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Abstract. We use locally-excited gigahertz surface phonon wavepackets in
microscopic line structures of different pitches to reveal profound anisotropy in
the radiation pattern of a point source in a grating. Time-domain data obtained
by an ultrafast optical imaging technique and by numerical simulations are
Fourier transformed to obtain frequency-filtered real-space acoustic field patterns
and k-space phononic band structure. The numerically-obtained k-space images
are processed to reveal an intriguing double-horn structure in the lowest-order
group-velocity surface, which explains the observed non-propagation sectors
bounded by caustics, noted at frequencies above the bottom of the first stop
band. We account for these phonon-focusing effects, analogous to collimation
effects previously observed in two- and three-dimensional lattices, with a simple
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analytical model of the band structure based on a plane wave expansion. As the
frequency is increased, a transition to dominant waveguiding effects along the
lines is also documented.

S Online supplementary data available from stacks.iop.org/NJP/14/123015/
mmedia
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1. Introduction

Collimation—or non-diffractive propagation—of waves inside periodic structures has
been investigated for two-dimensional (2D) and three-dimensional (3D) lattices for both
electromagnetic [1–3] and acoustic [4–6] waves because of the interesting possibilities for
waveguiding. Analogous effects in 2D lattices have been observed for water waves diffracting
over a bottom of periodically-drilled holes, [7] and are predicted to occur for matter waves in
Bose–Einstein condensates [8]. Collimation occurs when points on constant-frequency contours
in k-space (wave-vector space) exhibit zero curvature. Collimation has not been investigated for
in-plane propagation in one-dimensional (1D) or grating structures, the only studies having been
done on beam steering in optical gratings [9, 10].

In contrast to optics, in acoustics it is relatively easy to produce point (i.e. sub-wavelength-
sized) sources. This led to a series of investigations into the strong anisotropy in the radiation
pattern from point sources in natural crystals, [11] a phenomenon known as phonon focusing
that is closely analogous to the above-mentioned collimation effects. The most striking feature is
the existence of caustics, i.e. directions in which the angular energy density approaches infinity
at large distances from the source. These caustics correspond to the same zero-curvature points
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of the constant-frequency contours that yield the collimation effects. Considering the occurrence
of phonon focusing in natural crystals, the existence of this phenomenon in phononic crystals
(PCs) may not seem particularly surprising. In the long-wavelength limit, the acoustic properties
of a PC are described by an effective elastic constant tensor governed by the symmetry of the
structure, and long-wave propagation effects should therefore be similar to those encountered
in natural crystals; this has indeed been observed in synthetic anisotropic materials such as
fiber-reinforced composites [12]. However, at wavelengths comparable to the structure period,
acoustic properties of periodic structures become profoundly different from those of natural
materials—the most pronounced effect being the formation of stop bands. Narita et al [13]
pointed out that anisotropic propagation from a point source is made more conspicuous by
stop band formation; however, the nature of the connection between phonon focusing and the
acoustic band structure has not been elucidated. Does the stop band formation result in specific
anisotropic effects that are not observed in phonon focusing in natural anisotropic materials?
Here, we address this question by putting a point source inside a 1D periodic structure fabricated
on a solid surface and studying its radiation pattern by both experiment and simulation. We are
concerned here with point-source radiation anisotropy inside the structure, leaving outside the
scope of this paper any phenomena involving refraction at interfaces [14]. A second goal of
this paper is to develop a calculation technique capable of both analyzing band structure and
simulating time-domain data. Gratings provide a generic test case for investigating scattering
in periodic structures. Although much work has been done on acoustic in-plane propagation
in gratings, [15–27] stop bands above the first two or three have not been investigated in
detail, and neither has their dependence on the periodicity of the grating for a given grating
thickness.

Using point-generated gigahertz surface-phonon wavepackets, we investigate in detail two
different gratings composed of microscopic alternating strips of copper and silica on crystalline
silicon substrates. By temporal Fourier transforms we obtain frequency-filtered images in real
space and demonstrate phonon-focusing effects, revealing non-propagation sectors bounded by
caustics (forming an X shape). By spatiotemporal Fourier transforms we analyze the acoustic
band structure. We then derive the topology of the lowest-order sheet of the group-velocity
surface, important for understanding the speed at which phonon pulses propagate in a given
direction. The basic physics of these effects is accounted for by a simple model based on a plane
wave expansion. At higher frequencies we document a transition to waveguiding effects for
acoustic propagation along the grating lines. Many of these results, in particular the role of stop
bands in the formation of caustics in the radiation pattern, will be applicable to electromagnetic
and other types of waves.

In section 2.1 we describe the experimental setup and samples, and in section 2.2 we
explain the simulations. Then in section 3 we present the results for the 4µm period sample:
in section 3.1 in real space, including frequency-filtered data, and in sections 3.2 and 3.3
in k-space. In section 4.1 we present the analytical model, and compare it with the results for the
4µm grating structure. We then compare the shape of the group-velocity surface derived using
the numerical results and the analytical model; in section 4.2 we use this model to interpret
the phonon focusing. We then describe in section 5 results for a sample with 10µm period
and discuss the effect of the different spatial period. We conclude in section 6. The appendix
describes the Fourier analysis of a Bloch wave in a periodic phononic structure.
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2. Experimental setup and time-domain simulations

2.1. Experimental setup and samples

Surface phonon imaging is done with an optical pump and probe technique [28]. In brief,
light pulses of wavelength 400 nm, duration ∼200 fs and pulse energy 0.2 nJ are focused to
the center of a Cu strip to a small spot (∼2µm in diameter), non-destructively launching
surface phonons with displacements in the 10 pm range. The detection is performed with two
scanned 800 nm probe beams focused to a similar spot size using a common-path interferometer
configuration.

The 76.3 MHz repetition rate of the laser corresponds to a period of 13.1 ns. We typically
record 40 images, equally spaced in time within this period, which represent out-of-plane
surface velocity maps (denoted in this paper by f (r, t), where r is the in-plane position vector).
Frequency-filtered images obtained by temporal Fourier transforms are therefore obtained in
steps of 76.3 MHz. The broadband surface-phonon pulses contain frequencies up to 1.3 GHz,
showing a maximum amplitude between 200 and 700 MHz and a dominant acoustic wavelength
3∼ 10µm. The range of wavelengths significantly excited is 2–20µm.

We investigate 1D PCs with periods a = 4 and 10µm in the form of surface gratings.
The former sample and raw data set is identical to that used by [19]. We present more results
from this data set, in particular in real space, and provide an in-depth analysis. The latter
sample, taken from the same wafer as the first sample and very close to it, was measured using
the same apparatus. Alternating polycrystalline copper and amorphous silicon oxide lines of
thickness 800 nm and width 2 or 5µm are deposited perpendicular to the [011] direction on
silicon (100) substrates (see figure 1(a) for a cross section for a = 4µm). A layer of tantalum
of thickness 25 nm serves as a diffusion barrier for the copper. On top of this specimen a
30 nm polycrystalline gold layer is sputtered to achieve a uniform optical reflectivity. The
thin gold layer and the thin tantalum diffusion barrier do not significantly affect the surface-
wave dispersion [29, 30]. (We verified this by simulations with and without these components.)
The imaged area is 150µm × 150µm for the a = 4µm sample and 100µm × 100µm for the
a = 10µm sample. The PC region of the sample is sufficiently large for surface-wave reflections
from the boundaries to be negligible.

2.2. Time-domain simulations

Simulation methods for PCs in the frequency domain using a single unit cell and periodic
boundary conditions are common [23, 31]. Although less computationally efficient, modeling
the full structure in the time-domain is better suited for comparison with time-resolved
measurements (see, e.g., [32] and [33]), as in the present paper. We use a commercial time-
domain finite element modeling (FEM) package PZFlex (Weidlinger A, Inc.). This exploits 3D
elements, each consisting of eight nodes arranged on an orthogonal grid, and uses an explicit
time-integration method. We make use of the material and geometrical symmetry of the 1D PCs:
in the simulations only one quarter of the sample needs to be modeled by the use of symmetrical
boundary conditions. Details of the simulation geometry for a = 4µm are shown in figures 1(b)
and (c).

The thermoelastic laser excitation is represented by a simplified elastic-dipole
model [34–36] that makes use of a radially-directed horizontal force with a spatial distribution
given by r e−r2/d2

applied over a circular region with a radius of 2µm, where r is the radius
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Figure 1. (a) Cross section of the sample with period a = 4µm. (b, c) Model
used for FEM analysis of the 1D PC, showing the boundary conditions (BCs)
and excitation used. The applied initial force is radially distributed over a 4µm-
diameter circle in the center of the sample. In the simulation we include the
gold layer and the grating, but we neglect the tantalum layer (see text). The
lateral dimension of the substrate L shown is taken as 127 and 122.5µm for
a = 4 and 10µm, respectively.

and d = 1µm. The temporal variation of the excitation is a steplike function (a quarter period
of a sinusoid) with a 1 ns rise time. (The precise choice of this function and rise time are ad
hoc, but suffice to yield a frequency spectrum in the simulation similar to that observed in
experiment.) To reduce the effect of any acoustic reflections from the boundaries, the sample
is continued outside the PC area for a further 30µm as a silicon substrate with copper and
gold coatings. At the closing vertical and bottom planes absorbing boundaries are applied.
Larger regions of the sample than imaged in experiment, and sufficiently long simulation
times (39.3–78.6 ns) were chosen for the simulation (see figure 1(c) and caption) in order to
improve the wave-number and frequency resolutions, respectively. This yielded corresponding
resolutions of ∼2 and 3–6 times greater than in experiment. (The multiple reflection of surface
acoustic waves within the sample ensured that the acoustic field did not significantly die away
and thereby effectively reduce the frequency resolution associated with the longer simulation
times.) We also checked the effect of multiple-pulse excitation [37] at the laser repetition
period (13.1 ns) to see what effect this had on Fourier-transformed data; the results within
a window of 13.1 ns (including the effect of five previous pulses) agreed very well with
those making use of a single pulse, and so we have retained the latter type of simulation
for comparison with experiment in this paper. The accuracy of the simulation, making use
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of ∼108 nodes, was checked with different discretizations.7 Since only displacements were
calculated in the simulations, we evaluated temporal Fourier transforms of the surface velocity
by multiplying the temporal Fourier transforms of the displacement by the factor iω, where ω
is the angular frequency. (When implementing the spatial Fourier transform for the numerical
and experimental data in this paper, the imaginary part of the temporal Fourier transform is
used8.) The material properties were taken from the literature9. Polycrystalline Cu, amorphous
SiO and polycrystalline Au are assumed to be isotropic; silicon was modeled as a cubic material.
(The Ta layer was not included, for simplicity.) In the simulations intrinsic material ultrasonic
attenuation is neglected; at the frequencies concerned this is a very good approximation for the
distances of propagation (∼100µm) in question and for the materials concerned [38–40].

3. Results and discussion for the 4 µm-period sample

3.1. Analysis in real space

Figure 2(a) shows a simulated image for out-of-plane surface displacement (denoted by u(r, t))
at approximately 19.6 ns after excitation of the a = 4µm grating. The effect of the cubic Si
substrate on the surface-phonon propagation is evident in the rounded-square shape of the wave
fronts far from the source [41]. One can also detect the expected twofold symmetry nearer to
the source caused by the scattering at the line pattern.

Vertical sections of the z component of the simulated displacement field in the x and y
directions are shown in figures 2(b) and (c), with excitation on the left hand side. Waves with
a higher phase velocity and longer wavelength than the grating period, located at the front
of the wave packets, exhibit a larger penetration depth, whereas waves with a lower phase
velocity and shorter wavelength than the period, located in the middle and latter parts of the
wave packets, exhibit a smaller penetration depth, and are more influenced by grating scattering

7 The PC is reproduced on an orthogonal grid with elements of dimensions 0.095 × 0.095 × 0.10µm3 (δx × δy ×

δz) at the top; the gold layer is modelled with one element over its thickness resulting in the smallest element
dimension δz = 0.03µm. The vertical dimension of the elements is gradually increased to δz ≈ 0.38µm at the
bottom of the substrate. Numerical simulations of wave propagation are influenced by numerical dispersion [54],
dependent on the element size and time step. This particularly affects the higher frequencies in broadband signals,
where it leads in general to a lower wave velocity. Si and Cu have the lowest wave velocities among the materials
considered in this paper, and so a Cu layer on a Si substrate suffices to check the simulation accuracy. Two test
simulations were carried out with average top-element dimensions 0.13 and 0.19µm. The dispersion curves in
the [001] direction were evaluated up to 1.5 GHz and compared to a semi-analytical solution [47]. Differences
in the wave velocity compared to those predicted for the present simulations (that make use of an average top-
element dimension of 0.097µm) remained below 1 and 5% for the finer and coarser meshes, respectively. The
temporal discretization of the model (5–10 ps) is chosen for numerical stability, and is derived from the smallest
element dimension and the maximum wave velocity [33, 55]. Since this high temporal resolution is unnecessary
for the acoustic frequencies (<1.5 GHz) investigated, we only save data for every 15th time step (corresponding
to a ∼100 ps effective time resolution). The simulations were carried out on the University of Strathclyde High
Performance Cluster.
8 Either the real or imaginary parts of the temporal Fourier transform can be used, or combinations of the two, but
both give similar information in the present study.
9 For the deposited materials, density ρ and elastic constants c11 and c12 are as follows, assumed isotropic: for Cu,
8930 kg m−3, 201.71 and 105.98 GPa; for Au, 19 300 kg m−3, 207.53 and 151.3 GPa; for SiO, 2200 kg m−3, 71.20
and 22.79 GPa. For Si, assumed anisotropic, ρ = 2330 kg m−3, and c11, c12 and c44 are 166, 63.9 and 79.6 GPa,
respectively.
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Figure 2. (a) Simulated out-of-plane (z-directed) surface-displacement image
u(r, t) for time t = 19.6 ns after excitation for the a = 4µm grating. (b, c)
Vertical sections of the simulated z-directed displacement field in the y and x
directions at x = 0 and y = 0, respectively. (d, e) Spatial distributions of the
magnitude of the temporal Fourier transforms A = |F(r, ω)| of the simulated
z-directed surface velocity along the y and x axes. (f) Sections of the magnitude
of the temporal Fourier transforms at a distance of 7µm from the excitation point
in the x and y directions.

in the x direction. The wave packet in figure 2(b) (corresponding to the y direction) contains
waves that also have 3∼ 4µm or shorter. However, in the x-direction the wave packet only
contains significant amplitude for waves with 3> 4µm. In both the x and y directions the
scattering of waves into the bulk can be observed.

The spatial distributions of the magnitude of the temporal Fourier transforms |F(r, ω)|
of the simulated z-directed surface velocity, denoted for simplicity by A, along the x and y
axes are shown in figures 2(d) and (e) (axes along which plane waves do not scatter to other
directions). The Fourier magnitude spectrum for the y direction shows a maximum between 600
and 700 MHz, with frequencies up to ∼1.5 GHz determined by the duration of the simulated
excitation (see figure 1(a)). The x-directed and y-directed waves have a similar magnitude
below 500 MHz. Above this frequency the x-directed waves are highly attenuated in certain
frequency ranges, indicating the presence of several stop bands: the first large stop band occurs
between 500 and 600 MHz, a second at ∼900 MHz, and a third at ∼1.25 GHz. These arise from
interactions between different wave modes (see figure 4 and the next subsection). Figure 2(f)
shows sections of the acoustic spectra at a distance of 7µm from the excitation for both the x
and y directions.
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Figure 3. Comparison of the real-space and k-space results for the a = 4µm
grating at constant frequencies. The grating lines are in the y and ky directions
in these plots. (a)–(g) Rows (1) and (2) (see numbers on the right): simulated
maps of the real part of the temporal Fourier transform (A cosψ) of the
z-directed surface velocity for frequencies between 382 and 687 MHz. Row
(1): x–y images. Row (2): vertical sections in the x-direction at y = 0. Row
(3): corresponding phonon-focusing factor Ap(φ) for the lowest sheet of the
Rayleigh-wave group velocity on a normalized polar plot (with polar angle φ)
calculated using an analytical model (with 1◦ angular resolution). Row (4):
experimental A cosψ in the x–y plane at accessible frequencies. Frequencies
∼500–600 MHz correspond to the Rayleigh–Sezawa (RW–SW) stop band
for propagation near the ±x directions. Inset: sample cross section. (h)–(n)
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Figure 3. (Continued) Rows (5) and (6): maps of the magnitude of
the spatiotemporal Fourier transform |F(k, ω)| of the z-directed surface
velocity, corresponding to constant-frequency contours, for the simulation and
experiment, respectively. Row (7): results of an analytical model for the
Rayleigh-wave branch based on a plane wave expansion. Row (8): interpretation
with Bloch harmonics (BH) in the extended zone scheme. Vertical dashed lines:
boundaries of the first BZ at ±π/a. The data in row (6) are represented on
slightly different scales compared to [19]. The interpretation for 687 MHz here
is revised compared to [19].

To visualize the spatial distributions of the temporal Fourier transform it is convenient
to plot frequency-filtered images; denoting the magnitude and phase of the temporal Fourier
transform of the z-directed surface velocity by A and ψ respectively, the real part of this Fourier
transform, A cosψ , represents a snapshot of the instantaneous wave field [5]. In other words
A(ω, r)cosψ(ω, r) is the acoustic field pattern at a particular frequency.

Images of the simulated spatial distributions in the x–y and x–z planes are presented
in rows (1) and (2) of figures 3(a)–(g) for seven frequencies in the range 382 to 687 MHz
(acoustic wavelengths 3∼ 5–10µm, or 1.3<3/a < 2.6). The x–z plane images in row (2)
reveal deformations not accessible in experiment. Experimental images are presented in row
(4). (Animations of the simulated deformations in the x–z and y–z planes from 76 to 916 MHz
are given in the supplementary data, available at stacks.iop.org/NJP/14/123015/mmedia.)
Deviations from left–right symmetry in the experiment are thought to be caused by a slight
misalignment of the optical pump spot from the center of the Cu line.

Immediately obvious in the x–y plane images for frequencies above 382 MHz are
characteristic X-shaped phonon-focusing patterns, seen more clearly in the simulations. As
the frequency increases, the angle between the two straight-line components making up the
X shape decreases. The detailed origin of this effect is described in section 4, and is shown
for an analytical model in row (3) of figure 3. Similar effects should be observable in the
analogous system of oblique propagation in a superlattice, [13, 42] although this has not been
experimentally confirmed.

The frequencies chosen for figure 3 lie around the range of the first large stop band at
500–600 MHz (see figure 2(f)). At 382 MHz (figure 3(a)), the orthotropic nature of the grating
leads to elliptical wave fronts with the major axis along the y direction.

The better frequency resolution of the simulation (∼25 MHz) allows extra x–y plane
images (at 483 and 508 MHz) to be obtained. These images and the one at 611 MHz are
influenced by the proximity or coincidence of their frequencies with the first large stop band,
and show a reduced amplitude for propagation in the ±x directions. (See both the x–y and x–z
images in Rows 1, 2 and 4.) At 611 MHz, radiation to the bulk is evident in the x–z plane image
in Row 2.

The numerical and experimental x–y plane images show approximate agreement over the
whole frequency range shown, but at the higher frequencies some strong scattering is apparent
in experiment. At 687 MHz both the simulated and experimental images hint at an independent
mode along the ±y directions with a different phase compared to the remaining field. We
interpret this to be caused by a guided mode in the central Cu line, which behaves as a waveguide
for wavelengths commensurate with the dimensions of the line [43]. This phenomenon will be
demonstrated more clearly for the a = 10µm grating in section 5. Because of the lower wave
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velocities in the Cu line compared to the Si substrate or SiO lines, critical angles for total
internal reflection exist at every boundary of the Cu line, and hence waveguiding can occur, as
previously demonstrated in a similar structure on millimeter length scales [17] and also in single
Cu lines [44]. This waveguiding is not expected to be perfect owing to the evanescent coupling
between adjacent Cu lines.

3.2. Dispersion relations for the kx and ky directions

The complete dispersion relation of the surface phonons is a set of surfaces in 3D (k, ω) space,
where k = (kx , ky) is the 2D wave vector and ω is the angular frequency. In the appendix we
show in detail how a temporal series of images for the wave field f (r, t) allows direct access
to the complete dispersion relation using a combination of 2D spatial and 1D temporal Fourier
transforms. The analysis is general, applying to wave fields other than acoustic fields, and is used
to interpret our results in k-space. In brief we expand the wave field in the periodic structure in
Bloch-wave form. For a given frequency and for a given mode, the field is a sum of terms called
Bloch harmonics (also termed spatial harmonics), with wave vectors differing by a reciprocal
lattice vector. These Bloch harmonics are important in understanding the results obtained by
applying Fourier analysis to the time-domain data.

In the case of coated isotropic surfaces, when the shear-wave velocity in the coating is
lower than that in the substrate, two branches exist with acoustic polarization in the sagittal
plane, known as Rayleigh-like waves and faster Sezawa waves [30, 45]. (Similar considerations
apply to propagation along symmetry directions in coated crystals.) Plots of the magnitude of
the spatiotemporal Fourier transform |F(k, ω)| of the z-directed surface velocity as a function
of kx and ky for our experimental and numerical results, shown in figures 4(a)–(d), show the
effect of these two types of waves. (The Sezawa waves were referred to as leaky waves in [19],
but the naming in the present paper is more appropriate.)

The horizontal axes are expressed in units of kB, where kB = π/a = 0.79µm−1 is the
position of the first Brillouin-zone (BZ) edge. Rayleigh-like and Sezawa-like portions of the
dispersion are evident [19, 21, 25]. The details show up more clearly in the simulations, which
were obtained for a simulation time of 39.3 ns. The cross sections of |F(k, ω)|, representing the
experimental dispersion curves (figures 4(a) and (b)), show modes up to ∼1.3 GHz.10

Ignoring Bloch harmonics, lossless propagation is limited to an area on the f –kx or f –ky

plots between two thresholds [46]. The upper threshold (upper dashed lines in (figures 4(c) and
(d)) corresponds to the vertically-polarized shear-wave velocity in the Si substrate parallel to
the surface in the [011] or [101] directions (vSi

T ≈ 5850 m s−1) and the lower threshold (lower
dashed lines in (figure 4(c) and (d)) corresponds to the Rayleigh wave velocity in the slowest
material Cu (vCu

R ≈ 2160 ms−1).
The curvature of the branches of the dispersion relation is fairly pronounced owing to the

presence of the Cu–SiO coating [30, 45]. To understand these curvatures, the dispersion relations
of both Rayleigh and Sezawa waves were calculated with a semi-analytical method [47] for a
Cu–SiO layer using effective material properties based on orthotropic symmetry [21, 48], and
also for a Cu layer, both on Si substrates (see figures 4(c) and (d), respectively). The 30 nm
Au layer and the orientation of the Si substrate ([011] direction) were taken into account in

10 Only two modes that exist in the absence of the periodicity, the Rayleigh and the 1st order Sezawa, influence
the present measurements. Higher-order Sezawa waves are predicted to contribute at higher frequencies ∼2 GHz,
outside the range of the present investigation [30].
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Figure 4. (Continued) with BHs in the extended zone scheme without showing
stop bands. (f) Interpretation for the ky direction, also showing the effect of
BHs from the x periodicity. The smooth, superimposed curves in (c) and (d)
are calculated dispersion relations for the Rayleigh-wave (RW) and Sezawa-
wave (SW) branches based on an effective-medium Cu–SiO–Si model and
a Cu–Si model, respectively. The dashed lines in (c) and (d) correspond to
the thresholds for the guiding of Rayleigh and Sezawa modes: the vertically-
polarized shear-wave velocity in the Si substrate (vSi

T = 5850 m s−1, upper curve)
and the Rayleigh wave velocity in the slowest material Cu (vCu

R = 2160 m s−1,
lower curve). (g) Higher fidelity simulation, showing the first three RW–SW
stop bands. (h) Sections of the magnitude of the temporal Fourier transforms
A = |F(r, ω)| at a distance of 7µm from the excitation point along the x and
y axes (as in figure 2(f)). The gaps labeled are estimates of the positions of the
RW–SW stop bands.

both cases. Particularly for the higher frequency range above 1 GHz, the Cu–SiO–Si model11

mimics the dispersion for propagation perpendicular to the lines, whereas the Cu–Si model
mimics the dispersion for propagation parallel to the lines.12 The Rayleigh velocities are close
to the Rayleigh-wave velocity in silicon (100) near the [011] direction (∼4800 m s−1) [41]. The
success of the Cu–Si model at high frequencies seems to be because the acoustic wavelength
becomes less than the line width; in this case the Cu line can support a (leaky) guided mode.

The curves for |F(k, ω)| for the kx direction (figures 4(a) and (c)) can be interpreted
with the help of Bloch harmonics: plotting the basic form of the dispersion curves (ignoring
stop bands for the time being) shifted by integral multiples of a reciprocal lattice vector
G0 = 2π i/a = 2kBi, as shown in figure 4(e), results in a pattern similar to that obtained in the
simulation (see figure 4(c)). The effect of Bloch harmonics are also evident in the experiment,
in particular at the higher frequencies, but the resolution is better in the simulation. The strength
of the Bloch harmonics varies with their order. The simulated Rayleigh first Bloch harmonic
for x-directed propagation becomes stronger as the frequency increases. (See figures 4(e)–(g)
for our definition of the order of Bloch harmonics.) Above ∼1 GHz the Rayleigh second and
Sezawa second Bloch harmonics become clearly visible. In accordance with equations (A.1)
and (A.7), the strength of the Bloch harmonics reveals details of the scattering potential.

A more detailed comparison is shown in figure 4(g). Here we used a full-length simulation
with a simulation time of 78.6 ns to improve the frequency resolution. The observed minima
in figure 4(h) for x-directed propagation are the result of the large stop bands mentioned
earlier. These correspond to RW–SW avoided mode crossings from Bloch harmonics in
neighboring BZs, labeled by different types of line in figures 4(e) and (g). The first RW–SW
avoided crossing occurs at ∼500 MHz, inside the 1st BZ [21]. In the vicinity of the first
stop band, x-directed counterpropagating Sezawa and Rayleigh modes fulfil the condition
kSezawa

x = ±(2kB − kRayleigh
x ) [21, 25]. This results in each sheet of the dispersion surface in

11 The density of the layer was taken as the average of those of Cu and SiO, whereas the components of the
anisotropic elastic constant tensor were calculated according to the method of [48], yielding six independent values.
Strictly speaking, this effective medium model can only be relied upon when all dimensions of the structure are
much smaller than the wavelength.
12 These models do not predict the observed faster y-directed velocity at frequencies below ∼500 MHz.
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(kx , ky, ω) space possessing regions with both Rayleigh and Sezawa character depending on
the values of kx and ky [25].

The evident second and third RW–SW avoided crossings at ∼900 MHz and ∼1.25 GHz,
respectively, are the result of the interaction between the first and second Bloch harmonics,
respectively, of these modes. The gaps shown shaded in figure 4(h) correspond to best estimates
of the position of the first three RW–SW stop bands. The first such band agrees in position
with results obtained elsewhere on an uncoated but otherwise identical sample [21, 25]. The
decreasing slope of the curves with increasing frequency results in a flattening of the avoided-
crossing angles and also explains the decrease in the RW–SW gap widths with frequency.

There are also avoided crossings of the same wave modes (Rayleigh–Rayleigh or
Sezawa–Sezawa—see the crossing of lines with the same weight on the right hand side of
figure 4(g)) below the first RW–SW stop band and between the first and second such stop bands
at ∼700 and ∼800 MHz, and also above. (Because the corresponding gaps are small [25], we
have not represented them in figure 4(g).) These avoided crossings appear at the boundaries
of the BZs [21, 45]. Separate stop bands for Rayleigh and Sezawa waves are formed at the
corresponding frequencies (see figure 4(h)), but our frequency resolution is not sufficient to
estimate their width. The first such stop band is the first Rayleigh–Rayleigh stop band [25], and
occurs near 450 MHz, below the first RW–SW stop band.

The curves for |F(k, ω)| for the ky direction (figures 4(b) and (d)) show both Rayleigh
and Sezawa branches below ∼800 MHz. Above this frequency the effect of Bloch harmonics
from the x periodicity produces branches starting at thresholds of ∼850 MHz and ∼1.2 GHz, as
identified in figure 4(f).

3.3. Constant-frequency planes

Figures 3(h)–(n) show constant-frequency sections of |F(k, ω)| for the same seven frequencies
as in figures 3(a)–(g) for both simulation (row (5)) and experiment (row (6)—taken for the
most part from [19]), as well as their interpretation with Bloch harmonics (row (8)). (Results
from an analytical model, shown in row (7), are discussed in section 4.) The boundaries of the
first BZ are indicated by the vertical dashed lines. The topology of the first three sheets of the
surface-wave dispersion relation for our grating structure is discussed in detail elsewhere [25].

At 382 MHz (figure 3(h)), the Rayleigh mode forms an approximately elliptical ring. The
faster Sezawa mode forms a rounded-square shape inside, it being more affected by the Si
substrate owing to its larger penetration depth [30]. At this frequency the constant-frequency
plane intersects with two sheets in (kx , ky, ω) space. Bloch harmonics of the Rayleigh ring are
also visible, shifted in the ±kx directions by the reciprocal lattice vector G0.

At a frequency below but close to 458 MHz (figure 3(i)) these rings intersect, resulting
in the previously-mentioned Rayleigh–Rayleigh stop band. The much larger RW–SW stop
band is visible at 534 MHz in both simulation and experiment in figure 3(j), strongly affecting
propagation in and near the x direction. The overall shape of the outer parts of constant-
frequency contours, that arise from the Rayleigh branch, becomes more and more flattened
through the effect of the periodicity as the frequency increases. This flattening affects the
phonon-focusing in real space, in particular the X-shaped pattern. These effects are discussed
in detail in section 4.

The RW–SW stop band ends around 611 MHz (figure 3(m)), and above this frequency the
propagation of acoustic waves in the x direction again becomes possible. However, the ampli-
tudes remain small in this direction compared to the y direction, as is evident in figures 2 and 3.
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At 687 MHz (figure 3(n)), the band structure is complicated by the intersection with a
third sheet in (kx , ky, ω) space [25], the full details of which remain to be elucidated. Although
the RW–SW stop band is closed at 687 MHz, the Rayleigh portions of the constant-frequency
contour remain discontinuous. The flattened parts parallel to the kx directions—that we shall
later term ‘the outer parts’ of the Rayleigh branch—imply propagation parallel to the lines, as
observed in real space. The curved parts, together with the corresponding Bloch harmonics,
form loops at the boundaries of the first BZ, and are responsible for the remaining acoustic
propagation over all angles. A similar, but more complicated splitting is evident for the Sezawa
portions. Further research into the detailed shape of the dispersion sheets would require a higher
frequency resolution than available in the present experiments or simulations.

4. Analytical model and derivation of the group-velocity-surface topology

4.1. Group-velocity surfaces

To understand the surface-wave propagation and focusing behavior produced by a localized
impulsive acoustic source in real space, it is necessary to first derive the dependence of group
velocity vg on direction [49]. This is described by the acoustic ray surfaces, referred to here
as group-velocity surfaces, that can be calculated from the dispersion relation by a gradient
operation vg = ∇k(ω(k)). The group-velocity vectors point in the direction normal to the
constant-frequency contours. Figure 5(b) shows, for a selection of frequencies, the angular
dependence of the group velocity calculated from interpolated fits to the numerically simulated
constant-frequency contours for the outer parts of the Rayleigh branch, shown in figure 5(a).
At 382 MHz, where the constant-frequency contour is slightly elliptical, we obtain an elliptical
group-velocity contour. However, at higher frequencies, the group-velocity contour breaks up
into two round pockets that decrease in size as the frequency increases. Related pockets were
reported by Tanaka et al [42] and by Narita et al [13] in theoretical investigations on oblique
propagation in superlattices.

In order to understand the general topology of the low-order sheets of the dispersion
relation and of the corresponding group-velocity surfaces, it is useful to develop a simple
analytical model for the 1D phononic structure based on a plane wave expansion [9, 50]. For
the sake of simplicity we consider only one mode, the Rayleigh wave, which we describe by a
scalar wave equation; in 2D, the acoustic disturbance f (here the z-directed surface velocity) in
a structure with a spatially-varying sound velocity in the x direction can be written in the form
of Mathieu’s equation [51]

∂2 f

∂x2
+
∂2 f

∂y2
+ω2

[
1

v2
0

+ V (x)

]
f = 0, (1)

where v0 is the sound velocity, and an exp(−iωt) temporal dependence has been assumed. The
quantity V (x), that takes the role of an effective potential, represents spatial variations in the
sound velocity. Consider the case in which V (x) is a perturbing periodic sinusoidal potential in
the form [51]

V (x)= α cos G0x =
α

2
[exp(iG0x)+ exp(−iG0x)], (2)

where α � 1/v2
0 and G0 is the magnitude of the reciprocal lattice vector G0 = G0i = 2π i/a.

We shall seek an approximate solution based on the inclusion of two Bloch harmonics (with
kx >0):

f (x, y, ω)= a0 exp[i(kx x + ky y)] + a1 exp[i({kx − G0} x + ky y)], (3)
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Figure 5. (a) Constant-frequency contours derived from the outer parts of the
Rayleigh branch for the numerical simulations of figure 3 (for the a = 4µm
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are the x and y components of the group velocity. (c) Constant-frequency
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where a0 and a1 are constant coefficients of the same order of magnitude. Substituting equa-
tion (3) into equation (1), and using equation (2), one may obtain two simultaneous equations
for a0 and a1 to first order in α. These have solutions provided that the secular determinant
vanishes, i.e. ∣∣∣∣ ω2/v2

0 − (kx − G0)
2
− k2

y ω2α/2
ω2α/2 ω2/v2

0 − k2
x − k2

y

∣∣∣∣ = 0, (4)

which defines the dispersion surface in (kx , ky, ω) space. The only arbitrary constants in
this equation are the strength of the scattering potential α and the sound velocity v0. This
equation predicts a stop band for x-directed propagation. For constant v0 and small off-diagonal
components α0v

2
0 � 1 (consistent with what is effectively a first-order degenerate perturbation
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theory approach), the width of the stop band is αv3
0/(4a) and its mid-point is at v0/2a, both in

units of frequency.
In order to adapt this model to our data we first choose v0 = v0(ω) to fit the intrinsic

curvature of the numerical Rayleigh dispersion in the kx direction shown in figure 4(e).13 Then
the value of α = 3.4 × 10−8 s2 m−2 was chosen to give reasonable correspondence of the outer
part of the Rayleigh branch with experiment; with this value, we find, for example, α0v

2
0 ≈ 0.5

for a typical frequency of f = 500 MHz. This implies that we should not expect very accurate
agreement with the numerical approach.

The resulting predictions for some constant-frequency contours and the corresponding
angular dependence of the group velocity are shown in figures 5(c) and (d) for the outer part
of the Rayleigh branch. We have made use of symmetry to extend the predictions from −kB

to +kB. One can see that, in spite of the simplicity of the model and the relatively large value
of α0v

2
0 , the agreement with the constant-frequency contours is quite good, in particular at the

higher frequencies. This can also be seen by comparing rows (5) and (7) in figure 3. There are,
however, some differences. For example, the two Rayleigh Bloch harmonics first appear at a
higher frequency (in fact at ∼530 MHz) in the analytical model. The agreement with the group
velocity (see (b) and (d) in figure 5) is also reasonable. In particular, the two pockets formed in
the group-velocity plot and their frequency dependence are reproduced fairly well. Because we
chose the analytical model to fit to the outer part of the Rayleigh branch, the predictions for the
Rayleigh–Rayleigh stop band are not fitted to experiment.14

The analytical model allows a wider range of frequencies to be plotted for the group
velocity than in the case of the numerical simulation, because of the difficulty of accurately
extracting interpolated constant-frequency contours from the latter. Figure 6 shows the shape of
the group-velocity surface in (vgx , vgy , ω,) space (where vgx and vgy are the x and y components
of the group velocity) corresponding to the outer parts of the Rayleigh-wave constant-frequency
contours. The surface transforms into one with two horns as the frequency is increased. This
can be explained as follows: as the frequency goes up, the relevant constant-frequency contours
approach straight lines (along the x direction). This means that the group velocity is nearly
the same for all wave vectors, hence the horns. To estimate this single group velocity value,
one should consider the group velocity of the lowest waveguide mode in an individual Cu line,
which, in turn, approaches the Rayleigh velocity in Cu (vCu

R = 2160 m s−1).
A second sheet of the group-velocity surface corresponding to the second sheet of the

dispersion surface [25] is predicted by the analytical model. (See the parts of the Rayleigh
branch corresponding to the closed loops at 534–687 MHz in row (7) of figure 3.) This group-
velocity surface also has a two-horned shape at frequencies higher than that, ∼800 MHz, at
which the closed loops first touch, with a predicted cutoff for this sheet below ∼530 MHz
(corresponding to the frequency at the top of the Rayleigh–Rayleigh stopband). Narita et al
have reported related group-velocity contours that arise in superlattices [13, 42]. We shall see in
the next section that the first sheet is responsible for the X-shaped focusing pattern in real space.

13 We used a polynomial cubic fit in the form kx (ω)= b0 + b1ω + b2ω
2 + b3ω

3 for the range 458–687 MHz with
b0 = −2.781 × 104, b1 = 2.158 × 10−4, b2 = 1.009 × 10−14 and b3 = 2.795 × 10−24 in SI units. In a more strict
interpretation of the scalar wave equation, dispersion should be introduced by extra terms in the wave equation.
The present approach has the advantage of simplicity.
14 The predicted extent for the Rayleigh–Rayleigh stop band is from ∼430 to 530 MHz. In reality the stop band is
much smaller, and lies near ∼450 MHz.
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4.2. Phonon focusing

The effect of the phononic band structure on the directionality of the surface-phonon field
excited by a point source in real space is closely related to the angular variation of the group
velocity. This surface-phonon focusing effect is characterized by an enhancement factor Ap(φ)

defined by Ap = 1/|dφ/dθ |, where θ is the polar angle defining the direction of k and φ is
that defining vg. Ap(φ) characterizes how the surface waves are focused in real space, and is
calculated numerically.

The result of this procedure for the analytical model (for the first group-velocity sheet) is
shown in row (3) of figure 3. The X-shaped focusing pattern and its dependence on frequency
are reproduced well. The angular variation Ap(φ) predicts very sharp features as a function of
φ. The directions of strong focusing correspond to inflection points (points of zero curvature)
in k-space, as shown in figures 5(a) and (b). The observed frequency dependence is a result of
these inflection points moving to positions of lower |kx |—and hence to a higher angle |φ| (for
kx >0)—as frequency increases. These phonon caustics first appear at the bottom of the first
Rayleigh stop band when the dispersion relation first touches the first BZ edge, and continue
to exist above the top of this stop band because of the continuation at these frequencies of the
lowest sheet of the surface-wave dispersion relation [25]. Because of the finite wavelength, the
focusing is smoothed out to some extent in our images. Infinitely far from the source the angular
distribution should exhibit true caustics. (The effect of the second sheet of the group-velocity
surface is smaller than that of the first, and below ∼800 MHz shows focusing primarily along
the x-axis, partly precluded by the RW–SW stop band, so we have not presented its focusing
effects here.)
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We conclude this section by pointing out some significant differences between phonon
focusing in gratings and traditional phonon focusing in anisotropic crystals: [11]

1. In anisotropic solids, surface phonon caustics arise when the anisotropy is strong enough:
there is a threshold for their onset [49]. In gratings they arise whenever there is a periodic
perturbation, no matter how weak.

2. The caustics for gratings arise above some frequency threshold defined by the bottom of a
stop band.

3. The caustics for gratings bound non-propagation sectors for frequencies in the associated
stop band.

4. Group-velocity contours form closed loops rather than cuspidal structures typical for
phonon focusing in non-dispersive anisotropic media.

5. In anisotropic solids, caustics are only observed for certain kinds of waves. They do not,
for example, occur for longitudinal acoustic waves. In gratings the phenomenon is general
and should be observable for waves of any kind.

5. Results and discussion for the 10 µm-period sample

It has previously been found by simulation that the stop bands are sensitive to the grating
thickness in these flat-grating structures [52]. Here we investigate the effect of a different
periodicity. Experiments and simulations were carried out with a sample of period a = 10µm,
corresponding to Si and SiO line widths of 5µm. The longer spatial period lowers both the
frequency of the relevant mode interactions and the scattering potential, allowing the study of
further features of the phonon scattering in the periodic structure. The experimental conditions
were the same as for the a = 4µm case. In particular, the optical pump spot was again centered
on a Cu line. Unless otherwise stated the simulation was conducted with a simulation time of
39.3 ns.

5.1. Analysis in real space

Figure 7 shows a simulated image of the z-directed surface displacement u(r, t) at
approximately 19.6 ns after excitation of the a = 10µm grating. The effect of the cubic Si
substrate is again evident in the rounded-square shape of the wave fronts far from the source,
but the scattering from a structure of longer periodicity influences the longer wavelength
components more strongly.

Vertical sections of the z component of the simulated displacement field in the x and y
directions are shown in figures 7(b) and (c), showing similar effects to those noted for the
a = 4µm case. The spatial distributions of the magnitude of the temporal Fourier transforms
A = |F(r, ω)| of the simulated z-directed surface velocity along the x and y axes are shown
in figures 7(d) and (e). Frequencies are present up to ∼1.5 GHz with a maximum between 600
and 700 MHz for y-directed propagation, similar to the case of the a = 4µm grating. In the x-
direction, however, the frequency spectrum is uniformly weakened over a wide frequency range,
as opposed to the appearance of clear stop bands; most frequency components are attenuated
within a few periods (∼20–30µm) in the a = 10µm grating. Figure 7(f) shows sections of these
spectra at a distance of 17.5µm from the excitation. The reduction in amplitude is very clear
for x-directed propagation.
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Figure 7. (a) Simulated out-of-plane (z-directed) surface-displacement image
u(r, t) for time t = 19.6 ns after excitation for the a = 10µm grating. (b, c)
Vertical sections of the simulated z-directed displacement field in the y and x
directions. (d, e) Spatial distributions of the magnitude of the temporal Fourier
transform A = |F(r, ω)| of the simulated z-directed surface velocity along the y
and x axes at x = 0 and y = 0, respectively. (f) Sections of the magnitude of the
temporal Fourier transforms at a distance of 17.5µm from the excitation point
in the x and y directions.

Simulated images of the spatial distributions of the real part of the temporal Fourier
transforms, A(ω, r) cosψ(ω, r), are shown for six frequencies in both the x–y and x–z planes
in rows (1) and (2) of figures 8(a)–(f), covering the range between 229 and 763 MHz (acoustic
wavelengths 3∼ 5µm to 20µm, or 0.5<3/a < 2). Corresponding experimental images for
accessible frequencies are presented in row (3). (Animations of the simulated deformations in
the x–z and y–z planes from 76 to 916 MHz are given in the supplementary data, available at
stacks.iop.org/NJP/14/123015/mmedia.) In general, the simulated and experimental images
show good agreement.

At 229 MHz, the Rayleigh mode again forms an approximately elliptical ring, whereas
at 280 and 305 MHz, at frequencies sufficiently above the bottom of Rayleigh–Rayleigh stop
band, we again find in the simulations the characteristic X-shaped focusing pattern. At 280 MHz
the wave fronts in the x–y plane are also visibly affected by the RW–SW stop band, which is
responsible for regions of reduced amplitude around the ±x directions far from the source.
At 305 MHz this stop band is no longer present, but the reduced-amplitude effect remains. At
this frequency the acoustic field within angles ∼ ± 30◦ to the x axis in the x–y plane show a
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Figure 8. Comparison of the real-space and k-space results for the a = 10µm
grating at constant frequencies. The grating lines are in the y and ky directions
in these plots. (a–f) Rows (1) and (2) (see numbers on the right): simulated
maps of the real part of the temporal Fourier transform (A cosψ) of the
z-directed surface velocity for frequencies between 229 and 763 MHz. Row (1):
x–y images. In this row (a–c) are shown over a wider area; the dashed squares
show the imaged regions. Row (2): vertical sections in the x-direction at y = 0.
Row (3): experimental A cosψ in the x–y plane at accessible frequencies. At
280 MHz the effect of the RW–SW stop band around the ±x directions is visible.
Inset: Sample cross section. (g–l) Rows (4) and (5): maps of the magnitude
of the spatiotemporal Fourier transform |F(k, ω)| of the z-directed surface
velocity, corresponding to constant-frequency contours, for the simulation and
experiment, respectively. Row (6): interpretation with BH in the extended zone
scheme. The boundaries of the first BZ at ±π/a are indicated by the vertical
dashed lines.
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different phase compared to the remaining directions, leading to well defined directions of low
amplitude. This effect may arise because of the interference between wave fields dominated
by the waveguiding effects in the y direction and those related to scattering from the periodic
structure. Similar phenomena occur at higher frequencies. At 611 MHz, radiation to the bulk
is evident in the x–z plane image, very similar to the case for the a = 4µm grating at this
frequency. Over the whole frequency range the expected decreasing wave penetration in the z
direction with increasing frequency is evident in the x–z plane images.

Waveguiding effects in the central Cu line for this a = 10µm sample are much more
apparent than for the a = 4µm sample. At 458, 611 and 763 MHz a guided mode along the ±y
directions in the center Cu line becomes clearly visible. In particular, at 763 MHz the pattern of
this guided mode shows a more complex lateral acoustic field pattern associated with multiple
guided modes. This is also evident in the animations.

The shorter wavelengths at 611 and 763 MHz result in an interesting effect for propagation
in the ±x directions. Since the wavelength is shorter than the 5µm line width, the line pattern
becomes visible in the acoustic field as an alternation between the different wavelengths, with
the shorter wavelengths in the Cu lines and the longer wavelengths in the SiO lines.

5.2. Dispersion relations for the kx and ky directions

The thickness of the a = 10µm grating is identical to that of the a = 4µm grating, and so the
basic modes underlying the features of the dispersion relation not associated with the periodicity
remain the same. The previously identified Rayleigh and Sezawa portions of the dispersion
relations are visible in kx and ky directions in the cross sections of the dispersion relation, as
shown in figures 9(a)–(d) together with the previous fits superimposed in figures 9(c) and (d).
The reciprocal lattice vector has magnitude |G0| = 2kB = 2π/a = 0.628µm−1. The boundary
of the first BZ, kB = 2π/a = 0.314µm−1, is consequently much smaller than for the a = 4µm
grating (see figure 9(e)).

The curves for |F(k, ω)| for the kx direction (figures 9(a) and (c)) can be interpreted
with the help of Bloch harmonics, some of which are shown in figure 9(e). These are clearly
visible in the simulation. As with the a = 4µm grating, Bloch harmonics are also evident in
the experiment, in particular at the higher frequencies, but again the resolution is better in
the simulation. The first RW–SW stop band occurs at a lower frequency than in the previous
case, here at ∼250 MHz where the dispersion curves are almost straight. This stop band is
narrower than in the case of a = 4µm because of the lower effective scattering potential for this
case. Mixing of the Rayleigh and Sezawa modes is again present, as shown in more detail in
figure 9(g). As with the case of figures 4(g) and (h), we used a longer time for the simulation
(78.6 ns) to improve the frequency resolution. The maximum in the frequency spectrum for
x-directed propagation is ∼500–600 MHz, as reproduced in figure 9(h) at a specific point on
the sample 17.5µm from the source. The effects of the first three RW–SW stop bands on the
frequency spectrum at this point are relatively small because of the strong scattering.

The first three RW–SW stop bands are also marked in figure 9(h). Because of the limited
frequency resolution their position is not as certain as for the case of a = 4µm, and their marked
positions and widths are just best estimates. In the case of the second RW–SW stop band, the
Rayleigh branch does not show a decrease in intensity, possibly owing to the narrow width of
the stop band, and we have inferred its presence from the gap in the Sezawa branch (see left
hand side of figure 9(g)).
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Figure 9. (Continued) effective-medium Cu–SiO–Si model and a Cu–Si model,
respectively. The dashed lines in (c) and (d) correspond to the thresholds
for the guiding of Rayleigh and Sezawa modes: the vertically-polarized shear
wave velocity in the Si substrate (vSi

T = 5850 m s−1, upper curve) and the
Rayleigh wave velocity in Cu (vCu

R = 2160 m s−1, lower curve). (g) Higher
fidelity simulation, showing the first three RW–SW stop bands. (h) Sections of
the magnitude of the temporal Fourier transforms A = |F(r, ω)| at a distance of
17.5µm from the excitation point along the x and y axes (as in figure 7(f)).

Further avoided crossings as a result of the interaction between the first and second
Bloch harmonics as well as those resulting from the same wave modes (Rayleigh–Rayleigh
or Sezawa–Sezawa) are visible. The different avoided crossings and the stop bands lie much
closer in frequency and wave number compared to the a = 4µm case. The Rayleigh and Sezawa
Bloch harmonics are visible in the 1st BZ, similar to the case for a = 4µm. The first and second
Rayleigh-wave Bloch harmonics are especially strong.

The curves for |F(k, ω)| for the ky direction (figures 9(b) and (d)) show both Rayleigh and
Sezawa branches below ∼400 MHz. Above this frequency the effect of Bloch harmonics from
the x periodicity produces branches starting at thresholds of ∼400 and ∼700 MHz, as identified
in figure 9(f).

5.3. Constant-frequency planes

Figures 8(g)–(l) shows constant-frequency sections of |F(k, ω)| for the same six frequencies
as in figures 8(a)–(f) for both simulation (row (4)) and experiment (row (5)), as well as their
interpretation with Bloch harmonics (row (6)). The boundaries of the first BZ are indicated by
the vertical dashed lines. At 229 MHz both the Rayleigh and Sezawa branches form concentric
rings, the latter just reaching the boundary of the first BZ; the effect of the anisotropic Si
substrate is less obvious than for the case of a = 4µm at 458 MHz owing to the lower frequency
here. Bloch harmonics are also visible, particularly in the simulations. The previously observed
mixing of the Rayleigh and Sezawa modes is again present in the region of the stop band at
280 MHz (a frequency accessed in the simulation only). As mentioned above, this stop band
closes at 305 MHz. The simulations and experiment agree well at 229 and at 305 MHz. In the
range 458–763 MHz several Bloch harmonics are visible. This can be understood with the help
of the interpretation in row (6) of figures 8(g)–(l). Experiment and simulation also agree well in
this range.

Over this frequency range of 458–763 MHz, horizontally-oriented, flat, outer contours in
the constant-frequency planes responsible for the waveguiding are evident both in the simulation
and in experiment. As previously noted in the context of the real-space data, the wider Cu line
(5µm) here results in these effects being stronger, and leads to the appearance of higher-order
guided modes. These modes are visible at 763 MHz in the constant-frequency planes as extra
horizontal lines.

6. Conclusions

In conclusion, we have investigated the anisotropy of the radiation pattern of gigahertz surface
phonons excited at point sources in two different 1D PC structures composed of thin, flat
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Cu–SiO gratings of different pitches by a time-domain imaging method and by numerical
simulations. The acoustic field patterns were first mapped at individual frequencies by temporal
Fourier transforms, revealing in 2D (real) space the phonon-focusing effects of the band
structure as well as waveguiding effects in the Cu lines.

In addition, the dispersion relations were obtained by spatiotemporal Fourier transforms
in ω–k section form in the x and y directions as well as in 2D k-space. Many features
of the surface-wave band structure could be extracted. Both experiments and simulations,
showing broad agreement, exhibit Bloch harmonics and branches composed of two different
wave modes: Rayleigh-like waves and Sezawa waves. The higher frequency- and wave-number
resolution of the simulations reveal many features of the surface-wave band structure up to
1.5 GHz, in particular the width and position of the first three phononic stop bands arising from
the mixing of Rayleigh and Sezawa modes in the 4µm-period structure.

The numerical simulations for the 4µm-period structure were processed to extract the
angular dependence of the group velocity corresponding to the outer parts of the Rayleigh-wave
constant-frequency contours. This revealed pockets in (vgx , vgy) space symmetrically positioned
on the vgy axis. The most important features of the band structure in the region of the first stop
band could be reproduced using a simple analytical model involving a plane wave expansion.
This model confirmed that the lowest-order group-velocity surface (vgx , vgy , ω) exhibits two
horns. We showed using this analytical model that this leads to non-propagating sectors in real
space bounded by phonon caustics.

More work remains to be done to better elucidate the topology of the higher-order
dispersion sheets and group-velocity surfaces, and the form of the series of mini-gaps formed
by avoided crossings in the dispersion relation of the same polarization (Rayleigh–Rayleigh or
Sezawa–Sezawa). This will require a higher frequency resolution than in the present study.

The simple analytical model presented here is independent of the form of the 1D periodic
structure. We have only considered surface acoustic waves on flat gratings, but the simple
analytic model presented, depending only on the assumption of waves in a weak 1D periodic
potential as in equations (1) and (2), is general, so that the conclusions concerning phonon
focusing and the overall form of the group-velocity surfaces should apply also to acoustic waves
in other forms of 1D structure such as corrugated surfaces or superlattices. Our approach could
also be extendable to 2D and 3D phononic structures, where similar concepts of caustics arising
from stop bands should apply.

Finally, our findings should hold for other forms of waves: caustics arising from
the presence of stop bands in periodic materials should be observable, for example, for
electromagnetic waves, surface plasmons, water waves and matter waves.
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Appendix. Spatiotemporal Fourier transform of the wave field in phononic crystals

Here we show in detail how a temporal series of images for the wave field f (r, t) allows direct
access to the complete dispersion relation using a combination of 2D spatial and 1D temporal
Fourier transforms. A brief summary of the derivation is given in [19]. Similar methods have
also been used for spatiotemporal imaging in optics [53]. We give an in-depth derivation here.

The wave field f (r, t) at the surface can in general be expressed as a superposition of
normal modes. For a medium with a periodic structure, a normal mode specified by branch
index j and wave vector k in the first Brillouin zone (first BZ) can be expressed according to
Bloch’s theorem as [50]

fk, j(r, t)=

∑
G

C j(k + G) exp{i((k + G) · r −ω j(k)t)}, (A.1)

where G is a reciprocal lattice vector and C j(k + G) is the amplitude of the corresponding Bloch
harmonic specified by G. The summation covers all possible values of G. The angular frequency
ω j(k) refers to the mode specified by j and k, and represents part of the dispersion relation. The
spatiotemporal field f (r, t) can therefore be expanded as a sum of normal modes as follows:

f (r, t)= Re

∑
j

∫
1st BZ

A j(k)
∑

G

C j(k + G) exp{i((k + G) · r −ω j(k)t)}d2k


=

1

2

∑
j

∫
1st BZ

{
A j(k)

∑
G

C j(k + G) exp{i((k + G) · r −ω j(k)t)}

+A∗

j(k)
∑

G

C∗

j (k + G) exp{−i((k + G) · r −ω∗

j (k)t)}

}
d2k. (A.2)

A j(k) is a function representing the amplitude of a Bloch eigenstate with branch index j and
wave vector k. The integration over the first BZ and the summation over all G can be extended
to an integral over all k-space:

f (r, t)=
1

2

∑
j

∫
all k

{
A j(k′)C j(k) exp{i(k · r −ω j(k′)t)}

+A∗

j(k
′)C∗

j (k) exp{−i(k · r −ω∗

j (k
′)t)}

}
d2k

=
1

2

∫
all k

∑
j

{
A j(k′)C j(k) exp{−iω j(k′)t}

+ A∗

j(−k′)C∗

j (−k) exp{iω∗

j (−k′)t}
}

exp(ik · r)d2k, (A.3)

where k′ is the wave vector reduced to the first BZ using the relation k = k′ + G with an
appropriate G. In the present case of our sample with 1D periodicity, the unit reciprocal lattice
vector G0 is given by G0 = (2π/a)i, where i is the x-directed unit vector. When expressed
for this 1D case, equation (A.3) represents an arbitrary eigenmode expansion for a sample
with x periodicity, accurately representing any acoustic 2D field on the structure, and, with
the appropriate choice of A j(k), includes, for example, waveguiding effects in the y direction
in that same structure.
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Having established the form of f (r, t), we proceed to take the spatiotemporal Fourier
transform:

F(k, ω)=
1

(2π)3

∫
∞

−∞

f (r, t) exp{−i(k · r −ωt)}d2r dt, (A.4)

where

f (r, t)=

∫
∞

−∞

F(k, ω) exp{i(k · r −ωt)}d2k dω. (A.5)

Rewriting equation (A.5) as

f (r, t)=

∫
all k

{∫
F(k, ω) exp(−iωt) dω

}
exp(ik · r)d2k, (A.6)

and comparing it with equation (A.3), one obtains∫
F(k, ω) exp(−iωt) dω =

1

2

∑
j

{
A j(k′)C j(k) exp{−iω j(k′)t}

+A∗

j(−k′)C∗

j (−k) exp{iω∗

j (−k′)t}
}
. (A.7)

When acoustic attenuation is negligible over the imaged region, as in the present case, ω j(k′) is
real, that is ω j(k′)= ω∗

j (k
′). Equation (A.7) can then be further simplified by multiplying both

sides by exp(iω′t)/(2π) and integrating with respect to t . Replacing ω′ by ω for convenience in
the final result, we obtain

F(k, ω)=
1

2

∑
j

{
A j(k′)C j(k)δ(ω−ω j(k′))+ A∗

j(−k′)C∗

j (−k)δ(ω +ω j(−k′))
}
. (A.8)

The delta functions in this equation show that the Fourier amplitude F(k, ω) is only non-zero
when the combination (k′, ω) satisfies the relation ω = ω j(k′) or ω = −ω j(−k′) for the branch
j , and so the dispersion relation can be determined from F(k, ω). Moreover, the complex
amplitude of F(k, ω) is proportional to the amplitude of the relevant Bloch harmonic C j(k). In
other words, for (k′, ω) satisfying the reduced-zone dispersion relation, that is ω = ω j(k′), the
ratios between values of F(k′ + G, ω) for different G exactly match those between the values
of C j(k′ + G). The amplitude (and phase) of the Bloch harmonics derived from F(k, ω) are
therefore directly related to the coefficients C j in the Bloch expansion of equation (A.1), and so
yield valuable information about the periodic scattering potential.

The second term in equation (A.8) ensures the following relation holds:

F(k, ω)= F∗(−k,−ω), (A.9)

which is expected for the Fourier transform of the real function u(r, t) (see equations (A.4)
and (A.5)). This implies that half of (k, ω) space contains all the information on F(k, ω). If
ω j(k′) is chosen to be positive, the first term in the sum of equation (A.8) corresponds to ω > 0,
whereas the second term corresponds to ω < 0. Because of the dual nature of the information
contained in F(k, ω), it suffices to consider only the first term:

F(k, ω)=
1

2

∑
j

A j(k′)C j(k)δ(ω−ω j(k′)) (ω > 0). (A.10)

Negative values of ω in equation (A.8) are therefore redundant.
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For a lossless medium, one can also derive extra conditions resulting from time-reversal
symmetry: by applying the time-reversal operation t → −t to equation (A.1), we get

fk, j(r,−t)=

∑
G

C j(k + G) exp{i((k + G) · r +ω j(k)t)}, (A.11)

which should also be an eigenmode of the lossless wave equation (which obeys time-reversal
symmetry). This can be compared with the eigenmode for −k:

f−k, j(r, t)=

∑
G

C j(−k − G) exp{i((−k − G) · r −ω j(−k)t)}, (A.12)

where substitution of −G instead of G has been carried out without affecting the sum (over all
positive and negative G). The complex conjugate of this equation is

f ∗

−k, j(r, t)=

∑
G

C∗

j (−k − G) exp{i((k + G) · r +ω j(−k)t)}. (A.13)

The exponential terms exp(i(k + G) · r) in equations (A.11) and (A.13) are the same, so without
losing generality one may choose fk, j(r,−t)= f ∗

−k, j(r, t), which implies that ω j(k)= ω j(−k)
and C j(k)= C∗

j (−k) in the lossless case.
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[9] Russell P 1986 Appl. Phys. B 39 231

[10] Zengerle R 1987 J. Mod. Opt. 34 1589
[11] Wolfe J 2005 Imaging Phonons: Acoustic Wave Propagation in Solids (Cambridge: Cambridge University

Press)
[12] Corbel C, Guillois F, Royer D, Fink M and De Mol R 1993 IEEE Trans. Ultrason. Ferroelectr. Freq. Control

40 710
[13] Narita M, Tanaka Y and Tamura S 2002 J. Phys.: Condens. Matter 14 1709
[14] Yang S, Page J H, Liu Z, Cowan M L, Chan C T and Sheng P 2004 Phys. Rev. Lett. 93 24301
[15] Giovannini L and Nizzoli F 1992 Phys. Rev. Lett. 69 1572
[16] Dutcher J R, Lee S, Hillebrands B, McLaughlin G J, Nickel B G and Stegeman G I 1992 Phys. Rev. Lett.

68 2464
[17] Vines R E, Wolfe J P and Every A V 1999 Phys. Rev. B 60 11871
[18] Dhar L and Rogers J 2000 Appl. Phys. Lett. 77 1402
[19] Profunser D M, Wright O B and Matsuda O 2006 Phys. Rev. Lett. 97 055502
[20] Morvan B, Hladky-Hennion A, Leduc D and Izbicki J 2007 J. Appl. Phys. 101 114906
[21] Maznev A A 2008 Phys. Rev. B 78 155323
[22] Maznev A A and Wright O B 2009 J. Appl. Phys. 105 123530
[23] Duhring M, Laude V and Khelif A 2009 J. Appl. Phys. 105 093504

New Journal of Physics 14 (2012) 123015 (http://www.njp.org/)

http://dx.doi.org/10.1364/OE.11.001203
http://dx.doi.org/10.1038/nmat1568
http://dx.doi.org/10.1103/PhysRevLett.96.173902
http://dx.doi.org/10.1103/PhysRevB.76.140302
http://dx.doi.org/10.1103/PhysRevB.80.014301
http://dx.doi.org/10.1063/1.3643497
http://dx.doi.org/10.1103/PhysRevE.71.036301
http://dx.doi.org/10.1103/PhysRevE.73.065603
http://dx.doi.org/10.1007/BF00697490
http://dx.doi.org/10.1080/09500348714551531
http://dx.doi.org/10.1109/58.248215
http://dx.doi.org/10.1088/0953-8984/14/8/302
http://dx.doi.org/10.1103/PhysRevLett.93.024301
http://dx.doi.org/10.1103/PhysRevLett.69.1572
http://dx.doi.org/10.1103/PhysRevLett.68.2464
http://dx.doi.org/10.1103/PhysRevB.60.11871
http://dx.doi.org/10.1063/1.1290388
http://dx.doi.org/10.1103/PhysRevLett.97.055502
http://dx.doi.org/10.1063/1.2737348
http://dx.doi.org/10.1103/PhysRevB.78.155323
http://dx.doi.org/10.1063/1.3153956
http://dx.doi.org/10.1063/1.3114543
http://www.njp.org/


28

[24] Nardi D, Travagliati M, Siemens M, Li Q, Murnane M, Kapteyn H, Ferrini G, Parmigiani F and Banfi F 2011
Nano Lett. 11 4126

[25] Maznev A A, Wright O B and Matsuda O 2011 New J. Phys. 13 013037
[26] Malfanti I, Taschin A, Bartolini P, Bonello B and Torre R 2011 J. Mech. Phys. Solids 59 2370
[27] Veres I A and Berer T 2012 Phys. Rev. B 86 104304
[28] Tachizaki T, Muroya T, Matsuda O, Sugawara Y, Hurley D H and Wright O B 2006 Rev. Sci. Instrum.

77 043713
[29] Sugawara Y, Wright O B, Matsuda O, Takigahira M, Tanaka Y, Tamura S and Gusev V E 2002 Phys. Rev.

Lett. 88 185504
[30] Farnell G and Adler E L 1972 Physical Acoustics vol 9 ed W P Mason and R N Thurston (New York:

Academic) p 35
[31] Tanaka Y, Tomoyasu Y and Tamura S 2000 Phys. Rev. B 62 7387
[32] Robillard J, Bucay J, Deymier P, Shelke A, Muralidharan K, Merheb B, Vasseur J, Sukhovich A and Page J

2011 Phys. Rev. B 83 224301
[33] Bathe K-J 1996 Finite Element Procedures (Upper Saddle River, NJ: Prentice-Hall)
[34] Scruby C B and Drain L E 1990 Laser Ultrasonics: Techniques and Applications (Bristol: Taylor and Francis)
[35] Arias I and Achenbach J D 2003 Int. J. Solid Struct. 40 6917
[36] Maznev A A, Akthakul A and Nelson K A 1999 J. Appl. Phys. 86 2818
[37] Bruchhausen A et al 2011 Phys. Rev. Lett. 106 077401
[38] Lehr B, Ulrich H and Weis O 1982 Z. Phys. B 48 23
[39] Jones C, Klemens P and Rayne J 1964 Phys. Lett. 8 31
[40] Duquesne J and Perrin B 2003 Phys. Rev. B 68 134205
[41] Vines R E, Hauser M R and Wolfe J P 1995 Z. Phys. B 98 255
[42] Tanaka Y, Narita M and Tamura S 1998 J. Phys.: Condens. Matter 10 8787
[43] Maznev A 2009 Ultrasonics 49 1
[44] Maznev A and Gostein M 2010 Ultrasonics 50 650
[45] Auld B 1990 Acoustic Fields and Waves in Solids 2nd edn (Malabar: Krieger Publishing Company)
[46] Rose J L (ed) 1999 Ultrasonic Waves in Solid Media 1st edn (Cambridge: Cambridge University Press)

pp 137–42
[47] Veres I A and Pierce S G 2009 Proc. 16th Int. Conf. on Sound and Vibration http://www.proceedings.

com/06894.html
[48] Grimsditch M 1985 Phys. Rev. B 31 6818
[49] Maznev A A and Every A G 1996 Solid State Commun. 97 679
[50] Kittel C 2005 Introduction to Solid State Physics 8th edn (New York: Wiley)
[51] Brillouin L 1946 Wave Propagation in Periodic Structures 2nd edn (New York: Dover) chapter 8
[52] Veres I, Profunser D, Wright O, Matsuda O and Culshaw B 2011 Chin. J. Phys. 49 534
[53] Gersen H, Karle T, Engelen R, Bogaerts W, Korterik J, Van Hulst N, Krauss T and Kuipers L 2005 Phys. Rev.

Lett. 94 123901
[54] Taflove A and Hagness S C 2000 Computational Electrodynamics, the Finite-Difference Time-Domain

Method 3rd edn (Boston, MA: Artech House)
[55] Veres I A 2010 Ultrasonics 50 431

New Journal of Physics 14 (2012) 123015 (http://www.njp.org/)

http://dx.doi.org/10.1021/nl201863n
http://dx.doi.org/10.1088/1367-2630/13/1/013037
http://dx.doi.org/10.1016/j.jmps.2011.07.010
http://dx.doi.org/10.1103/PhysRevB.86.104304
http://dx.doi.org/10.1063/1.2194518
http://dx.doi.org/10.1103/PhysRevLett.88.185504
http://dx.doi.org/10.1103/PhysRevB.62.7387
http://dx.doi.org/10.1103/PhysRevB.83.224301
http://dx.doi.org/10.1016/S0020-7683(03)00345-7
http://dx.doi.org/10.1063/1.371130
http://dx.doi.org/10.1103/PhysRevLett.106.077401
http://dx.doi.org/10.1007/BF02026424
http://dx.doi.org/10.1016/0031-9163(64)90786-3
http://dx.doi.org/10.1103/PhysRevB.68.134205
http://dx.doi.org/10.1007/BF01324532
http://dx.doi.org/10.1088/0953-8984/10/39/015
http://dx.doi.org/10.1016/j.ultras.2008.04.007
http://dx.doi.org/10.1016/j.ultras.2010.03.003
http://www.proceedings.com/06894.html
http://www.proceedings.com/06894.html
http://dx.doi.org/10.1103/PhysRevB.31.6818
http://dx.doi.org/10.1016/0038-1098(95)00644-3
http://psroc.phys.ntu.edu.tw/cjp/issues.php?vol=49&num=1
http://dx.doi.org/10.1103/PhysRevLett.94.123901
http://dx.doi.org/10.1016/j.ultras.2009.10.009
http://www.njp.org/

	1. Introduction
	2. Experimental setup and time-domain simulations
	2.1. Experimental setup and samples
	2.2. Time-domain simulations

	3. Results and discussion for the 4 m-period sample
	3.1. Analysis in real space
	3.2. Dispersion relations for the kx and ky directions
	3.3. Constant-frequency planes

	4. Analytical model and derivation of the group-velocity-surface topology
	4.1. Group-velocity surfaces
	4.2. Phonon focusing

	5. Results and discussion for the 10m-period sample
	5.1. Analysis in real space
	5.2. Dispersion relations for the kx and ky directions
	5.3. Constant-frequency planes

	6. Conclusions
	Acknowledgments
	Appendix.  Spatiotemporal Fourier transform of the wave field in phononic crystals
	References

