) ≤ lim

k→∞
V k

t (xt,dt).

Proposition A.4 shows that limk→∞ V̂ k
t (xt,dt) = V̄t(xt,dt) whenever

Nk
t,i(dt)

nk
t (dt)

→ pt,i(dt), and we
obtain

V̄t(xt,dt) ≤ lim
k→∞

V k
t (xt,dt).

Also note that Nk
t,i(dt)/nk

t (dt) → pt,i(dt) and χ2
t

2nk
t (dt)

±
q

4Nk
t,i(dt)χ2

t +(χ2
t )2

2nk
t (dt)

→ 0 as k → ∞.
Therefore,

lim
k→∞

P k
t,i(dt) = lim

k→∞
P

k
t,i(dt) = pt,i(dt).

Following the same argument as in the proof of Proposition (A.1), it is easy to see that

lim
k→∞

V k
t (xt,dt) ≤ V̄t(xt,dt),

which completes the proof.

Proof of Corollary A.3. The convergence follows from the Glivenko-Cantelli theorem (see, e.g.,
Billingsley 1986) and Proposition A.5.

Since V k
T+1(·) = V̄T+1(·), the rate of convergence holds for time period T + 1. Suppose that it

holds for any time period τ > t.
Consider the set of distributions Pk

t defined for the robust model V k
t (xt). The definition in (8)

shows that

Pk
t ⊃

{
Pt

∣∣∣∣∣AtPt = bt,
(Nk

t,i − kPt,i)2

kPt,i
≤ χ2

t

Mt
∀i, Pt ≥ 0

}
.
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The inequality
(Nk

t,i−kPt,i)
2

kPt,i
≤ χ2

t
Mt

is equivalent to

Pt,i ∈

Nk
t,i

k
+

χ2
t /Mt

2k
−

√
4Nk

t,iχ
2
t /Mt + (χ2

t /Mt)2

2k
,

Nk
t,i

k
+

χ2
t /Mt

2k
+

√
4Nk

t,iχ
2
t /Mt + (χ2

t /Mt)2

2k

 .

Therefore, the rate at which Pk
t shrinks to the single point Pt = {Pt,1 = Nk

t,1/k, ..., Pt,Mt = Nk
t,Mt

/k}
is O(1/

√
k). According to the law of large numbers, Nk

t,i/k converge to pt,i = P
(
D̃t = Dt,i

)
exponentially (see, e.g., Billingsley 1986). As a result, for sufficiently large k, Pk

t contains vector
pt a.s., and hence V̄t(xt) ≤ V k

t (xt) a.s.
As shown in (20),

V̄t(xt) ≤ V k
t (xt) ≤

∑
i:Uk

t,i(xt,y∗t )≤0

P k
t,iU

k
t,i(xt, y

∗
t ) +

∑
i:Uk

t,i(xt,y∗t )>0

P
k
t,iU

k
t,i(xt, y

∗
t ) a.s.,

where Uk
t,i(xt, yt) is defined in the same way as (19), and y∗t denotes an optimal solution to V̄t(xt).

Note that
lim

k→∞
Uk

t,i(xt, y
∗
t ) = Ct(xt, y

∗
t , Dt,i) + θV̄t+1

(
(y∗t −Dt,i)+

)
.

The rate of convergence of Uk
t,i(xt, y

∗
t ) is determined by the convergence rate of V̄ k

t+1(·), and hence
it is in the order of O(1/

√
k).

According to the definition of P k
t,i and P

k
t,i in (23), both P k

t,i and P
k
t,i converge to pt,i at the

convergence rate of O(1/
√

k), since Nk
t,i/k converges to pt,i exponentially. Finally, note that

V̄t(xt) = lim
k→∞


∑

i:Uk
t,i(xt,y∗t )≤0

P k
t,iU

k
t,i(xt, y

∗
t ) +

∑
i:Uk

t,i(xt,y∗t )>0

P
k
t,iU

k
t,i(xt, y

∗
t )

 .

We conclude that the rate of convergence of V k
t (xt) is in the order of O(1/

√
k).
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