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Abstract

Path planning is an essential capability for autonomous robots, and many applica-
tions impose challenging constraints alongside the standard requirement of obsta-
cle avoidance. Coverage planning is one such task, in which a single robot must
sweep its end effector over the entirety of a known workspace. For two-dimensional
environments, optimal algorithms are documented and well-understood. For three-
dimensional structures, however, few of the available heuristics succeed over occluded
regions and low-clearance areas. This thesis makes several contributions to sampling-
based coverage path planning, for use on complex three-dimensional structures.

First, we introduce a new algorithm for planning feasible coverage paths. It is
more computationally efficient in problems of complex geometry than the well-known
dual sampling method, especially when high-quality solutions are desired. Second, we
present an improvement procedure that iteratively shortens and smooths a feasible
coverage path; robot configurations are adjusted without violating any coverage con-
straints. Third, we propose a modular algorithm that allows the simple components
of a structure to be covered using planar, back-and-forth sweep paths. An analy-
sis of probabilistic completeness, the first of its kind applied to coverage planning,
accompanies each of these algorithms, as well as ensemble computational results.

The motivating application throughout this work has been autonomous, in-water
ship hull inspection. Shafts, propellers, and control surfaces protrude from a ship
hull and pose a challenging coverage problem at the stern. Deployment of a sonar-
equipped underwater robot on six large vessels has led to robust operations that yield
triangle mesh models of these structures; these models form the basis for planning
inspections at close range. We give results from a coverage plan executed at the stern
of a US Coast Guard Cutter, and results are also presented from an indoor experiment
using a precision scanning laser and gantry positioning system.

Thesis Supervisor: Franz S. Hover
Title: Finmeccanica Career Development Professor of Engineering
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Chapter 1

Introduction

In this chapter, we introduce the real-world problem that has motivated this thesis:

the inspection of a ship hull by an autonomous underwater vehicle. This challenge

has inspired our development of new path planning techniques that achieve sensor

coverage of complex 3D structures. Our statement of the problem in Section 1.1 is

followed by a statement of the contributions of this thesis in Section 1.2. To lay a

foundation for the technical arguments made in this thesis, a review of relevant prior

work is given in Chapter 2.

1.1 Motivation and Problem Statement

Robots improve the efficiency, economy and speed of many tasks, but their contri-

butions are especially valuable when they can assume a mission that is dangerous to

humans. In the subsea domain there are many jobs that fit this description, but one

of the most compelling is the inspection of security-sensitive underwater structures,

such as ship hulls. On the subject of autonomous inspection and identification, the

US Navy Unmanned Undersea Vehicle Masterplan [157] states the following:

[H]ull and pier inspection is generally the responsbility of EOD Diver

teams, and it is both time and manpower intensive. The demand for

security swims around piers and hulls has resulted in over a six-fold in-

crease in these diver operations since the events of September 11, 2001.
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Additional assets beyond the available EOD Diver teams are needed to

effectively meet these additional requirements for inspection.

The typical targets in a hull or pier search would be unexploded ordinance,

such as limpet mines or special attack charges. ... Searching for ordinance

that is typically time-fused is particularly hazardous to divers. Use of an

unmanned vehicle can reduce the risk to EOD technicians and divers by

providing the precise location of suspicious objects, while relieving the

divers of the tedious search process in cluttered environments.

When a hull inspection is performed by humans, as illustrated in Figure 1-1, not only

are divers at risk of serious injury, but there is a possibility that hidden ordinance

may go undetected if any portion of the hull is missed or overlooked in the inspection.

The aim of an autonomous ship hull inspection is to perform the task safely and to

obtain 100% coverage of every exposed surface.

Efforts to automate the inspection of the in-water portion of a ship hull have

included a number of systems which physically attach to a hull using suction [69]

or magnets [28], [119], and drive around its surface using wheels or treads. These

systems can inspect the relatively flat, open areas of a hull at close range, and are

designed primarily to assess the hull’s structural integrity. The Cetus II autonomous

underwater vehicle (AUV), which is proposed for mine detection applications, ma-

neuvers free from the hull and uses an acoustic long-baseline navigation system for

accurate state estimation [155]. Implementation of this system requires the placement

of acoustic transponders on the seafloor to measure the AUV’s position. Although

the Cetus II posseses maneuverability and hovering capability superior to traditional,

torpedo-shaped AUVs, its design is primarily intended for travel in a single, forward

direction.

The Bluefin-MIT Hovering Autonomous Underwater Vehicle (HAUV) has been

developed as a compromise between a hull-crawling vehicle and a free-floating AUV.

This vehicle, pictured in Figure 1-2, possesses fully-actuated, omnidirectional hovering

capability. A dual-frequency identification sonar (DIDSON) is used as the primary
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(a) A diver inspecting one of the stainless steel propellers of the CCGS Louis S.
St-Laurent, a Canadian Coast Guard heavy Artic icebreaker ship.

(b) A US Navy diver searches for a training explosive hidden at the stern of a
Coast Guard vessel.

Figure 1-1: Photographs of hull inspections in progress. Image credits: a) P. Nicklen,
National Geographic Society, http://ngm.nationalgeographic.com/wallpaper/

img/2008/06/june08-02-1280.jpg b) J. Pastoric, US Department of Defense, http:
//www.defense.gov/photos/newsphoto.aspx?newsphotoid=14431

27

http://ngm.nationalgeographic.com/wallpaper/img/2008/06/june08-02-1280.jpg
http://ngm.nationalgeographic.com/wallpaper/img/2008/06/june08-02-1280.jpg
http://www.defense.gov/photos/newsphoto.aspx?newsphotoid=14431
http://www.defense.gov/photos/newsphoto.aspx?newsphotoid=14431


(a) The HAUV, version 1B, used for field
experiments in 2007-2010.

Camera

DVL

DIDSON Sonar
LED Light

Thrusters

(b) The HAUV, version HULS3, used for field exper-
iments in 2010-present.

Figure 1-2: Two recent prototypes of the Hovering Autonomous Underwater Vehicle
(HAUV). Image credits: a) M.R. Walter et al., 2008 [163] b) F.S. Hover et al., 2012
[76]

sensor for inspecting the hull [16]. A monocular camera is also used when water

clarity allows. To inspect flat, open areas that are easily covered by a hull-crawling

vehicle, the HAUV navigates relative to the hull using its Doppler velocity log (DVL)

[77]. To inspect complex areas that contain protruding 3D structures, the DVL is

pointed at the seafloor instead.

Recent research efforts have focused on developing high-accuracy localization and

mapping capability over the flat areas of the hull, hereafter referred to as the non-

complex areas. This is a compelling problem because the non-complex areas are

expansive, comprising the vast majority of surface area to be covered in an inspection.

Over the course of inspecting a large vessel, the DVL and the inertial measurement

unit (IMU) are subject to drift, and state-of-the-art simultaneous localization and

mapping (SLAM) algorithms have been developed to correct drift, produce high-

quality maps of the hull, and provide the precise location of features observed on the

hull. This has been achieved by tracking observations of point features in DIDSON

images [163], and also by registering pairs of camera frames [92] and DIDSON frames

[84] that contain overlap. Camera and DIDSON image registration have also been

integrated into a unified state estimation process [76].
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Figure 1-3: The geometry of the DIDSON field of view, shown in imaging mode at
left and profiling mode at right.

The geometry of the DIDSON field of view is depicted in Figure 1-3. The sensor

has a 29-degree-wide field of view, which is spanned by 96 individual beams. The

vertical aperture of the sensor is described by its “beamwidth”, which can be focused

to different widths using a lens mounted on the sensor. The ranges at which each beam

intersects its surrounding environment are recorded in every image that is formed,

along with an intensity value corresponding to every range return.

Obtaining 100% sensor coverage of a ship’s non-complex area is fairly straight-

forward. The DIDSON is operated in “imaging” mode, in which the sonar produces

2D images of the hull that cover several square meters each. This mode uses a 28-

degree vertical beamwidth; the result is a flattened, 2D depiction of structures in the

sonar field of view. A planar, back-and-forth sweep path is designed for the HAUV

in the hull relative coordinate frame, with conservative overlap between images to

account for any navigation drift that accumulates. This method was experimentally

validated in the early stages of vehicle development, and is found to reliably achieve

full coverage of the non-complex areas of a ship hull [158].

On the other hand, obtaining full coverage of the complex areas, which are primar-

ily located at the stern of a ship, is a hard problem. The shafts, propellers, rudders,

and other protruding structures lie in close proximity to one another and to the hull.

A clear view of these structures is often obstructed from all but a few vantage points,
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(a) Sonar image of hull featur-
ing keel cooling pipes and zinc
anodes.

(b) Sonar image of hull featur-
ing zinc anodes and shaft.

(c) Sonar image of hull featur-
ing propeller and rudder.

(d) Sonar scan of ship pro-
peller, which is approximately
seven meters in diameter.

(e) Sonar scan of shaft, which
is approximately one meter in
diameter.

(f) Sonar scan featuring a
cross-section of the hull.

Figure 1-4: Examples of DIDSON sonar data from imaging mode, at top, and profiling
mode, at bottom, collected during HAUV field tests. The images at top, from the
inspection of a twenty-meter-long US Coast Guard inland buoy tender, show a field
of view with 2.5-7 meter vehicle-relative range. The profiling scans at bottom, from
the inspection of SS Curtiss, a 183-meter-long aviation logistics support ship, show a
field of view with 2-11 meter vehicle-relative range.

due to low clearance and complex 3D geometry. To accurately observe these struc-

tures, the DIDSON is operated in “profiling” mode, which uses a one-degree vertical

beamwidth to generate an unambiguous range scan rather than a flattened 2D image.
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(a) View 1 of propeller, low resolution. (b) View 2 of propeller, low resolution.

(c) View 1 of propeller, high resolution. (d) View 2 of propeller, high resolution.

Figure 1-5: Examples of DIDSON sonar scans collected in profiling mode with differ-
ent fields-of-view. Images at top are from nine meter field-of-view scans, and images
at bottom are from 4.5 meter field-of-view scans. All scans depict the seven-meter-
diameter propeller of the SS Curtiss.

Examples of data collected by the HAUV in both the imaging and profiling viewing

modes are given in Figure 1-4.

The DIDSON allows improved scan resolution to be obtained by sensing at reduced

range. Scans contain the same number of pixels whether they span a ten-meter range

or a two-meter range. For the purposes of detecting hidden ordinance during an
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inspection, it is ideal to inspect the hull using a high-resolution, short-range viewing

mode, despite the reduced field of view. An example of the difference in image quality

that results is given in Figure 1-5.

The goal of this thesis is to plan and execute an efficient inspection route that

obtains 100% sensor coverage of a ship’s complex areas. Due to the HAUV’s fully-

actuated control scheme and dynamics that are dominated by hydrodynamic drag,

the plannning task is modeled as a geometric positioning problem. We assume that a

prior model of the ship is available for planning the geometric inspection route. In the

absence of a CAD model, the HAUV can sweep the perimeter of the stern at a safe

distance and construct a low-resolution model sufficient to identify all ship structures.

The model can be used to subsequently plan and execute a high-resolution inspection

that searches for ordinance on the hull, with a significantly reduced field of view. Path

planning to achieve sensor coverage of a large, complex structure, using a sensor with

a small field of view, is the central focus of this thesis. Motivated by the autonomous

ship hull inspection problem, we contribute new algorithms for the solution of coverage

path planning over complex 3D structures containing low-clearance areas and visually

occluded areas.

1.2 Overview and Contributions of the Thesis

Coverage path planning, the design of a collision-free path that also sweeps a robot’s

end effector over a required surface area, has been applied to a variety of problems

in robotics and automation. Many of these problems involve path planning in sup-

port of sensing tasks, but other applications include material removal and material

deposition. In Chapter 2 we review the algorithms and applications of coverage path

planning, as well as other related topics in robotics. This includes the subjects of

path planning, view planning, and multi-goal planning.

In Chapter 3 we introduce a new algorithm for planning a 100%-coverage collision-

free inspection route. This algorithm relies on the random sampling of robot con-

figurations to iteratively construct a full-coverage set of sensor views. The views
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are then joined into a cyclical collision-free inspection route using a second phase of

sampling. An accompanying analysis quantifies the likelihood that the algorithm’s

random sampling procedures will return a feasible solution after a specific number

of samples. This probabilistic completeness analysis is applied to both our algorithm

and a prior, competing algorithm. The relative computational performance of the

two algorithms is studied, and we demonstrate that our proposed algorithm is better

suited to computation over structures of complex 3D geometry. This is achieved using

a state-of-the-art software implementation that applies modern data structures and

combinatorial optimization tools to 3D coverage problems of unprecedented size, plan-

ning over ship models comprised of hundreds of thousands of geometric primitives.

Our work on this topic is also documented in [52].

In Chapter 4 we present an iterative improvement procedure for smoothing and

shortening inspection routes that are constructed using random sampling. The algo-

rithm can be applied to an exisiting, feasible solution for long as time allows, whether

several minutes or several hours are available for improving the planned inspection.

This procedure also relies on random sampling, which is used to find improved sensor

views that are both collision-free and satisfy the coverage constraints unique to an

existing view on the inspection route. Computational results and an analysis of prob-

abilistic completeness are also presented for this algorithm, which makes significant

improvements to coverage routes designed for the HAUV complex-area inspection

task. Although improvement procedures of this type have been used in standard

point-to-point path planning, this is the first algorithm we are aware of that iter-

atively smooths paths under coverage constraints. Our work on this topic is also

documented in [53].

In Chapter 5 we propose an algorithm for planning inspection routes of high

regularity over complex structures. Regularity is desirable when the data from an

inspection must be analyzed or processed by a human operator. We partition a

structure into several pieces and design a back-and-forth planar sweep path for each

segment. Any portion of the structure that is not covered by a regularized sweep

path is covered by randomized views sampled at the end of the procedure to fill in

33



the remaining gaps in coverage. All sweep paths and randomized configurations are

then joined into a single, contiguous inspection route. We analyze the probabilistic

completeness of this algorithm, and we give computational results that show a tradeoff

between the regularity of a route and the length of a route which can be tuned by

changing the order of the segmentation. This is the first algorithm we are aware

of that joins randomized and regularized paths into a single contiguous inspection

route, offering flexibility when a structure cannot be covered entirely by back-and-

forth sweep paths. Our work on this topic is also documented in [54].

The analysis of probabilistic completeness performed in these three chapters is

the first of its kind applied to path planning under coverage constraints. By unifying

techniques from prior analyses of path planning algorithms and sensor placement

algorithms, we have established sharply decreasing exponential bounds that govern

the convergence of all procedures in this thesis that rely on random sampling.

In Chapter 6 we show experimental outcomes from the HAUV. We first describe

the use of low-resolution inspection surveys to produce a priori mesh models for path

planning and algorithm development. Our work on this topic is also documented in

[73]. We then give the results of a field experiment in which a planned, smoothed,

coverage path created using one of these a priori models is implemented to achieve

high-resolution coverage at the stern of a US Coast Guard Cutter. The resolution

of the model is improved as a result. Finally, we give results from an inspection

planned and executed using a laser rangefinder in air, in which the implementation

of a planned path achieved full coverage and enabled the identification of mine-like

targets planted on the structure of interest.

We conclude in Chapter 7 by reviewing the contributions of this thesis and iden-

tifying promising areas for future work.
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Chapter 2

Background

This chapter contains a survey of prior work in coverage path planning and other

related topics. We begin with an introduction to path planning in general; this

includes a review of classical algorithms as well as the sampling-based paradigm that

is central to the work in this thesis. We then discuss the subjects of view planning,

view ordering, and multi-goal planning, which comprise foundational building blocks

of the algorithms developed in this thesis. We close with a survey of coverage path

planning, reviewing algorithms that synthesize many of the concepts and techniques

discussed in the sections prior.

2.1 Path Planning Overview

A critical component of autonomy is an agent’s ability to use a model of its envi-

ronment for planning and executing tasks that require physical motion. Sometimes

the model is known completely in advance, and sometimes the model is produced

or refined in real-time using the agent’s sensing and inference capabilities. In either

case, path planning drives the agent’s decision-making about how to move through its

environment. Paths can be planned to minimize a variety of cost functions, but most

generally the goal of path planning is to move from one configuration to another in as

short a distance as possible. Unfortunately, this statement is deceptively simple. A

robot’s configuration, comprised of the state variables needed to completely describe
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a robot’s position in space at an instant in time, may contain variables from different

topological spaces described by different metrics, such as the Cartesian coordinates

and Euler angles that together identify the six degree-of-freedom configuration of a

rigid body. Different functions may often be required to penalize movement in degrees

of freedom that differ topologically [97].

Consequently, a robot’s configuration space (C-Space) may often be of a different

topology and dimensionality than the 2D or 3D Euclidean workspace in which the

robot is observed to operate. The instructions comprising a planned path must be

expressed in C-Space for a robot to execute them unambiguously. A motivating

example is the programming of a multi-link manipulator, whose end effector trajectory

can be described by coordinates in Euclidean space, but requires instructions in the

space of joint angles for a unique path to be specified for the entire physical robot.

Describing a robot’s position is made more complex still when geometric obstacles

are considered. Obstacles, such as walls, are most naturally described in a 2D or 3D

Euclidean workspace. For a path to be planned and evaluated in C-Space, however,

the obstacle boundaries must be mapped into this space. Even when a workspace and

robot C-Space are of the same dimension and topology, obstacle boundaries must be

adjusted for the “girth” of the robot to evaluate whether a single point in C-Space is

collision-free [114].

2.1.1 Classical Path Planning

Classical approaches to path planning have focused on explicity mapping a robot’s

workspace obstacles into C-Space for the subsequent computation of optimal or near-

optimal paths. Algorithms of this type construct a roadmap, a graph in C-Space

whose nodes and edges represent collision-free configurations and straight-line paths

that link them together. Construction of the roadmap is the major computational

burden, after which optimal paths can be computed easily over the roadmap using

graph search algorithms.

Cell decomposition methods such as the trapezoidal decomposition [101] divide

the collision-free subset of C-Space (Cfree) into polygonal cells, and roadmap topology
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Figure 2-1: An illustration of classical path planning tools. Image credit: H. Choset,
The Robotics Institute of Carnegie Mellon University, http://www.cs.cmu.edu/

~biorobotics/book/figures

is determined by the adjacency of cells. Roadmap nodes can be planted in the center

of the cells to achieve suitable clearance from obstacles. Paths of maximum clearance

can be achieved using a generalized Voronoi diagram (GVD), a graph whose edges

explicitly represent the locations of maximum distance to obstacles [109]. A roadmap

of shortest paths can be constructed using a visibility graph, which adds all obstacle

vertices to the roadmap and creates roadmap edges between all vertices with an

unobstructed line-of-sight [115]. These methods are illustrated in Figure 2-1.

Despite the great success of these algorithms in 2D Euclidean C-Space for robots

translating among obstacles, optimal planning becomes more challenging as the di-

mensionality of C-Space increases and obstacle geometry becomes more complex. Two

classical algorithms capable of planning paths for arbitrary C-Spaces, populated with

arbitrary obstacles, are the cylindrical cell decomposition algorithm [43] and Canny’s

roadmap algorithm [27], which have worst-case exponential runtimes of O((nd)3
k
) and
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O(nk(log n)dO(k4)) respectively. The dimension of C-Space, the number of polynomi-

als required to describe the workspace obstacles, and the maximum degree among the

polynomials are represented by k, n, and d, respectively.

All of the above algorithms create an efficient roadmap that uses as few nodes as

possible to represent the connectivity of Cfree. It is possible to instead shift some of

the computational burden from the roadmap construction step to the graph search

step of the planning problem. In a grid-based approach, a few distinct levels of grid

resolution are specified and Cfree is populated with a graph of highly uniform spatial

resolution [59]. A wide variety of methods have been developed for planning as a

discrete state space search, motivated by robotics and many broader applications in

artificial intelligence [133].

2.1.2 Sampling-Based Planning

An alternative approach for problems of high dimension or complex geometry is

sampling-based planning. The goal of sampling-based planning is to find a feasible

path by repeatedly probing C-Space with a sampling and collision-checking scheme

[103]. This offers an alternative to explicitly constructing obstacles in C-Space and

optimizing over their geometry. Instead, robot configurations can be individually

projected into the workspace and checked for interference with workspace obstacles.

This paradigm benefits from fast and efficient algorithms for collision detection among

large polyhedra, which can be used to represent nearly any robot or workspace model

in the form of a triangle mesh. Using one such method, the OBBTree, for storing

polyhedral models, O(n log2 n) time is needed to construct the required data struc-

tures, and a single collision-checking query is found in practice to be a constant-time

operation [68].

Random Sampling

Many sampling-based algorithms adopt a strategy of random sampling to identify

candidate configurations for collision-checking. Random sampling is observed to per-
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Figure 2-2: A PRM is pictured, and its use in solving a path planning query is
illustrated. Image credit: H. Choset, The Robotics Institute of Carnegie Mellon
University, http://www.cs.cmu.edu/~biorobotics/book/figures

form well in practice [65] and it enables strong theoretical guarantees with respect

to algorithm performance. A key property is probabilistic completeness, a guarantee

that if a feasible path exists, the algorithm will find one with probability that tends

to one as the number of samples tends to infinity [100]. In addition to providing

this guarantee, it is often possible to demonstrate appealing convergence rates for

randomized sampling-based planning algorithms. This has been achieved for several

algorithms by expressing the probability of failure to return a feasible solution as a

sharply decreasing function of the number of samples drawn [37].

One of the earliest and most successful sampling-based algorithms is the prob-

abilistic roadmap (PRM) [89], illustrated in Figure 2-2. Robot configurations are

sampled uniformly at random, and then checked for collision with obstacles. If a

sampled configuration is free of collision, it is connected by straight-line paths to the

nearest nodes in the roadmap. The straight-line paths are also checked for collision

as they are generated. Roadmap construction terminates when Cfree is deemed by

the user to be suitably connected for answering path planning queries. Because of

the computational effort required for roadmap construction, the PRM is most often
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Figure 2-3: An example of a bi-directional RRT used to find a feasible path from a
start configuration (blue) to a goal configuration (green). Image credit: S.M. LaValle
and J.J. Kuffner, Jr., 2001 [105].

utilized when multiple path planning queries will be made for a particular robot and

C-Space.

For single-query applications in which a roadmap is of no long-term utility, the

rapidly-exploring random tree (RRT) [102] offers a fast and efficient alternative. This

algorithm constructs a tree graph that is rooted at the start configuration, and

“grows” in the direction of randomly sampled configurations until the goal config-

uration can also be added to the tree. A higher-performance version of the algorithm

grows two trees, rooted at the start and goal respectively, and grows them until they

can be connected [98]. An example is pictured in Figure 2-3.

Recent improvements to both the PRM and RRT have yielded asymptotically

optimal variants of these algorithms, PRM* and RRT* [86]. A probabilistically com-

plete path planning algorithm is asymptotically optimal if the shortest path found

by the algorithm converges to the optimal path with probability that tends to one
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as the number of samples tends to infinity. Unlike probabilistic completeness, this is

a property that is achieved only in the limit, and not in a finite number of random

samples. From a practical perspective this is nonetheless a highly valuable property,

since near-optimal solutions can be obtained in a finite number of samples.

Deterministic Sampling

Despite the ubiquity of randomized algorithms, sampling-based path planning can

also be performed using deterministic sampling schemes. In addition to quasi-Monte

Carlo sequences, sampling and collision-checking configurations along a simple rect-

angular grid has also been found to achieve good results for certain path planning

problems [104]. All samples in a grid must be checked before it is known whether

the grid is of sufficient resolution to solve a planning query, and if it is not, then a

grid of finer resolution can be generated. A deterministic path planning algorithm

is resolution complete if, when a feasible path exists, the algorithm is guaranteed to

generate a grid or other deterministic sampling scheme of sufficient resolution to find

it [101].

2.1.3 Path Planning Under Constraints

Dynamics

In path planning problems of practical interest, additional constraints may be posed

alongside the basic requirement that the path from a start configuration to a goal

configuration must be collision-free. A common set of additional constraints are kine-

matic or dynamic differential equations that govern the behavior of the robot. The

RRT and related algorithms of tree structure have been highly successful in applica-

tions requiring fast kinodynamic planning [105], [61], [87], where “growth” from one

node to the next is governed by the application of a user-determined force or velocity

input. If, instead of fast computation, minimization of a dynamic robot’s time or

energy consumption are the specific focus of a planning problem, a number of tra-

jectory optimization methods are suitable [19]. In a notable application of trajectory
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Figure 2-4: An example of a planned path with task constraints requiring the carrying
and placement of an object. Image credit: M. Stilman, 2007 [148].

optimization to minimize fuel consumption, both workspace obstacles and system

dynamics are expressed as constraints in a mathematical programming formulation

[141].

Uncertainty

There is also an expansive body of work on achieving robust path planning in the

presence of uncertainty. A fundamental way to accomplish this is through feedback

motion planning, which couples a planned path with a feedback control law [132],

[153]. Designing control policies to accompany a planned path improves the likelihood

that a robot will reach its goal, even in the presence of exogenous disturbances.

Robustness can also be achieved by planning under assumptions of sensing uncertainty

[128], and in turn using feedback motion planning to manage this source of uncertainty

[160]. It is also possible to plan under the assumption of an uncertain or incomplete

model of the workspace [120], [26].

Task-Specific Constraints

Another practical set of constraints is the specification of a task that the robot must

perform while traveling from start to goal. Carrying objects, opening doors, and

maintaining contact with surfaces to operate tools or push heavy payloads are ex-

amples of task constraints to which sampling-based planning algorithms have been

applied successfully [148], [17]. An example of a path planned for carrying an object

is illustrated in Figure 2-4. Other families of constraints include planning simultane-
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ous trajectories for multiple robots [149], [138], planning under known disturbances,

such as ocean current fields [111], planning with multiple goals, which will be dis-

cussed separately in Section 2.4, and planning under coverage constraints, which is

the central focus of this thesis.

Coverage constraints require a robot to sweep its end effector over some portion

of the workspace surface area. A variety of tasks can be described using coverage

constraints, including sensing, material deposition, and material removal. The end

effector may be a paintbrush, a shovel, a cleaning device, or simply the geometric

footprint of a sensor.

2.2 View Planning

A rich subject related to path planning under coverage constraints is view planning.

The aim of view planning, in which the coverage task is specifically one of sensing,

is to select a set of sensor views that provides full coverage of a structure in the

workspace [143]. In many applications the goal is to construct a model of an unknown

structure by efficienty exploring the space of sensor views. When an a priori model

of the structure is available, the goal of view planning is to design a full-coverage

set of sensor views using the model, sometimes directing the placement of a group of

sensors rather than the movement of a single sensor or robot.

2.2.1 Exploratory View Planning

When no prior model of the structure is available, next-best-view strategies have been

highly successful in covering and modeling small structures in indoor environments.

Next-best-view (NBV) algorithms follow the active perception philosophy of using

sensed information as feedback to drive real-time, exploratory sensing and decision-

making [14]. After a view is acquired by a sensor, this view and all previous views

are used to decide where the next view should be collected.

Most work in NBV planning can be divided into two categories, surface-based

methods and volumetric methods. Surface-based methods choose where to look next
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(a) A camera and laser-
equipped 3D modeling sensor
mounted on a robotic manipu-
lator.

(b) A manipulator positioning objects for viewing with a
depth camera.

Figure 2-5: Two examples of modern experimental apparatuses used for 3D modeling
of objects via NBV planning. Image credits: a) S. Kriegel et al., 2011 [96] b) S.
Krainin et al., 2011 [95]

by reasoning about the geometry of a structure’s surface. This has been achieved by

using the occluding edges of obtained views to infer which views will be unoccluded

[118], [126], and by fitting parametric curves to the observed portions of the structure

to infer the curvature of unobserved areas [167], [31]. Volumetric methods choose

where to look next by reasoning about the workspace volume occupied by the struc-

ture. This has been achieved by modeling the workspace using a grid of voxels and

selecting views based on the occupancy of the voxels [44], [117], [15], and by including

occluded volumes within a polyhedral solid model and planning views of the edges of

these volumes [130].

Most of the above methods plan in a low degree-of-freedom configuration space,

often referred to as the viewpoint space in the context of NBV algorithms. This

viewpoint space is often the surface of a cylinder or sphere that encloses the object

being inspected. Recent developments in NBV algorithms have focused on gathering

views using higher degree-of-freedom robots [96], [154], including cases in which the

robot grasps the structure and moves it to obtain higher-quality views [95]. View
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planning applications that use such robots are pictured in Figure 2-5.

2.2.2 Model-Based View Planning

Sensor-Specific Methods

When a prior model of the structure is available, a breadth of methods have been

developed for selecting a high-quality set of views. Many of these methods model

the properties of specific sensors to optimize optical parameters such as focus, mag-

nification, and illumination [150]. Early methods of particular note include a system

that concurrently plans positions for both a camera and separate accompanying light

source [136], and a nonlinear optimization method in which three optical parameters

are varied along with a robot’s five-DOF spatial configuration. [151]. Photogram-

metric network design to achieve highly accurate 3D measurements from a group of

cameras has been achieved using genetic algorithms [123].

Sensor-specific planning has also focused on optimal data acquisition for laser

range sensors [129]. Studies on range sensing for constructing an improved-accuracy

model from an unreliable prior model have developed the concept of planning using

a measurability matrix, a data structure that catalogs which structure surface points

can be measured from selected admissible viewpoints [152], [142].

The Art Gallery Problem and The Set Cover Problem

There is also a large body of work that has emphasized the geometric and combina-

torial challenges of view planning rather than those of a specific sensor. The view

planning problem has often been modeled as a variant of the art gallery problem, in

which a minimum-cardinality set of “guards” must be selected and placed to view

100% of the internal area of a polygon [124]. It is typically assumed that a guard has

an infinite-range field of view that is obstructed only by blocking its line-of-sight. This

problem is NP-hard, and several polynomial-time algorithms have been proposed for

finding feasible, sub-optimal solutions [145].

Gonzalez-Baños and Latombe propose a practical heuristic by solving the art
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Figure 2-6: An example of the dual sampling algorithm used for view planning.
Illustrated are the samples drawn and views selected for coverage of the walls of a
cathedral. Image credit: P.S. Blaer and P.K. Allen, 2009 [21].

gallery problem in two phases, a sampling phase and a set cover phase [66], [67].

They propose a version of the problem in which only the edges of the polygon must

be observed, and a guard’s field of view is limited by range and incidence constraints.

View configurations are sampled at random until the entire edge boundary is covered,

and the set cover problem is then solved approximately to select a final set of guards.

Given a group of elements and a list of sets that contain various combinations

of the elements, the goal of the set cover problem is to cover all elements using the

smallest number of sets, or, if the sets are weighted, the minimum-weight combination

of sets. Although the set cover problem is NP-hard, a variety of good approxima-

tion algorithms have been developed [162]. Of particular note are a polynomial-time

greedy algorithm [85], [113], [40] and a linear programming rounding algorithm [72],

both of which are very simple to implement in practice.

In their work on art gallery problems, Gonzalez-Baños and Latombe also propose

dual sampling, an alternative random sampling strategy that has proven to be one of

the most successful art gallery-inspired heuristics for view planning [66], [67]. Sensor

configurations are sampled from an inverse-computed region of views that maps to a
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specific point on the polygon boundary. This sampling region is moved to different

points on the polygon boundary until a full-coverage set of views is achieved. This

algorthm has been adapted for use with field robotic systems to plan views for coverage

of both the interior and exterior walls of buildings [21], an example of which is pictured

in Figure 2-6. Dual sampling has also been adapted to plan the placement of cameras

for the coverage of 2D interior floorspace [75].

Art gallery-inspired camera placement for floorspace coverage has also been accom-

plished using binary integer programming [55], genetic algorithms [169], and iterative

subdivision of the floorspace into convex polygonal segments [90]. The random sam-

pling approach to sensor placement has been extended to plan a sensor field that sat-

isfies both floor coverage and connectivity requirements [80]. Additionally, determin-

istic 2D art gallery algorithms have been adapted to achieve a worst-case-exponential

sensor placement algorithm for optimal coverage of 3D polyedral structures [22].

Other Geometric and Combinatorial Methods

Sensor placement has also been modeled as a coverage problem over a collection of

discrete point targets, which may be relevant in view planning applications with finely

discretized structure models. A polynomial-time placement algorithm with a proven

approximation factor has been used to place range sensors to cover a discrete set of

points among occluding obstacles [5]. This algorithm has been extended to both place

and orient rotating directional sensors [63].

A final notable contribution to the theory of model-based view planning is the

aspect graph. Aspect graphs are data structures that store information on which

continuous viewpoint sets are topologically equivalent, and how they are connected

to other viewpoint sets [23]. Views are topologically equivalent if they observe the

same continuous unoccluded region of a structure. Although they can be constructed

in runtime polynomial in the number of geometric primitives of a model [127], the

graphs are very large for structures of practical interest and they have not been

adopted for use in practice [143]. Despite this, they have been used successfully as a

theoretical analysis tool to illustrate the hardness of 3D view planning problems [81].
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2.3 Planning and Ordering of Views: The Travel-

ing Salesman Problem

There is a family of model-based view planning methods that not only selects sensor

views, but also plans the order in which the views are gathered. These view planning

algorithms differ from the coverage path planning methods discussed in Section 2.5;

the step of identifying feasible interconnecting paths among the view configurations

is treated here as a trivial problem. In some cases, this is because the algorithms

constrain the selection of views to be conservatively distant from the structure being

inspected.

A common view planning constraint is that all views must lie on the surface of a

sphere that contains the structure being inspected. For one system of this type, in

which an intensive pre-processing phase computes the visibility and view quality of all

structure features from every discrete viewpoint on an enclosing, tesselated sphere,

the structure is very small relative to the sphere that contains it [156]. Collision-

avoidance is not addressed; it is likely that the view-to-view paths with collision risk

are among the least efficient path segments, crossing the sphere at nearly its full

diameter. A more recent view planning system initializes all views along the surface

of an enclosing sphere and iteratively adjusts them using a genetic algorithm [30]. An

ordering of views is computed with an emphasis on accurately describing the cost of

each view-to-view path based on the required joint movements of the viewing robot.

The authors state that the distance between each pair of views is computed, but a

method for collision avoidance is not discussed. In both of these methods all final

views are joined by line-segment paths; we are left to assume that view-to-view paths

requiring more than a simple line segment are not considered.

Both of these studies emphasize the computation of a high-quality, sub-optimal

solution of the traveling salesman problem (TSP), the problem of finding, given a list

of “cities” and the distances between them, the shortest route that visits each city

once and returns to the original city [106], [9]. Although the TSP is an NP-hard

problem, many heuristics have been used to produce high-quality solutions in short
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time, including the Lin-Kernighan heuristic [110], simulated annealing [93], ant colony

optimization [48], and the algorithm of Christofides [39], which, for metric instances

of the TSP, returns a solution within a factor of 1.5 of optimality. A metric instance

of the TSP obeys the triangle inequality, which requires that no single edge of an

inter-city triangle exceed the combined length of the two other edges.

Recent work in view planning proposes a method to combine the steps of view

selection and view ordering into a unified optimization problem, the traveling view

planning problem [164]. It is assumed that a full-coverage set of views, and the struc-

ture surfaces they observe, has already been catalogged and is available as data in the

optimization problem. Weights are selected to penalize the cost of every added view

and the cost of travel between views. An integer programming formulation is proposed

along with a linear programming-based approximation algorithm. Unfortunately, im-

plementation challenges exist because the approximation has an exponential number

of constraints. Related classical problems are the generalized traveling salesman prob-

lem [60] and the covering salesman problem [46], which, using similar problem data,

call for a minimum-length route, with no penalty on the number of views, that satisfies

all coverage constraints. Solving the min-cardinality set cover problem, followed by

the standard TSP, is recommended in [46] as a heuristic substitute and is supported

with numerical data.

2.4 Multi-goal Planning

Multi-goal planning is the problem of planning a path or tour of minimum length

that visits every configuration in a set of goals. It combines the challenges of the path

planning problem introduced in Section 2.1 with the combinatorial complexity of the

ordering problems discussed in Section 2.3. In this review of multi-goal planning, we

focus exclusively on problems in which the identification of feasible interconnecting

paths among the goal configurations is non-trivial.

Computing feasible interconnecting paths is often challenging due to the presence

of obstacles in the robot workspace. The algorithm of Spitz and Requicha [146],
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(a) Planned operations over an auto body, com-
prised of 31 goals.

(b) Planned operations over a pair of lathes,
comprised of 50 goals.

Figure 2-7: Two examples of manipulator tasks requiring multi-goal planning, with
the planned paths illustrated. Image credit: M. Saha et al., 2006 [135].

designed for use with coordinate measuring machines, constructs a PRM in the robot

C-Space until all goal configurations are connected to the roadmap. The all-pairs

shortest paths problem can then be solved over the roadmap, giving the goal-to-goal

distances that are required as input to the traveling salesman problem. Although

feasible paths are computed in 3D Euclidean C-Space for problems of one hundred

goals, the robot and obstacles possess simple geometries and only about one hundred

nodes are needed to construct a PRM that reaches all goals.

The “lazy” algorithm of Saha et al. [134] is intended for multi-goal planning

problems posed in high-dimensional C-Space. It is assumed that upwards of fifty

goals will be required in the problem, and that the cost of computing a collision-free

goal-to-goal path is high compared to the cost of computing an approximate TSP over

known distances between goals. Under these assumptions, computing feasible paths

between all goal pairings is prohibitively high, and so paths are only computed on

an as-needed basis using a single-query sampling-based planner. On every iteration

of the algorithm, a TSP tour is computed using naively assumed goal-to-goal costs

based on shortest paths in the absence of obstacles. Once a goal pairing is used in

the TSP tour, the true cost of a collision-free path is substituted and the algorithm

is repeated until the tour length falls below a desired threshold. Paths planned using

this algorithm are pictured in Figure 2-7.
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The amount of “laziness” suitable in a multi-goal planning problem has been

explored through a computational comparison of the above algorithms with an ant

colony optimization technique [51]. The ant colony algorithm was designed to achieve

a compromise between Saha’s O(n) path queries per iteration and Spitz and Re-

quicha’s O(n2) path queries performed in total. The number of “ants” used in the

optimization serves as a multiplicative coefficient of the lazy algorithm’s O(n) com-

plexity and this approach achieves a high-performance compromise offering the lowest

sum of computation time and robot mission time among the three algorithms.

Work of Wurll et al. [168] and later work by Saha et al. [135] focused on multi-

goal planning over goal groups. The goals of the planning problem are posed in the

workspace rather than the C-Space, and there are many possible robot configurations

that map to each goal. Under this assumption, a group of goals is generated in C-

Space in which all members map to the desired goal in the workspace. The planning

problem is now one of choosing only a single member from each goal group to complete

the required task, which in this case is spot-welding performed by a robot manipulator

arm.

Finally, in some problems computing feasible interconnecting paths is challenging

because of kinematic and dynamic constraints governing the robot’s behavior, rather

than the presence of obstacles. Savla et al. have developed methods for solving the

minimum-time TSP for robots governed by nonholonomic [140] and double-integrator

[139] constraints.

2.5 Coverage Path Planning

We now review coverage path planning, a problem in which several of the techniques

from prior sections are used to plan a low-cost, feasible path over which a robot sweeps

the surface of a required structure using its end effector. We divide coverage path

planning algorithms into two categories, discrete and continuous. Discrete coverage

path planning entails view planning as a first step, followed by multi-goal planning

to join the discrete set of views into a feasible path. Much of the work that con-
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tributes to this area has already been covered in Sections 2.2, 2.3, and 2.4; here we

present the few algorithms that have integrated these methods. Continuous coverage

path planning employs continuous sensing or deposition by the end effector along the

trajectories followed, and its methods resemble classical path planning to a greater

extent than model-based view planning. Concepts such as cell decomposition, the

generalized Voronoi diagram (GVD), and grid-based planning have been adapted to

avoid obstacles and also satisfy coverage constraints.

2.5.1 The Watchman Route Problem

The coverage path planning problem bears some similarity to the classical watchman

route problem. Given a polygon whose internal area must be observed by a set of

infinite-range “guards”, the watchman route problem calls for the shortest continuous

cyclical route along which the entire polygon is viewed. A guard can collect the

required views from any location along the continuous route. If the starting location of

the route is specified, this problem can be solved to optimality in polynomial time over

simple polygons [34]. Despite this result on simple polygons, the problem becomes

NP-hard if holes are added to the interior of the polygon or if the problem is posed

in 3D over a simple polyhedron [33]. Additionally, if the guards have a limited-range

field of view, only approximate solutions have been found in polynomial time [122].

A version of this problem in which views are only collected at discrete locations along

the route, termed the generalized watchman route problem, is also NP-hard [165]. As

these latter cases are more representative of real-world coverage planning problems,

modern algorithms often sacrifice the pursuit of optimality for fast heuristics that

produce high-quality feasible solutions.

2.5.2 Discrete Coverage Path Planning

The watchman route algorithm of Danner and Kavraki [47] is a discrete planning

method inspired by the classical watchman route problem. First, a set of full-coverage

guards is selected using the dual sampling algorithm of Gonzalez-Baños and Latombe.

52



(a) Planned path for coverage of a complex
2D polygonal workspace.

(b) Planned path for coverage of several sim-
ple polyhedra.

Figure 2-8: Two examples of discrete coverage path planning using the watchman
route algorithm of Danner and Kavraki. Image credit: T. Danner and L.E. Kavraki,
2000 [47].

After guards are selected, they are joined into a visibility graph in 2D instances of

the problem and a PRM in 3D instances of the problem. The TSP is then solved

approximately by computation of the minimum spanning tree (MST) [39] over the

goals in the roadmap. This is the earliest work we are aware of that combines model-

based view planning, multi-goal planning over obstacles and the ordering of views

into a single integrated algorithm. Examples of planned coverage paths are pictured

in Figure 2-8.

Other discrete algorithms have focused on 2D workspaces exclusively. The bound-

ary placement heuristic of Faigl et al. maps all obstacles into C-Space and traces an

initial, continuous coverage path along the obstacle boundary, offset by the robot’s

maximum sensing range [56]. This boundary path is populated with discrete robot

configurations, the remaining gaps in coverage are iteratively filled, and obsolete

guards are removed prior to planning of a final inspection path. The authors demon-

strate, through computational results, that their view planning algorithm yields

shorter paths on average than both the randomized dual sampling method and a

geometric structure partitioning method [90]. Discrete, 2D coverage path planning
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has also been performed for multi-robot deployments, in which a set of full-coverage

views is planned and subsequently partitioned among a team of robots [58].

2.5.3 Continuous Coverage Path Planning

Planning in 2D Workspaces

A breadth of continous coverage algorithms have been developed for use in a 2D Eu-

clidean C-Space populated with obstacles, with the goal of covering Cfree as efficiently

as possible [35]. Choset’s boustrophedon cellular decomposition algorithm solves this

problem over polygonal obstacles by dividing Cfree into cells that are individually

covered by efficient back-and-forth sweeping motions [38]. The algorithm seeks a de-

composition with as few cells as possible to limit the number of times the contiguous

sweeping motions are interrupted. Related work by Huang explored reducing overall

path length by orienting sweep paths differently in different cells [79]. Recent work

by Mannadiar and Rekleitis improves efficiency further by ensuring that no piece of

terrain is covered twice within cells that must be visited twice during execution of

the coverage path [116].

To generate the cells used in the solution, these and other cell decomposition

strategies propagate a “slicing function” through Cfree to identify critical points where

the connectivity of Cfree changes across the slice. Critical points, which occur when

a new obstacle first intersects the slice or when an existing obstacle departs from

the slice, mark ideal locations for the creation of cell boundaries. The concept of a

slicing function has been generalized for obstacles of curved geometry, using a variety

of functions that yield curved, radial, and spiral-shaped robot sweep patterns [3].

Cell decomposition has been used in concert with GVDs as part of a hybrid

strategy for planning in workspaces that include both open areas and narrow corridors

[2]. In open areas with sufficient clearance, a robot is assumed to possess enlarged

boundaries that extend to the limits of its range sensor, and coverage is planned using

cell decomposition. In low-clearance areas where the sensor has effectively infinite

range, constructing a GVD and following its edges is sufficient to achieve coverage.
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An alternative, grid-based method for 2D coverage plans a non-cyclical coverage

route using a given a start configuration and goal configuration [170]. A cost is

assigned to each grid cell based on its distance from the goal, and the robot moves

in the direction of greatest cost increase subject to the requirement that no cell is

visited more than once. The spanning tree covering method of Gabriely and Rimon

also discretizes the interior of Cfree using a grid of small, identically-sized squares

[64]. A graph is generated representing the connectivity of the grid, and the minimum

spanning tree is computed over this graph. A coverage path is generated by tracing

a route around the perimeter of the spanning tree.

Algorithms have also been developed for achieving full coverage of a priori un-

known 2D environments. The cellular decomposition of 2D C-Space has been com-

puted incrementally as a robot explores its environment along back-and-forth sweep

paths, enabling online planning and verification of sensor coverage [1]. Full coverage of

unstructured environments has been achieved experimentally using this method with

application to demining [4]. An algorithm designed for surveying the ocean floor using

an AUV, which requires no a priori knowledge of the environment, achieves coverage

by sweeping along the lines of a pre-determined grid and tracing the boundary of

workspace obstacles when they are encountered [71]. The algorithm is also capable

of planning paths that change depth along grid lines to accomodate altitude changes

in seafloor terrain.

Also of note are several 2D coverage path planning algorithms designed for multi-

robot deployments. Cell decomposition has been extended to multi-robot coverage

planning using the novel solution of parallel paths swept by robots in formation [82].

In a related procedure, a cell decomposition of Cfree is divided among a team of robots

with limited communications, including the assignment of cells to different groups of

robots and the team-based sweeping of individual cells [131]. Multi-robot coverage

algorithms have also used the GVD as a tool for path planning, both for coverage of

Cfree [99] and the boundary of Cfree [49].
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Planning in 3D Workspaces

Some algorithmic tools used for 2D coverage path planning have been adapted for

use in 3D workspaces. Cell decomposition has been developed for coverage planning

over 3D structures by combining a series of planar 2D “coverage loops” into a full

3D inspection [10]. A 2D slicing function is propagated through the 3D workspace

to identify critical points where a change in the topology of the coverage loop is

required. Examples of 2D and 3D coverage paths planned using cell decomposition are

pictured in Figure 2-9. If an infinite-range sensing assumption applies to a robot, then

the hierarchichal generalized Voronoi graph, an adaptation of the GVD for higher-

dimensional C-Space, can be used to plan for full coverage of a 3D workspace, even

if the workspace is a priori unknown [36].

Other 3D coverage planning algorithms have been developed with specific applica-

tions in mind. A specialized planning method for auto body painting segments a car

model into pieces of individually simple topology [11], and coverage paths are planned

over the segments with the goal of minimizing geodesic curvature to achieve uniform

paint deposition [12]. Robot dynamics are considered in an algoritm for planning

minimum-time coverage of the exterior of buildings by a team of unmanned aerial

vehicles (UAVs), which covers the buildings using a series of planar looping trajecto-

ries [32]. A sampling-based method for planning a marine structure inspection by an

AUV iteratively constructs a full-coverage roadmap, from which a set of linear path

segments is selected and pieced together into a contiguous inspection route [50]. A

five-DOF robot C-Space is considered in this problem, and each line-segment path

utilizes a different orientation of the limited-field-of-view acoustic sensor.

2.6 Summary

In this section we presented a comprehensive review of relevant prior work in path

planning, view planning, multi-goal planning, and coverage path planning. Two clear

perspectives emerge in the review of these works: coverage can be achieved using a

discrete set of configurations, and coverage can be achieved over a continuous trajec-
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(a) Critical points computed by sweeping a vertical line
across the pictured 2D C-space.

(b) Cell decomposition based on 2-9(a)
with coverage of one cell illustrated.

(c) Critical points computed by sweeping a horizontal
plane through the pictured 3D C-Space.

(d) Cell decomposition based on 2-9(c)
with coverage loops illustrated.

Figure 2-9: Examples of 2D and 3D cell decompositions used for continuous coverage
path planning. Image credit: E.U. Acar et al., 2002 [3].

tory. Most often, the former perspective is motivated by a sensing task, specifically

one in which collecting a sample requires non-trivial time or a stationary robot. The

latter perspective is motivated by higher-bandwidth tasks in sensing, deposition, and

removal, in which continuous-time assumptions are accurate. Despite this difference

in application, algorithms in both categories share the burden of finding collision-free
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paths, and satisfying challenging coverage constraints. In the three following chapters,

we introduce new planning algorithms and discuss the merits of each in the context

of this prior work. Each new algorithm satifies a compelling, unmet need motivated

by the application of planning an autonomous in-water ship hull inspection.
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Chapter 3

Planning Feasible Inspection Tours

3.1 Introduction

As introduced in Chapter 1, our coverage application is the autonomous in-water

inspection of a ship hull, a 3D structure with challenging complexity at the stern due

to shafts, propellers, and rudders in close proximity to one another and to the hull.

The Bluefin-MIT Hovering Autonomous Underwater Vehicle is tasked with inspecting

100% of the surface area at the stern using a DIDSON. The vehicle is fully actuated

and precision-maneuverable, but it cannot fit into the spaces between the component

structures at the stern. As a result, most of the prior methods for 3D coverage path

planning are unsuitable.

Several of the 2D coverage algorithms reviewed in Chapter 2 can be applied itera-

tivley as “2-and-a-half-D” (2.5D) algorithms. A 3D structure can be partitioned into a

series of 2D slices, and the boundary of each slice can be covered using an appropriate

2D path planning or view planning algorithm. Examples of 2D algorithms suitable

for this purpose are a GVD-based boundary coverage algorithm [49] and the dual

sampling algorithm for randomized view planning [66]. In addition, some algorithms

designed explicitly for 3D coverage path planning rely on 2.5D strategies, including

a 3D cell decomposition algorithm [10] and a method for the exterior inspection of

buildings [32], both of which design planar looping trajectories for 2D cross-sections

of a structure. Related to 2.5D algorithms are 3D coverage algorithms that parti-
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tion a structure in a non-planar way for planning over each separate module, such

as a car-painting strategy that relies on structure segmentation [11], [12]. The 2.5D

building inspection method also relies on segmentation when multiple buildings are

involved. For both of these methods, it is assumed that there is no risk of collision

along a path designed for an isolated component structure.

If we adopt a 2.5D approach for planning a ship hull inspection, there is no guar-

antee that a single “slicing” direction will allow access to all low-clearance areas.

A 2.5D plan may need to be augmented with special, out-of-plane views to grant

visibility of confined areas that are occluded or inaccessible in-plane. If a 3D mod-

ular approach is implemented, paths planned for component structures are at risk

of collision with neighboring structures. It may not be possible to design a series of

loops that fully covers a shaft due to limited clearance between the shaft and other

component structures.

In consideration of these factors, we take a global optimization approach, in which

all 3D protruding structures are considered simultaneously. The constraints are de-

termined by the geometry of the 3D model provided as input. We use a triangle mesh,

typically comprised of thousands of primitives, to accurately model a ship’s running

gear. Rather than explicitly optimizing robot configurations over the thousands of

collision and visibility constraints posed by such geometry, sampling-based planning

is used, employing random sampling to find feasible means for a robot to peer into

low-clearance areas from a distance.

The watchman route algorithm of Danner and Kavraki [47] uses the global, sampling-

based approach described above, providing a suitable starting point for coverage path

planning over complex 3D structures. This algorithm has been used to plan paths

that cover very simple polyhedra, and the final details of its 3D implementation are

left by its authors as an area for future work. We present an algorithm that makes

several extensions to this work, including effecient means for checking the visibility

of geometric primitives over structures with large models and complex geometries.

Our algorithm constructs a redundant roadmap, in which every geometric primitive

is observed by multiple robot states. To enable fast planning over a large roadmap,
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tools from multi-robot [137] and multi-goal [135] planning are used to enable lazy

collision-checking.

Both the redundant roadmap algorithm and the watchman route algorithm con-

struct a discrete set of stationary views to obtain full coverage. This is preferable for

planning an autonomous ship hull inspection, as the presence of ocean disturbances

increases the difficulty of executing a continuous sensing path with high precision.

Using discrete coverage planning, the HAUV can stabilize at each individual way-

point before collecting a view, avoiding the need to double back to collect missed

observations from a continuous sensing path.

A desirable property for a sampling-based planning algorithm is probabilistic com-

pleteness. If a feasible solution exists for a given problem, then a probabilistically

complete algorithm will find a solution with probability that tends to one as the

number of random samples tends to infinity [100]. This property has been proven

for a variety of sampling-based path planning algorithms, including the probabilistic

roadmap (PRM) [88] and the rapidly-exploring random tree (RRT) [105]. Proba-

bilistic completeness has not been explored, however, in the context of coverage path

planning. We propose a framework for analyzing the probabilistic completeness of

a sampling-based coverage path planning algorithm, and we identify quantitative

bounds on the probability of obtaining a feasible solution.

Our proposed roadmap construction and collision-checking procedures are pre-

sented in Section 3.2. In Section 3.3 we discuss the methods by which the set cover

problem (SCP) and TSP are approximated in sequence to build an inspection tour

from a redundant roadmap. In Section 3.4 we give an analysis of probabilistic com-

pleteness that applies to both the watchman route algorithm and the redundant

roadmap algorithm. We then compare the computational performance of our algo-

rithm with the watchman route algorithm over an ensemble of trials. In Section 3.5 we

examine algorithm performance over Monte Carlo trials in which randomly-sampled

primitives must be inspected by a point robot in an obstacle-free 3D workspace. In

Section 3.6 we apply the inspection planning algorithms to a large-scale, real-world

task, planning the inspection of a ship hull by the HAUV.
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3.2 Sampling-Based Planning Procedure

We develop a feasible inspection tour by solving two sub-problems in series. The first

problem entails sampling feasible robot configurations that together give 100% cov-

erage of a structure boundary, which we term the coverage sampling problem (CSP).

The CSP differs from the classical art gallery problem [124] because it does not require

the selection of a minimum cardinality set, but merely a feasible covering set. After

a set of configurations from the CSP is selected for traversal, the second problem

requires the linking of these configurations with feasible paths, which we refer to as

the multi-goal planning problem (MPP).

Our roadmap construction algorithm for solving the CSP uses random sampling

to create a discrete state space of tunable resolution from which the inspection path

will be made. To solve the MPP, a point-to-point planner is applied iteratively to

connect the configurations on the roadmap with feasible paths. The MPP algorithm

is “lazy”, finding a quality solution without computing paths for all point-to-point

combinations. A stateflow diagram summarizing the coverage path planning proce-

dure from start to finish is given in Figure 3-1. The watchman route algorithm is also

illustrated in Figure 3-1 for the purposes of comparision.

3.2.1 Motivation

Danner and Kavraki’s watchman route algorithm uses the dual sampling method of

Gonzalez-Baños and Latombe as a key subroutine. In their work on the subject of

sampling-based view planning [66], [67], Gonzalez-Baños and Latombe describe two

strategies for achieving sampling-based coverage: sampling C-Space at random until

the workspace boundary is covered, and sampling from the workspace boundary itself

and selecting views that map to sightings of each boundary location. In the former

case, the min-cardinality set cover is approximated over a large group of random sam-

ples. In the latter case, dual sampling, the set cover is pieced together incrementally

and is not solved in a single batch step.

The dual sampling method selects in each iteration a geometric primitive that
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Figure 3-1: A stateflow diagram illustrating two algorithms for feasible sampling-
based coverage path planning, highlighting the subroutines that solve the CSP and
MPP subproblems.

has not been observed, and samples in a local neighborhood of C-Space that maps to

feasible views of this primitive. Samples are drawn until a group of sufficient size is

collected in which each sample observes at least one required primitive. The sample

that contributes the largest quantity of new sensor information is immediately added

to the set cover, and the rest of the group is discarded. Local sampling continues

elsewhere until every primitive is observed at least once. The key tunable parameter

of dual sampling is the number of local samples that is drawn in the neighborhood of

each geometric primitive.

Gonzalez-Baños and Latombe also propose a tunable parameter for the batch case:

a limit on the maximum number of samples drawn in C-Space. A sampling limit

will allow a user to obtain improved set cover outcomes in exchange for a greater

investment in sampling, but there is no guarantee that the designated number of

samples will achieve full coverage of the workspace boundary. Our aim is to develop

an algorithm that uses the best features of both methods. Our proposed redundant

roadmap algorithm samples the workspace boundary like the dual sampling method,

but it solves the set cover in a single batch step.
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3.2.2 Roadmap Construction

Our proposed algorithm adds configurations to a roadmap until each geometric prim-

itive is observed a requisite number of times, which we term the redundancy of the

roadmap. Construction begins with the selection of a geometric primitive that has

not been observed the required number of times. Robot configurations are sampled

uniformly at random in a local neighborhood of this primitive, avoiding exhaustive

sampling in empty portions of the workspace. A configuration is added to the roadmap

if it collects at least one required observation, and if the configuration is free of col-

lisions and occlusions. In addition to collision-checking, this requires ray shooting;

casting a line segment between the robot’s sensor and each of the primitives inside the

sensor footprint to ensure the line of sight is clear. After a configuration is added to

the roadmap, another primitive is selected, and the procedure repeats until the redun-

dancy requirement is satisfied. The full roadmap construction procedure is detailed

in Algorithm 1.

Increased redundancy is intended to create a finely discretized state space from

which a smaller covering subset of robot states is chosen. This procedure stands

in contrast to dual sampling, in which the final set of configurations used in the

inspection is pieced together one-by-one, and many candidate samples are discarded

before complete coverage is achieved. The aim of constructing a redundant roadmap is

to conserve the amount of collision-checking and ray shooting required in the solution

of a 3D coverage problem, while preserving a means for tuning the performance of

the algorithm.

3.2.3 Lazy Point-to-Point Planning

Once a set of views is selected from the roadmap, they must be joined together into

a contiguous, collision-free inspection route. The watchman route algorithm achieves

this by building a PRM that joins all view configurations into a single connected

component; the TSP is then approximated using the all-pairs shortest path lengths

among the view configurations. This approach, formalized by Spitz and Requicha
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Algorithm 1 ConfigList = BuildRoadmap(Primitives, Obstacles, Redundancy)

1: IncompletePrimitives← Primitives
2: while IncompletePrimitives 6= ∅ do
3: SeedPrimitive← ChooseRandomEntry(IncompletePrimitives)
4: NewConfig ← FeasibleSample(SeedPrimitive, Obstacles)
5: NewSightings← Sensor(NewConfig, Primitives,Obstacles)
6: NeededSightings← NewSightings ∩ IncompletePrimitives
7: if NeededSightings 6= ∅ then
8: ConfigList.add(NewCfg,NewSightings)
9: for i ∈ NeededSightings do

10: NeededSightings[i].incrementNumSightings()
11: if NeededSightings[i].numSightings = Redundancy then
12: IncompletePrimitives← IncompletePrimitives \NeededSightings[i]
13: end if
14: end for
15: end if
16: end while
17: return ConfigList

[146], requires extensive sampling if the individual paths from view to view are to be

well-formed, since there are O(n2) individual view-to-view paths that may be selected

in a tour that traverses n views.

An alternate approach developed by Saha et al. emphasizes the construction of

high-quality paths among a small subset of O(n) view-to-view pairings [134], [135].

This method assumes the cost of computing an approximate TSP solution is minor

compared to the cost of building feasible paths, and it is intended for problems of high

dimension and complex geometry. This assumption holds true in our application of

interest, in which the number of views is relatively small (about one-to-two hundred

for a typical hull inspection problem), but the cost of path planning is high among

complex structures with hundreds of thousands of primitives.

Efficient computation of a feasible tour is achieved with a lazy algorithm adapted

from this work. As the redundant roadmap of views is constructed, an adjacency ma-

trix is maintained in which all entries represent the Euclidean norms among roadmap

nodes. Computation of a Euclidean norm is far simpler than performing collision-

checking along every possible view-to-view path. An initial inspection tour is com-

puted over this naive adjacency matrix, and only the edges selected in the tour are
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Algorithm 2 RobotTour = LazyTourAlgorithm(Nodes,Obstacles)

1: AdjMat← EuclideanDistances(Nodes)
2: UnclearedEdges← GetEdgePairs(Nodes)
3: ClearedEdges← ∅
4: while NewTourCost 6= PreviousTourCost do
5: PreviousTourCost← NewTourCost
6: NewTourCost← 0
7: LazyTour ← ComputeTour(AdjMat)
8: for Edgeij ∈ LazyTour do
9: if Edgeij ∈ UnclearedEdges then

10: FeasiblePathij ← RRT (Edgeij, Obstacles)
11: ClearedEdges← ClearedEdges ∪ Edgeij
12: UnclearedEdges← UnclearedEdges \ Edgeij
13: AdjMat(i, j)← PathCost(FeasiblePathij)
14: end if
15: NewTourCost← NewTourCost+ AdjMat(i, j)
16: end for
17: end while
18: RobotTour ← LazyTour
19: return RobotTour

collision-checked, rather than every edge of the roadmap. The bi-directional rapidly-

exploring random tree (RRT) [98] is used as the point-to-point planner. The com-

putation of RRTs over the edges of the inspection tour increases the lengths of some

edges. To address this, an iterative solution procedure, similar to that in [134], is

utilized. After the first set of feasible paths is obtained, the costs in the adjacency

matrix are updated, and the inspection tour is recomputed using the new costs. This

procedure is repeated, and goal-to-goal costs are iteratively updated, until there is no

further improvement in the length of the returned path. This procedure is detailed

in Algorithm 2.

3.3 Combinatorial Optimization Procedure

In the development of the redundant roadmap algorithm, we assume that an inspec-

tion route is optimal if it minimizes the total duration of the inspection. Time is

spent traveling the length of the route, and also collecting the planned sensor view at

each node along the route. Stated as an integer programming problem, minimizing
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the total duration of an inspection tour, given a full-coverage roadmap with assumed

node-to-node distances, would require multiplicative weights on both the number of

views and the length of the tour in the problem’s cost function. These weights would

be determined by the cost of collecting a sensor view relative to the cost of travel per

unit distance. This problem, called the traveling view planning problem (Traveling

VPP), has been studied by Wang et al. [164], who have proposed a linear program-

ming rounding algorithm for finding an approximate solution. Their advocacy of

this approach is based on the argument that decoupling the solution of the Traveling

VPP into two sequential steps, the min-cardinality set cover and the TSP, can give

arbitrarily poor solutions.

This is true, and becomes increasingly problematic, when the robot’s field of view

approaches infinite range and the boundaries of its environment are near-infinite

relative to the size of the structure being inspected. Conversely, our application of

interest concerns a robot with a limited sensing radius (3-5 meters) operating in a

confined environment with boundaries on the order of tens of meters. As a result, we

plan a full-coverage inspection route by approximating the SCP and TSP in sequence.

This sequential approach is an effective heuristic for the covering salesman problem, a

classical problem embedded with finite-range, geometric coverage constraints in which

all “cities” given must lie within a required minimum distance of a city selected for

the tour [46]. In our implementation of this procedure, the SCP is solved once, and

the TSP is solved iteratively using the method described in Section 3.2.3. Solving

the SCP only once limits the number of point-to-point path queries posed over the

problem’s complex geometry, which would be much greater if a Traveling VPP were

solved in each iteration. Below we discuss the methods used to approximate the SCP

and TSP in sequence.

3.3.1 Set Cover Subproblem

To solve the set cover subproblem, we rely on polynomial-time approximation algo-

rithms that find solutions within guaranteed factors of optimality. We consider two

such algorithms, a greedy algorithm and a linear programming (LP) rounding algo-
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rithm. The greedy algorithm simply adds to the set cover, on each iteration, the

roadmap node with the largest number of observed primitives not yet in the cover

[85], [113], [40]. This algorithm solves the SCP within a factor of optimality that is

bounded above by ln(m) + 1, where m is the number of primitives required in the in-

spection. The rounding algorithm [72] solves the LP relaxation of the SCP, and then

rounds the fractional solution according to a simple rule: if f is the largest number of

roadmap nodes which share sightings of a primitive, then any roadmap node whose

fractional decision variable is greater than or equal to 1/f is included in the cover.

This method is guaranteed to return a solution within a factor f of optimality.

In the ship hull inspection example to be presented below, there are more than 105

primitives required in the inspection, giving a greedy algorithm approximation factor

of about 12.5. At the same time, a typical value of f on a representative roadmap for

this task is about twenty. Since these are both fast algorithms, and the approximation

factors are of the same order, we will compare the two to assess their performance in

practice.

Although both algorithms produce feasible solutions, these can often be pruned to

yield feasible solutions of smaller size. Our pruning procedure, which runs in O(n2m)

time, identifies configurations in the set cover that observe no geometric primitives

uniquely, and in each iteration one of these configurations is randomly selected and

pruned from the cover. The procedure repeats until every configuration in the cover

is the unique observer of at least one geometric primitive.

3.3.2 Traveling Salesman Subproblem

To solve the TSP subproblem, we rely on another polynomial-time approximation.

The algorithm of Christofides [39] computes the minimum spanning tree (MST) over

a graph, and then a minimum-cost perfect matching over the odd-degree nodes of the

MST, achieving an approximation factor of 1.5 when the triangle inequality holds over

the roadmap. Although our lazy computation procedure may occasionally violate the

triangle inequality, RRT post-optimization smoothing ensures that there are no paths

from a roadmap node i to a roadmap node k such than an alternate path from i to
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some node j to k is dramatically shorter. This assumption has proven successful in

MST-only variants (with factor-2) for single and multi-agent coverage planning [47],

[58], as well as pure multi-goal planning [134].

The Christofides approximation gives a good starting point for the TSP, but we

also utilize a post-optimization improvement heuristic. Heuristics such as the Lin-

Kernighan algorithm [110], which iteratively improves a TSP solution by swapping

groups of edges, have succeeded in finding fast, high-quality solutions to very large

TSP instances in practice [9]. We apply the chained Lin-Kernighan improvement

procedure [8] for a short period of time after computation of each inspection tour.

3.4 Analysis of Sampling-Based Planning of Fea-

sible Coverage Paths

Here we analyze the sampling-based solution of robot coverage path planning. The

analysis of probabilistic completeness in this section is designed for compatibility

with both our proposed algorithm and the watchman route algorithm of Danner and

Kavraki. Both the watchman route and redundant roadmap algorithms solve the CSP

by randomly sampling configurations until the required structure is covered, although

the latter algorithm does not terminate until coverage of multiplicity k is achieved

among the configurations in its roadmap. In the analysis of the CSP to follow, which

is the major contribution of this section, we will assume that k-coverage is required

so the analysis will apply to both algorithms.

The two algorithms also differ in their solution of the MPP. The watchman route

algorithm connects the nodes in the set cover using a PRM. The redundant roadmap

algorithm employs an iterative solution of the RRT over all goal-to-goal paths in

the tour. Our analysis of probabilistic completeness will address both methods for

solution of the MPP, drawing largely on existing results on the completeness of the

individual PRM and RRT.
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Figure 3-2: An illustration of the primal and dual set systems in the coverage sampling
problem. Robot configurations qj are used in both systems; the primal set cover
problem employs the sensor observations collected at qj and the dual hitting set
problem employs the physical state of qj. The primal (primitive) space is discrete
and the dual (configuration) space is continouous.

3.4.1 Set Systems and the CSP

We will represent the coverage sampling problem using the set system (P,Q), also

known as a range space. P is a finite set of geometric primitives pi comprising a

structure that that must be covered by the robot. Q is the robot configuration space.

Every feasible configuration qj ∈ Q maps to a subset of P viewed by the robot’s

sensor. These sets of observed primitives are known as ranges. Given a finite set of

ranges from Q, the set cover problem calls for the minimum number of configurations

qj such that all elements pi ∈ P are covered.

The problem can also be modeled using the dual set system (Q,S), where Si ∈ S

is the set of feasible robot configurations in Q that obtain views of the primitive

pi ∈ P . Given a finite set of robot configurations from Q, the hitting set problem calls

for the minimum number of configurations qj such that at least one configuration lies

in every Si for all pi ∈ P . The structure of the primal and dual set systems for a

robot coverage sampling problem is illustrated in Figure 3-2.
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The set system modeling language was developed for analyzing the number of sam-

ples required to cover the ranges of a set system, as a function of their size [161],[70].

In the analysis most closely related to probabilistic completeness, set systems have

been used to analyze the number of samples required for high-probability floor cov-

erage by a random sensor network [80]. Set systems have also been used in the study

of set cover and hitting set approximation algorithms, [24], with several applications

to robot coverage and sensor placement [67],[81],[62].

Our analysis differs from prior work due to its emphasis on covering a discrete

collection of primitives rather than the full continuous surface of a structure. The

analysis requires only two scalar parameters to describe the difficulty of a coverage

problem: the total number of geometric primitives, and a ratio comparing the volumes

of the C-Space region being sampled and the smallest subset of views with a single

primitive in common. A continuous analysis, on the other hand, depends heavily on

the geometry of the robot sensor’s field of view, the dimensionality of the workspace,

and the available degrees-of-freedom for positioning the sensor in the workspace.

After presenting our results on probabilistic completeness below, we will discuss the

procedures required to obtain a comparable continuous result. The continuous case

is also presented in greater detail in Appendix A.

We now formally define the coverage sampling problem:

Definition 1 (Coverage Sampling Problem). Let P be a finite set of discrete geo-

metric primitives pi comprising a structure to be inspected. Let the infinite set Q be

the robot configuration space whose configurations qj ∈ Q map to observations of the

Euclidean workspace which contains P . Let integer k be the number of times each

pi ∈ P must be viewed. Find a finite set of feasible configurations N ⊂ Q that obtains

at least k distinct views of all pi ∈ P .

Let’s now assume that an algorithm has been proposed for solution of the CSP

using a random sampling scheme in a d-dimensional Euclidean C-Space. We define

the property of probabilistic completeness for a CSP algorithm as follows.

Definition 2 (Probabilistic Completeness of a CSP Algorithm). Let CSA be a pro-
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posed coverage sampling algorithm for the CSP. Let (Q,S) be the dual set system over

which the CSP is defined. Let δ = minSi∈S µ(Si)/µ(Q) be the volume fraction of the

smallest range in S, where the measure µ represents the volume of the specified region

of configuration space. If, when δ > 0, the probabability that at least k samples have

landed in every Si ∈ S approaches one as the number of samples of Q drawn by CSA

approaches infinity, then CSA is probabilistically complete.

This definition implies that if a feasible CSP solution exists, a probabilistically

complete CSP algorithm will find a feasible solution in the limit. In fact, we employ

a rather strict definition of feasibility that deems a CSP to be feasible only if the

smallest range in S has nonzero volume. This eliminates degenerate instances of the

CSP from consideration, in which some point pi ∈ P can only be viewed from a

manifold in Q of lower dimension than Q itself.

3.4.2 Probabilistic Completeness of the CSP

We can analyze probabilistic completeness by studying the simple event of whether a

randomly-sampled configuration qj lands in a particular range Si ∈ S. We will assume

throughout the analysis that some subset of the configuration space A ⊆ Q, which

is relevant for the inspection task, is chosen for sampling. A is often comprised of

the region of Q that is within sensor viewing range of the structure. The probability

of a sample qj landing in Si is equivalent to the ratio µ(Si ∩ A)/µ(A). Using these

preliminaries, we give the following theorem on probabilistic completeness.

Theorem 1 (Completeness and Convergence of the Discrete CSP). Any algorithm

for the CSP that samples uniformly at random from an infinite subset A ⊆ Q such

that µ(Si ∩ A)/µ(A) ≥ ε > 0 ∀Si ∈ S is probabilistically complete. Additionally, the

probability that a feasible solution has not been found after m samples is bounded such

that

Pr[FAILURE] < |P | · ek

e mε/2
, (3.1)

where |P | is the number of geometric primitives pi ∈ P .
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Proof. The probability of m samples producing a feasible CSP solution is equivalent

to the probability that at least k random samples have landed in every range Si ∈ S.

This fails to occur if there is at least one Si in which fewer than k samples have landed.

To model this event, we define the binomial random variable Xi = Xi1+Xi2+...+Xim ,

which gives the number of samples that have successfully landed in Si out of m total

trials. We express the probability of CSP algorithm failure as follows:

Pr[FAILURE] ≤ Pr

 |P |⋃
i=1

Xi < k


≤
|P |∑
i=1

Pr[Xi < k]

≤ |P | · Pr[Xi∗ < k] (3.2)

Using the union bound, the probability that Xi < k for at least one Si is bounded

above by the sum of the probabilities of this event for all Si ∈ S. This is further

simplified by taking Pr[Xi∗ < k] as an upper bound on the failures of all Xi, where

Xi∗ is the binomial random variable corresponding to the range in S that minimizes

µ(Si ∩ A)/µ(A).

We next bound Pr[Xi∗ < k] using the Chernoff bound for the lower tail of a

Poisson distribution, which accurately represents a binomial distribution for large

numbers of samples:

Pr[Xi∗ < γ · λ] < e−
(1−γ)2

2
λ, γ ∈ [0, 1) (3.3)

The parameter λ = mε is the expected number of Poisson successes and γ is a

fractional coefficient of λ. If we choose γ = k/mε, this allows the product γ · λ to

evaluate to k, the exact number of successes we wish to model. We can now simplify

(3.3).

Pr[Xi∗ < k] < e
−mε
2

+k+−k2
2mε ≤ ek

e mε/2
(3.4)
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Combining the result of (3.4) with (3.2), we obtain the desired relationship between

m and the probability of failure:

Pr[FAILURE] < |P | · ek

e mε/2
, lim

m→∞
|P | · ek

e mε/2
= 0 (3.5)

Since µ(Si ∩A)/µ(A) > 0 ∀Si ∈ S, ε > 0 and the limit behaves as indicated in (3.5).

The bounding methods used in this analysis have been used previously in other

probabilistic completeness proofs. The union bound was used previously in the proof

of completeness of the PRM [88], and the Chernoff bound was used in the proof of

completeness of the RRT [105]. Our analysis requires both of these tools since we

need to reach every Si ∈ S and we must do so at least k times.

Implications of Analysis

Any algorithm to which Theorem 1 applies benefits from a probability of failure that

decreases exponentially in the number of samples m. Theorem 1 applies to both the

redundant roadmap algorithm and the watchman route algorithm as long as A is

selected to allow ε > 0 whenever δ > 0. Both algorithms sample from a subset A ⊆ Q

that includes all areas where the robot’s geometric sensor footprint intersects at least

one pi ∈ P , so this condition will always be satisfied.

It is also true that poor selection of A can result in the failure of a CSP algorithm

to attain probabilistic completeness. Consider an algorithm which chooses a manifold

A of lower dimension than Q, such as a set of cross-sections in <2 from a set Q ⊆ <3,

which is often the strategy of 2.5D coverage algorithms. Even though µ(Si)/µ(Q) >

0 ∀Si ∈ S, it may be possible that µ(Si ∩A)/µ(A) = 0 ∃Si ∈ S and a 2.5D algorithm

does not achieve probabilistic completeness.

In the application of autonomous ship hull inspection, which we explore in detail

below, sweeping the stern of a naval ship for the purpose of mine detection demands

coverage of a polyhedron comprised of several hundred thousand primitives. In a

worst-case representative example where |P | = 106, ε = 10−3, and k = 10, the
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probability in (3.1) drops from unity to 10−12 as the number of samples grows from

104 to 105. This quantity of samples is typically drawn over the course of one to two

minutes of algorithm runtime.

In a continuous coverage analysis, m must surpass a threshold number of samples

before such an exponential bound applies. This threshold, which is capable of taking

on large values that exceed 105 samples, must be derived uniquely for different sensor

geometries and constraints on sensor postioning. For a 3D structure observed by

infinite field-of-view cameras positioned on the surface of an enclosing sphere [81],

the threshold varies in Θ(log(v)), where v is the number of vertices in a polyhedron

P (we have used |P | to refer to arbitrary primitives that are not necessarily vertices).

In Appendix A we discuss this threshold, and the additional sampling it requires,

in detail, giving relevant background on the geometric properties that figure in a

continuous analysis.

It is conservative in any case, however, to assume that the worst-case volume

fraction of ε = 10−3 describes the difficulty of observing all one million primitives.

We can employ more detailed knowledge of the ranges Si ∈ S, but the potential for

improved bounds on failure probability is limited. For example, we can establish a

large volume fraction ε large and a small volume fraction ε small, such that ε large bounds

the volume fraction µ(Si∩A)/µ(A) for the vast majority of ranges Si ∈ S, and ε small

bounds the volume fraction for a small minority of ranges. Splitting the summation in

(3.2) into two additive terms with different coefficients, we obtain a more descriptive

result in (3.6), framed in terms of the small number n << |P | of ranges described by

ε small.

Pr[FAILURE] < (|P | − n) · ek

e mε large/2
+ n · ek

e mε small/2
(3.6)

With a coefficient n much smaller in magnitude than the total number of geometric

primitives |P |, the ε small term, which dominates (3.6) due to its slower decay rate,

will fall sufficiently close to zero over a reduced number of random samples. The

ε large term, assigned most of the weight of |P |, will decay away at at a much faster
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Figure 3-3: The geometric primitives in a 3D mesh model of a ship’s stern are sorted
according to the number of samples required to observe them over the course of
constructing a redundancy-ten roadmap.

rate. It may be exhaustive to identify specific ε for all Si ∈ S, but identifying a small

number of distinct categories may strengthen the result of the analysis.

In the one-million-primitive case described above, let us assume that a small

cluster of primitives requires ε small = 10−3, but the vast majority of primitives can

be described by ε large = 10−2. This assumption is derived from our application of

interest: when the geometric primitives in the model of a ship’s stern are sorted

by the number of samples required to observe them, as is depicted in Figure 3-3, a

“bend” empirically divides easy-to-observe and hard-to-observe geometric primitives,

approximately ninety-seven percent to three percent. If we allow ε large and ε small

to describe the easy-to-observe and hard-to-observe primitives, respectively, then the

result of (3.6), assuming the problem of interest has a feasible solution, guarantees

a 99.99 percent probability of successful completion after fifty thousand samples are

drawn. If ε small is applied to all primitives instead, then fifty-seven thousand samples

are required to guarantee the same probability of successful completion. If ε small

applied only to ten out of the one million primitives, then only thirty-four thousand

samples would be required. In any of these cases, though, ε small dominates (3.6) to

an extent that the improvements in the theoretical guarantee are not dramatic.
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3.4.3 Attraction Sequences and the MPP

Next we analyze probabilistic completeness of the MPP phase of sampling-based

coverage path planning. Once a covering subset of robot configurations is selected for

traversal, these goal configurations must be connected by a system of feasible paths.

We formally define the MPP as follows:

Definition 3 (Multigoal Planning Problem). Let G ⊂ Q be a finite set of robot

configurations which comprise the set of goals selected for traversal. Find a set of

feasible paths in Q that joins all goals into a single connected component.

If the goals are joined into a single connected component, then a feasible closed

walk of all goals in G exists, giving a feasible solution to the coverage path planning

problem. Both coverage path planning algorithms depicted in Figure 3-1 generate a

feasible inspection tour that is compatible with Definition 3, although the redundant

roadmap method, after solving the MPP in its first iteration, adds to the connected

component in each subsequent iteration to shorten the inspection tour. We now define

probabilistic completeness in the context of the MPP.

Definition 4 (Probabilistic Completeness of a MPP Algorithm). Let MPA be a pro-

posed multigoal planning algorithm for the MPP. Let G ⊂ Q be the set of goals over

which the MPP is defined. If, when a set of feasible paths in Q exists that joins

all goals into a single connected component, the probability that such a set is found

by MPA approaches one as the number of samples of Q drawn by MPA approaches

infinity, then MPA is probabilistically complete.

Proofs of completeness are straightforward for the MPP. For both the watchman

route algorithm and the redundant roadmap algorithm, we utilize the notion of an

attraction sequence [105]. To connect a pair of goals {qa, qb} ∈ G with a feasible

path, an attraction sequence is a sequence of sets Aa,b = {A0, A1, ..., An} ⊆ Q, where

A0 = qa and An = qb, that bridge the gap between qa and qb. The defining property

of an attraction sequence is the following: if an existing configuration ql−1 lies in

Al−1, and new configuration ql is generated in Al, then a PRM or RRT edge will
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be constructed that connects ql−1 and ql. In general it is desirable for an attraction

sequence to have as few members Al as possible, and so all Al other than singletons

A0 and An should be as large in volume as possible.

We will use AMPP to designate the set of all attraction sequences employed in

solving an instance of the multigoal planning problem, where |AMPP | is the total

number of sets Al in AMPP . A worst-case analysis of the MPP will depend on

both |AMPP | and the volume fraction ε = minAl∈AMPP
µ(Al)/µ(Qfree), where Qfree

is the obstacle-free portion of the configuration space. It remains desirable for the

problem to be solved using as few Al as possible, and for the Al to be individually

as large in volume as possible. We also note that in the sampling processes used to

solve the MPP, the singleton sets in AMPP representing goal configurations do not

need to be populated with new samples, as they are already finalized as part of the

inspection tour. As a result, these zero-volume singletons will not be considered in

the computation of ε, and |AMPP | is a conservative overestimate of the number of

sets that must be populated with new samples.

3.4.4 Probabilistic Completeness of the MPP

The watchman route algorithm solves the MPP by constructing a PRM that joins all

goals into a single connected component. An all-pairs shortest paths algorithm can

be used to determine the costs of all goal-to-goal paths, and a TSP algorithm can find

a minimum-cost traversal. Unlike the typical use of the PRM, in which goal-to-goal

queries are presented one at a time, the MPP presents a larger set of goals upfront and

requires that all of these goals are connected to the roadmap. This can be handled

easily by initializing the PRM so it contains the set of goals G. To show probabilistic

completeness in this application we rely on prior analysis of the PRM by Kavraki et

al. [88].

Theorem 2 (Completeness and Convergence of the PRM-Based Solution of MPP).

Constructing a PRM in Q until the set of goals G belongs to a single connected

component is a probabilistically complete algorithm for the MPP. Additionally, the
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probability that a feasible solution has not been found after m samples is bounded

such that

Pr[FAILURE] ≤ |AMPP |
emε

. (3.7)

Proof. The analysis of the PRM in [88] also applies to the use of a PRM for solution of

the MPP. The key difference is that the standard PRM requires at least one sampled

configuration to land in every non-goal set Al in an attraction sequence Aa,b, which

is the attraction sequence for a single goal-to-goal path. The MPP requires at least

one sampled configuration to land in every non-goal set Al in the family of attraction

sequences AMPP , and ε represents the smallest non-goal set in AMPP rather than

Aa,b. This difference in the analyses changes the numerator in (3.7) and the factor ε

in the denominator of (3.7). In all feasible instances of the MPP, these quantities are

finite and nonzero, respectively, and so the result of [88] still applies.

In the case of the redundant roadmap algorithm, a revised ordering of the goals in

G is determined in each iteration of the MPP procedure, and the RRT is subsequently

called to find feasible goal-to-goal paths for all goal pairings in this ordering. In the

absolute worst case, RRTs are constructed for all O(n2) possible goal-to-goal queries.

To analyze this solution of the MPP, we will build on the analysis of RRT probabilistic

completeness from LaValle and Kuffner [105].

Theorem 3 (Completeness and Convergence of the RRT-Based Solution of MPP).

Iteratively connecting the goals in G by a sequence of RRTs is a probabilistically

complete algorithm for the MPP. Additionally, the probability that a feasible solution

has not been found after m samples is bounded such that

Pr[FAILURE] ≤ e|AMPP |

e mε/2
. (3.8)

Proof. The analysis of the RRT in [105] also applies to the use of RRTs for solution
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of the MPP. The key difference is that the standard RRT requires |Aa,b| successes

in a series of m Bernoulli trials, in which Aa,b is an attraction sequence for a single

goal-to-goal path. The MPP requires |AMPP | successes instead, and ε represents

the smallest non-goal set in AMPP rather than Aa,b. This difference in the analyses

changes the exponent in the numerator of (3.8) and the factor ε in the denominator

of (3.8). In all feasible instances of the MPP, these quantities are finite and nonzero,

respectively, and so the result of [105] still applies.

We also note that in spite of the watchman route algorithm and redundant

roadmap algorithm possessing probabilistic completeness with respect to both the

CSP and MPP subproblems, there exists a family of coverage path planning prob-

lems for which a feasible 100%-coverage inspection tour may exist and both algorithms

might fail. These are problems that contain a “prison cell” in Qfree from which a

configuration can collect meaningful sensor information but there exists no feasible

path from the cell to the rest of the configuration space. As long as prison cells are

avoided, any feasible CSP solution will constitute a feasible MPP solution. A variety

of measures can be taken to ensure this problem does not occur in practice; our spe-

cific solution is to ensure that all configurations sampled in the CSP can be connected

via feasible path to a common origin in the configuration space.

3.5 Point Robot Test Case

We now compare the computational performance of the watchman route and redun-

dant roadmap algorithms. Our aim is to examine the effect of the CSP solution

method on the quality of the resulting inspection tour. To support this goal, we

have modified the watchman route algorithm to allow the fairest-possible compari-

son. Once a full-coverage set of configurations is incrementally constructed using dual

sampling, we apply the same high-performance combinatorial optimization procedure

used in our implementation of the redundant roadmap algorithm. This modification,

summarized in Figure 3-4, ensures that any performance gains due to the construction

of a redundant roadmap are indeed due to our proposed CSP algorithm and not dif-
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Figure 3-4: A stateflow diagram illustrating two algorithms for feasible sampling-
based coverage path planning, highlighting the subroutines that solve the CSP and
MPP subproblems. This diagram reflects the algorithms as implemented in software.

ferences in how a feasible tour is constructed from a set cover. For example, we have

found in practice that pruning an approximate min-cardinality set cover eliminates

a significant number of unneeded configurations and affords major improvements to

both algorithms. As a result, we perform this step in both algorithm implementa-

tions, even if it is not part of the watchman route algorithm’s original description.

We will refer to the procedure at the top of Figure 3-4 as the dual sampling algorithm,

since the dual sampling view planning strategy is the distinguishing feature of this

adapted method.

First, we evaluate the performance of our inspection planning procedure on a point

robot test case. This problem addresses algorithm performance as a function of the

number of primitives, independent of collision and occlusion-checking. The unit cube

is populated with a designated number of randomly sampled points, and the robot

must plan a tour that observes them. Mimicking the HAUV inspection problem, the

point robot has a four-dimensional state, comprised of three spatial coordinates, x,

y, and z, and a yaw angle, θ. The sensor footprint is a cube, centered at the robot’s

location and designed to occupy about one percent of the workspace volume. The
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Figure 3-5: Inspection planning results from a point robot in an obstacle-free, unit-
cube workspace, with a quarter-unit cube sensor. Inspection tour length and com-
putation time are plotted as a function of the number of required primitives; each
data point represents the mean over 100 problem instances. On left, LP rounding
and greedy algorithm lines represent increasing roadmap redundancy [1,5,10,25,50]
downward on the vertical axis. Dual sampling lines have increasing numbers of lo-
cal samples, [10,25,100,250,1000] also moving downward. Data on right plot refer to
computation times for the same trials, with redundancy and numbers of local sam-
ples increasing upward on the vertical axis. Due to prohibitively high computation
time, larger quantities of primitives were not tested using the LP rounding algorithm,
indicated by the end of the red lines.

sensor is a quarter unit in dimension to allow an integer number of sensor views to

cover the workspace exactly. There are no obstacles in the point robot’s workspace.

For several quantities of required primitives, ranging from one hundred to one

hundred thousand, one hundred instances of the planning procedure were run for each

of three solution methods: redundant roadmaps with a greedy set cover, redundant

roadmaps with LP rounding, and the dual sampling method. For the redundant

roadmap cases, five different redundancies were tested, ranging from one to fifty. For

the dual sampling cases, five different numbers of local samples were tested, ranging

from ten to one thousand. The chained Lin-Kernighan improvement heuristic was

applied for 0.5 seconds after each computation of the Christofides TSP approximation.

All trials were run on a Lenovo T400 laptop with a 2.53GHz Intel Centrino 2 processor
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and 3GB of RAM. The planning procedure was implemented in C++ and run using

several high-performance algorithm and data structure implementations; the sources

of these are listed in Table B.1 in Appendix B.

To sample in the local neighborhood of a geometric primitive, a random configura-

tion is constructed in a spherical coordinate system centered at the primitive. A range

value is sampled uniformly at random between the minimum and maximum viewing

range of the robot, and corresponding azimuth and elevation angles are randomly

sampled as well. This places the robot at a position from which the primitive is in

viewing range. Finally, the yaw angle is selected deterministically, such that a relative

bearing of zero exists between the primitive and the robot. For a higher-dimensional

vehicle state, a closed-form solution for angular orientation may not be available, and

a Jacobian pseudoinverse method can be used to choose a robot orientation. This

sampling procedure is used in both the point-robot and AUV test cases. It is fol-

lowed by a series of geometric computations to catalog the full set of primitives that

lie within the sensor footprint.

Figure 3-5 displays the results of this series of point-robot path planning compu-

tations. Increasing the redundancy of the coverage roadmap improved the quality of

the greedy SCP solution and the LP rounding solution, but the relative quality of the

LP rounding solution begins to worsen just short of a 1000-primitive inspection (for

redundancies greater than one). In addition, the LP rounding algorithm, for large

numbers of primitives, chooses much larger sets than the greedy algorithm. As a

result, the pruning of sets became prohibitively expensive and LP set covers were not

solved for large numbers of primitives. Due to lower-quality planned tours and ex-

haustive computation time required by the LP rounding algorithm, this optimization

strategy is not pursued in the AUV inspection test case.

Increasing the number of local samples in a dual sampling scheme improved the

quality of the solution, which was comparable with the results for redundant roadmaps

solved by the greedy set cover algorithm. To provide further basis for compari-

son, the length of the optimal back-and-forth sweep path for covering the full con-

tinous workspace is plotted alongside the tour costs in Figure 3-5. For cases with a
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Figure 3-6: A polygonal mesh obtained from a safe-distance survey of the USCGC
Seneca is depicted. The HAUV is illustrated in a configuration from which it observes
a portion of a shaft and propeller strut. The red patch shows mesh points imaged at
a desired sensor range between one and three meters, as the sonar sweeps through 180
degrees pitch. The ship mesh contains 131,657 points and 262,173 triangular faces.
Each propeller is approximately 2.5 meters in diameter.

small number of primitives, in which the computational outcomes are shorter-than-

optimal in length, the sensor did not have to cover the entire workspace volume in the

sampling-based test cases. For cases with larger numbers of primitives, the discrete

coverage problem is a better approximator for covering the full continuous workspace

volume. All algorithms are sub-optimal by a growing margin in the number of dis-

crete primitives, due to the use of random sampling and heuristics for the set cover

and TSP.

3.6 AUV Inspection Test Case

Our planning procedure is next applied to a real-world problem, the inspection of the

stern of a ship by the HAUV. Inspections are planned for the USCGC Seneca, an 82-

meter Coast Guard Cutter, and the SS Curtiss, a 183-meter aviation logistics support

ship. The complex structures are large; the Seneca has two shafts with propellers that

are 2.5 meters in diameter, while the Curtiss has a single propeller seven meters in

diameter and a shaft that is 1.5 meters in diameter.

We first surveyed the ships with back-and-forth rectangular sweep patterns at
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Figure 3-7: A polygonal mesh obtained from a safe-distance survey of the SS Curtiss
is depicted. The HAUV is illustrated in a configuration from which it observes a
portion of the ship’s propeller. The red patch shows mesh points imaged at a desired
sensor range between one and three meters, as the sonar sweeps through 180 degrees
pitch. The ship mesh contains 107,712 points and 214,419 triangular faces. The
propeller is approximately 7 meters in diameter.

safe distances of around eight meters. These preliminary surveys, although they did

not achieve 100% coverage of all structures, were intended to build a polygonal mesh

model of each ship’s stern suitable for planning a detailed inspection. For this, the

Poisson reconstruction algorithm [91], which is typically applied to laser point clouds,

was used to build watertight 3D meshes from acoustic range data, pictured in Figures

3-6 and 3-7. The mesh generation process is described in full detail in Chapter 6. Each

mesh shown has been discretized such that no triangle edge is longer than 0.1 meters,

a resolution sufficient to identify a mine on the hull if all vertices are observed. Also

in Figures 3-6 and 3-7, the sensor footprint represents the sonar field of view when

the sonar nods up and down through a full 180-degree range of rotation. Although

the sonar can only produce a single range scan at a time, we assume that in this

planned inspection, the vehicle, at each configuration, will nod the sonar over its full
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Figure 3-8: Histograms display the coverage topology of typical roadmaps for the
USCGC Seneca and SS Curtiss ship hull inspection tasks, sensing with a 1-3 meter
field of view. The quantities of geometric primitives observed by roadmap config-
urations are illustrated at left, and the quantities of shared sightings of geometric
primitives are illustrated at right.

range of angular motion to obtain a larger field of view. Paths for the vehicle will be

planned, as before, in x, y, z, and yaw angle θ.

Inspection tours planned using the redundant roadmap algorithm and dual sam-

pling algorithm were computed using a Dell T3500 desktop with a 3.20GHz Intel Xeon

processor and 24GB of RAM. Because a ship mesh comprises a large, non-convex ob-

stacle, the inspection planning procedures described in Sections 3.2 and 3.3 were used

in their entirety. This includes collision-checking of sampled configurations, use of the

bi-directional RRT to perform lazy inquiries of point-to-point paths, and ray shooting

to check whether primitives lying in the geometric sensor footprint are obscured from

view by occlusions. The high-performance codes used for path planning, ray shooting,
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Figure 3-9: The mean tour length over fifty computed inspection tours is plotted for
both the redundant roadmap and dual sampling strategies, over both ship models and
both sensor range settings. The x-axis parameter of each plotted point was selected
for comparision of algorithm computational performance (featured in Figures 3-11
and 3-12).

and geometric data structures are detailed in Table B.1 of Appendix B; these were

integrated into the C++ software implementation used for the point robot test case.

All combinatorial optimization tools were applied using the same settings as in the

point robot case.

The coverage topology of a typical redundant roadmap, for both ship models

over a number of different redundancy settings, is depicted in Figure 3-8. It is clear

that increased redundancy both increases the size of the roadmap and increases the

mean and variance of the number of times a primitive is sighted. For the purpose of

comparison with dual sampling, inspection tours were planned using two DIDSON

range settings, one that spans from one to three meters, and another that spans from

one to five meters. For each sensing range and each ship model, six parameterizations

were selected for comparison between algorithms, and fifty path-planning trials were

run for each parameterization. We will compare the computational overhead required
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Figure 3-10: The mean number of planned views over fifty computed inspection tours
is plotted for both the redundant roadmap and dual sampling strategies, over both
ship models and both sensor range settings. The x-axis parameter of each plotted
point was selected for comparison of algorithm computational performance (featured
in Figures 3-11 and 3-12).

by each algorithm to produce solutions of similar quality. The mean lengths of the

planned inspection tours are plotted in Figure 3-9, and the mean quantities of planned

views are plotted in Figure 3-10, as functions of the algorithm tuning parameters.

As illustrated in Figures 3-9 and 3-10, increased roadmap redundancy leads to an

improvement in both tour length and the number of planned views in the tour, but the

size of the improvement evidently diminishes as the redundancy increases. This is also

true for the dual sampling algorithm; raising the number of local samples enhances

tour quality, with diminishing improvements as the parameter is increased. In Figures

3-11 and 3-12, we compare the mean computation time and the mean number of ray

shooting calls required by the algorithms to produce solutions of a specific quality.

It is evident, for both the mean length of a tour and the mean number of planned

views in a tour, that the redundant roadmap algorithm requires less time and fewer

ray shooting calls in the limit to produce solutions of quality on par with the dual
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Figure 3-11: The mean computation time, at left, and ray shooting calls, at right,
required to plan inspection tours of the mean lengths depicted on the x-axis. Each
point represents fifty inspection tours, which were computed for both the redundant
roadmap and dual sampling strategies, over both ship models and both sensor range
settings. Included in each plot is the approximate ratio of dual sampling performance
to redundant roadmap performance at the final dual sampling data point. The data
displayed in these plots are the same data depicted in Figures 3-9 and 3-10.

sampling algorithm.

The mean number of ray shooting calls represents the geometric complexity of a

planning problem. In planning a stern inspection, most sampled robot configurations

require hundreds of ray shooting calls to ensure that primitives lying in the sensor’s

geometric field of view are not blocked by obstacles. For many of the problem in-

stances examined, tens of millions of ray shooting calls were performed in total. It is

evident in Figures 3-11 and 3-12 that the redundant roadmap algorithm exceeds the

dual sampling algorithm in efficiency, in some instances by a factor of five or more,

when judged by the mean number of ray shooting calls. We attribute this advantage

to the fact that in each local sampling phase, the dual sampling algorithm draws and

catalogs many benefical samples, but discards all but one configuration at the end
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Figure 3-12: The mean computation time, at left, and ray shooting calls, at right,
required to plan inspection tours with the mean number of planned views depicted
on the x-axis. Each point represents fifty inspection tours, which were computed for
both the redundant roadmap and dual sampling strategies, over both ship models
and both sensor range settings. Included in each plot is the approximate ratio of dual
sampling performance to redundant roadmap performance at the final dual sampling
data point. The data displayed in these plots are the same data depicted in Figures
3-9 and 3-10.

of the sampling phase. By storing all configurations that observe required primitives

and delaying selection of the final set of views, the redundant roadmap algorithm

requires less overall geometric computation. Representative coverage roadmaps and

planned inspection tours, of roadmap redundancy ten, are illustrated for both ship

models in Figures 3-13 and 3-14.

3.7 Summary

In this chapter we presented an algorithm that plans feasible robot inspection paths

giving 100% sensor coverage of required geometric primitives. A key development

is redundancy in a covering roadmap, which endows batch view planning with a
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tunable parameter for improving solution quality in exchange for additional sampling.

We have also developed a high-performance solution procedure for coverage planning

over 3D structures comprised of several hundred thousand primitives (using highly

developed data structures and algorithm implementations where possible). After a

full-coverage roadmap is constructed, we sequentially apply practical set cover and

traveling salesman algorithms, with lazy, point-to-point sampling-based planning.

We have identified that the redundant roadmap method, in comparison to a dual

sampling procedure, yields a consistent computational advantage in a large-scale,

real-world coverage problem.

We have also developed a framework for the analysis of a sampling-based coverage

path planning algorithm. We have used it to show that the sampling-based subrou-

tines of the redundant roadmap algorithm are probabilistically complete, with appeal-

ing convergence bounded by sharply decreasing exponential functions. The analysis

and development of this coverage planning algorithm form a foundation for further

improvements, including the smoothing, shortening, and regularizing of planned in-

spection routes.
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(a) USCGC Seneca redundancy-ten roadmap containing 2433 configurations.

(b) SS Curtiss redundancy-ten roadmap containing 1300 configurations.

Figure 3-13: Redundancy-ten roadmaps constructed for full coverage of the USCGC
Seneca and SS Curtiss at 1-3 meter viewing range. The coverage topology of these
specific roadmaps is given in Figure 3-8.
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(a) USCGC Seneca inspection tour is 244 meters long and contains 193
configurations.

(b) SS Curtiss inspection tour is 179 meters long and contains 118
configurations.

Figure 3-14: Full-coverage inspection tours planned using the roadmaps depicted in
Figure 3-13. Each plotted point represents a position and orientation of the HAUV
at which required information is collected. Robot configurations along each tour are
color-coded and correspond to the colored patches of sensor information projected
onto each ship model. The changes in color occur gradually and folllow the sequence
of the inspection tour. The thickness of each line segment along the path corresponds
to the relative distance of that segment from the viewer’s perspective.
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Chapter 4

Sampling-Based Improvement

Procedure

4.1 Introduction

The algorithms presented in Chapter 3 plan feasible robot inspection routes; these

routes avoid collision and obtain full sensor coverage of required structures. Although

optimization procedures are used to reduce the duration of these feasible tours, they

are built from randomly-sampled view configurations and are sub-optimal. A higher-

quality solution is desirable both to permit a shorter-duration inspection and to im-

prove the ease of implementation on a field robotic system. Unfortunately, even in

simple cases the coverage path planning problem is equivalent to NP-hard variants of

the watchman route problem [33],[165], so we do not seek a globally optimal solution.

Instead, we pursue a compromise, and aim to develop a high-quality heuristic that

offers smoother, shorter inspection paths than the algorithms of the previous chapter.

In this chapter we propose an iterative improvement procedure which, given a

feasible, full-coverage inspection tour as input, gradually shortens the tour and re-

duces the number of view configurations, making gradual progress toward a locally

optimal solution. A method of this type has not yet been applied to coverage path

planning, but successful improvement algorithms have been developed for standard

point-to-point path planning. The PRM∗ and RRT∗ algorithms, which add new sam-
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ples to their roadmaps long after a feasible solution is obtained, iteratively augment

sub-optimal paths to achieve optimality in the limit, a property known as asymptotic

optimality [86].

We require the shortening of paths that are not only collision-free, but contain

view configurations that collectively satisfy thousands of coverage constraints. This

problem is addressed by repeatedly solving a sub-problem that is local in scope:

an individual view configuration is replaced by a new view that satifies all unique

coverage constraints and is closer to the two neighboring views in the inspection tour.

Using the RRT∗ algorithm as a tool in this procedure, we show that this improvement

algorithm is asymptotically optimal, with respect to this local sub-problem.

Revisiting the application of autonomous in-water ship hull inspection, we also

propose a heuristic speed-up of the improvement algorithm for problems in which

the set of planned sensor views is numerous, and the views lie in close proximity to

one another. This speed-up, ideally suited to the inspection of a large contiguous

structure by a robot with a small field of view, allows our local problem to be solved

quickly, and in many instances to optimality.

Over an ensemble of computational trials, we use the redundant roadmap algo-

rithm to design an initial, feasible inspection tour. We then apply the proposed

sampling-based improvement procedure, which achieves significant reductions in tour

length with reasonable computational effort. A description and analysis of the pro-

posed algorithm is given in Section 4.2, brief computational results are given for the

obstacle-free point robot test case in Section 4.3, and more extensive computational

results are given for ship hull inspection by the HAUV in Section 4.4.

4.2 A Sampling-Based Improvement Procedure

In our presentation of the sampling-based improvement procedure, we rely on the

same set system taxonomy used in Chapter 3. We refer to the geometric primitives of

the structure under inspection as pi ∈ P , and the sampled robot view configurations

are denoted qj ∈ Q. Si ∈ S refers to the set of all feasible configurations in Q that
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Algorithm 3 W ′
G = ShortenInspection(G,WG, P, Obstacles)

1: W ′
G ← WG;

2: while TimeRemaining > 0 do
3: qj ← ChooseGoal(G);
4: Pj ← UniquelyObservedPrimitives(qj, G);
5: (q′j,W

′
qj−1, qj+1

)← RRT ∗|| (qj−1, qj+1, Pj, Obstacles);

6: if Cost(W ′
qj−1, qj+1

) < Cost(Wqj−1, qj+1
) then

7: W ′
G ← W ′

G \Wqj−1, qj+1
;

8: W ′
G ← W ′

G ∪W ′
qj−1, qj+1

;
9: G← G \ qj;

10: G← G ∪ q′j;
11: UpdateCoverageTopology(G);
12: end if
13: end while
14: return W ′

G

map to sightings of the primitive pi ∈ P .

4.2.1 An Asymptotically Optimal Subroutine

We assume that a feasible inspection tour is provided as input to the improvement

procedure. The inspection is described by the closed walk WG of the set of goals G;

G contains view configurations only. WG contains the precise sequence of nodes and

edges that are traversed in the inspection, which begins and ends at the same goal. WG

may include intermediate nodes that obtain no sensor information, but are required

to manueuver safely around obstacles. The improvement procedure is summarized

in Algorithm 3. As time for improvement allows, the algorithm iteratively selects

a goal configuration qj ∈ G in a round-robin fashion and tries to find a lower-cost

configuration q′j that observes all primitives in P which are uniquely observed by qj.

This is achieved by the subroutine RRT∗||, an implementation of the RRT∗ algorithm

[86] in which two problems are solved in parallel: an optimal collision-free path from

qj−1 to q′j, and an optimal collision-free path from q′j to qj+1. Solving these problems

in parallel gives Wqj−1, qj+1
, the portion of the walk WG that travels between goals

qj−1 and qj+1 and includes the intermediate goal q′j. We term this subproblem the

local coverage planning problem.
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Definition 5 (Local Coverage Planning Problem). Let Wqj−1, qj+1
be a feasible path

on the inspection tour WG in which a robot travels from goal configuration qj−1 to goal

configuration qj to goal configuration qj+1. Let Si∈qj be the intersection of all ranges

Si ∈ S corresponding to the primitives pi ∈ P that are uniquely observed by goal

configuration qj. Find a replacement configuration q′j that lies in Si∈qj and a feasible

path W ′
qj−1, qj+1

such that the path is of minimum length over all possible choices of

q′j.

The RRT∗ algorithm of Karaman and Frazzoli plays an important role in the

solution of this problem. This algorithm contains the same set of tree nodes as a

standard RRT; these are generated by sampling Q at random and “growing” a dis-

tance η in the direction of each sample qrand from the nearest node in the tree, qnear.

A new node, qnew, is defined at this location, and the standard RRT connects qnew

and qnear if there are no interfering obstacles. RRT∗, on the other hand, searches

a local neighborhood of qnew and connects it to the tree node giving the minimum

accumulated cost from the root of the tree. In addition, all nodes in this local neigh-

borhood with higher accumulated costs are re-routed through qnew if this lowers their

cost. This procedure yields a path from a start configuration in Q to a goal region

in Q that approaches global optimality in the limit. The local neighborhood must

be maintained at an appropriate size, which is allowed to shrink over time at a rate

equivalent to the dispersion of the uniform random sequence. Because the set of tree

nodes is propagated identically in RRT and RRT∗, this algorithm retains the proba-

bilistic completeness guarantees of the standard RRT algorithm. We now define the

properties of probabilistic completeness and asymptotic optimality as they apply to

the local coverage planning problem.

Definition 6 (Probabilistic Completeness of a Local Coverage Planning Algorithm).

Let LCA be a proposed algorithm for the local coverage planning problem. If, when both

a feasible path W ′
qj−1,qj+1

exists such that µ(Si∈qj)/µ(Qfree) ≥ δ > 0 and there is non-

degenerate clearance from obstacles along the full length of the path, the probability

that such a path is found by LCA approaches one as the number of samples drawn
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Figure 4-1: An illustration of the RRT∗|| subroutine of the sampling-based improve-
ment procedure.

from Q approaches infinity, then LCA is probabilistically complete.

Definition 7 (Asymptotic Optimality of a Local Coverage Planning Algorithm). Let

LCA be a probabilistically complete algorithm for the local coverage planning problem.

If, when an optimal path W ∗
qj−1, qj+1

exists with non-degenerate clearance from obsta-

cles along the full length of the path, the length of the shortest path obtained by LCA

approaches the optimal length |W ∗
qj−1, qj+1

| as the number of samples drawn from Q

approaches infinity, then LCA is an asymptotically optimal algorithm.

We intend to show that the RRT∗|| subroutine, which builds a pair of RRT∗ trees

concurrently, possesses both probabilistic completeness and asymptotic optimality.

Figure 4-1 shows qj−1, qj+1, and Si∈qj in the context of RRT∗||. Tree 1 is rooted at

qj−1 and Tree 2 is rooted at qj+1. Both of these trees share Si∈qj as a goal region.

The two trees, unlike two completely separate instances of RRT∗, share the same

sampling process. Every randomly sampled configuration must be introduced into

the tree rooted at qj−1 and the tree rooted at qj+1. When this occurs, the nearest
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Algorithm 4 (q′j,W
′
qj−1, qj+1

)← RRT ∗|| (qj−1, qj+1, Pj, Obstacles)

1: Tree1 ← InitializeTree(qj−1); Tree2 ← InitializeTree(qj+1);
2: GoalReached← False;
3: GoalCandidates← ∅;
4: while (TimeRemainingRRT ∗ > 0) ∨ (GoalReached = False) do
5: qrand ← DrawSample();
6: for i ∈ {1, 2} do
7: qneari ← Nearest(Treei, qrand);
8: qnewi ← Extend(qneari , qrand);
9: IsFeasiblei ← ObstacleFree(qneari , qnewi , Obstacles);

10: if IsFeasiblei then
11: Treei ← AddToRRT ∗(Treei, qnewi);
12: end if
13: end for
14: if (IsFeasible1) ∧ (IsFeasible2) ∧ (qnew1 = qnew2) then
15: if ConstraintsSatisfied(qnew1 , Pj) then
16: GoalReached← True;
17: GoalCandidates← GoalCandidates ∪ qnew1

18: end if
19: end if
20: end while
21: (q′j,W

′
qj−1, qj+1

)← ShortestPathsToGoal(Tree1, T ree2, GoalCandidates)
22: return (q′j,W

′
qj−1, qj+1

)

node in each tree will “grow” toward the sample, or the tree will directly connect

to the sample if this connection is collision-free and spans a distance less than the

designated growth distance η. The RRT∗|| algorithm is summarized in Algorithm 4.

We now state the probabilistic completeness and optimality properties of RRT∗||.

Our first statement relies once again on the concept of an attraction sequence. With

respect to the local sub-problem solved by RRT∗||, we consider the connection of

{qj−1, Si∈qj} ∈ G using the attraction sequence Aj−1, j = {A0, A1, ..., An} ⊆ Q, where

A0 = qj−1 and An = Si∈qj . We must also achieve the connection of {qj+1, Si∈qj} ∈ G

using the attraction sequence Bj+1, j = {B0, B1, ..., Bp} ⊆ Q, where B0 = qj+1 and

Bp = Si∈qj . The sampling process must generate new tree nodes in n + p − 1 total

sets for a feasible solution to be obtained. This excludes the singleton sets A0 and

B0, which are embedded in the solution from the beginning, and counts the shared

goal region Si∈qj only once. Using these preliminaries, we can now bound the failure
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probability of RRT∗||.

Theorem 4 (Convergence Rate of RRT∗||). If a feasible path W ′
qj−1,qj+1

exists for a

local coverage planning problem such that µ(Si∈qj)/µ(Qfree) ≥ δ > 0, and there is non-

degenerate clearance from obstacles along the full length of the path, the probability

that such a path has not been found by RRT∗|| after m samples is bounded such that

Pr[FAILURE] ≤ en+p−1

e mε/2
, (4.1)

where n and p are the lengths of the attraction sequences Aj−1, j and Bj+1, j needed

to reach Si∈qj from qj−1 and qj+1, and ε is the volume fraction of the smallest set in

Aj−1, j ∪ Bj+1, j, excluding tree roots qj−1 and qj+1.

Proof. The exponential bound on the convergence of failure probably for the RRT∗

algorithm has been established to be identical to that of the original RRT algorithm

[86]. There is only a minor difference in (4.1) from the bound on the original RRT

algorithm [105], which requires at least n successes in a series of m Bernoulli trials,

in which Aa,b = {A0, A1, ..., An} is an attraction sequence for a single goal-to-goal

path. RRT∗||, which builds two concurrent trees that share a goal region, instead

requires n + p − 1 successes, and ε represents the volume fraction of the smallest

set in Aj−1, j ∪ Bj+1, j rather than Aa,b. This difference in analyses changes the

exponent in the numerator of (4.1) and the factor ε in the denominator of (4.1).

These quantities are finite and nonzero, respectively, in the non-degenerate instances

of the local coverage planning problem described in the statement of the theorem,

and so the result of [105] still applies.

By taking the limit of (4.1), we can deduce that RRT∗|| is probabilistically com-

plete. The use of attraction sequences, however, disguises the key challenge of RRT∗||:

generating tree nodes in Si∈qj that are common to both Tree 1 and Tree 2. Because

attraction sequences are difficult to compute in practice, we offer a supplemental the-

orem and proof on probabilistic completeness, stated in simpler terms, that provides

insight into the workings of the RRT∗|| algorithm.
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Theorem 5 (Probabilistic Completeness of RRT∗||). RRT∗|| is a probabilistically com-

plete algorithm for the local coverage planning problem.

Proof. Due to the probabilistic completeness of RRT∗, we know that Tree 1 and Tree

2 will reach their respective goal regions in probability. We must also show, however,

that they will have some identical nodes in their goal regions so that a feasible path

W ′
qj−1, qj+1

will be produced. Due to the condition on Si∈qj in Definition 6, there is a

nonzero probability that random samples will land in Si∈qj . The samples that land in

Si∈qj will be added as nodes to both Tree 1 and Tree 2 if they land within a distance

η of existing nodes in both trees. We know this does occur because:

• The samples in an RRT∗ tree converge to the uniform distribution over Qfree
[98, 86]

• The dispersion of the uniform distribution, which varies as O((log(m)/m)1/d)

in the number of samples of a d-dimensional space [121], will eventually reach

η as the number of samples increases

After enough samples are drawn, all new samples will lie within a distance η of

multiple tree nodes, and samples landing in Si∈qj will be directly connected to both

trees.

This result is important because it demonstrates the key factors that will allow a

feasible solution W ′
qj−1,qj+1

to be obtained in finite time: the ease with which Trees 1

and 2 reach Si∈qj , and time required for the sampling sequence to achieve a dispersion

of η. We now give the result on asymptotic optimality:

Theorem 6 (Asymptotic Optimality of RRT∗||). RRT∗|| is an asymptotically optimal

algorithm for the local coverage planning problem.

Proof. Si∈qj is the goal region of each tree in RRT∗||, and in the limit, we will obtain

the set of asymptotically optimal paths from qj−1 and qj+1 to the goal region, by

the properties of RRT∗. By choosing the node q′j ∈ Si∈qj that minimizes the sum of

distances to qj−1 in Tree 1 and qj+1 in Tree 2, we obtain the optimal path W ∗
qj−1,qj+1

.
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Our improvement procedure is designed to extract the maximal benefit from recent

results on asymptotically optimal sampling-based planning while avoiding non-trivial

combinatorial optimization. If we added just one additional degree of freedom and

tried to design Wqj−1, qj+2
optimally, which requires hitting the two sets Si∈qj and

Si∈qj+1
and connecting them with an optimal path from qj−1 to qj+2, we could not do

so by building trees. The much denser PRM∗ would be required to find an optimal

path between the infinite-set goal regions Si∈qj and Si∈qj+1
, and choosing optimal

states q′j and q′j+1 and the order in which to visit them would amount to solving the

NP-hard generalized traveling salesman problem [60] over the PRM∗ roadmap.

4.2.2 Updating the Coverage Topology

An update of coverage topology occurs every time a new configuration is added to

the inspection tour. As goal configurations qj are replaced by new goals q′j that

shrink the length of a tour, the coverage topology among the goals changes and

occasionally a goal in G becomes obsolete, contributing no unique sensor observations

to the inspection. When this occurs, the obsolete goal is removed from the tour, and

an attempt is made to connect qj−1 and qj+1 using a shorter path than the path

through obsolete qj. Sometimes, the two goals can be bridged by a single straight-

line path, and other times intermediate nodes are needed, which are found using the

RRT-Connect algorithm [98]. Occasionally, a path shorter than the route through qj

cannot be found, and qj remains in the tour as an intermediate node, but is no longer

a member of the goal set G.

4.2.3 Modifications for Autonomous Ship Hull Inspection

We now discuss the application of the improvement procedure to the problem of au-

tonomous ship hull inspection. This is a unique challenge for coverage path planning

in which the structure to be inspected is comprised of one large, contiguous piece,

and the robot’s sensor footprint is small relative to the size of the structure. In turn,

the set of goals required for 100% coverage is numerous, and every goal will be in
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Figure 4-2: An illustration of the proposed heuristic speed-up, used in the sampling-
based improvement procedure when a large, contiguous structure is inspected using
a small field-of-view sensor.

close proximity to several others.

As a result, intermediate configurations are rarely needed between goal configu-

rations in the inspection tour. This allows for a simplification of the improvement

procedure, and the RRT∗|| algorithm does not need to be used in its entirety. Instead,

the algorithm will be used as a selection mechanism for goal-to-goal paths that have

no intermediate nodes between qj−1, q
′
j, and qj+1. Sampling will occur only in Si∈qj

(specifically, in a larger region of Q known to contain Si∈qj), and if a single graph edge

cannot be built from each tree root to the sample q′j, sampling of new q′j continues

until either this task is achieved or the maximum number of samples is reached and

we move to a different goal in the inspection.

A benefit of this simplification is that we need not wait until samples land near the

optimal location in Si∈qj ; we can project samples toward this location. Because we

are looking for solutions in which the goal q′j is connected directly to qj−1 and qj+1 by

straight-line paths in Qfree, we can move the individual samples from their random

locations in Si∈qj to locations of improved cost, knowing that the path W ′
qj−1, qj+1

also

improves in cost. We do this using a growth distance ρ, by which we incrementally

push a sample toward the optimal-cost frontier (a straight-line path connecting qj−1

and qj+1) until a collision is detected or we cross the boundary of Si∈qj . Many fewer
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Figure 4-3: A stateflow diagram illustrating the iterative improvement procedure im-
plemented in practice, in which either RRT∗|| or a heuristic speed-up is used depending
on the density of goal configurations.

samples need to be drawn to propagate new goals toward optimal-cost locations. This

procedure is illustrated in Figure 4-2.

When the opposite situation occurs, and a structure to be inspected is comprised of

separate pieces which may be far from one another, the benefits of RRT∗|| can be fully

realized and the algorithm will be needed in its entirety to connect goal configurations

with high-quality feasible paths. A stateflow diagram illustrating the full improvement

procedure, including the choice between RRT∗|| and our simplified algorithm, is given

in Figure 4-3. When the former is required, a number of heuristic improvements

can be employed to reduce RRT* computation time, without simplification to the

full extent of our straight-line-path algorithm. RRT* has been sped up in high-

dimensional C-Space by biasing the sampling process to favor the local neighborhood

near the working feasible path, and rejecting samples prior to collision checking if they

have no potential to decrease the length of the path [6]. An algorithm developed for

manipulation problems sparsifies the tree used to construct an initial feasible path,

and also reduces the amount of collision-checking through a memoization process

that relies on known collision-checking outcomes to deduce the outcomes of new

105



queries [125]. If the resources are available, computation time can also be sped up

substantially by taking advantage of new techniques for parallelization of the RRT*

algorithm [20]. Finally, recent work by Jaillet and Porta [83] extends the RRT*

algorithm to planning on reduced-dimensional manifolds defined by kinematic and

contact equality constraints. If an inspection robot is bound by contact constraints,

then this algorithm may be useful, but it does not apply to the coverage constraints

themselves, which are defined by inequalities in the robot’s state variables.

4.3 Point Robot Test Case

We now re-examine the point robot coverage problem introduced in Chapter 3 to

evaluate the proposed improvement procedure. The workspace is devoid of obstacles,

and the coverage constraints alone will shape the resulting inspection route. Of

the various parameterizations examined in Section 3.5, we explore the case of one

hundred thousand primitives only, since this was the best approximator for requiring

full coverage of the continuous internal volume of the unit cube workspace. One hour

was alloted in each problem instance for the computation of a feasible tour, using a

redundancy-ten roadmap, followed by implementation of the improvement procedure

with the heuristic described in Section 4.2.3. One hundred problem instances, each

with a different set of randomly sampled geometric primitives, were solved using a

Dell T3500 desktop with a 3.20GHz Intel Xeon processor and 24GB of RAM. The

improvement procedure was implemented in C++ and, like the redundant roadmap

algorithm, relies on supporting software detailed in Table B.1 of Appendix B.

The initial feasible inspection tours were an average of 30.9 units in length, with

an average of 219.3 view configurations. The smoothed tours were an average of

19.1 units in length, with an average of 183.3 view configurations. The mean length

of the smoothed tours fell within twenty percent of the optimal tour length of 16

units, but the number of view configurations was nearly three times greater than

the optimum number of 64 views. Many of the view configurations in a typical

tour observed more than one thousand geometric primitives each. A view may only
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Figure 4-4: Full-coverage inspection tours for a point robot covering one hundred
thousand randomly sampled primitives in the unit cube, with a cube-shaped sensor
a quarter-unit in dimension. At left, an initial feasible tour constructed using a
roadmap of redundancy ten. At center, the same tour after applying the improvement
procedure over an hour of total computation time. At top right, an optimal tour
for full coverage of the continuous volume of the unit cube workspace. The robot
configurations along each tour are color-coded; the changes in color occur gradually
and indicate the sequence of the inspection. At bottom right, a portion of Figure
3-5 is reproduced that contains average tour lengths for roadmaps of redundancies
[1,5,10,25,50] downward on the vertical axis, computed using the greedy set cover
approximation scheme. Added to the plot is the mean length when a tour from a
redundancy-ten roadmap is smoothed over an hour of total computation time.

be pruned from the tour when none of these primitives are observed uniquely, and

achieving this for a large number of views proves challenging with such a densely

packed field of primitives. The primitives in this test case are denser, and of course,

more uniformly distributed throughout the workspace, than most structure boundary

coverage problems. A representative inspection tour from the computational results

is depicted, along with the optimal solution, in Figure 4-4.
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4.4 AUV Inspection Test Case

An ensemble of ship hull inspection tours were computed using the redundant roadmap

algorithm and iteratively shortened using our proposed improvement procedure. We

assume the DIDSON sonar is operated at a sensor viewing range of 1-3m, and the

tours are once again planned for inspection of the USCGC Seneca and SS Curtiss

using the mesh models introduced in Chapter 3. Initial, feasible routes for 100%

coverage of the meshes are computed using roadmaps of redundancy ten, giving in-

spection tours whose one to two hundred nodes are chosen from a one to two thousand

node instance of the set cover. Two hours were alloted in each problem instance for

the computation of a feasible path and implementation of the improvement proce-

dure. Twenty-five two-hour trials were run for each mesh using the same computer

and software described in Section 4.3.

Computation of the initial feasible path required no more than nineteen minutes

in any problem instance. This initial step was solved faster for the Curtiss, which

required a maximum of four minutes in any problem instance. Figure 4-5 illustrates

the average shortening of the inspection tours and the average reduction in the number

of views as a function of the number of samples drawn by the improvement procedure.

We show the total number of samples drawn, which includes samples found to be in

collision with the mesh. The Seneca test cases each achieved at least a half-million

samples in the alloted time, while the Curtiss cases achieved at least three million

samples in the alotted time. The Seneca mesh contains more confined and occluded

areas, especially between the shafts and the hull. More time is required to construct

a full-coverage roadmap for this structure, and this roadmap, which is propagated

through the improvement algorithm and updated as new configurations are added to

the tour, is about twice as large for the Seneca as it is for the Curtiss.

Diminishing returns can be observed in Figure 4-5 as cost improvements are made.

The first ten thousand samples drawn, emphasized in Figure 4-5(b), are especially

productive, and responsible for the majority of improvement during the two-hour com-

putational trials. These samples were drawn for the Curtiss in about five minutes of
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(a) Each plot above features, on the x-axis, the largest number of samples common
to all twenty-five trials, rounded to the nearest hundred thousand at left and to the
nearest million at right.
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(b) The plots above zoom in on the first ten thousand samples drawn for each ship.

Figure 4-5: Each plot above summarizes the results of twenty-five two-hour trials in
which inspection tours were planned for both the USCGC Seneca and the SS Curtiss.
The mean percentage reduction in both the number of view configurations and the
tour length is plotted as a function of the number of configurations sampled during
the improvement procedure. A data point is plotted for every two thousand samples
drawn.

computation time, and for the Seneca in about twenty minutes of computation time.

The representative inspection tours plotted in Figures 4-6 and 4-7 show that signifi-

cant simplification and shortening has occured in the time alloted for improvement.

In particular, the heuristic speed-up introduced in Section 4.2.3 is responsible for

bringing view configurations in certain local sections of a tour into perfect alignment.

This could not be achieved in finite time using solely the RRT∗|| algorithm.
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4.5 Summary

We have proposed an iterative procedure for shortening feasible coverage paths over

complex structures. This method makes asymptotically optimal local improvements

to an inspection, the best possible without invoking an NP-hard combinatorial opti-

mization problem. As is generally the case in the iterative improvement of paths in

obstacle-filled environments, a larger investment is required to achieve a near-optimal

solution than to simply construct a feasible solution. This investment is character-

ized by a diminishing returns relationship, but it is worth pursuing when significant

mission time can be saved as a result.

We have extended the work on this subject from traditional path planning to

coverage path planning, in which not only is obstacle avoidance required, but also

the observation of thousands of geometric primitives by the robot sensor. This is a

challenging task for which sampling-based planning tools continue to be well-suited.
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(a) Feasible tour for full coverage of USCGC Seneca running gear. The
tour is 246 m in length and contains 192 configurations.

(b) Shortening the tour of (a) using improvement procedure. The shortened
tour is 157 m in length and contains 169 configurations.

Figure 4-6: Representative full-coverage USCGC Seneca inspection paths before (top)
and after (bottom) the improvement procedure.
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(a) Feasible tour for full coverage of SS Curtiss running gear. The tour is 176 m in length
and contains 121 configurations.

(b) Shortening the tour of (a) using improvement procedure. The shortened tour is 102
m in length and contains 97 configurations.

Figure 4-7: Representative full-coverage SS Curtiss inspection paths before (top) and
after (bottom) the improvement procedure.
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Chapter 5

Sampling-Based Sweep Paths

5.1 Introduction

The planning algorithms presented in this thesis are designed to cover 3D structures

with confined and occluded regions, but sometimes such structures also possess areas

that are open and easily accessible. Not every square inch of such a structure needs

a specially designed view to be observed; it may be possible to cover large sections

using a highly regular path like the back-and-forth sweep patterns and cross-sectional

looping patterns used in cell decomposition methods [3]. Paths that contain uniform

spacing between tracklines and accumulate data slice-by-slice along a single spatial

dimension of the workspace will improve the clarity and continuity of an inspection’s

final data product, simplifying the tasks of analysis and processing for a human

operator. We are concerned with situations in which easy reading and interpretation

of the robot’s data is a desirable objective, but the structure as a whole is too complex

and occluded to be covered in its entirety by a back-and-forth sweeping pattern.

To address this task we have developed a two-phase path planning strategy that

takes advantage of the simplicity and efficiency of modular and sweep-based planning

methods while considering the collision and occlusion hazards in the most confined

areas of a ship’s stern. First, a priori triangle mesh models of structures are segmented

to isolate planar areas using a hierarchical face-clustering algorithm [13], and a planar,

sweep-based path is designed for each segment. The paths are generated using a
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sampling-based algorithm that checks all sweep paths against the entire mesh model

for collisions, not just the segment being covered. This procedure comes with no

guarantee of full coverage; it is simply intended to exploit the open, planar regions of

a complex structure using simple and intutive paths.

Then, after designing sweep trajectories for all segments, the redundant roadmap

algorithm of Chapter 3 is used to fill in the gaps in coverage with individual robot

configurations that observe the remaining areas of the structure. An inspection tour

specifying the order of traversal among sweep paths and gap-filling configurations is

computed by reduction to the traveling salesman problem, which is solved using the

chained Lin-Kernighan heuristic [8].

In Section 5.2 we introduce our hybrid sweeping-and-sampling procedure used to

obtain 100% structure coverage. We define the property of probabilistic completeness

in the context of sweep-based path planning and analyze our algorithm’s completeness

and convergence to a feasible solution. In Section 5.3 the combinatorial optimization

steps are presented that build a full-coverage inspection tour from our hybrid com-

ponents, and in Section 5.4 we present computational results of the algorithm.

5.2 Obtaining 100% Coverage of the Structure

We obtain full coverage of the structure through a combination of back-and-forth

sweep paths and individual configurations, which fill in the gaps in coverage left

by the sweep paths. Unlike most sweep-based coverage planning algorithms, which

assume continuous sensing by the end effector along a back-and-forth trajectory, the

paths we construct are comprised of discrete, static waypoints arranged in a grid.

This strategy, much like the randomized algorithms of Chapters 3 and 4, allows the

HAUV to accurately stabilize at each waypoint for the collection of data.

The complete algorithm for generating a sweep-based 100%-coverage inspection

tour is illustrated in Figure 5-1. In this section we present our solution of the coverage

sampling problem (CSP), the problem of sampling a set of feasible configurations that

achieves 100% coverage of a structure boundary. In Phase I of the CSP, a waypoint
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Figure 5-1: A stateflow diagram illustrating the complete algorithm for sampling-
based coverage path planning, comprised of a coverage sampling phase to generate
sweep paths, a coverage sampling phase to fill in the remaining gaps in coverage, a
set cover phase, and a multigoal planning phase.

grid is generated for each surface in the mesh segmentation. In Phase II, individual

configurations are sampled to cover the unobserved remainder of the structure mesh.

An example of the waypoints designed in each phase of the CSP is given in Figure 5-2.

Once a full-coverage set of configurations is obtained, a set cover is solved over the

configurations. The final step is solution of the multi-goal planning problem (MPP),

in which the grids and other sensing configurations are connected by feasible paths,

and an inspection tour is constructed by iterative solution of the TSP.

5.2.1 Sampling-Based Sweep Paths

As mentioned above, a sweep path is not required to cover 100% of the surface

segment it is inspecting; the goal is instead to exploit the open, planar areas of the

structure wherever possible using a simple trajectory. Using a sampling-based method

to achieve this goal reduces the amount of geometric computation required. We can

avoid the explicit construction of the robot configuration space, which, for the HAUV,

is comprised of four degrees of freedom, x,y,z, and yaw, and is populated with mesh

models comprised of hundreds of thousands of geometric primitives. In addition, as
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Phase I Phase II

Figure 5-2: A triangle mesh model of the SS Curtiss constructed from an HAUV
survey, along with waypoints designed to cover the mesh. Illustrating Phase I of the
CSP, a waypoint grid and the surface area observed by its waypoints are plotted in
blue. The grid is designed to cover a large, planar segment of the mesh. Illustrating
Phase II of the CSP, an individual waypoint and its observed surface area are plotted
in green.

we demonstrate below, a cell decomposition is not required to fit a long, efficient

sweep path in the obstacle-free areas of configuration space; this is achieved instead

using random sampling.

Set System Preliminaries

The set system nomenclature used in Chapters 3 and 4 is adapted for the treatment

of a polyhedral structure that has been segmented into K non-overlapping pieces.

For a mesh segment k, Pk is the set of primitives contained in the segment, Qk is the

user-defined region of configuration space that is sampled to achieve views of Pk, and

Sk is the set of all configurations that observe any primitive pi ∈ Pk. For a simple

structure with three segments, these parameters are illustrated in Figure 5-3.
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Figure 5-3: An illustration of the set systems involved in the coverage sampling
problem, for a robot with a circular sensor footprint capable of translational motion
in <2. In this example, the structure to be inspected is discretized and segmented
into three pieces. One of the primitives in the green partition cannot be observed due
to the presence of an obstacle.

Sweep Path Construction Algorithm

As illustrated at the top of Figure 5-1, after choosing a specific mesh segment k to

cover, a point from this segment, pi, is selected at random and configurations qj are

randomly sampled in a local neighborhood of pi, such that pi lies within the field

of view of the sensor. This procedure gives us the seed configuration from which a

sweep path is produced. If qj collects observations of segment k, then the subroutine

Expand(qj, Pk) is called to expand qj into a grid of waypoints.

Each waypoint grid is constructed in a 2D plane with a single yaw angle common

to all waypoints, selected to capture mesh segment k in the sensor field of view.

The plane is oriented using the distribution of points in mesh segment k, with the

eigenvectors of the segment’s statistical covariance matrix comprising the axes for

alignment. The waypoints in each grid are either depth-varying or fixed in depth

depending on the orientation of the normal vectors in mesh segment k.

A user-specified spacing is enforced between waypoints when Expand(qj, Pk) ex-

pands a seed configuration into a waypoint grid. Expand(qj, Pk) is given in Algorithm

5; each subroutine attempts to add one extra row or column to the grid, separated
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Algorithm 5 Qk = Expand(qj, Pk)

1: Qk ← qj;
2: ExpansionComplete = false;
3: SweepP lane = GenerateP lane(qj, Pk);
4: while !ExpansionComplete do
5: Qrightk ← ExpandRight(Qk, Pk, SweepP lane);
6: Qk ← Qk ∪Qrightk ;
7: Qupk ← ExpandUp(Qk, Pk, SweepP lane);
8: Qk ← Qk ∪Qupk ;

9: Qleftk ← ExpandLeft(Qk, Pk, SweepP lane);
10: Qk ← Qk ∪Qleftk ;
11: Qdownk ← ExpandDown(Qk, Pk, SweepP lane);
12: Qk ← Qk ∪Qdownk ;
13: if |Qrightk ∪Qupk ∪Q

left
k ∪Qdownk | = ∅ then

14: ExpansionComplete = true;
15: end if
16: end while
17: return Qk

by the designated spacing. Due to this systematic expansion procedure, the seed

configuration qj determines the layout of the entire grid.

Because it may not be possible for a grid to observe all primitives in segment

k, we wish to identify the seed configurations whose grids, after expansion, observe

the maximum-possible number of primitives in segment k subject to the presence

of obstacles, occlusions, and the spacing enforced between waypoints. We are not

concerned with growing the shortest-possible sweep path from Sk, simply a feasible

path. We use the notation S∗k to describe the special subset of Sk from which a sampled

configuration will generate a grid that satisfies the maximum-possible number of

coverage constraints. S∗k is depicted in Figure 5-4 for the coverage of segment B.

It is evident that the rightmost mesh point in segment B is obscured from view by

the presence of an obstacle, but any seed configuration in S∗B will yield a single-row

grid that observes the other five mesh primitives. The spacing of the gray regions of

S∗B is determined by the user-selected waypoint spacing for this particular example

problem.
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Figure 5-4: An illustration of additional set system nomenclature for a robot with a
circular sensor footprint capable of translational motion in <2. The set of configu-
rations that map to a maximally informative sweep path is depicted for segment B.
One of the primitives in the green partition cannot be observed due to the presence
of an obstacle.

Probabilistic Completeness

Random sampling proves to be a powerful tool for finding a maximal-coverage feasible

sweep path, and it motivates our definition of probabilistic completeness in the context

of sweep paths. We analyze probabilistic completeness with respect to a local set

system, (Qk,Sk), that applies to a specific segment k. We define the property of

probabilistic completeness for a CSP algorithm as follows.

Definition 8 (Probabilistic Completeness, CSP I). Let CSA be a proposed sweep-

based coverage sampling algorithm for Phase I of the CSP. Let δ = mink µ(S∗k)/µ(Q)

be the smallest maximal-coverage volume fraction of all segments k, where the mea-

sure µ represents the volume of the specified region of configuration space. If, when

δ > 0, the probability that at least one sample has landed in every S∗k approaches

one as the number of samples of Q drawn by CSA approaches infinity, then CSA is

probabilistically complete.

This definition implies that a probabilistically complete CSP algorithm will, in

the limit, find sweep paths that satisfy as many coverage constraints as possible while
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avoiding collision and obeying the rules of sweep path construction. This definition

is intended to eliminate degenerate scenarios from consideration in which S∗k is a

manifold of lower dimension than Q. By relaxing additional coverage constraints,

it is possible that a degenerate S∗k can be replaced with a new set that achieves a

nonzero volume fraction of Q. We can further analyze probabilistic completeness by

studying the simple event of whether a randomly sampled configuration qj lands in a

particular set S∗k .

Theorem 7 (Completeness & Convergence, CSP I). Any algorithm for Phase I of the

CSP that samples uniformly at random from all Qk such that µ(S∗k)/µ(Qk) ≥ ε > 0 ∀k

is probabilistically complete. Additionally, the probability that a solution has not been

found after m samples of each Qk is bounded such that

Pr[FAILURE] ≤ K

e mε
, (5.1)

where K is the number of partitions into which P is segmented.

Proof. The probability of m samples of each Qk producing a maximal-coverage CSP

solution is equivalent to the probability that at least one random sample has landed

in every set S∗k . This fails to occur if there is at least one S∗k in which no samples

have landed. To model this event, we define the binomial random variable Xk =

Xk1 + Xk2 + ... + Xkm , which gives the number of samples that have successfully

landed in S∗k out of m total trials. We express the probability of CSP algorithm

failure as follows:

Pr[FAILURE] ≤ Pr

[
K⋃
k=1

Xk = 0

]

≤
K∑
k=1

Pr[Xk = 0]

≤ K · Pr[Xk∗ = 0] (5.2)

Using the union bound, the probability that Xk = 0 for at least one S∗k is bounded

above by the sum of the probabilities of this event for all S∗k . This is further sim-
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plified by taking Pr[Xk∗ = 0] as an upper bound on the failures of all Xk, where

Xk∗ is the binomial random variable corresponding to the segment k that minimizes

µ(S∗k)/µ(Qk).

Since we are sampling uniformly at random, Pr[Xk∗ = 0] can be expressed and

bounded in the following way:

Pr[Xk∗ = 0] = (1− ε)m ≤ e−mε, 0 ≤ ε ≤ 1 (5.3)

Combining the result of (5.3) with (5.2), we obtain the desired relationship between

m and the probability of failure:

Pr[FAILURE] ≤ K

e mε
, lim

m→∞

K

e mε
= 0 (5.4)

Since µ(S∗k)/µ(Qk) > 0 ∀k, ε > 0 and the limit behaves as indicated in (5.4).

As a direct consequence of Theorem 7, our algorithm for Phase I of the CSP

illustrated in Figure 5-1 is probabilistically complete if the Qk are selected to allow

ε > 0 whenever δ > 0. By iteratively choosing a random pi ∈ Pk and sampling from

the region of Q in which pi lies in the sensor’s geometric footprint, we are sampling

from a subset of Q which fully includes S∗k and the condition on ε and δ is always

satisfied. The bounding methods used in this analysis were used previously in the

proof of completeness of the probabilistic roadmap [88] to analyze the failure of m

samples of a common configuration space to construct a collision-free path between

two configurations. We have applied the same bounds here to analyze the failure of

m samples of each Qk to land at least once in every set S∗k .

5.2.2 Filling in the Gaps

To fill in the remaining gaps in coverage left by the sweep paths, we rely on individual

robot configurations rather than waypoint grids. This sub-problem comprises Phase

II of the CSP as illustrated in Figure 5-1. To solve this problem, we utilize the

sampling method of the redundant roadmap algorithm presented in Chapter 3, which
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samples robot configurations until a set is obtained that views each required geometric

primitive from r distinct configurations, termed r-coverage in Figure 5-1. From these

configurations, a subset is selected for traversal by approximation of the minimum-

cardinality set cover. In Phase II of the CSP, we apply the sampling routine of the

redundant roadmap algorithm only to primitives left unobserved by the sweep paths

designed in Phase I.

This sampling routine is also probabilistically complete. If a feasible, 100%-

coverage set of configurations exists for the remaining primitives, then the redundant

roadmap algorithm will find such a solution with probability that tends to one as the

number of samples tends to infinity, as demonstrated in Chapter 3. Using this result,

we state the convergence of algorithm failure probability as a function of the number

of samples m, the volume fraction ε of the configuration space that is sampled, and

|P |gaps, the number of primitives comprising the gaps in coverage remaining at the

beginning of Phase II.

Pr[FAILURE] < |P |gaps ·
er

e mε/2
(5.5)

The coefficients in (5.5) differ slightly from (5.1) because the Phase II sampling process

must achieve r-coverage, as opposed to single-coverage. Despite the minor differences

between (5.1) and (5.5), both phases of the coverage sampling problem are solved by

algorithms for which the probability of failure plunges toward zero exponentially fast

in the number of robot configurations sampled.

5.3 Computing A Hybrid Inspection Tour

Phases I and II of the CSP yield a set of feasible robot configurations that observe

100% of the structure boundary. Part of this set is comprised of waypoint grids, which

form the basis for back-and-forth sweep paths. The remainder of the set is comprised

of individual robot configurations that fill in the gaps in coverage left by the waypoint

grids. Before constructing an inspection route among these configurations, we apply a
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set cover approximation to both the sweep-path subset and gap-filling subset, followed

by iterative pruning of each set cover solution. After the set cover step, an order of

traversal among waypoints is computed by reduction to a symmetric instance of the

TSP.

5.3.1 Set Cover Sub-Problem

The set cover problem is solved twice; once over the K sweep paths and once over

the individual configurations that fill the remaining gaps in coverage. In the former

case, each sweep path is treated as an individual set, and in the latter case, each

robot configuration is treated as an individual set. Each set cover is posed over the

specific group of geometric primitives required in the respective phase of the CSP. In

both cases, the greedy algorithm is used to give a polynomial-time approximation to

the minimum-cardinality set cover. The greedy algorithm returns a feasible solution,

but this solution may contain sets that can be eliminated completely while preserv-

ing feasibility. A pruning algorithm is implemented to remove sets which cover no

elements uniquely, as is performed in the original redundant roadmap algorithm. For

the sweep paths, however, the pruning procedure is also applied to the individual

rows and columns of each waypoint grid, and in each iteration the obsolete row or

column with the largest number of waypoints is eliminated. This allows redundant

waypoints to be eliminated from the sweep paths while preserving their rectangular

structure.

5.3.2 Traveling Salesman Sub-Problem

Our aim is to solve the TSP over a graph containing sweep paths without re-computing

the order of traversal within the sweep paths themselves. After choosing an entry and

exit point, the order of traversal within a sweep path is trivial, as depicted in Figure

5-5. Consequently, we reduce each sweep path in the set cover to a single pair of

graph nodes in the TSP, representing the points of entry and exit. To ensure that

this pair of sweep path terminals appear adjacent to one another in the final TSP
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Figure 5-5: A diagram illustrating the integration of back-and-forth sweep paths into
the TSP. At left, one possible choice of sweep path is depicted, and at right, the
alternate choice is depicted. Each choice results in a different set of terminals being
used to connect the sweep path to the rest of the inspection tour. For each choice
of terminals, the red lines and numbered points represent edges and nodes that are
introduced into the TSP. The blue lines represent the sweep path, which is omitted
from the TSP and represented by a zero-cost edge between the two terminals.

tour, the costs of travel between other configurations are augmented. A cost of zero

is assigned to every edge connecting a pair of terminals, and all other node-to-node

costs are initialized using the Euclidean distances between robot configurations. A

large number is then added to the costs of all Euclidean-distance edges. This large

number, selected to be larger than any true path length that will be returned as a

solution to the TSP, will ensure that pairs of terminals remain adjacent in the final

TSP tour. We are not aware of prior work on the topic of forcing a pair of TSP

nodes to be adjacent. After this initialization, the TSP is solved using the chained

Lin-Kernghan heuristic [8].

Even though a pair of terminals is selected for each sweep path in advance of

solving the TSP, it is possible that the alternate pair of entry and exit terminals

will yield a shorter inspection tour, as demonstrated in Figure 5-5. To address this

possibility, we consider alternate choices of sweep path terminals and switch them

after solution of the TSP if the alternate terminals lower the cost of the tour. We

iterate through the sweep paths in round robin fashion, and stop once a single pair

of terminals is adjusted. This adjustment requires an update to the node-to-node
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distances in the adjacency matrix used for TSP computations. After this update is

performed, any node-to-node pairings that have not been collision-checked are solved

according to the multi-goal planning problem (MPP) iterative procedure illustrated

in Figure 5-1; a similar lazy procedure is used in the redundant roadmap algorithm

presented in Chapter 3.

Our terminal-switching heuristic is intended to avoid the complexity of examining,

in every iteration of the MPP procedure, all 2K combinations of terminals over K

sweep paths. Despite our simplification of the problem, even the proposed heuristic

risks the worst-case scenario of an MPP procedure that marches through every one of

these 2K combinations while approaching a stable solution. However, this would only

occur in the unlikely scenario that every combination makes incremental progress

toward a single optimal solution. We have found the heuristic MPP procedure to

converge quickly in practice; the entire sweep-based planning algorithm has required

no more than ten minutes of computation time in any of the problem instances tested.

If the switching procedure were to result in excessive computation, then a time limit,

a ceiling on the allowed number of MPP iterations, or a stopping criterion based on

the cost improvement of the MPP procedure could always be imposed.

5.4 Computational Results

We now give computational results of the sampling-based sweep path algorithm as

applied to the HAUV. Once again, we will assume that the HAUV will inspect the

USCGC Seneca and SS Curtiss using a DIDSON viewing range of 1-3 meters. This

is a small sensing volume relative to the size of the structures being inspected, and

conservative waypoint spacing must be used to prevent the occurence of gaps in the

data collected while sweeping over open and planar areas.

In addition to the need for heuristic design of waypoint spacing, we must decide

how many partitions are appropriate in the segmentation of both structures. To

explore the effect of this parameter, we have computed planned inspection paths over

both ships for a variety of segmentations, from the trivial case of a fully randomized
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inspection (an order-zero segmentation), to a segmentation of order twenty. This

was performed using EfPiSoft, an implementation of a hierarchical face clustering

algorithm [13] that we have used to select segments based on their quality of fit to a

plane. It is also possible to select segments based on their quality of fit to spherical

and cylindrical primitives, but we have found spherical and cylindrical sweep paths to

be less suitable for generalized inspection of the open areas of man-made structures.

Given a mesh segmentation as input, our sweep path algorithm carries out random

sampling until ten feasible candidate sweep paths are achieved for each segment, and

the paths offering the most comprehensive coverage of their respective segments are

used in the inspection. We proceed this way in practice since we do not know exectly

when the maximal-coverage set S∗k is reached.

After the sweep paths are generated, the remaining gaps in coverage are filled using

the CSP procedure of the redundant roadmap algorithm. The gaps in coverage are

filled using redundancy-three roadmaps, which must observe all required geometric

primitives from three distinct sampled configurations. In each iteration of the MPP,

a TSP tour is initialized using the nearest-neighbor heuristic and the chained Lin-

Kernighan algorithm is applied for one second, although sometimes only milliseconds

are needed to make significant improvements to the TSP tour. All computations were

performed on a Dell T3500 desktop with a 3.20GHz Intel Xeon processor and 24GB

of RAM, and no single instance of the full planning algorithm required more than ten

minutes of computation time for the structures tested. The planning procedure was

implemented in C++, and the high performance software tools listed in Table B.1 of

Appendix B were once again used where applicable.

We note that this algorithm is fully compatible with the sampling-based improve-

ment procedure described in Chapter 4. Assuming that the improvement procedure is

only applied to randomized configurations in the inspection tour, to avoid disturbing

the regularity of the sweep paths, the impact of the procedure will vary depending on

the parameterization of the sweep-based planning algorithm. When a great majority

of the structure can be covered using back-and-forth sweep paths, the ideal outcome

of our hybrid algorithm, the impact of the improvement procedure will be limited.
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Figure 5-6: Results of sweep-based inspection planning on two vessels, the SS Curtiss
and USCGC Seneca, over different segmentation cases. These range from the trivial
case of a fully randomized inspection (zero segments) to the case in which one sweep
path is formed for the entire structure (one segment) to nontrivial cases with up to
twenty segments. The results give the mean inspection tour length over 25 trials
and the mean number of configurations (waypoints) in the inspection for each test
case. In blue, we plot the length of the tour contributed internally by all sweep
paths. Blue also represents the number of sweep path configurations. In red, we plot
the length of the tour required for interconnections among separate sweep paths and
single configurations. Red also represents the number of single configurations. The
sum total of these quantities is plotted in green.

For this reason, we omit post-optimization smoothing from the computational results

of this chapter.

Due to the uniform spacing and fixed orientation of sweep path waypoints, HAUV

trajectories that utilize sweep paths will suffer a loss in efficiency to exchange ran-

domized inspection routes, which accomodate every unique twist and turn in the

structure, for highly regularized inspection routes. This loss in efficiency impacts

both the number of configurations used in the inspection and the distance traveled

by the vehicle along the inspection tour. By planning for HAUV coverage of a large

trivially-segmented cube, the loss of efficiency was determined to be a factor of two
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for inspection tour length and a factor of 2.5 for the number of waypoints in an ide-

alized inspection route for which nearly 100% of wayponts lie in sweep paths. These

losses were matched and exceeded in some cases by the planned coverage paths for

the Curtiss and Seneca, which were planned over a wide range of mesh segmentations.

Figure 5-6 demonstrates these results, which illustrate the proportion of each planned

inspection comprised of regularized and randomized configurations. As the quantity

of segments increases, larger proportions of the tour are solved by sweep paths. This

is accompanied by a net increase in length of the tours and the number of total con-

figurations, with a decrease in the number of randomized configurations. The effect of

higher-order segmentations on the decrease in randomized configurations is observed

to diminish as the number of segments increases.

This diminishing-returns effect is especially evident for the Curtiss, which is cov-

ered almost entirely by sweep paths using an order-ten segmentation, pictured in 5-8.

As illustrated in 5-6, increasing the order of the segmentation beyond ten has only

a minor effect on the number of randomized configurations, while it increases the

total length of the tour significantly. The Seneca, on the other hand, still requires

a significant number of randomized configurations for an order-twenty segmentation.

The Seneca has a larger number of protruding component structures, and many addi-

tional planes are needed to observe these structures from all sides. The coverage path

planned for the order-twenty segmentation pictured in 5-7 uses planar sweep paths to

observe both sides of the keel, both sides of each rudder, one side of each shaft, and

the faces of the propellers. Although there is no single, correct choice of an optimal

segmentation, it is clear that different structures will require subdivisions of differing

complexity to approach full coverage with regularized sweep paths.

5.5 Summary

We have presented an algorithm which, to our knowledge, is the first coverage planning

algorithm that utilizes both randomized and regularized component paths to achieve

coverage of complex 3D structures. The component paths are joined seamlessly into
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(a) This three-segment tour is 402 m in length and contains 145 randomized configurations and
202 sweep configurations.

(b) This twenty-segment tour is 526 m in length and contains 84 randomized configurations and
377 sweep configurations.

Figure 5-7: Examples of planned inspection tours for the USCGC Seneca, for three-
segment and twenty-segment test cases. The images at right illustrate the segmenta-
tion only, and the images at left illustrate the full-coverage inspection tour.

a single contiguous inspection tour. Given a segmented structure as input, a back-

and-forth sweep path is designed for coverage of each segment. A probabilistically

complete sampling procedure is used to establish the origin of each sweep path. This
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(a) This three-segment tour is 241 m in length and contains 112 randomized configurations and 57
sweep configurations.

(b) This ten-segment tour is 383 m in length and contains 36 randomized configurations and 282
sweep configurations.

Figure 5-8: Examples of planned inspection tours for the SS Curtiss, for three-segment
and ten-segment test cases. The images at right illustrate the segmentation only, and
the images at left illustrate the full-coverage inspection tour.

procedure is designed to cover the open, easily accessible areas of a structure using

simple paths that yield easy-to-interpret sensor data. Randomized paths are used to

inspect the confined, highly-occluded areas of a structure that elude the sweep paths.

130



To minimize the number of random configurations used in a planned inspection, a

loss in efficiency must be accepted in the substitution of uniformly spaced waypoint

grids for individually designed single waypoints. This tradeoff is often desirable when

the ability to monitor, interpret, and intervene in an inspection-in-progress is a key

requirement, and our algorithm offers the flexibility to “trade” for increased regularity

as needed.
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Chapter 6

Experimental Outcomes

6.1 Introduction

Several field and laboratory experiments have been performed to support the devel-

opment and testing of the path planning algorithms presented in this thesis. Despite

the availability of computer-aided design (CAD) models for many ships and other

man-made structures, we have been unable to obtain such models for the specific

ships used in our hull inspection field experiments. Consequently, the ability to dis-

cover and map a vessel’s stern arrangements, without the aid of a CAD or other

model, has been valuable in our work with naval vessels. Many vessels are older, and

poorly documented, or have been modified to an extent that the available description

is simply incorrect. Thus, our methodology is intended to proceed from having no

knowledge of the structure, to a survey made at large range and poor resolution, to

another survey made at short range and high resolution. The coarse survey enables

the fine survey “up and into” the gear, which is planned using the algorithms of the

preceding chapters.

At a safe distance from the stern (typically seven to ten meters), we first execute

the low-resolution identification survey ; this is intended to identify the major ship

structures, and enable the construction of a 3D model or at least allow the HAUV

to reference itself to a prior model. Due to the challenges associated with filtering

profiling-mode DIDSON data—including the removal of noise and second returns—
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we use manual processing to construct the mesh. Using this coarse 3D model, a

path is then planned for a subsequent high-resolution inspection survey to support

the recognition of mines. Once this path is executed, the mesh modeling techniques

of the identification survey can be applied again at higher resolution. Seven HAUV

field experiments, performed at six different vessels over the course of three years,

have provided an opportunity to refine the implementation of the identification and

inspection surveys. Data products from these experiments are illustrated in Figures

6-1 and 6-2, and a more detailed summary is provided in Table B.2 in Appendix B.

In Section 6.2 we describe the procedure used to survey a vessel from a safe dis-

tance to support the generation of a structure-resolution triangle mesh model. In the

subsequent sections we give results from the execution of planned inspection surveys,

intended to achieve mine-resolution coverage of the structures inspected. A planned

path implemented by the HAUV at the stern of the USCGC Seneca is presented in

Section 6.3, and a laboratory experiment performed using a laser rangefinder in air

is discussed in Section 6.4. This experiment, an approximate one-tenth-scale mockup

of a ship hull inspection, was designed to achieve both sensing and positioning out-

comes of higher precision than is attainable using the current HAUV. Our laboratory

experiment is intended to shed some light on future HAUV capabilities, and how our

algorithms can support them, as underwater navigation and sensing are improved.

6.2 Mesh Construction Procedure

Within the community of laser-based range sensing, specialized algorithms have been

designed to generate watertight, 3D mesh models from high-resolution point clouds

[74], [45]. Laser-based range sensing, ubiquitous in ground, air, and space applica-

tions, however, yields substantially higher-resolution point clouds than does underwa-

ter acoustic range sensing: typically sub-millimeter versus sub-decimeter resolution.

This is evident in several studies that have pursued mapping of 3D structures using

underwater acoustic range data [29], [57], [94], [25]. Fortunately, a number of deriva-

tive tools have been developed for processing point clouds containing gaps, noise, and
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(a) Photo and point cloud from the USNS Red Cloud. The photo shows the Red
Cloud at right, with a ship of the same class departing at left. The point cloud shows
a rudder and portions of both propellers.

(b) Photo and point clouds from the USCGC Venturous. The point clouds show
the Venturous from the starboard side and the stern, respectively. Photo credit: US
Coast Guard, http://www.uscg.mil/lantarea/cgcventurous/

(c) Photo and mesh from the SS Curtiss. This mesh is based on high-quality, com-
prehensive point cloud data and was used as one of the primary tools in planning
algorithm development.

Figure 6-1: A summary of HAUV field experiments performed in support of coverage
algorithm development and planned path execution, part one.
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(a) Photo and mesh from the Nantucket Lightship. This small ship was used for
practicing the execution of a planned inspection route.

(b) Photo and mesh from the M/V Terry Bordelon. The mesh depicted focuses
on a propeller and its supporting structures. This small ship was used for testing
the production of an improved-resolution mesh after executing a planned inspection.
Photo Credit: Bordelon Marine, http://www.bordelonmarine.com/terry.html

(c) Photo and mesh from the USCGC Seneca. This is the only vessel that was visited
for a second field test. The mesh, developed from the first test, was used to plan a
coverage path that was executed during the second test.

Figure 6-2: A summary of HAUV field experiments performed in support of coverage
algorithm development and planned path execution, part two.
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outliers [166], [78], and these provide a direct avenue for us to pursue our identification

survey mesh model.

Figures 6-3 and 6-4 illustrate the execution and processing of an identification

survey from start to finish. First, the HAUV traces out the walls of a safe bounding

box that observes the stern from a distance known to be collision-free; thousands

of DIDSON frames are collected along with navigation estimates. Evident in the

sonar frames shown is the range noise which makes this modeling task difficult in

comparison to laser-based modeling.

To transform a set of dense, raw-data point cloud slices into a 3D mesh recon-

struction, we first apply a simple outlier filter to the individual sonar frames collected.

All points of intensity greater than a specified threshold are introduced into a slice,

and then each is referenced using the HAUV’s seafloor-relative navigation. These

steps are performed using software from SeeByte Ltd., and all remaining steps are

performed using Meshlab [41]. These and other software tools used for processing and

acquisition of data are described in Table B.3 in Appendix B. After assembling the

sonar frames into a single point cloud, areas containing obvious noise and second re-

turns are cropped out manually. The raw points are then sub-sampled using Poisson

disk sampling [42], which draws random samples from the point cloud, separated by

a specified minimum distance. The point cloud is typically reduced to about 10% of

its original density, and it is then partitioned into separate component point clouds.

Partitions are selected based on the likelihood that they will yield individually

well-formed surface reconstructions. Objects such as rudders, shafts, and propellers

are thin structures that may not be captured in the final model without separate pro-

cessing from the hull. Normal vectors are computed over the component point clouds,

and some flat surfaces, for which only one of two sides was captured in the data, are

duplicated. A point’s normal vector is computed by applying principal component

analysis to the point’s k nearest neighbors, and the normal’s direction is selected to

locally maximize the consistency of vector orientation [74]. Both sub-sampling and

estimation of normals are key steps in the processing sequence, found in practice to

significantly impact the accuracy of the mesh [78]. Sub-sampling generates a low-
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(a) Survey in progress at the SS Curtiss, with a diagram of the identification survey procedure.

(b) Representative sonar frames from survey of SS Curtiss running gear, looking up at the
shaft and propeller. Ranges are given in meters.

Figure 6-3: An overview of the identification survey procedure and the data obtained
from it, part one.

138



(a) Raw-data point clouds obtained from the starboard-side wall and bottom wall of the iden-
tification survey, respectively.

(b) Merged, subsampled data is displayed with a vertex normal pointing outward from each
individual point.

(c) A mesh model of SS Curtiss generated by applying the Poisson reconstruction algorithm
to the point cloud of (b).

Figure 6-4: An overview of the identification survey procedure and the data obtained
from it, part two.

139



density, evenly-distributed set of points, and normals aid in defining the curvature of

the surface.

The Poisson surface reconstruction algorithm [91] is next applied to the oriented

point clouds. Octree depth is selected to capture the detail of the ship structures

without including excess roughness or curvature due to noise in the data. The com-

ponent surfaces are merged back together, and a final Poisson surface reconstruction

is computed over the components. If the mesh is used as a basis for high-resolution

inspection planning, then it may be further subdivided to ensure the triangulation

suits the granularity of the inspection task. We iteratively apply the Loop subdivision

algorithm [112] for this purpose, which divides each triangle larger than a specified

size into four subtriangles.

6.3 Execution of Planned Path at USCGC Seneca

An inspection survey was planned and executed at the USCGC Seneca using the

HAUV, version HULS3. For coverage path planning, we used a triangle mesh model

produced from a previous identification-survey field experiment at the Seneca; this

model is shown in the computational results of Chapters 3-5 and is also pictured

in Figure 6-2(c). Due to the time constraints of the field experiment, a section of

the model representing one half of the ship’s stern was used for planning, and the

inspection was designed for sonar viewing at 1-4m range. Because version HULS3 of

the HAUV was used, the DIDSON sonar could only be pitched from 0 to 90 degrees

rather than the full range of ±90 degrees assumed in the preceding computational

results. The 100%-coverage inspection route is pictured in Figure 6-5. The tour was

planned over two hours of computation on a Lenovo T400 laptop with a 2.53GHz

Intel Centrino 2 processor and 3GB of RAM. After construction of an initial feasible

solution using a redundancy-ten roadmap, which required approximately six minutes,

the sampling-based improvement procedure was run for the remaining time. Seven

view configurations were pruned during the improvement procedure, and the tour was

shortened by twenty-seven meters.
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Figure 6-5: Planned route for inspection of the stern of the USCGC Seneca. The
inspection is planned for sensing at 1-4 meter range, with a DIDSON pitch axis
limited to motion between 0 and 90 degrees for use with HAUV version HULS3. The
route is 54 meters in length and contains 53 planned views.

To allow in-water execution of the inspection, the waypoints were transformed

into the seafloor-relative coordinate frame of each HAUV dive. This was achieved

by performing a short, depth-varying identification survey along the side of the ship

about seven meters away from the centerline, sufficient to obtain views of the running

gear in the DIDSON data. While holding station after completion of this survey,

the sonar data was registered to the a priori model, and the model, along with

the planned waypoints, were transformed into the HAUV coordinate frame using the

iterative cloest point (ICP) algorithm [18] with manual alignment as an initialization.

Due to occasional mission aborts from the HAUV, the planned views were collected

gradually, with some views repeated, over the course of five dives. The data obtained

at the end of each dive was manually aligned with the a priori mesh model. Due to

inaccuracies associated with the quality of the ICP registration, the HAUV’s inability

to hold station at a waypoint with decimeter precision (sometimes drifting upwards

141



(a) The HAUV, version HULS3, prior to deploy-
ment at the stern of the Seneca.

(b) The HAUV in Boston Harbor at the start of
a Seneca survey.

Figure 6-6: Photos of operations at the USCGC Seneca during the February 2012
field experiment.

of a quarter meter while attempting to hold station), and accumulation of DVL drift

during longer dives, not all planned views were well-matched with the data collected.

Despite this, the collected range data was compared to the planned views of the mesh

model and in many instances structural inaccuracies in the model could be deduced

from the appearance of the data. Photos of the HAUV during the field exercises at

the USCGC Seneca are given in Figure 6-6.

Due to a limited number of settings for DIDSON viewing window length, range

data was recorded from 1.13-10.13 meters during the identification survey, and from

1.13-5.63 meters during the inspection survey. This latter setting allowed the planned

sensor observations to be collected with some additional overlap to spare. The next

available sensor setting, which reduces the maximum viewing range to 3.38 meters,

was inadequate for obtaining the four-meter planned views. Because the DIDSON

pitch axis is located forward of the point where acoustic scans originate, each recorded

scan actually begins behind the origin of the composite “sensing volume” used for

planning the views of an inspection. Sampled scans that exceed the range of the

planned views aid in compensating for the offset of the DIDSON pitch axis.

Individual views obtained from the inspection tour are given in Figures 6-7 and 6-

8. The points plotted reflect range data that has been processed using an outlier filter,
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(a) View of propeller, showing differences in blade thickness and hull curvature.

(b) View of propeller, showing differences in blade thickness and hull curvature.

Figure 6-7: Selected waypoints from the planned inspection of the Seneca are illus-
trated, comparing the planned view (red) with the obtained view (black), part one.
The mesh has been rendered with some transparency to grant visibility of black sensor
data lying within its boundaries.
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(a) View showing differences in rudder geometry.

(b) View showing differences in geometry of the inboard propeller strut.

Figure 6-8: Selected waypoints from the planned inspection of the Seneca are illus-
trated, comparing the planned view (red) with the obtained view (black), part two.
The mesh has been rendered with some transparency to grant visibility of black sensor
data lying within its boundaries.
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Figure 6-9: Composite point cloud showing the data collected from the planned
inspection of the USCGC Seneca outboard stern. The alignment of each point’s
outward-facing normal vector with the camera viewpoint depicted in this image is
reflected by the shading of each point. Points with normals directed toward the
camera are light gray in color, and points with normals directed away from the camera
are dark gray in color.

subsampled to about 10% of the original density of points, and manually filtered to

eliminate obvious noise and second returns. These views reveal aspects of the ship’s

true structure that are absent from the a priori model used for path planning. It is

clear from the data in Figure 6-7 that the mesh model’s propeller blades are thicker

than those of the true vessel, and the data in Figure 6-8 reveals inaccuracies in the

rudder geometry and the angular orientation of the inboard propeller strut.

A composite point cloud showing all views collected over the course of the inspec-

tion is given in Figure 6-9. A normal vector was computed for each point using the

same method described in Section 6.2 for the generation of a watertight mesh. It is

evident from the shading of the points, which depicts the orientation of the normal

vectors, that some gaps in coverage exist. Some of the propeller blades were observed

from a single side only, and the shaft is not fully covered below the outboard strut.

Other gaps, made evident by the presence of white spaces between points, exist due

to the inability of the outlier filter to capture all of the range returns from specific

sonar frames.

Despite these gaps in coverage, the data obtained from the close-range survey

of the Seneca running gear permitted an improved triangle mesh model to be con-
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Figure 6-10: Comparison of the original, low-resolution Seneca mesh, at top, with a
mesh obtained from the planned high-resolution inspection route, at bottom.

structed using the manual processing method of Section 6.2, with interpolation used

where necessary to fill gaps in coverage. This model is compared with the original,

low-resolution a priori mesh model in Figure 6-10. The range data obtained from

the planned inspection was sufficient to resolve each individual propeller blade, the

actuated post attaching the rudder to the hull, and the orientation of the propeller

struts, features that were unresolved or incorrect in the a priori mesh model.

6.4 Results from Laser-Equipped Gantry System

Despite of the achievements of the USCGC Seneca field tests, full sensor coverage

was not obtained, many aspects of the data processing were performed manually,

and the navigation and ranging precision of the HAUV and DIDSON didn’t quite
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Figure 6-11: Photo of experimental apparatus used for coverage path planning lab-
oratory experiment. The four degree-of-freedom robotic gantry is pictured, with a
Hokuyo UTM-30LX laser mounted at the tip of the end effector.

match the decimeter resolution desired for mine detection. The precision of acous-

tic range sensors and the maneuvering and control capabilities of the HAUV have

been and will continue to be improved over time, but for the purposes of algorithm

validation, we also plan and execute a path to support laser-based range sensing in

air. The experiment presented in this section uses a robotic gantry system capa-

ble of centimeter-precision translation along three axes and degree-precision rotation

about a single yaw axis. The gantry has been used previously in underwater sonar

navigation experiments [108], but we operate it in a dry tank, mounting a Hokuyo

UTM-30LX laser rangefinder at the tip of the end effector. The testing tank in which

the gantry operates is ten meters long, three meters wide, and one meter deep.

A kayak 3.6 meters in length and 0.7 meters wide was outfitted with an artificial set

of running gear to serve as an approximate one-tenth-scale mockup of the USCGC

Seneca. A thirty-centimeter-wide rudder and thirty-centimeter-diameter propeller

are nearly an order of magnitude smaller than the 2.5-meter-wide rudder and the 2.5-

meter-diameter propeller of the Seneca. The mockup inspection experiment, including
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Figure 6-12: Planned route for inspection of the modified kayak hull. The inspection is
planned for sensing at 0.1-0.3 m range, with the equivalent of DIDSON pitch between
0 and 180 degrees and robot-relative heading of ±15 degrees. The route is 6.8 meters
in length and contains 66 planned views.

the gantry, laser, and modified kayak, is pictured in Figure 6-11. To achieve a tenth-

scale equivalent of DIDSON sensing with the laser, the sensor is turned on its side and

rotated through a thirty-degree span of heading angles at each planned sensor view.

Each individual scan spans 180 degrees in pitch, equivalent to the available range of

sonar pitch angles on the HAUV, model 1B. This gives a volumetric sensor footprint

equivalent to that of the DIDSON when the sonar, with thirty-degree-wide individual

range scans, is pitched through 180 degrees. To give appropriate scaled-down ranging,

laser views are planned for observation at 0.1-0.3 meters only. This is a tenth-scale

equivalent of the ranges assumed in the computuational studies of Chapters 3-5.

An identification survey was performed with the gantry to generate an a priori

mesh model of the kayak. Views were collected at thirty-two individual waypoints set

back one half-meter from the kayak centerline to generate this model. The positioning

of the gantry is accurate enough that manual alignment of the sensor data was not

required, and vertex normals for the point cloud were determined by the orientation
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of the laser beam corresponding each individual data point. The point cloud did

require subdivision into a few separate components, however, to yield a well-formed

watertight mesh. Due to the restricted range of motion in the gantry’s depth-wise

direction, limited to 0.3 meters, the top surface of the kayak rudder was cropped from

the model so infeasible coverage would not be required. A cylindrical CAD model

was used to represent the gantry end effector for the purposes of collision-free path

planning.

The inspection survey planned for 100% high-resolution coverage of the kayak

stern is pictured in Figure 6-12. The tour was planned over two hours of computation

on a Lenovo T400 laptop with a 2.53GHz Intel Centrino 2 processor and 3GB of RAM.

After construction of an initial feasible tour using a redundancy-ten roadmap, which

required approximately three minutes, the sampling-based improvement procedure

was run for the remaining time. Thirteen view configurations were pruned during the

improvement procedure, and the tour was shortened by 4.6 meters.

The entire set of procedures run for the identification and inspection surveys re-

mained referenced in the same coordinate frame throughout, and no manual alignment

of data was required. A small margin of safety was used in implementing the planned

views; range data was sampled that overlapped, by two centimeters each, the maxi-

mum and minimum planned viewing ranges. Five additional degrees of heading were

added to each end of the sampled volume to account for any heading angle biases

remaining after calibration. Data collected during the planned close-range inspection

was manually filtered to remove noise and any returns from the testing tank, the

gantry, and other surrounding structures.

A selection of sensor views from the inspection is depicted in Figures 6-13 and 6-14.

The points plotted reflect range data that has been manually filtered and subsampled

to about 10% of the original density of points. These views reveal structures very

similar to those in the plan, with a few small discrepancies between the a priori mesh

model and the actual structure. It is clear from the data that the curvature of the true

kayak hullform is slightly different from that of the model, and that the areas where

the shaft and the shaft bearing meet the hull are slightly distorted in the model.
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(a) View of rudder, showing some differences in hull curvature.

(b) View of shaft, showing a larger gap between shaft and hull than modeled.

Figure 6-13: Selected waypoints from the planned inspection of the modified kayak
are illustrated, comparing the planned view with the obtained view, part one. The
mesh has been rendered with some transparency to grant visibility of black sensor
data lying within its boundaries.
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(a) View of shaft, bearing, and hull, showing differences in hull curvature.

(b) View propeller, shaft, and hull, showing differences in propeller geometry.

Figure 6-14: Selected waypoints from the planned inspection of the modified kayak
are illustrated, comparing the planned view with the obtained view, part two. The
mesh has been rendered with some transparency to grant visibility of black sensor
data lying within its boundaries.
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Figure 6-15: Composite point cloud showing the data collected from the planned
inspection of the modified kayak. Noise has been manually filtered from the point
cloud. Unlike the data displayed in Figure 6-9, this data is derived entirely from the
gantry coordinate frame and has not been rotated or translated. The alignment of
each point’s outward-facing normal vector with the camera viewpoint of each image
is reflected by the shading used. Points with normals directed toward the camera are
light gray in color, and points with normals directed away from the camera are dark
gray in color.

A composite point cloud showing all views collected over the course of the inspec-

tion is given in Figure 6-15. It is evident that a complex patchwork of views was

required to derive a full-coverage point cloud at such limited viewing range; this is

highlighted by the vertex normals specific to each view. A normal vector was com-

puted for each point using the orientation of its corresponding laser beam, as used

in the production of the a priori kayak mesh. Some small gaps in coverage do exist,

evidenced by the white spaces between scans, that result from discrepancies in kayak

hull curvature between the a priori model and the true structure.

The sub-centimeter resolution of the laser and precision positioning of the gantry
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Figure 6-16: Aluminum targets used for HAUV mine detection exercises, including
their appearance on the seafloor as viewed by the DIDSON in 2D imaging mode.

can be exploited further to detect mine-like objects on the surface of the kayak.

During some of our ship hull inspection field exercises, decimeter-scale targets have

been placed on the hulls to foster work on mine detection and classification. These

training targets, pictured in Figure 6-16, have been detected consistently using the

DIDSON in 2D imaging mode, in which the distinctive outlines of the targets can be

used to automate classification. Detection of these targets in profiling-mode range

scans, however, has proven a difficult task. The extent to which these targets protrude

from the ship hull’s surface rivals the resolution of the range scan and the precision

of vehicle maneuvering. This is not the case for the gantry system, and we test

this capability by planting two scaled-down mine-like objects on the kayak: a bolt

protruding from the propeller, and a cylindrical cap protruding from the shaft bearing,

both of which are pictured in Figure 6-17 planted on the kayak.

The bolt is 1.3 cm in diameter, and protrudes 2 cm from the surface of the pro-

peller. The cap is 2.5 cm in diameter, and protrudes 2 cm from the surface of the

shaft bearing. The length of the brick-shaped target in Figure 6-16 is ten times the
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Figure 6-17: Small-scale targets placed on the modified kayak. A plastic cylindrical
cap, circled in red, is attached to the shaft bearing. A steel bolt, circled in blue,
protrudes from the propeller.

diameter of the bolt, and the diameter of the cake-shaped target in Figure 6-16 is

ten times the diameter of the cap. The height of the “cake” is more than five times

the height of the bolt and cap. Both of these targets emerged successfully in the

range scans of the planned coverage inspection. They are difficult to detect in the

composite point cloud of Figure 6-15, but they are evident in individual sensor views.

Views that contained compelling imagery of the bolt and cap targets are displayed in

Figure 6-18.

6.5 Summary

This chapter detailed the experimental outcomes achieved in developing and testing

the coverage path planning algorithms of this thesis. Quality a priori mesh models of

complex structures were essential in the development and refinement of the coverage

algorithms; these were produced over a series of field tests performed on six different

ocean vessels. Tests were also needed to implement the high-resolution inspection
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Figure 6-18: Views obtained during the planned inspection of the kayak that contain
imagery of the targets. The colors marking the targets correspond to the colors in
Figure 6-17.

survey paths planned using these models; this was accomplished at the USCGC Seneca

and in a laboratory experiment using a robotic gantry and a mock ship hull. The

Seneca experiment used a planned inspection route to improve the quality of the

mesh model, and the gantry experiment validated the use of the algorithms for mine

detection applications. When the precision of a robot’s navigation and sensor suit

the granularity of the inspection task, successful detection can be achieved. The

final data product from the kayak inspection, the composite patchwork point cloud

of Figure 6-15, embodies the uniqueness and the benefit of sampling-based coverage

path planning: it allows an expansive structure to be covered by a near-sighted sensor,

piece by piece, even when many pieces are required.

155



156



Chapter 7

Conclusions

In this concluding chapter, we summarize the contributions of this thesis, and offer a

few comments on compelling areas for future work. We emphasize the need to adapt

the algorithms of this thesis into real-time, reactive capabilities that can bring the

HAUV closer to full, robust autonomy.

7.1 Review of Contributions

Three algorithms were presented in this thesis that advance the state of the art in path

planning under coverage constraints. The redundant roadmap algorithm is proposed

for planning feasible coverage paths. Building on the foundational sampling-based

method of Danner and Kavraki used to cover simple 3D polyhedra [47], our algo-

rithm implementation uses modern data structures and combinatorial optimization

techniques to plan over 3D triangle mesh models comprised of hundreds of thousands

of geometric primitives. Our algorithm also builds on the work of Gonzalez-Baños

and Latombe in the area of sampling-based view planning [66], [67]. Two view plan-

ning strategies are proposed in their work: a method that constructs an incremental

set cover and a method that solves a set cover in batch. They developed the for-

mer method into a tunable-quality view planning algorithm, and we endow the latter

method with a similar practical, tunable functionality that it previously lacked. We

have also shown that such a method, when used to plan views over complex 3D struc-
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tures, is more computationally efficient, especially when high-quality solutions are

desired.

Our sampling-based improvement algorithm can be used to simplify and shorten

an initial, feasible coverage tour. This algorithm relies on a subroutine with a simple

purpose: reducing the distance between a view configuration and its two immedi-

ate neighbors in the tour. Iteratively solving this problem for different views allows

subtantial improvements to be made to an inspection route while avoiding the re-

peated invocation of an NP-hard reordering problem. The RRT∗|| algorithm, a simple

extension of RRT* [86], fits nicely in this role, and endows this subroutine with the

properties of probabilistic completeness and asymptotic optimality. A heuristic speed-

up for problems with dense sensor views allows many configurations to be brought

into perfect alignment over local portions of the tour. This improvement procedure

is an entirely new contribution to planning under coverage constraints, adapting the

established tools for iterative smoothing of standard, point-to-point paths.

Our sampling-based sweep-path algorithm can be used to create an inspection

route with regularized, rectangular structure. When the clarity and continuity of

data is highly prioritized, or if the inspection route is to be monitored and analyzed

by a human opearator, regularity may be a desirable property, and worth a sacrifice

in the overall duration of the inspection. Our procedure, which employs structure

segmentation and plans a sweep path for every segment, allows the simple components

of a structure to be covered using simple paths. Unlike prior methods that plan

back-and-forth sweep paths [3], [12], however, our algorithm does not demand 100%

coverage from the regularized paths. Instead, the occluded areas of a structure that

elude the sweep paths are covered using randomized, targeted view configurations.

This algorithm, rather than constructing an explicit cellular decomposition, pioneers

a unique sampling procedure that aims to “seed” each new sweep path in a location

of maximal coverage, and does so with appealing convergence properties.

In general, we have established throughout this work a methodology for analyzing

the probabilistic completeness of a sampling-based coverage algorithm. By unifying

techniques from the analyses of the PRM [88] and RRT [105] with the language of
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set systems [80], to express the coverage topology of the samples, we have established

sharply decreasing exponential bounds governing the convergence of the sampling-

based subroutines presented in this work.

Finally, the algorithms of this thesis were applied in support of autonomous, in-

water ship hull inspection. A priori mesh models were generated over a series of field

tests on six vessels, and these models have been instrumental in algorithm develop-

ment. Close-range coverage routes planned using the redundant roadmap algorithm,

coupled with the improvement algorithm, have been deployed on the UCGCG Seneca

using the HAUV and on a mock ship hull using a laser-equipped gantry robot. The

former experiment achieved an improved-resolution mesh model for the Seneca, and

the latter experiment a high-quality composite point cloud of resolution sufficient to

detect mine-like objects.

7.2 Reflections on Work Completed

This thesis has emphasized autonomy at a high level: path planning under task-

specific constraints. The design and analysis of algorithms to satisfy these constraints

has relied on many assumptions about the state of the robot and the workspace in

which it operates. Although these assumptions hold under ideal operating conditions,

it is rare that all conditions are ideal simultaneously. Learning when, why, and how

these assumptions break in the physical world has been a humbling experience, and

has instilled in the author a profound respect for the complexity of fielding of an

autonomous system.

A well-designed path alone cannot overcome an ocean current that exceeds the

robot’s thrust capability, the unexpected movement of the structure being inspected,

nor the structure’s sudden high-flow-rate suction and discharge of water into the sur-

rounding area. A fixed-orientation geometric path is less meaningful when dramatic

roll and pitch result from an imperfect pairing of flotation with the salinity of the

environment. A pre-planned path in general may be of little use when it is misaligned

with the robot’s true coordinate frame, the navigation sensors drift, or the robot can-
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not stabilize at its intended destination, either due to exogenous disturbances, an

improperly tuned feedback controller, or a poor thruster-to-body-force mapping. At

a more fundamental level, a fiber-optic tether snare, a disrupted DVL beam return, a

saturated communication network, a failed circuit, an overheated sensor, or a ground

fault can prohibit even the lowest level of control from functioning properly. These

non-ideal conditions are not purely hypothetical, they have all occurred in the course

of operating the HAUV.

Although this thesis has not formally addressed vehicle design, hardware devel-

opment, state estimation, or low-level feedback control, the path planner developed

in this thesis interacted with a multitude of other software and hardware modules,

some of which are described above. Understanding the complexity of these interac-

tions, and the robot’s interactions with its physical environment, were crucial to the

execution of a planned path in the real world.

7.3 Compelling Areas for Future Work

An important area of ongoing work is the integration of our planning algorithms with

tools that enhance autonomy during HAUV operations. Over the relatively flat, for-

ward areas of a ship, where the HAUV navigates relative to the hull itself, real-time

localization uses imaging sonar and camera-based registration to achieve high accu-

racy navigation over extended periods of time [76]. In the complex areas, however,

where the HAUV must navigate relative to the seafloor, vision-based navigation cor-

rection has not yet been developed. A planned path that is run open-loop will drift

in accuracy over time, and localization using sonar range scans could mitigate this

problem.

In addition to localization, real-time mapping is needed to deduce the location

of surrounding obstacles and ship structures while the HAUV operates at the stern.

This would allow reactive measures that deviate from an existing plan, or re-plan on

the fly. Such a framework may be used to keep track of the areas of the ship that have

been inspected, adding views to the plan adaptively to close any unplanned gaps in
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coverage. The algorithms of this thesis could be employed as “anytime” algorithms to

design and improve paths in real-time for coverage of the remaining structures. The

type of high-performance integrated localization, mapping, and planning required for

such tasks has been implemented in 2D workspaces using road vehicles [107] and in

3D workspaces with micro aerial vehicles [144].

This level of performance, however, cannot be obtained as easily underwater.

Cameras offer limited range due to turbidity, and the DIDSON sonar in profiling

mode has a limited field of view, lower-precision range sensing than the lasers used

in aerial and ground deployments, and troublesome second returns. A rigorous study

of filtering techniques for processing acoustic range scans could open the gateway

to high-level improvements in autonomy. Techniques such as the curvelet transform

[147], which is widely successful in denoising and recovery of edges and curvilinear

image features, may offer possibilities for improved performance.

Finally, for the inspection of colossal structures, such as container ships and air-

craft carriers, it is likely that a team of vehicles will be needed to complete a full-

coverage mission. Divers work in teams to cover these structures, and if comparable

mission duration is to be achieved using robots, a multi-vehicle deployment is neces-

sary. A number of algorithms have been proposed for multi-robot coverage planning

using 2D and 2.5D methodologies [99], [131], [49], [32], [58]. Strategies used by these

algorithms to partition a coverage task among a team of robots may be suitable for

adaptation to the complex 3D structures explored in this thesis.

7.4 Concluding Remarks

A fully autonomous inspection of a known, expansive structure will benefit from prin-

cipled, model-based path planning, combined with active perception [14] to modify

the plan when unexpected events occur. We have advanced several steps closer to-

ward this capability by contributing to the former of these two areas, developing

sampling-based methods that construct high-quality routes for covering large struc-

tures with near-sighted sensors. These algorithms are rooted in new insights on how to
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efficiently search a C-Space that is embedded not only with obstacles, but with a cov-

erage topology that maps robot configurations to sensor observations, and vice versa.

Our proposed randomized planning techniques, implemented using high-performance

data structures and optimization methods, can be used to plan an inspection in whole

or in part, over as long or as short a horizon as time allows. They will hopefully serve

as an effective module in the capabilities of a fully autonomous underwater vehicle.
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Appendix A

Observation of a Continuous

Structure Boundary

In Section 3.4, we presented a probabilistic completeness analysis applicable to any

algorithm that employs random sampling of robot configurations to cover a finite set

of discrete geometric primitives. As mentioned in that section, the discrete analysis

requires only two scalar parameters to describe the difficulty of a coverage problem:

the total number of geometric primitives, and a ratio comparing the volumes of the

C-Space region being sampled and the smallest subset of views with a single primitive

in common. To guarantee coverage of the full continuous boundary of a structure,

however, more problem-specific details are required in the analysis: the robot sensor’s

field of view, the dimensionality of the workspace, and the degrees of freedom available

for positioning the sensor in the workspace.

Here we review the concepts that play a role in a continuous analysis of the

coverage sampling problem (CSP), as defined in Definition 1 of Chapter 3. The key

parameter is the Vapnik-Červonenkis dimension (VC-dimension) [161], a quantity

that captures the “hardness” of a problem’s geometry using a single scalar value.

The derivation of this quantity for a specific robot, sensor, and workspace comprises

the main challenge of a continuous analysis. We will introduce the tools that can

be used, in combination with the VC-dimension, to establish quantitative bounds on

algorithm convergence.
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We rely once again on the set system taxonomy introduced in Chapter 3, with

some modifications for continuous coverage. We refer to points on the continuous

surface of the structure under inspection as pi ∈ P , and the sampled robot view

configurations as qj ∈ Q. Si ∈ S refers to the set of all feasible configurations in

Q that map to sightings of the point pi ∈ P . We once again invoke the primal set

system (P,Q) and the dual set system (Q,S) to aid in the analysis.

A.1 Infinite P Preliminaries: VC-dimension and

ε-nets

If P is an infinite set, the limit in (3.5) no longer holds and a different approach is

required to show probabilistic completeness of a coverage sampling algorithm. Even

if the number of sets Si ∈ S is infinite, we can still establish a bound on the number

of samples needed to guarantee k-coverage of P , required by the redundant roadmap

algorithm, with a specific probability of failure.

We first introduce the concept of shattering a set. Consider a finite subset of points

B ⊆ P . If the intersection of B with the members qj ∈ Q yields every single one of the

2|B| combinatorially distinct subsets of B, then B is shattered by Q. Consequently,

there must be at least 2|B| distinct sets in Q for B to be shattered. An important

property related to shattering is the VC-dimension, which we define below.

Definition 9 (Vapnik-Červonenkis (VC) Dimension). The VC-dimension of a set

system (P,Q) is the cardinality of the largest subset of P that can be shattered by the

family of ranges Q.

The VC-dimension figures critically in several theorems on set systems. It dictates

the approximation factor of a polynomial-time hitting set approximation algorithm

[24], which has been used in planning and sensor placement problems [67], [81], [62] to

achieve a better worst-case approximation than the classical set cover approximation

algorithms. The VC-dimension also appears in theorems on the sampling of random

points from a set B ⊆ P of a set system (P,Q) [70]. In particular, the VC-dimension
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governs the maximum number of samples required to achieve an ε-net with high

probability. An ε-net intersects all ranges whose intersection with B is greater than

ε|B| in size.

Definition 10 (ε-net). Let (P,Q) be a set system, let B be a subset of P , let ε ∈ [0, 1]

be a real number, and let N ⊂ B be a set of samples drawn randomly from B. The

subset N is an ε-net for B if every range qj ∈ Q of size |qj ∩ B| > ε|B| contains at

least one point from N .

In the dual set system (Q,S), Q is an infinite set of robot configurations, and S

is a family of infinite subsets of Q, each of which maps to a view of a specific point

pi ∈ P . We can construct ε-nets for the dual system by sampling configurations from

an infinite, continuous A ⊆ Q. The fact that A is infinite does not change the role of

an ε-net; although most commonly presented over finite sets [70], [7], prior analyses

have considered ε-nets comprised of infinite sets as well, particularly with application

to robotics and sensor placement [80], [81]. The sizes of sets A and Si∩A can still be

compared using a fraction ε, but the measure µ(A), which returns the volume of a set

A in robot configuration space, will replace the cardinality |B|, and uniform random

sampling of continuous A will replace the drawing of samples from finite B.

A.2 Probabilistic Completeness of the Continuous

Coverage Sampling Problem

We now present a theorem on the number of samples required to generate a k-covering

ε-net. This is a recent result from Fusco and Gupta [62] that extends Haussler and

Welzl’s seminal theorem on sampling ε-nets [70] from single-coverage to k-coverage.

For the dual set system (Q,S) and an infinite subset A ⊆ Q, a k-covering ε-net is

a finite set of points in A that intersects, at least k times each, all ranges whose

intersection with A is greater than εµ(A) in volume. We now state the theorem for

our infinite dual set system (Q,S).
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Theorem 8 (Sampling a k-covering ε-net [62]). Let (Q,S) be a set system, let A be

an infinite subset of Q, and let N be a subset of points of size m picked randomly

from A. Then, for a number of samples

m ≥ max

(
2

ε
log2

(
2

δ

)
,
C

ε
log2

(
C

ε

))
(A.1)

the subset N is a k-covering ε-net for A with probability at least 1-δ, where C =

4(dV C + 2k − 2), and dV C is the VC-dimension of the set system.

Theorem 8 gives the minimum number of samples required to guarantee a k-

covering ε-net with worst-case failure probability δ. To apply this theorem in a useful

way, we must obtain an ε-net for ε = minSi∈S µ(Si ∩ A)/µ(A), and we must also ensure

that the VC-dimension is well-behaved in the parameters of the coverage problem.

Prior analyses have established the worst-case VC-dimension for a variety of sensor

coverage problems, which are summarized below.

• Floor coverage of a 2D workspace by limited-range sensors with a circle-shaped

field-of-view [80]: 3

• Floor coverage of a 2D workspace by limited-range sensors with a triangle-

shaped field-of-view [80]: 5

• Boundary coverage of a 2D polygon by infinite field-of-view cameras, placed

anywhere in the 2D workspace [159]: 23

• Boundary coverage of a 2D polygon by infinite field-of-view cameras positioned

along a circular track from which every point in P is visible [81]: 2

• Boundary coverage of a 2D polygon by infinite field-of-view cameras positioned

anywhere in the 2D worksapce outside the convex hull of P [81]: 5

• Boundary coverage of a 3D polyhedron with v vertices, by infinite field-of-view

cameras, placed on an enclosing sphere from which every point in P is visible

[81]: Θ(log(v))
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Let us assume that a polygon boundary inspection problem in a 2D workspace is

governed by some of the same parameters as the ship hull inspection example given in

Section 3.4: ε = 10−3 and k = 10. Let us assume the robot has an infinite field-of-view

sensor and can be positioned at any collision-free configuration in the workspace, so

its worst-case VC-dimension is 23. Unlike (3.1) of our prior analysis in Section 3.4,

(A.1) contains two arguments on the right-hand side, the larger of which gives the

number samples required to guarantee a failure probability of δ. To guarantee a failure

probability of one percent, the left argument requires about fifteen thousand samples;

for one tenth of one percent, it requires about twenty-two thousand samples; for one

hundredth of one percent, it requires about twenty-nine thousand samples. If the left

argument were the largest argument, it would offer an appealing exponential decay of

failure probability, similar to that established in Theorem 1. Unfortunately, the right

argument of (A.1), irrespective of δ, evaluates to nearly three million samples. This

means that a threshold of three million samples dominates the convergence guarantee

of Theorem 8 until the left-hand term surpasses the large value of the right-hand term,

which occurs at a trivially small value of δ. The presence of a sampling threshold

is an issue unique to a continuous analysis; it emerges from the original theorem on

sampling an ε-net for k = 1 [70].

Although a constant VC-dimension allows for simplification of Theorem 8, the

final result in the above list, dV C = Θ(log(v)), is of the greatest relevance to our

application of interest. For the coverage of 3D structures, even when the sensor is

restricted to positioning on a 2D manifold, the VC-dimension is no longer a constant.

The quantity instead depends on the number of vertices v of the polyhedron being

covered. If an upper bound on v is known for the coverage problem of interest, as

well as the problem-specific dependence of the VC-dimension on v, then it is possible

to apply Theorem 8 in the way we have done for the 2D case. We have not pursued

this for HAUV hull inspection, however, in the interest of broad applicability of the

analysis. The HAUV is compatible with a variety of sensor payloads characterized

by different geometries. The discrete analysis of Chapter 3 can be applied to sensor

payloads with arbitrary geometry governing the field of view.
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Tables
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Table B.1: Resources Used for Coverage Path Planning Software Implementation

Software Use Link
OpenSceneGraph
(OSG)

KD-Tree Data
Structure for
Triangle Mesh, Ray
Shooting

http://www.

openscenegraph.org

Fast Library for
Approximate
Nearest Neighbors
(FLANN)

KD-Tree Data
Structure for
Nearest-Neighbor
Queries

http://www.cs.ubc.ca/

~mariusm/index.php/FLANN/

FLANN

Open Motion
Planning Library
(OMPL)

RRT Implementation http://ompl.kavrakilab.
org/index.html

Proximity Query
Package (PQP)

Collision Checking http://gamma.cs.unc.edu/

SSV

Boost Graph Library
(BGL)

Minimum Spanning
Tree

http://www.boost.org/

libs/graph

Blossom IV Min-Cost Perfect
Matching

http://www2.isye.gatech.

edu/~wcook/blossom4

Concorde Lin-Kernighan TSP
Heuristic

http://www.tsp.gatech.

edu/concorde.html

IBM ILOG CPLEX
Optimization Studio

Linear Programming
Solution of Set Cover

http://www-01.

ibm.com/software/

integration/optimization/

cplex-optimization-studio/

EfPiSoft Mesh Segmentation http://efpisoft.

sourceforge.net

Point Cloud Library Interface to FLANN
and Rendering of
Waypoints and
Meshes

http://pointclouds.org

MATLAB Data Plots and
Multi-Colored
Rendering of
Waypoints and
Meshes

http://www.mathworks.com

Myaa Anti-Aliasing Script
for Multi-Colored
Renderings

http://www.mathworks.

com/matlabcentral/

fileexchange/20979
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Table B.2: HAUV Field Experiments

Ship Length
[m]

Beam
[m]

Test Lo-
cation

Date Tasks Performed

USNS Red
Cloud
(T-AKR-313)

290 32 Newport
News,
VA

June
2010

Preliminary Testing
and Development of
Identification Survey,
Acquisition and Pro-
cessing of Sonar-Derived
Point Clouds

USCGC
Venturous
(WMEC-625)

64 10 St.
Peters-
burg.
FL

October
2010

Testing and Develop-
ment of Identification
Survey, Acquisition and
Processing of Sonar-
Derived Point Clouds

SS Curtiss
(T-AVB-4)

183 27 San
Diego,
CA

February
2011

Successful Identification
Survey, Generation of
Mesh from Point Cloud

USCGC
Seneca
(WMEC-906)

82 12 Boston,
MA

April
2011

Successful Identification
Survey, Generation of
Mesh from Point Cloud,
Preliminary Testing and
Development of Inspec-
tion Survey

Nantucket
Lightship
(LV-112)

45 10 Boston,
MA

June
2011

Successful Identification
Survey, Generation of
Mesh from Point Cloud,
Testing and Devel-
opment of Inspection
Survey

M/V Terry
Bordelon

46 11 Panama
City,
FL

June
2011

Successful Identification
Survey, Generation of
Mesh from Point Cloud,
Testing and Devel-
opment of Inspection
Survey

USCGC
Seneca
(WMEC-906)

82 12 Boston,
MA

February
2012

Successful Inspection
Survey, Planned and
Executed using Prior
Model from April 2011
Field Experiment

USCGC
Seneca
(WMEC-906)

82 12 Boston,
MA

July
2012

Preliminary Testing of
Close-Range Camera In-
spection Surveys
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Table B.3: Software Resources Used In Field and Laboratory Experiments

Software Use Link
Bluefin Robotics
Standard Payload
Interface

HAUV Control and
Data Acquisition

http://www.

bluefinrobotics.

com/technology/

autonomy-and-behaviors/

Lightweight
Communications
and Marshalling
(LCM)

Message-Passing for
HAUV Control and
Data Acquisition

http://code.google.com/p/

lcm/

SeeByte 3D
Reconstruction
Software

Filtering of DIDSON
Data, Production of
DIDSON-Derived
Point Clouds

http://www.seebyte.com

Meshlab Processing and
Meshing of Acoustic
Data

http://meshlab.

sourceforge.net

Robotics Operating
System (ROS)

Drivers for Hokuyo
Laser Rangefinder

http://www.ros.org/wiki/
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