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Spectral Element/Smoothed Profile Method for Turbulent Flow Simulatons of
Waterjet Propulsion Systems
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Keywords: ship propulsion, CFD, high-order methods, To this end, we aim to develop fast high-order algorithms

immersive boundary method for numerical simulations of flows with complex moving do-
mains, based on fixed simple Cartesian grids. In this paper
Abstract we first review our numerical approach ([8]) where we com-

We have developed fast numerical algorithms [1] for flowsbine the smoothed profile method (SPM, [2, 3, 4]) with the
with complex moving domains, e.g. propellers in free-spacespectral element method [5]. SPM is similar to the immersed
and impellers in waterjets, by combining the smoothed proboundary method (IBM, [9]) as they both use a force distribu-
file method (SPM, [2, 3, 4]) with the spectral element methodtion to effectively approximate the boundary conditionsl an
[5]. The new approach exhibits high-order accuracy with re-hence to impose the rigid-body constraints. However, wi¢h t
spect to both temporal and spatial discretizations. Most imspectral element discretization SPM leads to high-ordeu-ac
portantly, the method yields great computational efficenc racy as SPM adopts a smooth indicator function in contrast to
as it uses fixed simple Cartesian grids and hence it avoidée direct delta function used in IBM. Furthermore, the hy-
body-conforming mesh and remeshing. To simulate higtrid methodology leads to high computational efficiencis it
Reynolds number flows, we incorporate the Spalart-Allmaragnuch faster (typically 1000 times faster) than using theroft
turbulence model and solve the unsteady Reynolds-averagédnployed arbitrary Lagrangian Eulerian (ALE) for simula-
Navier-Stokes (URANS) equations. We present verificatiorfions in moving complex domains.

of the method by studying the turbulent boundary layer over Waterjet pumps often operate in high Reynolds num-
a flat plate. We show that both the eddy viscosity and velocityper regime and the flow is turbulent, so we incorporate
fields are resolved very accurately within the boundaryraye the Spalart-Allmaras (SA) turbulence model and solve the
Having developed and validated our numerical approach, w&JRANS equations to account for the subgrid stresses. We
apply it to study transitional and turbulent flows in an axial show thatthe method resolves accurately the turbulentdoun
flow waterjet propulsion system. The efficiency and robust-ary layer over a flat plate at Reynolds numBer= 10". Sub-
ness of our method enable parametric study of many cas&gequently, we present full 3D flow simulations of a waterjet
which is required in design phase. We present performanceropulsion system and perform a parametric study.

analysis and show the agreement with experimental data for

waterjets. 2. NUMERICAL METHODOLOGY
2.1. Representation of moving bodies
1. INTRODUCTION SPM represents the moving bodies by smoothed profiles

. o _ . . .. (or the so-called indicator functions), which equality in-
Design optimization of waterjet using computational fluid side the moving domaingerain the fluid domain, and vary

dynamics (CFD) tools will lead to more efficient designs thatg,4th1y between one and zero in the solid-fluid interfacial
are smaller and may alleviate cavitation problems. Howevery,main. In [1] we proposedgeneralform, which is effective

for problems with .such cqmplex moving 3D geometrigs N anydomain shape such as a propeller, i.e.,

rotors and stators in waterjets, standard CFD tools aré-inef

cient due to the very large computational time and the com- 1 —di(x,t)

plex meshes required. For many simulations of waterjets, po a(xt) = > tank( 3 )+1), @
tential flows are assumed with limited viscous corrections,

e.g. based on a two dimensional integral boundary layer analvhere indexi refers to theiy, moving body (e.g., a single
ysis [6]. There have been some RANS solvers applied to wablade of rotor or stator). Alsc; is the interface thickness
terjet simulations, but numerical simulations of the iater parameter andi(x,t) is the signeddistance to they, mov-

tion between rotor and stator in a fully unsteady manner aréng body with positive value outside and negative inside. Fo
too complicated and computationally expensive. So many asimple geometries (cylinders, ellipsoids, etd(x,t) can be
sumptions have been made, e.g. the rotor and stator probleabtained analytically. However, for general complex slsape
is decoupled and the flow is rotationally cyclic so that one ca such as impellers which can be represented by many sur-
model a single blade passage only [7]. face point coordinates, spline interpolations are usedilto c




culated (x,t) and thusg (x,t). A smoothly spreading indica- 2.2. Fully-discrete system: temporal and spa-

tor function is achieved by summing up the indicator func- tial discretizations
tions of all theN, non-overlapping moving bodieg(x,t) = To numerically solve equations (4), we developed a high-
i'\i’l(g (x,1). order temporal discretization [1] instead of the originaly-

Based on this indicator function, thelocity fieldof the ~ €XPlicit scheme ([2]). We introduced a semi-implicit treat

moving bodiesuy(x,t), is constructed from the rigid-body MeNt. using a stiffly-stable high-ordaplitting (velocity-
motions of each moving domain: correction) scheme [10]. In particular, the viscous term is

treated implicitly and the order of the time integrationeicte
is up to 3rd. This choice enhances the stability and also in-

Np > .
t t) — Vi (t t _Ri(t t creases the temporal accuracy of the original SPM implemen-
Whupxt) = 5 Vi) +a) x k-RiOB@cD,  FE
(2 The hydrodynamic forc&y and torqueQy, on the moving

whereR;, Vi = % anduy are spatial positions, translational bodies exerted by the surrounding fluid are derived from the

velocity and angular velocity of thig, moving body, respec- momentum conservation. Specifically, the momentum change
tively. The total velocity fieldis then defined by a smooth in the moving domains equals the time integral of the hydro-
combination of both the velocity field of moving bodiag dynamic force and the external force, and hence:

and the fluid velocity fieldis: 1
Fr' = E/Dp@“(u*—u?,)dx (5a)

1 1 1/, %
B | | = 5 /D (L fog (Ut —ul)dx  (5b)
We see that inside the moving domaigs<(1), we haveu = where the indices, n+ 1 refer to the solutions at different

Up, i.e., the t_otal velocity equals the velocity Of the moving time stepsy* is the intermediate velocity field in the splitting
body. Atthe interfaces (4 ¢ < 1), the total veloc_|ty changes scheme, and™™* is the distance vector from the rotational
smoothly from the propeller velocity, to the fluid velocity reference point on thig, moving body to any spatial point
ut. For spatial discretization, we apply the spechrpélement
SPM imposes the no-penetration constraint on the surfacefethod (see [5]). This hybrid method benefits from both fi-
of the simulated moving bodies. It can be shown (ref. [1]} tha pjte element and spectral methods: on one hand, for domains
imposing the incompressibility condition of the total veily  with complex geometry, we can increase the number of sub-
0-u =0 ensures the no-penetration surface conditiog) - domains/elements (h-refinement) with the error in the numer
(up—us) =0, and vice versa. ical solution decaying algebraically. On the other handhwi
SPM solves for the total velocity, in the entire domaiD,  fixed elemental size we can increase the interpolation order
including inside the moving domains, using the incompresswithin the elements (p-refinement) to achieve an exponen-
ible Navier-Stokes equations with an extra force densityfe tially decaying error, provided the solutions are suffitien
ie., smooth throughout the domain. The spectral element method
has great advantages because of its dual path to convergence
1 ) ) e.g. convergence check without re-meshing. Furthermioge, t
_BDp+VD Uut+fs inD  (48)  yse of smooth profiles in SPM preserves the high-order nu-
Ou = 0 inD, (4b) merical accuracy of the spectral element method.
The spectralip element method allows us to accurately
represent arbitrary fixed rigid boundaries of the flow domain

wherep is the density of the fluidpis the pressure field,is  hjje ysing SPM allows us to represent the moving/complex
the kinematic viscosity of the fluidy is the gravity (and other 44 15ins e.g. impellers and stators.

external forces on the fluid), and the fluid solvent is assumed
to be Newtonian with constant viscosity for simplicity. 2.3. Turbulence modeling

Her.efs is the body force dpnsity t.erm represent.ing the in- rpo Spalart-Allmaras (SA) model [11] is a one-equation
teractions between the moving bodies and the fluid. SPM 3$h0del, which solves a transport equation for a viscoskg-li

signs fA! fsdt = @(up —u) to denote the momentun_1 chang_e variableV, which may be referred to as the SA variable, i.e.,
(per unit mass) due to the presence of the moving bodies.

Thus, at each time step the flow is corrected by a momenéy ~ = Ch1 7\ 2

tum impulse to ensure that the total velocity matches that ofgt. U0V = Cpa[1— fip] S0 — [C‘Nl fw — K2 fr2 d

the rigid domains within the moving domain, hence enforcing 1 o o 5

the rigidity constraint. +8{D [(v4+9)0OV] 4 Cpp| 0|7} + frnAU<  (6)

u(x,t) = @(x,t)up(x,t) + (1 —@(x,t))us (x,t). 3)

gt—qu(u-D)u



where the RHS consists of the production, destruction, difcompare our simulation results against the exact solution f
fusion and trip terms respectively. Here the mOdIerd mearBA viscosity (scaled by the kinematic viscosity, ixe= ")
strain rateS = S+ K2d2 fu2, where fyp, =1 — 1+va1 Sj = ?tn? agams@ the ?;?aolldkng \xlocny pdr_oflle v_vhlck|1_ is a;r;] anltalytth
ou  0u;j it to experimental data. We non-dimensionalize the leng
V202 Qij, andQj = 2(1/; ~ 3 )- Moreover, the wall func- and velocity ay" = X' andu® = i whereu is the friction
tionis fy =g glf;%“egﬂ L 9=Tr+Cp(r®—1), 1 = glm,  velocity /%22,
whered is the distance to the closest surface and the constants
(e.9.Cp1,Cyp) follow the definitions in [11]. exact, X=vTv=ky"
We ignore the trip term (last term on RH%; = 0) and @) SPM RANS, P=6
also fi, = 0 for the simulations presented in this paper. Ac- 801 . SPMRANS, P=2
cording to studies of [12, 13], this simplification as oppbse
to the standard version probably makes very little differ-
ence, provided the proper boundary conditions are used. In 60
our own tests, we found that the trip terfn (and fi> # 0)
helps to stabilize the flow for higher Reynoldes number (e.g.
Re> 200,000). X 40
The scalar equation (6) is discretized and solved in a simi-
lar manner as the Navier Stokes equations [1], i.e.,

20

= 3 Bol—(u" D)9+

At =
~ anqzc OPODECRY” |, oy
Co1 S99 _C, 1,0 (dnq) 4 02 b2 ||:|Vn ql ] (7a) 0 50 y+ 100 150 200
v —vs 1 U
YoV —V° =-0. [(VJrVn)DV*] (7b) Spalding velocity, u *
At o O SPM RANS, P=6
YUt —yoU*  Yo@ (Ut — %) B " SPMRANS. P2
= 7c
At At (7¢)
Je-1

whereag, Bq andyo = 3”5 dq are the scaled coefficients

of the stiffly-stable scheme In particular, the diffusienn

is integrated semi-implicitly and the last substep (7chis t

SPM correction due to the moving bodies. Hé@él is the .

SA viscosity field, which is defined everywhere including

the moving domainsp(x,t)V,(x,t) = zi'\fl(g(x,t)\"zi(t). The

unsteady Reynolds-averaged Navier-Stokes (URANS) equa-

tions are solved with the eddy viscosity to account for the

sub-grid stresses:

ou 1 SRS

+(u-0O)u —=0p+0[(v+v)Ou]+fs (8a) N

ot P y

O-u = 0 inD. (8b)

Figure 1. Turbulent boundary layer over a flat plat&8PM
Here the Reynolds stress tensor is modeled by the Boussiesults compared against exact solutions for SA viscosiy (

nesq assumption [14}: ;U = vy (g)t(x. + %), wherev; is  Per) and velocity (lower), vyith two different polynomial-or
! ders for spectral element discretizatién- 2 or P = 6.

the turbulent eddy viscosity = ¥ fyy, fy1 = x3§7031’x =¥,
3. VERIFICATION: TURBULENT BOUND- Here the simulation domain i$0,200 x [—50,200 x
ARY LAYER OVER A FLAT PLATE [0,20] (in viscous units), with the wall aligned wityi* = 0

We applied the SPM-URANS approach to the benchmarlplane. For boundary conditions, we impose the exact solu-
problem of turbulent boundary layer over a flat plate. Wetions for viscosity and velocity at the inlet™ = 0, far-field



y™ =200 and in the waly™ = —50; periodicity is imposed in

z-direction. In the spectral element discretization 44Rahe )

hedral elements are used (22 elements in inter-wall doekti -

with polynomial ordeilP = 2 ~ 6. Here the Reynolds number 5[ streamwise velocity

is Re=10". . unb
Figure 1 shows good agreement between SPM-RANS 1 | il ! & o8

sults and the validated solutions of SA viscosity and velor 4| -%" “f \ 0.7
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ities. It also shows that by increasing the polynomial orde
from P =2 andP = 6 there is no visible difference and it
indicates that we have achieved convergence.
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4. SIMULATIONS: WATERJET PROPUL-
SION SYSTEMS

Having developed and validated our numerical approac
we apply it to study transitional and turbulent flows in ai
axial-flow waterjet propulsion system (AxWJ-1). Figure 2 ~[, 1 L1
shows the geometric configuration and numerical set-up f N % nchy ° 10
the simulations. While the simple boundaries (shaft, hub
casing) are treated in the standard way (i.e., applyingthre

- &7 ,_
Dirichlet boundary conditions), the rotor and stator bdee 7N s\, . ,/t

bbb
U hw
z (inch)

. - . i r e 7
modeled with the smoothed profiles (equation (1)) to av &} = S ) &L e BEE 5L BN @
. .o~ \ 4 ~ U/@ e -
body-conforming meshes. We set the rotor to have rotati A , \ y
speedw and translational velocity = 0in (2), which means A '&'{ﬁ ~ o4 :
the reference frame moves at the waterjet advance vel [, ..., L \ . L ,
Va. We calculate the Reynolds numbRe= Y2 — 12 ang , o , o , "
the advance ratid = Y&, where the dlameter ofinl&@ =12 Figure 3. SPM simulations of waterjet AXWJ-1 at Re
nb’ 57,906 and J= 0.1667: Instantaneous streamwise velocity

inch andn = w/2m. The non-dimensionalization factors for

length and velocity are:.0254meter(1 inch) anchD m/s. contour at different locations with the black lines showing

the virtual boundaries of rotor and stator.

sk

H

5 ~ Streamwise Velocity o W =6
u/nD § ., rotor

L L
1 B y ?lnch) °

08 Q | {;
w:m Sator =~

| 0.1
Figure 2. Waterjet AxXWJ-1Geometry description and nu- { | | =01 i %K
merical set-up with SPM modeling of rotor and stator. s o0 5 10 L
z (InCh) y(\nch)

We use a computational grid with 2@51 tetrahedral el- Figure 4. SPM simulations of waterjet AXWJ-1 at Re
ements and polynomial order of 3 for the spectral elemen®?,906J = 0.3333: Instantaneous streamwise velocity con-
discretization. The boundary conditions include an upstre tour in different locations.
prescribed velocity inletd= —6 inch), which is non-uniform
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near the walls to account for the boundary layer. The SA visin figure 4, there is no significant reversal flow. Thus, our
cosity is given a® = 3v at the inlet as suggested in [13, 15]. numerical approach is effective in identifying importamatl

The downstream outlex & 18) is set to have a fixed pressure features inside waterjet systems.

and zero Neumann condition for velocities. For initial cend  Figure 5 shows contours of SA viscosity £ g) at y=0
tions, we use zero velocity field and unit SA viscosity- v plane at different time instances, where the last frameeeorr
if not otherwise indicated. sponds to 20000 time steps which is about 5 evolutions. We
see that large SA viscosity is generated in the rotor region;
grows in time and propagates downstream through the stator.
The plots also show that our numerical approach succegsfull
captures the transition from the laminar flow near the irdet t
the turbulent flow downstream.

Re=14476

1.6

1.4

12
J=0,'tip gap=0.225

J=0.167, tip gap=0.225

bt ! \( " !
m@!’w J=0.25, tip gap=0.225
T

Py
NI EE I RNRIE i NAVEEAS AN NI ANEEN AR SAAa |
1 15 2 25 3 35 4
rotation

Figure 6. SPM simulations of waterjet AxXWJ-1 at Re
14.476: Thrust coefficierit for differentJ and tip gap.

Next we examine simulated global quantities and perfor-
mance of the waterjet. Figure 6 shows the thrust coefficient
Kr = %”55‘} versus simulation time for differedtand tip gap
(between the rotor and the casing with inch as its unit) at
Re= 14,476. The arrows indicate restarting from previous

2 (inch)

Figure 5. SPM simulations of waterjet AxXWJ-1 at Re  numerical solutions with different parameters. We see that

57,906,J = 0.3333: Contours of SA viscosity (= ) aty=0  for J = 0.167 the thrust increases to almost twice when the

plane at 120, 840, 3000, 20000 stepsy evolutions). tip gap drops to half. The figure also shows that acceleration
(increasingl) leads to reduction ikt whereas deceleration

First, we examine instantaneous flow fields inside the wal€Sults in larger thrust, which is as expected.

terjet atRe= 57,906 with J = 0.1667. Figure 3 presents e also present simulation results for the sectional drag
coefficientCqy = ——-—, whereAsiis the spanwise length of

instantaneous streamwise velocity contours at differerd- ouZchs

tions after 5 evolutions of the rotor in the simulation. The each section interval of the rotor blade from hub tociis, the
velocity is non-dimensionalized &%, and the black lines in- local chord length ané is the hydrodynamic force for each
dicate the boundaries of the rotor and stator blages @.5).  section interval. Figure 7 shows th&§ drops for increasing
The plot shows that the flow accelerates through the rotor anddvance rati@d at fixedReor for increasingRewith fixed J.

it is guided through the stator vanes to exit the nozzle ak a jeAlso, the location of the maximuBy moves towards the tip
We also notice that there exist large pocketsevkrsal flow  of the blade with increasinRe Furthermore, aRe= 9050
upstream of the rotor and also between the rotor and statathe profile and magnitude @y is in agreement with the ex-
In contrast, for a larger advance ratlo= 0.3333 as shown perimental data of the MIT waterjet [16].



Re~226 o J=0 J=0 o Re~226 - A 3
D1 e J=0.111 tp - Rezggﬁg and torque coefficienKqg for various angular velocityw,

[ e P02 "m0 o' Re™00 - Reynolds numbeRe ‘tip gap’=0.225 inch=0.019D.
L E_ m%_:m@o L Re J Kt KQ n
°or R e open water| 1° | 0 0.525] 0.044 [0

., i ducted 100 0.1 0.47 | 0.0435| 0.172

06| S 6® 0.6 propeller | 10° 0.6 0.179| 0.031 | 0.551
§ "o ° g | P/D=1.0 |10° |0.83 || 0 0.017 | O
Y Sk 905 |0 1.89 | 0.241 | 0

.o i 905 0.083 | 0.91 | 0.217 | 0.083

- o 905 0.125| 0.46 | 0.197 | 0.046

A o 905 | 0.167| 0.03 | 0.179 | 0.004
[ o | o 14476 0 1.39 | 0.167 | O

hUbo b6 60 606 008 01  hut’o 002 001 006 608 o 14476| 0.135|] 0.625| 0.129 | 0.104

ub Sectional drag coef Cd Sectional drag Coef Cd 14476 | 0.167 0.67 0.113 0.157

Figure 7. SPM simulations of waterjet AxWJ-Bectional 144761 0.198)) 0.46 | 0.104 1 0.138

drag coefficienCy along the span of rotor blades for different : 14476 0.250)) 0.09 | 0.089 | 0.040

ReandJ. 2«tipgap | 1448 | 0.167| 0.33 | 0.108 | 0.081
57906 | 0 124 | 0158 |0

57906 | 0.135/| 0.81 | 0.118 | 0.148

The robustness and efficiency of our numerical approach 57906 | 0.167 1l 0.69 | 0.110 | 0.166

enable fast parametric studies for many cases with varidus a 57906 | 0.1981! 0.57 | 0.101 | 0.178

vance ratiaJ and Reynolds numbé&te We calculate the time- 57906 | 0.3331] 0.05 | 0.075 | 0.035

averaged thrust coefficieHtr, torque coefficienKq = ;%quse Liipgap | 57906 0.198]| 1.08 | 0.113 | 0.301

Table 1. Waterjet AXWJ-1 average thrust coefficierty

and efficiencyn = E—Tzi Table 1 lists some typical numerical
Q Tt
results compared to the experimental data for an open-water

ducted propeller ([17]) with a similar pitch ratR/D = 1.0. 5| pockets, which through re-design can be eliminated. We
We see that similar to the ducted propeller results, themate shoeqd that we can capture the laminar-turbulence transi-
jet propulsion system has decreasing thrust and torque Wity throughout the waterjet system. Also, the hydrodymami
increasing advance ratio at a fix&ke Also, the optimum  forces on the rotor are shown to be in agreement with exper-
performance (i.e. maximum efficiency) happens at an intefimental data. We have also demonstrated that the combina-
mediate] for eachRe this optimumJ increases with increas- o, of simple griding/fast solvers allows extensive pagric

ing Re Furthermore, the table shows that the performanc%tudy in early-design phase of waterjets, and our prelirgina

is sensitive to the tip clearance of the rotor, i.e. smaller t egylts show good trends towards the operating conditions.
gap leads to larger thrust and also better efficiency. Our nu-

merical results show the right trend towards the designtpoin However, the following improvements are recommended
Re= 4.4e6,J = 0.486 with a tip gap of 0.03 inch. for future work. The first objective is validation with exper

mental data at the exact operating conditions (i.e. laiRgel
and smaller tip clearance). Second, we need to implement
5. SUMMARY AND FUTURE WORK more realistic inflow conditions, i.e. non-uniform and full

We have developed and validated an efficient and fast nuyrbulent. We can use polynomial chaos analysis [18] to take
merical approach for turbulent flows with complex moving jnto account uncertain disturbances in realistic envirents.
domains. It avoids the tyranny of mesh-generation and is a loFinally, we need to extend the current methodology to model-

faster (typically 1000 times) than ALE codes. The speed-ufing two-phase flows, e.g. to model trapped air at the inlet and
comes from three facts: (1) simple mesh without conformaz|so deal with possible cavitation problems.

tion to the interfaces and no-remeshing for moving bodies;
(2) higher order in temporal and spatial discretization tue
the splitting scheme and spectral element method; (3)-itera
tive methods (e.g. conjugate gradient) are faster for gmpl
mesh geometry than deforming and skewed meshes. 6. ACKNOWLEDGEMENTS
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