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Abstract
We have developed fast numerical algorithms [1] for flows
with complex moving domains, e.g. propellers in free-space
and impellers in waterjets, by combining the smoothed pro-
file method (SPM, [2, 3, 4]) with the spectral element method
[5]. The new approach exhibits high-order accuracy with re-
spect to both temporal and spatial discretizations. Most im-
portantly, the method yields great computational efficiency
as it uses fixed simple Cartesian grids and hence it avoids
body-conforming mesh and remeshing. To simulate high
Reynolds number flows, we incorporate the Spalart-Allmaras
turbulence model and solve the unsteady Reynolds-averaged
Navier-Stokes (URANS) equations. We present verification
of the method by studying the turbulent boundary layer over
a flat plate. We show that both the eddy viscosity and velocity
fields are resolved very accurately within the boundary layer.
Having developed and validated our numerical approach, we
apply it to study transitional and turbulent flows in an axial-
flow waterjet propulsion system. The efficiency and robust-
ness of our method enable parametric study of many cases
which is required in design phase. We present performance
analysis and show the agreement with experimental data for
waterjets.

1. INTRODUCTION
Design optimization of waterjet using computational fluid

dynamics (CFD) tools will lead to more efficient designs that
are smaller and may alleviate cavitation problems. However,
for problems with such complex moving 3D geometries as
rotors and stators in waterjets, standard CFD tools are ineffi-
cient due to the very large computational time and the com-
plex meshes required. For many simulations of waterjets, po-
tential flows are assumed with limited viscous corrections,
e.g. based on a two dimensional integral boundary layer anal-
ysis [6]. There have been some RANS solvers applied to wa-
terjet simulations, but numerical simulations of the interac-
tion between rotor and stator in a fully unsteady manner are
too complicated and computationally expensive. So many as-
sumptions have been made, e.g. the rotor and stator problem
is decoupled and the flow is rotationally cyclic so that one can
model a single blade passage only [7].

To this end, we aim to develop fast high-order algorithms
for numerical simulations of flows with complex moving do-
mains, based on fixed simple Cartesian grids. In this paper
we first review our numerical approach ([8]) where we com-
bine the smoothed profile method (SPM, [2, 3, 4]) with the
spectral element method [5]. SPM is similar to the immersed
boundary method (IBM, [9]) as they both use a force distribu-
tion to effectively approximate the boundary conditions and
hence to impose the rigid-body constraints. However, with the
spectral element discretization SPM leads to high-order accu-
racy as SPM adopts a smooth indicator function in contrast to
the direct delta function used in IBM. Furthermore, the hy-
brid methodology leads to high computational efficiency; itis
much faster (typically 1000 times faster) than using the often-
employed arbitrary Lagrangian Eulerian (ALE) for simula-
tions in moving complex domains.

Waterjet pumps often operate in high Reynolds num-
ber regime and the flow is turbulent, so we incorporate
the Spalart-Allmaras (SA) turbulence model and solve the
URANS equations to account for the subgrid stresses. We
show that the method resolves accurately the turbulent bound-
ary layer over a flat plate at Reynolds numberRe= 107. Sub-
sequently, we present full 3D flow simulations of a waterjet
propulsion system and perform a parametric study.

2. NUMERICAL METHODOLOGY
2.1. Representation of moving bodies

SPM represents the moving bodies by smoothed profiles
(or the so-called indicator functions), which equalunity in-
side the moving domains,zero in the fluid domain, and vary
smoothly between one and zero in the solid-fluid interfacial
domain. In [1] we proposed ageneralform, which is effective
for anydomain shape such as a propeller, i.e.,

φi(x, t) =
1
2

[

tanh(
−di(x, t)

ξi
)+1

]

, (1)

where indexi refers to theith moving body (e.g., a single
blade of rotor or stator). Also,ξi is the interface thickness
parameter anddi(x, t) is thesigneddistance to theith mov-
ing body with positive value outside and negative inside. For
simple geometries (cylinders, ellipsoids, etc.)di(x, t) can be
obtained analytically. However, for general complex shapes,
such as impellers which can be represented by many sur-
face point coordinates, spline interpolations are used to cal-



culatedi(x, t) and thusφi(x, t). A smoothly spreading indica-
tor function is achieved by summing up the indicator func-
tions of all theNp non-overlapping moving bodies:φ(x, t) =

∑
Np
i=1 φi(x, t).

Based on this indicator function, thevelocity fieldof the
moving bodies,up(x, t), is constructed from the rigid-body
motions of each moving domain:

φ(x, t)up(x, t) =
Np

∑
i=1

{V i(t)+ωi(t)× [x−Ri(t)]}φi(x, t),

(2)
whereRi , V i = dRi

dt andωi are spatial positions, translational
velocity and angular velocity of theith moving body, respec-
tively. The total velocity fieldis then defined by a smooth
combination of both the velocity field of moving bodiesup

and the fluid velocity fieldu f :

u(x, t) = φ(x, t)up(x, t)+(1−φ(x, t))u f (x, t). (3)

We see that inside the moving domains (φ = 1), we haveu =
up, i.e., the total velocity equals the velocity of the moving
body. At the interfaces (0< φ < 1), the total velocity changes
smoothly from the propeller velocityup to the fluid velocity
u f .

SPM imposes the no-penetration constraint on the surfaces
of the simulated moving bodies. It can be shown (ref. [1]) that
imposing the incompressibility condition of the total velocity
∇ ·u = 0 ensures the no-penetration surface condition(∇φ) ·
(up−u f ) = 0, and vice versa.

SPM solves for the total velocity,u, in the entire domainD,
including inside the moving domains, using the incompress-
ible Navier-Stokes equations with an extra force density term,
i.e.,

∂u
∂t

+(u ·∇)u = −
1
ρ

∇p+ν∇2u+ fs in D (4a)

∇ ·u = 0 in D, (4b)

whereρ is the density of the fluid,p is the pressure field,ν is
the kinematic viscosity of the fluid,g is the gravity (and other
external forces on the fluid), and the fluid solvent is assumed
to be Newtonian with constant viscosity for simplicity.

Herefs is the body force density term representing the in-
teractions between the moving bodies and the fluid. SPM as-
signs

R

∆t fsdt = φ(up−u) to denote the momentum change
(per unit mass) due to the presence of the moving bodies.
Thus, at each time step the flow is corrected by a momen-
tum impulse to ensure that the total velocity matches that of
the rigid domains within the moving domain, hence enforcing
the rigidity constraint.

2.2. Fully-discrete system: temporal and spa-
tial discretizations

To numerically solve equations (4), we developed a high-
order temporal discretization [1] instead of the original fully-
explicit scheme ([2]). We introduced a semi-implicit treat-
ment, using a stiffly-stable high-ordersplitting (velocity-
correction) scheme [10]. In particular, the viscous term is
treated implicitly and the order of the time integration scheme
is up to 3rd. This choice enhances the stability and also in-
creases the temporal accuracy of the original SPM implemen-
tation.

The hydrodynamic forceFh and torqueQh on the moving
bodies exerted by the surrounding fluid are derived from the
momentum conservation. Specifically, the momentum change
in the moving domains equals the time integral of the hydro-
dynamic force and the external force, and hence:

Fh
n
i =

1
∆t

Z

D
ρφn+1

i (u∗−un
p)dx (5a)

Qh
n
i =

1
∆t

Z

D
rn+1

i × [ρφn+1
i (u∗−un

p)]dx (5b)

where the indicesn,n+ 1 refer to the solutions at different
time steps,u∗ is the intermediate velocity field in the splitting
scheme, andrn+1

i is the distance vector from the rotational
reference point on theith moving body to any spatial pointx.

For spatial discretization, we apply the spectral/hpelement
method (see [5]). This hybrid method benefits from both fi-
nite element and spectral methods: on one hand, for domains
with complex geometry, we can increase the number of sub-
domains/elements (h-refinement) with the error in the numer-
ical solution decaying algebraically. On the other hand, with
fixed elemental size we can increase the interpolation order
within the elements (p-refinement) to achieve an exponen-
tially decaying error, provided the solutions are sufficiently
smooth throughout the domain. The spectral element method
has great advantages because of its dual path to convergence,
e.g. convergence check without re-meshing. Furthermore, the
use of smooth profiles in SPM preserves the high-order nu-
merical accuracy of the spectral element method.

The spectral/hp element method allows us to accurately
represent arbitrary fixed rigid boundaries of the flow domain
while using SPM allows us to represent the moving/complex
domains, e.g. impellers and stators.

2.3. Turbulence modeling
The Spalart-Allmaras (SA) model [11] is a one-equation

model, which solves a transport equation for a viscosity-like
variableν̃, which may be referred to as the SA variable, i.e.,

∂ν̃
∂t

+u ·∇ν̃ = Cb1[1− ft2]S̃ν̃−
[

Cw1 fw−
Cb1

κ2 ft2

](

ν̃
d

)2

+
1
σ
{∇ · [(ν+ ν̃)∇ν̃]+Cb2|∇ν̃|2}+ ft1∆U2 (6)



where the RHS consists of the production, destruction, dif-
fusion and trip terms respectively. Here the modified mean
strain rateS̃≡ S+ ν̃

κ2d2 fv2, where fv2 = 1− χ
1+χ fv1

, Si j =
√

2Ωi j Ωi j , andΩi j = 1
2( ∂ui

∂x j
−

∂u j
∂xi

). Moreover, the wall func-

tion is fw = g

[

1+C6
w3

g6+C6
w3

]1/6

, g = r +Cw2(r6 − r), r = ν̃
S̃κ2d2 ,

whered is the distance to the closest surface and the constants
(e.g.Cb1,Cb2) follow the definitions in [11].

We ignore the trip term (last term on RHS,ft1 = 0) and
also ft2 = 0 for the simulations presented in this paper. Ac-
cording to studies of [12, 13], this simplification as opposed
to the standard version probably makes very little differ-
ence, provided the proper boundary conditions are used. In
our own tests, we found that the trip termft1 (and ft2 6= 0)
helps to stabilize the flow for higher Reynoldes number (e.g.
Re> 200,000).

The scalar equation (6) is discretized and solved in a simi-
lar manner as the Navier Stokes equations [1], i.e.,

ν̃s−∑Je−1
q=0 αqν̃n−q

∆t
=

Je−1

∑
q=0

βq[−(un−q ·∇)ν̃n−q +

Cb1S̃n−qν̃n−q−Cw1 fw
n−q

(

ν̃n−q

dn−q

)2

+
Cb2

σ
|∇ν̃n−q|2] (7a)

γ0ν̃∗− ν̃s

∆t
=

1
σ

∇ · [(ν+ ν̃n)∇ν̃∗] (7b)

γ0ν̃n+1− γ0ν̃∗

∆t
=

γ0φn+1(ν̃n+1
p − ν̃∗)

∆t
(7c)

whereαq, βq and γ0 = ∑Je−1
q=0 αq are the scaled coefficients

of the stiffly-stable scheme. In particular, the diffusion term
is integrated semi-implicitly and the last substep (7c) is the
SPM correction due to the moving bodies. Hereν̃n+1

p is the
SA viscosity field, which is defined everywhere including
the moving domains:φ(x, t)ν̃p(x, t) = ∑

Np
i=1 φi(x, t)ν̃i(t). The

unsteady Reynolds-averaged Navier-Stokes (URANS) equa-
tions are solved with the eddy viscosity to account for the
sub-grid stresses:

∂u
∂t

+(u ·∇)u = −
1
ρ

∇p+∇[(ν+νt)∇u]+ fs (8a)

∇ ·u = 0 in D. (8b)

Here the Reynolds stress tensor is modeled by the Boussi-

nesq assumption [14]:−u′ iu′ j = νt

(

∂ui
∂x j

+
∂u j
∂xi

)

, whereνt is

the turbulent eddy viscosityνt = ν̃ fv1, fv1 = χ3

χ3+C3
v1

,χ = ν̃
ν .

3. VERIFICATION: TURBULENT BOUND-
ARY LAYER OVER A FLAT PLATE

We applied the SPM-URANS approach to the benchmark
problem of turbulent boundary layer over a flat plate. We

compare our simulation results against the exact solution for
SA viscosity (scaled by the kinematic viscosity, i.e.χ = ν̃

ν )
and against the Spalding velocity profile, which is an analytic
fit to experimental data. We non-dimensionalize the length
and velocity asy+ = yuτ

ν andu+ = u
uτ

whereuτ is the friction

velocity
√

0.0135
Re1/7 .
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Figure 1. Turbulent boundary layer over a flat plate: SPM
results compared against exact solutions for SA viscosity (up-
per) and velocity (lower), with two different polynomial or-
ders for spectral element discretizationP = 2 orP = 6.

Here the simulation domain is[0,200] × [−50,200] ×
[0,20] (in viscous units), with the wall aligned withy+ = 0
plane. For boundary conditions, we impose the exact solu-
tions for viscosity and velocity at the inletx+ = 0, far-field



y+ = 200 and in the wally+ =−50; periodicity is imposed in
z-direction. In the spectral element discretization 440 hexa-
hedral elements are used (22 elements in inter-wall direction)
with polynomial orderP = 2∼ 6. Here the Reynolds number
is Re= 107.

Figure 1 shows good agreement between SPM-RANS re-
sults and the validated solutions of SA viscosity and veloc-
ities. It also shows that by increasing the polynomial order
from P = 2 andP = 6 there is no visible difference and it
indicates that we have achieved convergence.

4. SIMULATIONS: WATERJET PROPUL-
SION SYSTEMS

Having developed and validated our numerical approach,
we apply it to study transitional and turbulent flows in an
axial-flow waterjet propulsion system (AxWJ-1). Figure 2
shows the geometric configuration and numerical set-up for
the simulations. While the simple boundaries (shaft, hub and
casing) are treated in the standard way (i.e., applying directly
Dirichlet boundary conditions), the rotor and stator blades are
modeled with the smoothed profiles (equation (1)) to avoid
body-conforming meshes. We set the rotor to have rotational
speedω and translational velocityV = 0 in (2), which means
the reference frame moves at the waterjet advance velocity
Va. We calculate the Reynolds numberRe= UD

ν = nD2

2ν and
the advance ratioJ = Va

nD, where the diameter of inletD = 12
inch andn = ω/2π. The non-dimensionalization factors for
length and velocity are: 0.0254meter(1 inch) andnD m/s.

Figure 2. Waterjet AxWJ-1: Geometry description and nu-
merical set-up with SPM modeling of rotor and stator.

We use a computational grid with 209,661 tetrahedral el-
ements and polynomial order of 3 for the spectral element
discretization. The boundary conditions include an upstream
prescribed velocity inlet (x=−6 inch), which is non-uniform
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Figure 3. SPM simulations of waterjet AxWJ-1 at Re=
57,906 and J= 0.1667: Instantaneous streamwise velocity
contour at different locations with the black lines showing
the virtual boundaries of rotor and stator.
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Figure 4. SPM simulations of waterjet AxWJ-1 at Re=
57,906,J = 0.3333: Instantaneous streamwise velocity con-
tour in different locations.



near the walls to account for the boundary layer. The SA vis-
cosity is given as̃ν = 3ν at the inlet as suggested in [13, 15].
The downstream outlet (x= 18) is set to have a fixed pressure
and zero Neumann condition for velocities. For initial condi-
tions, we use zero velocity field and unit SA viscosityν̃ = ν
if not otherwise indicated.
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Figure 5. SPM simulations of waterjet AxWJ-1 at Re=
57,906,J = 0.3333: Contours of SA viscosity (χ = ν̃

ν ) at y=0
plane at 120, 840, 3000, 20000 steps (∼ 5 evolutions).

First, we examine instantaneous flow fields inside the wa-
terjet atRe= 57,906 with J = 0.1667. Figure 3 presents
instantaneous streamwise velocity contours at different loca-
tions after 5 evolutions of the rotor in the simulation. The
velocity is non-dimensionalized asunD, and the black lines in-
dicate the boundaries of the rotor and stator blades (φ = 0.5).
The plot shows that the flow accelerates through the rotor and
it is guided through the stator vanes to exit the nozzle as a jet.
We also notice that there exist large pockets ofreversal flow
upstream of the rotor and also between the rotor and stator.
In contrast, for a larger advance ratioJ = 0.3333 as shown

in figure 4, there is no significant reversal flow. Thus, our
numerical approach is effective in identifying important flow
features inside waterjet systems.

Figure 5 shows contours of SA viscosity (χ = ν̃
ν ) at y=0

plane at different time instances, where the last frame corre-
sponds to 20000 time steps which is about 5 evolutions. We
see that large SA viscosity is generated in the rotor region;it
grows in time and propagates downstream through the stator.
The plots also show that our numerical approach successfully
captures the transition from the laminar flow near the inlet to
the turbulent flow downstream.
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Figure 6. SPM simulations of waterjet AxWJ-1 at Re=
14,476: Thrust coefficientKT for differentJ and tip gap.

Next we examine simulated global quantities and perfor-
mance of the waterjet. Figure 6 shows the thrust coefficient
KT = thrust

ρn2D4 versus simulation time for differentJ and tip gap
(between the rotor and the casing with inch as its unit) at
Re= 14,476. The arrows indicate restarting from previous
numerical solutions with different parameters. We see that
for J = 0.167 the thrust increases to almost twice when the
tip gap drops to half. The figure also shows that acceleration
(increasingJ) leads to reduction inKT whereas deceleration
results in larger thrust, which is as expected.

We also present simulation results for the sectional drag
coefficientCd = F

1
2ρu2c∆s

, where∆s is the spanwise length of

each section interval of the rotor blade from hub to tip,c is the
local chord length andF is the hydrodynamic force for each
section interval. Figure 7 shows thatCd drops for increasing
advance ratioJ at fixedReor for increasingRewith fixed J.
Also, the location of the maximumCd moves towards the tip
of the blade with increasingRe. Furthermore, atRe= 9050
the profile and magnitude ofCd is in agreement with the ex-
perimental data of the MIT waterjet [16].
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The robustness and efficiency of our numerical approach
enable fast parametric studies for many cases with various ad-
vance ratioJ and Reynolds numberRe. We calculate the time-
averaged thrust coefficientKT , torque coefficientKQ = torque

ρn2D5

and efficiencyη = KT
KQ

J
2π . Table 1 lists some typical numerical

results compared to the experimental data for an open-water
ducted propeller ([17]) with a similar pitch ratioP/D = 1.0.
We see that similar to the ducted propeller results, the water-
jet propulsion system has decreasing thrust and torque with
increasing advance ratio at a fixedRe. Also, the optimum
performance (i.e. maximum efficiency) happens at an inter-
mediateJ for eachRe; this optimumJ increases with increas-
ing Re. Furthermore, the table shows that the performance
is sensitive to the tip clearance of the rotor, i.e. smaller tip
gap leads to larger thrust and also better efficiency. Our nu-
merical results show the right trend towards the design point
Re= 4.4e6,J = 0.486 with a tip gap of 0.03 inch.

5. SUMMARY AND FUTURE WORK
We have developed and validated an efficient and fast nu-

merical approach for turbulent flows with complex moving
domains. It avoids the tyranny of mesh-generation and is a lot
faster (typically 1000 times) than ALE codes. The speed-up
comes from three facts: (1) simple mesh without conforma-
tion to the interfaces and no-remeshing for moving bodies;
(2) higher order in temporal and spatial discretization dueto
the splitting scheme and spectral element method; (3) itera-
tive methods (e.g. conjugate gradient) are faster for simple
mesh geometry than deforming and skewed meshes.

We applied this predictive CFD tool to study flows in a
waterjet propulsion system (ONR AxWJ-1); important flow
features for waterjet design were identified, e.g. flow rever-

Table 1. Waterjet AxWJ-1: average thrust coefficientKT

and torque coefficientKQ for various angular velocityω,
Reynolds numberRe. ‘tip gap’=0.225 inch=0.019D.

Re J KT KQ η
open water 106 0 0.525 0.044 0
ducted 106 0.1 0.47 0.0435 0.172
propeller 106 0.6 0.179 0.031 0.551
P/D=1.0 106 0.83 0 0.017 0

905 0 1.89 0.241 0
905 0.083 0.91 0.217 0.083
905 0.125 0.46 0.197 0.046
905 0.167 0.03 0.179 0.004
14476 0 1.39 0.167 0
14476 0.135 0.625 0.129 0.104
14476 0.167 0.67 0.113 0.157
14476 0.198 0.46 0.104 0.138
14476 0.250 0.09 0.089 0.040

2∗tip gap 1448 0.167 0.33 0.108 0.081
57906 0 1.24 0.158 0
57906 0.135 0.81 0.118 0.148
57906 0.167 0.69 0.110 0.166
57906 0.198 0.57 0.101 0.178
57906 0.333 0.05 0.075 0.035

1
2∗tip gap 57906 0.198 1.08 0.113 0.301

sal pockets, which through re-design can be eliminated. We
showed that we can capture the laminar-turbulence transi-
tion throughout the waterjet system. Also, the hydrodynamic
forces on the rotor are shown to be in agreement with exper-
imental data. We have also demonstrated that the combina-
tion of simple griding/fast solvers allows extensive parametric
study in early-design phase of waterjets, and our preliminary
results show good trends towards the operating conditions.

However, the following improvements are recommended
for future work. The first objective is validation with experi-
mental data at the exact operating conditions (i.e. largerRe,J
and smaller tip clearance). Second, we need to implement
more realistic inflow conditions, i.e. non-uniform and fully-
turbulent. We can use polynomial chaos analysis [18] to take
into account uncertain disturbances in realistic environments.
Finally, we need to extend the current methodology to model-
ing two-phase flows, e.g. to model trapped air at the inlet and
also deal with possible cavitation problems.
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