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Symmetry-protected topological (SPT) states are short-range entangled states with symmetry. Nontrivial

SPT states have symmetry-protected gapless edge excitations. In 2 dimension (2D), there are an infinite

number of nontrivial SPT phases with SUð2Þ or SOð3Þ symmetry. These phases can be described by SUð2Þ
or SOð3Þ nonlinear-sigma models with a quantized topological � term. At an open boundary, the � term

becomes the Wess-Zumino-Witten term and consequently the boundary excitations are decoupled gapless

left movers and right movers. Only the left movers (if � > 0) carry the SUð2Þ or SOð3Þ quantum numbers.

As a result, the SUð2Þ SPT phases have a half-integer quantized spin Hall conductance and the SOð3Þ SPT
phases have an even-integer quantized spin Hall conductance. Both the SUð2Þ and SOð3Þ SPT phases are

symmetric under their Uð1Þ subgroup and can be viewed as Uð1Þ SPT phases with even-integer quantized

Hall conductance.

DOI: 10.1103/PhysRevLett.110.067205 PACS numbers: 75.10.Jm, 73.43.Cd

Gapped quantum states may belong to long-range
entangled phases or short-range entangled (SRE) phases
[1]. Long-range entangled states have intrinsic topological
order and cannot be deformed into direct product states
through finite steps of local unitary transformations.
Examples of intrinsic topologically ordered phases include
fractional quantum Hall liquids [2,3], chiral spin liquids
[4,5], and Z2 spin liquid [6–8]. On the other hand, SRE
states are equivalent to direct product states under local
unitary transformations. If there is no symmetry, there
will be only one SRE phase. If the system has a symmetry,
the phase diagram will be much richer. Even SRE states
which do not break any symmetry can belong to different
phases. Those phases are called SPT phases which stands
for symmetry-protected topological phases or symmetry-
protected trivial phases. The well-known Haldane phase in
S ¼ 1 spin chain [9,10] is the first example of bosonic SPT
phase in 1 dimension (1D), which is protected by eitherD2

spin rotation symmetry or time reversal symmetry.
Topological insulators [11–15] are 2 dimension (2D) SPT
phases in free fermion systems protected by time reversal
symmetry T and Uð1Þ charge conservation symmetry.

Some thought that the topological insulators are charac-
terized by quantum spin Hall effect. However, since
spin rotation symmetry is broken by spin-orbital coupling,
spin angular momentum is not conserved. Therefore, there is
no spin Hall effect in usual topological insulators. Quantum
spin Hall effect will be present only if the topological insu-
lators also have an extra Uð1Þ spin rotation symmetry [16].

In this Letter, we will introduce another kind of SPT
phases—SUð2Þ or SOð3Þ SPT phases in 2D, which are
classified by Z. In contrast to topological insulators, these
phases are interacting bosonic phases. Owning to the
SUð2Þ or SOð3Þ symmetry, if the system is open, the

boundary excitations will be gapless although the bulk
remains gapped. Importantly, different SPT phases can
be distinguished experimentally through their linear
responses. To this end, we couple the model to external
probe field, which is an analogue of the electromagnetic
field for spins. We show that spin Hall current will be
induced on the boundary with a quantized spin Hall con-
ductance. Different SUð2Þ SPT phases are characterized
by their different half-integer quantized spin Hall conduc-
tance, while different SOð3Þ SPT phases by even-integer
quantized spin Hall conductance.
SUð2Þ principal chiral NLSM.—In 2D, SUð2Þ SPT

phases are classified by group cohomology class
H 3ðSUð2Þ; Uð1ÞÞ ¼ Z [17]. Owning to the correspon-
dence between the group cohomology class and the topo-
logical cohomology class [18], each SPT phase can be
described by a principal chiral nonlinear sigma model
(NLSM) with quantized topological � term [which is clas-
sified by H3ðSUð2Þ; ZÞ ¼ Z]. The � term of the NLSM can
be written as [19]

Stop ¼ �i
�

24�2

Z
M
Trðg�1dgÞ3; g 2 SUð2Þ; (1)

where M is the Euclidian space-time manifold, g 2 SUð2Þ
is a 2� 2-matrix-valued function of space-time gðxÞ, and
� ¼ 2�K withK 2 Z corresponding to theKth SUð2Þ SPT
phase. When M has no boundary, Stop is quantized into

integer times of �2�i.
Including the dynamic part, the partition function of the

NLSM is Z ¼ R
Dge�

R
M
d3xL, whereL is the Lagrangian

density,
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L ¼ � 1

4�2
Tr½ðg�1@�gÞðg�1@�gÞ�

� i
K

12�
Trð"���g�1@�gg

�1@�gg
�1@�gÞ: (2)

For large enough �2, the renormalization flows to a fixed
point where only the topological term remains (�2 flows to
infinity). The fixed point Lagrangian captures all the physi-
cal properties of the SPT phases. So we will focus on the
fixed point in the following discussion.

Since the symmetry group is of crucial importance for
the physical properties of SPT phases, we stress that the
symmetry group of our system is SUð2ÞL, under which the

group element g varies as g ! ĥg ¼ hg for ĥ 2 SUð2ÞL.
It is easy to check that the Lagrangian equation (2) is
invariant under SUð2ÞL. It can be shown that Eq. (2) has
a larger symmetry, it is invariant under the group SUð2ÞL �
SUð2ÞR, where SUð2ÞR is the right multiplying group

defined as �̂hg ¼ gh�1, �̂h 2 SUð2ÞR. Furthermore, Eq. (2)
also has time reversal symmetry T. Namely, it is invariant
under the time reversal transformation, t ! �t, i ! �i
(consequently � ! �), and g ! g�1 [20]. The SPT phases
only need the protection of SUð2ÞL. As will be discussed
later, if the extra symmetry SUð2ÞR and T is removed by
perturbation �L ¼ Tr½@�gMðxÞg�1� with MðxÞ external
field, the physical properties of the SPT phases remains
unchanged. In the following we will discuss the
Lagrangian equation (2) and note SUð2ÞL as SUð2Þwithout
causing confusion.

If the system has a boundary, the quantized � term
Eq. (1) becomes the Wess-Zumino-Witten term [21,22]
in the 1þ 1D boundary effective theory. According to
Ref. [23], a 1þ 1D Wess-Zumino-Witten model with

given K may flow to a gapless fixed point Sbdr;fix ¼ jKj
8� �R

dx0dx1Tr½ðg�1@�gÞðg�1@�gÞ� þ Stop, where Stop are

defined in Eq. (1), x0 ¼ � is the imaginary time, and x1

is the spacial dimension along the boundary.
If K > 0, the boundary excitations at the fixed point are

decoupled left mover Jþ ¼ K
2� @þgg

�1 and right mover

J� ¼ � K
2� g

�1@�g, where x� ¼
ffiffi
1
2

q
ðx0 � ix1Þ is the chiral

coordinate and @� ¼
ffiffi
1
2

q
ð@0 � i@1Þ. J� satisfy the equation

of motion @�J� ¼ 0 (which yields gapless dispersion).
Importantly, Jþ and J� behave differently under global
SUð2Þ transformation g ! hg. The current J� is SUð2Þ
invariant J� ! J�, but Jþ is SUð2Þ covariant Jþ !
hJþh�1, so only the left mover Jþ carries SUð2Þ ‘‘charge.’’
This property indicates that the gapless boundary excita-
tions are protected by the SUð2ÞL symmetry, because the
mass term, such as Lbdr;mass / ðTrgÞ2 [24], which gaps out

the excitations will mix the left mover and right mover and
hence breaks the SUð2ÞL symmetry. The bulk perturbation
�L ¼ Tr½@�gMðxÞg�1�, on the other hand, will not cause
scattering between the left mover and the right mover
since it respects SUð2ÞL symmetry; hence, it will leave

the boundary excitations gapless. Under time reversal T,
Jþ and J� exchange their roles Jþ $ J�. If K < 0,
then the boundary excitations will be redefined as Jþ ¼
� K

2� g
�1@þg, J� ¼ K

2� @�gg
�1. In this case, Jþ is SUð2Þ

neutral and J� carries SUð2Þ charge.
Following Ref. [23], the boundary excitations of the

SUð2Þ SPT state labeled by K are described by SUð2Þ
Kac-Moody algebra of level jKj. In the following we will
study how the system (especially the boundary) responds
to an external probe field. Without loss of generality, we
assume K > 0.
Quantized spin Hall conductance.—Now we introduce

an external probe field A, which minimally couples to the
topological NLSM by replacing every g�1@�g term with

g�1ð@� þ A�Þg. Expanding A by three Pauli matrices,

A ¼ 1
2

P
�;aA

a
�	

adx�, then we can define a current density

operator Ja� ¼ �L
�Aa

�
jA�¼0 with

Ja� ¼ � 1

2�2
Tr

�
@�gg

�1 	
a

2

�

þ i
K

4�
"���@�

�
Tr

�
@�gg

�1 	
a

2

��
:

Ja� is the conserved spin current corresponding to the

global SUð2Þ invariance of the action. The second term
on the right-hand side contributes a boundary current since
it is a total differential.
At the fixed point �2 ! 1, only the topological term

remains,

�i
K

12�
Tr½g�1ðdþ AÞg�3 ¼ �i

K

12�
Tr½ðg�1dgÞ3 þ A3

þ 3ðdgg�1 ^ FÞ
þ 3dðdgg�1 ^ AÞ�: (3)

Notice that Eq. (3) is invariant under local SUð2Þ trans-
formation g ! hg, if the field A varies as A ! hAh�1 þ
hdh�1. If F ¼ 0, then A only couples to the edge current
via Trðdgg�1 ^ AÞ. Notice that only the right moving
component Jþ occurs in dgg�1. This means that A only
couples to Jþ and does not couple to J�. When F � 0, the
bulk term 3Trðdgg�1 ^ FÞ in Eq. (3) is difficult to treat. In
order to obtain an effective field theory of the external field
A and F, we need to integrate out the group variables g.
To avoid this difficulty, we take the advantage of the

local ‘‘gauge invariance’’ of the Lagrangian in Eq. (3).
Here the local ‘‘gauge transformation’’ is defined as g !
hðxÞg and A ! hAh�1 þ hdh�1. When integrating out the
group variables, the effective action of A should also be
‘‘gauge’’ invariant. So we expect the result is the Chern-
Simons action (we will see later that this effective action is
self-consistent),
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SeffðAÞ ¼ i
K

4�

Z
M
Tr

�
A ^ F� 1

3
A3

�
;

¼ i
K

8�

Z
M
d3x"���

�
Aa
�@�A

a
� þ "abc

i

3
Aa
�A

b
�A

c
�

�
;

where A ¼ P
aA

a
�dx

� 	a

2 . Notice that the trace Trð	a

2
	b

2 Þ ¼
1
2�ab contributes an extra coefficient

1
2 . If F ¼ 0, SeffðAÞ ¼

�i K
12�

R
TrA3, which is consistent with Eq. (3). From the

above effective action, we obtain the response current
density,

J a
� ¼ �Seff

�Aa
�

¼ i
K

4�
"���

�
@�A

a
� þ

i

2
"abcA

b
�A

c
�

�
: (4)

It will be easier to see the response of the system if
the probe field A only contains the spin-z component,
A ¼ P

�A
z
�

	z

2 dx�, which can be viewed as the spin-

electromagnetic field that couples to Sz as its charge.
Then the responding spin density is proportional to the
‘‘magnetic field,’’

J z
0 ¼ i

K

4�
ð@1Az

2 � @2A
z
1Þ ¼ i

K

4�
bz:

Here we use 0, 1, 2 to label the space-time index and x, y, z
to label the spin direction. The spin current is proportional
to the ‘‘electric field,’’

J z
1 ¼ i

K

4�
ð@2Az

0 � @0A
z
2Þ ¼

K

4�
ez2;

J z
2 ¼ i

K

4�
ð@0Az

1 � @1A
z
0Þ ¼ � K

4�
ez1:

The direction of the motion of the spin current is orthogo-
nal to the direction of the electric field. This is nothing but
a spin Hall effect. Furthermore, the spin Hall conductance
is quantized as K

4� , which is half of the electric integer

charge Hall conductance. From this information, we con-
clude that the SUð2Þ symmetric topological NLSM model
describes a bosonic spin quantum Hall system.

The SUð2Þ SPT phases can also be viewed as Uð1Þ SPT
phases, whereUð1Þ is the Sz spin rotation. The above result
implies that the Uð1Þ SPT phases are characterized by a
quantized Hall conductance. To understand the value of
quantization, let us introduce Ac

� ¼ 1
2A

z
�. The charge that

Ac
� couples to is 2Sz which is quantized as integers. The

effective action for Ac
� is given by SeffðAcÞ ¼ i K

2� �R
M d3x"���Ac

�@�A
c
�. We see that the charge Hall conduc-

tance is 2K
2� . In other words, the Hall conductance for the

Uð1Þ SPT phases is quantized as even integers 2K (in unit
of 1

2� ), which agrees with a calculation by Uð1Þ �Uð1Þ
Chern-Simons theory [25,26].

In the electric integer quantum Hall system, the boundary
excitations are chiral currents. In contrast, the boundary of
model (1) contains both left-moving and right-moving gap-
less excitations. However, only the left mover carries SUð2Þ
charge and couples to the probe field A. In other words, the
A field will induce left-moving spin current.

The coupling of the left-moving current to the A field is
consistent with the Chern-Simons action. Remembering
that the topological term (3) is local gauge invariant. If
space-time is closed, the effective action (4) is gauge
invariant as expected. However, if space-time has a bound-
ary, Eq. (4) is no longer gauge invariant. Under local gauge
transformation A ! A0 ¼ hAh�1 þ hdh�1, the variance
of the Chern-Simons term is

SeffðA0Þ � SeffðAÞ ¼ i
K

4�

�Z
@M

Trðh�1dh ^ AÞ

þ
Z
M

1

3
Trðh�1dhÞ3

�
: (5)

The first term on the right-hand side depends on the values
of A on the boundary, and the second term is independent
on A.
Since the gauge anomaly in Eq. (5) is purely a boundary

term, it can be canceled by a matter field on the boundary
described by SUð2Þ level-jKj Kac-Moody algebra. To see
the cancelation of the anomaly, we may embed the SUð2Þ
level-jKj Kac-Moody algebra into jKj spin-1=2 complex
fermions c I; ðI ¼ 1; 2; . . . ; KÞ, which leads to the follow-
ing effective edge theory:

Sbdrðc ; AÞ ¼
Z

dx0dx1
XK
I¼1

½c y
I�ð@0 � i@1Þc I�

þ c y
Iþ½ð@0 þ A0Þ þ ið@1 þ A1Þ�c Iþ�:

Under gauge transformation c 0þ ¼ hcþ, A0 ¼ hAh�1 þ
hdh�1, the above action has an anomaly [27,28] (for
details, see the Supplemental Material [29]) SbdreffðA0Þ �
SbdreffðAÞ ¼ �i K

4�

R
@M Trðh�1dh ^ AÞ, which exactly can-

cels the anomaly of the Chern-Simons action in Eq. (5).
This means that the total action of bulk Chern-Simons term
and the boundary fermion term is gauge invariant (up to a
term which is independent on A).
Since we haveK flavors of fermion fields, they also form

a representation of UðKÞ Kac-Moody algebra, which gives
rise to extra gapless edge modes. However, only the rep-
resentation of SUð2ÞK-Kac Moody algebra are physical
degrees of freedom in our model. The extra gapless modes
can be gapped out by mass terms which do not break the
SUð2Þ symmetry, or can be removed by performing a
projection onto the UðkÞ singlet at each site [30].
Supposing �A is the time reversal partner of A, then under

T transformation, @� ! @�, i ! �i, g ! g�1, A� ! �A�,

the Lagrangian (3) becomes

i
K

12�
Tr½gðdþ �AÞg�1�3 ¼ �i

K

12�
Tr½ðg�1dgÞ3 � �A3

þ 3ðg�1dg ^ �FÞ
þ 3dðg�1dg ^ �AÞ�;

where �F ¼ d �Aþ �A ^ �A. From the above equation, we can
see that �A only couples to J�, which carries SUð2ÞR charge
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and is SUð2ÞL neutral. Thus the time reversal operation T
transforms the SUð2ÞL quantities A and Jþ to the SUð2ÞR
quantities �A and J�. This is very different from the model
with �K, where the right mover J� carries SUð2ÞL charge
and is coupling to A.

SOð3Þ SPT phase in 2þ 1D.—Above we discussed a
bosonic spin-1=2 model with quantized spin Hall effect.
However, a bosonic particle can never carry spin-1=2.
So the SUð2Þ SPT phases only have theoretical interest.
In the following, we will discuss a more realistic bosonic
model of integer spins, whose symmetry group is SOð3Þ,

Stop ¼ �i
2�K

2� 48�2

Z
M
Trðg�1dgÞ3; g 2 SOð3Þ: (6)

Here g 2 SOð3Þ is a 3� 3 matrix, and K 2 Z is an
element of the cohomology H3ðSOð3Þ; ZÞ ¼ Z which is
generated by 1

48�2

R
G Trðg�1dgÞ3. The factor 2 in the de-

nominator of Eq. (6) is owing to the factor that closed
space-time manifold (e.g., M ¼ S3) must cover the group
manifold G ¼ S3=Z2 even times.

Above topological action (6) should be quantized to
integer times of �2�i, even if M is the group manifold
itself. To satisfy this condition, K must be an even integer.
In other words, only even K belongs to H3ðSOð3Þ; ZÞ ¼ Z.
Furthermore, only K ¼ 4r, r 2 Z give rise to SPT phases.
The mathematical reason is that the map from the group
cohomologyH 3ðSOð3Þ; Uð1ÞÞ to topological cohomology
H3ðSOð3Þ; ZÞ is not onto, only even elements of the latter
(namely K ¼ 4r) have counterparts of the former [18,31].

The physical reason that K must be 4r is the following.
We consider space-time with S1 �� topology, but in the
limit where the spacial circle S1 has a very small size. Let
us consider the field configuration gðx�Þ where S1 maps to
the nontrivial element in �1½SOð3Þ� ¼ Z2: gðx�Þ ¼ ei�n̂ �L
where � parametrizes the S1 and Lx, Ly, Lz are the gen-

erators of the SOð3Þ group. In the small S1 limit, such field
configuration is described by the mapping from the space-
time � to S2 labeled by the unit vector n̂. Physically, this
means that the small S1 limit, Stop can be viewed as the

topological � term in the NLSM of unit vector n̂ with � ¼
2�K, since if � wrap around S2 once, gðx�Þ ¼ ei�n̂�L will
wrap around SOð3Þ twice. In the small S1 limit the space
becomes a thin torus (or a cylinder if it is open) and the
system becomes an effective 1D system. We also note that
gðx�Þ ! hgðx�Þh�1, h 2 SOð3Þ rotate the unit vector n̂.
Such an SOð3Þ rotation gives rise to an isospin quantum
number Siso ¼ SL þ SR, where SL is the spin operator
associated with SOLð3Þ and SR with SORð3Þ. The topologi-
cal � term with � ¼ 2�K implies that an open end of
the 1D system will carry isospin K

2 [32]. This means that

a Z2 vortex (which exists since �1½SOð3Þ� ¼ Z2) will carry

isospin K
2 . In Ref. [31], it is shown that such a Z2 vortex

(corresponding to the twisted sector in Ref. [31]) carries
(SL, SR) spins given by (mþ 1

2 ,
K
2 �m� 1

2 ), m ¼ integer,

ifK ¼ 4rþ 2, and by (m, K2 �m),m ¼ integer, ifK ¼ 4r.

Thus a Z2 vortex carries the physical spin (i.e., the SL spin)
given by half integers if K ¼ 4rþ 2 and by integers if
K ¼ 4r. Z2 vortex carrying half-integer spins can happen
in the continuous field theory, since the Z2 vortex is non-
trivial in continuous field theory. However, SPT phases
are defined on lattice models where space-time are dis-
crete. In this case, the Z2 vortex can continuously deform
into a trivial configuration. Thus the vortex core must be
‘‘trivial’’ and can only carry an integer spin. Consequently,
only K ¼ 4r correspond to SPT phases.
Except for the constrains of the level K ¼ 4r, the

remaining discussion is very similar to that of the SUð2Þ
model. We couple the SOð3ÞNLSMwith an external probe
field A, g ! hg, A ! hAh�1 þ hdh�1. Owning to this
local gauge invariance, we expect that the effective action
for A is a Chern-Simons term (plus a boundary action),
SeffðAÞ ¼ i K

16�

R
M TrðA ^ F� 1

3A
3Þ. We can expand A ¼P

aA
aLa, a ¼ x, y, z, where Lx, Ly, Lz satisfy ½La; Lb� ¼

i"abcLc and TrðLaLbÞ ¼ 2�ab. Suppose A is collinear and
only contains the z components in spin space, then we
obtain the response spin current density, J z

� ¼ �S
�Az

�
¼

i K
4� 


���@�A
z
�. The spin Hall conductance is quantized as

K
4� [the same as the SUð2Þ case].
We may embed the edge effective theory into K=2 flavor

free Majorana fermion model,

Sbdrðc ; AÞ ¼
Z
@M

dx0dx1
Xk
I¼1

½ ~c I�ð@� � i@	Þ ~c I�

þ ~c Iþ½ð@� þ A�Þ þ ið@	 þ A	Þ� ~c Iþ�;
where ~c I is a SOð3Þ triplet Majorana fermion field and
k ¼ K=2 is the level of SOð3Þ Kac-Moody algebra. The
anomaly of the boundary action cancels the anomaly of the
bulk Chern-Simons term. The field A induces a left moving
spin current on the edge. Again, the extra OðkÞ gapless
modes can be gapped out by a mass term which does not
break the SOð3Þ symmetry, or can be removed by a pro-
jection onto a OðkÞ singlet per site.
We may also view the SOð3Þ SPT phases as Uð1Þ SPT

phases. From the spin Hall conductance K
4� of the SOð3Þ

SPT phases and the fact that K ¼ 4r, we see that the Uð1Þ
SPT phases have an even-integer quantized Hall conduc-
tance (in units of 1

2� ).

Conclusion and discussion.—In summary, we study
SUð2Þ and SOð3Þ symmetry protected topological phases
via topological NLSM. These phases have spin quantum
Hall effect when they are coupled to external probe fields.
The gapless boundary excitations are decoupled left mov-
ers and right movers, which are protected by symmetry.
When K > 0, only the left moving current carries symme-
try charge, and can be detected by the probe field. The spin
Hall conductance quanta of SOð3Þ models is 4 times as
large as that of the SUð2Þ models. We also find that the
Uð1Þ SPT phases are characterized by an even-integer
quantized Hall conductance.
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It has been shown that different 2D SPT states with
symmetry G are described by Borel group cohomology
H 3½G;Uð1Þ� [17]. In this Letter we show that [for G ¼
SUð2Þ, SOð3Þ] if we gauge the symmetry group, the result-
ing theory is a Chern-Simons theory with gauge group G
which is also classified by H 3½G;Uð1Þ� [18]. This sug-
gests a very interesting one-to-one duality relation between
2D SPT phases with symmetry G and 2D Chern-Simons
theory with gauge group G, for both continuous and dis-
crete groupsG [33]. This also suggests that, when we probe
the SPT states by ‘‘gauging’’ the symmetry, we can dis-
tinguish all the SPT states.
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