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Abstract

Formal analyses have been used for payment protocol design and verification but, de-
spite developments in semantics and expressiveness, previous literature has placed little
emphasis on the automation aspects of the proof systems. This research develops an
automated analysis framework for payment protocols called PTGPA. PTGPA com-
bines the techniques of formal analysis as well as the decidability afforded by theory
generation, a general-purpose framework for automated reasoning.

A comprehensive and self-contained proof system called TGPay is first developed.
TGPay introduces novel developments and refinements in the formal language and
inference rules that conform to the prerequisites of theory generation. These target
desired properties in payment systems such as confidentiality, integrity, authentication,
freshness, acknowledgement and non-repudiation. Common security primitives such
as encryption, decryption, digital signatures, message digests, message authentication
codes and X.509 certificates are modeled.

Using TGPay, PTGPA performs analyses of payment protocols under two scenarios
in full automation. An Alpha-Scenario is one in which a candidate protocol runs in
a perfect environment without attacks from any intruders. The candidate protocol is
correct if and only if all pre-conditions and post-conditions are met. PTGPA models
actions and knowledge sets of intruders in a second, modified protocol that represents an
attack scenario. This second protocol, called a Beta-Scenario, is obtained mechanically
from the original candidate protocol, by applying a set of elementary capabilities from
a Dolev-Yao intruder model.

This thesis includes a number of case studies to demonstrate the feasibility and ben-
efits of the proposed framework. Automated analyses of real-world bank card payment
protocols as well as newly proposed contactless mobile payment protocols are presented.
Security flaws are identified in some of the protocols; their causes and implications are
addressed.

Thesis Supervisor: George A. Kocur
Title: Senior Lecturer in Civil and Environmental Engineering
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Chapter 1

Introduction

Contents

1.1 Thesis Motivation ........ ........................ 13

1.2 Related Work.......................... . 16

1.3 Approach Overview ....................... 24

1.4 Thesis Outline .......................... 32

1.1 Thesis Motivation

Near-Field-Communication (NFC) [NF12a] [IS004] is a low latency, RFID [FinO3] com-

munication technology that has been widely adopted in the proximity payment industry.

NFC allows many novel payment applications. Contactless bank card trials have been

conducted throughout the world [Exp05] [Mas05] [Vis07]. Mobile-enabled applications

such as Google Wallet [Gooll] are being deployed and used daily by merchants and

customers.

Despite the early success of NFC and related payment technologies such as EMV

[EMV11a] [EMV11b], verification of modern payment protocols for correctness remains

an active and challenging topic for research. Traditionally, these crucial analyses have

been done by hand. Assumptions are first made based on the levels of abstraction in

13



which protocols were specified. Properties to be achieved by the protocols are defined

and then verified in an informal and ad-hoc way. The overall procedure can be very

complex and tedious, and is often prone to errors arising from many possible sources.

This inevitably calls for more rigorous approaches to payment protocol verification.

Formal methods, in which a given protocol is specified and structurally proved

correct in a formal mathematical semantic, have much to offer. The increased overall

analysis complexity can be justified by the importance of security and message integrity.

In the past, a number of significant formal frameworks have been developed, among

which is the notable progenitor in this domain, BAN logic [BAN89] [BAN90]. BAN

logic is a light weight framework long recognized for its elegance and intuitiveness. It

provides formal semantics for determining properties of authentication protocols. At

the core of the BAN formalism is a proof system, consisting of a set of inference rules

called axioms. Security goals and business requirements of a protocol can then be

verified by applying logical deductions from applications of the axioms.

Although BAN logic was initially designed to verify authentication protocols, re-

searchers have extended its semantics to uncover security flaws in a much broader

context. Similar frameworks have since been applied to analyses of communication,

key distribution and electronic commerce protocols [Sv094] [Kai96] [SM09).

Despite developments in semantics and expressiveness of BAN-style inference sys-

tems, previous literature did not emphasize the procedural mechanism in the application

of the proof system. A protocol is well specified in a formal language but the proofs

of its correctness are often still done manually. This approach may not be sufficient

for analyses of complex protocols. Therefore, instead of deriving inference chains in

an ad-hoc way with human guidance, fully automated algorithms that control exact

behaviors of inference procedures need to be developed.

Various attempts were made to automate the BAN-style formalisms, particularly,

[KW94] [MSnN95]. In 1999, Kindred and Wing [Kin99] [KW99] made a remarkable

contribution that circumvents the problem of non-termination, a major barrier to BAN

automation. Their work was based on the idea of finite theory generation, borrow-

14



ing ideas from syntactic methods and saturation theory. In their method, constraints

are enforced when writing rules of inference and an enumeration algorithm is devel-

oped to ensure that the proof system terminates and is both sound and complete, and

therefore decidable. This provides a plausibility argument that semantic enrichment

for higher-level protocol properties can be loosely decoupled with, and in general, de-

veloped relatively independently from the automation and decidability aspects of the

entire proof system.

This research combines both the elegant semantic heritage of BAN-style inference

systems as well as the decidability afforded by theory generation. First, a comprehen-

sive proof system called TGPay is developed. TGPay introduces novel developments

and refinements in the formal semantics that conform to the prerequisites of theory gen-

eration. Those target desired properties in payment such as confidentiality, integrity,

freshness, acknowledgement and non-repudiation. Security primitives such as digital

signature, message digest, message authentication code (MAC), and certificate are for-

mally introduced in the framework. Formal semantics of message transmission and

handling are also explicitly defined for senders and receivers as well as their interac-

tions with messages.

Given a payment protocol specification, its pre-conditions and post-conditions, this

thesis discusses what constitutes correctness under two scenarios. The first scenario,

denoted as Alpha-S, examines the protocol under a perfect environment without any

attacks. Coarsely speaking, a protocol is considered Alpha-S correct iff the correspond-

ing pre-conditions are valid before each message exchange and all post-conditions are

valid at completion.

The second scenario, known as Beta-S, deals with a second protocol, its associated

pre-conditions and post-conditions, systematically modified from the original protocol.

In the modified protocol, attackers are modeled explicitly as Dolev-Yao intruders [DY83]

that participate in message exchanges. The modified protocol can thus be thought of

as a specific attack rendered on the original protocol. Since pre-conditions and post-

conditions are also obtained from this transformation, this saves protocol designers from

15



re-defining them and hence avoids any possible errors that may arise from that process.

This thesis defines what it means for a protocol to be correct under a specific Beta-S

(an attack scenario).

Together with the developed formal semantics of TGPay and the two examination

strategies Alpha-S and Beta-S, this thesis develops the Pre-conditioned Theory Gener-

ation Protocol Analyzer (PTGPA), an automatic payment protocol analyzer. PTGPA

adopts theory generation as a subroutine. Leveraging the decidability property of the-

ory generation, PTGPA fully automates analyses of candidate protocols under Alpha-S

and Beta-S and is guaranteed to terminate in finite time with correctness conclusions.

This thesis examines a set of real-world payment protocols using PTGPA. The

collection consists of two types of contactless credit card payment protocols and two

EMV authentication protocols. Security flaws are found in some of the protocols using

the formal analysis approach.

This thesis proposes two mobile NFC payment protocols and demonstrates how they

are formalized and verified in the framework of PTGPA. The first protocol allows an

NFC-enabled mobile phone to interact with an NFC reader to perform a general finan-

cial transaction. The second protocol allows an NFC-equipped phone with payment

server connectivity to purchase services or goods that are identified by passive tags

(smart cards). Unlike the design of reader-based payment protocols, the phone is now

responsible for collecting transaction evidence as well as submitting it to a payment

server. This thesis shows how PTGPA can be applied to analyze these protocols as well

as their respective attacks in full automation.

1.2 Related Work

Although the domain is of primarily payment protocols, this thesis has benefited from

studying protocol verification techniques from a much broader context. In this sec-

tion, we provide a brief review of the related formal methods in the area of protocol

verification, with an emphasis on theory generation and its dependent techniques.
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1.2.1 Needham-Schroeder and Dolev-Yao

The history of applications of formal methods to protocol analysis goes back to the

late 1970's, when [NS78] first discussed the use of encryption to achieve authentication.

The paper studied examples using both symmetric key encryption as well as public key

encryption techniques. Needham and Schroeder, at the conclusion of the paper, recog-

nized the complexity of designing communication protocols for secrecy and emphasized

the need for more rigorous techniques. According to [Mea03], this was perhaps the first

mention of formal methods in regard to protocol analysis in the literature, although

Needham and Schroeder did not address the proposal in detail.

In the early 1980's, Dolev and Yao [DY83] made the first significant attempt in

applying formal mathematical models to protocol analysis. [DY83] discussed two types

of restricted public-key based communication protocols: cascade protocols, in which the

only operations allowed are cryptographic encryption and decryption; and name-stamp

protocols, in which users are allowed to append, delete and check names encrypted with

plain-text. The paper provided sufficient conditions for the secrecy properties of both

types. It also suggested a polynomial runtime algorithm that is capable of deciding if

a given protocol of the two types indeed ensures secrecy. The work was generalized by

[EG83], in which the authors showed that checking a given protocol's security under

relaxations of the constraints from [DY83] is, in general, undecidable.

Dolev and Yao's work was both promising and significant. It adopted a number of

idealizations which have allowed designers to vastly simplify their formal model and

concentrate more closely on the logic of a given protocol. First, cryptographic primi-

tives are assumed to be perfect. This means that encrypted messages are unbreakable

by intruders without the corresponding decryption key. Likewise, the hash functions

used are collision free, and the pseudo-random generator always produces truly random

numbers. The strength of the key and I/O buffer size are assumed to be adequate

and are considered irrelevant in analyses. Secondly, intruders in the Dolev-Yao frame-

work are powerful principals who can receive, modify, block, or redirect any messages

transmitted in a protocol. They behave just like normal principals and are capable

17



of initiating any communications with other regular principals. They are only limited

by their knowledge of any secrets and thus any cryptographic procedures that require

this knowledge. This intruder model with a fixed set of powerful capabilities has been

shown to be sufficiently expressive in describing any attacks that follow the Dolev-Yao

abstraction [Cer01].

Dolev-Yao abstraction quickly became the "model of models" for much subsequent

work in this area. Millen et al. [MCF87] developed a Prolog program called Interrogator

that searches automatically for attack vulnerability in network protocols. They used a

finite state machine to represent protocol traces and to report any message modifications

from attackers. In [Mea92], Meadows applied term rewriting techniques to analyze key

exchange protocols. This was further extended in [Mea99], in which the well-known

NRL protocol analyzer was developed and used to effectively uncover security flaws in

real-world broadcast protocols.

1.2.2 State Exploration

An extension of Dolev-Yao is state exploration, where state spaces of the subject pro-

tocol are exhaustively examined. A set of transition functions is identified and formally

defined. Paths that lead to desired states prove the soundness of some security claims.

Paths that lead to protocol states which are successful attacks are identified and ex-

tracted as counter-examples. For instance, if one wants to prove a protocol does not

reach a state in which a piece of information is revealed, one can show that it is im-

possible to reach that state. The proof technique can be in the form of exhaustive

enumeration with prunings in which certain sets of states are proved not necessary to

explore. This initially seemed to be an effective approach but was found difficult to

apply, mostly due to the unbounded nature of the underlying protocol states. In partic-

ular, the message size and the number of concurrent sessions are in general unbounded.

Model checkers that enumerate only finite portions of infinite state spaces do not ensure

completeness. If the checker fails to find any attacks, it does not prove the protocol is

attack-free.

18



Since then, various hybrid techniques were used to improve the applicability of the

state exploration approach. For example, to overcome the problem of unboundedness,

restrictions can be imposed on the message size [Ros95] [CJMOO] -as well as on the

number of sessions [RTO1] [RT03]. Notably, Lowe's early work on fixing the Needham-

Schroeder public key protocol using Failures Divergences Refinement (FDR) became

one of the first realizations of this hybrid technique [Low96]. Lowe's strategy was to

combine manual analyses with a constrained version of state exploration which can gen-

erally be conveniently automated. This work was later extended by [Low98], in which

Lowe started with an automated state exploration in constrained spaces, and showed

how manual proofs can be used to aid the exploration to generalize it to the uncon-

strained cases. In the same vein, [EMM05] extended the NRL analyzer to incorporate a

state space reduction framework with user-aided pruning. This work was subsequently

extended by [EMM06].

1.2.3 Pi Calculus

A different yet popular formal verification approach is the application of equivalence

theory. Equivalence theory was originally applied extensively in the Pi calculus [Mil9l]

[Mil99]. Pi calculus is a powerful process algebra that was primarily designed to model

concurrent systems. Pi calculus was later extended by Spi-calculus [AG97] to add

semantics for cryptographic primitives such as encryption and decryption. After that,

Applied Pi calculus [AF01] further enriched the semantics of Spi-calculus to include

additional cryptographic primitives.

In these formal frameworks, desired properties of protocols such as secrecy and

authenticity are viewed as equivalent to a specification protocol. For example, message

m remains confidential if a protocol exchanging message m is indistinguishable from a

protocol exchanging a different message m', for any m and m'. "Indistinguishability"

is claimed if one can prove the equivalence of these two protocols for any m and m'.

Another property that can be proved using equivalence is authenticity. For example,

a protocol that delivers message m from principal A to principal B over an insecure
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channel is considered to preserve authenticity if it is equivalent to a second protocol

that always magically allows B to receive the same message m, for any m.

Although the framework defines a clear linkage between parameterized equivalence

testing and formal proofs of secrecy and authenticity, the actual proofs are difficult due

to the "for any" in the definition of equivalence, which must hold for all possible cases.

Thus, practically, the proof strategy has shifted to show bisimilarities between the two

protocols [San96] [AG98a] [AG98b]. Over the years, decision procedures for bisimilarity

of some constrained cases were studied by a number of researchers [DSVOO] [DSV03]

[AC06].

1.2.4 Belief Logic

In 1989 and 1990, [BAN89] [BAN90] introduced a vastly different approach to formal

verification, called BAN logic. Their framework was built on modal logic and attempts

to ascertain beliefs of individual principals. This reasoning perspective is both unique

and purposeful. Because principals are often exposed to different sets of messages

during a protocol run, they form different sets of beliefs. Likewise, if an intruder alters

a message transmission, the recipient will likely form different beliefs. BAN logic can

be used to answer questions such as what beliefs principals form when a message is sent

or received, or what initial assumptions were made to form these beliefs.

There were 19 rules of inference specified in the original BAN logic paper [BAN90].

These rules were developed to determine principals' beliefs regarding authentication,

freshness and jurisdiction. For example, if a principal P sees a cipher-text in the form

of a plain-text M encrypted using key K, and P knows the key K that P shares with

Q, then P also sees plain-text M. In BAN logic, this inference rule is formalized in a

decryption axiom of the form:

P < {M}K

P5PAQ (1.1)

P <I M
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where the first premise states that P sees a cipher-text that is the encryption of M

using key K. The second line states that P believes it shares with Q a common key K

and that P knows K. The conclusion of this axiom states that P sees M.

[Mea03] argued that belief logics such as BAN are generally weaker than state

exploration due to their high abstraction level. However, the key advantage of BAN

formalism is that it is very intuitive and easy to apply, yet effective in picking up

loopholes in protocols. The compactness of its semantics also makes it easy to compute

and to automate. Another key advantage of BAN-style formalism is that it is very

flexible, since axioms can be engineered to target any specific design goal. BAN logic

remains popular in the community of protocol verification.

Gaarder and Snekkenes [GS91] and van Oorchot [v093] extended the original BAN

logic to add formal semantics for public key infrastructure (PKI). This was further

enhanced in [SY08), where the Gaarder and Snekkenes framework was optimized by

introducing explicit handling of digital certificates.

[GNY90] suggested a set of modifications to the original BAN logic. The mod-

ifications suggested a set of new, powerful axioms. The resulting framework, called

GNY logic, has been used to analyze a much wider range of protocols beyond classical

authentication protocols [MO06] [DLC08] [FL09] [KP12].

The first serious attempt to verify electronic commerce protocols with BAN-style

logic was done by Kailar [Kai96]. Kailar introduced formal semantics to evaluate ac-

countability, a unique and important requirement for E-commerce transactions. Ac-

countability dictates that participants of a protocol must be held accountable for what

they have claimed and sent. Kailar points out that it is not sufficient for individual

participants to believe a correct transaction took place; they must be able to prove,

with evidence, to an arbitrator that this was the case. This requirement that principals

are able to prove certain aspects of an E-commerce protocol is remarkable. Surpris-

ingly, axioms of accountability can be very naturally specified in BAN-style formalism.

Kailar's approach was further expanded upon by a number of researchers [SLBSO8]

[LHL08] [DJZF09] [SSLH11].
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1.2.5 Automated Proofs

As various BAN-style formalisms were being developed, increased effort was made on

the automation aspects of these frameworks. This goes back to the mid 1990's, when

[KW94] first attempted to automate the BAN logic by implementing it in a logic pro-

gramming language. In their paper, a modified version of the original BAN logic,

called AUTLOG, was implemented in Prolog. However, the resulting implementation

was sensitive to the order in which the rules were defined in Prolog, as pointed out in

[Kin99]. In some cases, the order in which rules of inference were defined even led to

non-termination.

Mathuria et al. [MSnN95] attempted to fully automate the GNY logic by imposing

certain ad-hoc constraints on the rules of inference without altering their semantics.

Mathuria et al. recognized that certain rules of inference from GNY produce conclusions

that are "longer than" their premises, which do not allow a proof of the finiteness

property on the number of formulas that can be derived. An example illustrated by the

authors was the freshness rule:

P 5(X)(12
P 5 (X, Y)

which states that if P believes part of a message is fresh, then the whole message is

fresh. Mathuria et al. pointed out that repeated application of this rule will lead to non-

termination1 . They modified it by inserting an additional premise of the same size as its

conclusion. That is, this freshness rule always produces a conclusion that is no longer

than what is already known. Subsequently, Mathuria et al. showed how modifications to

this rule, as well as to other similar sources of non-termination, preserved the semantics

of the original GNY logic and, at the same time, ensured finite-step termination. A

similar attempt on the automation aspect was conducted by Monniaux [Mon99].

In parallel with BAN, various pioneering automation techniques based on finite-

state exploration were developed. Specifically, Mitchell et al. [MMS97] showed how

(X) -+ (X,X) -4 (X,X,X)...
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general purpose state enumeration tools can be applied to security protocol verification.

A general purpose state explorer, called Murp, was used to automatically analyze a

number of finitely bounded cryptographic systems by performing an exhaustive check

on all reachable states. Although Mitchell et al. did not claim any formal soundness and

completeness in their paper, their work presented promising results on the automation

aspect. This approach was later exploited by [SD97] for performance improvements by

introducing concurrency, where multiple sessions at same time are created to increase

overall analysis efficiency. Moreover, [ID96] presented an extension of the Muro state

explorer to verify systems with replicated identical components.

In 1999, [Kin99] [KW99] extended Mathuria et al. and Monniaux, and developed

a generic framework called theory generation that is capable of performing protocol

verification in full automation with any formal reasoning logic that satisfies a given set of

constraints. In their work, Kindred and Wing divided inference rules into two categories:

A growth-rule has a conclusion that is longer than any of its premises; a shrink-rule

is one whose conclusion is shorter than some of its premises. The measurement of

the size of any premise or conclusion was abstract and was rigorously defined with

a customizable preorder. Given a preorder definition and with some mild syntactical

constraints, Kindred and Wing showed how one can construct a theory representation,

from a set of initial conditions, rules of inference and a given protocol description in

finite number of steps. Finally, to verify if a goal formula is valid, one can simply invoke

a decision procedure. This Kindred and Wing procedure was shown to be sound and

complete, and was guaranteed to terminate in finite time. Case studies were examined

with a general-purpose proof system called a "little logic". Theory generation and its

related techniques were subsequently studied by [HSWOO] and [ZF03].

Kindred and Wing's work was inspirational to this thesis. The key contribution

came from its independence from any specific proof systems such as BAN, GNY or

Mur, yet theoretical arguments were given to assert guarantees of termination and

decidability. This implies that protocol designers can come up with their own set of

axioms, perhaps tailored to a specific problem, without worrying about reinventing
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their corresponding decision procedures.

This unique feature afforded by theory generation has allowed this thesis to de-

compose its automated proof strategy into two parts. First, a comprehensive set of

inference rules was developed to target payment. This includes rules that traditionally

target secrecy and authentication as well as payment-specific rules for integrity and

non-repudiation. Moreover, formal semantics were defined for message transmission

and handling. The set of rules was specified according to the prerequisites of theory

generation and thus the proposed proof system is amenable to Kindred and Wing's

decision procedure.

Second, we introduce a set of pre-conditions and post-conditions beyond the tradi-

tional description of message transmission, and develop a decision procedure to deter-

mine the correctness of a given payment protocol with respect to these pre-conditions

and post-conditions. We then formally introduce intruders in a different, modified pro-

tocol that represents an attack scenario. This second protocol is obtained mechanically

from the original protocol, by applying a set of elementary capabilities from the Dolev-

Yao intruder model. We develop a unified decision framework to verify the correctness

of the original protocol under this specific attack, as presented by the second protocol.

1.3 Approach Overview

In this section, we give an overview of our analysis framework. We start by considering

a simple NFC payment protocol example. Let Re and Ph be two principals: NFC

reader and NFC phone respectively. Ph first sends a client hello message Mjh to Re

to indicate that it is ready to start the protocol. Re then sends Ph a payment request

message MRe, which contains information on the amount to charge, description of the

service, etc. Upon receiving this message, Ph replies with a payment confirmation

message Ma. Mjh contains information on Ph's affirmation of M'e, its credit card

details, etc. Finally, after receiving MPh, Re sends message M 2 to Ph, where M e is

the receipt issued to Ph. This protocol is depicted in Figure 1-1.
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Figure 1-1: UML sequence diagram for a simple reader - NFC phone payment protocol.

This protocol has a number of potential security flaws. But for now, we focus

on strategies for its correctness analyses. There are many ways one can define what

constitutes a correct payment protocol. Our general strategy can be broken into two

perspectives:

1. Alpha-Scenario: Correctness of the protocol without an intruder

2. Beta-Scenario: If condition 1 is met, correctness of the protocol with Dolev-Yao

intruders

Throughout the proposed framework, we will formalize the messages that are ex-

changed, and reason with predicates in a restricted first-order logic language, to be

defined in Chapter 5. We will define characteristics of the language in chapter 2, includ-

ing its terms, functions and predicates. Next, we briefly describe the two examination

strategies.

1.3.1 Alpha-Scenario

First, we are interested in the correctness of a protocol in a perfect environment without

any intruders, the so-called "Alpha-Scenario". In the Alpha-Scenario (Alpha-S), we are

interested in questions like: Does each message transmission achieve its expected goals?

Does the protocol design comply with given security requirements at completion? We

address the first question using a set of pre-conditions and the second by specifying a
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set of post-conditions. All pre- and post-conditions will be formalized in a specified

language.

We specify a set of initial assumptions that outline the beliefs of principals prior

to the start of the protocol, such as knowledge of keys. Next, for each message trans-

mission, we define a set of pre-conditions. For example, after receiving the payment

request M'e, Ph needs to send back its payment confirmation Mjh. However, Ph needs

to first prove to itself that certain security goals are met. If Ph fails to form beliefs on

some of these goals, Ph aborts the protocol. For instance, Ph needs to be able to prove

that M"e was sent recently and is not a replay of some old message, by using all the

information Ph has gathered up to that point. This pre-condition can be formalized as

an assertion formula:

Ph W (Me) (1.3)

where Ph 5 is a predicate that means "Ph believes" and (MRe) is a predicate that

means "M1e is fresh". Notice this pre-condition does not impose a freshness requirement

on a specific message M1e. Rather, it should be interpreted as "For any message M1e

Ph receives at the end of transmission two, Ph must believe M1e is fresh.". M1e should

be interpreted as a placeholder or a variable that represents any concrete message sent

in the second transmission. In general, pre-conditions can be thought of as security and

business requirements that the protocol designer imposes for each message transmission

step. Alternatively during Beta-S, they can be thought of as an individual principal's

vigilance against any type of attack; since failure to verify any pre-condition results in

protocol abortion.

Besides pre-conditions, the proposed framework also requires specification of a set

of post-conditions. Unlike pre-conditions, post-conditions are specified for the entire

protocol and are not transmission specific. They can be thought of as the set of desired

goals and business requirements that must be achieved at the completion of the protocol

run, reasoned from each individual principal's perspective on their beliefs. One such

business requirement for the above protocol is non-repudiation. For example, at the
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completion of the payment protocol, Ph must believe that it has non-repudiatable

evidence to prove Re's recognition of his payment. If Re attempts to refute, Ph can

bring forward evidence to an arbitrator to uphold its claim. Similar to 1.3, we can

formalize this assertion as a formula in a formal language.

To sum up, the correctness of a given protocol in Alpha-S requires that all pre-

conditions are valid before each transmission and all post-conditions are valid at pro-

tocol completion. This means that, without any intruders, a given candidate protocol

must satisfy all design goals at each step while the protocol is running, and also satisfy

all the design goals when the protocol successfully completes.

1.3.2 Beta-Scenario

In the Beta-Scenario (Beta-S), we are interested in knowing how a given candidate

protocol that is Alpha-S correct deals with an attack. We propose a verification strategy

that allows us to determine the candidate protocol's correctness under a specific attack.

To tackle this verification strategy, it is necessary to first define a structured transfor-

mation process. This transformation process is empowered through a set of Dolev-Yao

intruder actions such as message eavesdropping, blockage, modification and redirection.

It transforms the original protocol into a specific attack scenario, in which intruders are

explicitly involved in message transmissions. The pre-conditions and post-conditions

of the original protocol are also transformed in appropriate ways through the same

process.

Beta-S adds descriptions of intruders' initial knowledge in the set of initial assump-

tions, and another set of assertions, called Intruder Assertions, to reason about beliefs

of any Dolev-Yao intruders in an attack scenario. We are interested in what knowledge

the intruders are capable of (or not capable of) constructing through interactions with

honest principals in a specific way.

To illustrate the idea, we consider the following eavesdropping attack example on

the above protocol as illustrated in Figure 1-2.

In this protocol, an intruder denoted I* silently listens to all message transmissions.
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Figure 1-2: UML sequence diagram for an eavesdropping attack, where 1* is a Dolev-
Yao intruder that silently listens to all message transmissions.

Ph and Re are not aware of the existence of I*. To reason that the original protocol

satisfies the secrecy requirement on the payment confirmation message M2h, we assert

that J* does not believe it can construct M2h, at any stage of the protocol run. We do

this by specifying the following formula and try to formally establish its validity:

* } n (I*, Mxh) (1.4)

where [(I*, MPh) is a predicate that means that principal J* can construct message

MPh and , is a negation operator.

To evaluate the correctness of the original protocol under any Beta-S, our framework

considers two cases. First, due to the presence of intruders, certain pre-conditions in

the attack protocol may be found to be invalid. In this case, the attack is said to be

detected and the attack protocol will terminate prematurely. It follows that the original

protocol is correct with respect to this attack, iff all intruder assertions are valid with

respect to their knowledge set at protocol abortion.

Second, intruders may try to send modified messages to honest principals so that

their pre-conditions can be met. The primary goals of intruders are not to cause a

protocol to abort prematurely, but instead, to fool honest principals to believe or act
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on certain non-factual claims without being detected. In this case, the original protocol

is correct with respect to this attack, iff for any honest principal P that has successfully

finished its role without observing any abnormalities in the attack protocol as in the

original protocol:

1. Each and every post-condition related to P must be valid with respect to P's

entire knowledge set; and,

2. Each and every intruder assertion is valid, with respect to the entire knowledge

sets of intruders.

Notice that a completed role can be either a message sender or a receiver. In the

attack scenario in Figure 1-2, Re believes it has finished its role, since it has sent out

its last message MRe, and Re was satisfied with all the pre-conditions prior to sending

out M2e. Ph also believes it has finished its role, since it has received the last message

M2e as planned, given that Ph does not observe any abnormalities from M2e. We give

a rigorous definition of this intuition in Chapter 4.

In our example, assertion 1.4 will fail since M2h was sent in clear. J* can construct

the content of the information contained in Mh such as the credit card number and

expiration date. Hence we conclude that the original protocol is not correct against

this specific eavesdropping attack modeled in Figure 1-2. Specifically, the secrecy re-

quirement on M2 was violated.

1.3.3 Proof System

Although we have discussed the high-level analysis strategy, we have not given the

formal definition of what it means for a formula to be valid. To establish validity,

a proof system is first developed. The proof system, written formally in a language,

consists of a comprehensive set of rules of inference that target desired properties of

payment such as authentication, non-repudiation, integrity, etc. Each of the inference

rules has two parts: premises and conclusion. The conclusion is a single formula which

can be proved valid, only if each and every premise is proved valid. For example, we
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can reason that if principal P received a message which is signed by the private key of

Q, then P believes that Q constructed this message. This rule can be formalized as:

P 5 P r v(X, Q)

P p(Q, Kp) (1.5)

P 5 (X, Q)

where the first premise says P believes that it has received a message that is some

message X encrypted using Q's private key, and the second premise says that P believes

that key Kp is the public key of Q. The conclusion of this inference rule says P believes

that X was once uttered by Q. We emphasize that all the premises and conclusion are

written from the perspective of a principal's belief, as this allows us to model different

knowledge sets for different principals.

Given a query formula # and a set of valid formulas F as a knowledge set, a proof

is a sequence of applications of the rules of inference from F to the derivation of #. #

is valid with respect to F iff there is a proof of # from F. We adopt the Closed World

Assumption (CWA). That is, all inference rules that can be invoked must be from a

given proof system and the given proof system contains all the possible inference rules

that can be used; no rules that are outside the proof system can be used. CWA allows

us to prove as well as disprove validities of formulas.

In our framework, we will emulate each principal's reasoning about its pre-conditions

by trying to prove the validities of the pre-conditions with the principal's knowledge set

at the time of evaluation. The same strategy is used for post-conditions and intruder

assertions. For example, in the protocol presented in Figure 1-1, the starting point

is the set of initial assumptions, which are all assumed to be valid. Before Ph sends

MPh, Ph attempts to prove all assertions of the first message's pre-conditions, using

all the initial assumptions pertaining to Ph's beliefs. Ph then sends M"h to Re. Re

will attempt to prove all assertions in the seconds message's pre-conditions, using all

the initial assumptions pertaining to its beliefs plus any knowledge inferred from MPh,

before sending out Mke.
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1.3.4 Theory Generation

Given a set of rules of inference, a knowledge base r and a query formula # for which

we wish to establish validity, it is desirable to have an efficient decision procedure to

determine whether or not one can establish:

r - 4 (1.6)

where F- means "is able to prove". In our framework, this role is fulfilled by a technique

called theory generation.

Theory generation works by forming a finite theory representation 17#, which is

capable of representing a possibly infinite set of formulas that can be proved valid from

F. [Kin99] [KW99] suggested a sound and complete procedure to determine if # is valid

by checking it against F#. The procedure is guaranteed to terminate in finite time.

Theory generation requires certain syntactical constraints when writing the set of

rules of inference. Our proposed proof system, to be introduced in Chapter 5, fully

satisfies these constraints and is thus amenable to the techniques developed in theory

generation.

1.3.5 Framework Overview

The proposed overall analysis framework is depicted in Figure 1-3. First, a set of initial

assumptions, business requirements and design goals are specified. The initial assump-

tions are related to each individual principal's prior knowledge and are thus shared

in both Alpha and Beta scenarios. Next, we prepare a formalization of the protocol

as well as its pre-conditions and post-conditions. By applying Dolev-Yao intruders,

we also obtain a set of attack scenarios as well as their corresponding pre-conditions,

post-conditions and intruder assertions. The specifications of the original and attack

protocols are input to the PTGPA algorithm. PTGPA uses theory generation as its

subroutine and checks the protocol specifications for correctness using the two examina-

tion strategies discussed above, Alpha-S and Beta-S. The theory generation step works
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Figure 1-3: Overall analysis framework of PTGPA

with a proof system called TGPay, which we define for the context of payment, with

respect to a set of syntactical constraints in a formal first-order logic language.

1.4 Thesis Outline

The reminder of this thesis is organized as follows: Chapter 2 provides a rigorous in-

troduction of the formal language and theory generation, including relevant definitions

and descriptions of the algorithms. Chapter 3 outlines the key properties of theory

generation, including its soundness, completeness and termination. Chapter 4 presents
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the PTGPA analysis framework, its properties and discusses how theory generation is

integrated as a subroutine. Chapter 5 presents the proposed proof system - TGPay, in-

cluding the definitions of terms, functions and predicates. A specific preorder definition

is discussed and rules of inference are specified. Chapter 6 is a case study that ana-

lyzes some real-world bank card payment protocols using PTGPA. Chapter 7 presents

a case study using PTGPA to analyze a generic NFC phone - reader payment protocol,

including analyses in both Alpha and Beta scenarios. Chapter 8 presents a case study

using PTGPA to analyze a generic NFC phone - passive tag payment protocol, includ-

ing analyses in both Alpha and Beta scenarios. The thesis concludes in chapter 9, in

which we summarize this research, discuss its limitations and suggest future research

topics.

33



THIS PAGE INTENTIONALLY LEFT BLANK

34



Chapter 2

Theory Generation

Contents
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2.5 Algorithms ......... ............................ 48

2.6 Summary .......... ............................. 52

2.1 Overview

This chapter summarizes the technique of theory generation with a sequence of defini-

tions and lifting lemmas. Theory generation focuses on a subset of generic first-order

logic languages. The inference rules and their syntactic restrictions are presented. The

main theory generation algorithm is then introduced, and this is followed by a sum-

mary of its decidability analysis in the next chapter. We maintain the original reasoning

structures described in [KW97], [Kin99] and [KW99]. We add definitions and we dis-

cuss relaxations to the constraints and modifications of the original algorithm where

appropriate. Any other definitions or lemmas with [Kin99] are unchanged.
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2.2 Definitions

2.2.1 The L Language

Definition 1 (L language and Theory F* [Kin99]). Let L be a restricted first-order

logic language that contains a finite set of rules of inference R (see Definitions 13, 14

and 15). Let rG be the set of well-formed-formulas (wffs), or just formulas, of L. The

theory F* (also called theory closure) generated from [F0 is a (possibly infinite) set of

wffs that contains exactly those wffs that can be derived from rO, using only R.

Formally, we define terms and formulas in L as follows:

Definition 2 (Term in L). Any variable is a term. Any constant is a term. Let F be

a function symbol and T be an ordered set of terms. Then F(T) is also a term.

Definition 3 (Function in L). Let T be an ordered set of terms and let F be a function

symbol. Then a function in L is syntactically defined by F(T) and semantically defined

as a mapping from a vector of N terms to a term, F : TermN -+ Term.

Definition 4 (Formula in L). Let T be an ordered set of terms and let P be a predicate.

Then a formula in L is syntactically defined by P(T) and semantically defined as P

TermN -+ true, false}.

The syntactical structures of functions and formulas in L are similar. However,

a function performs some transformations and returns the resulting term; a formula

states that a certain condition holds (or does not hold) over an ordered set of terms.

Definition 5 (Substitution). A substitution (-) of terms for variables is a finite set of:

-={X1 -+ T1, .. , X -+ T} (2.1)

where each Xi is a distinct variable and each T is a term that is different from Xi.

An instance of o- is the application of o to a term, denoted as -T for a term T; or

the application of - to all terms of a formula P simultaneously, denoted as oP; or the

application of o- to all terms of a function F simultaneously, denoted as -F.
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Definition 6 (Composite Substitution). Let 0 and o be two substitutions, and T be a

term. The composition of the two substitutions, denoted as 0 o o-, is one such that:

(0 o o)T = (o-T) (2.2)

Definition 7 (Extension of a). Let o1 and -2 be two substitutions and let # be a

formula. o- is said to be an extension of o-2 with respect to # if for any replacement

pair {X -+ Y} from a1 such that variable X appeared in $, there is a corresponding

replacement pair X -+ Y' in 0-2 where Y can be obtained by applying a (possibly empty)

substitution to Y'.

Following the definition, if a1 is an extension of c-2 with respect to 4, we can write

o-1# = (-* o o-2 )4 for some substitution -* and some formula 4. Intuitively, o- is an

extension of -2 , if a1 is more specific than o-2, or is "subsumed" by -2 . In our framework,

extensions are only defined with respect to formulas, but not for functions.

Definition 8 (Unification). Given a set of formulas, a unifier is a substitution that

makes the formulas of the set identical.

With the definitions of formulas above, P(X, Y) and P(Z, X) are both formulas

in L. Although they are symbolically different, they mean essentially the same thing.

We will eliminate repetitions of this symbolic type by using canonical representation,

in which we define equivalence of formulas using modulo variable renaming. Formally,

variable renaming is defined as:

Definition 9 (Modulo Variable Renaming [Kin99]). Two formulas 41 and #2 are equiv-

alent modulo variable renaming iff there exists a substitution o- such that,

#1 ""= o-2 (2.3)

where o- replaces variables from #2 with other variables.

symbolic
We use 01s= 02 when the two formulas are symbolically equivalent. We will
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use the "=" operator in the rest of this chapter and assume it means symbolically

equivalent.

Definition 10 (Grounded Term/Formula [Kin99]). A term is said to be grounded iff it

does not contain any variables. A formula # is said to be grounded if all terms within

are grounded.

The theory generation algorithm, which we will introduce momentarily, requires

that all initial assumptions be grounded. They must be formed only from predicates

of constant arguments such as keys and principal names, or in general, message strings

that do not contain any variables.

2.2.2 Rules of Inference

Next, the rules of inference (axioms) used in L are introduced. The rules are parti-

tioned into three categories: Shrink-Rule, Growth-Rule and Rewrite. Each definition

is accompanied by its syntactical restrictions. Those restrictions are important in the

termination analysis of the theory generation algorithm.

We define an abstract order relation between two formulas or two terms called -.

Roughly speaking, -< is an order on the sizes of two formulas or terms.

Definition 11 (Preorder -< [Kin99]). Let #, #1 , #2 be formulas in L; T, T 1 , T2 be terms

in L; and let X be a variable defined in L. A preorder (both reflexive and transitive)

relationship - is one that satisfies all the following:

1. Monotonicity: If term T 1 is shorter than T2 , then substituting free variable X

within formula # using T1 will result in a shorter formula than substituting X

with T 2 . Formally, let o- = {X -+ T1 } and o-2 = {X -+ T 2 }, and let = be the

"logically imply" or "result in" operator. It then holds that:

(T1 ___ T2) - (U0 __ 0-2#) (2.4)
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2. Substitution Preservation: Let T be a term, #1 and $2 be two formulas such that

$1 < #2 and let X be a variable from either $1 or $2 or both. Then, substituting

X with T does not affect the order between #1 and $2 with respect to -<. Formally,

let - = {X -+ T}. It then holds that:

(di __ 02) - (01 __ 0-42) (2.5)

3. Finite Modulo Variable Renaming: The set {$|$ -< p*} must be finite modulo

variable renaming for any formulas #* in language L.

The third condition is a key condition that is required for algorithm termination.

That is, given a formula #*, we require that formulas that are shorter than 4* be finite

in number.

Definition 12 (Rule of Inference). The rule of inference used in L is Modus Ponens.

Let P = {P1, ..., Pn} be a set of n formulas denoting premises and C be a single formula

denoting a logical consequence. A rule of inference R, in language L is of the form:

P 1,...,Pn (2.6)
C

This definition states that, if the premises P are all satisfied, then the logical con-

sequence C can be derived. Alternatively, from a principal's point of view, if P 1 , ... , Pn

are known, then C is also known.

We will subsequently use R to denote a single rule or a set of inference rules. All

the inference rules defined in L are in this form. However, there exist differences among

them. In the next set of definitions, we introduce the different types of inference rules

in theory generation.

Definition 13 (Shrink-Rule (S-Rule) [Kin99]). An S-Rule S is an inference rule in

which some of its premises are designated as primary premises. Let P be any primary
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premise of S and C be the conclusion of S; it is required that:

C < Pi (2.7)

That is, we require that the conclusion be shorter than any primary premise. An

S-Rule of inference must have at least one primary premise.

Definition 14 (Growth-Rule (G-Rule) [Kin99]). A G-Rule G is an inference rule such

that each and every of its premises P satisfies:

Pi & C (2.8)

where C is the conclusion of G.

Definition 15 (Rewrite Rule (W-Rule) [Kin99]). A W-Rule W is one that transforms

#1 to #2 by swapping the order of the terms of functions or predicates. A W-Rule must

satisfy:

#1 ___ #2, 02 ___ #1 (2.9)

and hence W-Rule invocations are always size-preserving.

A W-Rule expresses that #1 can be replaced with #2, and in general, vice versa.

Additionally, a W-Rule does not change the size of #1 or #2 with respect to d.

2.2.3 Proof and Validity in L

In this subsection, we formally introduce the notion of proof and validity using rules of

inference. We will also introduce the Negation as Failure (NAF) assumption and the

definition of disproof.

Definition 16 (Proof q3 [Kin99]). A proof T of some grounded formula #* from a set

of grounded formulas F is a finite sequence {# 1, #2 ... , #1*} of grounded formulas, where
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for each $5 in the sequence, either 1 E F, or $i is the result of an application of one of

the rules of inference using {#51, ... , #5_1}.

With the definition of proofs in L, we now formally introduce the establishment of

validity and invalidity of formulas.

Definition 17 (Validity). A grounded formula $* is valid with respect to a set of

grounded formulas F and a set of rules of inferences R, if there exists a proof q3 of

4* from r using R.

Next, we introduce the provability F- operator. While & means, at high level of

abstraction, "logically imply" or "result in", F- has a precise definition.

Definition 18 (Validity Operator F-). Under a set of rules of inference R, we write

IF F- * for a grounded formula $*, iff there is a proof of $* from F using R. We write

IF $ q* iff 1P is a proof of #* from F using R. In both cases, $* is said to be derivable

from F using R.

Definition 19 (Invalidity Operator Y). Under a set of rules of inference R, a set of

formulas F and a goal formula $* that is grounded, we write IF Y #* iff there does not

exist a proof of #* from r using R.

A central assumption we will make for our proof system is Negation As Failure

(NAF). Roughly speaking, if #* cannot be derived, then formula #* is not valid. For-

mally, this is:

Definition 20 (NAF as Invalidity). Given a set of rules of inference R, a set of

grounded formulas F and a grounded goal formula #*, iff

F }/ 5* (2.10)

Then p* is invalid.

Since 4* is grounded, it can be thought of as an assertion of a fact. The proof system

answers "yes" if there is a proof of $* from F and R, and the proof system answers

"no" if there does not exist a proof of #* from F and R.
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Definition 21 (Negation Operator ,). ,4* is valid iff #* is invalid.

By the above definition, to prove -#*, one only needs to show that #* is invalid

using NAF. One can disprove -,#* if one is able to prove the validity of #*.

2.3 Finite Representation

Coming back to the first definition of the chapter, we want to generate and represent

the theory closure F* (possibly infinite) from an initial set of formulas IF' with the help

of inference rules from R. If p* can be generated, the validity of any query formula

can be determined using a simple membership function. The technical difficulty is that

[7* is possibly infinite and therefore the generation process never terminates. To avoid

this problem, a theory representation technique is developed by [Kin99]. We present

an example of a deductive process to illustrate the issue and to solidify the definitions

above, before introducing the definition of theory representation.

2.3.1 An Example

Suppose a communication channel is initialized between principals "Alice" and "Bob".

Let {MSG}K be an AES [NF02] encryption function that encrypts the payload MSG

with key K. Let O(MSG) be a SHA-1 [IETF12c] hash function that generates message

MSG's SHA-1 digest. Define predicate symbol See(Person, Message) to be that a

Person sees a particular Message and, Know(Person, Something) to be that a Person

knows Something. Let predicate Link(Channel, Personl, Person2) be that a Channel

is established between Person1 and Person2. Define Send(Person, MSG, Channel) to

mean that a Person sent MSG over Channel.

Rules of Inference

The set of rules of inference R contains 2 S-Rules, 1 G-Rule and 1 W-Rule:

S-Rule (Message Receiving). If Person1 has sent MSG over Channel, and Channel is
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shared between PersonI and Person2, then Person2 sees MSG.

Send(Personl, MSG, Channel), Link (Channel, Personl, Person2)

See(Person2, MSG)

S-Rule (Decryption). If Person sees MSG encrypted using key K and Person knows

K, then Person sees MSG.

See(Person, {MSG}K), Know(Person, K) (2.12)
See(Person, MSG)

G-Rule (SHA-1 Hash). If Person sees MSG, then Person can compute the hash of

MSG and therefore can see the hash of MSG.

See(Person, MSG)
See(Person, 9(MSG))

W-Rule (Link Associativity). This W-Rule expresses associativity of channel between

two principals. If Channel is between Personi and Person2, it is also between Person2

and Personi.

Link(Channel, Person1, Person2)
Link(Channel, Person2, Personl)

The initial set of valid formulas F0 before the protocol starts is the initial set of

assumptions FAssumption:

*Assumption = {Know (Alice, k), Link(nf c, Alice, Bob)} (2.15)

as well as the single communication protocol message FP'"o"col subject to analysis:

pFP"r"" = {Send(Bob, {m}k, nfc)} (2.16)

po = pProtocol U ]FAssumption (2.17)
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where m is a specific message and k is a specific key and nfc is a specific channel. The

goal formula 0* that we wish to query for validity, after this simple protocol ends, is

that Alice can compute the hash of the hash of m:

#* = See(Alice, 0(0(m)) (2.18)

Example Deduction

We now attempt to validate the goal by manually applying the rules of inference. We

use i to keep track of formulas that are proved valid up to iteration i. Invoking W-Rule

2.14, we derive Link(nf c, Bob, Alice). Therefore:

pl = GU {Link(nf c, Bob, Alice)} (2.19)

Next we invoke S-Rule 2.11, and we derive See(Alice, {m}k) from 2.19. We have:

F2 p1 u {See(Alice, {m}k)} (2.20)

Invoking S-Rule 2.12 from 2.20, we have:

F 3 = p2 U {See(Alice, m)} (2.21)

Invoking G-Rule 2.13 from 2.21, we have:

F 4 = r 3 U {See(Alice, 0(m))} (2.22)

Invoking G-Rule 2.13 again on 2.22, we have:

F5 = F4 U {See(Alice, 0(0(m)))} (2.23)

We find that #* E p5 and therefore we have proved 4* in 5 iterations using the

rules of inference in R. A corresponding proof q3 is shown graphically on the left side
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W -0

W -Rule

Link(nfc, Bob, Alice)

S - Rule - A

See(Alice, {m}k)

S - Rule - B

See(Alice, m)

G - Rule

See(Alice, 0(m))

G - Rule

See(Alice, 0(0(m)))

W - Rule

Link (nf c, Bob, Alice)

S - Rule - A

See(Alice, {m}k)

G - Rule

See(Alice, O({m}k))

G - Rule

See(Alice,O(O({m}k)))

G - Rule

See( Alice, (0(0({m} )

Figure 2-1: Left: A proof trace of #* from ['0 using R. Right: An attempt to 4* from
PO using R with preference of G-Rule application with infinite depth.

of Figure 2-1, where newly derived formulas are boxed. Rules of inference applied at

each iteration are labeled along the edges.

In this example, we have been manually applying rules of inference at each iteration.

For more complex problems, a search algorithm that applies rules of inference in a

structured way needs to be developed. The choice of rule to apply at each iteration is

important. Different choices will result in different proofs and sometimes lead to traces

with infinite depth, even though a valid proof clearly exists. For example, the right side

of figure 2-1 shows an incomplete proof of the same target formula 0* with the same

[0 and R, but with infinite depth and therefore never terminating.

The direct consequence of non-termination is the loss of provability (or loss of dis-

provability), since one can only conclude if 4* is valid or not valid after a search com-
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pletes.

Theory generation eliminates the problem of non-termination by generating a finite

theory representation using a structured search algorithm. At each iteration, the search

algorithm performs a local search using an S-Rule that is guaranteed to return in finite

time. Since there is a finite number of formulas to search for in the theory representation,

the entire representation generation procedure can be shown to always terminate in

finite time. Next, we formally define theory representation and introduce the theory

generation algorithm.

2.3.2 Theory Representation

Definition 22 ({R,R'} Representation [Kin99]). Let R be a set of inference rules,

R' C R. An (R, R') representation of a theory induced by jO is a set that contains all

the formulas that can be derived from r' using R, among which, for each such formula,

the last inference rule used to derive it is a member from R'. Moreover, all formulas

contained in this set are of this form.

Specifically, theory generation requires that R = {Srules U Grules U Wrules} and

that only the S-Rules are used as R's in the (R, R') representation of the theory. In

this way, [Kin99] showed that the theory representation is finite and the algorithm

generating it terminates in finite time. This is a necessary condition for the proof of its

decidability property.

2.4 Prerequisites

Before describing the main theory generation algorithm, additional syntactical con-

straints are imposed to ensure algorithm termination. This section presents these syn-

tactical constraints and summarizes the set of prerequisites for theory generation.

The syntactical restriction, Definition 23, is on writing S-Rules and it controls the

interactions between S-Rules and G-Rules.
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Definition 23 (S/G Restriction - [Kin99]). Given an S-Rule with any arbitrary pri-

mary premise P and any arbitrary non-primary premise Si and a conclusion C, S/G

restriction requires that:

1. Pi does not unify with conclusions of any G-Rules, and

2. For any such Si, it holds that (S -3 C)

Definition 23 can be relaxed, resulting in Definition 24. We will show in the next

chapter that this relaxation leads to the same conclusion of the termination of theory

generation.

Definition 24 (S/G Restriction - New). Given an S-Rule with any arbitrary primary

premise P and any arbitrary non-primary premise Sj, S/G restriction requires that:

1. Pi does not unify with conclusions of any G-Rules, and

2. For any combination of Si and P, it holds that (S -< Pi)

Putting everything together, the prerequisites of the theory generation are as follows:

Definition 25 (Prerequisites for Theory Generation [Kin99]). The theory generation

algorithm requires prerequisites to hold over a finite set of initial assumptions J70, a finite

set of rules of inference (R), as well as a syntactical constraint (S/G Restriction), and

a computable preorder definition -<:

1. Operator -< satisfies Definition 11;

2. Every formula in the initial assumption set IF is grounded;

3. Every rule in R is either a G-Rule or an S-Rule or a W-Rule, with respect to

operator -. One such partition of all rules in R must exist;
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4. Every W-Rule rule W is size-preserving, with respect to operator -. For any

premise P and conclusion C in rule W:

P -C (2.24)

C -P (2.25)

5. S/G restriction holds for all S-Rules, with respect to operator -.

2.5 Algorithms

This section outlines the theory generation and formula derivation algorithms. The first

part presents a set of algorithms that perform theory representation generation. The

second part presents an algorithm that determines if a candidate formula is valid, using

the theory representation output from the first part. The soundness and completeness

properties of the algorithms are studied in Chapter 3.

2.5.1 theory-gen() Algorithm

The theory-gen() algorithm produces an {R, SRules} representation F# of the theory

[ * mechanically, using inference rules R = {G.Rules, SRules, WRules}, a definition

of -<, and initially valid formulas F'. It first checks to see if the prerequisites are met.

This algorithm is given in Figure 2-2.

The closure() function in Algorithm 2 takes fringe, a set of newly proved formulas

from the previous call to itself, and a set of currently known formulas F, and produces

the {R, S-Rules} representation of the theory P. At each step it tries to apply any

S-Rules possible from the the set of all known formulas, denoted as F'. These newly

derived formulas form the fringe which becomes the first argument to the next iteration

of the closure() call. The details of the recursive function are specified in Figure 2-3.

A schematic illustration of the closure() function is presented at Figure 2-4.
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Algorithm 1: theory-gen (F 0 , R, -)
Data: F0 , R, -

Result: Generate theory representation
if prerequisites-violate(F0 , R, 3) then

return BAD;
else| = closure(F0 , 0);

return F#;

end

Figure 2-2: Theory generation algorithm: theory-gen() function [Kin99].

Algorithm 2: closure(fringe, F)

Data: Newly proved formulas (fringe), knowns F
Result: Generate theory representation from F U fringe
if fringe = 0 then

return F;
else

F' <- F U fringe;
fringe' <- Uses-Rules apply-SRule(S, F')\F';
return closure(fringe', F');

end

Figure 2-3: Theory generation algorithm: closure() function [Kin99].

At the top left of Figure 2-4, F' = 0 when entering closure( for the first time. Top

right: Three new formulas are proved valid from applications of S-Rules. The three

formulas form fringe'. closure(fringe', F') is invoked. Bottom left: In the second

iteration to closure(, the new F' is formed by adding the three new formulas to all the

knowns from the top left. Bottom right: Another two formulas are proved valid.

The applySRule() function, Algorithm 3, as illustrated in Figure 2-5, takes a

specific S-Rule S and the set of all formulas derived so far F, and tries to satisfy the

premises of S by calling the backward-chain() function. The backward..chain() function

returns a set of possible substitutions under which the conclusion of the S-Rule is valid.

The backward-chain() function, Algorithm 4, as illustrated in Figure 2-6, takes

a set of formulas from an S-Rule's premises and tries to satisfy them using G-Rules
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0 / -

0 -

Figure 2-4: A schematic illustration of the operation of closure() function.

Algorithm 3: applyS.Rule(S, F)
Data: S-Rule S, knowns F
Result: Apply S in every possible way, using only GRules and WRules

Sub o- = backward-chain(Premises(S), F);
return o-Conclusion(S);

Figure 2-5: Theory generation algorithm: applySRule() function [Kin99].

and W-Rules only. It tries to satisfy all the primary premises first before moving

on to any non-primary premises. It tries to instantiate each formula by calling the

backwardchainone() function. After a possible substitution is returned for this for-

mula, backward.chain() applies the substitution to all the remaining formulas and then

recursively calls itself with the the remaining formulas as arguments.

The backwardchainone() function, Algorithm 5, as illustrated in Figure 2-7, takes

a single formula and tries to satisfy it using G-Rule and W-Rules only. It keeps track of

all visited formulas and ensures that only unique formulas are considered. For any given

formula, it will try to instantiate directly with any grounded formulas # in the known set
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Algorithm 4: backward-chain (goals, F)

Data: Premises to instantiate (goals), knowns F
Result: Return all substitutions under each of which the goals are

simultaneously valid, using G-Rules and W-Rules only from F
if goals=0 then
I return 0;

else
{first-goal, other-goals} = goals;
a-1 E backward-chainone(first-goal, F);

o-2 E backwardchain(o0thergoals, F);
return o-2 0 0-;

end

Figure 2-6: Theory generation algorithm: backward-chain() function [Kin99].

F. Additionally, it also seeks to instantiate this formula by calling reverse.apply-grule()

for some G-Rule. Possible substitutions resulting from both methods are returned.

Algorithm 5: backward-chain-one(g, F)

Data: A single premise g to instantiate, knowns F
Result: Return all substitutions under each of which g is valid, using G-Rules

and W-Rules from current knowns F
direct.subsets +- G urnii y(g, 0);

grule-subsets < UGEG-Rules everse-apply.grule(G, g, F7);
return {direct-subsets U grule..subsets};

Figure 2-7: Theory generation algorithm: backward.chain-one() function [Kin99].

Algorithm 6: reverse apply-grule(G, g, F)

Data: A single premise g to instantiate, a given G-Rule G, knowns F
Result: Return all substitutions under each of which g is valid from F, using

proofs whose last rule of application is G
o3 E unify(g, Conclusion(G));
a-4 E backward-chain(-3premises (G), F);
return {0-4 0 o-3 },

Figure 2-8: Theory generation algorithm: reverse-apply.grule() function [Kin99].

The reverse-apply-grule() function, Algorithm 6 takes a single formula and a single
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G-Rule whose conclusion matches the formula. It tries to satisfy the premises of the

G-Rule by calling the backward-chain() function. It return all substitutions such that

under each of which g is valid from F, using proofs whose last rule application is the

G-Rule G.

2.5.2 derivable() Algorithm

After theory representation F# is produced by the theory.gen() function in Algorithm

1, one invokes the derivable() function in Algorithm 7 to determine if a grounded

formula 0* is a logical consequence (valid) of the initial assumptions 10. The derivable(

function returns a boolean that indicates if the candidate formula is valid with respect

to the set of initial assumptions, the set of rules and the specified preorder. It invokes

backward-chain({#5*}, F#) to see if an empty set is returned.

Algorithm 7: derivable(#*, F#)

return backward..chain({ * }, F#) ? 0;

Figure 2-9: Derivation algorithm: derivable( function [Kin99].

2.6 Summary

This chapter rigorously introduced theory generation, a general purpose framework

for determination of validity of a grounded query formula. Theory generation works

with a formal language L and some syntactical constraints. Instead of performing a

membership check directly with P - the theory closure that is possibly infinite, theory

generation first constructs a finite theory representation F#. It then invokes a search
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procedure derivable(#*, 7#) to determine if query formula 0* is valid with respect to

F' and R.

Theory Closure IF*

Theory Rep. IF*

G/W

S
Query #* IF

'G W

Query #*

----------------------------------------------------- I

Figure 2-10: An illustration of the theory generation procedures (Derived from [KW99])

An illustration of the entire procedure is presented in Figure 2-10. We start with

F0 , the set of initial assumptions (the solid ellipse). We then repeatedly apply S-Rules

to discover new formulas. We will eventually reach a fixed point, the dashed ellipse

representing the finite theory representation. To decide the validity of a query formula

#*, we invoke a procedure that searches from the query formula backwards to see if it

is possible to land somewhere within the theory representation, by using G-Rules and

W-Rules only.
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Termination and Decidability
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3.1 Introduction

In the previous chapter, the theory-gen() and derivable() theory generation algorithms

were presented. In this chapter, we discuss some important properties of these algo-

rithms. These properties are the soundness, completeness and termination of theory

generation.

Loosely speaking, soundness requires that any grounded formulas returned by theory

generation are correct, in the sense that there exists a corresponding proof from the

initial assumptions by using the defined rules of inference and that the last rule of

inference used is an S-Rule. The completeness result requires that, if there exists a
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proof of formula #1 from the initial assumptions by using the defined rules of inference

and the last rule of inference used is an S-Rule, then there is a corresponding formula #2

returned by the theory generation algorithm such that #2 H #1. Finally, the termination

result provides theoretical argument on the algorithms' termination in finite number of

steps. That is, theory generation always returns a result in finite time.

This section starts by presenting the relevant lifting lemmas. Some of these lemmas

appeared in [Kin99] without proofs. We have re-defined them to clarify [Kin99]. These

lemmas are followed by the theorems on soundness, completeness and algorithm termi-

nation. All proofs are given in Appendix A. We make reference to [Kin99] whenever

the proofs are the same or of similar structure.

3.2 Lifting Lemmas

Definition 26 (Proofs with G-Rule and W-Rule). We define two forms of proof in L.

Let F be a set of formulas. We write IF w #* if there exists a proof of 4* from F using

only W-Rules and instantiation. We write IF KGW #* if there exists a proof of # from F

using only G-Rules, W-Rules and instantiations (but no S-Rules).

We next present the lifting lemmas.

Lemma 1 (Rewrite Substitution). If #1 and #2 are formulas of L, and - is a substi-

tution such that

01 HW o02 (3.1)

then,

#1 Fw o-42 (3.2)

Lemma 2 (Unify soundness [Kin99]). If $1 and 42 are formulas of L, and o is a unifier
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of $ 1 and $2 in Definition 8, then:

41 W o-42

#2 1 W 0-4 1

(3.3)

(3.4)

Lemma 3 (Constraint Unify completeness). Let 41 and 42 be two formulas. Let 41 be

grounded and let a be a substitution, such that

#1 Fw 0-#2 (3.5)

then for any substitution a' such that a' is a unifier of $ 1 and 02 in Definition 8, a is

an extension of a' with respect to $2 .

3.3 Soundness and Completeness

In this section, we present the soundness and completeness claims on the theory gen-

eration algorithms. The theorems originally appeared in [Kin99]; here we will present

the set of claims only.

3.3.1 Soundness

Theorem 1 (backward-chain() Soundness [Kin99]). Let D be a set of formulas in L,

F be a set of grounded formulas in L, and let a be a substitution such that:

a E backward.chain(@, IF) (3.6)

Then there exists a proof of O$ for each and every $ E (D, from r using only instantia-

tions, G-Rules or W-Rules.

Theorem 2 (closure) Soundness [Kin99]). Let r and fringe be two sets of grounded

formulas in L; let # be a formula such that $ E closure(fringe, r). Then there exists
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a proof q3 of # whose last rule of application (if any) is an S-Rule:

(J U fringe) H- 4 (3.7)

Theorem 2 states that any formula 4 generated from the closure() function is valid

in the theory representation. We next claim the reverse, that any formula that is valid

in theory representation is also generated by the closure function.

3.3.2 Completeness

Theorem 3 (backward-chain() Completeness [Kin99]). Let F be a set of grounded

formulas in L, (D = {q 1, ... , 4n} and o-' be a substitution. Let P* = {q1, ... , Sn} be

the set of corresponding proofs of grounded term o-'4j from F using only instantiation,

G-Rules or W-Rules. Then for any substitution a- such that:

- E backward.chain(@, F) (3.8)

or' is an extension of o with respect to any 41 E (D.

Definition 27 (Partial Theory Representation [Kin99]). Let F and fringe be two sets

of grounded formulas. If, for any formula, 4, and a proof T:

1. F H-T 4, and,

2. 1P contains only one S-Rule application (and possibly many G-Rule and W-Rule

applications), and,

3. That S-Rule application is the last rule applied in 93, and,

4. (fringe U F) Fw5 ,

then we call the ordered pair { fringe, F} a partial theory representation.

Intuitively, fringe is the set of all valid formulas that can be immediately proved

from F, using a single S-Rule (and optionally using some G or W-Rules before that

single S-Rule).
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Theorem 4 (closure() Completeness [Kin99]). Let {fringe, F} be a partial theory

representation in Definition 27. Then for any formula $ and proof 3 (if any), whose

last rule of application is an S-Rule application, where

fringe U F } 43 0 (3.9)

there exists a formula 0' where

0' E closure(f ringe, F) (3.10)

such that 0' Hw #

3.4 Termination Analysis

In this section, we present the claims for the theory generation algorithms' termination.

The termination proof is constructed over a number of lemmas. We start by giving a

definition on size-boundedness.

Definition 28 (Size-boundedness [Kin99]). A formula # is size-bounded by a finite set

of formulas F, when for any substitution o-, there exists $* E F such that:

o 3< 0* (3.11)

By the above definition, if # is grounded and F is a set of grounded formulas, then

4 is said to be bounded by F if there exists 0* from F such that 4 - 4*.

Lemma 4. If $ 1 is size-bounded by F, and 02 - q1, then 02 is size-bounded by F.

[Kin99]

Lemma 5. If 41 is size-bounded by F, then for any $2 such that 01 Hw 42, 02 is also

size-bounded by F. [Kin99]

59



Lemma 6. If F is a finite set of formulas, then there are finite numbers of formulas

that are size-bounded by F with respect to canonical variable renaming. [Kin99]

Lemma 7. If formula 4 is size-bounded by a set of formulas IF, and G is a G-Rule,

then reverse -applygrule(G, #, F) function will always pass a set of formulas, 4D, to the

backwardchain() function, such that for each and every D* 0 , #* is also size-bounded

by IF. [Kin99]

Lemma 8. If all formulas in F are size-bounded by a finite set IF, and 4 matches no

G-Rule's conclusion, then for every substitution o- such that

o- E backward.chain.-one (4, F) (3.12)

o# is size-bounded by IF. [Kin99]

Lemma 9. If F is size-bounded by a finite set FG, and D is the set of premises of some

S-Rule S, then backward-chain( , F) must halt. [Kin99]

Lemma 10. If all formulas in F are size-bounded by a finite set F0, and S is an S-Rule,

then the formulas returned by apply-srule(S, F) are size-bounded by F0 . [Kin99]

Lemma 11. If all formulas in fringe and F are size-bounded by some finite set F,

then closure(fringe, IF) must halt. [Kin99]

Theorem 5 (theorygen() Termination [Kin99]). If the prerequisites in Definition 25

hold, then the theory-gen() function in Algorithm 1 always terminates.

Theorem 6 (derivable() Termination). If the prerequisites in Definition 25 hold, then

the derivable(0 function in Algorithm 7 always terminates.

3.5 Decidability

Having presented the soundness, completeness and termination properties of theory

generation, we summarize the following decidability results.
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Theorem 7 (theory-gen() is a decision procedure). Let F# be the (R, S-Rules) repre-

sentation of the theory generated from the set of grounded formulas ]O using R, where,

R = { S..Rules U G-Rules U WRules} (3.13)

Then theory.gen() Algorithm 1 is a decision procedure to determine if a grounded for-

mula is a member of IF.

Since theory-gen() is sound, complete and terminates in finite time, this leads us to

the following claim:

Corollary 1 (derivable() is a decision procedure). Let the partial theory representation

(0, r#) be the result generated after function closure(7T, 0) Algorithm 2 terminates using

a set of rules of inference R. Let # be a grounded formula we wish to query for validity.

FPO Y $ iff:

0 = backward-chain($, r#) (3.14)

3.6 Summary

In Chapter 2, we gave a rigorous introduction to language L, the rules of inference, the

theory.gen() and derivable( algorithms and their syntactical constraints. We showed

the soundness, completeness and termination properties of the theory generation algo-

rithms in this chapter. These properties allow one to prove or disprove a grounded query

formula in finite time. Theory generation will be used as a subroutine in our PTGPA

protocol analysis framework. Leveraging these desired properties, we show in Chapter

4 that algorithms of PTGPA are decision procedures for determining correctness of

protocols under Alpha-S and Beta-S.
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Chapter 4

The Framework of PTGPA

Contents

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Correctness: Alpha-S and Beta-S . . . . . . . . . . . . . . . 72

4.4 PTGPA Algorithms ....... ............ ........ . 75

4.5 Decidability of PTGPA ...... ......... ............ 77

4.6 Java Implementation . . . . . .. . . . . . . . . . . . . . . . 79

4.1 Introduction

This chapter introduces the Pre-conditioned Theory Generation Protocol Analyzer (PT-

GPA). PTGPA is a general-purpose framework that automates analyses of protocols.

It uses theory generation as a subroutine to determine the validity of security assertions

(formally modeled as formulas in language L) before each message exchange and at the

completion of a protocol. When a protocol and its assertions are provided, PTGPA is

able to determine the correctness of the protocol without further manual intervention.

PTGPA requires a set of pre-conditions to be specified for the messages exchanged

at each step in a protocol. Before each protocol step, theory generation is performed
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using knowledge that each individual principal has gathered up to this point. Once

theory representation is generated, validity of each pre-condition can be checked using

the derivable() function in Algorithm 7.

PTGPA allows a protocol designer to specify a set of post-conditions. Unlike the

pre-conditions, validities of post-conditions are checked once when an entire protocol

runs to completion. Therefore post-conditions resemble the set of goals expected at

the completion of a protocol. Theory generation is used to carry out verification of

post-conditions.

Given a protocol 0, its pre-conditions Q and post-conditions E, we discuss what

constitutes correctness under two scenarios. The first scenario is when PTGPA is

applied to a given 0 without modification. The objective is to check the correctness of

the protocol under no external attacks. The protocol runs to end without any messages

having been altered or added. This scenario is known as the Alpha Scenario (Alpha-S).

Roughly speaking, 0 is correct under Alpha-S if it runs to completion, Q is valid before

each message exchange and E is valid at completion.

The second scenario, known as the Beta Scenario (Beta-S), deals with a modified

protocol D* from 0, obtained using a controlled process that adopts Dolev-Yao ideal-

ization (see Definition 34). In the modified protocol L*, intruders are modeled explicitly

as principals that participate in message exchanges. L* can thus be thought of as a

specific attack rendered on 0. We will define what it means for 0 to be correct under

a specific Beta-S, which is an attack scenario D* on 0.

We start this chapter by giving relevant definitions. We next present the main

PTGPA algorithm and explain how theory generation techniques from Chapter 2 are

applied. Finally, the properties of PTGPA are briefly justified. Proofs for Chapter 4

are in Appendix B. The PTGPA analysis framework is an original contribution of this

thesis.
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4.2 Definitions

In this section, we present relevant definitions used in the PTGPA framework.

Definition 29 (Principal). Principals are any entities that send or receive messages in

a protocol.

The messages exchanged in a protocol are modeled as transmissions. A transmission

consists of a sender, a receiver and a message body.

Definition 30 (Transmission 'A -+ 'B : X). Let 'A and 'B be two principals. A

transmission, denoted as 'A -+ IB : X, is a formula that is defined as IA sending

message X to 'B, where message X is a term in Definition 2 which is grounded.

We will assume all transmissions complete instantly: as soon as a message is sent

by 'A, it is received by I'. Both IA and IB are specific principals, and X is always

a specific message that is grounded. Therefore, a message transmission is always a

grounded formula when used in a concrete protocol specification.

Definition 31 (Protocol 0). Let I be a set of principals. A protocol D of size n, is

a path of finite length n, formed from a finite sequence of vertices of I such that, from

each of its vertices there is a transmission (Definition 30) to the next vertex:

0 = {Istart -+ I : Mi1 , Ii -+1 : m2, ---, Ik 4 Iend : mn} (4.1)

where each { 'tart, Ii, Ii, ... , Ik, Iend} is from I, and {mi, ... , mn} are messages from trans-

mission 1, ... ,n respectively. Moreover, we can denote 0 correspondingly as:

JD = {01, ... , On} (4.2)

Pre-conditions of a protocol consist of a sequence of sets of formulas. Each set

within the sequence is a set of assertions about principals' beliefs before a transmission

in a protocol. Put formally:
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Definition 32 (Pre-Condition Q). Let 0 be a protocol of size n. Let R be a set of rules

of inference, and 1G be the set of grounded formulas that are assumed to be valid before

protocol 0 starts. Pre-conditions for 0, denoted as Q, are a finite ordered set of size

n, such that for each Qk E £, Qk is a finite (possibly empty) set of grounded formulas,

such that for any # E Qk, # is expected to be valid by Definition 17, with respect to

FO U C1 U ... U Ok_1 and R.

Pre-conditions are thus defined for each message transmission. All pre-conditions

associated with a transmission must be valid before that transmission can proceed.

We assume the protocol halts prematurely if there is an invalid pre-condition before a

transmission k.

Next, we define post-conditions of a protocol. Post-conditions are assertions about

principals' beliefs at the completion of a protocol. In our framework, we will not consider

the validity of post-conditions if a protocol halts prematurely. Formally, post-conditions

are defined as:

Definition 33 (Post-Condition E). Let D be a protocol, R be a set of rules of inference,

and F0 be the set of grounded formulas that are assumed to be valid before 0 starts.

Post-conditions of 0, denoted as E, are a finite set of grounded formulas that are all

expected to be valid, by Definition 17, with respect to F0 U D and R.

The set of formulas in a post-condition E can be divided into two groups.

1. Iend's assertions of the message it received from the last transmission of 0, denoted

as E(+). F(+) are all valid if end believes it has successfully finished its role in

protocol 0 without observing any abnormalities.

2. Assertions on goals that protocol D should achieve as whole when it completes,

made by each and every participating honest principal who believes its role in

protocol 0 has successfully completed. We denote this set of assertions as E(_).

Definition 34 (Dolev-Yao Intruder 1*). Given a protocol 0, a Dolev-Yao Intruder,

denoted as 1*, is a special principal that can read, modify, redirect and remove any
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message transmission in a protocol. A Dolev- Yao Intruder has the ordinary capabilities

of a regular principal and is only limited by its knowledge of any secrets or keys and

thus cryptographic operations that require those knowledge.

Next, we define synthesization and sub-messages before introducing the attack gen-

eration procedure. In our definition of attack generation, we require any modification

of an original message by an intruder to be structurally similar to the original message.

This requirement is reflected in the following definition.

Definition 35 (Synthesization). Let m be a message in any transmission in Definition

30. A synthesization of m, denoted as m', is inductively defined below:

1. If m is a constant, m' can be any constant.

2. Let f be a function. Let m = f (t1 , ... ,tn), where n > 0, and {t 1 , ... ,tn} be terms.

Then:

M'/ f (t'i,..., t', (4.3)

is a synthesization of m iff for any i, term t' is a synthesization of ti.

There are restrictions on what message synthesizations an intruder principal I* can

construct given an original message m. If m is a constant, then I* can construct its

synthesization by replacing it with any other constant of I's knowledge. If m is a keyed

function f (i.e. a keyed encryption or hash function) and I* does not know the key,

then the only possible message synthesizations that I* can construct are m itself or any

pre-computed synthesizations of m in I*'s memory (I* learned these synthesizations

of m from other principals or from history). If * knows the key, or f is not a keyed

function; let m = f(ti, ..., tn), then I* can construct any synthesization of m, denoted

as I' = f(t', ..., t'), only if for any i < n, I* can construct any synthesization t' of ti.

Definition 36 (Sub-Message). Let m be a message in any transmission in Definition

30; m is a sub-message of itself. Moreover, if m is of the form m = f(m 1 ,..., Imn)
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for some function symbol f with arity n where n > 0, then sub-messages of each of

{m1, ... , mn} are sub-messages of m.

Having defined intruder, synthesization and sub-messages, we are now ready to

define the process of attack generation.

Definition 37 (Attack Generation A). Let I be the set of principals in an original

protocol D, Q and E be the pre-conditions and post-conditions of 0. An attack on 0

is obtained through a transformation function A:

A : { 0,Q, E} -4 {D*, *, E*} (4.4)

where D*, Q* E* are respectively, the resulting attack protocol, an instance of Definition

31; pre-conditions of 0* in Definition 32; and post-conditions of D* in Definition 33.

A is defined as follows: Let {D*, Q*, E*} be initially empty. For k going from 1 to

the size of 0,

1. Denote Ok - Ii -+ Ii : Mk; the corresponding I*, is one of the following 4

cases, as long as {0*,...,C*,} is a valid path, and any messages exchanged are

constructable by their senders:

(a) A path from Ii to Ij: { I -+ I : mk, I1* -+ I2 : m, . I, _ 1 -+ Ij : m },

where {I, ... , I*n1} are any principals including intruders and excluding I,

and mn is a synthesization of Mk, or

(b) A path from Ii to I*: {I -+ I* : ink, I* - I* : M, -, n : m}

where {1,n..., I*} are any principals including intruders and excluding I, or

(c) A path from IJ to Ij: {10* -+ I* : m, 1* -+ 1 : Mik, .*_1 -+ I :

where {Io, ... , I,*} are any principals including intruders and excluding I,

and mn is a synthesization of Mk, or

(d) An empty path 0.
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The attack protocol 0* is then expanded:

0* = D* U D* (4.5)

Additionally, in cases (1a) or (1c), for any sub-message m"6 of mk that is

semantically referred to in Ok+1, ---,Dn, in Qk+1, --- , n and in E, m is replaced

with the corresponding sub-term in m'. D, Q and E are updated for the later

iterations of A.

2. The pre-conditions in this attack protocol at this step k, denoted as Q* are:

n in total

(a) In cases (1a) or (1b), Q* = {Qk, 0 , ... , 0 },

n in total

(b) In case (1c), Q* = {0, ..., 0}

(c) In case (id), Q* = 0

The pre-conditions C* are expanded:

* Q* U Q* (4.6)

After the for-loop exits, when k > n, the post-condition E* is computed as follows 1:

For any $ E E, only if $ is an assertion on any honest principal, for each and every of

whose transmissions sent or received in the original protocol, there is a corresponding

transmission included in 0*, then:

E* = E* U $ (4.7)

Definition 38 (Intruder Assertion T). Let 0* be an attack of size n, R be a set of rules

of inference and IF be the set of grounded formulas that are assumed to be valid before

'Note that 4 can be from either E(-) or E(+). It is then put into the corresponding category in
E*, either E*_) or E*y
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0* starts. The intruder assertion, denoted as T, is a finite set of grounded formulas,

such that for each # E T:

1. # is expected to be valid, in Definition 17, with respect to 17O U D* U ... U D* and

R, for any k such that 0 < k < n, and,

2. # is an assertion of an intruder principal's belief in attack 0*

Subsection 4.2.1 gives an example based on Definition 37 and Definition 38.

4.2.1 Example Transformations

In Definition 37, we introduced the procedure for characterizing an attack, given an

original protocol. We defined a controlled transformation procedure from an original

protocol as well as its pre- and post-conditions to that of any of its attacks. This

transformation saves protocol designers the effort to come up with updated sets of pre-

and post-conditions each time when analyzing new attacks. The procedure is simple

yet expressive. We now give some example transformations.

Example Transformation

An example of an original protocol between Alice and Bob and its derived attacks

involving intruder Eva, is presented in Figure 4-1. The original protocol 0 includes

at least two message transmissions between Alice and Bob. Attack 01 models an

eavesdropping attack. For each message transmission A -+ B : X in D, it is replaced

with A -+ Eva -+ B : X. The same message is forwarded by Eva. Neither Alice nor

Bob is aware of the presence of the intruder. Attack 02 models a man-in-the-middle

attack. It is similar to 01 except the messages passed on from Eva are synthesizations

of the corresponding message in 0 that Eva is able to construct. In attack 03, Eva

tries to impersonate Bob. Eva prevents Bob from receiving any messages sent by Alice.

It then replies to Alice with message synthesizations that it can construct. Notice that

because m' is different from m 2 in 0, Alice can reply to Eva with m' that is different

from m 3 in D.
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Original D
Alice -+ Bob: m1
Bob -+ Alice : M2
Alice -- Bob: m 3
Bob -+ Alice : m4

(a) Original protocol D

Attack D

Alice -+ Eva : m
Eva -4 Bob : m'
Bob - Eva : m2
Eva -+ Alice : m'

(c) Man-in-the-middle

Attack 0'

Alice - Eva: m
Eva - Bob: m
Bob -+ Eva : M2
Eva -+ Alice : M2

(b) Eavesdropper attack

Attack D3

Alice -* Eva : m
Eva -+ Alice : M
Alice -4 Eva : m'
Eva -4 Alice : m4

(d) Impersonation attack

Figure 4-1: An original protocol 0 and examples of its derived attack protocols 01, 02
and D3 using transformation function A in Definition 37.

Pre- and Post-Conditions

In 2a and 2b of Definition 37, we do not impose any pre-conditions for any message

transmissions that are sent by an intruder or by any honest principals not involved in

the original protocol and whose involvement in the attack protocol is because of the

intruders. This relaxation allows us to model stronger intruders, since imposing these

pre-conditions will likely to cause detections of the attack. However, we leave open the

possibility of imposing a set of appropriate pre-conditions in these message transmission

paths.

Moreover, we require that the transformed post-conditions E* only contain asser-

tions from principals whose action of sending or receiving a message in 0 is included

in 0*. This means that the set of transformed post-conditions for principals who did

not participate completely in an attack protocol is dropped. Consider the following

example protocol and its attack in Figure 4-2:

Suppose that one of the post-condition in 0 is that Bob requires m, to be fresh.

Since post-conditions are meant to reflect non-intruders' assertions at the completion of
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Original 0 Attack D*

Alice -+ Bob: m1 Alice -+ Bob: m1

Bob -+ Alice: m 2  Bob -+ Eva: m 2
Alice -+ Bob: m 3  Eva -+ Alice : M'2

... Alice -* Eva : m'

Alice - Bob: m, Alice -+ Eva: m'
(a) Original protocol 0 (b) Attack scenario

Figure 4-2: An original protocol 0 and its attack 0* in which Bob participated first

but was prevented from receiving subsequent transmissions due to intruder Eva.

a protocol and Bob did not participate fully in the attack protocol. Bob only received

mi as expected. He did not receive m,. The post-conditions of the attack protocol will

not include any of Bob's assertions, such as the freshness requirement on m".

Alice participated fully in this attack protocol as expected. That is, for any trans-

mission in D in which Alice is either a sender or a receiver, there is a corresponding

message transmission in D* such that Alice is the same sender or receiver. Alice is not

aware of Eva's existence and expects to communicate to Bob. Alice's post-conditions

need to be validated to ensure that Alice is not fooled by Eva.

4.3 Correctness: Alpha-S and Beta-S

In this section, we define what constitutes correctness given a protocol and realization(s)

of its attacks through the transformation procedure in Definition 37. The correctness

analysis is twofold. First, a protocol is correct under Alpha-S iff the set of pre-conditions

for each transmission are valid and the post-conditions are valid at the protocol's com-

pletion. Alpha-S correctness is defined from the perspective of non-intruder principals.

Formally, this is:

Definition 39 (Alpha-S Correctness). Let 0 be an original protocol of size n, with

pre-conditions Q and post-conditions E. Let lF be the set of grounded formulas that

are initially valid before the protocol starts. Let R be a set of rules of inference. 0 is
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correct under Alpha-S with respect to 10 and R, iff:

1. For any k and $ 6 such that 1 < k < n and OP"e E Qk,

F U Di U ... U Dk_1 "Pre (4.8)

and,

2. For any formula OP's' E E:

00 U D v- 4post (4.9)

Alpha-S is the primary verification scenario. It tests to see if a given candidate

protocol design satisfies a collection of security goals and business requirements at each

step and at completion. If a given candidate protocol is Alpha-S correct, we can move

on to validate the protocol's correctness under various attack scenarios, a set of Beta-S

that addresses the protocol designer's interests.

Correctness of an original protocol under Beta-S is more involved, and is defined

from the perspectives of both non-intruder principals as well as intruders. First, intrud-

ers may cause certain pre-conditions Q or some post-conditions in E(+) to fail. In this

case, the attack is said to be detected, and we need to ensure all intruder assertions are

valid. That is, some honest principal has recognized the abnormalities from an attack.

We need to ensure that the intruder has not gained any advantages at the time of de-

tection. For example, we may want to assert that the intruder never sees the plain-text

content of an encrypted message sent by an honest principal and we will validate this

assertion even the attack is detected.

Otherwise, the protocol runs to the end without non-intruder principals detecting

any abnormalities. We still need to check the intruder assertions as well as all post-

conditions to make sure non-intruder principals are not fooled. An example of this

scenario is an eavesdropper that listens to all messages. The non-intruder principals do

not detect any abnormalities. We however need to show that the eavesdropper did not
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obtain any information it is not supposed to obtain. Put formally, correctness under

Beta-S is defined as follows:

Definition 40 (Beta-S Correctness). Let 0* of size n be an attack of protocol 0,

obtained through A in Definition 37. Let E* be the post-conditions of 0*, Q* be the

pre-conditions of 0* and T be the set of grounded formulas of intruder assertions. Let

10 be the set of grounded formulas that are initially valid before the 0* starts. Let R

be a set of rules of inference. 0 is correct under a specific attack 0* with respect to J70

and R iff:

1. If for some k and Pre such that 1 < k < n and $P" E Q*,

F0 U 0* U ... U D*_1 Y #pre

rO U D* U ... U D* F- #/"ntruder

p
0 u D* Y 4Last

]70 U 0* -# "ntruder

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)r0 U 0* F #post
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Then for any formulas $ntruder E T,

2. If for some #Last such that pLast E E and,

Then for any formulas $"ntruder E T ,

3. Otherwise, for any $'ost 6 E*-



and, for any $Intruder E T,

170 u o* H 4 'ntruder (4.15)

4.4 PTGPA Algorithms

Having defined Alpha-S and Beta-S correctness, this section presents the correspond-

ing PTGPA algorithms. PTGPA allows one to verify the correctness of a given pro-

tocol specification with full automation. The main PTGPA consists of PTGPA-Alpha

and PTGPA-Beta algorithms, respectively targeting Definitions 39 and 40. PTGPA

uses theory generation as its subroutine. Proofs and disproofs of any formulas in pre-

conditions, post-conditions and intruder assertions are conducted using the theory-gen()

function in Algorithm 1 and derivable() function in Algorithm 7.

We first define an auxiliary function allValid() to determine if each and every

grounded formula in a given set D is valid with respect to a theory representation

1# and a set of rules of inference R. The function is defined in Figure 4-3.

Algorithm 8: allValid(D, IF#, R)

Data: Set of grounded formulas D, theory representation IF#, rules of inference
R.

Result: Return true if every formula from a given set D is valid with respect to
f# and R; Otherwise return false

for each # E D do
if derivable(#, F#) 0 then

return false;
end

end
return true;

Figure 4-3: allValid: To determine if every formula in a given set (D is valid with respect
to a theory representation F# and a set of rules of inference R.
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4.4.1 PTGPA-Alpha Algorithm

Given a protocol 0, its initial assumptions 0 and its pre-conditions and post-conditions,

as well as a set of rules of inference R, the PTGPA-Alpha algorithm returns a boolean

to signify if 0 is correct under Alpha-S. The algorithm is outlined in Figure 4-4.

Algorithm 9: PTGPAAlpha(D, F, Q, E, -, R)

Data: Protocol 0 of size n, initial assumption IF, pre-conditions Q,
post-conditions E, Preorder -< rules of inference R built using d

Result: Return true if D is correct under Alpha-S; false otherwise
for k <- 1 to n do

F= theory.gen(k-1 U Ok-1, R, d)
if allValid(Qk, k, R) = f alse then
I return false

end

end
F# = theory-gen(]p U 5D, R, );
if allValid(E, F#, R) = false then
I return false

end
return true;

Figure 4-4: PTGPA-Alpha Algorithm: To determine if a given protocol is correct under
Alpha-S.

Algorithm 9 generates a theory representation Tk prior to each message transmis-

sion k. All pre-conditions for that transmission are validated against Fk. The theory

representation F# at protocol completion is computed and post-conditions are validated

against it.

4.4.2 PTGPA-Beta Algorithm

Given an attack 0* of protocol D, obtained through A in Definition 37, initial assump-

tions F0 , pre-conditions in Definition 32, post-conditions in Definition 33, intruder

assertions in Definition 38, as well as a set of rules of inference R, the PTGPA-Beta

algorithm returns a boolean to signify if 0 is Beta-S correct under attack 0*. The

algorithm is outlined in Figure 4-5.
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Algorithm 10: PTGPA.Beta(0*, F0 , Q*, E*, T, -<, R)

Data: D's Attack D* of size n, initial assumptions r0 , pre-conditions Q*,
post-conditions E*, intruder assertions T, preorder -<, rules of inference R

Result: Return true if 0 is correct under this specific Beta-S; false otherwise
for k <- 1 to n do

pk = theory-gen(Fk- U 5_1, R, -)
if allValid(Q*r,Fk,R)=false then

return allValid(T,kR)
end

end
1# = theory-gen (F" U 0*, R,-);

if allValid(E+),F# ,R)=false then

| return allValid(T,F#,R)
end
if all Valid(*) ,F#,R)=false then

I return false
end
if allValid(T,F#,R)=false then

I return false
end
return true

Figure 4-5: PTGPA-Beta Algorithm: To determine if a given protocol is correct under
Beta-S.

Algorithm 10 generates a theory representation rk prior to each message transmis-

sion k. All pre-conditions for that transmission are validated. If any pre-condition fails

(attack detected), we return whether all intruder assertions are valid. Otherwise the

protocol runs to completion. Let F# be the theory representation computed at pro-

tocol completion. We check if all formulas in E*+) are valid. If any is invalid (attack

detected), we return whether all intruder assertions are valid. Otherwise, we return if

each and every formula from post-conditions in E*+) and intruder assertions T is valid.

4.5 Decidability of PTGPA

We now show Algorithms 9 and 10 are decision procedures for determining correctness

of a candidate protocol in Alpha-S and Beta-S respectively. First we state the proof of
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termination. We start by claiming termination of the allValid() function.

4.5.1 Termination

Lemma 12 (allValid(). If 4D is a finite set of grounded formulas and IF# is a theory

representation in Definition 22 with respect to a set of rules of inference R (including

W, G and S rules), then the allValid( , T#, R) function in Algorithm 8 terminates in

finite time.

Theorem 8 (PTCPA Termination). PTGPA-Alpha Algorithm 9 and PTGPA-Beta

Algorithm 10 terminate in finite time.

4.5.2 Decidability

To prove the decidability of the PTGPA algorithms we present the following two lem-

mas.

Lemma 13 (allValid() is a decision procedure). Given a set of grounded formulas (D,

a theory representation [# generated from a set of initial assumptions IF' and a set of

rules of inference R, allValid( ,T#,R) returns true iff each and every formula in 4 is

valid with respect to F0 and R.

Lemma 14 (Rolling-Equivalence). Let R be a set of rules of inference, 4 k be an ordered

set of k-1 grounded formulas such that 4 k - {pi,...pk-1}. Let pk be the theory repre-

sentation constructed from theory-gen( k, R, -); and Fp be the theory representation

constructed from theory-gen(rk-1 U #k-1, R, -<), then:

pk = pk (4.16)

Having constructed lemmas 13 and 14, we are now ready to justify the decidability

of the PTGPA Alpha-S in Algorithm 9 and PTGPA Beta-S in Algorithm 10.

Theorem 9 (Alpha-S PTGPA is a decision procedure). Given a protocol D, its initial

assumptions 170 and its pre-conditions Q and post-conditions E, as well as a set of rules

78



of inference R, 0 is Alpha-S correct in Definition 39, iff the PTGPA-Alpha algorithm

in Algorithm 9 returns true.

Theorem 10 (Beta-S PTGPA is a decision procedure). Given an attack protocol D*,

its initial assumptions F0 , pre-conditions Q*, post-conditions E*, intruder assertions

T obtained partly 2 using A in Definition 37 from an original protocol D, its initial

assumptions T7, pre-conditions Q and post-conditions E, D is Beta-S correct under

attack 0* in Definition 40, iff the PTGPA-Beta algorithm in Algorithm 10 returns

true.

4.6 Java Implementation

We have implemented the theory generation framework and the two PTGPA algorithms

in Java. Our implementation is compact and is a little under 1000 lines of Java. The

implementation focused mainly on the functionality and was not optimized for perfor-

mance. We have successfully analyzed a number of protocols and their attacks with

this implementation. The details of these experiments are discussed in chapters 6, 7

and 8.

2 The initial assumptions F0 for the attack protocol is manually specified.
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Chapter 5

The TGPay Deductive System

Contents

5.1 Introduction . . ... . . . . . . . . . . . . . . . . . . . . . . 81
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5.5 Summary ......... ............................. 108

5.1 Introduction

This chapter formally introduces TGPay, a self-contained proof system that complies

with the prerequisites of theory generation. TGPay is a "little logic" for payment

protocols. We start with a sequence of definitions and then expand on a set of core

semantics that are frequently used in secure payment protocols.

We provide a concrete definition of preorder <TGPay that satisfies Definition 11.

With this specific <TGPay definition, we are able to partition the entire set of rules of

inference from TGPay into G-Rules, S-Rules or W-Rules, a prerequisite mandated by

theory generation in Definition 25.
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For each S-Rule, we label its primary premises with a and side conditions (non-

primary premises) with 0. For example, let 41 be a primary premise and 42 be a

side-condition and C be a conclusion. Applying this annotation, we express this S-Rule

as:

01

# : 2(5.1)

C

Since a G-Rule does not have any primary premises, all premises of a G-Rule will be

annotated using #. So a typical G-Rule is annotated as:

31 : #1

#2: #2 (5.2)

C

We will not annotate any W-Rules since they are size-preserving by definition.

The remainder of this chapter is organized as follows: We first describe each pred-

icate and function used in the TGPay deductive system. Where possible, we adopt

notations that are consistent with those established in literature. We then present a

concrete definition of preorder 3TGPay and we use it to define the set of rules in TGPay.

We provide a summary at the end of this chapter to briefly justify that TGPay meets

the prerequisites of theory generation in Definition 11.

5.2 Functions and Predicates

5.2.1 General Semantics

Definition 41 (Belief: P -X). Let P be a principal and X be a variable. Define

predicate P 6 X to denote P's current belief over the truth of X.

The predicate : is central to the proof system. Notice that if P y X, then it is
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not necessary that X is thought valid by everyone. X is merely principal P's individual

belief. One cannot assume that (P 5 X) p (Q 5 X), since P and Q will be exposed to

different sets of knowledge.

Additionally, our notion of beliefs is stable. That is, once P 5 X is derived, it holds

for the rest of the protocol analysis. The protocols we analyze are short-lived, with a

typical lifetime measured in seconds.

Finally, we assume that all principals are capable of reasoning about their beliefs.

This also applies to intruders.

Definition 42 (Trustworthy: P -4 *). Let P be a principal. Define predicate P - *

to denote that P is trustworthy. Notice that * is just a decoration not a variable.

For example, suppose R is a certificate authority and is considered trustworthy. Let

P be a principal. P's belief of N being trustworthy can be formalized in TGPay as

P* = t *.

Definition 43 (Message Concatenation: X.Y). Let variables X and Y be messages.

Let X.Y denote the message concatenation function that appends Y at the rear of X.

This function has left-to-right associativity.

Definition 44 (Message Inclusion: w(X, Y)). Let variables X and Y be messages.

Define predicate wu(X, Y) and let it return true iff message Y is part of a larger message

X.

5.2.2 Time and Freshness

Definition 45 (Freshness: (X)). Let variable X be a message. Define predicate (X)

to denote that message X is recently created.

A message is considered fresh iff it was generated recently so that it is sufficient to

rule out any replay attack.

Definition 46 (Time Interval: E(T,T)). Let Ta, Tb be two times such that Ta < Tb.

Define E(Ta, Tb) to be a time interval [Ta, Tb]. Notice that E is not a function but a

decoration.
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Definition 47 (Current Time Interval: A(G(Ta, Tb))). Define predicate A(O(Ta, Tb))

to denote that time interval [Ta, Tb] brackets the current time.

An example of the application of A (T, T) is in a digital certificate, where it is used

to denote the life span of an issued certificate.

Definition 48 (Time-stamp of Construction: e(T)). Define 8(T) to denote that mes-

sage T is a time stamp of message construction. E is not a function but a decoration.

Definition 49 (Time-stamp of Expiration: e*(T)). Define 8*(T) to denote that mes-

sage T is a time stamp of message expiration. E* is not a function but a decoration.

Definition 50 (Recent Time-stamp: A(O(T))). Define predicate A(E(T)) to denote

that T represents a recent time stamp.

Definition 51 (Non-Expired Time-stamp: A(E*(T))). This is predicate overloading.

Define predicate A(8*(T)) to denote that T represents a time stamp of an expiration

that has not been reached.

Definition 52 (Nonce: x(N)). Let N be a string. Define x(N) to mean that N is

intended to be used as a nonce. Notice that x() is not a function but a decoration.

5.2.3 Public Key Infrastructure (PKI)

In this subsection we define predicates and symbols for PKI. Some of our notations for

PKI are consistent with [SY08].

Definition 53 (Identity: 6(X)). Let X be a variable. Define 6(X) to mean X represents

an identity of a principal. 6() is not a predicate but merely a decoration.

Definition 54 (Public Key: p(P, K)). Let variable P be a principal and K be a public

key of an RSA cryptography scheme [RSA 78]. p(P, K) denotes that principal P is

associated with a public key K.

Definition 55 (Private Key: O(P, K)). Let variable P be a principal and K be a private

key of an RSA cryptography scheme. p(P, K) denotes that principal P is associated with

a private key K.
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Definition 56 (Public Key Encryption: irT(X, Q)). Let variable X be a message and

Q be a principal. Define function rp(X, Q) to denote the cipher-text corresponding to

X encrypted (exponentiation performed) using the public key of principal Q.

Definition 57 (Private Key Encryption: 7y (X, Q)). Let variable X be a message and

Q be a principal. Define function 7v(X, Q) to denote the cipher-text corresponding to

X encrypted (exponentiation performed) using the private key of principal Q.

A certificate, denoted as T, consists of a plaintext part pT and a cryptographic

signature part IW*.

Definition 58 (X.509 Certificate: T(P, 6(ID), 9(T[', T2
1 ), Kr, R)). An X.509 certifi-

cate [AF99] TI(P, 6(ID), E(Tf,Tf , Kp, N) of principal P issued by authority R, is de-

fined as:

pT (p, 6(ID), E(Tf', T2), Kp, N).T*(P 6[(ID), E(Tf, Tr), Kp, R) (5.3)

Definition 59 (X.509 Plain-Text Portion: ITT(P, 6(ID), E(T!', Tf), K, )).

p T (p, 6(ID), E(Tf', Ti'), Kp, N) = 6(ID).E(Tf, T2 ).P(P, Kp).R (5.4)

pT (p,6(ID), E(T 1 , Tfl, Kp, R) is the plain-text portion of the certificate T. It

contains the issuer N, issuee P, time stamps with issuing and expiring time T, and T2 ,

issuee's public key Kp as well as certificate identity, ID.

Definition 60 (X.509 Signature Portion: V*(P, 6(ID), e(Tf', Tf), Kp, R)). This is the

cryptographic signature of the hash (Definition 67) of all the information in the X.509

plain-text portion in Definition 59:

T*(P, 6(ID), E(TP, T), Kp, R) = y (O(XpT(p, (ID), O(T , Ti), Kp, N)), N) (5.5)

where 0() is a hash function in Definition 67.

A certificate revocation list (CRL) is a list of certificates (or more specifically, a list

of serial numbers for certificates) that have been revoked, and therefore should not be
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relied upon [IETF12b]. A certificate is said to be valid iff it is not on a CRL and is

defined below:

Definition 61 (Certificate Validity: x(6(ID))). Let variable ID be a certificate identity

and define predicate x(6(ID)) to denote that the certificate associated with this ID has

not been revoked.

5.2.4 Authentication

Definition 62 (Recipient: 91(X, P)). Let variable X be a message and P be a principal.

Predicate 9t(X, P) returns true iff message X has intended recipient P.

Definition 63 (Originator: 6 (X, P)). Let variable X be a message and P be a principal.

Predicate 6 (X, P) returns true iff message X originated from P, or loosely speaking, P

once uttered X.

B(X, P) merely states that P said X, or bound its identity to X. It is possible that

many principals bound their identities to the same message X.

Definition 64 (Not Originator B- 1 (X, P)). Let variable X be a message and P be a

principal. Predicate 6-1(X, P) returns true iff P has never uttered X in any instance

of a protocol.

Definition 65 (Symmetric Key: -yK (K, P, Q)). Let K be a symmetric key and P and

Q be two principals. Define predicate YK(K, P, Q) and let it return true iff principals

P and Q currently share an established symmetric key K. Moreover, K is shared only

between P and Q.

Definition 66 (Symmetric Encryption: irs(X, P, Q)). Let X be a message and P and

Q be two principals. Define function symbol 'rs(X, P, Q) to denote the ciphertext cor-

responding to encrypting plaintext X with the symmetric key shared between principals

P and Q.
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5.2.5 Hash and Message Authentication Code

Definition 67 (Message Digest: O(X)). Let variable X represent a message. Define

function 0(X) to be the digest of message X computed using a cryptographic hash func-

tion [IETF12c] [IETF12d]. We assume perfect hashing. That is,

1. (X1 #A X2) = (O(X1) # O(X2)),

2. Given 9(X), it is impossible to reconstruct X,

3. Let f be any function, then (X # f(X)) = (0(X) # O(f(X)))

Definition 68 (Hash-based Message Authentication Code (HMAC): W(X, K)). Let X

be a message and K be a key. Define w(X, K) to be the HMAC of message X when key

K is used [IETF12a]:

w(X, K) = 0(K.9(K.X)) (5.6)

Definition 69 (Integrity: r7(X, P)). Let variable X be a message and P be a principal.

Define predicate 7(X, P) and let it return true iff X has not been altered since its original

construction (announcement) by principal P. Said differently, it was exactly X that P

once uttered. If P has never uttered X, the predicate will always return false.

5.2.6 Non-Repudiation

We define a generic provability operator I() as follows:

Definition 70 (Provability: n(P, X)). Let P be a principal and X be a message. Define

predicate Z(P, X) and let it return true iff P can prove the validity of X to any principal

other than P itself.

5.2.7 Message Reconstruction

Definition 71 (Message Sent: P t> X). Let P be a principal and X be a message.

Define predicate P > X and let it return true iff P once sent message X to some other
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principal. That is, X was revealed by P and hence some other principals potentially

received X.

Definition 72 (Message Received: P < X). Let P be a principal and X be a message.

Define predicate P < X and let it return true iff P once received message X. It is not

necessarily known who the message constructor or sender was.

Definition 73 (Potential Reconstruction: F(P, X)). Let P be a principal and variable

X be a message. Define predicate symbol n(P, X) to indicate that principal P is able to

reconstruct X.

Notice predicate fn denotes a principal's potential or feasibility to reconstruct a

message from information it generated or received. The principal may or may not have

actually constructed the message at time of the predicate evaluation. For example,

a principal has received message X, and therefore it is able to reconstruct X.9(X),

although it does not have to explicitly compute and store X.9(X).

5.3 Preorder NTGPay

5.3.1 Definitions

This section defines the preorder dTGPay used in our proof system TGPay. The def-

inition of iTGPay is motivated by [Kin99]. We have extended it to include additional

forms of atomic variables. In this section, we first introduce the relevant definitions.

The claims of the properties of the preorder will be presented next. Proofs to all lemmas

and theorems are presented in Appendix C.

Definition 74 (Atomic Variable [Kin99]). The atomic variables of functions and pred-

icates are those arguments (variables) that are constants (0-ary functions) under any

substitutions.

For example, consider the predicate 1(X), in which X is a non-atomic variable. One

can replace X with functions of any arity such as hello.world, (hello.world), etc. Now
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consider a different predicate p(P, K). Its substitutions (instantiations) are not allowed

to produce p(Alice.Bob, (key)) in which P is replaced with a function concatenation

of two constants and K is replaced with a hash function. It must be instantiated

as p(Alice, key.) for some specific principal name "Alice" (a single constant) and an

instance of a key key, (a single constant). In TGPay, any variables that appear in

functions and predicates that describe a principal name or key are atomic variables.

Atomic variables play important roles in the preorder specification. In TGPay, the

atomic variables are:

Definition 75 (Atomic Variable in <TGPay). Any principal names are atomic variables.

Any cryptographic keys, including symmetric keys and public/private keys are atomic

variables. Additionally, any variable used within a decoration symbol is atomic. These

include:

1. Time-stamp T for construction: @(T)

2. Time-stamp T for expiration: e* (T)

3. Time envelope (Ta,Tb]: E(Ta,Tb)

4. Principal ID: 6(ID)

5. Nonce N: x(N)

We are now ready to describe TGPay. For convenience, we first define two auxiliary

functions I() and A(.

Definition 76 (I($)). Let # be a formula. Define function 11(op) to be the total number

of predicates, functions and non-atomic variables appearing in #, excluding any atomic

variables.

Definition 77 (A($, X)). Let $ be a formula and X be a variable name. Define function

A($, X) to be the number of occurrences of X in $.
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Definition 78 (BTGPay [Kin99]). Let #1 and 42 be two formulas in TGPay.

91 NTGPay #2  (5.7)

is well defined with respect to finite sets of predicate symbols (each with fixed and finite

arity), function symbols (each with fixed and finite arity) and constants, iff:

1. Alphabetic Count: U(#1) l(# 2), and

2. Variable Frequency: A($ 1, X) < A(# 2, X), for any non-atomic variable X appear-

ing in 41

One observation obtained directly from Definition 74 is that substitutions performed

over atomic variables do not change the size of the formula that the atomic variables

reside in. This can be seen from the lemma below.

Lemma 15. Let # be a formula and let o- be any substitution over atomic variables

from p. Then,

Ul(#) = Uj(o-#) (5.8)

and

A(4, X) = A(o-4, X) (5.9)

for any non-atomic variables X appearing in p.

5.3.2 Properties of TGPay

Next, properties of TGPay are discussed. We first show that the TGPay is a preorder

operator.

Lemma 16. <TGPay is a preorder.

We now show that operator MTGPay from Definition 78 strictly satisfies monotonicity,

substitution preservation and finiteness properties in Definition 11.
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Monotonicity

Lemma 17 (Monotonicity [Kin99]). Let # be a formula, T 1, T 2 be terms and X be a

variable from $. Let substitutions or = {X -+ T 1} and 0-2 = {X -+ T 2 } Then,

(T1 TGPay T2 ) (0~10 <TGPay O-20) (5.10)

Substitution Preservation

Lemma 18 (Substitution Preservation [Kin99]). Let #1,0 2 be two formulas, T be a

term and let X be a variable from #1 or $2 or both. Let substitution o- = {X -+ T}.

Then,

($1 ---TGPay 02) =(U^01 -- TGPay 0-42) (5.11)

Finiteness

Lemma 19 (Finiteness [Kin99]). Let 4* be any formula composed from a finite set

of predicate symbols (each with finite arity), a finite set of function symbols (each

with finite arity) and a finite set of constants and non-atomic variables, then the set

{$ 0 TGPay 4*} must be finite modulo variable renaming.

Theorem 11. <TGPay is an instance of the preorder -< in Definition 11.

5.4 Rules of Inference

In this section, we formally introduce the set of rules of inference in our proof system.

All rules are defined with respect to the preorder in Definition 78. We start with the

set of general rules and move on to rules that target specific requirements of payment

protocols.
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5.4.1 General Rules

The first rule is a rewrite rule on message concatenation of two sub-messages. Let X

and Y be two terms.

W-Rule 1 (Rewrite - 2 Term Composition).

X.y

Yx
(5.12)

We also have rewrite rules for symmetric key encryption:

W-Rule 2 (Rewrite - Symmetric Key).

7(K(K, P, Q)
YK(K, Q, P)

(5.13)

W-Rule 3 (Rewrite - Symmetric Encryption).

's(X, P, Q)
7s(X, Q, P)

(5.14)

We have two rules about multi-part messages:

S-Rule 1 (Sub-Message Belief). If principal P believes a composed message then it

believes each of the message's sub-components.

a: P (X.Y)

P x
(5.15)

G-Rule 1 (Component Rule). The G-Rule requires no premises and only has a con-

clusion. It states that message X is part of a larger message of the form X concatenated
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with Y.

0 : .
(5.16)

P w(X.Y, X)

5.4.2 Time and Freshness

G-Rule 2 (Freshness - Composition). This rule states that if P believes that message

X is fresh, then P believes that a composed message X.Y is also fresh.

p : P k= (X) (.7
P% t(X.Y)

Note that although the composed message X.Y must be recently generated, message

Y may or may not be fresh.

S-Rule 2 (Jurisdiction with Time-stamp). This S-Rule states that if P believes principal

Q is trustworthy (32), and if principal P believes that Q has sent a message (a) that

has a fresh time-stamp (01 e.g. A(E(T))) with message X, then P believes X.

a :P- 6(0(T).X, Q)

pl : P * A (E)(T)) (.8
02: P Q *

P X

S-Rule 3 (Jurisdiction with Expiration). This S-Rule states that if P believes principal

Q is trustworthy (/2), and if principal P believes that Q has sent a message (a) with

an expiration time-stamp e*(T) with message X and the expiration time-stamp e*(T)

has not been reached (/1), then P believes X.
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P :- P5 5()* (T).X, Q)

#1 : P WA(8*(T)) (5.19)

#2: P5Q *

P x

G-Rule 3 (Freshness - Public Key Encryption). This G-Rule states that freshness of

X is maintained under public key encryption. If P believes X is fresh (#1) and P knows

Q's private key (/32), then P believes the encrypted X using Q's public key is also fresh.

#1 : P 5 (X)

#2 : P *V(Q, K 1 ) (5.20)

P 5 ff( r(X, Q))

Note that P does not necessarily believe that X came from Q. Moreover, P and Q
are likely to be the same principal.

G-Rule 4 (Freshness - Private Key Encryption). This G-Rule states that freshness of

X is maintained under private key encryption. If P believes X is fresh (/1) and P knows

Q's public key (/2), then P believes the encrypted X using Q's private key is also fresh.

31 : P 5 (X)

/2 : P 5 p(Q, K) (5.21)

P 5 f (rV (X, Q))

G-Rule 5 (Freshness - Symmetric Key Encryption). This G-Rule states that freshness

of X is maintained under symmetric key encryption.

#1 : P 5 g (X)

#2 : P 5 7K(K, P, Q) (5.22)

P 5 #(irs(X, P, Q))
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5.4.3 PKI

S-Rule 4 (Certificate Validation Rule). This is an S-Rule. It allows principal P to con-

struct its belief in Q's public key from the content of Q's certificate C (a!). Instrumental

in the process is the validation of C's expiration (01) and revocation (/4). Additionally,

P must check the authenticity of C using C's issuer's public key KR (02, 63).

a : P P < T (Q, 6(ID), E(T, TQ), KQ, R)

31 :P A(E(TQ, TQ))

#2 : P * p(R, K) (5.23)

/3 : P y R - *

#4 : P -X(6(ID))

P O p(Q, KQ)

S-Rule 5 (Certificate ID Extraction). With the same set of premises, P can reconstruct

the ID of Q from Q's certificate.

a : P 5 P < 'I(Q, 6(ID), E(T1, Ti), K2, R)

#1 : P * A ((TQ, T2Q))

#2 : P 5- p (R, K&)(.4

03 : P H-+ *

#4 : P X(6(ID))

P * F (P, 3(ID))

S-Rule 6 (Part of Certificate). With the same set of premises, P believes this specific
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ID is part of Q's certificate.

a : P < F G(Q, 6(ID), E)(T, TQ), Kg, tR)

#1 : P 5- A(E8(TQ, TQ))

#2 : P 5- p(lR, K ) (.5/32: (5.25)

#3: P 5 R - *

#4 : P 5- X(6(ID))

P 5 w(W(Q, 6(ID), E(TF, T2Q), KQ, 1), 6(ID))

5.4.4 Authentication

Authentication is the identification of the sources and destinations of messages: which

principal said X and which principal is supposed to receive X. In general, authentication

of a message X's announcer P (P once said X) does not imply that P currently believes

X. Moreover, over an insecure channel, an established belief that P said X from a specific

message transmission does not entail that subsequent messages received are also from P.

Hence authentication must be carried out on a per-message basis in protocol analyses.

S-Rule 7 (Origin: Private Key Encryption). This S-Rule states that if principal P

believes that it received a message X encrypted with Q's private key (a), and that P

believes that public key Kp is associated with principal Q (/), then P believes that it

was principal Q who once uttered X.

a: P 5 P < ,rv(X, Q)

# : P 5 p(Q, Kp) (5.26)

P 5 (X, Q)

S-Rule 8 (Destination: Public Key Encryption). This S-Rule states that if principal

P believes that it received a message that was encrypted using P's public key (a), and P

has a corresponding private key K ' (#), then P believes that message X was intended
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for P to read.

a : Pk P < 7r(X, P)

p : P 5b (P, K 1 ) (5.27)

P 5 91(X, P)

S-Rule 9 (Origin: Symmetric Key). This S-Rule states that if principal P believes that

it received a message that can be successfully decrypted into X by using a symmetric

key K (a l), and that P shares K with another principal Q (/8); and additionally P

believes that it has never uttered the cipher-text (so that P is not receiving back the

same message itself sent before) at the time of evaluation (a2), then P believes that it

must be principal Q who once uttered X.

a : P PAs(X, P, Q)

a2 : P 5 6-1 (rs (X, P, Q), P) (.8
p: P 5YK(K, P, Q)

P E5(X, Q)

Notice that 5 (X, Q) should be interpreted as "it was Q who constructed or uttered

X". The ciphertext 7s(X, P, Q) may be received and relayed by principals other than

Q along the way to P.

S-Rule 10 (Destination: Symmetric Key). This S-Rule states that if principal P be-

lieves that it received a message that it can be successfully decrypted into X by using

a symmetric key K (a1), and that P shares K with another principal Q (3), and ad-

ditionally P believes that it has never uttered the cipher-text at the time of evaluation
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(a2), then P believes that message X was intended for P.

al : P 5 P 7rs(X, P, Q)

a2: P 5 6-1 (rs (X, P, Q), P) (5.29)

P YK (K, P, Q)

P 91(X, P)

S-Rule 11 (Partial Source Authentication). This S-Rule states that if P believes that

Q has once uttered a composed message X.Y then P also believes that Q once uttered a

partial message X.

a: P G6(X.Y, Q) (5.30)

P 6(X, Q)

S-Rule 12 (Partial Destination Authentication). This S-Rule states that if P believes

that it is the intended recipient of a composed message X.Y, then P also believes that

it is the intended recipient of a partial message X.

a : P 5 91(X.Y, Q) (5.31)

P 5 91(X, Q)

5.4.5 Hashing, MAC and Integrity

A message is integral if it has not been altered or modified since its announcement.

In practice, message integrity is often achieved by accompanying message X with its

digest or HMAC. We define relevant rules for integrity in this subsection.

S-Rule 13 (Integrity: Component). This S-Rule states that if message X. Y has not

being tampered with since its announcement, then P believes that its sub-message X is

also intact (See Definition 69-).

a : P5(X.Y, Q) (5.32)

P 5q(X, Q)
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S-Rule 14 (Integrity: Generic Hash). This S-Rule states that if principal P believes

that Q once uttered message X.Y and Y is the correct message digest of X, then P

believes that principal Q once uttered X as is.

a : P 5 6(X.9(X), Q)

P y 7(X, Q)

S-Rule 15 (Authentication: Hashed Signature, Public Key Encryption). This S-Rule

models classical digital signatures. If P believes that it can reconstruct X (01), it has

received a message of the form V(9(X), Q) (a), and that KQ is some principal Q's

public key (/82), then P concludes that principal Q once uttered X.

a : P% P 7r y(O(X),Q)

#1:Pyn(P, X) (-4
#2 : P p(Q, KQ)

P (X, Q)

S-Rule 16 (Integrity: Hashed Signature, Public Key Encryption). This rule is similar

to the one above, but with a different conclusion. If P believes that it has received a

message of the form v(O(X), Q) (a) and it can reconstruct X (01), and that KQ is

some principal Q's public key (#2), then P concludes message X was not modified and

was the original X when it was uttered by Q.

a : P% P rV y(0(X),Q)

#1 : P5 F (P, X) (5.35)

#2: P p(Q, KQ)

P y r/(X, Q)

Rules 15 and 16 allow one to derive beliefs about the originator of a message and its

integrity. Principals often sign the hash of a message X rather than the message itself.

This signature together with the corresponding X in plain-text allows the receiver to
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determine authenticity. The following two S-Rules 17 and 18 are similar to rules 15

and 16. They derive the same set of conclusions provided that the hash of message X

is first authenticated.

S-Rule 17 (Authentication: Signed Hashed Signature). If P believes Q once uttered a

hash of a message X (a) and P believes P can reconstruct X (3), then P concludes that

Q once uttered X.

a : P = 6(0(X), Q)

0 : P 5- n (P, X) (5.36)

P 5 (X, Q)

S-Rule 18 (Integrity: Signed Hashed Signature). If P believes Q once uttered a hash

of a message X (a) and P believes P can reconstruct X (3), then P concludes it was

exactly X that Q once uttered. X is intact.

a :- P5 0 6((X), Q)

0: P 5-- n (P, X) (5.37)

P 5 r/(X, Q)

S-Rule 19 (Authentication: HMAC). This S-Rule models authentication with an HMA C.

If P believes that it has received an HMACw(X, K) (al), and it can reconstruct X (01),

and that K is a key shared only between P and some principal Q (32), and that P knows

that it did not reveal w(X, K) (a2), then P concludes that it was principal Q who once
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uttered X.

al : P * P < w(X, K)

az2: P 56 (w (X, K), P)

#1: P 5 n (P, X) (5.38)

#2: P 57K (K, P, Q)

P k C(X, Q)

S-Rule 20 (Integrity: HMAC). This S-Rule models integrity with an HMAC and has

the same set of premises as Rule 19. If P believes that it has received X's HMAC (al)

and it can reconstruct X (#1), and that K is a key only shared between P and some

principal Q (#2), and that P knows that itself did not utter X (a2), then P concludes

that it was precisely this X that Q once uttered. X is intact.

l : P* P < w(X, K)

a2 : P 6 -(w (X, K),7 P)

# 1 :P 57 nl (P, X) (5.39)

#2: P5 7K(K, P, Q)

P 577(X, Q)

5.4.6 Non-Repudiation Extension

Sometimes it is insufficient for a principal itself to form certain beliefs. For payment

protocols, the need for accountability must also be addressed. Accountability reflects

a principal's ability to prove certain claims to an arbitrator R (a neutral and honest

principal) without assuming any knowledge of R other than its ability to reason logically.

When P presents a proof to R, the proof can be transferable or non-transferable.

A transferable proof is a proof of a certain claim X, that after the claim is presented

to R, R is able to use it to prove X to another honest principal R' where R 4 R'.

Non-transferable proofs are those proofs P constructs to convince Q about a certain

claim without revealing anything other than the veracity of the statement. Conse-
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quently Q is unable to prove it to another principal. An example of a non-transferable

proof is the possession of one's private key. Given a random challenge nonce generated

by Q, P can return the nonce signed by its private key. Q subsequently checks the

returned message with P's public key to verify. During the proof procedure P does not

reveal its private key yet it is able to convince Q about P's possession of P's private

key. Q cannot convince arbitrator R that P has the corresponding private key, partly

because Q cannot prove to R that the challenge nonce used was fresh.

Next we focus on a small subset of accountability inference rules - accountability of

messages that a principal once uttered, using the framework of transferable proofs.

S-Rule 21 (Non-Repudiation: Proof of Submessage). This S-Rule states that if P

believes that Q can prove a message composition X.Y then Q can prove a sub-message

X.

a : P 5](Q, X.Y) (5.40)

P 5-(Q, X)

S-Rule 22 (Non-Repudiation: Private Key Encryption). This S-Rule states that if

principal P believes that it received a message that corresponds to Q encrypting X using

its private key (a), and additionally P can prove that K is the public key of Q (3), then

P believes that it can prove that it was Q who once uttered X.

a: P P < rv(X,Q)

p : P #3 M(P, p (Q, Kg)) (5.41)

P 5n(P, 6(X, Q))

S-Rule 23 (Non-Repudiation: Signature Origin). This S-Rule states that if principal

P believes that it received a message that is Q's signature over the hash of message X

(a), and P believes that it can reconstruct message X (01), and P believes that it can

prove that KQ is the public key of Q (02), then P believes that it can prove that it was
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Q who once uttered X.

a : P% P 7 wv(O(X),Q)

#1 : P5 F (P, X) (5.42)

#2 : P 53 n(P, p (Q, Kg))

P E 3_(P, 6 (X, Q))

S-Rule 24 (Non-Repudiation: Signature Integrity). This S-Rule has the same set of

premises of Rule 23; it states that if principal P believes it received a message that is

Q's signature over the hash of message X (a), and P believes that it can reconstruct

message X (#1), and P believes it can prove that KQ is the public key of Q (#2), then

P believes that it can prove that X was not modified since X was uttered by Q.

a : PP < 7v(O(X),Q)

,1: P 5 _ n (P, X) (.3
#2 : P 5D(P, p(Q, K))

P 5 fl(P, r/(X, Q))

S-Rule 25 (Non-Repudiation: Public-Key from Certificate). This S-Rule allows one to

be able to prove another principal's public key from its certificate. The set of premises

is the same to that of S-Rule 4. If Q's certificate is valid, then P not only recognizes

Q's public-key but also is able to use the certificate as a transferable proof to prove Q's

public-key at the time of evaluation.

a : P * P < (T (Q, 6(ID), 8(TQ, T2), KQ, N))

#1 : P 5 A((T, T))

#2 : P 5- p(tN, KR) (.4
/3 : Pk5 N *

/4 : P * X(J(ID))

P 53 n(P, p (Q, Ko))
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This S-Rule models a digital certificate as a transferable proof of one's public-key.

One can similarly construct S-Rules for other identities in a certificate such as expiration

date, public key and issuer.

5.4.7 Jurisdiction

S-Rule 26 (Jurisdiction Rule). This S-Rule appeared in the original BAN papers

[BAN89] and [BAN90]. It states that if P believes that Q is trustworthy (01) then

P trusts what Q currently believes (a, /2). This rule reduces the other principal's belief

to one's own belief.

a: PG6(X,Q)

#31: P5Q *0 1 : P -= F -+( 5 .4 5 )
#2: P* O(X)

P5 X

5.4.8 Confidentiality Extension

S-Rule 27 (Message Extraction Rule (Public Key Encryption)). This S-Rule states that

if P believes that it received a ciphertext using principal P's public key over plaintext X

(a), and P has the corresponding private key (/), then P believes it received X.

a : P P < ,p( X, P)

# : P V)(P, K 1 ) (5.46)

PP<X

This rule is different from Rule 8. Rule 8 allows one to derive the principal that

message X was intended for. This rule emphasizes that P has received X and therefore

can "see" the content of X.

S-Rule 28 (Message Extraction Rule (Private key encryption)). This S-Rule states

that if P believes that it received a ciphertext created using principal Q's private key
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over plaintext X (a), and P has access to Q's public key (3), then P believes it received

X.

a: POP irv(X,Q)

P: P p(Q, KQ) (5.47)

This rule is different from Rule 7. Rule 7 allows one to derive the principal who

once said X. This rule emphasizes that P has received X and therefore can "see" the

content of X.

S-Rule 29 (Message Extraction Rule (Symmetric key encryption)). This S-Rule states

that if P believes that it received a ciphertext encrypted using a symmetric key between

P and Q over plaintext X (a), and additionally P has access to that key (/), then P

believes that it received X.

a : P y P <irs(X,P,Q)

# : P y(K, P, Q) (5.48)

5.4.9 Message Reconstruction

Message reconstruction allows the derivation of any message combinations a principal

has potential to construct. The messages may arrive from different message transmis-

sions, encrypted or in plain-text. The principal may not have the specific message

combination actually computed and stored. Message reconstruction rules are used ex-

tensively in the instantiations of non-primary premises in the S-Rules for authentication.

S-Rule 30 (Received Sub-message). This S-Rule states that if P believes that it received

a composed message of form X.Y, then it also received the submessage X.

P k-Q X.Y (5.49)
PkQ<X

105



S-Rule 31 (Sent Sub-message). This S-Rule states that if P believes it sent a composed

message of form X.Y, then it also sent the submessage X.

P -Q > X.Y _(5.50)

P Q X

S-Rule 32 (Message Reconstruction: Sent Single Message). This S-Rule states that if

P believes it sent a message X, then P can reconstruct X.

a: P P > X551)

P b n (P, X)

S-Rule 33 (Message Reconstruction: Received Single Message). This S-Rule states

that if P believes it received a message X, then P can reconstruct X.

: P P < X (5.52)
P % n (P, X)

G-Rule 6 (Message Reconstruction: Composition). This G-Rule states that if principal

P believes that Q can construct X (31) and construct Y (32), then P believes that Q
can construct X composed with Y.

01 :P F n (Q, X)

P2 :P R (Q, Y) (5.53)

P 5 n (Q, X.Y)

G-Rule 7 (Message Reconstruction: Received Messages). This G-Rule states that if

principal P believes that Q can construct X (01) and Q has received Y (02), then P
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believes that Q can construct X composed with Y.

1 : P 5 F (Q, X)

#2 : P Q < Y (5.54)

P 5 n (Q, X.Y)

G-Rule 8 (Message Reconstruction: Sent Messages). This G-Rule states that if prin-

cipal P believes that Q can construct X (31) and Q sent Y (#62), then P believes that Q
can construct X composed with Y.

#1 : P * F (Q, X)

#2: P5 Q > Y (5.55)

P 5 n (Q, X.Y)

G-Rule 9 (Message Reconstruction: Two Received Messages). This G-Rule states that

if principal P believes that Q received X (#1) and Y (#2), then P believes that Q can

construct X composed with Y.

#1 : P5 Q <X

#2 : P 5 Q < Y (5.56)

P 5 n (Q, X.Y)

G-Rule 10 (Message Reconstruction: Two Sent Messages). This G-Rule states that if

principal P believes that Q sent X (#1) and Y (#2), then P believes that Q can construct

X composed with Y.

1 : P Q > X

#2: P Q > Y (5.57)

P 5 n (Q, X.Y)

G-Rule 11 (Message Reconstruction: Sent and Received Messages). This G-Rule

states that if principal P believes that Q received X (#1) and once sent Y (#2), then P
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believes that Q can construct X composed with Y.

#1: P 5 Q < X

#2: P * Q > Y (5.58)

P * n (Q, X.Y)

5.4.10 Message Transmission

S-Rule 34 (Message Send). This S-Rule models message sending and generates P's

belief about sending a message. If message X was sent from P to Q, then P believes

that it has sent out X.

a:P->Q:X (Q (5.59)
P 0P C> X

S-Rule 35 (Message Receipt). This S-Rule models message receipt and generates Q's
belief about receiving a message. If message X was sent from P to Q, then Q believes

that it has received message X.

ceP-Q : X (5.60)

5.5 Summary

This chapter described the TGPay proof system in detail. We first defined a set of

functions and predicates used in payment protocols. We then provided a concrete

definition of preorder TGPay that satisfies Definition 11. With this specific <TGPay

definition, we were able to partition the entire set of rules of inference from TGPay

into G-Rules, S-Rules or W-Rules.

The proposed TGPay proof system fully satisfies the set of prerequisites mandated

by theory generation in Definition 25 and hence is amenable to PTGPA algorithms. In

particular, we claim:
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1. Operator. TGPay satisfies Definition 11,

2. Every rule in TGPay is either a G-Rule or an S-Rule or a W-Rule with respect

to TGPay,

3. Every W-Rule in TGPay is size-preserving with respect to <TGPay,

4. S/G restriction holds for all S-Rules with respect to TGPay. For each and every

S-Rule S in TGPay, if we let Pi be a primary premise of S and Sj be a non-primary

premise of S:

(a) Pi does not unify with the conclusions of any G-Rules in TGPay, and,

(b) For all possible pairs of {Sj, Pi} of S, Sj rTCPay Pi

With these prerequisites met, we are now ready to use TGPay as a concrete proof

system for the automated PTGPA analysis framework described in Chapter 4.
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6.1 Introduction

Over the past years, contactless bank cards have been widely adopted in the US. [A1109]

estimated that approximately 90 million contactless credit cards and 130,000 contactless

readers were deployed by the end of 2009. However, the payment protocols that these

bankcards adopt are not all secure. In an independent study, [HBBFJ07] examined a

set of 20 contactless bank cards from multiple payment organizations and major issuing
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banks in the US. The study found security vulnerabilities of various degrees in all 20

cards.

Heydt-Benjamin et al.'s experiment was carried out with readers from two inde-

pendent manufacturers. The contactless cards communicate with the readers over the

IS014443-B transport layer [IS008a]. Card taps were captured and messages trans-

mitted between the card and reader were obtained from the serial port of the readers.

The outputs were then rendered in the IS07813 [IS008b] mag-stripe format, and the

payment protocols used by the bank cards were reverse engineered.

Based on the findings, the protocols used by the 20 bank cards were placed into four

categories. In this chapter, we will formally model two of them in TGPay and show

how PTGPA analyses can be carried out on the two protocols and their attacks.

After that, we present TGPay formalizations of two authentication protocols used

in the Europay-MasterCard-Visa (EMV) protocols [EMV11a] [EMV11b]. We provide

detailed analyses using the PTGPA framework.

6.2 Bank Card Protocol Overview

The bank card payment protocol starts when a contactless bank card taps on a reader.

The reader forwards the card information and a transaction description string M to

a back-end server, which then checks for the consistency of the information and, if

satisfied, reports to a billing gateway. Since the reader and the back-end server often

share a secure communication channel such as TLS [IR08a], and the reader merely

forwards information it receives, we will omit modeling the reader explicitly. Instead,

we assume the contactless bankcard communicates directly with the payment server,

with M as part of the message transmission. Adopting this simplification, we now

provide high-level descriptions of two contactless payment protocols, Type A and Type

B, from [HBBFJ07].

1. Card Protocol A: This card type always sends the reader a set of static informa-

tion that contains its Primary Account Number (PAN), card holder name and
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expiration date. A sample serial output from a commercial reader with this type

of card is presented in Figure 6-1. The first line is the message contained in the

primary track of a mag-stripe card; the second line contains almost the same

information, and represents the second track of a mag-stripe card.

Bxxxxxx6531xxxxxx^DOE/JANE^0906101000000000000000000000000000858000000
xxxxxx6531xxxxxx=09061010000085800000

Figure 6-1: Message transmitted when card type A taps on a contactless reader. The
top line represents the primary track and the second line represents the secondary track
in the mag-stripe [HBBFJ07].

In Figure 6-1, "xxxxxx6531xxxxxx" is the PAN, "DOE/JANE" is the card holder

name, and "0906" is the expiration date. Let CHD be a term that represents the

concatenation of PAN, card holder name and the expiration date. We assume

that the remaining string is a signature from the issuing bank over the entire card

holder data (CHD). In our model, we make the simplifying assumption that the

payment server Se is responsible for issuing bank cards. Se has a public-private

key pair {kse, k-1}. We can formalize the message in Figure 6-1 in TGPay as:

M.CHD.-rv(O(CHD), Se) (6.1)

which is the concatenation of plain text CHD and signature of its hash. Since the

CHD is transmitted in clear, this protocol is clearly susceptible to an eavesdrop-

ping attack. Moreover, there is no freshness component sent by this type of cards

- it always sends the same string when communicating with a reader. Therefore

it is also susceptible to a replay attack. Last, M is not signed, so the protocol is

vulnerable to cut and paste attacks.

2. Card Protocol B:

This card type still sends the card holder data CHD in the clear. However, it

has significantly enhanced its security by storing a counter value that increases
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monotonically for each tap. An example serial output for this type of card when

communicating with a reader is presented in Figure 6-2.

Bxxxxxx1079xxxxxx^DOE/JANE^0901101100000000000100000000000
xxxxxx1079xxxxxx=09011011000001600221

Figure 6-2: Message transmitted when card type B taps on a contactless reader. The

top line represents the primary track and the second line represents the secondary track
in the mag-stripe card format [HBBFJ07].

In this sample output, "0022" in italics is a counter value that increases at every

tap. This provides freshness for every transaction message. The three preceding

digits ("016" in bold) change at every tap, and they are assumed to be a signature

over the CHD and the counter value. In this case, we assume the payment server

keeps a mapping of each CHD to its latest counter value the server has seen.

Moreover, the payment server shares a unique symmetric key k with each card

that is identified by the CHD. We can formalize the message in Figure 6-2 in

TGPay as:

M.CHD.C.w(CHD.C, k) (6.2)

where C is a specific counter value and w(CHD.C, k) is an HMAC over CHD.C

using key k.

6.3 Card A Alpha-S Analysis

Since the card A protocol always sends the same static message, it is vulnerable to replay

attacks. One of the steps the payment server takes, upon receiving the message from

the contactless card and the transaction specific payload M, is to check this information

for freshness and consistency. There are three principals in this protocol: the bank card

(Bc), the payment server (Se) and a billing gateway (Bi) that processes transactions
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for billing. We assume the channel between Se and Bi is secure and we omit modeling

the contactless reader since it only appends the transaction description information M

and sends everything to the payment server. The UML sequence diagram of the card

type A protocol is presented in Figure 6-3.

M.CHDrv((CHD),Se)

M.CHD

Figure 6-3: UML sequence diagram for contactless payment protocol type A.

Next we show how the protocol, as well as its initial assumptions, and its pre- and

post-conditions are formalized in TGPay. Last, we show how the PTGPA analysis is

carried out to verify the protocol's correctness.

6.3.1 Initial Assumption

The initial assumptions are Se's recognition of its own public and private key. In

TGPay, they are modeled as two grounded formulas:

Se 5 p(Se, Kse) (6.3)

Se 5 'q(Se, K ) (6.4)

6.3.2 Pre- and Post-conditions

The set of pre-conditions is the collection of security goals that are expected to be

achieved before each message exchange step. We provide a possible list of goals and

briefly discuss how they can be formalized in TGPay. We focus on the set of pre-

conditions that Se imposes before communicating with the billing gateway Bi. Suppose

'There are many other significant goals that we do not address in this example.
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Se has received M.CHD.rv(O(CHD),Se) as in Figure 6-3. A number of security

requirements must be met before Se sends a message to the billing server.

1. Se needs to believe that CHD represents information of a card that was issued by

Se. We model this in TGPay by stating Se once uttered CHD:

Se 5 6(CHD, Se) (6.5)

2. Se needs to ensure that CHD is intact since it was uttered (manufactured) by Se.

It was exactly this CHD that Se uttered:

Se 5 r/(CHD, Se) (6.6)

3. Se needs to ensure that the transaction M.CHD was intended to be made by

Bc. The transaction, represented by the goods purchased M and the financial

instrument used to pay CHD, was initiated by BC and not by some other principal.

We model this in TGPay as:

Se 5(M.CHD, Bc) (6.7)

That is, M.CHD was uttered by Be.

4. It was exactly this transaction M.CHD that Be requested, and not some other

M.CHD' for some CHD':

Se p r1(M.CHD, Bc) (6.8)

5. Se needs to ensure that the transaction request is recent. Se must be able to

rule out any replay attack in which an old transaction request was recorded in an

eavesdropping attack and re-rendered here. We formalize this requirement as the
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following Se belief:

Se 5 (M.CHD) (6.9)

In this example, for simplicity, we omit the post-conditions, which usually include

payment requirements such as non-repudiation.

6.3.3 Analysis

We programmed this protocol specification and verified it using our PTGPA Java im-

plementation. The protocol halted prematurely at the beginning of message two in

Figure 6-3 due to violation of pre-conditions.

Two pre-conditions 6.5 and 6.6 were proved valid. They are Se 5 6 (CHD, Se) and

Se b r(CHD, Se). However, the protocol failed to justify pre-conditions 6.7, 6.8 and

6.9: Se 5 6(M.CHDBc), Se 5 r/(M.CHD,Bc) and Se 5 #(M.CHD,Bc). That is,

Se was not convinced that the transaction was recently initiated by BC and that the

content of the transaction was intact. Specifically, 6.7 fails because message M.CHD

was not signed by Bc; 6.8 fails because of the same reason; and 6.9 fails because there

is no freshness component in M.CHD.

By Definition 39, this protocol is not Alpha-S correct with respect to the specified

initial assumptions, pre- and post-conditions. That is, this protocol design fails to

address some of the essential security requirements as reflected in 6.7, 6.8 or 6.9.

6.4 Card B Alpha-S Analysis

The protocol for card type B uses counter C and symmetric encryption as well as

HMAC. We assume that Se knows the latest counter value associated with a given

bank card. A UML sequence diagram of this protocol is presented at Figure 6-4:
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M.CHD.C.w(CHD.C, k)

M.CHD

Figure 6-4: UML sequence diagram for contactless payment protocol type B.

6.4.1 Initial Assumptions

We will assume Bc shares a symmetric key k with Se. Key k is unique to Bc and Se

and neither Bc nor Se uses the same k for other applications. Moreover, Se knows if

the counter value C sent by Bc is fresh, since Se keeps track of the latest counter value

of BC. Finally, Se believes it never uttered HMAC w(CHD.C, k), so that Bc cannot

replay it. Only Se and Bc, who are the only principals that possess k, can construct

this HMAC. Se believes that keys are stored and retrieved securely on all cards. Only

the protocol running on Bc can have access to k by the design of hardware security.

Therefore, if Se believes it has never revealed w(CHD.C, k), Se knows the HMAC is a

non-transferable proof of Bc's authentication (It must be generated by Bc). Thus, we

require the following set of initial assumptions:

Bc 5 yK(k, Bc, Se) (6.10)

Se 57K (k, Bc, Se) (6.11)

Se 5 (C) (6.12)

Se 5 5- (w(CHD.C, k), Se) (6.13)

6.10 states that Bc knows the symmetric key; 6.11 states that Se knows the sym-

metric key. 6.12 states that Se knows that C is fresh; and 6.13 states that Se never

uttered the HMAC.
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6.4.2 Pre- and Post-conditions

We now list a possible set of pre- and post-conditions. We require no pre-conditions

for message one from Bc to Se in Figure 6-4. A set of pre-conditions is specified for

message two, before Se reports to Bi.

1. Se needs to derive the belief that the bank card information CHD.C is sent by

Bc, not any other bank card Bc'. We model this requirement in TGPay as:

Se 5 ®(CHD.C, Bc) (6.14)

2. Se needs to derive the belief that CHD.C is intact since Bc uttered it:

Se 5 77(CHD.C, Bc) (6.15)

3. Se needs to ensure that M.CHD.C is fresh:

Se 5 j(M.CHD.C) (6.16)

4. Se needs to ensure that it was Bc who requested transaction M.CHD.C:

Se 5 6(M.CHD.C, Bc) (6.17)

5. Se needs to ensure that transaction request M.CHD.C is intact since it was

uttered by Bc:

Se % T4(M.CHD.C, Bc) (6.18)

We will specify one E-) post-condition on non-repudiation. That is, Se believes

that it can prove that the transaction (including the description of the goods, time-

date, and the payment instrument) was requested by Bc. We can model this assertion
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as the following grounded formula in TGPay:

Se - fl(Se, G(M.CHD.C, Bc)) (6.19)

6.4.3 Analysis

We programmed this protocol specification and verified it using our PTGPA Java im-

plementation. The protocol halted prematurely while validating pre-conditions for step

two. Three pre-conditions, 6.14, 6.15 and 6.16 were proved valid. They are, Se be-

lieves that Bc said CHD.C; Se believes the integrity of CHD.C; and Se believes that

CHD.C is fresh. However, the protocol failed to justify 6.17 and 6.18. This implies

that Bc's intention to send M cannot be proved. M is not signed by Bc. By Definition

39, we conclude that this protocol is not Alpha-S correct with respect to the specified

initial assumptions, pre- and post-conditions. Notice that we did not validate the post-

condition. This is because failures of any pre-conditions are sufficient to invalidate the

candidate protocol in Alpha-S.

6.5 Card B Beta-S Analysis

In this section, we show how an attack scenario can be obtained by applying the trans-

formation procedure in Definition 37 to the original protocol specification in Figure 6-4.

We then show how Beta-S analysis can be carried out by specifying intruder assertions.

In general, we will not carry out any Beta-S analyses for any candidate protocols

that are not Alpha-S correct, since the original protocols are in themselves already

flawed. However, to illustrate of Beta-S, we will drop the two pre-conditions 6.17 and

6.18, as well as post-condition 6.19. We run the original protocol specification against

this set of relaxed pre- and post-conditions and we find it is now Alpha-S correct. We

now proceed with this set of relaxed pre- and post-conditions.
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The original protocol for card type B consists of two message transmissions:

Bc -+ Se : M.C HD.C.w(CHD.C, k) (6.20)

Se -+ Bi : M.CHD (6.21)

Since the second transmission is assumed to be carried over a secure channel, we will

focus on an attack that alters the first transmission. Using the modification strategy

in Definition 37(la), we can replace M.CHD.C.w(CHD.C, k) with a path that starts

from Be and ends at Se, via an intruder principal I*. Concretely, if we let I* be a

Dolev-Yao intruder, transmission 6.20 can be replaced with the following path:

Bc -+1I : M.CHD.C.w(CHD.C, k) (6.22)

I* -4 Se : M.CHD.C.w(CHD.C, k) (6.23)

This path can be thought of as an eavesdropping attack that silently listens to the

communication channel between Be and Se. Since there are no message content mod-

ifications, by Definition 37, no existing pre-conditions or post-conditions are modified.

However, an empty set of pre-conditions is added for message transmission 6.23. The

set of pre-conditions for message transmission 6.22 remains an empty set, and the pre-

conditions for 6.21 consist of: 6.14, 6.15 and 6.16.

The intruder assertion we impose is on the secrecy of the bank card information

CHD. Since transmissions between contactless bank cards and readers are broadcasted,

they can be read by anyone that eavesdrops. We require that eavesdroppers I* cannot

obtain the plain-text of the financial information CHD. Formally, our intruder assertion

is:

--,I* (I*, CHD) (6.24)
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That is, the intruder I* does not believe it can reconstruct CHD.

6.5.1 Analysis

We programmed this protocol specification and verified it using our PTGPA Java im-

plementation. The protocol ran successfully to the end. There was no post-condition in

this attack protocol to check. However, we found the intruder assertion is invalid. Our

Java implementation correctly computed * 5 n1 (I*, CHD) as a valid formula. That

is, intruder I* can in fact reconstruct CHD. This is because CHD was sent in the

clear from Bc to Se. By Definition 21, intruder assertion 6.24 is invalid. By Defini-

tion 40, Beta-S correctness, we conclude that the original protocol is not correct when

confronted with this specific secrecy attack.

6.5.2 Summary

In the previous sections, we used some real-world bank card payment protocols as ex-

amples for our PTGPA analyses. We showed how security requirements were formalized

in TGPay and, through PTGPA, we identified a number of flaws in these protocols.

Specifically, the Type A protocol failed to convince Se that a transaction was recently

initiated by Bc and the content of the transaction was intact. The Type B protocol

failed to address Bc's intention for a transaction for a specific M. The protocol is vul-

nerable to a cut-and-paste attack on M and violates the secrecy requirement on the

card holder data CHD.

6.6 EMV Authentication Protocols

EMV [EMV11a] [EMV11b] is a leading payment standard administrated by EMVCo

(http://www.emvco.com). EMV is not a specification for a single protocol. It consists

of multiple highly configurable modules that target different components of payment

protocols. In this section, we formalize the authentication part of the EMV protocol in

TGPay and carry out its Alpha-S PTGPA analyses.
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The authentication protocol used in EMV can be modeled using two principals, the

reader Re and the bank card Bc. We assume all bank cards are issued by a trusted

third principal R. Principal N has a public-private key pair {kN, kN-1}. The private key

of N kN1 is secretly stored and the public key kt is known to all readers. We assume

each bank card securely stores its private k-.

At the initialization step, Bc and Re exchange a sequence of handshake messages to

set up the protocol. (We do not model these steps) At the end of the initialization, Bc

sends its CHD, including expiration date, PAN and some auxiliary information such as

the Card Risk Management Data Object List (CDOL) to Re. The EMV protocol is

now ready to perform card authentication.

The purpose of authentication is to verify the integrity of CHD and to check if it

actually comes from the claimed Bc. The EMV specification provides three types of

authentication methods: Static Data Authentication (SDA), Dynamic Data Authenti-

cation (DDA) and Combined Data Authentication (CDA). CDA is like DDA but with

additional transactional information included in the authentication messages. In the

remainder of this chapter, we will formalize the SDA and DDA authentication protocols

in TGPay and then perform their PTGPA analyses.

6.6.1 Static Data Authentication

In SDA, the card returns a signature of the hash of the CHD, signed by card issuer

N. This signature was pre-computed at the time of manufacture and is stored on the

card. The SDA authentication protocol can be formalized in TGPay as the following

message transmission:

Bc -+ Re : CHD.,V(0(CHD), N) (6.25)

Initial Assumptions

The initial assumptions are the establishment of keys prior to the authentication. For-

mally, we have:
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1. t believes its public key KN:

(6.26)

2. Z believes its private key K- 1 :

(6.27)

3. Re believes 's public key KN:

Re 5 p(t, KN) (6.28)

4. Re believes that t is trustworthy:

Re h- t * (6.29)

Pre-conditions

Bc does not impose any pre-conditions before sending this message. So the pre-condition

for SDA is the empty set.

Post-conditions

The set of E(+) post-conditions that Re requires are formalized as follows:

1. Re believes that CHD was issued by t:

Re 5&(CHD, 1) (6.30)

2. Re believes the integrity of CHD from R. It was precisely CHD that t issued:

Re I r7(CHD, N) (6.31)
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3. Re believes that it was Bc who sent this CHD:

Re 5 (CHD, Bc) (6.32)

4. Re believes that CHD was recently sent by Bc and is not a replay. We model this

requirement by asserting:

Re 5 (CHD) (6.33)

5. Re believes the integrity of CHD from Bc:

Re 5 rj(CHD, Bc) (6.34)

Analysis

Tx 1 7*-1 :.____i

We programmed this protocol specification and verified I u our PTP Java im-

plementation. We found that the last three post-conditions 6.32, 6.33 and 6.34 are

invalid. Using SDA leaves attackers the possibility of replaying some 7V (O(CHD), Z)

to Re. Re can verify that CHD was genuinely issued by N. However, Re cannot prove

that it was a specific Bc who recently sent CHD or that CHD is intact since it was sent

by that Bc.

By Definition 39, we conclude that the SDA authentication is not Alpha-S correct

with respect to the specified set of initial assumptions, pre- and post-conditions. Note

that EMV understands these restrictions and recommends using SDA only in limited,

low risk circumstances.

6.6.2 Dynamic Data Authentication

Some of the limitations of SDA are remedied by DDA. In DDA, authentication of the

card is carried out with a random challenge and application of a digital signature. (The

card can also authenticate the reader; we will not model this in this example.) Bc first
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sends CHD and its certificate to Re. The certificate is not a standard X.509 certificate

[GS91]; it is abbreviated. In TGPay, the certificate can be formalized as a signature

over an expiration time-stamp, Bc's public key and the hash of CHD, signed by the

private key of 1, ki 1 .

Bc -+ Re: CHD.rv(E*(T"P).p(Bc, kBc).9(CHD), R) (6.35)

Re next sends a Dynamic Data Authentication Data Object (DDOL) to Be. DDOL

contains a reader-generated nonce NRe that is known by Re to be fresh, plus some

additional information that we will not model.

Re -+ Bc: x(NRe) (6.36)

Upon receiving NRe, Be constructs an ICC Dynamic Data Object (ICCDDO) that

consists of a freshly generated nonce NBc. Be then returns its signature over the IC-

CDDO and the hash of the ICCDDO and DDOL.

Bc -+ Re : 1Wv(x(NBc).O(x(NBe).x(NRe)), Bc) (6.37)

The certificate in 6.35 is signed by the card issuer R. It recognizes that the public

key kBc is associated with the CHD. Therefore, the CHD is associated with anyone

who can demonstrate its possession of the corresponding private key. In 6.36, a fresh

challenge is sent to Be. In 6.37, Bc provides a signature over this nonce and demonstrate

that it has the matching private key, and therefore, authenticates itself to Re. We now

describe formalizations of the set of initial assumptions.
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Initial Assumptions

1. Bank card issuer t knows its public and private keys:

(6.38)

(6.39)

2. Re knows 's public key:

Re 5 p(R, KN) (6.40)

3. Bc knows NBc is fresh and Re knows NRe is fresh:

Bc 5(x(Nc))

Re 5 j(x(NRe))

(6.41)

(6.42)

4. Re knows time-stamp E*(Te2P) has not expired:

Re * A (8*(TeXP)) (6.43)

5. Re considers bank card issuer t trustworthy:

Re 5 R 4 * (6.44)

Pre-Conditions

The three sets of pre-conditions for message one, two and three are respectively:

1. 0 (empty set): Bc always starts the authentication part of the DDA protocol.

2. After receiving the first message and prior to message two, Re needs to believe

that CHD was announced by R and is intact and still valid. Re further needs to
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believe that Bc's public key is kBc. Formally:

Re 5 3(CHD, t) (6.45)

Re 5 r(CHD, R) (6.46)

Re 5 p(Bc, kBc) (6.47)

3. 0 (empty set): Be always responds to DDOL.

Post-Conditions

At the end of the protocol, Re needs to believe that the response from Be was generated

recently using the private key that corresponds to the public key kBc. If this belief can be

validated, then Re believes that Be is in possession of the private key that corresponds

to kBc. Hence Be is authenticated. Formally, the Eg+ post-condition requests that the

following assertion can be derived:

Re 5 0(x(Ne), Bc) (6.48)

That is, Be authenticates itself by acknowledging the freshly generated nonce NRe.

Analysis

We programmed this protocol specification and verified it using our PTGPA Java im-

plementation. The protocol successfully ran to completion. All post-conditions are

valid. By Definition 39, we conclude that the protocol is Alpha-S correct. We did not

perform any analysis with respect to Beta-S.

6.7 Summary

In this chapter, we specified two real-world bank-card payment protocols and the EMV

SDA and DDA card authentication protocols in TGPay. We showed how security goals
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were formalized and used to carry out PTGPA analyses to uncover security flaws in full

automation.
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Chapter 7

Mobile-Reader Payment Protocols
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7.1 Introduction

In the following two chapters, we propose two mobile contactless payment protocols that

provide high security as well as additional features such as non-repudiation. We discuss

their formalizations in the TGPay language framework and we focus on demonstrating

their analyses using PTGPA.

The first mobile payment protocol allows an NFC-enabled mobile phone to pay at an

NFC reader that connects securely to a payment processing gateway. The second type
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of mobile payment protocol, discussed in the next chapter, allows an NFC-phone with

server connectivity to purchase services or goods identified by passive tags (smart cards).

Unlike the design of reader-based payment protocol, the phone is now responsible for

collecting transaction evidence as well as submitting it to a payment server. In this

chapter, we will elaborate on the first type of mobile payment protocol and its analyses.

7.2 Overview

The mobile-reader payment protocol, denoted as OD, allows an NFC-enabled mobile

phone to interact with an NFC reader to make a transaction over NFCIPI (NFC-LLCP)

[NF12b]. We assume the NFC reader is trustworthy (a trustworthy principal is well

maintained, honest and runs a correct and authenticated protocol) and it is connected

to a payment server via a secure TLS channel [IR08a] [IR08b]1. The payment server is

responsible for collecting transaction evidence and performing operations such as billing

and auditing. We will use atomic variables Ph to denote the phone, Re to denote the

reader and t to denote a certificate authority that issues and manages certificates.

We let I(Ph, J(IDPh), E((TiP h, T 2Ph), Kph, N) denote the certificate issued to Ph and

TI(Re, 6(IDRe), E(Tie, T2n), KRe, R) denote the certificate issued to Re. In the follow-

ing chapters, we will use T(P) as a shorthand notation to denote the complete X.509

certificate of a principal P.

The NFC phone does not maintain a state-machine for payment information such

as balance. Instead, this information is stored on the payment server. The phone

is identified by its certificate and some auxiliary information such as its associated

Permanent Account Number (PAN).

There are secure elements [KEAR09] [LKM+05] on the NFC phone and the reader.

The embedded secure element stores the private key, as well as any secrets that can

be remotely provisioned onto the phone or reader from the operator. Secrets consist of

both short-lived symmetric keys as well as protocol programs. It is not possible to read

'The communication between NFC reader and the server is assumed to be secure and is outside
the scope of this analysis.
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or modify the contents outside the secure element, and only authenticated programs

can access its corresponding keys or secrets.

We assume there is a single payment server and there are many authenticated readers

and phones. Additionally, we assume that one Re can serve only one Ph at anytime,

version negotiation and agreement have been successfully carried out, and both Ph and

Re have agreed on the communication protocol. These procedures are necessary in real

life and are outside the scope of the analyses at our level of abstraction.

7.3 Initial Assumptions P0

Initial assumption 1'0 is a set of the grounded formulas that are assumed to be valid

before a protocol starts. The private keys of Ph and Re are generated inside secure

elements. Once generated, they never leave the secure elements, and the corresponding

public keys are sent to t for certification. We assume that the certificates have been

signed by t and then distributed to Ph and Re prior to the start of the protocol session.

Additionally, we assume:

1. Ph and Re know the public key of the certificate authority t:

Ph 5p(N, KN) (7.1)

Re p p( , KR) (7.2)

2. Both Ph and Re believe that R is trustworthy. Ph believes Re is trustworthy:

Ph R *(7.3)

Re 5R (7.4)

Ph - Re a*(7.5)
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3. Ph and Re have access to their own private and public keys:

Ph 5 p(Ph, Kph) (7.6)

Re p (Re, KRe) (7.7)

Ph 7P (Ph, KA) (7.8)

Re $ $(Re, K-) (7.9)

4. IDPr and IDRe are not on the certificate revocation list and the time stamps on

Ph's and Re's certificates are consistent with the current time:

Ph 5 X( 6 (IDRe)) (7.10)

Re 5 x(6(IDPh)) (7.11)

Ph 5 (E(TeTR2 e)) (7.12)

Re 2 (((T7.T1D93)

5. Re can reconstruct the server-hello message which is to be generated by itself in

message 2 in Figure 7-1:

Re 5l (Re, x(NRe).O(TRe)-DTran) (7.14)

6. Ph can reconstruct message DPh, which is to be generated by itself in message 3

in Figure 7-1:

Ph 5 n (Ph, DPh) (7.15)

7. Re and Ph believe the time-stamp E(TRe) is fresh:

Re (E(TRe)) (7.16)

Ph% (E(TRe)) (7.17)
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8. Re believes the nonce x(NRe) it generates is fresh:

Re 5 (x(NRe))

7.4 Protocol D% Description

We Wh
T(Ph)

xF(Re).7rp(M.7rv(O(M), Re), Ph)

7rp(DPh.7rv (O(M.Dph), Ph), Re)

7rP(DRe.rV (0(DPh.M.DRe), Re), Ph)

Figure 7-1: UML sequence diagram for the NFC phone-reader payment protocol 0%.

The UML sequence diagram of the protocol OD is shown in Figure 7-1. Below is a

step-by-step description of the protocol.

7.4.1 Pre-Conditions and Transmissions

PreCond Step 1. Nil.

(7.19)

Step 1 (Client Hello). Ph first sends its certificate as a client-hello to Re.

Ph -> Re :T(Ph) (7.20)

PreCond Step 2. Re validates Ph's certificate. Instrumental in the process is the

enforcement of certificate expiration and revocation. The validation must be successful
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and thus Re can get the public key of Ph:

Q2= {Re % p(Ph, Kh) (7.21)

Step 2 (Server Hello). Upon receiving client-hello from Ph, Re constructs a challenge M

consisting of a fresh nonce x(NRe), Re's time-stamp TRe, a description of the transac-

tion DTran which may include financial information on the amount charged, merchant,

location etc, and the recipient identity 6(IDPh), which Re gets from the 'I(Ph) received

in the previous step. M is formalized in TGPay as:

M = x(NRe).e(TRe).DTran.6(IDPh) (7.22)

Re has a privacy requirement over M, since DTran contains transactional information

that cannot be revealed. Re then sends its certificate and a cipher-text encrypted using

Ph's public key to Ph:

Re -+ Ph :T (Re).7rp(M.7rv(O(M), Re), Ph) (7.23)

PreCond Step 3. Ph needs to validate Re's certificate. It also checks for integrity,

freshness and if it is the intended recipient (if its ID is acknowledged). It may also

perform some semantic validations that are transaction protocol specific. For example,

it checks if the transaction request packet DTran is correct and as expected. Since these

are not closely related to the security model, we will omit them from the pre-conditions.

However, they can be easily added. In summary, the pre-conditions for this transmission

are:

1. Ph believes Re's public key:

Ph 5 p(Re, KRe) (7.24)
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2. Ph believes M comes from Re:

(7.25)Ph 5 (M, Re)

3. Ph believes M is fresh:

Ph 5j (M)

4. Ph believes M is intact since uttered by Re:

Ph 5 r7(M, Re)

(7.26)

(7.27)

5. Ph believes that it is the intended reader for M and that M acknowledges its ID:

Ph 591(M, Ph)

Ph 5 w(M, 6(IDPh))

(7.28)

(7.29)

where for 7.29 Ph 5 vc(M, 6(IDPh)), 6(IDPh) is the identity of Ph contained in

I(Ph). This acknowledgement assertion models a check that Ph performs. If the

identity acknowledged by Re is a different one from 6(IDPh), then Ph knows something

is wrong.

Step 3 (Phone Binding). Ph next constructs its description message DPh. DPh will

contain any additional information that Ph needs to provide to complete this transaction,

such as the CHD. Ph next produces signature SPh. The signature binds Ph's belief over

M.DPh.

SPh = ,7-v(O(M.DPh), Ph) (7.30)
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After that, Ph encrypts Dph and the signature using Re's public key and sends it to Re.

Ph -+ Re :wrp(DPh.Sph, Re) (7.31)

PreCond Step 4. Re checks the integrity, freshness and authenticity of the message.

Additionally, Re checks to see if Ph is acknowledging the correct M (the M constructed

by Re, not the one sent by Ph). Together, the pre-conditions at this step are:

1. Re believes that Ph sent its affirmation of the transaction, represented by M.DPh:

Re 5 (M.DPh, Ph) (7.32)

2. Re believes that M.DPh is freshly generated not a replay:

Re 5 (M.D Ph) (7.33)

3. Re believes that M.Dph is intact since it was uttered by Ph:

Re [ r(M.DPh, Ph) (7.34)

Step 4 (Receipt). Upon receiving Dph and after validating its integrity and authentic-

ity, Re generates a receipt and transmits it to Ph. The receipt, denoted as DRe, is a

composition of the transaction request DTran and payer's response Dph as well as the

reader's recognition of the binding of the two. Let R Ph denote the receipt generated by

Re to be sent to Ph:

Re= DRe.,V(O(DPh.M.D Re), Re) (7.35)

Finally, R Ph is encrypted and sent to Ph. Thus,ReI

Re -+ Ph :Tp(R , Ph) (7.36)
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7.4.2 Post-Conditions

PostCond 1. The set of post-conditions E we impose on this protocol consists of E(+),

Ph's assertions on the last message it receives; and, E-), assertions from all principals

on what the protocol should achieve after it completes successfully.

E(+): Ph checks to see if Re was acknowledging the correct Dph (Ph recently sent Dph)

and that DPh.M.DRe is from Re and is fresh and intact.

Ph 5 6(DPh.M.DRe, Re) (7.37)

Ph 5 (DPh.M.DRe) (7.38)

Ph k r/(DPh.M.DRe, Re) (7.39)

E(_): (a) Irrefutable request from Re: Ph holds non-repudiatable and intact evidence

that Re has requested payment (of particular amount at particular time, at

particular location, etc.) If Re refutes, Ph is able to bring forward a trans-

ferable proof to an arbitrator:

Ph 53(Ph, E(M, Re)) (7.40)

Ph 5 'I(Ph, r/(M, Re)) (7.41)

where the first formula provides non-repudiation on content and the second

formula provides non-repudiation on integrity of the content.

(b) Irrefutable payment from Ph: Ph has authorized its payment in response to

Re's request. Ph provided information such as PAN number and the amount

it authorized to pay, as well as its willingness to associate this payment with

Re's request. Re holds this non-repudiatable evidence. If Ph refutes any

details on the amount, PAN, merchant, payment time and location, Re can

139



bring forward a transferable proof:

Re 5](Re, C(M.DPh, Ph)) (7.42)

Re ] 2(Re, r(M.DPh, Ph)) (7.43)

(c) Irrefutable payment confirmation: Additionally, Re cannot refute later that

it has not received an acceptable payment from Ph. Ph can bring forward a

transferable proof to an arbitrator about Re's acceptance of Ph's payment:

Ph J(Ph, 6(DPh.M.De, Re)) (7.44)

Ph 5](Ph, rl(DPh.M.DRe, Re)) (7.45)

7.5 PTGPA-Alpha Analysis of D%

We ran the PTGPA-Alpha algorithm. The algorithm found the protocol ran to com-

pletion successfully. All post-conditions are met at completion. Thus we conclude that

DA is Alpha-S correct by Theorem 9. This means that the candidate protocol O% is

consistent with the set of security requirements as reflected in the specified pre- and

post-conditions.

In the remainder of this chapter, we specify two attacks obtained by applying trans-

formation function A in Definition 37 on D2. We then discuss how these attacks are

defeated by O using the formal PTGPA-Beta analysis framework.

7.6 Secrecy Attack

In this section, we introduce an eavesdropping intruder that silently listens to all trans-

missions between Re and Ph without making any modifications to the messages ex-

changed. This attack over D% is denoted as OD. Our goal is to verify that the secrecy

requirements of sensitive information are satisfied. The sequence diagram of D* is

presented in Figure 7-2.
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Wh W

h(Ph)

TI(Ph)

I(Re).rp(M.7rv (0(M), Re), Ph)

T (Re). 7rp(M.rv (O(M), Re), Ph)

lrp(Dph -rv (0(M.Dph), Ph), Re)

7rP(Dph.lrv(0(M.Dph), Ph), Re)

7rp(DRe-rV (0(DPh.M.DRe), Re), Ph)

7rp (DRe-7V (6(DPh.M.DRe), Re), Ph)

Figure 7-2: UML sequence diagram for the attack protocol D&.

7.6.1 Attack D at a Glance

The set of initial assumptions is the same as that of O, except that the intruder,

denoted as 1*, knows the public keys of certificate authority R, Re and Ph. Thus, we

have 1* * p(t, KN), 1* * p(Ph, Kph), I* k p(Re, KRe). Additionally, we assume R and

Re are trustworthy to the intruder: (I* R -+ *, I* * Re -+ *)

The post-conditions E* are the same as E of D%, since 1* does not modify any

transmissions, and all principals from 0 % fully participate in D*. The sequence of

transmissions, and pre-conditions are presented in Figure 7-3.

The set of intruder assertions models secrecy using negations of 3 formulas. They

assert the intruder's beliefs on not being able to reconstruct M, DRe or DPh:

1. Intruder J* cannot reconstruct transactional request message M (Secrecy on M)

-,I* 5n (n*, M) (7.46)

2. Intruder 1* cannot reconstruct transactional affirmation message DPh (Secrecy

on Dph)

,5 (1*, Dph) (7.47)

141



Pre-Conditions

0

0

Re p( Ph, Kph)

0

Ph% p(Re, KRe),
Ph 5 G(M, Re),
Ph (M),
Ph 77(M, Re),
Ph 5 91(M, Ph),
Ph * w(M, 6(IDPh))

Transmission

Ph -+ 1* : T(Ph)

1* -4 Re: T(Ph)

Re -+ 1* : I(Re).rp( M.rv (O(M), Re), Ph)

I* -4 Ph: I(Re).irp(M.7rv(O(M), Re), Ph)

Ph -4 1* : 7rp(DPh.7rV(0(M.Dph), Ph), Re)

0

Re 56(M.DPh, Ph),
Re* (M.DPh),
Re z r(M.D ph, Ph)

0

Figure 7-3: Pre-conditions

I* -+ Re: 7rp(DPh.V ((M.Dph), Ph), Re)

Re 4 I* : 7rp(DRe.V((DPh.M.DRe), Re), Ph)

I* - Ph: 7rp(DRe.y7rV((DPh.M.DR), Re), Ph)

and message exchanges in attack D*

3. Intruder I* cannot reconstruct message DRe (Secrecy on DRe)

(7.48)

7.6.2 PTGPA-Beta Analysis of D

We ran the PTGPA-Beta algorithm against D*. The protocol ran to the end and all

post-conditions and intruder assertions were valid. The algorithm returns true and thus

D% is correct under attack D* by Theorem 10.

In 5D, we inserted an intruder that listened to all messages exchanged between

Re and Ph. The proof system showed that the intruder was unable to uncover plain-

text M, DRe or Dph. The attack was not detected and all post-conditions and intruder

assertions were met. This means that the original protocol is secure against this specific

type of eavesdropping attack for the secrecy of the transactional information exchanged.
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7.7 Replay Attack

We now model another attack, in which an intruder I* attempts to impersonate Ph by

replaying its certificate and some of the old messages 1* eavesdropped on in a previous

communication that is similar to 0*. We denote the attack as D*; the UML sequence

of message transmissions is presented in Figure 7-4:

F(Ph)
W(Re).irp(M.7rv(9(M), Re), Ph)

7rp(Dpha.rV((M'.D Ph), Ph), Re)

1rp(DRe.1rV((DPh.M.DRe), Re), Ph)

Figure 7-4: UML sequence diagram for the attack protocol 5D#

7.7.1 Attack 4 at a Glance

In this protocol, Re thinks it is talking to Ph. Instead, Re is interacting with an intruder

I* and Ph is blocked from receiving any messages. After receiving client-hello, a replay

of Ph's certificate from I*, Re returns its certificate as well as 7rp(M.irv(0(M), Re), Ph).

Since 1* does not know the private key of Ph, I* cannot manipulate this message, nor

can I* see its content. Instead, 1* sends a replay of the third transmission in a previous

run of D% between Re and Ph, denoted as 7rp(DPa.7rV(0(M'.DPh), Ph), Re), where M'

is different from M due to the lack of freshness of its construction, and Dph was the

payment information Ph used, in hoping that Re will accept the payment information.

The protocol finishes, if it does, with Re sending its signature over DPh.M.DRe where

Dph was received by Re; M and DRe were constructed by Re.

The initial assumptions are same as that of 5D. The pre-conditions and message

transmissions are presented in Figure 7-5.
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Seq. Pre-Conditions Transmission

1 0 I* -+ ReJ: J(Ph)

2 Re gcp(Ph, Kph) Re * I*: I(Re).7rp(M.7rv(O(M), Re), Ph)

3 0 1* - Re: 7rp(DPherv(O(M'.Dph), Ph), Re)

Re 5 (M.D Ph, Ph),
4 Re 0 (M.D Ph), Re 4 I* : 7rp(DRe.7V(O(DP.M.DRe), Re), Ph)

Re r(M.DPh, Ph)

Figure 7-5: Protocol D* for mobile-reader payment protocol

We see all pre-conditions related to Ph are removed since Ph did not participate in

this attack protocol. All pre-conditions for message transmissions in which the intruder

is the sender are empty sets. Moreover, the three pre-conditions for message 4 are

assertions on M not M'. This is because these assertions are Ph's acknowledgements

of M constructed by Re, not the M Re receives from Ph. They assert that, at this step

of the protocol, Re must be able to derive the belief that M, as constructed by Re, is

acknowledged by Ph. Ph acknowledging a different M', as is the case here, does not

alter the acknowledgement target that Re is seeking.

The post-conditions E(+) are now the empty set and E(-) contains only the assertions

from Re since Ph does not participate fully in 5D. The post-conditions E(_) are:

1. Re's belief of the non-repudiatable evidence of Ph's transaction affirmation M.DPh

Re 5 2(Re, 6 (M.D Ph, Ph)) (7.49)

2. Re's belief of the integrity of the non-repudiatable evidence

Re 5 -I(Re, r(M.DPh, Ph)) (7.50)

Finally, the intruder assertions of this attack protocol are:

144



1. Intruder J* cannot reconstruct transactional request message M (Secrecy on M)

-,I* *- n1 (I, M) (7.51)

2. Intruder I* cannot reconstruct DRe, the receipt

-,I* 5- n1 (I*, DRe) (7.52)

They reflect the secrecy requirements we imposed on the payment information M

and DRe; both were constructed and sent by the honest principal Re.

7.7.2 PTGPA-Beta Analysis of D4

We ran the PTGPA-Beta algorithm against D . The algorithm found the protocol

halted after Re received r(DPh.lrv(O(M'.DPh), Ph), Re) due to a violation of pre-

condition Re 5 6(M.DPh, Ph), where M was the challenge Re freshly generated at the

beginning of the protocol. Moreover, at the time of violation, T was valid. That is,

the intruder cannot reconstruct M or DRe. This means that the original protocol can

detect this type of attack and at the time of detection, no secrecy requirements have

been violated.

The PTGPA-Beta algorithm thus returns true, and we conclude that D% is correct

under impersonation attack D* by Theorem 10.

7.8 Summary

This chapter introduced a high security contactless mobile-reader payment protocol.

Two key features in this protocol that are not found in the EMV DDA are the secrecy

on the payment information (analogous to the CHD in EMV) and the handling of non-

repudiation for both merchant and customer. We formalized the candidate protocol in

TGPay and we showed that it was Alpha-S correct. We also discussed two forms of
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attack, one on secrecy (D*) and one on impersonation (Dp). We conclude that the

candidate protocol DA is secure against these two attacks, with respect to the set of

initial assumptions and pre- and post-conditions that we specified.
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Mobile-Tag Payment Protocols
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8.1 Introduction

This section presents a mobile payment protocol that does not use an NFC-reader.

The protocol, denoted as 5D, allows an NFC-phone with server data connectivity

to purchase services or goods identified by passive tags (smart cards). Unlike the

design of the reader-based payment protocol, the phone is now responsible for collecting

transaction evidence as well as submitting it to a payment server. The passive tags are

placed with descriptions of the services or goods for purchase. They are unpowered and

they communicate with the phone in a load modulation scheme. Popular examples are
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smart posters, where passive tags for the advertisement of services are mounted on the

wall, as well as smart displays in a shopping mall, where customers can tap to pay for

goods displayed. Customers can then pick up the goods purchased when they exit the

store or mall.

The main difference between this type of payment protocol and the reader-based

protocol is that passive tags cannot represent arbitrary services or goods. Instead,

they represent a fixed set of services or goods. The advantage is that there is often

no privacy requirement imposed on the items for sale - everyone is welcome to check

them out. After a phone taps on a passive tag, the tag presents a "menu" of goods or

service for purchase. The same "menu" is returned upon every such inquiry. The only

requirement the payment server mandates is that an identified phone (optionally with

selected payment instrument information) has agreed to purchase an identified service

at a specific time. In this chapter, we will present a generic phone-tag payment protocol

and formalize it in TGPay.

8.2 Overview

We assume the passive tags can perform primitive cryptographic operations such as

encryption and digital signature. Additionally, the tags have sufficient memory to store

their certificates. Storage of private keys and secrets in these tags are assumed to be

analogous to the secure element used in a phone. Private keys and any secrets cannot

be read or modified by intruders.

There are three types of principals involved in this protocol: a unique payment

server Se, a number of valid NFC-phones Ph, and a number of valid smart cards Sm.

We assume that Se is considered trustworthy by both Ph and Sm. Ph and Sm are not

considered trustworthy by Se. We will assume an issuing authority 1 that manages the

certificates for all principals.

A high-level description of the protocol is as follows: After Se receives the client-

hello from a Ph, Se generates a challenge Mse = x(Nse).8(Tse).6(IDPh), where x(Nse)

148



is a globally unique nonce and E(Tse) is a server generated time stamp. Message Mse

and its proof of origin is then sent to Ph. Ph next forwards the same message to Sm

to sign. After receiving the signature from Sm, Ph performs a second signing over the

signature returned from Sm. The resulting doubly-signed signature is transmitted back

to Se for validation. Finally, if everything is correct, a receipt is returned to Ph as

proof. The overall sequence of message flow is presented in Figure 8-1.

;Se .;Ph :Sm

[(Ph)

IF (Se).Mse.rv(6(Mse), Se)

6(Mse)

X(Sm).7v(6(Mse), Sm)

x(Sm).7rp(Mph.Msm.7rv(G(Mph.Msm),Ph), Se)

7rv(O(6(IDsm).MSe.MPh), Se)

Figure 8-1: UML sequence diagram for the NFC phone - Smart Card payment protocol

We now present the formalized specification of 5D, including initial assumptions,

message transmissions, pre-conditions as well as post-conditions.
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8.3 Initial Assumptions l 0

1. Both Ph and Sm believe that Se is trustworthy. Ph, Sm and Se believe that t is

trustworthy. Thus:

Ph Se -4 *

Sm Se a *

Ph 5 > *R

Sm 5 *

Se R R - *

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

2. Ph, Sm and Se have access to their own private and public keys:

Ph 5 p(Ph, Kph)

Sm 5 p(Sm, Ksm)

Se 5 p(Se, Kse)

Ph p $(Ph, Kj1)h

Sm 5@(Sm, K 4)

Se 5 @(Se, K ,)

(8.6)

(8.7)

(8.8)

(8.9)

(8.10)

(8.11)

3. Ph, Sm and Se have root certificates from the certificate authority t and hence

know N's public key:

Ph 5 p(R, KN)

Sm p(t, KN)

Se5 p(t, KN)

(8.12)

(8.13)

(8.14)

4. IDPh, IDSe, IDsm are not on the certificate revocation list and the time stamps
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on Ph's, Se's and Sm's certificates are consistent with current time:

Ph X((IDse)) (8.15)

Sm x( 6 (IDSe)) (8.16)

Se 5 x(6(IDse)) (8.17)

Se x(6(IDPh)) (8.18)

Sm 5 x(6(IDPh)) (8.19)

Ph 5 x(J(IDPh)) (8.20)

Se 5 X(6(IDsm))) (8.21)

Ph 5 X(6(IDSm)) (8.22)

Sm 5 X(6(IDsm)) (8.23)

Ph A(E(Tfe, TSe)) (8.24)

Sm 5 A(E(Te, Tj')) (8.25)

Se A(e(TfIe, Tee)) (8.26)

Se 2A((T',TP)) (8.27)

Sm5 A ((Tfh,Th)) (8.28)

Ph 2 A(e(Th, Tjh)) (8.29)

Ph 5 A(E(TM, TS")) (8.30)

Se 5 A(E(Tm, T2"m)) (8.31)

Sm 5 A(E(Tm, T2")) (8.32)

5. Se can reconstruct the nonce and time-stamp generated by itself, x(Nse).E(Tse);

Ph can reconstruct message Mph generated by itself:

Se 5 n (Se, x(Nse).E(Tse)) (8.33)

Ph 5 F (Ph, Mph) (8.34)
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6. Se and Ph believe that 8(Tse), generated by Se, is a fresh time-stamp:

Se k A (E(Tse))

Ph 5 A (E(Tse))

7. Se believes the nonce x(Nse) is fresh:

Se 57 (X(NSe))

8.4 Protocol De Description

8.4.1 Pre-conditions and Transmissions

PreCond Step 1.

Q1 = 0

Step 1. Ph sends its certificate to Se.

Ph -+ Se :'(Ph)

PreCond Step 2. Se needs to verify the certificate of Ph and thereby obtain the public

key of Ph.

Se 5 p(Ph, Kph)

Step 2. Se generates Mse which consists of a nonce x(Nse), server time-stamp E(Tse)

as well as a recipient tag 6(IDPh) that Se gets from I(Ph) it received in the previous

message. Se has no privacy requirement over Mse. It then sends its certificate 'I(Se),

MSe and its signature over the hash of Mse to Ph. We assume that Se keeps track of
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all Mse it constructs for a specific Ph.

Se -+ Ph: If (Se).Mse.lrv (O(Mse), Se) (8.41)

PreCond Step 3. The pre-conditions at this step are:

1. Ph needs to extract the public key of Se and ensure that Mse comes from Se:

Ph 5 p(Se, Kse)

Ph 5 6(Mse, Se)

(8.42)

(8.43)

2. Ph needs to ensure that Mse is fresh and intact:

Ph k (MSe) (8.44)

(8.45)

3. Ph needs to ensure that Mse acknowledges Ph's ID, so that it is intended for Ph

and not any other Ph':

Ph 5 -wz(MSe, 6(IDPh)) (8.46)

Step 3. Ph next sends hashed Mse to Sm:

Ph - Sm: O(Mse) (8.47)

PreCond Step 4.

Q4 =0 (8.48)

Step 4. Sm computes its signature over the hash of Mse and returns the signature as
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well as its certificate.

Sm -+ Ph: P(Sm).7rv(O(Mse), Sm) (8.49)

PreCond Step 5. The pre-conditions at this step are:

1. Ph needs to first verify the certificate of Sm (validity, expiration, CRL etc.) and

extract the public key of Sm:

Ph 5 p(Sm, Ksm) (8.50)

2. Ph needs to check that Sm acknowledged (uttered) Mse to rule out any replay

attack. Ph also checks if Mse is intact:

Ph 5 (Mse, Sm) (8.51)

Ph H r/(Mse, Sm) (8.52)

Step 5. Let Msm = v(0(Mse), Sm); MSm can be seen as a freshly generated and

globally unique payment request, in which the service and merchant are identified through

Sm, and the time and buyer are identified by Mse. Ph next prepares its payment details,

such as a selected PAN number, denoted as a string Mph. Ph signs the hash Of MPh.MSm

and thereby effectively binds its agreement over Mph and Msm,. Finally, Ph transmits

Sm's certificate, an encrypted string over MPh.Msm, and the signed hash.

Ph -+ Se: W(Sm).wp(MPh.Msm.-rv(O(Mph.Msrn), Ph), Se) (8.53)

PreCond Step 6. The server needs to verify a number of items before sending out the

receipt.

1. First it verifies the certificate of Sm, TI(Sm), and extracts Sm's public key:

Se 5 p(Sm, Ksm) (8.54)
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2. Se then retrieves Mse that was sent to Ph from its database. Se verifies that Mse

is acknowledged by Sm and the acknowledgement is intact:

Se 5 (Mse, Sm) (8.55)

Se 5 77(Mse, Sm) (8.56)

3. Se needs to verify that Mph.MSm is uttered by Ph and is intact:

Se 5 6 (MPh.MSm, Ph) (8.57)

Se 5 77(Mph.MSm, Ph) (8.58)

Step 6. Se next issues a receipt. It produces a signature over the hash of 6 (IDsm), Mse

and Mph, which effectively acknowledges the transaction between 6(IDPh) and 6(IDsm),

at the time E(Tse) with payment information as described in MPh:

Se -+ Ph : ir(O(6(IDsm).MSe.MPh), Se) (8.59)

8.4.2 Post-conditions

PostCond 1. The set of post-conditions E we impose on this protocol consists of the

following two components, E(+) and E(-):

E(+) : Ph's assertions on the last message that Ph received. Ph asserts that it comes

from Se, it is intact, and infers 6(IDSm).Mse.MPh.

( {Ph 5 (6(IDm).Mse.Mh , Se) (8.60)

Ph 5 r/(6(IDsm) .Mse.Mh, Se)} (8.61)

E(_) : Assertions on the overall protocol at completion.

(a) Irrefutable payment from Ph: Ph provided its payment info Mph and has

bound itself to the service and time. If Ph later refutes that it has agreed to
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pay for services as identified by smart card identity 8(IDsm) at time G(Tse)

with payment details Mph, the payment server Se can bring forward non-

repudiatable evidence to an arbitrator. Formally, this is:

Se 53(Se, E(Mse, Sm)) (8.62)

Se2D (Se, r/(Mse, Sm)) (8.63)

Se 5 Z(Se, G(MPh.MSm, Ph)) (8.64)

Se b (Se, r;(MPh.MSm, Ph)) (8.65)

Through the evidence of Msm and string Mse, Se offers an transferable proof

that Sm bound its identity to Mse (8.62 and 8.63). Moreover, Se offers an

transferable proof that Ph bound its identity to payment info Mph and the

same Msm (8.64 and 8.65), and therefore proves that Ph agreed to purchase

the service as identified by 6(IDsn) with payment info Mph and at a specific

time as identified from E(Tse).

(b) Irrefutable Payment Confirmation: Additionally, Se cannot refute later that

it has not received an acceptable payment from Ph. Ph can bring forward

a transferable proof to an arbitrator about Se's acceptance of Ph's payment.

The evidence binds Se's acceptance to the identities of Ph and Sm, as well

as the payment information and time of transaction.

Ph 5 -1(Ph, 6 (J(IDsm) .MSe.Mph, Se)) (8.66)

Ph 53=(Ph, r/(6(IDsm).MSe.MPh, Se)) (8.67)

8.5 PTGPA-Alpha Analysis of OD

We ran the PTGPA-Alpha algorithm against DZ. O successfully ran to the end

without violating any pre-conditions. Additionally, all post-conditions were valid at

the completion. The PTGPA-Alpha algorithm returns true and thus D is Alpha-S
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correct by Theorem 9. This means that the candidate protocol D9 is consistent with

the set of business requirements and security goals as reflected in the pre- and post-

conditions. Additionally, it is consistent at the prerequisites of the aforementioned set

of initial assumptions. All initial assumptions must be first met before one can claim

the correctness.

We now consider two potential attacks obtained by applying transformation function

A in Definition 37 to Ds.

8.6 Secrecy Attack

In this section, we introduce an intruder that silently listens to all transmission traffic

without inducing any modifications to the transmissions. This is an eavesdropping

attack over D9, denoted as D*. The sequence diagram of AD* is presented in Figure

8-2.

The protocol is similar to Oz except that every transmission in De is now passed

through the intruder *.
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w1
(M (Ph)

T (S e).MAlse.1-ry(6 (Mse), Se)

K
T(Ph)

T (Se).Mse.1rv (O(Mse), Se)

:T (Sm) .rp(Mph.Asm.1rv(O(MlPh -sm), Ph), S

O(Mse)

e)

0(MSe)

1[ (Sm).1rv(O(Mse), Sm)

(Sm) .rp(Mph.MIsm .ITV ((lPh.iSm), Ph), Se

Figure 8-2: UML sequence diagram for D* protocol, a case with a silent eavesdropper.

01
00

1rV(O(J(IDsm)-MSe.AiPh), Se)

1rv (0(6(IDsm) -MSe.MPh), Se)
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8.6.1 Protocol D* at a Glance

The set of initial assumptions are similar to that of Ds, except that 1* now knows the

public key of certificate authority t, Se, Ph and Sm. We thus have: 1* 5 p(R, KN),

1* * p(Se, KSe), I* * p(Ph, Kph) and J* * p(Sm, Ksm). Additionally, we assume t

and Se are trustworthy to the intruder: J* * t H-> * and 1* 5 Se s-> *.

The post-conditions are the same as that of the original protocol O, since I* does

not alter any messages and the three principals Se, Ph and Sm participate in D* until

the completion of their respective roles. The pre-conditions and the sequence of message

transmissions are presented in Figures 8-3.

The sequence of transmissions now include those received and relayed by the intruder

1*. The intruder assertions we require for 0* are simply that the eavesdropper does

not acquire the payment details sent from the Ph:

,I* * n (I*, Mph) (8.68)

We assume that Sm and Se do not have any privacy requirements. Se generates a

fresh Ms, that can be publicly visible and Sm can reveal its identity as well as O(Mse).

8.6.2 PTGPA-Beta Analysis of D*

We ran the PTGPA-Beta algorithm against 5D. The algorithm found the protocol

ran to the end successfully and all post-conditions and intruder assertions were valid.

The PTGPA-Beta algorithm returns true and thus D£ is correct under attack D* by

Theorem 10.

8.7 Relay Attack

In this section, we model a relay attack on Ds, denoted as 5D. The UML sequence

diagram is presented in Figure 8-4.
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Seq. Pre-Conditions Transmission

1 0 Ph -> I* : T(Ph)

2 0 1* - Se: T(Ph)

3 Se % p(Ph, Kph)

4 0

Ph 5 p(Se, Kse),
Phb6 (Mse,7Se),

5 Ph 0 (Mse),
Ph 77(Mse, Se),
Ph * ZU(Mse, 6(IDPh))

Ph I* : 6(Mse)

I* -+ Sm : 6(Mse)

Sm > I* : T (Sm).7rv(0(Mse), Sm)

I* -+ Ph: qf(Sm).,rv (O(Mse), Sm)

Ph 0(Sm, Ksm),
9 Ph*6(Mse,Sm),

Ph 5 7(Mse, Sm)

10 0

Se 5 p(Sm, Ksm),
Se 6 (Mse, Sm),

11 Se 5(Mse, Sm),
Se 56e(MPh.MSm, Ph),
Se% 7(Mh.MSm, Ph)

12 0

Ph -+1*:
T (Sm).7rP(Mph.Msm.7rv(O(MPh.MSm), Ph), Se)

I* -a Se:
I'(Sm).7rp(MPh.Msm.7rv (O(MPh.MSm) , Ph), Se)

Se I 1* : lrv((6(IDsm).MSe.MPh), Se)

I* -+ Ph: 7rv ((6(IDsm).MSe.MPh), Se)
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Se -+ I* : q(Se).Mse.?rv(O(Mse), Se)

1* - Ph: 'F(Se).Mse.,rv((Mse),Se)

6 0

7 0

8 0

Figure 8-3: Pre-conditions and message exchanges for attack protocol D*.



T(Ph)

4'(Se).Mse.rv(0(Mse), Se)

qv(Sm').7rp(MPh.Msm' .rv (6(MPh.MSmi), Ph),

I

Se)

7lv(6(J(IDsm').MSe.IMPh), Se)

Figure 8-4: UML sequence diagram for

6(Mse)

0(1

T(Sm')-rv

T (Sm').rv (0(Mse), Sm')

attack D0, a case with second, authenticated

~SeMe

((Mse), Sm')

smart card.

9

:Sm'Se



The intruder I* prevents Sm from receiving 9 (Mse), and I* relays G(Mse) to a

second, authenticated smart card Sm' for signature. I* then returns this signature to

Ph. Ph thinks it tapped on Sm, but in fact it received tapping evidence for a different

smart card, perhaps at a different geographical location. Notice that Sm is not involved

in this protocol.

8.7.1 Protocol D4 at a Glance

The initial assumptions are the same as that of D*. The sequence of transmissions and

their pre-conditions are presented in Figure 8-5.

Pre-Conditions

0

2 Se Oz p(Ph, Kph)

Ph p(Se, Kse),
Ph 6(MSe, Se),

3 Ph 5 (Mse),
Ph - ,(Mse,Se),
Ph W(Mse, S(IDPh))

Transmission

Ph -4 Se: h(Ph)

Se - Ph: 'I(Se).Mse-rv(O(Mse), Se)

Ph I I* : O(Mse)

I* a Sm' : 6(Mse)

Sm' -4 1* : T (Sm').rv(0(Mse), Sm')

1* -4 Ph : XF (Sm').,rv (0(Mse), Sm')

Ph p(Sm', Ksm),
7 Ph 6 (Mse, Sm'),

Ph 7r(Mse, Sm')

Se p(Sm', Ksm'),
Se b 6(Ms,, Sm'),

8 Se 77(Mse, Sm'),
Se 0 (MPh .MSm' , Ph),
Se - (Mph.Msm', Ph)

Ph -+ Se:

9'(Sm').7rP(MPh.MSm,.',rV(O(MPh.MSm'), Ph), Se)

Se -+ Ph : ,rv(O(J(IDsm,).Mse.MPh), Se)

Figure 8-5: Pre-conditions and message exchanges for attack protocol D.

Pre-conditions for message exchange 7 and 8 now relate to Sm'. This is because

they were semantically linked to the smart card in message transmission 6, which is
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returned by an intruder that performed message redirection. By Definition 37, the set

of post-conditions and intruder assertions are modified accordingly with respect to this

change from the original protocol.

The set of post-conditions E we impose on this attack protocol consists of the

following two components, E(+) and E(-):

E(+) : Ph's assertions on the last message that Ph received. Ph asserts that it comes

from Se, it is intact, and infers 6(IDSm,).MSe.MPh.

E = {Ph 5 ((6(IDm,).Me.MPh, Se), (8.69)

Ph M (65(IDSm,).MSe.Mph, Se)} (8.70)

E(-) : Assertions on the overall protocol at completion.

(a) Irrefutable payment from Ph:

Se 5Z(Se, ((Mse, Sm')) (8.71)

Se 5 fl(Se, (MSe, Sm')) (8.72)

Se 5 J(Se, 6(MPh.Msrm, Ph)) (8.73)

Se 5 f(Se, q(MPh.MSmI, Ph)) (8.74)

(b) Irrefutable payment confirmation:

Ph 3 :(Ph, 6(J(IDSm,).Me.MPh, Se)) (8.75)

Ph 53l.(Ph, 7(6(IDSm).MSe.MPh, Se)) (8.76)

The intruder assertion T we impose on DO is that I* cannot reconstruct Mph:

, (1*, Mph) (8.77)
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8.7.2 PTGPA-Beta Analysis of D9

We ran the PTGPA-Beta algorithm against D*. The algorithm ran to completion

successfully. All post-conditions and intruder assertions were valid. Thus by Theorem

10, De is correct under attack D*.

It is surprising that the original protocol is deemed correct when confronted with

this relay attack. The reason of this is that prior to step 5 in the original protocol

£!, Ph does not verify if the Sm is the intended merchant/goods to purchase. No

pre-condition was specified in the original protocol to reflect this security requirement.

Stated otherwise, Ph does not care if the tapping evidence was from Sm or some Sm'.

In practice, the application running on the phone can present a confirmation window

and ask the customer to confirm that everything Ph gets back from Sm is consistent

before Ph accepts the transaction. We can model this additional precaution in TGPay

as a pre-condition for step 5 in 09: PhSw~((Sm),6(IDsm)), where I(Sm) is the

certificate of a specific Sm that Ph receives and 6(IDsm) is an identity of a smart card

(thus its implied goods for purchase) that is the customer's expectation.

This raises an interesting issue for some contactless payment applications such as

transit ticketing, in which the server must be able to deduce the geographical location

of any tap for the purposes of fare calculation and auditing. In traditional contact

payment protocols, a valid transaction between a customer and a merchant can be

assumed to physically take place at the merchant's reader (We assume card reader is

trustworthy). That is, the bank card was physically present at the merchant's reader

because of the underlying technology.

On the other hand, the contactless mobile payment protocol works in close proximity

but physical contact is not required. This seperation, as demonstrated from attack DO,

can be magnified. Therefore, in mobile contactless protocols, we can no longer deduce

the physical presence of a customer from a transaction. The transaction itself can still

be valid, since in the simplest configuration, only a legitimate relationship between an

identified customer and merchant is demanded.

Another interesting case is when the merchant and the customer are both intruders
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and collude (and thus Se is interacting with two intruders). For example, Ph is dishonest

and it disregards any pre-conditions before communicating with Se, after it has received

a message from Sm' located at a different geographical location. Se simply verifies the

non-repudiatable binding between Ph's identity and the identity of Sm', and records

that Ph wanted to purchase the service as defined by S(IDsm,). Se does not require

and cannot enforce, based on the limited information, that Ph was physically at Sm'.

In mobile-tag transit ticketing, customers sign-in by tapping on the smart cards

mounted on platforms at stations. The payment server Se has a business requirement

to verify the consistency of customer's physical location and the reported tapping evi-

dence with any specific Sm. In this situation, the mobile phone may also transmit its

authenticated GPS coordinates for server audit. We can model this consistency check

performed at the payment server by introducing additional semantics in TGPay such

as a predicate of closeBy(GPSCoord, Sm).

In summary, we want to point out the complexity of designing these payment pro-

tocols. Protocols that are secure in one use case may not satisfy all the business and

security requirements for another. However, from the protocol analysis's point of view,

the TGPay proof system is flexible enough to formalize different sets of requirements,

and our PTGPA framework is capable of performing verifications in full automation.
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Chapter 9

Conclusion

Contents

9.1 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . 167

9.2 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . 169

9.3 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . 170

9.1 Thesis Summary

A formal framework is developed in this thesis for automated analysis of payment

protocols, based on a technique called theory generation. This technique produces a

finite representation of a possibly infinite set of valid formulas that can be derived from

a set of initial assumptions and a set of rules of inference. Theory generation requires a

definition of preorder and some syntactical constraints to partition all rules of inference

into S-Rules, G-Rules and W-Rules. With these conditions met for a proof system,

validity of any given candidate formula is always decidable in finite time.

This thesis decomposes its automated analysis strategy into two parts. TGPay

is specifically designed to model payment protocols. It provides formal semantic def-

initions of functions and predicates, as well as rules of inference that target secrecy,

authentication, freshness, integrity, acknowledgement and non-repudiation.
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Being able to validate formulas with TGPay using theory generation, we develop

a formal approach to protocol verification called PTGPA. Our approach allows spec-

ification of pre-conditions and post-conditions besides the traditional descriptions of

message transmissions in a protocol. PTGPA operates on two scenarios - Alpha-S and

Beta-S. Alpha-S is one in which a candidate protocol runs without attacks from any

intruders. The candidate protocol is correct iff all pre-conditions and post-conditions

are met in this scenario. We model intruders' actions and knowledge sets in a second,

modified protocol that represents an attack scenario. This second protocol, called Beta-

S, is obtained mechanically from the original protocol, by applying a set of elementary

capabilities from a Dolev-Yao intruder abstraction. We define what constitutes correct-

ness for the original protocol under Beta-S and we show how PTGPA can be applied

to verify a given protocol's correctness under both Alpha and Beta scenarios in full

automation.

The thesis demonstrates the feasibility and efficacy of the proposed analysis frame-

work in a number of case studies. We apply PTGPA to real-world payment protocols,

including two contactless bank card payment protocols and the EMV SDA and DDA

authentication protocols. We found security flaws of integrity, secrecy and authenticity

in the two contactless bank card payment protocols and a replay attack for the EMV

SDA authentication protocol.

We propose two general purpose contactless mobile payment protocols with addi-

tional desired features such as transaction non-repudiation. We verify their correctness

under Alpha scenarios, with respect to a set of pre- and post-conditions that we im-

pose. We then analyze attacks on secrecy, message relay and man-in-the-middle. We

show how the two protocols successfully defend against these attacks in the context of

the PTGPA Beta-S analysis framework. We discuss relevant modeling issues and their

implications.

The proposed PTGPA algorithms are prototyped in Java. The implementation

focuses primarily on functionality and is not optimized for performance. Figure 9-1

provides a summary of all the case studies covered in this thesis, including the size of the
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initial assumptions, pre- and post-conditions, intruder assertions, theory representations

and verification time. The benchmarks were obtained on a x86-PC with an Intel Core

i7-2640M processor (4M cache, 2.80 GHz) and 4GB of RAM.

The first column is the protocol name. The second column gives, respectively, the

number of initial assumptions, total number of pre-conditions for all messages, total

number of post-conditions and intruder assertions if any. The third column gives the

number of formulas in the theory representation. When a protocol halts prematurely,

this is the size of the theory representation at abortion. The fourth column is the time

in seconds for end-to-end verification 1

9

. The fifth column is the correctness conclusion.

Protocol IO,0 , T Th. Rep. Time(s) Correct?

Card Type A 2-5-0-Nil 28 0.33 Alpha-S Incorrect
Card Type B 4-5-0-Nil 44 0.45 Alpha-S Incorrect

Secrecy At ack) 4-3-0-1 76 0.95 Beta-S Incorrect

EMV SDA 4-0-5-Nil 22 0.17 Alpha-S Incorrect
EMV DDA 7-3-0-Nil 70 0.76 Alpha-S Correct
Mobile-Reader D% 17-12-9-Nil 164 8.4 Alpha-S Correct
Mobile-Reader 20-12-9-4 189 9.4 Beta-S Correct
(Secrecy Attack) ____________________________

Mobile-Reader OD4(mpob ader D 17-12-9-2 116 1.2 Beta-S Correct
(Impersonation) _____________________________

Mobile-Tag D; 29-15-8-Nil 205 7.4 Alpha-S Correct
Mobile-Tag ek 35-15-8-1 279 8.1 Beta-S Correct
(Secrecy Attack) ____________________________

ta 41-15-8-1 231 7.8 Beta-S Correct
(RelayAttack) ______ _____ ____ ________

Figure 9-1: Protocol analyses performed in this thesis.

9.2 Thesis Contribution

This thesis makes two concrete contributions to the state-of-the-art of formal verifica-

tions of payment protocols.

IFrom the time the program takes in a protocol specification and its pre- and post-conditions, until
a decision is computed.
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1. Theoretical Contribution - An automated analysis framework PTGPA:

(a) Formal analysis framework in the context of Alpha-S for correctness of orig-

inal design and Beta-S for correctness when confronted with attacks.

(b) A novel integration of theory generation with rigorous protocol analysis tech-

nique of pre- and post-conditions. This integration allows formal establish-

ment of protocol correctness in finite time and in full automation.

(c) TGPay : A comprehensive set of rules of inference is developed, including

functions, predicates and rules that target payment protocols.

2. Applied Contribution - Applications of the proposed framework to real-world and

newly proposed payment protocols:

(a) Applications of PTGPA to two contactless bank card payment protocols

and the EMV SDA and DDA authentication protocols. Security flaws are

identified and discussed.

(b) Proposal of two new general-purpose contactless mobile payment protocols.

Their correctness under Alpha-S are verified. Attacks are examined using

the Beta-S PTGPA algorithms. The proposed protocols are found secure

against these attacks.

9.3 Future Research

Although the proposed analysis framework has been successfully applied to the verifi-

cations of a number of protocols, further improvements can be made in a number of

areas:

1. Automatic generation of attacks: The thesis defines how an attack can be con-

structed from the original protocol and its pre- and post-conditions. It then checks

for correctness of the original protocol under this specific attack. It is more desir-

able if one can automatically search for attacks from sources including, but not
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limited to, a finite model of the intruder's knowledge set and a finite model of the

intruder's capability. The number of distinct attack specifications for an original

protocol could be potentially unbounded. It may be possible to categorize the

attacks in the same manner as theory representation. One can then examine only

a finite set of attacks from the representation rather than checking against each

and every attack. The strategy of first constructing a sufficiently expressive set

of attacks and then verifying them with a given candidate protocol is not ad-

dressed in great depth in the current literature. Future research can devote some

attention in this area.

2. Performance optimization: This thesis does not consider any performance op-

timization of the PTGPA framework. Further studies can exploit more efficient

procedures for theory generation and its applications in PTGPA. The Java imple-

mentation developed in this thesis handles commutative rewrites by exhaustively

considering all possible combinations. It could become much slower when deal-

ing with a very long sequence of message concatenations. Efficient techniques to

handle rewrites such as Associative-Commutative Unification [Sti8l] [Fag87] can

be used. When performing membership tests, our implementation always iterates

through every element in a set. Efficient data structures can be used to increase

performance.

3. Enrichment of TGPay: The proof system TGPay that we present in this the-

sis contains rules of inference that target many important aspects of payment

protocols. Further enrichments and modifications of the semantics can be made

to model additional business and security requirements. The PTGPA analysis

framework is flexible and is loosely decoupled with the underlying proof system.
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Appendix A

Proofs for Chapter 3

Proof of Lemma 1. Let X denote the finite set of variables from #1 that are to be

replaced by o-. Because all variables from X are implicitly universally quantified by

definition, it follows that we can use only instantiation to show that:

41 Uw6-1 (A.1)

Prepending this before o-4 1 Hw 042 , we have the desired result. E

Proof of Lemma 2. By unify Definition 8, it follows that o-#1 = o-2. By Lemma 1, we

have the proof. E

Proof of Lemma 3. Because #1 is grounded, all variables that are to be replaced in o-

are from 0 2. By unify Definition 8, it follows that #1 = -'42 modulo rewrites. Let X be

the set of free variables appeared in 02. Clearly, for any variable X E X, it is replaced

with the same grounded term in both o and -'. By definition 7, a is an extension of o-'

with respect to 02.

Proof of Theorem 1 [Kin99/. We proceed with an induction on the recursion depth of

the function backwardchain() in Algorithm 4. First we consider the base case. When

function backward-chain() is immediately returned and thus its recursion depth is zero,
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it must be the case that goal = 0. In this case 0 is returned and the theorem is trivially

satisfied.

Supposing the theorem holds for any recursion depth of the backward-chain() func-

tion that is less than N, we want to show that it still holds when exactly N calls are

made. Now suppose the backward-chain() function has chosen the first goal g (denote

the rest of the goals as other-goals such that b = {g, other-goals}), and has invoked

backward.chainone(g, F). There are two cases:

" There exists a formula # E F such that o- = unify(g, #). By Lemma 2, we have

# Fw o-ig and thus F Hw -1g. By induction, we have F FGW o-2 o u-other-goals.

Hence for this case we have the desired result.

" Otherwise, reversexapply-grule(G, g, F) is invoked. It follows that o 3 is a unifier

of g and G's conclusion. By definition of unification, we have

o-3Conclusion(G) -w r-3g (A.2)

backward-chain is then invoked (with premises of G instantiated with o-3 ) to

return o-4 . This invocation contains less than N calls of backward-chain, and by

induction, we have:

F -Gw o-4 (c-3Premises(G)) (A.3)

Combining A.2 and A.3, we have now,

F GW U~40~39 . (A.4)

F HGW 0-ig (A.5)
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Similar to the first case, we have:

SF-GW o'2 o o~1other-goals (A.6)

F F-GW oD (A.7)

Proof of Theorem 2 [Kin99]. Similar to the previous proof, we proceed with an induc-

tion on the recursion depth of the closure() function in Algorithm 2. The base case

is when the recursion depth is zero and fringe = 0. Since the proof required no

application of any S-Rules, i.e. F Hw F, the base case is valid.

Next we assume the theorem holds when there are less than N recursive calls to the

closure( function, and we want to show that the theorem still holds when exactly N

recursive calls to the closure() function need to be invoked.

When calling the closure() function the first time, fringe' collects new formulas

#, each of which is of the form of a-(Conclusion(S)), for some instantiation o- and an

S-Rule S. By Theorem 1, there exists a proof T' for all o where # E Premises(S),

using instantiation, G-Rules and W-Rules only. We can add the application of this

last S-Rule to q3' and thereby write a full proof q3 of a-(Conclusion(S)). We have thus

shown that for any new formula # derived, its last rule of application is an S-Rule and

it holds that (F U fringe) F- 4.
The closure function then recursively calls closure(F', fringe'), and eventually re-

turns the grand theory representation f# (We show the termination proof later). By

induction, for each #* E F# newly derived in subsequent invocations, there is a valid

proof of #*, whose last rule of application is an S-Rule. 0

Proof of Theorem 3 /Kin99]. We proceed with an induction on the total number of G-

Rules applied to prove <b in 9*. Suppose when G-Rules are applied less than N times,

the theorem holds; we prove that it still holds when exactly N G-Rule applications are

used in 9,*.
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Without loss of generality, we consider an arbitrary #1 and its corresponding proof

,3i such that:

F V-T o-'#i (A.8)

Then clearly there is a corresponding action in backwardchain, where:

01 E backward-chainone(i, F) (A.9)

is invoked. Looking into the backward.chainone(#i, F) function, there are two cases:

we either find a direct instantiation with any # E F, or we need to apply a G-Rule

to continue on prove the premises of that G-Rule. For this proof we can safely ignore

rewrites in this function because it is size-preserving and does not incur any G-Rule

application. There are two cases:

" Case A) #i can be unified with some formula # E F. Thus, 4 -w -'#i and

o1 = unify(#, #5 ). By Lemma 3, we have that o' is an extension of -1 with

respect to #i. Since C- = -2 o -1 and -1 #5o is grounded, we have that -' is an

extension of o- with respect to #i. We have therefore reduced the problem to one

less premise with the same number of G-Rule applications.

" Case B) Ti contains at least one G-Rule application. The recursive call to

backward-chain (which computes o-2 ) takes a partially instantiated subset of <D

(all but #j). Since the proof of this subset contains less than N G-Rule applica-

tions, we can apply the induction. It is sufficient to show that if a' is an extension

of some o-1 returned by calling reverse-apply-grule(G, i, F), with respect to #j,

the theorem holds. It remains to demonstrate this.

Function reverse-apply-grule(G, #i, F) takes in a G-Rule G. Since G is the last rule
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(a G-Rule) applied in Ti, Tj can thus be partitioned in the following way:

I F o-'(Premises(G)) (A.10)

U'(Premises(G)) I-G o'(Conclusion(G)) (A. 11)

Because the proof F -GW o-'(Premises(G)) requires less than N G-Rule applications,

we can invoke the induction. The remainder of the proof shows that o-' is an extension

of o-, which by definition is o-4 o -3 and is done by cases.

Consider an arbitrary term X of I and focus all substitutions on this term. Let P

and Q be two predicate symbols, the G-Rule structurally be:

Q(A) 
(A.12)

P(A,..)

Where "_" denotes the rest of arguments for predicate P. We now consider the following

possible cases:

1. Term X is a variable and its unification with the conclusion of G is propagated

to the premises of G, for example 43 = P(X, .). Without loss of generality define

a' = {X -4 x} for a grounded term x. Since o3 works on 4j, we have that

-3 = {X -+ A}. Since G is the last rule applied it follows that we must also have

proof of F F-Gw a*Q(A) for some a* = {A -+ x}. By induction, -* is an extension

of a 4 , and therefore either o-4 = {A -+ x or o-4 = {A -+ Z} for a variable Z. It

then follows that either o-4 o o-3 = {X -4 x} or o-4 o a3 = {X -+ Z}. In either

cases, we have that o-' is an extension of o-1 = 0-4 o 0 3 with respect to X.

2. Term X is a variable and its unification with the conclusion of G will not be

propagated to the premises of G, for example, 45 = P(_, X). Again let a' =

{X --+ 4 for a grounded term x. Since G must be applied, it follows that

o3 = o-' = {X -4 X and o-4 does not replace X. Putting everything together, one

can conclude that a' is an extension of o-1 = o-4 o a 3 with respect to X.

3. Term X is a grounded term. In this case both o-' and o 3 are "emptyset" with
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respect to this term, so we have the desired result trivially.

Since term X from #1 is arbitrary , we have proved that o-' is an extension of o-1 =

oa4 0 o 3. This completes the entire completeness proof for backward-chain function.

Proof of Theorem 4 /Kin99. We proceed with an induction proof on the recursion

depth of the closure() function in Algorithm 2. If the depth is 0, then F is returned

from closure( function because fringe = 0. Looking at the proof q3 from Eq. (3.9)

which generates formula #, we found that this proof contains at least one S-Rule appli-

cation from (0 U F). Since {0, F} is a partial theory representation, it follows that there

exists a formula #* where F H1* #*, and the last rule of application in P* is an S-Rule,

and (0 U F) I-w #, which is impossible. This implies that some # from Eq. (3.9) does

not exist, the base case is thus valid.

Now suppose the theorem holds when the closure()'s recursion depth is less than

N. We show that it still holds when the depth is precisely N. Since closure(fringe, F)

returns closure(fringe', F'), if we can prove that {fringe', '} is also a partial theory

representation, then we are done by the inductive hypothesis. It remains to demonstrate

so.

Let F be a formula such that it can be proved from F' using only one S-Rule S,

which is the last rule of application. Let o- be the substitution under which F =

o-Conclusion(S). By Theorem 3, we have that o is an extension of some o-* where:

a* = backward-chain(premises(S), F') (A.13)

Thus,

apply._srule(S, F') = -*Conclusion(S) (A.14)

apply-srule(S, ') F-w -Conclusion(S) (A.15)

fringe' U F' Fw o-Conclusion(S) (A.16)
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By the definition of F, we have that fringe' U r' Ew F. Thus {fringe', F'} is a partial

theory representation. 0

Proof of Lemma 4 /Kin99. By the substitution property of -< we have that for any o,

o2 --< u# 1 . Also o-# 1 -< #* E F and by transitivity we have o-2 < 0* E F, the desired

result. E

Proof of Lemma 5 fKin99]. We prove this by cases. If #2 is a rewrite of #1 , then by

the definition of rewrite, #2 2 #1 . By the previous Lemma, this case is proved. Now

suppose #2 is proved using substitution, that is 42 = u#. Then for any o-2 , it must be

the case that (c-2 o o)0 1 is size-bounded by F, this implies that o-4 1 is size-bounded by

F, so this case is also proved. E

Proof of Lemma 6 /Kin99. Let #* E F and let an arbitrary # be size-bounded by #*.

Then it follows that --< *. By the definition of -, there exists a finite number of such

# with respect to variable renaming. Because there also exist a finite number of such

#*, the Lemma is proved. E

Proof of Lemma 7 /Kin99]. Let C be the conclusion of G and P be the premises of G.

By the definition of G-Rule, Pi -< C for any P E P, and hence o-3Pi -< -3 C. Looking at

the reverse-apply-grule function we found that o-3 = unify(#, C). By Lemma 2, this

implies 4 -w c-3 C. By Lemma 5, o3 C is also size-bounded by F. Finally, by transitivity

of the -< operator, -3 P is size bounded by F. E

Proof of Lemma 8 /Kin99]. In order for the function to return, there must exists some

#ogr""d E F such that o' = unify(#, ro"nd). It follows from Lemma 2 that #gro""d vW
o'#. Since #"r"nd is size-bounded by 0 , by Lemma 5, so is o-'#. Because o- = -', we

are done. E

Proof of Lemma 9. We partition D into primary premises Q, and side conditions (non-

primary) 'D,. The goal selection function will always select 4 E bp for resolution first

before moving on to side conditions. Suppose at some stage #p E p is selected, then
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by Lemma 8,

backward-chain-one(#,, F) (A.17)

will halt. This is because #p does not unify with any G-Rule conclusion by S/G restric-

tion, and unification with any #ground E F is done in finite time.

Because <b, is finite, it is now sufficient to show that for each of the remaining

D E , a call to backward-chinaxone with #, as the target must halt. Without loss

of generality, let o* be the accumulative substitution immediately before #,. If we can

prove that reverse-apply-grule(G, o-*#,, F) always terminates, we are done. It remains

to show that this is the case.

Using Lemma 6, we observe that F is finite modulo variable renaming, since it is

size-bounded by a finite set 0 . By the second condition of S/G restriction, there exists

a primary condition #, such that #., - ,. By the property of -, one can deduce that

*O-*, - o*#,. Since each o-*#, is size-bounded by F, ao, is also size-bounded by F.

By Lemma 7, any formulas passed to backward-chain() from reverse-apply-grule() are

also size-bounded by F. By Lemma 6, there are finite numbers of formulas that are

size-bounded by F, and backward-chain() only returns substitutions corresponding to

this finite set of formulas. Hence call to backward.chain() from reverseapply.grule()

function will terminate and hence reverse-apply-grule(G, eo, F) terminates. l

Proof of Lemma 10 {Kin99. Let C be the conclusion of S and let P be a primary

premise of S. Thus we have C -< P. Since P does not match any G-Rule conclusion,

applying Lemma 8, we have for every o-' such that -' E backward-chain-one(P, F), o-'P

is size-bounded by F0 . Now by the property of -, o'C is also size-bounded by F. o

Proof of Lemma 11 [Kin99]. We show that the size-boundedness is preserved under

recursive self-calling. If fringe and F are, at the start, size-bounded by some finite

set F0 then F' must also be size-bounded, since F' = fringe U F. Moreover, formulas

returned by apply-srule(S, F') are size-bounded by F0 by Lemma 10 and terminates in

finite time by Lemma 9. This leads to the conclusion that fringe' is also size-bounded
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by F0 with respect to renaming. So we have shown that fringe' and F' are both

size-bounded by some finite set pO. By Lemma 6, there are finite number of formulas

bounded by [FO, so closure() must halt after exploring all distinct ones. E

Proof of Theorem 5. The initial assumptions r0 passed to closure() function are finite

and grounded. Therefore it is size-bounded by itself. By Lemma 11, theory-gen() will

terminate. 0

Proof of Theorem 6. Each time derivable(#, r#) is called, it returns if we either find

# E F# or # does not unify with conclusions of any G-Rule. In either case the function

returns immediately. Otherwise, the function recursively calls itself with any formula

of its first argument, denoted as #', such that #' -< 4. By Definition 11, there are

finite number of such 4'. Hence the recursion depth is finitely bounded. Thus we have

found that the function either terminates immediately or calls itself recursively for finite

number of times. Therefore it must terminate in finite time. E

Proof of Theorem 7. First, if the prerequisites as defined in Definition 25 are satisfied,

function theorygen() must stop in finite time by Theorem 5. Next we show that it

is both sound and complete if it terminates. Suppose # is a formula returned by the

function, such that # E closure(F0 , {}). By Theorem 2, there exists a proof T such

that I 0  - # and the last rule of application in q3 is an S-Rule. Therefore every formula

returned by the function is (R, S.Rule) theory-representation sound.

Now let # be a formula such that 10 F # and the last rule of application in 93 is

an S-Rule. By Theorem 4, there exists a formula #* such that,

#* E closure(F0 , 0) (A.18)

and #* -w #. Therefore any formula that is in the (R, SRule) theory representation

deduced from j0 can be proved using only instantiation and rewrites from some #*

returned by the closure() function. We have that the theory-gen() function terminates

in finite time and that it is both sound and complete. E
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Proof of Corollary 1. Suppose ]70 F- #, then there must be a sequence of deductions

using R from F0 till arriving at 4. Let #* be any formula from the sequence such that

it is derived from an S-Rule S. Then by the completeness of closure(, Theorem 4,

#* E F#. Since we also have that F# F-GW o-', it follows from Theorem 3 that for

some o E backward-chain(#, F#), o-' is an extension of o- with respect to #. Since # is

grounded, we have that o-' = 0 and therefore backward-chain(#, IF#) cannot return an

emptyset.

Now we proceed with the reverse direction. If backward.chain(#, F#) returns non-

emptyset, then by Theorem 1, there exists a proof T of # from F# using G-Rules or

W-Rules only such that r# F-Tw 4. By Theorem 7, F# is a theory representation

generated from F 0 using R, thus for any 0' E F#, p0 F-' #'. We can thus construct

a proof of # from 10 using R, by concatenating some T' with 1P. Thus p0 F by

Definition 18 and # is valid with respect to F0 and R by Definition 17. E
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Appendix B

Proofs for Chapter 4

Proof of Lemma 12. Since D is finite, it is sufficient to show that each call to the func-

tion derivable(#, F#) terminates in finite time, where # is grounded. By Lemma 6, we

have the desired result.

Proof of Theorem 8. Each call to theory.gen() must terminate by Theorem 5 and each

call to allValid() must terminate by Lemma 12. Since the set of pre-conditions of any

message transmission, the set of post-conditions and the intruder assertions, contain

finite number of grounded formulas; By Definition 31, PTGPA-Alpha and PTGPA-

Beta also consist of a finite number of calls to either theory-gen() or allValid(, and

therefore they terminate in finite time. 0

Proof of Lemma 13. By Corollary 1, derivable(4, F#) = 0 iff # is invalid for any # E D.

If allValid() returns false, then there is a # E P that is not valid. If allValid( returns

true, then for any # E 4, derivable(4, F#) returns non-emptyset. By Corollary 1, any

such # is valid. E

Proof of Lemma 14. We prove any formula from rk is in 1Fk and that the reverse also

holds. Let # be a formula from IF. By soundness part of Theorem 7, there exists a

proof T such that Dk--I U #k-1 4 4 and the last rule of application in IP is an S-Rule.

Since ]Fk is obtained from theory-gen(Pk- 1 U _k-1, R, -<), and @k-1 C pk-1, therefore

#(E ir.
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Consider the reverse, that # is now a formula from Ik7. By soundness part of Theorem

7, there exists a proof 1P such that:

rk-1 U Ok-1 _ 4 (B. 1)

and the last rule of application in 1P is an S-Rule. Similarly, by the definition of Fk-1,

there exists a proof 13' such that:

41 U ... U Ok-2 FN' rk-1 (B.2)

Append T' to q3 we have a new proof that:

41 U ... U Ok-2 U Ok-1 99'+3 4 (B.3)

By the completeness part of Theorem 7, 4 E rk

Proof of Theorem 9. The proof follows directly from Lemmas 13 and 14. If Alpha-S

PTGPA returns true for a given protocol D, then by Lemma 14, for any k < n, rk is a

theory representation generated from {F 0 U D1 U ... U 'k-1} using rules of inference R.

By Lemma 13, every formula in Qk is valid with respect to {fJ' U D1 U ... U DOk} and

R. By similar reasonings, every formula in E is valid with respect to {1o U 'D} and R.

Therefore 'D is Alpha-S correct. Now suppose Alpha-S PTGPA returns false given '.

Either for some k < n, allValid() returns false, so that there exists a formula in Qk that

is not valid with respect to {ro U'D U... U'k-1} and R; Or there exists a formula in E

that is not valid with respect to {fr U 'D} and R. In either case 'D is invalid as defined

in Definition 39, as can be shown by Lemma 13. We have thus shown that if Alpha-S

PTGPA returns true, then D is Alpha-S correct and if Alpha-S PTGPA returns false,

then D is Alpha-S incorrect. 0

Proof of Theorem 10. If Beta-S PTGPA returns true for a given attack D*, its initial

assumption rj, pre-conditions Q*, post-conditions E* and intruder assertions T, then

there are three possible cases to consider:
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1. For some k such that 1 < k < n, rk = theory-gen(Fk~1 U _1 , R, -<), and

allValid(Q*, rk, R) returns false and allValid(T, pk, R) returns true. By lemma

14,

k = theory-gen(F0 U D*, ... , UD*, 1, R, ) (B.4)

By lemma 13, there is a #1r, E Q* and for every #Intruder E T)

170 U ,..., UD* 1 )z #Pre

FO U D*, ... , UD_ 1*- #'ntruder

(B.5)

(B.6)

By Definition 40, 0 is correct under attack D* for this case.

2. allValid(E*+), ]F#, R) returns false and allValid(T, IF#, R) returns true. Then by

lemma 13, there exists a #5Las E E* such that

p0 U 0* X Last (B.7)

and for each and every formulas #Intruder E T

70 U 0* F- #Intruder (B.8)

Hence by Definition 40, 0 is correct under attack 0* for this case.

3. Else, allVa1id(E_), F#, R) returns true and allValid(T, IF#, R) returns true. By

lemma 13, for each and every 4b"" E E*_),

10 U 0* F- #post (B.9)

and, for each and every "Intruder E T7

F0 U D* F- #Intruder (B.10)
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By Definition 40, D is correct under attack 0* for this case.

Now we consider the reverse. Suppose Beta-S PTGPA returns false. There are only

four possible ways the algorithm returns false:

1. For some k such that 1 < k < n, Fk = theory.gen(Fk- 1 U 0_ 1, R,-<), and

allValid(Q*, 1 k , R) returns false and allValid(T, pk R) returns false. We have

for some #5 "r E Q* and some #Inruder E T,

rO u jD* u ... u jD*-_, Y #o"(B11

r U JD* U ... U D*_1 Y 1 ntruder (B.12)

By Definition 40, 0 is incorrect under attack D* for this case.

2. allValid(E+), f#, R) returns false and allValid(T, F#, R) returns false. Then by

lemma 13, there exists a #Lat EE such that

p0 U D* Y #Last (B.13)

and for some formulas #lntruder E T,

F0 U 0D* Y # 'ntruder (B.14)

Hence by Definition 40, 0 is incorrect under attack 0* for this case.

3. allValid(E _), F#, R) returns false or allValid(T, f#, R) returns false. By lemma

13, for some #P"ot E

FO U 0* Y #post (B.15)

or, for some #/ntruder E T7

]0 U D* y #Intruder (B.16)
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By Definition 40, 0 is incorrect under attack D* for this case. We have shown

that if Beta-S PTGPA returns true, then D is Beta-S correct for attack 0* and

if Beta-S PTGPA returns false, then 0 is Beta-S incorrect for attack D*.
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Appendix C

Proofs for Chapter 5

Proof of Lemma 15. The only two forms of substitutions over an atomic variable, ob-

serving the syntactical constraints defined above, are: substitution of the atomic vari-

able with a 0-ary function and renaming the atomic variable. The first form does not

change 1U(#), since neither the atomic variable before substitution nor the constant

after the substitution counts. The renaming only ch anges the variable name but still

retains its atomic variable property.

Since o only replaces atomic variables, therefore for any non-atomic variables X,

A (#, X) = A(o, X).

Proof of Lemma 16. We shall show that <TGPay is both reflexive and transitive. Let

#1, 42, 43 be formulas. 41 <TGPay #1 clearly holds so -TGPay is reflexive. We next

show <TGPay is transitive.

Suppose #1 <TGPay #2 and #2 dTGPay 0 3 . Since -1(01) 5 rl(0 2 ) and FJ(q 2 ) 5 H(q 3 ),

we have that U(# 1 ) U(43), so the condition on Alphabetic Count is met.

As for Variable Frequency, #1 only contains non-atomic variables that appear in #2

and #2 only contains non-atomic variables that appear in 43 . It then follows that for

any non-atomic variable X from #1, A(# 1, X) < A(# 2 , X) and also that A(42, X) <

A(# 3 , X). Hence, for any X appearing in #1, A(# 1, X) < A(4 3 , X), so the condition on

Variable Frequency is satisfied.

Putting everything together, iTGPay is both transitive and reflective, hence it is a
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preorder.

Proof of Lemma 17. First we consider the case when X is an atomic argument. Since

o-1 and o-2 are substitutions over atomic argument, by Lemma 15,

910 NTGPay -(C.1)

0 _TGPay o~2# (C.2)

By transitivity of the preorder function,

o-1# TGPay U20 (C.3)

So monotonicity holds when X is atomic. Next we consider the case when X is a

non-atomic argument.

After substitutions, we have that:

HU(o-l4) = U(#) - A(#, X) + A(4, X) x HU(T 1 ) (C.4)

H(o-24) = H(#) - A(#, X) + A(#, X) x UI(T 2) (C.5)

Since 11(T1 ) < 11(T2), it follows that H(o-1#) _ U(o-20).

Let V be an arbitrary non-atomic variable from T1, let q) be the set of distinct non-

atomic variables appeared in #. To prove the condition on Variable Frequency holds

we consider two cases.

1. If variable V is X or V ( D, then

A( 1o, V) = A(4, X) x A(T 1 , V) (C.6)

A(0 24, V) = A(#, X) x A(T 2, V) (C.7)

clearly we have,

A(u 1 #o, V) < A(- 2#, V) (C.8)
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2. Otherwise if V E <b, then

A(ui#, V) = A(#, V) + A(#, X) x A(T, V) (C.9)

A(o2, V) = A(4, V) + A(#, X) x A(T 2, V) (C.10)

clearly we still have that A(o1, V) < A(o-24, V)-

Proof of Lemma 18. First, if X is an atomic argument, then replacing it with a constant

or with another variable name does not affect sizes. Now suppose that X is non-atomic.

By definition of TGPay, 11(0 1) < UT(42). After substitutions, we have:

1(o-#1) = U(#1) - A(#1, X) + A(# 1, X) x H(T) (C.11)

I(o-42) = H(#2) - A(4 2 , X) + A(# 2 , X) x U(T) (C.12)

Since A(# 1, X) < A(# 2 ,X) and H-(#1) < l(42) by Definition 78, we have that,

Ul(o-#1) < HT(O-#2) (C.13)

So the condition on Alphabetic Count is satisfied. We now move on to the condition of

Variable Frequency.

Consider an arbitrary non-atomic variable V from T. If V does not appear in #1,
and since A(# 1, X) < A(4 2 , X), we have that A(Vuo1 #o) < A(V, -20). If V appears in

#1 and since A(V, 1) < A(V, 42), we still have the desired conclusion. This concludes

the entire proof for substitution preservation. 0

Proof of Lemma 19. See [Kin99] Claim 3.1. 0

Proof of Theorem 11. By Lemma 16 aTGPay is a preorder. By Lemmas 17, 18 and

19, NTGPay satisfies Monotonicity, Substitution Preservation and Finiteness properties

from Definition 11. 11
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List of Symbols

AUB ................... Append B to set A

..... ............... .A Dolev-Yao intruder principal

X) ..................... Number of occurrences of variable X in #

) ................... Total number of predicates, functions and non-

atomic variables appearing in formula #, excluding atomic variables.

. . . . . . . . . . . . . . . . . . . . . X.509, signature part

. . . . . . . . . . . . . . . . . . . . . X.509, plain-text part
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7K (K, P, Q) ............... Symmetric key K between P, Q

91(X, P) ................. P is recipient of X

6(X, P) ................. P once uttered X

6-1 (X, P) .................. P never uttered X

w(X, K) ................. HMAC of X with key K

7rp(X, Q) ................. Public-key encryption of X

rs(X, P, Q) ............... Symmetric key encryption of X

T (X, Q) ................. Private-key encryption of X

V)(P, K) .................... K is private-key of P

P<X ................... P received X

P>X .................... P sent X

F1(P, X) .................... P can reconstruct X

0(X) ................... Message digest of X

A ......................... Is fresh or non-expiring

. ...... . ........ ... N once

p(P, K) .................... K is public-key of P

X.Y ....................... Concatenation of X and Y

F* ........ ............ Theory closure

F0 . . . . . . . . . . . . . . . . . . . . . . . . Set of initial assumptions

F# ........ ............ Theory representation
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a . . . . . . . . . . . . . . . . . . . . . . Primary premise
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..................... .Non-primary premise

o ...................... Composition of substitutions

f(X) ....................... X is fresh

P - *................... P is trustworthy

D . . . . . . . . . . . . . . . . . . . . . Protocol

. . . . . . . . . . . . . . . . . . . . . Form al proof

= . . . . . . . . . . . . . . . . . . . . . Logical consequence (If ... , Then ...)

. . . . . . . . . . . . . . . . . . . . . . N egation

-<.. . . . . . . . . . . . . . . . . . . . . A preorder on formula size

'A - 'B : X ................ Message transmission.

o .......................... Substitution

wu(X, Y) ................. Y is part of X

Ew .................... .Validity using W-rule or instantiation
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