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Abstract

The Last Mile Problem (LMP) refers to the provision of travel service from the nearest
public transportation node to a home or office. We study the supply side of this problem
in a stochastic setting, with batch demands resulting from the arrival of groups of
passengers at rail stations or bus stops who request last-mile service. Closed-form bounds
and approximations are derived for the performance of Last Mile Transportations
Systems as a function of the fundamental design parameters of such systems. An initial
set of results is obtained for the case in which a fleet of vehicles of unit-capacity provides
the Last Mile service and each delivery route consists of a simple round-trip between the
rail station and bus stop and the single passenger's destination. These results are then
extended to the general case in which the capacity of a vehicle is an arbitrary, but
typically small (under 10) number. It is shown through comparisons with simulation
results, that a particular strict upper bound and an approximate upper bound, both derived
under similar assumptions, perform consistently and remarkably well for the entire
spectrum of input values and conditions simulated. These expressions can therefore be
used for the preliminary planning and design of Last Mile Transportation Systems,
especially for determining approximately resource requirements, such as the number of
vehicles/servers needed to achieve some pre-specified level of service.
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1. Problem Introduction, Description, Assumptions and Overall

Approach

1.1 Introduction and Literature Survey

The Last Mile Problem (LMP) refers to the provision of travel service from home or

workplace to the nearest public transportation node ("first mile") or vice versa ("last

mile"). This public transportation node could be the nearest rapid transit rail station or a

stop of a scheduled bus line. The unavailability of this type of service is one of the main

deterrents to the use of public transport in urban areas, especially for certain demographic

groups, such as schoolchildren, seniors and the disabled. Currently, the default solutions

to the LMP are walking, taking a taxi, or driving a private vehicle.

A conceptual Last Mile Transportation System (LMTS) is described schematically in

Figure 1, which shows an urban area surrounding a public-transit rail station, where trains

arrive and discharge passengers. The passengers' final destinations (homes, offices and

workplaces) are distributed in the area. A fleet of vehicles transports these passengers to

their eventual destinations and empty vehicles return to the station to pick up waiting

passengers or newly arriving ones. We describe the setting in more detail latter in

Chapter 1.2.

o: Passenger destination

Trc Rail Station a

Width=b miles

Length=a miles

Figure 1: Schematic of a Last Mile Transportation System (LMTS)
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Many issues must be addressed when designing and operating a LMTS. On the

supply side, it is essential to deal with difficult questions concerning the stochastic

aspects of the system. The demand side requires an understanding and estimation of the

potential LMTS loads as a function of demographic characteristics, nature of trip, level of

service, cost, etc.

The focus of this thesis is solely on the supply side: given a probabilistic description

of demand, design a LMTS that operates under dynamic and stochastic conditions

according to certain guidelines and satisfies a set of Level of Service (LOS) requirements.

This implies specifying such system characteristics as vehicle fleet size, service

frequency, dynamically varying vehicle schedules, vehicle dispatching strategies, vehicle

routing strategies, monitoring and control of operations, etc.

Addressing these questions is difficult analytically, as the planning and management

of a LMTS generally involves such complications as: stochastic travel times that may

also change dynamically by time-of-day, according to traffic and weather conditions;

batch arrivals of prospective passengers; partitioning of demands among vehicles; routing

of the vehicles; queuing issues; and, obviously, numerous considerations conceming

staffimg and economic sustainability. With the exception of staffmg and economic issues,

we address most of these complications in this thesis in a static setting.

An extensive literature in this general area has generated various models for a number

of application contexts related to the LMP with early papers dating back to the 1970s. We

mention here only a few that are among the most influential in the field, as well as

relevant to the approach we have adopted.

The Dynamic Traveling Repairman Problem (DTRP) was introduced in two papers

by Bertsimas and Van Ryzin. They consider the DTRP in the cases of a single-vehicle

"fleet" [1] and of multiple vehicles [2]. The Dynamic Pick-up and Delivery Problem

(DPDP) was studied by Swihart and Papastavrou [3], who derived bounds on the

performance of several DPDP variants for light and heavy traffic. The Car Pooling

Problem (CPP), introduced by Baldacci, Maniezzo and Mingozzi [4] also has features

similar to the LMP - or, more exactly, to the First Mile Problem. This paper presents

16



both exact and heuristic methods for solving the CPP based on integer programming

formulations. Finally, a large number of papers have dealt with the Dial-a-Ride Problem

(DARP) - see, e.g., Jaw, Odoni, Psarafis and Wilson [15]. A fine critical review of the

DARP literature by Cordeau and Laporte [5] underlines, among other points, the fact that

this body of work does not address well some of the queuing aspects of the subject

systems - a deficiency that this thesis tries to remedy.

It should also be noted that similarities exist between the LMP and various queuing,

dispatching, routing, and resource allocation problems arising in entirely different

contexts such as the design of manufacturing systems, the operation of elevator banks,

and the scheduling of school-bus systems.

The major difference between the LMP and the more "traditional" problems

identified above is that, in the LMP, passengers arrive in (possibly large) batches, not

singly. Moreover, the size of these batches is a random variable. Queuing systems with

batch arrivals are notoriously difficult analytically. A further complication is that the

"service times" of passengers are determined by the length (or the duration) of the routes

traveled by the fleet of delivery vehicles. Thus, in designing a LMTS, it is necessary to

consider simultaneously the problems of: allocating passengers among vehicles; routing

the vehicles and estimating the lengths of the routes; and computing the queuing

performance characteristics of the system.

The main body of this thsis is organized as follows. In latter Chapter 1, we describe

in more detail the version of the LMP problem that we are studying and discuss the

associated fundamental assumptions. It will be seen that the problem analyzed is quite

generic and that by relaxing one or more of the assumptions, one can capture a broad

range of interesting variations. Then we outlines the overall approach utilized to derive

our results: we begin by deriving a set of queuing results by considering a fleet of

vehicles with capacity for a single passenger (c = 1) and then extend the analysis by

allowing the vehicle capacity to be arbitrary and by incorporating the resulting travel time

estimates into the queuing expressions derived for the c = 1 case. Chapter 2 presents our

analysis and results for the single-capacity case. We derive three different approximate

expressions for queuing performance as a function of the design parameters of the LMTS
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and then identify, through a set of simulation experiments, the expression that performs

best - and, in fact, approximates very well the observed waiting times. Chapter 3 first

derives approximate analytical expressions for the travel times associated with fleets

consisting of vehicles with a capacity of up to 20 passengers and then applies the queuing

approximation derived in Chapter 2 to the multi-passenger capacity case. The results

again compare well with those obtained from a simulation. The main part of Chapter 2

and 3 contain only outlines of the lengthy derivations of our results. A sequence of

technical sections provides the details following the corresponding main part. Finally,

Chapter 4 contains a summary and concluding remarks.

1.2 Problem Description and Assumptions

We now describe in more detail the LMP scenario of Figure 1. The Last Mile

Transportation System (LMTS) would operate as follows: Let STA be the transit rail

station served by the LMTS and consider a passenger, PAX, who will board a train at

station ORIGIN for the purpose of traveling to STA and will then board a LMTS vehicle

for transport to her home. PAX will be required to provide advance notice to LMTS of

her impending arrival at STA. The time interval between the advance notice and the

actual arrival of PAX at STA will be of the order of several minutes (e.g., at least 5 or 10

minutes) to give the LMTS system sufficient time to plan the service of PAX. In practical

terms, the advance notice could be generated by PAX in a number of alternative ways.

For example, PAX could use a smart-phone when she arrives at ORIGIN or when she

enters her train to STA; or, she could tap a smart card on a special-purpose screen, as she

is entering ORIGIN or while aboard the train. The resulting message to the LMTS will

include the expected time of arrival of PAX at STA (easy to predict, once the passenger

is at the ORIGIN station or aboard a train) and her ultimate destination, e.g., her home

address. (If the great majority of LMTS users will be subscribers whose home addresses

will be pre-registered on a file, then the only information that PAX would have to provide

will be an identification number.)
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Once the information about PAX is received the LMTS will assign PAX to one of the

vehicles of the LMTS fleet, plan the route of that vehicle so it includes a visit to the

ultimate destination of PAX, estimate the departure time of the vehicle from STA, and

notify PAX accordingly. PAX will receive a message (on her smart-phone or by tapping

her card on a screen when she arrives at STA) that indicates the vehicle she has been

assigned to and the planned departure time of the vehicle from STA (e.g., "please board

Vehicle 123 which will depart from STA at 4:26 PM"). Once all the passengers assigned

to a vehicle are on board, the vehicle will execute a delivery route, visiting the destination

of each of the passengers and will then retum to STA to pick up the passengers for its

next delivery tour.

The LMTS described above may be difficult to implement due to many practical

issues and considerations. However, we have chosen to study it because it possesses the

generic system features that we are most interested in: arrivals of passengers in "batches"

(groups) at STA; "real-time" clustering of passengers for assignment to a fleet of vehicles;

"real-time" routing of the vehicles to deliver the passengers on board; and fast

computation of waiting times and other performance parameters so that, for example,

passengers can be notified in a timely way of the departure time of the vehicle they have

been assigned to/ informed of the expected departure times and intended use of the

LMTS. Actual implementations would involve some simpler variants of the above

features.

Given the service region geometry, passenger demand rates, the spatial distribution of

the passenger destinations, and the number, capacity and travel speed of the LMTS

vehicles, examples of performance metrics that we eventually wish to compute include:

the average waiting time until boarding a delivery vehicle, the average riding time of

passengers, the average waiting time until delivery, the minimum number of vehicles we

need to reach stable operation, vehicle productivity and workload, and eventually (but not

in this thesis) the general cost of operating the system and various service vs. cost trade-

offs.

We now identify briefly the specifics of the model considered. With reference to

Figure 1, we make the following assumptions: (i) headways, h, between arrivals of trains
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at the station (and discharges of passengers) are constant; (ii) passengers are discharged

in batches after each train's arrival; (iii) the batch size is a general random variable, ,

with known expected value, E(f) = A, and variance, Var(f) = of; (iv) all passengers

arriving in a single batch request service essentially simultaneously; (v) given the size of

any particular batch, ( = f, the destinations of the (o passengers in the batch are

distributed identically, uniformly and independently in a service region; (vi) the service

region is convex and compact with known dimensions; (vii) the delivery fleet (or pick-up

fleet, in the case of "First Mile" service) consists of m vehicles, each with integer

capacity, c.

We believe that (i) - (vii) are adequately general assumptions for approximating, to a

first order, the characteristics of many potential variations of LMTS. Note that our model

includes the most difficult, from the analytical point of view, features that one might

encounter in an LMTS: batch arrivals, stochastic demand, stochastic service times, and

the presence of queuing phenomena interfaced with routing problems.

To ensure that the mathematical expressions presented in Chapter 2 and 3 below are

adequately concise, we have also used the following three simplifying assumptions: (viii)

the service area, where the destinations of the passengers are located, is a b x b square,

with the train station, STA, located at the square's center; (ix) the travel medium is

continuous, homogeneous, and planar; and (x) the travel speed is constant throughout the

service region and equal to 1. We have studied a number of variants of assumptions (viii)

and (ix), such as cases in which the region is not a square, or the travel metric is

Euclidean or rectangular ("right-angle) or contains discontinuities (e.g., barriers to travel),

and shown that such mild changes in the assumptions pose no particular challenges.

1.3 Description of Overall Approach

Chapter 2 and 3 of the thesis describe in detail our analysis and results. In this

Chapter we provide a brief description of the overall approach we have followed to

provide perspective for these detailed Chapters. We have adopted a perspective under
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which the LMTS is regarded as a spatially distributed queuing system in which the

demands are as described before (batch arrivals of passengers with a constant headway

between the arrivals of successive batches). In line, with typical queuing terminology, we

shall refer henceforth to passengers as "customers" of the spatially distributed queuing

system. The m parallel servers (the vehicle fleet) serve customers in groups of c or

smaller, where c is the capacity of each vehicle. The service time for each group is equal

to the travel time associated with a vehicle tour that begins at the station/depot, visits

each of the c (or fewer) customer destinations and returns to the station/depot to pick up a

new group.

o: Passenger destination

Track -

Width=b miles

Length=a miles

Figure 2: Customer destinations and vehicles routes of the Unit-Capacity, Multi-Vehicle LMP

Because queuing systems with batch arrivals (like the arrivals of passengers at STA)

are notoriously difficult to analyze, we resort to a two-step approach. In Step 1, we

assume that c = 1, i.e., that the delivery vehicles have unit capacity. Thus, in this case,

service times consist simply of the duration of a round-trip between STA and one

passenger's destination (see Figure 2), with the destination being randomly and uniformly

distributed within the service area per our assumption (v) in Chapter 1. In this way we

obtain a D /G/m/oo system in queuing theory notation, where: D indicates batch

arrivals at constant ("Deterministic") intervals with the number of arriving passengers in

each batch described by random variable (; G denotes the fact that the distribution of

service times (i.e., the duration of the round trips between STA and customer destinations)
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is "general"; and m and o indicate, respectively, the number of service vehicles and the

fact that no a priori limit is placed on the number of customers waiting for pickup at STA.

As no closed-form expressions are available for the fundamental quantities the

performance of a Df/G/m/oo system, we then attempt to obtain expressions that would

help us estimate performance by studying similar queuing systems, which are simpler to

analyze mathematically. In this way, and through a series of simplifications, we derive

one lower bound and two upper bounds for the mean waiting time associated with

Df/G/m/oo queues. We then carry out an extensive series of simple simulation

experiments and conclude that one of these three approximations (an upper bound)

provides very good estimates of the performance of the system under a broad range of

system design parameters. We therefore adopt this approximate expression for studying

the general vehicle capacity case in which c can take on any (usually small) integer value.

Step 2 examines this general case, in which service times are equal to the duration

of delivery tours consisting of c(> 1) or fewer delivery stops, as shown in Figure 3. To

1: Passenger destination

Track all S

Width=b miles

Length=a miles

Figure 3: Vehicle routes of the General-Capacity, Multi-Vehicle LMP

apply to the general capacity case the queuing expressions that were derived in Step 1, we

need to compute in Step 2, the approximate length and the variance of the length of the

vehicle tours shown in Figure 3. We accomplish this by using arguments from

geometrical probability and from the literature on the Traveling Salesman Problem. We
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obtain several such approximate expressions in this way and compare them with the

results of another series of simple simulation experiments to select the expressions that fit

best the observed expected values and variances of the vehicle tour lengths. We then use

these expressions, along with the queuing-based approximation derived in Step 1, to

complete the process of estimating the performance of the LMTS for the general case of

arbitrary fleet size and arbitrary vehicle capacity.

The main part of Chapter 2 and 3 provide only an outline of the (occasionally lengthy)

derivations of the results contained therein. The detailed mathematics is after the outline

and between dash line.
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2. The Unit-Capacity, Multi-Vehicle LMP

In this Chapter we consider the analysis of the Unit-Capacity, Multi-Vehicle case,

described in Chapter 1 as Step 1, in which c = 1, and m is an arbitrary positive integer.

As already indicated above (Figure 2), the length of the vehicle trips in this case is equal

to two times the distance between the rail station and a customer's destination. For the

purpose of keeping relatively simple the various expressions derived, and without loss of

generality, we shall assume that travel in the rectangular region of interest [Assumption

(viii) in Chapter 1] is according to the right-angle metric, with directions of travel parallel

to the sides of the rectangle. A typical route, for serving a particular customer P is

indicated through a dashed line in Figure 2. Because we have also postulated

[Assumption (x)] constant and unit travel speeds, the expressions for travel times in the

region are identical with those derived for travel distances.

The basic notation is summarized as follows:

h = the constant headway between arrivals of trains at the station STA (and

discharges of customers);

( = a random variable denoting the number of LMTS customers ("batch size")

discharged after the arrival of a train at STA - with the sizes of successive batches being

mutually independent and with E({) = A, and Var( ) = a denoting, respectively, the

expected value and variance of f;

S= a random variable denoting the service time of any random LMTS customer with

E(S) = s and variance Var(S);

Note that the successive service times by any given vehicle in the fleet are

independent and identically distributed. The traffic load (or utilization ratio) is given by

p = sA/mh. Note that m/s is the service rate of the LMTS, while A/h is the rate of

customer arrivals per unit of time. Technical Section 2.T presents some background

results that are useful in the analysis of the Unit-Capacity, Multi-Vehicle case.
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2.T*: Background Results

1. Expectation and variance of composite random variables;

Given a sequence of independent random variables X (i = 1,2, ..., N) , where N is also a

random variable and independent of all the X, let Y = ZN X.

It is known [6] that:

E(Y) = E(N)E(X) (2.T.1)

Var(Y) = Var(N)E 2 (X) + E(N)Var(X) (2.T.2)

where E(Y),E(N) and E(X) denote the expected values, and Var(Y), Var(N) and

Var(X) denote the variances of Y, N and X, respectively.

2. Total expectation and total variance:

Given two random variables X and Y, it is known [6] that:

E(X) = E(E(XIY)) (2.T.3)

Var(X) = E(Var(XIY)) + Var(E(XIY)) (2.T.4)

3. Exact solution for average waiting time in a M/G/1/oo queue:

In a M/G/1/oo queue, using the same notations as in the main part, it is known [7] that:

p 1+C_

WM/G/1/co = -p 2 s (2.T.5)

4. Bound for the average waiting time in a GI/G/1/oo queue;

In a GI/G/1/oo queue, let 1/Aa and s be the expected inter-arrival time and service time,

respectively, y = 1/s the service rate, f, a 2 the variances of the inter-arrival time and

service time, respectively, Ca = a, C = a /s 2 the coefficients of variation of the
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inter-arrival time and service time, respectively, and p = Aas = Aa/p the traffic load

(system utilization ratio). There is no simple explicit expression for the average waiting

time W. According to [7],

p2(1 + C) - 2 p < WGI/G1/O : Aa(Ca + CD)
2 1 a( P) - WG/G1/ (2.T.6)

The upper bound becomes asymptotically exact as p - 1.

5. Approximation for average waiting time in a GI/0G/1/o queue;

In a GI/G/1/oo queue, using a combination of queuing theoretic and numerical analysis,

the following two-moment approximation for the average waiting time in queue per

customer was obtained by Kramer and Langenbach-Belz [8]:

e[ 2(1 -p)( -ca)2 C2: 1
p (cl+c)J 23p(c + c )

WGI/G/1/o 1 pC2 s, where p(C2T.7)

_exp C + 4 'a > 1;

The approximation is useful for practical purposes provided that the traffic load of the

system is not small and Ca is not too large. In the LMP, we will choose the number of

vehicles so as to make sure the system utilization ratio (traffic load) is not small.

Additionally, the constant headway of successive batch arrival (see the problem

definition in the main part) means that CJ = 0. Therefore, the approximation could work

well for the LMP.

2.1A Lower Bound

We are particularly interested in the expected waiting time, W, of LMTS customers

until they board one of the m vehicles to be transported to their eventual destination.

Determining this expected waiting time, as a function of the LMTS design parameters is

a critical step toward developing the means to design LMTS satisfying certain level-of-

service requirements. We begin by obtaining a lower bound for W.
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Since no exact analytical solution exists for the complicated D /G/m/oo queuing

model, we consider a modified system in which, instead of having batch arrivals with

average size E({) at constant intervals (headway = h), we have a single arrival of a

customer every h/E({) units of time. This modification transforms the original Df/G/m/

co system into a D/G/m/oo queuing system. The latter is characterized by a shorter

average waiting time, W, than the original Df/G/m/oo system since the arrivals of

customers are deterministic and evenly distributed, while the total expected number of

customers served by the two systems is the same. However, no exact analytical solution

exists for the D/G/m/o model either. Therefore, we consider instead a D/G/i/oo model,

which has identical customer inter-arrival times with the D/G/m/co model, while its

single server works m times faster than each of the servers of the m-server system.

Following the "remaining work inequality" principle of multi-server queuing models in

[9] and applying the approximation of GI/G/1/oo given in [7] (see Technical section 2.2.T)

we can then obtain (Technical Section 2.1 .T) a lower bound as follows:

E({)E(S)E(S 2) + hE(S 2 ) - 2hE2 (S) - mhE(S 2 )
2E(S)(mh - E(f)E(S))

when the size of customer arrival batches,{, is drawn from a General distribution and the
customer service time, S, is also drawn from a General distribution.

For the special case (Technical Section 2.1.T2 and 2.1.T3) in which the size of customer
arrival batches is a Poisson random variable with intensity A and the service region is a
b x b square:

-7mbh + 7bh + 7b 2A

W 12(mh-bA)

2.1.T1 *: Lower Bound of Unit-Capacity, Multi-Vehicle LMP in the general case

According to the "remaining work inequality" for multi-server queuing model in [9], for

the D/G/m/oo model and the corresponding D/G/1/oo model, constructed in the way

described in main part Chapter 2.1, we have the following inequality:

p(M - 1)(a + 1/p 2)
WD/G/m/w WDG1 - 2(2.712
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For the D/G/1/oo model, the average service time is reduced to s = E(S)/m, the

service rate y = mIE(S), the service time variance o = Var(S)/m 2, the coefficient of

variation C2 = (Var(S)/m 2 )/(E 2 (S)/m 2) = Var(S)/E 2 (S), and the queue utilization

ratio p = E( )E(S)/mh.

According to [7]:

(E(f)E(S)) 2 1 + -2 E({)E(S)
p21 c) -2p mh )\ E2(S)} -Mh

2a(1 - P) 2 E_(I _ E(E(S)

E2 ({)E 2 (S) + Var(S)E2 ({) - 2mhE({)E(S)
2mE({)(mh - E(f)E(S)) (2.1.T1.2)

For the D/G/m/oo model, the service rate p = 1/E(S) and the service time

variance ao2 = Var(S). We then have:

E2 ({)E 2 (S)+ Var(S)E2 ({) - 2mhE()E(S) E(S)(m - 1)(Var(S)+ E2 (S))
WD//m/ --- 2mE({)(mh - E({)E(S)) 2m

E2 ({)E2 (S)+ Var(S)E 2(f) - 2mhE({)E(S) (m - 1)E(S 2)
2mE({)(mh - E(f)E(S)) 2mE(S)

E({)E(S)E(S 2) + hE(S 2) - 2 hE2 (S) - mhE(S2)
2E(S)(mh - E({)E(S)) (2.1.T1.3)

This is the strict lower bound for the average waiting time in the original Df/G/m/oo

model.

Under heavy traffic [9],

E() Var(S)
W l a ( O + J2 h m2 Var(S)E({)

D/G//o 2(1 -p) E()E(S) 2m(mh -E(f)E(S))
mh

E(S 2 )E({) - E2 (S)E({)
2m(mh - E(()E(S)) (2.1.T1.4)

WD/G/m/co E(S 2 )E({) - E2 (S)E(f) (m - l)E(S2)
2m(mh - E({)E(S)) 2mE(S)

mE(f)E(S)E(S2 ) +mhE(S 2) - m2 hE(S2) - E3 (S)E({)
2mE(S)(mh - E({)E(S)) (2.1.T1.5)

29



This is the strict lower bound for the average waiting time under heavy traffic in the

original D /G/m/oo model.

2.1.T2*: Service time distribution in a rectangular service region

Assume a rectangular service region A with dimensions of a along the horizontal axis and

b along the vertical axis and with a > b . We also assume a right-angle ("Manhattan")

travel metric with the directions of travel parallel to the sides of the rectangle. The train

station is located at the center of the rectangular area and it is also the origin of our

system coordinates. The maximum travel distance required to deliver a customer to

his/her final destination and return to the station is a + b, while the minimum travel

distance is 0.

Since the customer destinations are uniformly and independently distributed within

the area and vehicles travel with unit velocity, successive travel times along the X-axis

are uniformly and independently distributed in [0, a] with probability density function

fx(x)= 1/a, 0 5 x < a; similarly, travel times along the Y -axis are uniformly and

independently distributed in [O,b] with probability density function fy(y) = 1/b,0 <

y5b.

Therefore, the total travel time S = X + Y, is described by the following probability

density function:

1
s, 0:5 s:5 b;

As(s) = h , b:5 s 5 a;

ab
- T - s, a < s:5 a + b;

with

a + b a 2 +b 2  2a2 +2b2 + 3ab
E(S)=- Var(S)= E( 2)= 62 12

When the region is a square, i.e., a = b,
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b2 7b2

E(S) = b,Var(S) = -,E(S 2)
6 6

In the analysis above, we ignored any time required for loading and unloading

customers.

2.1.T3*: Lower Bound of the Unit-Capacity, Multi-Vehicle LMP for a Poison customer

batch size and a square service region

If the number of customers from each train is Poisson-distributed and the service time is

as the square service region case described in Technical Section 2.1.T2, we consider a

modified system in which, instead of having batch Poisson arrivals at the rate of A at

constant intervals (headway =h), we have a continuous Poisson arrival stream at the rate

of AL = A/h per unit of time. Both the original and modified systems have the same

overall average arrival rate of A customers every h time units.

Considering the corresponding single (but m times faster) server model, the average

service time is reduced to s = E(S)/m = b/m, the service rate y = m/b, the service

time variance ao2 = Var(S)/m 2 = b2 /6m 2 , the coefficient of variation of the service

time C.2 = ao/s 2 = 1/6, and the queue utilization ratio p = A,/(m/b) = bA/mh. Thus:

bA bA

p 1+C 2  
_ jj 1+1/6 b 7 -mT b 7b 2A

W/-p 2 bA 2 m_12 1 - m 12m( h - bA)

For the M/G/m/oo model, the service rate y = 1/b , and the service time

variance ej = Var(S)/m 2 = b2 /6. Thus:

7b 2A A(m-1)(e|+ ) 7b2 A (m-1)( +b2)
WM/G/m/-o Z" m

12 r(mh - bA) 2m 12m(mh - bA) 2mb

7b2 A 7(m - 1)b 7b2 A - 7(m - 1)b(mh - bA)

12m(mh - bA) 12m 12m(mh - bA)

7b 2 A - 7m 2 bh + 7mbh + 7mb 2 A -7b 2 A -7mbh + 7bh + 7b 2A
12m(mh - bA) 12(mh - bA)
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This is the strict lower bound for the average waiting time in the original Df/G/m/oo

model.

Note that the expression above is correct dimensionally, with the dimension (unit) of

the expression is first power of time.

2.2 Two Upper Bounds

We next turn to obtaining an upper bound for W in the original Unit-Capacity, Multi-

Vehicle D /G/m/oo model. To do this, we pre-assign customers to different vehicles and

construct a corresponding single-server queuing model DN/G/1/oo for each vehicle,

where N is the random variable indicating the number of customers from a single train

assigned to the same vehicle.

With such an assignment policy, service inefficiencies exist since a customer is

required to wait for his or her assigned vehicle, even when other vehicles may be

available. Thus, the average waiting time in this case will be larger than the average

waiting time in the original model and provides an upper bound. The customer flow is

shown schematically in Figure 4 below.

Train Arrival

Customer Vehicle fleet Delivered
Assignment to the
to Vehicles destination

Figure 4: Customer flow in the pre-assignment policy
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The DN/G/1/oo model is still difficult to work with. To obtain approximate

expressions for W, we decompose the problem into two parts (Technical Section 2.2.T).

First, the N customers in some batch who are assigned to the same vehicle are treated as a

single "macro-customer" P. This reduces the DN/G/1/oo model to the more tractable

D/G/1/oo model and allows us to obtain an upper bound for W, the expected waiting

time until the first customer in P receives service. In a second step, we then compute the

additional expected waiting time, W2 , that the i-th customer in P suffers due to being

preceded for service by i-I other customers in P. Thus, the expected waiting time of a

customer P is given by W = W1 + W2. In Technical Section 2.2.T we show that:

E(N)Var(S) + E 2(S)Var(N)
2(h - E(N)E(S))

W E (S)Var(N) + E(S)E 2 (N) - E(S)E(N)
2E(N)

Thus the upper bound we seek is:

E(N)Var(S) + E 2 (S)Var(N) E(S)Var(N) + E(S)E2 (N) - E(S)E(N) (3)
2(h - E(N)E(S)) 2E(N)

The bound (3) is valid under general assumptions about the probability density

functions of the batch size, (, and the service times, S. Moreover, (3) has been derived

without considering how exactly customers are assigned to vehicles. We analyze next

two different policies for customer assignment to vehicles. Each of these policies will

provide different modified DNI/G/l/oo models with different E(N) and Var(N), leading to

different expressions for W1 and W2, and, ultimately, different upper bounds for W.

2.2.T*: Upper bound for the average waiting time in the DNIG/1/00 queue model

We treat all the customers assigned simultaneously (in the same batch) to any given

vehicle as a single "macro customer". If we only consider the macro customer, the

DN/G/1/oo model can be reduced to a D/G/1/ce model. We denote the average waiting

time of a macro customer in the D/G/l/oo model by Wm. WM is exactly equal to the
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average waiting time of the first customer composited in the macro customer, which is

denoted by W1, i.e., Wm = W1. The service time of the macro customer is T = E Si,

where N is positive integer random variable indicating the number of real customers

composing the macro customer. N depends on the assignment policy. S1,S2,,...,N are

the service times of the real customers and they are mutually independent and identically

distributed. Therefore,

N

E(T)= E(S) = E(N)E(S)

Var(T) = E(N)Var(S) + E2 (S)Var(N)

C2 _Var(T) - E (N)Var(S)+ E2 (S)Var(N)
E 2(T ) E 2(N )E2 (S)

a2= 0 (Due to constant batch or macro customer inter-arrival time)

1

E(T) E(N)E(S)

P h h

According to [9], the upper bound of W1, the average waiting time until the macro

customer receive service, is:

1
=4 (aa + as2) - (0 + Var(T)) E(N)Var(S) + E (S)Var(N)

2 (1 - ) 2 (1- E(T) 2(h - E(N)E(S))

According to [8], an approximation of W1 is given by:

E(T) Var(T) 2 _1-

W, ~ -) 2 -E(T) - exp -3 E(T) Var(T)
h h E2(T) _

2(h-E 3E(T)ar(T)Var(T) 2(h - EcT))EcT)

2h-ET)3Var(T) (2.2.T.2)

Assume we have obtained W1, given n customers composing the macro customer:
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When n = k, k > 1., the customer in the i th position will suffer the average waiting

time W! th = W1+ Q si, where s; is the average service time of the j th customer

served before the i th customer. We know the average service time of every customer

is E(S), so:

With = W1 + (i - 1)E(S)

Let Wk denote the average waiting time of all the k customers,

WiZt E =1[W + (i - 1)E(S)] (k - 1)E (S)
Wk = k k = W1 + 2 ,k 1

When n = 0, no customers served and WO = 0.

Let WDNG1/I denote the average waiting time of all customers in the DN /G1/cc

model. According to the Law of Total Expectation:

(k - 1)E(5)
Zwk=P(n=k)Wkk r=oP(n=k)[WM+ 2 ]k

WDNIG|1|w,- x=P(n=k)k -Z 0 P(n = k)k

E-o P(n = k)Wmk

0 P(n = k)k

_ (k- 1)E(S)k
rk=oP(n= k) 2 k

, 0 P(n = k)k

W,+ '=o P(n = k) (k - 1)k E (S) W,+E N 2) - E (N) E(S)
=1 =o P(n = k)k 2 W 1 + E(N) 2

E(S)Var(N) + E(S)E 2 (N) - E(S)E(N)
2E(N) (2.2.T.3)

That is:

E(N)Var(S)+ E2(S)Var(N) . E(S)Var(N)+E(S)E2 (N) - E(S)E(N)
2(h - E(N)E(S)) 2E(N)

The first part

W1 5
E(N)Var(S) + E 2 (S)Var(N)

2(h - E(N)E(S)) (2.2.T.5)

is the average waiting time until the first customer assigned to the vehicle in one batch

receives service.

The second part
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E(S)Var(N) + E(S)E 2 (N) - E(S)E(N) (2.2.T.6)
2E(N)

is the average waiting time due to the service time of customers served before in the same

batch.

2.2.1 Randomized Assignment Policy

One possible policy is to assign all the customers randomly (with equal probability 1/m)

and independently to the m different vehicles, with every vehicle serving individually the

stream assigned to it. This is illustrated in Figure 5 below:

P=1/m Vehicle 1 (1

P=l/m

Every Customer

Vehicle m-I 1 m-1

P=ilm Vehicle m m

Figure 5: Randomized assignment policy

The model corresponding to the randomized assignment policy led (Technical

Section 2.2.1.Tl) to the following strict upper bound for the case of a General

distribution of customer batch sizes and a general distribution of customer service times:

W mhE(S)E({ 2) - mhE(S)E(() + mE(S 2)E 2 (f) - E2 (S)E 3 (f) (4)
2m(mh - E(f)E(S))E({)

When the customer batch size is a Poisson random variable and the service region is

a b x b square, the strict upper bound (4) becomes (Technical Section 2.2.1 .T 1):

7b 2 Am+ 6b)Amh - 6b 2
1

2

12m(mh-bA) (5)
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An approximate upper bound for the case of Poisson customer batch size and a square

service region can also be derived. This last bound was obtained (also in Technical

Section 2.2.1 .T2) using an approximate expression for the average waiting time of the

GI/G/1/o queuing model given in [8]:

7b 2 A 4(mh-bA)1 bA
W:< - exp- + - (6)

12(mh-bA) [ 7bm 2m

2.2.1.T1*: Upper bound of the Unit-Capacity, Multi-Vehicle LMP under

randomized assignment policy in the general case

One possible assignment policy is to apportion all the customers randomly, uniformly

and independently among the m different servers, with each server then serving its own

stream of customers independently of all the other servers. The model corresponding to

this randomized assignment policy is DNi/G/1/oo , where N, is the random variable

indicating the number of customers assigned to server i. N1, N2, .. , Nm are identically

distributed, so all DNi/G1/o models can be taken as the same DN/G/1/o model,

although N1, N2, ..., N. are not necessarily independent. Assume ( is the random variable

indicating the total number of customers coming from one train. Given ( , we

know N 1 -B({, 1/m), in which B(n, p) is Binomial distribution with total number n and

individual probability p. Thus:

E(N|() = -

{(mn-1)
Var(Nf) = 2

E({)
E(N) = E(E(Nk{)) = -

Var(N) = E(Var(N|{)) + Var(E(NI)) = E (f(m- 1) + Var (
E({)(m - 1) Var({) E(f)(m - 1) + Var({)

m
M2 m 2
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Therefore,

E(N)Var(S) + E 2(S)Var(N) E (S)Var(N) + E(S)E 2 (N) - E(S)E(N)
WDNG/|/| ~ 2(h - E(N)E(S)) 2E(N)

E(f) Var(S) + E2(S) E (f )(m - 1) + Var( )

2 h -E()E(S)

E(S) E({)(m - 1) + Var({)+ E(S) (E() E2  E()
+ ~M2 +-~ ii- -E(S) M~

2 Ef

< mE(f)Var(S) + (m - 1)E({)E 2(S) + E2 (S)Var({)

2m(mh - E(f)E(S))

E(S)(Var({) - E({) + E2 (f))
2mE({)

mE(f)E(S2 ) + E2 (S)(E({ 2) - E2 (f) - E(()) E(S)(E({2) - E({))

2m(mh - E({)E(S)) 2mE({)

mhE(S)E({ 2) - mhE(S)E(() + mE(S 2)E2 (f) - E 2 (S)E 3 ( )
2m(mh - E(f)E(S))E(() (2.2.1.T1.1)

This is the strict upper bound for the average waiting time under randomized

assignment policy in the general case.

2.2.1.T2*: Upper bound of the Unit-Capacity, Multi-Vehicle LMP under

randomized assignment policy for a Poisson customer batch size and a square

service region

If the number of customers from each train is Poisson-distributed and the service time is

as the square service region case described in Technical Section 2.1.T2. If we use the

randomized assignment policy, all the customers are randomly and uniformly assigned to

m different servers. It is well known that if we assign each customer independently to

serverj with probability 1/m for all j, then the resulting size of each stream will follow

identical Poisson distribution with intensity A1 . = A/m.

E(() = A
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Var(f) = A

E({2)= Var({) +E 2 () = A+A2

E(S) = b

Var(S) =-

E(S 2) =Var(S) + E 2(S)

E(N) =-

7b2
6

Var(N) =--

CJ2= 0 (Due to constant batch or macro customer inter-arrival time)

CS2 = Ct2
E(N)Var(S) + E 2 (S)Var(N!)

= E 2(N)E2(S)

A b 2 2
-T + m 7m

A2 b2
m7

s=E(T)=E(N)E(S)=-

E(T) E(N)E(S) bA
= it m

Thus, using the conclusion of Technical Section 2.2.T, we can obtain a strict upper

bound for the average waiting time in the original D /G/m/oo model:

mhE(S)E(f 2) - mhE(S)E({) + mE(S 2 )E 2 (f) - E2 (S)E 3 (f)

~72m(mh - E(+)E(S))E({)

mhb(A + A2) - mhbA + my A2 - b2 A3 7b2Am + 6bAmh - 6b 2A2

2m(mh - Ab)A 12m(mh - bA)

Similarly, we have the approximation (using the same notations as in Technical

Section 2.2.T):
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[2() 1 C-)p (C+C) 2(1 -p)(1 -C) 2

W, - 1 - p 2 exp 3p(C2 + C2) I

bA 7m bA
-- bA 2(1-)]

1bA 2 me3 bI 7m
1 3mh 6A

7b 2 A 4(mh -bA)

12 (mh - bA) 7bm

E(S)E(N) Var(N) - E(N) E(S)
2 E(N) 2

7b 2  -
1W72(mh - b1A)2 ' exp

7b 2 A
W :5WDN/1|w10 ;Z1 m A

4(mh-b A)
bA

+ M+ 0

4(mh-bA) bA

7bm m

4(mh -bA)1 b;,
1+F

7bm J .

Both the approximate upper bound and the strict upper bound are dimensionally

correct. The strict upper bound is larger than the approximate upper bound.

Under heavy traffic,

P-+ 1, mh - bA --+ 0, exp -(m - +1,

the difference between the approximate and strict bounds is reduced to zero.

Note, as well, that in the limit, the ratio of the strict upper bound for the average

waiting time under randomized assignment to the lower bound for the average waiting

time:

Upper Bound

Lower Bound

7b2A + bA
12(mh - bA) +2m A(7bm+ 6hm - 6bA) 7Abm

-7mbh+7bh+7b 2
A1 7m(h -hm+ bM) ~ 7mh' m

12(mh - bA)

when p -> 1.
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2.2.2 Cyclic Assignment Policy

Another possible policy is to assign customers in cyclic order to the vehicles: the first

customer in the batch is assigned to Vehicle 1, the second to Vehicle 2, ... , the (m+1)-th

to Vehicle 1 again, and so forth. No jockeying of customers, after being assigned to

vehicles, is allowed. Figure 6 illustrates this policy, which requires assigning an

"identification number" to each vehicle to distinguish among them.

Custo Ier m+1

Custorjr m+2

Assigned to
E M I----K - Vehicle 11

s En -

U
U
U

Customs 2m-1 MEN -- U

Custorwr 2m M a m

Figure 6: Cyclic assignment policy

|Vehicle 2 12

Vehicle m-i

Vehiclem ( m

The model corresponding to the cyclic assignment policy led (Technical Section 2.2.2.T1)

to the following strict upper bound for the General distributions case:

W 4mE 2 ({)E(S 2 ) - 4E2 (S)E3 ({) + 4mhE(S)E({ 2 ) + m 3 hE(S) - 4m2 hE(S)E({) (7)
8m(mh - E(f)E(S))E()

For Poisson batch sizes and a square service region, the bound (7) becomes (Technical

Section 2.2.2.T2):

14b 2 2 m+ 12bA2mh - 12b 2 A3 + 12bAmh - 12bAm 2h+ 3bm 3h
24mA(mh - bA)

An approximate upper bound can also be obtained (Technical Section 2.2.2.T2) for the

same case as (8):
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(2m + 12)b2 A + 3 2M2 8(mh - b 2)A
W 24m(mh - bA) (2m + 12)bA + 3bm]

4bA2 + 4bA + bm 2 - 4bAm
+8AM (9)

A special case of (9) is also of interest in some applications. This is the case in which

m/A is large, i.e., the number of vehicles in the fleet is large relative to the rate at which

customers arrive. This can be the situation during off-peak periods or when the vehicle

fleet consists of a large pool of bicycles available for shared use. In such cases (9)

becomes (Technical Section 2.2.2.T3):

7b2 Am - 6b 212  4(mh - bA)
12m(mh - bA) 7bm - 6bA

The approximate upper bound (10) has the desirable property of becoming more accurate

as p approaches 1. Since p = bA/mh, a large m/A means a large b/h when p approaches 1.

This corresponds to situations in which the service region is large and/or the train

frequency is low.

2.2.2.Tl*: Upper bound of the Unit-Capacity, Multi-Vehicle LMP under cyclic

assignment policy in the general case

This policy consists of assigning customers in cyclic order to the m servers. After each

batch arrival, the 1st customer in the batch is assigned to the 1st server, the 2nd customer

is assigned to the 2nd server, ... , the (m+1)-th customer is assigned to the 1st server again,

and so forth. No jockeying of customers, after being assigned to vehicles, is allowed. We

utilize different server orders for customers coming from different batches (trains).

There are totally m servers, with the name "Server 1", "Server 2",..., "Server m". Let

Ni be the random variable indicating the number of customers assigned to "Server i" after

the arrival of a particular train, with the assignment process upon arrival of each train

being independent of the arrival process upon arrival of any other train.
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After one train arrived, we order the m servers in sequence, the server receiving

customers firstly is called "1st server", the server receiving customers secondly is called

"2nd server", etc. Let X, be the random variable indicating the number of customers

assigned to the "i th server" after the arrival of a particular train. Then,

SK+m-1r _ {+m-21i...'Xm....i 1 Xm =

f =X+X 2 +---+Xm-1+Xm

The probability that Server i become the j th server is 1/m.

The modified model can be considered as DNi/G/1/oo, which will provide an upper

bound to the original D /G/1/oo model. N1, N2, ... ,Nm are identically distributed, so all

DNi/G/1/oo models can be taken as the same DN/G/1/oo model, although

N1 , N2 , ...,Nm are not necessarily independent. f is the random variable indicating the

total number of customers coming from one train. f = Km + R, where K = [f/m], and

R is the remainder "left over" after division of f by m. So we can express { by a random

vector with two dimension: (K, R).

X= _K+1, 1 i!R;
IK, R +1: i m;

1
E(N|I(K, R))=-[E (X1|I(K, R)) + E(X2| (K, R)) +..+ E Xm|I(K, R))]

1 ++m1 (+m-2Km+R {
mL m] m]Xr m~r m

Var(N|(K, R)) = P(N = K + 1) - (K + 1 - E(NI(K, R))) 2 + P(N = K) - (K - E(NI(K,R))) 2

R Km+R= PCN = Xj) - (K + 1 -K +R ) 2
IL=1 m

mKm+R R Kmn+R mn-R
+ M P(N= Xj) -(K - Km+R)2=R--(K + 1- Km+R)2 +

i=R+1 m m M m

'K Km+R)2  R (m-R)2  m-R R2 Rm-R 2

m m M2 m m2  m2

{ E({)
E(N) = E(E(NI(KR))) = E(-) = f (2.2.2.T1.1)m m
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Var(N)= E(Var(NI(K,R))) + Var(E(NI(K,R))) = E( Rm- 2 + Var(-)

E(Rm-R 2 ) Var({)

m2 + m2 (2.2.2.T1.2)

Since Rm - R2  m 2 /4,

E(Rm - R2 ) Var({) 1 Var(f) 4Var({) + m 2

Var(N 4 M2  4m 2  (2.2.2.T1.3)

Therefore,

E(N)Var(S) +1E2 (S)Var(N) E (S)Var(N) + E(S)E 2 (N) - E(S)E(N)
W 2(h - EN)E(S)) 2E(N)

E(f) Var(S) + E 2 (S) 4Var(f) + m 2  E (S)4Var(f) + m2 + E(S) (E(-)\2 -E(S)E(f)
m 2 h- E(S) 4M2  +2 4M2

4mE(f)Var(S) + m 2E2 (S) + 4E 2 (S)Var(f)

8m(mh - E({)E(S))

4E(S)Var(f) + E(S)m2 + 4E(S)E 2 ( f) - 4mE(S)E({)

8mE({)

4mE({)E(S 2) - 4mE({)E 2(S) + m2 E2 (S) + 4E2 (S)E({ 2) - 4E 2 (S)E 2(f)

8m(mh - E(()E(S))

E(S)(4E({ 2 ) + m2 - 4mE({))

8mE({)

4mE2 (f)E(S2) - 4E2 (S)E 3 ( f) + 4mhE(S)E(f 2 ) + m 3hE(S) - 4m2 hE(S)E(f)

8m(mh - E(f)E(S))E({)

This is a strict upper bound for the average waiting time under cyclic assignment

policy in the general case.

2.2.2.T2*: Upper bound of the Unit-Capacity, Multi-Vehicle LMP under cyclic

assignment policy for a Poisson customer batch size and a square service region

If the number of customers from each train is Poisson-distributed and the service time is

as the square service region case described in Technical Section 2.1.T2, under cyclic

assignment policy, we know:
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E({) = A

Var(f) = A

E(2)= Var({) +E 2 (f) = A +A2

E(S) = b

b 2
Var(S)=

E(S 2 ) =Var(S)+E 2 (S) 7b2
6

E(N) =-

Var(N): 4Var(f) + m 2  4A + m 2

4m 2 4m 2

C2 = 0 (Due to constant batch or macro customer inter-arrival time)

C2 = C2 E(N)Var(S)+ E 2 (S)Var(N)
s-t -E2 (N)E2 (5)

A b2 2 4 A+m2
_-m--+ b 4m _ 3m 2 +12A+2m

A2 b12A
2

,7b

bA
s =E(T) =E(N)E(S) =-

E(T) E(N)E(S) bA
p h mh

Thus, we can obtain a strict upper bound for the average waiting time in the original

Df/G/m/oo model:

4mE2 ({)E(S 2) - 4E2 (S)E 3(f) + 4mhE(S)E({2) + m 3 hE(S) - 4m 2 hE(S)E({)
8m(mh - E(f)E(S))E({)

4m2 - 4b2 3 + 4mhb(A + A2) + m 3hb - 4m2 hbA

8m(mh - Ab)A

14b2A2 m + 12bA2 mh - 12b 2A3 + 12bAmh - 12bAm 2 h + 3bm3 h
24mA(mh - bA)

45



Similarly, we have the approximation (using the same notations as in Technical

Section 2.2.T):

p (Ca+Cl)
W1 -p 2 s-exp

2(1 -p)(1 - Ca)2

3p(CJ + Cs)

bA 3m 2 +12A+2mA
mii 12A:2 bA

bA 2 m* exp
1mh

(2m + 12)b 2 A +3b 2 m2  8(mh - bA)A
24m(mh - bA) (2m + 12)bA + 3bm2]

E(S)E(N) Var(N) - E(N) E(S)
2 E(N) 2

(2m + 12)b 2A + 3b 2 m 2  [ 8(mh - bA)A

24m(mh - bA) (2m+12)bA + 3bm2]

4A+m 2 A

+ 4mz -Ml
A 2
m

(2m+12)b 2A+ 3b 2m 2

24m(mh-bA) [
4bA2 + 4bA + bm 2 - 4bAm

8(mh - bA)A
(2m + 12)bA + 3bm2

8Am

8Am

8(mh - bA)A
(2m+ 12)bA + 3bm2

(2.2.2.T2.2)

Both the approximate upper bound and the strict upper bounds are correct

dimensionally. The strict upper bound is a little larger than the approximate upper bound.

Under heavy traffic,

p - 1,mh - bA -+ 0,exp + 12)bA + 3bm 2

t (2m a stdbA r 1,b o

the difference between the approximate and strict bounds decreases to zero.
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bA

+

W_ W DN /G/1/

(2m + 12)b 2A +3b 2 m 2  [
24m(mh - bA)

4bA2 + 4bA + bm 2 - 4bAm
+

rb2A
2(1- mih)

3bA 3m2 + 12A + 2mA
3mh 12A;2



Note, as well, that in the limit, the ratio of the strict upper bound for the average

waiting time under cyclic assignment to the lower bound for the average waiting time:

(2m + 12)b 2 . + 3b 2m 2  4bA2 + 4bL + bm 2 - 4bAm
Upper Bound 24m(mh - bl) + 81.m
Lower Bound -7mbh + 7bh + 7b 2 A

12(mh - bA)

(hm - bl)(bmA(3m 2 + 12. + 2mA) + 3(m 2 - 4mA + 41(1 + A))m(hm - bA))
14mL(h(-l + m) - bA)m(hm - bl)

2b1 2 (-7m + 61) - 3hm(m 2 - 4mA + 4A(1 + 1))
14mA(h(-1 + m) - bl)

2A(-7m + 6A) - 3(m 2 - 4mA + 4A(1 +1)) 1 3m 2

3 4(12 +2m+ ,)

when p -> 1.

2.2.2.T3*: Upper bound of the Unit-Capacity, Multi-Vehicle LMP under cyclic

assignment policy for a Poisson customer batch size and a square service region

when m/A is large

E() = A

Var({) = A

E(f2) = Var({)+ E2 (f) =A+A 2

E(S) = b

b2
Var(S) =-

7b2

E(S 2) = Var(S)+ E2 (S) =b

CJ = 0 (Due to constant batch or macro customer inter-arrival time)

A
E(N) = -

m
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When m/ is large, because E(Rm - R2 ) - m 2 /4 is not a good approximation, we need

to obtain a better approximation.

According to numerical experiment, when m/t is large, we obtain:

E(Rm - R2 ) -> MA - A(A +1)

Therefore,

Rm-R 2 E
Var(N) = E(Var(NI(K,R))) + Var(E(NI(K,R))) = E( m 2  + Var(-)

E(Rm-R 2 ) A mA-ACA+1) A mA-A 2

M2 m2 M 2  m 2

Ab 2  
2 mA-A2

2 2 E(N)Var(S)+ E2 (S)Var(N) m 6 + b -- 7m
E 2 (N)E 2(S) b2 =

m2

s= E(T) =E(N)E(S)=-A
m

E(T) E(N)E(S) bA
p= = h nh

From the same analysis, we obtain a strict upper bound for the average waiting time

in the original D /G/m/oo model when m/a is large:

E(N)Var(S) + E 2(S)Var(N) E(S)Var(N) + E(S)E 2 (N) - E(S)E(N)

2(h-E(N)E(S)) 2E(N)

A b2 +b2mA-A 2 bmA- 2 + A2 -b A A
m 6 mg b +b b 7b 2 Am-6b2A 2

2A (h -b 12m(mh - bA)
2 (h -Rjb)2A

Similarly, we have the approximation (using the same notations as in Technical

Section 2.2.T):
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p (Ca+Cl)
1-p 2 s

2(1 - p)(1 C)2
eXP- 3p(C + CS)

bA ~7m b
-1 [bA 2(1-

bA 2 m bA
1- 3 R(-1+ A)

7b 2Am - 6b 2A2

12m(mh-bk) 

4(mh - bA)
7bm- 6bA'

E(S)E(N) Var(N) - E N) E(S)
W =Wi1+ 2 + E(N) 2

7b 2 Am - 6b 2A2

12m(mh - bA) *exp
4(mh-bA)

7bm - 6bA]

bA
+ M+--+

MA-A2 A

A 2
m

7b 2 Am - 6b 2 2 r 4(mh - bA)

12m(mh-bA) 7bm-6bA

7b 2Am-6b 2 2  4(mh-b )
l: 2m(mh - bA) ' xp[ 7bm -6bA~W WNG10 (2.2.2.T3.2)

Both the approximate upper bound and the strict upper bound are correct

dimensionally. The strict upper bound is a little larger than the approximate upper bound.

Under heavy traffic,

p -+ 4(mhh-b-)I ,p -1,h-A -0,xp[-7bm-6bA '

the difference between the approximate and strict bounds decreases to zero.

Note, as well, that in the limit, the ratio of the strict upper bound for the average

waiting time under cyclic assignment to the lower bound for the average waiting time:

Upper Bound

Lower Bound

7b 2Am - 6 2A2
12m(mh- bA)

-7mbh + 7bh + 7b 2A
12(ih - bA)

b(7m - 6A)A(-hm + bA)
7(h - hm+bA)m(hm - bA)

b(7m-6 A)A 6A
7(h-hm+bA)m 

-

when p -+ 1 and m/A is large.

49



2.3Numerical Experiments for the Unit-Capacity, Multi-Vehicle LMP

To assess the performance of the many approximate expressions obtained in Chapter 2.1

and 2.2 under a broad range of conditions, a simple simulation of the Unit-Capacity,

Multi-Vehicle LMP was carried out with a program written in java. We consider a square

service region with geometry a/v = b/vy = 2.5 min = 150 sec , headway of h =

10 min = 600 sec, and Poisson-distributed batch sizes of A= 20,40,60,80. We selected

these parameters so that the system would make sense physically. The respective

simulation results are shown in Figures 7, 8, 9, and 10.

h=600sec,b=1 50sec,Lamda=20

5.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Utilization Ratio

Figure 7: Simulation results and cyclic upper bounds of average waiting time when A = 20

h=600sec,b=1 50sec,Lamda=40

E
I-

CD

CD
TO

0.45 0.5 0.55 0.6 0.65 0.
Utilization Ratio

Figure 8: Simulation results and cyclic upper bounds of average waiting time when A = 40
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h=600sec,b=1 50sec,Lamda=60

0.65 0.7 0.75 0.8 0.85 0.9
Utilization Ratio

Figure 9: Simulation results and cyclic upper bounds of average waiting time when A = 60

h=600sec,b=1 50sec,Lamda=80

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
Utilization Ratio

Figure 10: Simulation results and cyclic upper bounds of average waiting time when A = 80.

The figures plot the simulation results and our estimates for the average waiting time

per customer W (in seconds) against the utilization ratio = blmh . Since the simulated

system has Poisson customer batch size and a square service region, and m/A is not large,

only expressions (2), (5), (6), (8), and (9) from Chapter 2.1 and 2.2 are applicable and

considered here.

Comparison with the simulation results led to two initial observations: first, the strict

lower bound (2) is not useful, as it provides poor estimates of W, often including

negative values; and, second, the strict randomized assignment upper bound (5) and the
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approximate randomized assignment upper bound (6) is also unreliable as it often

generates very high estimates of delays. The values obtained from (5) and (6) have

therefore been omitted from Figures 7-10, which only show the strict cyclic upper bound

(8), the approximate cyclic upper bound (9) and the simulation results.

As can be seen in the figures, the strict cyclic upper bound, (8), is a consistently reliable

upper bound for W, while the approximate cyclic upper bound, (9), provides a very good

approximation for the entire range of parameter values explored, which span the full set

of conditions under which the LMTS remains stable. In a practical system, it would be

desirable to achieve values of 1 to 5 minutes, for the average waiting time until customers

to board a vehicle. Note from Figures 7-10 that for this range of values (60 to 300

seconds) the difference between the approximate cyclic upper bound and the simulation

results stays small in both absolute and percentage terms. For example, when A = 20

(Figure 7), this difference never exceeds 30 seconds and 15% for values of W between 2

and 4 minutes. For a queuing system as analytically complicated as Df/G/m/oo,

expression (9) performs remarkably well.

We also note that it is not surprising that (9), the approximate cyclic upper bound,

performs much better than (6), the approximate randomized upper bound. This is because

the customers are more evenly distributed among the vehicles under the cyclic

assignment policy than under the randomized assignment policy and, consequently, the

variance of the service times under the former policy is much smaller than under the

latter for instances of practical interest.

In conclusion, given the train frequency (batch inter-arrival times), customer arrival

intensity (batch size), geometry of the service region (shape and size), distance metric

(right-angle, Euclidean) and vehicle speed, we can use expressions based on the strict

cyclic upper bound, (8) and the approximate cyclic upper bound, (9), to estimate LMTS

system performance for any given number of unit-capacity vehicles. Chapter 2.4 will first

demonstrate the robustness of (8) and (9) to mild changes in the assumptions under which

they were obtained. In Chapter 3, we shall seek to extend our findings to the general case

in which vehicle capacity can be greater than 1.
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2.4 Sensitivity Analysis: Unit-Capacity, Multi-Vehicle LMP

In this section, we relax the assumptions concerning the shape of the service region and

the continuity of the travel medium to derive expressions for W, analogous to (2), (5), (6),

(8), and (9), for three specific cases: a rectangular service region; a diamond-shaped

region; and a service region that includes a barrier to travel. We then repeat our

simulation experiments to test the performance of the new expressions and conclude that

the strict cyclic upper bound and the approximate cyclic upper bound continue to

outperform the other bounds and to provide accurate approximations to W under a wide

range of conditions.

2.4.1 Rectangular Service Region (a = kb, k > 1)

The service region is now assumed to be a rectangle with length of a and width of b, as

illustrated in Figure 11. Travel is according to the right-angle metric in directions

parallel to the sides of the rectangle.

a: Passenger destination

Rail Station a

\Wdth=b miles

Length=a=kb miles

Figure 11: Rectangular service region

The expressions for the five strict and approximate bounds for this case are derived in

Technical Section 2.4.l.T. For the simulation experiment, we considered two examples:

(i) a/v, = 3 min = 180 sec,b/vy = 2 min = 120 sec;
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(ii) a/vx=4min=240secb/vy=2min=120sec;

The headway h is set at 600 sec and the batch size of arriving customers at the train

station is assumed to be Poisson-distributed with A = 20,40,60,80.

A typical instance of the results and comparisons for just one case (Example (i) with

1= 20) is shown in Figure 12. As in Figures 7-10, the theoretical estimates shown are

limited to those obtained through the best performing expressions, namely the strict

cyclic upper bound and the approximate cyclic upper bound.

h=600sec,a=1 80sec,b=120sec,Lamda=20
400L i tt 1

350-
-- Simulation Results

300 - -Approximate Cyclic Upper Bound
E Strict Cyclic Upper Bound

100 --

510

0. 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.833
Utilization Ratio

Figure 12: Simulation results and cyclic upper bounds when a = 180secb = 120seci =20

For Example (i), i.e., for k = 1.5, and for values of the average waiting time of the

order of 1 to 4 minutes, the percent difference between the approximate cyclic upper

bound and the simulation results is of the order of 10-25% for the entire range of values

of 1 (= 20, 40, 60, 80). For Example (ii), i.e., for k = 2, a = 240sec, b = 120sec, this

increased to 20-35%. Thus, as k becomes larger and the service region more elongated,

the approximate cyclic upper bound becomes less accurate. This is because this

approximate bound is sensitive to the variance of the service times which, in turn,

increases as the region becomes more elongated and resembles a rectangular strip. The

bound's accuracy is, however, relatively insensitive to the customer demand intensity A.
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2.4.1.T*: Sensitivity analysis of Unit-Capacity, Multi-Vehicle LMP for rectangle

service region with length a and width b (a = kb, k > 1)

S is individual customer service time (round trip) in the region, we know:

(k +1)b (k2 +1)b 2

E(S) = 2 ,Var(S)= 12

(2k2+2+3k)b2 k2 +1
6 3(k +1) 2 '

E(T) E(N)E(S) (k + 1)bA

h h 2mh

(k+1)bA (k+1)bA
s =E(S)E(N) = m 2m

Strict Lower Bound:

E({)E(S)E(S 2) + hE(S2 ) - 2hE2 (S) - mhE(S2 )
2E(S)(mh - E({)E(S))

(k + 1)b (2k 2 + 2 + 3k)b 2 +h (2k2 + 2 + 3k)b 2 - 2h(k +1) 2 b2  (2k 2 + 2 + 3k)b 2

2 6 +h 6 2h 6

2 (k + 1)b mh-A(k+1)b)

b(-2h(1 + 2m + 3k(1 + m) + k2 (1 + 2m)) + b(2 + 5k + 5k 2 + 2k 3 )A)
6(1 +k)(-2hm+b(1+k)A)

b(-2h(1 + 2m + 3k(1 + m) + k 2 (1 + 2m)) + b(2 + 5k + 5k 2 + 2k 3 )A) (2.4.1.T.1)
6(1+ k)(2hm - b(1+ k)A)

Randomized Upper Bound:

E(f) = A

Var(f) = A

E({2) = Var(() + E2 (f) = A+A 2
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(k+1)b
2

(k2 +1)b2
Var(S) = 12

E(S 2) =Var(S) + E2 (S) = (2k 2 +2 +3k)b 2

6

E(N) =
m

Var(N) =-
m

C = 0 (Due to constant batch or macro customer inter-arrival time)

A (k2 +1)b 2 (k+1)2 b2 1.
C - E(N)Var(S) + E2 (S)Var(N) _ 12 4 + +l

E 2(N)E2(S) ~ A2 (k + 1) 2 b2

mn~7 4

2(2+3k+2k 2)m
3(1+ k) 2 A

(k +1)b~2k+ ) A (k + 1)bA
s = E(S)E(N)= 2 2m

m 2m

E(T) E(N)E(S) (k+1)bA

h 2mh

Thus, using the general conclusion, we can obtain a strict upper bound for the average

waiting time in the original Df/G/m/oo model:

mhE(S)E({2 ) - mhE(S)E({) + mE(S 2)E2 () - E2 (S)E 3 (g)
2m(mh - E({)E(S))E()

(k + 1)b(A+ A2) _mh (k+1)b (2k2 +2 + 3k)b2A2 _(k +1 2b2A322 ~.m 6 4

2m(mh - A (k + 1)b A

bA(6h(1 + k)m + b((4 +6k + 4k 2 )m - 3(1 + k)2A))
12m(2mh - b(1 + k)A) (2.4.1.T.2)

Similarly, we have the approximation:
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p (Ca+C?) [ 2(1-p)(1-C) 2

i1-p 2 s-exp- 3p(Ca+C) J
(k+ 1)bA

2mh
(k+ 1)bA

1~ 2mh

2(2 + 3k + 2k2)m
3(1 + k)2A (k + 1)bA

2 2m

b2(2 + 3k + 2k2) 

6(2mh - b(1 + k)A)

2 (k + 1)bK)2 2mh I
3 (k + 1)bA -2(2 + 3k + 2k 2 )m

2mh 3(1+k) 2A ]
(1 + k)(-2hm + b(1 +k)A)r

b(2 + 3k + 2k 2 )m j

E(S)Var(N) + E (S)E2 (N) - E(S)E(N)
W1 +| 2E(N)

b2 (2 + 3k + 2k 2 )A
6(2mh - b(1 + k)A) '

(k-+1)bA +(k+1)bA 2 (k + 1)b A

+ 2 m 2 2 m

2-m

b2 (2+3k+2k 2)i 
6(2mh - b(1 + k)A) -

b2 (2 + 3k + 2k 2)A
W ; WDN/G/, " 6(2mh - b(p + k)L) exp

(1 + k)(-2hm + b(1 + k)A),
b(2 + 3k + 2k 2 )m I

b(1+k)A
4m

(1+ k)(-2hm + b(1 + k)A) b(1 + k)A
b(2 + 3k + 2k2)m 4m

Both the approximate upper bound and the strict upper bound are dimensionally

correct. The strict upper bound is larger than the approximate upper bound.

Under heavy traffic,

p -> 1,2mh - (k + 1)bA -> 0, exp (1+ k)(-2hm+ b(1 + k)A)
b(2 + 3k + 2k 2)m

the difference between the approximate and strict bounds is reduced to zero.

Cyclic Upper Bound:
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Var({) = A

E( 2)=Var({) + E2 (f) = A + A2

(k+1)b

2

(k2 +1)b 2

Var(S) = 12

E(S 2) = Var(S) + E2 (S)

E(N) = -
m

(2k 2 + 2 + 3k)b 2

6

4Var({) + m 2  4A + m 2

Var(N) 4m 2  
4m 2

CJ = 0 (Due to constant batch or macro customer inter-arrival time)

E(N)Var(S) + E2 (S)Var(N)

E 2(N)E 2 (S)

A (k 2 +1)b 2  (k +1) 2 b2 4A+m 2

in 12 + 4 4m2
A2 (k +1) 2 b2

m7 4

3(1 + k) 2 m 2 + 12(1 + k) 2A + 4(1 + k 2)mA

12(1 + k) 2A2

s = E(S)E(N)

(k+1)b A (k+1)bA

m 2m

E(T) E(N)E(S) (k+1)bA
P= = h 2mh

Thus, using the general conclusion, we can obtain a strict upper bound for the average

waiting time in the original Df/G/m/oo model:
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W < 4mE2 ({)E(S 2) - 4E 2 (S)E 3 ({) + 4mhE(S)E({
2) + m 3hE(S) - 4m 2 hE(S)E({)

8m(mh - E({)E(S))E({)

4 mA2 (2k2 + 2 + 3k)b 2  
4 (k +1) 2 b2 A3 + 4 mh(k+1)b (A+22)+M3h(k +1)b 4m2h(k +1)b6 4 2 2 2

8m mh-A (k+1)b

b(2bA2 ((4 + 6k + 4k 2)m - 3(1 + k) 2A) + 3h(l + k)m(m 2 - 4mA + 4A(1 + A)))
24mA(2hm - b(1 + k)A) (2.4.1.T.4)

Similarly, we have the approximation:

P (C+cy)[ 2(1-p)(1-c)
2

1 - p 2 s 3p(Ca + cG) j
(k + )bA 3(1 + k) 2m 2 + 12(1 + k) 2A+ 4(1 + k 2)mA

2mh 12(1+ k)2 A2  (k +1)bA
1 (k +1)bA 2 2m
1 - 2mhi

[2 1(k+1)bA\

expi- (k+ (-\ 2mh )

[3 (k+1)bA3(1 +k)
2m 2 +12(1+k)2+4(1+k2)mA

2mh 12 (1 + k)2 A2

b2 (3(1 + k)2 m2 + 12(1 + k) 2 A + 4(1 + k2)mA)
48m(2hm - b(1 + k)A)

exp ~b(3 8(1 + k)A(-2hm + b(1 + k)m)
- x b(3(1 + k)2M2 + 12(1 + k)2A + 4(1 + k2)mA)
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E(S)Var(N) + E(S)E 2 (N) - E(S)E(N)
WDNG/|1|w=W1+ 2E(N)

b2 (3(1 + k) 2 m 2 + 12(1 + k) 2 1+ 4(1 + k 2)mA)
48m(2hm - b(1 + k)A)

exp [ 8(1 + k)A(-2hm + b(1 + k)A)
b(3(1+ k) 2m 2 + 12(1+ k) 2 A1+ 4(1 + k2)mA)

(k+1)b4A+m 2  (k+1)bA 2  (k+1)bA
2 4m2  2 ~M 2 IE

2A

b2 (3(1 + k) 2 m 2 + 12(1 + k) 2A + 4(1 + k 2)mt)
48m(2hm - b(1 + k)A)

exp ~3(+8(1 + k)(-2hm + b(1 +k))
b(3(1+ k) 2 m 2 + 12(1+ k) 2A + 4(1+ k2)MLA)

+b(1 + k)(M2 - 4mA + 4(1 + A))
16ml

W5 WDN/G/l/M

Sb2 (3(1 + k) 2 m 2 + 12(1 +k) 2 A+ 4(1 + k 2 )m4)
48m(2hm - b(1 + k)1)

-exp 8(1 + k)A(-2hm + b(1 + k)A)
b(3(1+ k) 2m 2 + 12(1+ k)2 . + 4(1+ k2)mA)

+b(1 + k)(M2 - 4mA + 4(1 + A))(241T5
+ 16mA (2.4.1.T.5)

Both the approximate upper bound and the strict upper bound are dimensionally

correct. The strict upper bound is larger than the approximate upper bound.

Under heavy traffic,

p 8(1 + k)M(-2hm + b(1 + k)A)
pb(3(1+ k)2m 2 + 12(1+ k) 2A+ 4(1+ k2 )m) '

the difference between the approximate and strict bounds is reduced to zero.

2.4.2 Diamond Service Region with Side of Length b
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In the next sensitivity test, the service region is assumed to be a perfect four-sided

diamond with side equal to b, as illustrated in Figure 13. The theoretical results for this

case are derived in Technical Section 2.4.2.T.

Figure 13: Four-sided diamond service region

In the simulation and numerical comparisons we considered a service region such that

b/vx = b/vy = 2.5 min = 150 sec, with a headway of h = 10 min = 600 sec, and Poisson-

distributed customer batch sizes with A = 20,40,60, 80. Comparisons with the simulation

results, when A = 20, are shown in Figure 14.

Diamond region,h=600sec,b=150sec,Lamda=20

E
CO

CO

V
(D

048 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.943
Utilization Ratio

Figure 14: Simulation results and cyclic upper bounds of diamond service region when b =
150sec,i = 20
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For average waiting times of the order of 1 to 4 minutes, the percent difference

between the approximate cyclic upper bound and the simulation results is of the order of

10-20%. The accuracy of the bound is insensitive to the customer demand intensity A.

2.4.2.T*: Sensitivity analysis of Unit-Capacity, Multi-Vehicle LMP for diamond

service region with side b

S is individual customer service time (round trip) in the region. We know:

S <s rfb;fs (S)= ,2 0 < S 5/b

Fs(s)=

2Vz 8 1 1
E(S)= -b,ES 2) = b2 ,Var(S)= E(S2)-E(S)2 =b 2  b2 1-b2,C2 =

3 9 9 8S

E(T) E(N)E(S) 2V2bA

p= = h 3mh'

s = E(S)E(N) = = 2I/2bA
m 3m

Strict Lower Bound:

E(f)E(S)E(S 2) + hE(S 2) - 2hE2 (S) - mhE(S 2)
2E(S)(mh - E({)E(S))

2 2 2 22AIbb2 + hb2 - 2h(4b)2 -mhb 2  b(-h(7 + 9m) + 6VibA)

212b mh-A b 4(3Nrihm - 4bA)
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Randomized Upper Bound:

E({) =

Var(f) = A

E(2) = Var() +E 2 () =A+A2

2VZ
E(S) = -b

3

1
Var(S)= b2

9

E(S 2) =b2

E(N) =

Var(N) = -
m

CJ = 0 (Due to constant batch or macro customer inter-arrival time)

2 _ 2 _ E(N)Var(S) + E2 (S)Var(N)
C,2 - Ct- E2 (N)E 2 (S)

S b2 +( 2b)2 9 m

- ( b)2

V2bA 2NfibA
s=E(S)E(N)= = m 3m

E(T) ECN)E(S) 2V-ibA
p = h 3mh

Thus, using the general conclusion, we can obtain a strict upper bound for the average

waiting time in the original Df/G/m/oo model:
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mhE(S)E({2 ) - mhE(S)E({) + mE(S 2)E 2 (f) - E2 (S)E 3 (f)
2m(mh - E({)E(S))E({)

mh b(A +2)- mh bA + mb~x - A )g

2m mh - A2-b A

b(9bm + 6V hm - 8bA)
6m(3hm - 2vZbA) (2.4.2.T.2)

Similarly, we have the approximation:

p (C +c ) [ 2(1-p)(1-ca) 2

W - 2 s exp I 3p(C +C ) j

2F2bA 9m 2 1-
3mh -8 2NF2bA 3mh

2VZbA 2 3m 2 -2bA 9m
1- 3mh [ 3mh 8A

3b 2 A 4 3VZh 4A
-exp - + -)

6hm-4VZbA X[27( b mrnW'

WDNfG11/m = , + E(S)Var(N) + E(S)E 2 (N) - E(S)E(N)
1 2E(N)

2VZ A 2vZb A2 2v ,Zb
3b 2 A 4 3,FZh 4A 3 m,13 bn~ 3 m

v 6hm- 4,F2bA 2' [7 b m 2 A
m

3b 2 A 4 312Zh 4A ,2bA

6hm - 4V4bA ex ~7 b +m 3m

3b 2,A 4 3Nrih 4A NZbA
W b WNI-1e1pD[ (- m 3m (2.4.2.T.3)

Both the approximate upper bound and the strict upper bound are dimensionally

correct. The strict upper bound is larger than the approximate upper bound.

Under heavy traffic,

-> 1,3mh - 2 thebA -+ 0 p, ads - r + bou~ d i

the difference between the approximate and strict bounds is reduced to zero.
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Cyclic Upper Bound:

E({) = A

Var( ) = A

E(2) =Var({) +E 2() =A +A 2

E(S)= -b
3

1
Var(S)= b2

9

E(S 2) =b2

E(N)=-
m

Var(N)5 4Var({) + m 2 4A + m 2

4m 2 4m 2

C2 = 0 (Due to constant batch or macro customer inter-arrival time)

C2 -C2 -E(N)Var(S) + E2 (S)Var(N)
Cs2 -Ct- E 2 (N)E 2 (S)

21 2,F 24A+m 2
1b2+( 3 b)24m 2 2m 2 +8A+ma

< M9 3 +W 8A__+__

A2 242- 8A2

( b)

~ba 2V3ba
s=E(S)E(N)= = - 3m

m 3

E(T) E(N)E(S) 2V2bA

hh 3mh

Thus, using the general conclusion, we can obtain a strict upper bound for the average

waiting time in the original Df/G/m/oo model:
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4mE2 ({)E (S2 ) - 4E2 (S)E 3 ({) + 4mhE(S)E({ 2) + m 3 hE(S) - 4m 2 hE(S)E({)

8m(mh - E({)E(S))E({)

4mA2 b2 -4( b)2.3+4mh b(A h2)m 3 b-4m2h2 bA

8m mh-A 4b A

b(2b(9m - 8A)A 2 + 3V/Zhm(m 2 - 4mA + 4A(1 + A)))

12mA(3hm - 2V7bA)

Similarly, we have the approximation:

(c + cjs2 -e pp (C2- -p 2 sexp[
2(1 -p)( -)2

3p(CJ + C) j

2V7bA 2m2 + 8A + mA
3mh 81.2 2FZbA
2VZbA

1 3mh
2

( 2 (1 _ 2

2ZbA22m2+8A+mAI
3 3mh 8A2

b2 (2m 2 + 8A + mA) 4A(-3-V2hm + 4bA)

6m(3hm - 2v'7bA) 3b(2m2 + 8. + mA)'

WDNIGI1-, = W1 +
E(S)Var(N) + E(S)E 2 (N) - E(S)E(N)

2E(N)

b2 (2m 2 + 8A+mA)
6m(3hm - 2VZbA)

4A(-3VZhm + 4bA)

3b(2m2 + 8A+ miA)

2 Zb 4A+m 2 2VZ ' 2 2Vb A
+ 4m2-- 3 3 i

2-

b2 (2m 2 + 8A + mA) 4A(-3V4hm + 4bA)

6m(3hm - 2v'ZbA) 3b(2m2 + 8A + mA)j

b(m 2 - 4mA + 4A(1+ A))

6VZmA

W< WDNI/G1 co

b2 (2m 2 + 8A + mA) 4A(-3Vihm + 4bA)

6m(3hm - 2vibA) 3b(2m2 + 8A + mA)

b(m 2 - 4mA + 4A(1+ A))

6VZmA
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Both the approximate upper bound and the strict upper bound are dimensionally

correct. The strict upper bound is larger than the approximate upper bound.

Under heavy traffic,

[4A(-3V2hm + 4b)

- 1,3mh - 2v'2bA -+ 0, exp 2 + -+ 1,L3b(2m 2 + 8A+ ml)j

the difference between the approximate and strict bounds is reduced to zero.

2.4.3 Rectangular Service Region with Barrier

The service region is next assumed to be rectangular service region that contains an

impenetrable barrier to travel. The geometry of the barrier is shown in Figure 15.

Technical Section 2.4.3.T contains the theoretical derivations for this case.

Unit: mile

Wdth=b miles

Length=a miles

Figure 15: Rectangle service region with barrier inside

In the simulation and numerical comparisons we considered a service region such that

a/vx = 2.5 min = 150 sec, b/vy = 2 min = 120 sec, d/v, = 0.625 min = 37.5 sec, e/

vy = 0.5 min = 30 sec, f/vy = 0.25 min = 15 sec, with headway of h = 10 min = 600 sec,

and Poisson-distributed passenger batch sizes of A = 20,40,60,80. The simulation results

when A = 20 are shown in Figures 16.
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Sarrierh=600sec.a=1 5Osec.b-120sec.d=37.5sec.e=3Osecif=15sec.Lamda=20

oj 6W00
C -Simulation Results

500 -. t-Approximate Cyclic Upper Bound
-Strict Cyclic Upper Bound

a 400 -

300-

100-

0 43 0.3 0.35 0.4 0. 0.5 0.5 0.6 0.6 0.7 0.75 0.8 0.85 0ED.925
Utilization Ratio

Figure 16: Simulation results and cyclic upper bounds, rectangle service region with barrier,
when A = 20.

For average waiting times of the order of 1 to 4 minutes, the percent difference

between the approximate cyclic upper bound and the simulation results is again of the

order of 10-20%, and the accuracy of the bound was insensitive to the customer demand

intensity A.

Overall, the sensitivity analysis of this section, suggests that the strict cyclic upper

bound and the approximate cyclic upper bound remain valid and provide good estimates

of performance for a wide range of customer demand rates and for differently shaped

compact and convex service regions.

2.4.3.T*: Sensitivity analysis of Unit-Capacity, Multi-Vehicle LMP for rectangle

service region with barrier

S is individual customer service time (round trip) in the region. We divide the region to

six different areas, then compute E(S), E(S 2), Var(S), using total expectation law. The

area division is illustrated as follows:
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Unit: mile

Width=b miles
i I (4)

Length=a miles

Figure 17: Area division for the rectangle with barrier

6

E(S) = P (Area i)E(SIArea i)

b a b
= 2 + 

ab 4 4

bd d b
+ -2 +

ab2 T1

b-/( -e)(a - d)
+ ab 2 d

a -d b-e
+ -d e-e)

+e+2+2

+ (-f)(-d)
+ 2 + f + 2

f 4 -d 8
+- ab 2 (d+ e + 2 f

+2

e(-d) (d

1 4ef 8ldef=.- (a + b + b -ab)

E(Slcorner to a x b Rectangle,round trip) = a + b

4az
E(S 2 |corner to a x b Rectangle,round trip) = -+ 2ab

3

E(SlPoint g away from corner to a x b Rectangle, round trip) = 2g + a + b

E(S 2 |Point g away from corner to a x b Rectangle, round trip) = E((2g + Se) 2)

= E(4g 2 + Se2 + 4gSe) = 4g 2 + 4gE(Se) + E(Se2 )

= 49 2 +4a 2  4b 2

= 4g2 +4g(a+b)+ +2ab+ -

3 3
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e
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E(S 2 Area1)= a2 + ab +b 2
3 2ea3

4d 2
+ bd +3

24a
2  + b 2

=4g2 +4g(a+b)+-+2ab+-

=4(d+e +4(d+e) -d)+

+2 - d) (2
b~ 24 - e)

e)I +

(b \ +4(a-d)2
-e + 3

=1(2a 2+a(3b+4d+6e) +2(b 2 +3bd +4d 2 +2be+6de+4e2 ))
6

=4g 2 +4g(a+b)+ +2ab+

=4(d +f) 2 +4(d+f)

+2 - d) (o -f +
(~2

f ) 1

+4 a d)2

1
Z-(2a 2 + a(3b + 4d + 6f) + 2(b 2 + 3bd + 4d 2 + 2bf + 6df +4f 2 ))

E(S 2 |Area5) 4g2+4g(a+b)+ 4a+ 2 a b+ 2

=4(d + e)2 + 4(d + e) - d) +f)
4(a_ d) 2

+ 3 +2 - d)f +

=1(a2+a(2d+6e+3f)+2(2d2+6de+6e2+3df+6ef+2f2))

E(S 2 Area 6) 4g 2 +4g(a+b)+ 4a+ 2 a b+ 2

( a= 4(d +f) 2 +4(d+f)

=(a 2+a(2d+3e+6f)+2(2d 2 +3de+2e 2 +6df+6ef+6f 2 ))3
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E(S 2 |Area 3)

E(S 2 |Area 4)

= 2
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Therefore,

6

E(S 2) = P (Area i)E (S2 |Area i)

ab a2 ab b 2 bd b2 4d 2  -e)(E-d) 1
=21a++a)+b(T+bd+ )+ a (-(2a2

+a(3b+4d+6e)+2(b2 +3bd+4d2 +2be+6de+4e2 )))

T-f)(1-d)1
+ ab _ ((2a2 + a(3b + 4d + 6f) + 2(b2 + 3bd + 4d 2 + 2bf

f( -d)
+6df +4f 2 )))+ ( (a2 +a(2d+6e+3f)+2(2d2 +6de+6e2

ab 3

e(I-d) 1
+ 3df +6ef+2f 2 ))) + ( (a 2 +a(2d+3e+6f)+2(2d 2 +3de

+2e 2 + 6df + 6ef +6f2)))

2a3b-48def(d+e +f)+3a 2 (b2 +4ef)+2a(b3 +12ef(e+f))

6ab

(2.4.3.T.2)

Var(S) = E(S 2 ) - E 2(S)

2a3b - 48def(d + e + f) + 3a 2 (b2 + 4ef) + 2a(b3 + 12ef(e + f))
6ab

S(a + b + 8def)) 2  (2.4.3.T.3)

C2 =Var(S)
E2(S)

2a 3b-48def(d+e+f)+3a(b+4ef)+2a(b3 +12ef(e+f)) 1 4ef adefn

(a+b+ 5- )2

We consider a specific example with the following geometry:

5 a 5 b b
a=-b,d= = b,e=-,f--

S is individual customer service time (round trip) in the region. From the conclusion

above, we obtain:
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1() a 4ef Bdef\) 37b
E 2S)= a+b - )=

2a 3b - 48def(d + e +f) + 3a 2 (b2 + 4ef) + 2a(b3 + l2ef (e +f))
V ar(S) = 6ab

4ea+ b + 
9 2 )2

I~k b 1 ab / 3072'

E(S 2) = 2a 3 b - 48def(d + e + f) + 3a 2 (b2 + 4ef) +
6ab

2a(b 3+ 12ef (e +f)) 1199b 2

768

689b 2

C2 = 3072 - 689
s 37b2 4107'

E(T) E(N)-7- 37bA
h h 32mh

37bA
s = E(S)E(N) =

32m

Strict Lower Bound:

E({)E(S)E(S 2) + hE(S2 ) - 2 hE2 (S) - mhE(S 2)
2E(S)(mh - E({)E(S))

37b1199b 2 1199b 2  37b 199b2
32 768 +h 768 -2h( 2  768

2 (mh-A:)
b(-16h(1709 + 2398m) + 44363bA)

1776(32hm - 37bA)

Randomized Upper Bound:

E({) = A

Var({) = A

E({2) = Var({) + E2(f) = A +A2
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37b

Va(S) = 689b 2

V 3072'

1199b
2

768

E(N) =-
m

Var(N) = -
m

CJ = 0 (Due to constant batch or macro customer inter-arrival time)

A 689b 2  37b 2 A

C2 - C2 - E(N)Var(S) + E2 (S)Var(N) _ m 3072 + O32) m - 4796m
Cs t E2(N)E 2 (S) A2 37b 2  4107A

37bA 37b

s =E(S)E(N) =- 
m 32m

37b
E(T) E(N),I2 37bA

h ~~h~ h 32mh

Thus, using the general conclusion, we can obtain a strict upper bound for the average

waiting time in the original Df/G/m/oo model:

mhE(S)E({2 ) - mhE(S)E({) + mE(S 2)E2 (f) - E2 (S)E 3 (f)
2m(mh - E({)E(S))E(f)

mh (A+A2)-mh 7bA+m 799b 2 2_( 372A3
332 3b768 32

2m (mh -A -r2-) A

bA(4796bm + 3552hm - 4107bA)
192m(32hm - 37bA) (2.4.3.T.5)

Similarly, we have the approximation:
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p~ (C+C)s p)(1- C) 2

i-p 2 [-P)a(C+C)

37bA 4796m
32mh 4107A 37bl

37bA 2 3 2m p
32mh

r 32b
2 1-32mh]

3 37bl 4796m
3 32mh 4107A.

1199b 2A 37(-32hm + 37bA)
48(32hm - 37b) 2398bm

WDNIG111, = W1 +
E(S)Var(N) + E(S)E 2 (N) - E (S)E(N)

2E(N)

37bA 37b A 2  37b A
1199b2 A 37(-32hm + 37bl) 3 +2 m -2 m- 32 m

48(32hm - 37bA) 2398bm 2-

1199b 2
Air 37(-32hm+ 37bA) 37bA

48(32hm-37bA) 2398bm 64m

1199b 2A 37(-32hm +37bA.) MAb~
W :5WDNI1 /G/lfO 48(32hm-37bA.) e p[ 2398bm64 (2.4.3.T.6)

Both the approximate upper bound and the strict upper bound are dimensionally

correct. The strict upper bound is larger than the approximate upper bound.

Under heavy traffic,

p -> 1,32mh - 37bA -+ 0, exp [37(-329 b+ 37b1)

the difference between the approximate and strict bounds is reduced to zero.

Cyclic Upper Bound:

E({) =A

Var() =A

E({2) = Var({) + E2({) =A++12

37b
E(S) =T2
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689b
2

Var(S)= 3072'

1199b
2

768

E(N)=-

4Var() + m 2  4A+M2
Var(N) ; 4m 2  4m2

Ca= 0 (Due to constant batch or macro customer inter-arrival time)

A 689b 2  37b 2 4A +m2

2 Var(S) + E2(S)Var(NV) m 3072 +32 4m m2  689m
Cs=E2(N)E2(S 2 37b 2_+ 17

37b
My A f 

37bAA407

s= E(S)E(N)= 37b
m 32m

37b
E (T) E (N)-32- 37bA

h h 32mh

Thus, using the general conclusion, we can obtain a strict upper bound for the average

waiting time in the original D /G/m/oo model:

4mE2({)E(S 2 ) - 4E2 (S)E 3 (f) + 4mhE(S)E({ 2) + m3 hE(S) - 4m 2 hE(S)E(f)

W~ 8m(mh - E(f)E(S))E()

4mA21199b2  4 3 7 b3 + 4mh 3 7 b (A + A2) + m3h7b - 4m2h 7 A
- 768 k32-3232 32

8m (mh - A )

b(b(4796m - 4107I)A2 + 888hm(m2 - 4mA + 41(1 + A)))
192mA(32hm - 37bA) (2.4.3.T.7)

Similarly, we have the approximation:
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W1  p -(C+C) [- exp 2(1 - p)(1 - C)2

1 - p 2 p 3p(Ca + Cs)

37b m 2  1 689m
32mh 4z2 + 4107A37bA

37bA 2 32m
1 - 32mh

b2 (4107m2 + 164281 + 2756mA)
7 68m(32hm - 37bA)

296A(-32hm + 37bA)
exp [b(4107m2 + 164281 + 2756mn)

37bAl
2(1 -)32mh

37bA m 2  1 689m
3 32mh (ir + 7 + -41-0 7A)

E(S)Var(N) + E(S)E 2 (N) - E(S)E(N)
W N/G/, = W1 + 2 E(N)

b2 (4107m 2 + 16428A + 2756m)
768m(32hm - 37bA)

37b 4A+ m 2  37b A2  37b A
296A(-32hm + 37bA) 132 4m +-_-_-_32 m

-e[b(4107m2 + 16428A + 2756mA) 2 A

b2 (4107m 2 + 16428A+ 2756mA)

7 68m(32hm - 37bA)

296A(-32hm + 37bA) 37b(m 2 - 4mA + 41(1 + A))
-exp [b(4107m2 + 164281 + 2756mlA) 256mA

W <_ WNGlc

b2 (4107m 2 + 164281 + 2756m)
768m(32hm - 37b)

296A(-32hm + 37bA) 37b(m 2 - 4m1 + 4(1+A))
- exp [b(4107m2 + 164281 +2756mL) 256mA

Both the approximate upper bound and the strict upper bound are dimensionally

correct. The strict upper bound is larger than the approximate upper bound.

Under heavy traffic,

296A(-32hm + 37bA)
p -+ 1,32mh - 37bA -> 0, exp [(41 7m2 + 16428A+ 2756mA)]

the difference between the approximate and strict bounds is reduced to zero.
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3. General-Capacity, Multi-Vehicle LMP: Upper Bounds and

Approximations

In this Chapter we consider the General-Capacity, Multi-Vehicle LMP, in which both the

vehicle capacity, c, and the number of vehicles, m, are arbitrary positive integers. The

vehicles will now travel along more complicated routes than in the c = 1 case to deliver

customers to their destinations. In practice, one would expect the vehicle capacity to be a

small number of the order of 4 to 10 customers - unless the LMTS fleet consists of bus-

size vehicles, in which case the methodologies laid out in this thesis are less applicable.

As explained in Chapter 1, the General-Capacity, Multi-Vehicle LMTS will be

viewed as a spatially distributed queuing system in which the service times are equal to

the amount of time it takes to complete a customer delivery tour and return to the train

station - see also Figure 3. Vehicle routing and path choice issues must therefore be

addressed in this connection. This is done in this Chapter, which also summarizes the

bounds and approximations we have obtained.

The approach to be described consists of the following three steps: (i) customers are

partitioned into clusters with the size of each cluster no larger than the vehicle capacity, c;

(ii) each cluster is assigned to a vehicle and a delivery route is designed for each vehicle;

(iii) using the service times (i.e., tour durations) computed in the previous step, the

(appropriately modified) queuing results from the Unit-Capacity model of Chapter 2 are

then applied to estimate system performance. The performance measures we shall

concentrate on include average waiting time until boarding a vehicle and average time

until delivery to destination, i.e., the sum of the time spent waiting to board a vehicle and

of the time spent riding until delivery.

3.1 Approximating the Expectation and Variance of Tour Lengths

Since we are looking for widely applicable approximations and bounds on system

performance and not for exact expressions, we have selected a "greedy" partitioning
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strategy for assigning customers to vehicles. Specifically, we partition customers in each

arriving batch simply according to their order of arrival at the station. In other words,

Vehicle 1 serves customers 1, 2, ..., c in a single tour, Vehicle 2 serves customers c + 1,

c + 2,..., 2c in a single tour, and so on. If we consider the c customers served by one

vehicle as a single request for service, the number of service requests after the arrival of

each train is given by (/c, when the size of an arriving batch is f.

For the routing step, we also use a "greedy routing strategy" - which, however, is

refined subsequently, in the manner described later in this Chapter. Upon leaving the rail

station with c customers on board, the vehicle will first deliver the customer whose

destination is closest to the station, denoted as Point A in Figure 18, then the customer

whose destination is closest to point A (i.e., Point B in Figure 18) and so forth. Finally,

after delivering the last customer (Point F) the vehicle will return to the rail station. Thus,

we construct a vehicle tour using essentially a "Nearest Neighboe' (NN) heuristic

approach. The reason for following this sub-optimal routing strategy is that it is

mathematically feasible to compute approximately both the expected length and the

variance of the length of a NN tour that delivers c customers and returns to the rail station.

Both of these quantities (expected length and variance of the length) are necessary if one

is to apply the queuing expressions derived in Chapter 2.

A better alternative would have been to find the Hamiltonian tour, i.e., the optimal

"Traveling Salesman" tour (TST), through the c + 1 points (customer destinations plus

rail station) to be visited. However, we are not aware of any simple explicit expressions

for the variance of the length of TST tours. We have therefore opted for the NN-based

routing approach. We have, however, attempted to correct the expressions for "expected

length" and "variance of length" derived through the NN-based approach, by comparing

these with corresponding estimates (expectation and variance) obtained through many

numerical experiments.
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Last Leg Capacity=6 a: Passenger destination
Middle Leg

First Leg

AMiddle Leg

Track E Rail Station B

Middle Leg Middle Leg
D Middle Leg C Width=b miles

Length=a miles

Figure 18: Greedy routing strategy for the General-Capacity, Multi-Vehicle LMP

The tour shown in Figure 18 consists of one First Leg, c - 1 Middle Legs, and one

Last Leg. The expected length of the entire route is then given by

E(SE) = SFirst Leg + SmiddLe,c- + '' + SmiddLe,1 + SLast Leg (11)
where the notation sFirst Leg and SLast Leg denotes, respectively, the expected length of the

first and last legs of the tour, while smiddLejc denotes the expected distance between the

destination of the last customer delivered and the nearest destination of k remaining

customers still to be delivered. For example, smiddle,c-1 denotes the distance between the

first of the customers delivered (i.e., the nearest one to the rail station) and the nearest

destination among the destinations of the remaining c - 1 customers still to be delivered.

The variance of the length of the entire service route can be similarly approximated as
VARE = VARFirst Leg + VARmiddiec-1 + ---+ VARmiaiae,i + VARLast Leg, (12)

where VAR denotes a variance and the subscripts can be interpreted in exactly the same

way as the subscripts of the expectations, s, above. Finally, the second moment of the

length of the entire service tour is given by SQE = E(SE) = VARE + (E(SE)) 2.

The above estimates of the moments and variance of the service tour can be converted

into time units, if one is given information about the speed of travel in the region of

interest. To simplify this conversion, we shall continue to assume here that travel speed

is constant and equal to 1 throughout the region.
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We have derived approximate expressions for E(SE), VARE , and SQE assuming a

right-angle travel metric and a rectangular service region of size a x b. With the NN

("greedy") routing strategy, the length of the first leg of the delivery tour is the distance

from the rail station to the nearest of c random points (c random customer destinations),

while the last leg is the distance from another (approximately) random point (the

destination of the final customer served in the tour) back to the rail station. It is not

difficult to derive the expectation and variance of these distances as shown in Technical

Section 3.L.T1 and 3.1.T2, respectively.

3.1.T1*: Expectation and variance for first leg under greedy routing strategy

First Leg: Service time from the rail station to the nearest of c random points (c

random customer destinations).

In the X axis, random point is uniformly distributed from 0 to a/2:

2
fx(x)= -,x E [0,a/2]

In the Y axis, random point is uniformly distributed from 0 to b/2:

2
fy(y) = ,y E [O,b/2]

S=X+Y

4 ib
-s, S E 0,

2 b b a
fs (S) = -, s SE -, (3.1.Tl.1)

2 2 4 a a+b]
-a+ b- S, S E , 2

2, 2X E [0,b2b 2

Fs (s) = fs(x)dx = 4s - b x E b (3.1.Tl.2)

-a2 - b 2 - 4 s2 + 4 as+ 4 bs a a+b

2 ab 1E 2 1
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SF = min (S 1 ,S 2 , ..., Sc), where Si is identically distributed S.

Fs(s) =1-P(SF > s) = 1 - P(min(S,S 2,. ,Sc) > s) = 1 - PS1 > s) ...P(Sc > s)

= 1-(1 - Fs(s))c

fsF S) dFSF = cfs(s)(1 - Fs(s))c-1

JS~k5 J = ds =css(

Therefore, the expectation of SF(a > b):

SFirst Leg = E (SF) = f ssF(s)ds = f scfs(s)(1 - Fs(s))c-1ds

1 2-ca-c((2a - b)1+c - bi+c) 21-cb( )c

4 1+ c 1+2c

1 3 b
+ 2bHypergeometric2F1[7 , - (3.1.T1.3)

where Hypergeometric2Fl = FI(a, b; c; z) = > 0 (a)k (b)k/(c)k zk/k!, (a)k =

a(a +1)... (a + k - 1) = F(a + k)/(a), (b)k = b(b +1) ... (b + k - 1) =F(b +

k)/F(b), (c)k = c(c + 1) ... (c + k - 1) = F(c + k)/F(c).

The second moment of SF(a > b):

SQFirst Leg = E (SF S2 s S 2cfs(s)(1-Fs(s))C

b
2b(21+ca - (2 - )c(2a + bc))

=2 2-3-c(a
1+ c

+ 2()(b2+2ab(1+ c)+a 2(1 +3c+2c2 )

1+3c+2c
2

1
+ (1+ c)(2 + c)a-c((2a - b)c((2a + b) 2 + 4b(a + b)c + 2b 2c2 ) - bc(b 2

+ 2ab(2 + c) + 2a 2 (1+ c)(2 + c)))) (3.1.T1.4)
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Var(SF) = E(SF2) - E (SF)2

2 b(21+ca - (2 - )C(2a + bc))
~2-3-C(- a+

1 + C

2( ) (b2 + 2ab(1 + c) + a 2 (1 + 3c + 2c2))

1 +3c+2c2

+ (1+ )(2 + c)ac((2a - b)c((2a + b) 2 + 4b(a + b)c + 2b 2 c 2 ) - bc(b 2

+ 2ab(2 + c) + 2a 2 (1 + c)(2 + c))))

2 c (a + b + 2ac)
_ -4-2c( (Dk 1 +2c

a-c ((2a - b)c(2a + b + 2bc) - bc(b + 2a(1+ c)))

1 +c

1 ,bc
+-1+4c2 4 2 -a) c(-2a+b-2bc

+ 21+Ca(2- b)Hypergeometric2[- ,1 - c, , ]))2 (3.1.T1.5)

When the region is square, i.e., a =b

(4b
-S, S E 0,

bss)=4 4 b
b,2 s,s E [,b]

2 S2  beo~

Fs(s) = fs(x)dx= -b 2 + 4bs - 2s2

b2 ,xe ,b

SF= min (S 1,S 2 ,. ,Sc), where Si is identically distributed S.

FsF(s) =-P(SF >s) = 1-P(min(SS 2 ,...,Sc) >s) = -P(S >s)...P( S)

= 1 - (1 - Fs(s))c

AsF(s) = dFsF(s) = cfs(s)(1 - Fs(s))c~I
ds

Therefore,, the expectation of Sp(a =b)
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SFirst Leg = E(SF) = f sfs,(s)ds = f scfs(S)(1 - Fs(S))c-1ds

2-2-cb(1+ (1+ 2c)Hypergeometric2Fl[1,-1 -c, , 1])
1 + 3c + 2c 2

The second moment of SF(a =

SQFirst Leg = E (SF 2 (s)ds f cfS(s)(1 - Fs(s))c-1ds

2-1-cb2 (1 + 2c + 21 +cc)

1+3c+2c2

The variance of SF(a =

Var(SF) = E(SF2) - E (SF) 2

2-1-cb 2 (1 + 2c + 21+cc)

1+3c+2c 2

2-4- 2cb 2 (1 +(1 +2c)Hypergeometric2F1[1,-1 -c,,-1])2

(1+ 3c +2c 2 ) 2

(3.1.T1.6)

(3.1.T1.7)

(3.1.T1.8)

3.1.T2*: Expectation and variance for last leg under greedy routing strategy

Last Leg: Service time from one (approximately) random point (the destination of the

final customer served in the tour) back to the rail station.

In the X axis, random point is uniformly distributed from 0 to a/2:

2
fx x)= -, JX E [0,a/2]

In the Y axis, random point is uniformly distributed from 0 to b/2:

2
fy(y) = T,y E [0, b/2]

S = X+Y
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s, 4X E [0,b

2 ab a

2 2 4 a+ b
la b ab 2 2

a+b
sast Leg = E(S) = 4 (3.1.T2.1)

a2 + b2

VARLast Leg = Var(S) = + (3.1.T2.2)48

2a 2 +2b 2 +3ab
SQ2ast Leg = E(S2) 24 (3.1.T2.3)

When the region is square, i.e., a = b,

b b2 7b2

sLast Leg = -V A R tat Leg = -2 S Q ast Leg = b2
2g 2 4 D llg 24

The length of any middle leg is equal to the distance between a (approximately)

random point (the destination of the most recently delivered customer) and the nearest

destination of anyone of the customers who still remain on the vehicle. Computing the

expected value and variance of this distance is a far more complicated and tedious

problem due to the effects of the region's boundaries. We pursued two different

approaches for approximating these quantities using: (a) a Crofton Approximation

(Technical Section 3.1.T3) that computes the expected distance and variance of the

distance between a random point and the closest of N (N = 1, 2, 3, ..., c - 1) other

random points on a linear segment using Crofton's Method[7] and then treats the

distances in the horizontal and vertical directions, as if they are independent; and (b) a

Center Approximation (Technical Section 3.1.T4) that relies on computing the expected

value and variance of the distance between the center of the rectangular service region

and the closest of N (N = 1, 2, 3, ..., c - 1) random points in the rectangle.

We then tested the analytical expressions derived through (a) and (b) by means of an

extensive series of numerical experiments, described in Technical Section 3.1.T5. The

experiments indicated that the expressions performed equally well, but we have chosen to
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use the Crofton Approximation henceforth because of its simpler form. We have also

used linear regression models to correct the Crofton and Center expressions, so they fit

better with the numerical observations. It was found that, again, both of the corrected

expressions perform roughly equally and will use henceforth the Crofton Approximation

with/without the regression correction because of its simpler form.

In conclusion, our best estimates for the first and second moments of the length of a

middle leg of the delivery tour, given that N customers remain to be delivered, are given

by the following expressions:

(N + 3)(a + b)
SNCroftonApprox 2(N + 1)(N + 2)

(N+7)(a2 +b 2 ) N+3
SQmiaatesV SQNCrof ton Approx 2(N + 1)(N + 2)(N + 3) + '2(N + 1)(N + 2) 2ab (14)

After correcting these expressions through regression, they become:

(N + 3)(a + b)
SmiddleW x SN,CroftonApprox x (1.13047 + 0.099945N) - 2(N + 1)(N + 2) (15)

SQmiddle p: SQNCrofton Approx

(N + 7)(a 2 + b2 )
(0.525751 + 0.372122N) - (

2(N + 1)(N + 2)(N + 3)

( N+3 \
+2 2(N+1)(N+2) ab (16)

The detailed mathematical derivation of (13) and (14) is in Technical Section 3.1.T3

and of(15) and (16) in Technical Section 3.1.T5.

3.1.T3*: Expectation and variance approximation for middle leg using Crofton's

method.

We need to find the distance between a (approximately) random point (the destination of

the most recently delivered customer) and the nearest destination of anyone of the

customers who still remain on the vehicle, using Crofton's method:

At first, we define three problems:
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Problem 0: Node A is uniformly distributed from 0 to a, N other nodes are identically,

independently and uniformly distributed from 0 to a. Let DO,N denotes the distance

between Node A and the closest node of N other nodes, define:

soN= Expectation(Dg ),VARoN = Variance(Dg),SQp = Expectation(DoN)

Problem 1: Node A is uniformly distributed from 0 to a, Node B is located on point 0,

N other nodes are identically, independently and uniformly distributed from 0 to a. Let

DN denotes the distance between Node A and the closest node of Node B and N other

nodes, define:

szy = Expectation(D1 N), VAR,,N = Variance(Di, ),SQ1j = Expectation(DN)

Problem 2: Node A is uniformly distributed from 0 to a, Node B is located on point 0,

Node C is located on point a, N other nodes are identically, independently and uniformly

distributed from 0 to a. Let D2, denotes the distance between Node A and the closest

node of Node B, Node C and N other nodes, define:

S2N = Expectation(D2 J),VAR2N = Variance(D2,j),SQ2,N = Expectation(D2N)

What we need is the results of Problem 0, whose deducing process needs the results

of Problem 1 as the boundary condition, while additionally the deducing process of

Problem 1 needs the results of Problem 2 as the boundary condition.

We study and analyze the soN, siN and S2,N as follows:

For Problem 0, we add to the interval [0, a] an increment of length aa, as illustrated

in the following figure. We now consider the problem in which Node A and N other

nodes are independent and distributed in the same way as before, but over the larger

interval [0, a + aa]. Then soN becomes soN + soN. Consider the following four

mutually exclusive events:

aa

a a a+Oa
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E 1: Node A and all other N nodes lie in [0,a], P(E 1 ) = )a+ aN+1

aa a
E 2: Node A lies in [a, a + aa], all other N nodes lie in [0, a], P(E2 ) = aa N

a +dca a +daa

E3 : Node A lies in [0, a], N - 1 of N nodes lie in [0, a], one of N nodes lies in [a, a + aa],

a N -aa a
P(E3) = ' + - - - (- )N-1=a+63a a+Oa a6

E4 : all other events, P(E 4 ) = O(0a2) = o(aa)

Under condition of El, all nodes are distributed in [0, a], like the situation before

adding Oa:

E[DO,NIE1] = SON

Under condition of E2, Node A is on the end, while other N nodes are distributed in

[0, a], so the distance we need is like the first-order statistics:

E[DO,N|E
2I = N+1

Under condition of E3 , one node lies on the end, while Node A and other N - 1

nodes are distributed in [0, a], like the situation of Problem] with parameter N - 1:

E[DO,NIE 3 ] = s1N-1

Under condition of E4 , since P(E4 ) = O(0a2 ) = o(Oa), we do not care E[Do IE4 ].

Now s0N + s0N can be written as the weighted sum of four conditional expected

values, the weights being the appropriate probabilities:

4

SO,N + 0 ON = E [DO,N jE]P (E)

Substituting, we have
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a 0a a a a N-i9a
SON + SO a+ SON a+.Oc+1a + aN+1+a a+aa

+ aN-1 
(3.1.T3.1)

This will yield a differential equation group with respect to soN.

Similarly, for Problem 1, we add to the interval [0, a] an increment of length da, as

illustrated in the following figure. We now consider the problem in which Node A and N

other nodes are independent and distributed in the same way as before, but over the larger

interval [0, a + aa]. Then s1,N becomes sIN + OS1,N. Node B is on the left end 0.

Consider the following four mutually exclusive events:

JB a

0- a a+da

E1 : Node A and all other N nodes lie in [0,a], P(E1) = a + aN+1

a + a
E2 : Node A lies in [a, a + a],all other N nodes lie in [0, a], P(E2) = a +da aa aN

E3 : Node A lies in [0,a],N -1 of N nodes lie in [0,a],one of N nodes lies in [a,a + 0a],

a N - aa a
P(E3 ) = a+a a + aN

E4 : all other events, P(E4) = O(da2 ) = o(aa)

Under condition of El, all nodes are distributed in [0, a], like the situation before

adding Oa:

E[DlN lE1] = s1,N

Under condition of E2 , Node A is on the right end, while other N nodes are

distributed in [0, a], so the distance we need is like the first-order statistics:

a
E[DlNIE2 ] = N + 1
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Under condition of E3 , Node B lies on the left end, one other node lies on the right

end, and Node A and other N - 1 nodes are distributed in [0, a], like the situation of

Problem2 with parameter N - 1:

E[D1,N|E 3 ] = s2,--1

Under condition of E4 , since P(E4 ) = O(Oa 2 ) = o(aa), we do not care E[D,NIE 4].

Now sl, + asi, can be written as the weighted sum of four conditional expected

values, the weights being the appropriate probabilities:

4

SIN + 8S1,N = E[D1, |EiP(EI)

Substituting, we have

a N a a a a N- Oa
S,N + +aS,) N+1 aN *+ N,+aa N +1 a +OBa a + Oa

(,a
a+ aN-1 *2,N-1 

(3.1.T3.2)

This will yield a differential equation group with respect to siN.

Similarly, For Problem 2, we add to the interval [0, a] an increment of length aa, as

illustrated in the following figure. We now consider the problem in which Node A and N

other nodes are independent and distributed in the same way as before, but over the larger

interval [0, a + Oa]. Then s2,N becomes S2,N + OS2,N. Node B is on the left end 0, Node

C move from a to a + Oa. Consider the following four mutually exclusive events:

C--)C
IB -- iaa

0 a a+da

E1 : Node A and all other N nodes lie in [0,a], P(E1 ) = a )N+1

aa a
E2 : Node A lies in [a,a + aa],all other N nodes lie in [0,a], P(E2) = a aN

a+aa a+a

89



E3 : Node A lies in [0, a],N - 1 of N nodes lie in [0, a],one of N nodes lies in [a, a + Oa],

a N -aa a
P(E3) = (+)N-1

E4 : all other events, P(E4) = O(da2 ) = o(aa)

Under condition of El, all nodes are distributed in [0, a], s2,N will increase aa if and

only if (1) Node A is the most right node among the N + 1 uniformly distributed nodes,

(2) the distance between Node A and Node C is smaller than the distance between Node

A and its nearest node on the left, and the probability is 1/2 x 1/(N + 1) = 1/(2(N + 1)).

Therefore,

1
E[D2 ,N|EI = s2,N + 2a

2 (N + 1)

Under condition of E2 , Node A is on the right end, while other N nodes are

distributed in [0, a], so the distance between Node A and Node C is 0(aa):

E[D2,NIE 2] = O(Ba)

Under condition of E3 , Node B lies on the left end, Node C as well as one other node

lie on the right end, and Node A and other N - 1 nodes are distributed in [0, a], like the

situation of Problem2 with parameter N - 1:

E[D2,NIE3] = s2,N-1

Under condition of E4 , since P(E4 ) = O(Ba 2 ) = o(0a), we do not care E[D2,, |jE4.

Now s2,N +s2, can be written as the weighted sum of four conditional expected

values, the weights being the appropriate probabilities:

4

S2,N + aS 2 N = E[D2NI|E]P(Et)

Substituting, we have
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a 1 - aa
N++a N+ 2(N + 1) a+ a a

N -Oa a
- aa daN-1 S2,N-1

a a
( a N.(aa)+
a+aa a+a

(3.1.T3.3)

This will yield a differential equation group with respect to s 2 N-

We know the boundary condition of s 2 s,, that is s 2,0 = a/4, then solve the third

differential equation group, we obtain:

a
S2,N =2 (N + 2)

Taking it as the boundary condition of the second differential equation group, we

obtain:

a
S1,N = 2(N + 1)

Taking it as the boundary condition of the first differential equation group, we obtain:

(N+3)a
SO,N 2(N + 1)(N + 2) (3.1.T3.4)

In order to obtain SQON, SQ1,, and SQ2,N, we construct the similar differential

equation groups as before, using Crofton's Method:

Problem 0:

a aSQ0,N + CISQN0= N+1
Oa a 2a 2  a

Q0 Naa+ . (N + 1)(N + 2) a + Oa

N -a a

a'+ aa (a + 8 a)N 1

Problem 1:

(,_a N+1SQ a a 2a 2

SQ1N + SQ1x=a +a +aa +aN (N + 1)(N + 2)

N -Oa a
- a a a B N-1 . g2-1a+aa a+aa

Problem 2:

(3.1.T3.5)

a
a + ca

(3.1.T3.6)
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1 a aa a
SQ2N + aSQ2,N N+.Q (2+ 2 (N+) 2 2(N+2) -*a)+ a+ aa a+ a N

a Nda a
SO(a)a + a -a )N- 1 , SQ2,N-1 (3. 1.3.7)

We know the boundary condition of SQ 2,N, that is SQ2,0 = a 2 /12, then solve the third

differential equation group, we obtain:

a 2

SQ2,N = 2(N + 2)(N + 3)

Taking it as the boundary condition of the second differential equation group, we

obtain:

SQ1N = (N + 4)a 2

2(N + 1)(N + 2)(N + 3)

Taking it as the boundary condition of the first differential equation group, we obtain:

SQON (N + 7)a 2  (3.1.-3.8)
2(N + 1)(N + 2)(N + 3)

From above, we obtain the exact analytical solution to the one-dimension problem:

(N + 3)a
SO,N - 2(N + 1)(N +2)

SQO.N - (N + 7)a 2

2(N + 1)(N + 2)(N + 3)

(N+7)a2  (N+3)a 2
VARON = Variance = SQo - = 2(N+1)(N+2)(N+3) ~ 2(N+ 1)(N+2)

N3 +11N 2 +19N+1

4(N + 1)2(N + 2)2(N + 3)

Therefore, in the original two-dimension problem, if we assume the distance traveled

in X direction and the distance traveled in Y direction are independent, then:

(N + 3)(a + b)
SNCrofton Approx 2(N + 1)(N + 2) (3.1.T3.9)

(N+7)(a2 +b 2) N+3
SQN,Crof ton Approx 2(N +1)(N + 2)(N +3) + 2(2(N + 1)(N + 2))

2ab (3.1.T3.10)
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3.1.T4*: Expectation and variance approximation for middle leg using Center

approximation method

We need to find the distance between the center of the rectangle and the closest of N

random points in the rectangle. It is similar to the first leg in the route, from the analysis

in Technical Section 3.1 .T1, we obtain:

When the region is rectangle, and a > b,

SNcenter Approx "

1 2-N a-N ((2 a _ b 1+N - bl+N) 21-N N

4 1+c 1+2c
1 3 b

+ 2bHypergeometric2F1[-, -N,-, -]) (3. 1.T4. 1)
2 '22a

SQNCenter Approx

1 1+bN
- -3-N 2b(2+ a _ (2 _ N) (2a + bN ))

2 1 + N

2(a)N(b2 + 2ab(1 + N) + a2 (1 + 3N + 2N 2 )

1+3N+2N 2

1
+(1 +N)(2+N) a((2a - b)N((2a + b) 2 + 4b(a + b)N + 2b 2 N 2 )

- bc(b 2 + 2ab(2 + N) + 2a 2 (1+ N)(2 + N)))) (3.1.T42)

When the region is square, i.e., a = b,

-2-N 1
2 2 Nb(1 + (1 + 2N)Hypergeometric2F1[1, -1 - N, , 1])

SNCenter Approx = 1+ 3N+2N 2  (3.1.T4.3)

2-1- N b2(1 +2 N + 21
+NN)

SQN,Center Approx = 1+ 3N+ 2N 2  (3. 1.T4.4)

where Hypergeometric2F1 = F1(a, b; c; z) = Z 00(a)k (b)k/(c)k Zk/k!, (a)k =

a(a + 1)...(a + k - 1) = r(a + k)/(a), (b)k = b(b + 1) ... (b + k - 1) = F(b +

k)/F(b),(C)k = c(c + 1) ... (c + k - 1) = F(c + k)/F(c).
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We develop a numerical experiment to simulate the real distance expectation and

second moment of the middle leg, then compare the real (simulated) value to the

approximated values obtained with the two methods described before. In the experiment,

we assume a square service region with a = b = 150.

The real (simulated) values of distance expectation are shown in the table bellow,

along with the corresponding Crofton Approximation and Center Approximation:

I Expectation: S (sec)
N Simulation
1 99.97
2 73.26
3 60.26
4 52.19
5 46.66
6 42.50
7 39.20
8 36.55

9 34.39
10 32.56
11 30.94

12 29.58
13 28.36
14 27.26

15 26.29
16 25.42

17 24.64
18 23.87
19 23.23

22.60

Crofton Simulation/crofton
100.00 0.9997

62.50 1.1722
45.00 1.3391
35.00 1.4912
28.57 1.6330
24.11 1.7629

20.83 1.8816

18.33 1.9938
16.36 2.1014
14.77 2.2042
13.46 2.2985
12.36 2.3923
11.43 2.4812
10.63 2.5657
9.93 2.6489
9.31 2.7296

8.77 2.8095

8.29 2.8796
7.86 2.9561
7.47 3.0266 20.63 1 1.0953

Table 1: Simulated and approximate middle leg expectation

We run linear regression with points number N(>= 2) as independent variable,

Simulation/Crofon and Simulation/Center as induced variables, to obtain the following

linear approximations:

Simulation/Crof ton = 1.13047 + 0.099945N, with R2 = 0.992613;

Simulation/Center = 1.236623 - 0.00824N, with R2 = -0.92095.

94

Center simulation/center

100.00 0.9997
57.50 1.2741
48.75 1.2361
43.18 1.2086
39.21 1.1899
36.18 1.1747
33.76 1.1611
31.77 1.1505
30.10 1.1424
28.67 1.1359
27.42 1.1285
26.32 1.1236
25.35 1.1187
24.47 1.1139
23.68 1.1102
22.97 1.1069
22.31 1.1046
21.71 1.0997
21.15 1.0982

20



Therefore, we use the following approximations with linear regression correction:

Simulation (N + 3)(a + b)
S SCof o Tof (cfton + dcrononN) 2(N + 1)(N + 2)

Where Crorton = 1.13047,dcrofton = 0.099945;

Simulation
S SN,Center Approx Center

= (ccenter + dcenterN)

2- 2 -Nb(1 + (1 + 2N)Hypergeometric2F1[1,-1 -N,!,-1])

1 + 3N+2N 2

Where ccenter = 1.2 36623, dcenter = -0.00824.

The approximations after regression correction are as follows:

Expectation:S (sec)
Simulation

2 73.26
3 60.26
4 52.19
5 46.66
6 42.50
7 39.20
8 36.55
9 34.39

10 32.56
11 30.94
12 29.58
13 28.36
14 27.26
15 26.29
16 25.42
17 24.64
18 23.87
19 23.23

22.60

Crofton Approx.

23.37

Error

3.40% 22.12 -2.15%
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(3.1.T5.2)

N
83.15 13.49%
64.36 6.81%
53.56 2.62%
46.58 -0.17%
41.71 -1.86%
38.13 -2.74%
35.38 -3.20%
33.22 -3.40%
31.46 -3.37%
30.02 -2.99%
28.80 -2.61%
27.77 -2.07%
26.88 -1.40%_
26.10 -0.73%
25.42 0.00%
24.82 0.71%
24.28 1.73%
23.80 2.48%

70.16 -4.24%
59.08 -1.95%
51.98 -0.41%
46.87 0.46%
42.95 1.06%
39.80 1.53%
37.20 1.76%
34.99 1.75%
33.09 1.61%
31.42 1.55%
29.95 1.26%
28.63 0.96%
27.44 0.66%
26.36 0.25%
25.37 -0.20%
24.46 -0.74%
23.62 -1.04%
22.84 -1.66%

20
Table 2: Middle leg expectation approximation after regression correction

Center Approx. Error



Similarly, the real (simulated) values of distance second moment are shown in the

table bellow, along with the corresponding Crofton Approximation and Center

Approximation:

Square Expectation: SQ (sec2)
Simulation

1 12504.53
2 6901.71
3 4736.67
4 3590.87
5 2880.49
6 2391.94
7 2044.55

8 1779.47
9 1572.48

10 1409.21

11 1277.72
12 1164.55
13 1070.78
14 988.58
15 919.25
16 859.61
17 803.69
18 758.26
19 714.45

676.82

Crofton Simulation/Crofton
12500.00 1.0004
5328.13 1.2953
2887.50 1.6404
1791.07 2.0049
1211.73 2.3772
870.93 2.7464
654.51 3.1238
508.96 3.4963
406.61 3.8673
332.02 4.2444
276.05 4.6287
233.01 4.9979
199.23 5.3745
172.25 5.7391
150.37 6.1132
132.38 6.4934
117.42 6.8445
104.85 7.2321
94.18 7.5861
85.05 7.9576 535.71 1.2634

Table 3: Simulated and approximate middle leg second moment

We run linear regression with points number N(>= 2) as independent variable,

Simulation/Crofon and Simulation/Center as induced variables, and obtain the following

linear approximations:

Simulation/Crofton = 0.52 5751 + 0.372122N, with R2 = 0.999988;

Simulation/Center = 1.659275 - 0.02296N, withR 2 = -0.92835.

Therefore, we use the following approximations with linear regression correction:
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N Center Simulation/Center
6562.50 1.9055
3937.50 1.7528
2862.72 1.6546

2265.63 1.5849
1880.33 1.5319
1609.07 1.4865
1406.98 1.4531
1250.29 1.4232
1125.12 1.3976
1022.77 1.3778
937.52 1.3629
865.39 1.3457
803.58 1.3325
750.00 1.3181
703.13 1.3074
661.77 1.2990
625.00 1.2859
592.11 1.2806
562.50 1.2701
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Simulation
SQ SQN,Crof ton Approx * Crofton

(N + 7)(a 2 + b2 )
= (Ccrojton~q + dcrorton.qN) -(2(N + 1)(N + 2)(N + 3)

(2 N+3 2ab)
Whee + 2 2(N+)(N + 2)) a

Where ccrofton = 0.525751, dcroton, = 0.372122;

Simulation
SQ x SQN,Center Approx - Center = (Cnter + dcenterN)

Where ccenter = 1.659275,dcenter = -0.02296.

2-1-N b2(1 +2 N + 2 1
+NN)

1+3N+2N 2

The approximations after regression correction are as follows:

_I Square Expectation: SQ (secz2)
Simulation

2 6901.71
3 4736.67
4 3590.87
5 2880.49
6 2391.94
7 2044.55

8 1779.47
9 1572.48

10 1409.21

11 1277.72
12 1164.55
13 1070.78
14 988.58
15 919.25
16 859.61
17 803.69
18 758.26
19 714.45
20 676.82

Crofton Approx.

677.72

Error

0.13% 642.93 -5.01%
Table 4: Middle leg second moment approximation after regression correction

3.2 Completion of the Queuing Model

97
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N
6766.69 -1.96%

4741.61 0.10%
3607.65 0.47%
2891.64 0.39%
2402.46 0.44%
2049.02 0.22%
1782.76 0.19%
1575.56 0.20%
1410.07 0.06%
1275.08 -0.21%
1163.01 -0.13%
1068.56 -0.21%
987.96 -0.06%
918.40 -0.09%
857.80 -0.21%
804.55 0.11%
757.40 -0.11%
715.39 0.13%

CenterApprox. Error
6352.61 -7.96%
4552.89 -3.88%
3551.25 -1.10%
2904.15 0.82%
2448.26 2.35%
2108.47 3.13%
1844.95 3.68%
1634.41 3.94%
1462.27 3.77%
1318.85 3.22%
1197.52 2.83%
1093.53 2.12%
1003.41 1.50%
924.55 0.58%
854.98 -0.54%
793.13 -1.31%
737.79 -2.70%
687.99 -3.70%



In this subsection, we incorporate the results of the above Chapter 3.1 into the previously

(Chapter 2) derived results for the Unit-Capacity queuing model to obtain approximations

of system performance for the General (c > 1) Capacity case. Specifically, we use the

expressions for the length and duration of customer delivery tours when c > 1, to

estimate the service times for the General Capacity model and use these estimates in the

various expressions for the expected waiting time until boarding a vehicle that were

obtained in Chapter 2.2.2 under the cyclic assignment policy. As was demonstrated in

Chapter 2.3, these latter expressions approximate best the observed (through simulation)

system performance.

For the case of a General distribution for the size of customer batches and of General

service times the strict cyclic upper bound [cf. expression (7)] and the approximate cyclic

upper bound [cf. expression (9)] for the waiting time until boarding a vehicle (see

Technical Section 3.2.T) for details) is then given by:

WBoard,strict

4mE 2 (E)E(SE 2 ) - 4E 2 (SE)E 3 (f) + 4mhE(SE)E({E2 ) + M 3 hE(SE) - 4m2 hE(S)E(E)

8m(mh - E({E)E(SE))E({E)

(17)

p(CJ + CTE)E(TE) 2(1-p)(1 -C )2
Wsoardapprox 2(1 - p) 3p (Ca + C2E

E(SE) - (4E({E2) + m 2 - 4mE(G))
+ 8mE({E) (18)

When the size of customer batches has a Poisson distribution, and the duration of the

delivery service tour is approximated through Crofton's method (without using the

regression correction), the various terms of (17) and (18) above take the following values:

E({) 4VAR(f)+ c2 E(SE)E({E)
E ({E) C VAR({E) u 4c 2  , Ca = 0, p = mh '

E (TE) E(SE)E({E) 2 = 4mE(fE)Var(SE) + 4E2 (SE) Var(E) + E 2 (SE)m 2

m ) CTE 4E2 ({E)E 2 (SE)

Hypergeometric2F1 = F1(a,b; c;z) = i.0 (a)k (b)k/(c)zk /k!,
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(a)k = a(a + 1)... (a + k - 1) = (a + k)/F(a), (b)k = b(b +1) ... (b + k - 1) = F(b +

k)/r(b),(c)k = c(c +1) ... (c + k - 1) = I(c + k)/F(c)

2- 2-cb(1 + (1 + 2c)Hypergeometric2F1[1,-1 - c,2 , -1]) (1 + 3)b b
E(SE) = 1+3c+2c2  2 (i+ i

1=:1
2-1-cb 2 (1 + 2c + 21+cc) 2-4-2cb 2 (1 + (1 + 2c)Hypergeometric2F1[1,-I - c,!,-1])2

E (SEJ = 1+3c+2c 2  (1+3c+2c2) 2

c-1 + 11j2+19+1b 7b2

+ 2(i+1) 2(i+2) 2(i+3) 24

Note that in (17) and (18) we have used the notation WBoard'strict and WBoardapprox for

the expected waiting time until a customer will board a vehicle, while in (7) and (9) we

used the notation W in (7) and (9) for the same quantity. This is because we also want to

introduce here another quantity, WRing , which is defined as the expected time a

customer will spend riding on the vehicle before being delivered to his destination.

Considering the riding component of the trip, the total expected time from the instant a

customer arrives at the rail station until she is delivered at her destination is given by

WDelivered = WBoard + WRiding

where

2 2 -cb(1+ (1+ 2c)Hypergeometric2Fl[1,-1 - c,$,-1]) c - 1
W ing = 13c+ 2c2  

+1

as shown in Technical Section 3.2.T.

3.2.T*: Upper bound and approximation of the General-Capacity, Multi-Vehicle

LMP under cyclic assignment policy

Average waiting time until boarding and average waiting time until delivery for General

customer batch size and General service time distributions:
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WBoard,strict

4mE2 (E)E(SE 2 ) - 4E 2 (SE)E 3 (E) + 4mhE(S)E({E2 ) + m 3 hE(SE) - 4m 2hE(S)E({E)

8m(mh - E({E)E(SE))E({E)

p(CJ + CTE)E(TE) [ 2(1 - p)(1 - C )2
Wsoara,strict 2(1 - p) 3exp 3p(C + CTE)

E(SE) - (4E({E2) + m 2 - 4mE(E))
8mE({E)

(3.2.T.2)

The average waiting time until delivery to the final destination is equal to the sum of

average waiting time until boarding the vehicle and the average riding time on

road:WDeilvered = WBoard + WRiding.

For the case of Poisson passenger size and Crofton's method service time

approximation without regression correction:

The service time expectation: (Using Crofton Approximation, without regression,

a = b)

E(SE) = Expectation(Total Service Time)

= SFirst Leg + Smiddec-1 + Smiddle,c-2 +''' + Smiddle, + hLast Leg

2-2-cb(1 + (1 + 2c)Hypergeometric2F[1, -1 - c, 1, -1])

1+3c+2c 2

c-i
c-1 (i + 3)b b

+i= 1(i+1)(i+2) 2

The service time variance:
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VARE = Variance(Total Service Time)

VARFirst Leg +VARmiddlec-1 +VARmiddec-2 + -- +VARmiaate,

+ VARLast Leg

2-1-cb 2 (1 + 2c + 21 +cc)

1+3c+2c2

2-4- 2 cb 2 (1 + (1 + 2c)Hypergeometric2Fl[1,-i - c,$, -1])2

(1 + 3c + 2c2 ) 2

c-1 3 + 11i2 + 19i + 1 7b2

+ 2(i +l1) 2(i+2)(i + 3) 24

The expectation of service time second moment:

E(S 2) SQE =VARE + (E(SE)) 2

2-1-cb2 (1 + 2c + 21+cc)

1+3c+2c 2

2-4- 2 cb 2 (l+ (1 + 2c)Hypergeometric2Fl[1, -1 c, ,_-])2

(1+3c+2c 2) 2

c-1 3 +1i2 + 19t1 + 2

2(i +1)2(i +2)2(i +3)b2i=1

2-2-cb(1 + (1 + 2c)Hypergeometric2Fl[1,-1-c, ,-1])
1+3c+2c2

c- (i +3)b b
+ (i + 1)(i + 2) +g2(32T5

C2 _VAR(SE) _ E2(SE) - E(SE2 ) E(SE2 -
SE ~ E 2 (SE) E 2 (SE) E2 (SE)

Caz = 0

E(SE)E({E)
mh

E({)E(fE) E(
n

E 2 2 ( E) +(fR()2 4VAR( ) + C2
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E(TE) = E(SE)E({E)
m

E(NE)Var(SE) + E 2 (SE)Var(NE) E (LE) Var(SE) + E 2 (SE)Var (L)
E2 (NE)E2(SE) E2 (§E2(SE)

E({E)Var(SE)/m + E2(SE) Var(fE)+ 2

E 2(fE)E 2(SE)/m2

4mE({E)Var(SE) + 4E2 (SE) Var (E) + E 2 (SE)m 2

4E2(fE)E 2(SE)

Average riding time on road without regression correction:

For the first customer in one loop: Expectation(Time on Road)1 = SFirst Leg

For the second customer in one loop: Expectation(Time on Road)2 = SFIrst Leg +

Smiddle,c-1

For the last customer in one loop: Expectation(Time on Road)c = SFirst Leg +

SmiddLe,c-1 + Smiddie,c-2 + ''' + Smiddle,1

Therefore, the average riding time on road is

C-1

WRLdmng = X Expectation(Time on Road)i = SFirst Leg + Smiddlej

1=
2-2-cb(1 + (1 + 2c)Hypergeometric2F1[1, -1 - c, $, -1])

1+3c+2c2

c-1 i(i + 3)b
+ c(i + 1)(i + 2)

1=1
2-2-cb(1+ (1+ 2c)Hypergeometric2Fl[1,-1 - c, , -1]) c-1

1+3c+2c2  c+1

Similarly, for the case of Poisson passenger size and Crofton' method service time

approximation with regression correction:
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The service time expectation: (Using Crofton Approximation, with regression, a = b)

E(SE) = Expectation(Total Service Time)

= SFirst Leg + Smiddle,c-1 + Smiddie,c-2 + ''+ Smiddie,l + SLast Leg

2-2-cb (1+ (1+ 2c)Hypergeometric2F1 1,-1 -

1+3c+2c2

+ 1(c1 + c2 i)(i + 3)b b
+ i + 1)(i + 2) +2(32T7

Where ci = 1.13; c2 = 0.999.

The service time variance:

(N+7)(a2 +b 2) ( N+3 2
SQn = (c3 + c4N)-(2(N +1)(N + 2 )(N + 3) +2(N + 1)(N + 2))ab) (3.2.T.8)

VARn =sn - SQn

VARE VARFirst Leg + VARmiaie,c-i + VARmisdde,c-2 + --- + VARmiddie,1 + VARLast Leg

2-1-cb2 (1 + 2c + 21+cc)

1 +3c+2c 2

2-4- 2 cb 2 (1 + (1 +2c)Hypergeometric2F1[1, -1 - c 1])2

(1+ 3c +2c 2) 2

c-1 7b2

+ 1(s - SQn)+ 4(3.2.T.9)
n=1

Where c3 = 0.52 5; c4 = 0.372;

The expectation of service time second moment:

E(SE2) = SQE = VARE + (E(SE)) 2

Average riding time on road with regression correction:

For the first customer in one loop: Expectation(Time on Road)1 = SFirst Leg

For the second customer in one loop: Expectation(Time on Road)2 = SFirst Leg +

Smiddle,c-1

103



For the last customer in one loop: Expectation(Time on Road)c = SFirst Leg +

Smiddle,c-1 + Smiddle,c-2 ' + Smiddle,1

Therefore, the average riding time on road is

C-1
W 1 Expectation(Time on Road)= i

Waiaing = c=stirst Leg + csmiddleji

1=
2-2-cb(1 + (1 + 2c)Hypergeometric2F[1,-1 - c,!., -1])

1+3c+2c2

C-1

+ (c 1 + c 2 i)i(i+ 3)b (3.2.T.10)
c(i + 1)(i + 2) (...0

The upper bounds and approximations of average waiting time until boarding and

average waiting time until delivery with regression is exactly the same as those bounds

and approximations obtained for the case without regression, except for the different

expression of E(SE), E(SE2 ), VARE and WRiding.

3.3Simulation and Comparisons for the General-Capacity, Multi-Vehicle

LMP

To assess the validity of the expressions developed in Chapter 3.2, a simple simulation of

a General-Capacity, Multi-Vehicle LMTS was carried out with a program written in java.

We consider a square service district with geometry a/v, = b/vy = 2.5 min = 150 sec,

headway between train arrivals of h = 10 min = 600 sec, vehicle capacity c = 3, 5 or 9

and customer arrivals with batch size described by a Poisson distribution with A = 40, 80

and 120. These parameters were selected so that the system would make sense physically.

Near-optimal vehicle tours were generated by using a Traveling Salesman algorithm.

Specifically, the simulation generated sets of c points, randomly and independently

distributed in the square according to a uniform distribution, and a Traveling Salesman

tour through these points was drawn through an algorithm that is known to generate near-

optimal solutions. The algorithm implements a tour-improvement heuristic that begins
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with an initial solution and then improves that solution through arc exchanges ("2-

exchange" heuristic) and through changes in the sequencing of the nodes in the tour

("node insertion" heuristic). More details are provided in Technical Section 3.3.T that

describes the simulation experiments.

3.3.T*: Accuracy evaluation of Travelling Salesman Problem (TSP) heuristic

algorithm used in the numerical experiment

In this technical section, we evaluate the algorithm accuracy using in the numerical

experiment, by comparing the heuristic path length to the asymptotic Euclidean TSP

lower bound.

The heuristics TSP algorithm:

1 x 1 square region, one point is located in the square center, and other N points are

independently and uniformly distributed in the square. We use the following optimization

procedures:

(1) Generate a random path;

(2) Use removals of any point j and inserting it after any point i;

(3) Improve the path locally, using replacements of sequence i, i + 1 and j, j + 1

with sequence i, j and i + 1, j + 1.

The asymptotic Euclidean TSP lower bound:

1 x 1 square region, N + 1 points are independently and uniformly distributed in the

square. David S. Johnson obtained a lower bound by computer experiment:

0.7080vN+ 0.522 ,

where 0.522 comes from the points near square boundary which have fewer neighbors.

We obtain the following results through numerical experiment:
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N random points Heuristic Euclidean TSP Euclidean TSP Lower Bound Difference
2 1.286 1.748 -26.41%
3 1.657 1.938 -14.48%
4 1.944 2.105 -7.67%
5 2.177 2.256 -3.51%
6 2.374 2.395 -0.89%
7 2.543 2.525 0.74%
8 2.697 2.646 1.92%
9 2.835 2.761 2.68%

10 2.965 2.870 3.30%
11 3.083 2.975 3.64%
12 3.196 3.075 3.95%
13 3.300 3.171 4.07%
14 3.401 3.264 4.19%
15 3.498 3.354 4.28%
16 3.590 3.441 4.31%
17 3.677 3.526 4.30%
18 3.763 3.608 4.28%
19 3.844 3.688 4.22%
20 3.925 3.766 4.21%

Table 5: Comparison of TSP heuristic algorism and lower bound

The TSP length obtained by the heuristic algorithm is less than the lower bound when

N is small, it is because one point in the heuristic case is fixed located in the center of the

area, which will reduce the possible travel distance.

The TSP length obtained by the heuristic algorithm is very close to the asymptotic

TSP lower bound, which is an evidence that the path provided is optimal or close to

optimal, especially when N is no larger than 20 (we consider the vehicle capacity <=20).

Figures 19 through 23 present a sample of comparisons between the simulation

results and the analytical approximations of Chapter 3.2 for the following respective

cases: c = 3,1= 40; c = 3,A = 80; c = 3,A = 120; c = 5,A= 80; and c = 9,A= 120.
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Figure 20: Simulation and analytical results when c = 3 and A = 80

b=150sec,h=600sec,c=3,Lamda=120

0Strict UB no regression until Board
* Approx no regression until Board
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Figure 21: Simulation and analytical results when c = 3 and A = 120
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Figure 19: Simulation and analytical results when c = 3 and A = 40
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Figure 22: Simulation and analytical results when c = 5 andI = 80

Figure 23: Simulation and analytical results when c = 9 and A = 120

The horizontal axis in Figures 19-23 shows the utilization ratio p = E(SE)E( E)Imh,

while the vertical axis shows the expected waiting time until boarding a vehicle and the

expected total time spent between arrival at the station and delivery at customer's

destination. A comparison of the simulation results with the estimates generated through

the analytical expressions of Chapter 3.2 indicated that the expressions that do not

include a correction for the length of delivery tours (see (13) and (14)) actually perform

better than the expressions that include the correction (see (15) and (16)). The

explanation for this seemingly surprising observation lies in the fact that, in the absence

of the correction, (13) and (14) will underestimate the expected service time (= duration

of delivery tour and its second moment). This compensates for and balances out other
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parts of the analysis that overestimate the service time and leads to a more accurate

overall approximation. Following our practice of showing only the best-performing

approximations, Figures 19 - 23 therefore show only the estimates obtained through the

strict cyclic upper bound (expression (17)) and the approximate cyclic upper bound

(expression 18) that do not include a correction term.

When it comes to the expected waiting time until boarding a vehicle, the approximate

cyclic upper bound performs very well for small vehicle size. For instance, when c = 3

and c = 5 and customer arrival intensity of 40, 80, and 120, the difference between the

simulated average time until boarding and the analytical expression is of the order of 15%

or less for values between 1.5 and 4 minutes, which are the most reasonable waiting time

to aim for in practice. Even when the average waiting time is smaller the difference

typically stays below 25%, or less than 20 seconds.

As vehicle size increases, the accuracy of the approximation of expected waiting time

until boarding declines. The reason is that, when the capacity of the vehicles is large, the

performance of the system becomes increasingly unstable: for example, a change of even

1 in the number of available vehicles, from some value m to m + 1, may result in a

system transition from being nearly-saturated to being underutilized.

Turning to the estimation of expected total time until delivery, the analytical

expressions work well for both small and large vehicles and for the broad range of

customer arrival intensities (A = 40, 80, and 120) examined. This can be seen in all the

Figures 19 - 23. The approximation accuracy decreases somewhat as vehicle capacity

gets larger, but is still good (difference less than 30% for reasonable values of total time

to delivery even when c = 9).
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4. Conclusion

This thesis has developed a set of fully analytical expressions to support the approximate

estimation of the performance of a quite general version of a Last-Mile Transportation

System (LMTS). Given a lengthy list of inputs about the system's characteristics

(headways between arrivals of trains at the rail station, size of "batches" of customers on

each train, number of vehicles in the service fleet, capacity of each vehicle, dimensions

and travel-related properties of the urban district served), the expressions we have

developed estimate the expected waiting time until a customer can board a vehicle, and

the expected time between arrival at the rail station and delivery to the customer's

destination. A number of simple simulation experiments suggest that the best-performing

of the expressions we have developed approximate remarkably well the expected

performance of LMTS under a broad range of conditions typical of what one may

encounter in practice.

On the methodological side, the principal contribution of this research is the

development of several alternative approaches for bounding and approximating the

performance of a very difficult type of queuing system involving batch arrivals and

requiring the simultaneous consideration of routing and queuing issues and the use of

geometrical probability arguments. On the practical side, we believe that the analytical

expressions we have developed can be very useful in designing LMTS, specifically in

determining resource requirements for these systems, such as how many vehicles would

be necessary to achieve a specified level of service and how many kilometers per day

these vehicles would travel.

Future work will focus on improving the approximation accuracy for General-

Capacity, Multi-Vehicle LMTS, by using a more sophisticated demand clustering and

partitioning strategy and by expanding the range of the simulation inputs so that a broader

range of conditions can be observed. A second area is to develop a simple set of unified

guidelines for LMTS design and operation and apply these guidelines to the planning of a

small actual experimental system, possibly to be implemented in a part of Singapore.
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