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Radioisotopic dating can provide critical constraints for understanding the rates of tectonic, 
dynamic and biologic processes operating on our planet. Improving the interpretation and imple-
mentation of geochronologic data by coupling it with numerical modeling studies is the central 
theme of this thesis.   Each chapter works to address a variety of problems in the Earth sciences. 
In each study, the interpretation of geochronologic data is aided with a numerical model that 
simulates the long-term behavior and/or initial conditions of the U-Pb system and provides an 
effective means of exploring the parameters that influence a calculated date. The record provided 
by geochronologic data is then coupled with models to quantitatively determine rates of geologic 
process on Earth. This approach permits geochronologic data to move beyond just establishing a 
relative time line of events.  Using this dual modeling approach, Chapters 2-5 work to measure 
the long-term cooling and erosion rate of the lithosphere, specifically constraining the time 
scales and rate of transition between the stages of mountain belt formation and stability. Chapter 
six works to constrain the timing and duration of Central Atlantic Magmatic Province flood 
basalt volcanism and its relationship to the end Triassic mass extinction. The seventh and final 
chapter uses high precision U-Pb geochronology to evaluate the reliability of an   Ar-Ar standard 
often used as a fluence monitor. The overall focus of this thesis has been to push the envelope of 
geochronologic precision and accuracy while coupling the data with modeling studies to yield 
new insight into Earth systems.
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Chapter 1: Introduction 
 

 
 

Measuring geologic time is of fundamental importance to understanding earth history. 

Without the temporal constraints provided by geochronology, specifically radio-isotopic dating, 

Earth scientists could not determine the rates of many physical, chemical and biologic processes 

essential to understanding our planet. The U-Pb system in particular has been employed to place 

constraints on everything from the age of the earliest forming solids in our solar system, to the 

timing and duration of mass extinction events that punctuate Earth history. Since the discovery of 

radioactivity and isotopes at the turn of the last century, the earliest applications of 

geochronology established a relatively broad timeline of events.  However, until the 1960-70s, the 

level of possible precision on a single geochronologic date was often on the order of several 

percent and limited largely by inability to measure small samples sizes and eliminate open system 

behavior. In the past three decades there has been a rapid evolution of advancements in laboratory 

methods and data reduction protocols that have spurred ever-increasing levels of precision and 

accuracy at high spatial resolution. This in turn enables Earth scientists to approach new problems 

in tectonics, Earth history and dynamics.  

Two new challenges arise from the increase in the precision and accuracy: first, the 

ability to interpret a high-precision geochronologic record relies on understanding the physical 

and/or chemical processes that have second-order influence on radio-isotopic systems. As 

specifically addressed in this thesis, this includes evaluating the influence of diffusive Pb-loss 

from these systems or the preferential exclusion of intermediate decay products from a 

crystallizing mineral. The future of high-precision geochronology will rely on providing ever 

more quantitative means to understand and correct for these processes. Second, in addition to 

using geochronology to establish a time line of Earth history, these data may be more fully 

exploited through integration with a physical model describing the rates of geological processes 

operating on Earth. Examples in this thesis include integrating U-Pb data with thermal models to 

describe the rate of lithospheric cooling, to using astronomically influenced models for cyclical 



 16	  	  

sediment accumulation within a basin. Coupling geochronologic data with these additional 

geologic or physical constraints permits us to evaluate and refine these models, and in doing so 

enhances our understanding of Earth processes. The underlying theme of this thesis has been to 

improve the implementation and interpretation of geochronologic data. Each of the following 

chapters provides an example on how coupling geochronologic data with numerical models can 

be used to approach different problems in the Earth sciences.   

The purpose of the second chapter, entitled “U-Pb thermochronology: creating a temporal 

record of lithosphere thermal evolution” was to demonstrate how an enhanced record of long-

term lithosphere cooling could be established by exploiting the dual decay scheme of the U-Pb 

system. Though thermochronology has for years been used to measure the time-scales and rates 

of cooling of the Earth’s lithosphere, the conclusions drawn by these studies are often non-

unique, with a large number of potential thermal histories that remain consistent with measured 

data. A high fidelity reconstruction of time-temperature paths for dated rocks can be produced by 

exploiting the U-Pb system’s dual decay scheme, where parent isotopes 238U and 235U decay at 

different rates to daughter isotopes 206Pb and 207Pb, respectively. Coupling the dual isotopic 

system with diffusion’s length scale dependency, which causes different crystal sizes to retain Pb 

over different time scales, results in a set of daughter isotopic compositions for a range of crystal 

sizes that is unique to the time-temperature history of the sample. I have employed this technique 

to demonstrate that Archean and Proterozoic lower crustal xenoliths, samples that resided at 25-

50 km depths for billions of years, record a thermal history of long-term slow cooling.  The 

contents of this second chapter have been published in the journal Contributions to Mineralogy 

and Petrology (Blackburn et al., 2011).  Chapter 3 focuses on how the thermal history can be 

used to understand the relative contributions of heat transfer mechanisms, and in particular, 

advection/surface erosion, to the cooling history of the lithosphere over billion-year time scales.  

 

 

Blackburn, T., Bowring, S., Schoene, B., Mahan, K., and Dudas, F., (2011), U-Pb 

thermochronology: creating a temporal record of lithosphere thermal evolution: Contributions to 

Mineralogy and Petrology, v.162, p 479-500. 

 

The third chapter, entitled “An exhumation history of continents at billion year time-

scales”, has focused on constraining the times-scales and rate of lithosphere erosion using a 

combination of U-Pb thermochronology and thermal modeling. Present day models to explain the 

survival of ancient continental lithosphere require that the stable interiors of continental masses 
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are the same density as the underlying convecting mantle and thus experience minimal isostatic 

uplift and erosion over their history. The formation and growth of continental masses through 

mountain building processes, however, requires that the lithosphere’s earliest history be 

characterized by rapid erosion of topographically high mountains. By reconstructing a continent's 

erosional history over billion year time-scales, we have produced a chronological record of the 

transition between these formation and stability stages that further provides a new understanding 

of the composition and density of the lithosphere, its relationship with the underlying mantle, and 

the forces operating to exhume the continents over the history of our planet. Because erosion of 

the Earth's surface enhances the rate of heat loss within the lithosphere, we can utilize the thermal 

history of lower crustal rocks, reconstructed using thermochronology, to produce a long-term 

erosional history for some of Earth’s oldest and most stable structures. Combined with thermal 

models, the thermochronologic data record a sudden and early transition from rapid erosion to 

near zero erosion that then persists for billions of years. The long-term stability documented here 

implies the North American continent has experienced minimal uplift or burial over its lifetime, 

maintaining the present day stability and isostatic equilibrium over billion-year time scales. The 

contents of this chapter have previously been published in the journal Science:  

Blackburn, T.J., Bowring, S.A., Perron, T., Mahan K., Dudas F., Barnhart, K. (2012) An 

exhumation history of continents over billion year time-scales, Science, v. 335, p 73-76. 

 

The fifth chapter of this thesis will extrapolate this work to understand what processes cause the 

magnitude of isostatic uplift to abruptly transition between rapid erosion of topographically high 

mountains. 

 

The fourth chapter, entitled “Zirconium in rutile speedometry: constraining lower crustal 

cooling rates and residence temperatures” describes the development of a high temperature 

speedometer, capable of constraining the rates of cooling through extremely high thermal 

windows (700-1000 °C) and thus greater depths within the Earth. This technique fills a critical 

gap between the time-scales of processes measured by high temperature geochronometers and 

low to moderate temperature thermochronologic systems. This study demonstrates that the rate of 

cooling between the high temperatures recorded by geothermometers (900-1000 °C) and the 

long-term residence temperatures for the lower crust, is extremely rapid (>300 °C/My). This 

suggests that the ultra high temperature terranes buried deeply during mountain building 

processes, cool rapidly through a combination of high erosion rates and conductive heat loss. The 
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Zr in rutile system is sensitive to the long-term holding temperature, and was thus exploited to 

provide a new and independent measure of long-term lower crustal temperatures. The contents of 

this chapter have previously been published in the journal Earth and Planetary Science Letters: 

 

Blackburn, T.J., Bowring, S.A., Schoene B., Mahan K., (2012) Zirconium in rutile speedometry: 

constraining lower crustal cooling rates and residence temperatures., Earth and Planetary Science 

Letters, v. 317-318, p 231-240.  

 

The fifth chapter, entitled “Sink to survive: The preservation of ancient mountain belts 

through crustal density changes” works to address how isostasy can control both the surface 

expression and erosional history of collisional mountain belts and yet after billions of years of 

isostatic uplift and erosion does not result in their complete destruction through erosion. The 

paper presents a compilation of low-temperature thermochronologic and cosmogenic nuclide data 

recording the rate of mountain belt erosion and its change through time. The data suggest that the 

rate of mountain belt erosion decreases dramatically ~300 My after the formation of a collisional 

orogen. The interpretation of this data is aided by a model designed to simulate the thermal, 

density and erosional history of an idealized mountain belt. Measured and modeled data indicate 

that erosion within a hot, low-density and topographically high mountain belt is rapid, while after 

several hundred million years of cooling, decreased lower crustal temperatures trigger 

metamorphic garnet growth, resulting the densification of the lower crust and a dramatic decrease 

in subsequent erosion. Though mountain belt erosion may vary with tectonic or climate setting, it 

is isostasy coupled with it’s link to the thermal and density evolution of the crust that dominantly 

controls the long-term erosional history of the lithosphere and ultimately leads to the preservation 

of Earth’s ancient mountain belts.  This model not only explains the secular trends in erosion rate 

presented in this chapter, but also explains: 1) the lower crust’s initially rapid cooling rates from 

high temperatures recorded by the Zr in rutile system (chapter 4), 2) the long-term slow cooling 

recorded by the U-Pb system (chapter 2-3) and 3) the time-scale of transition the rapid erosion 

and stability stages (chapter 3).  

The sixth chapter, entitled “High-precision U-Pb zircon dating of Central Atlantic 

Magmatic Province” documents how high-precision zircon U-Pb dating of continental flood 

basalts can be used to evaluate the potential causal relationship between ~200 Ma flood basalts 

related to the opening of the Atlantic and the late Triassic extinction event just prior to the  

Triassic-Jurassic boundary. Flood basalt volcanism has often been suspected as the potential 

trigger to global biotic crisis through the volcanic emission of CO2 or methane that can lead to 
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greenhouse conditions. Though the relative timing of the late Triassic extinction and Jurassic 

recovery is well defined in marine sedimentary sections, the restriction of flood basalts to 

terrestrial sedimentary sections has prevented a straight forward comparison between the timing 

of extinction and flood basalt eruptions. The data are also used to test the astrochronologic model 

for sediment accumulation in the Newark basin, and confirm the models reliability. The 

integration of high-precision geochronologic dates and the high-fidelity cyclostratagraphic model 

permit resolution of the late Triassic extinction at the < 100 ky level, and further permit that the 

very oldest flood basalt units erupt either prior to or synchronously with the extinction. In 

addition, our data constrain the duration of flood basalt eruption to < 650 ky and thus remain 

consistent with a causal relationship between the flood basalts and extinction event.   

The seventh and final chapter, entitled “U-Pb geochronologic and thermochronologic 

time-temperature constraints of 40Ar/39Ar hornblende standard HB3gr” describes how a 

combination of U-Pb geo- and thermochronology can be used to evaluate the intercalibration 

between the U-Pb and 40Ar/39Ar geochronologic systems. A persistent bias between these mostly 

commonly used radioisotopic systems could be largely eliminated through recalibration of the 40K 

decay constants and adoption of new high-precision dates for irradiation standards. The 

commonly used irradiation standard, HB3gr hornblende, separated from a granite pluton in the 

Llano uplift of Texas, is shown here to have experienced an episode of moderately slow cooling, 

resulting in a bias between 40Ar/39Ar hornblende and zircon U-Pb dates. Thermochronologic 

analyses coupled with Pb-diffusion models suggest Hb3gr experienced post-magmatic cooling 

rates on the order of 20-30 °C/Ma making the hornblende unsuitable for use as an irradiation 

standard for high precision 40Ar/39Ar studies and the rock a poor candidate for intercalibration 

studies.   

In Chapters 2-5 involve the interpretation of U-Pb and Zr in rutile thermochronologic 

data using a combination of Pb/Zr diffusion models and thermal models to describe the long-term 

cooling history of the lithosphere. The focus of Chapter 6 is to refine the interpretation of high-

precision U-Pb zircon geochronologic data through integration with the Astronomical Time 

Scale. While chapter 7 utilizes high-precision U-Pb geochronology to evaluate a potential 

standard for intercalibration of the U-Pb and 40Ar/39Ar systems.  Though each thesis chapter 

addressed a distinct geologic question, the overarching theme of the thesis is the implementation 

and interpretation of geochronologic data through use of numerical modeling.  
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Chapter 2: U-Pb thermochronology: creating a temporal 
record of lithosphere thermal evolution 
 

 

 

Blackburn, T., Bowring, S., Schoene, B., Mahan, K., and Dudas, F., (2011), U-Pb thermochronology: 
creating a temporal record of lithosphere thermal evolution: Contributions to Mineralogy and Petrology, 
v.162, p 479-500. 
 
 
Abstract: A new approach to U-Pb accessory mineral thermochronology allows high-resolution time-
temperature histories to be extracted from lower crustal xenoliths. The combination of the U-Pb system’s 
dual decay scheme with the effects of temperature dependent Pb-diffusion can yield a time sensitive 
record of Pb production/diffusion within accessory phases. The difference in half-life for parent isotopes 
238U and 235U results in the time-variable production of Pb isotopes 206Pb and 207Pb, while Pb diffusion can 
result in large variations in the time-scales at which Pb retention occurs between grains of different sizes. 
The combined effects of variable production rates between the two systems and diffusion result in data 
topologies on a concordia diagram that permit distinction between slow cooling and reheating t-T paths. 
In slowly cooled systems, the difference in time for Pb retention for grains of variable size yields a 
measure of partial retention zone (PRZ) residence time, and provides a robust measure of cooling rate 
through the PRZ. In Montana, three lower crustal xenoliths, each from a different depth, yield U-Pb rutile 
data that record a prolonged (>1 Ga) and slow cooling history towards a steady state geothermal gradient 
following the amalgamation of the terrain onto North America. The shallowest samples record the initial 
recovery of a conductive geothermal gradient and cool through the mineral PRZ at rates of <0.25 ºC/Ma 
over ~500 Ma. Deeper xenoliths record cooling at younger times over similar time scales and rates. This 
multi-depth thermal record provides a long-term record of lithosphere cooling and stabilization. 
 
 
 
2.1 Introduction 

Over the past 20 years thermochronologic techniques including U-Pb, Rb-Sr, K-Ar, 40Ar/39Ar, 

fission track and (U-Th)/He systems have allowed earth scientists to accurately describe the time-

temperature evolution of rock samples. The diffusive loss of daughter isotopes in these systems can be 
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quantified by volume-diffusion theory and exploited as a reliable method to yield temperature sensitive 

dates.  Low-temperature (<400-60°C) thermochronometric systems, such as 40Ar/39Ar and (U-Th)/He 

have typically been applied to structural, tectonic and geomorphologic studies of the upper crust with the 

goal of constraining near-surface thermal histories. Reconstructing a samples thermal history can be used 

to quantify heat transfer mechanisms operating within the lithosphere, providing a time-dependent 

measure for this process. 

In contrast to noble gas thermochronology, U-Pb accessory phase thermochronometry (minerals: 

apatite, titanite and rutile) allows estimates of cooling rates of rocks as they pass through moderate to high 

temperatures (400-800 °C) corresponding to thermal histories for rocks between 20 and 50 km depth. 

Most attempts to employ U-Pb thermochronometers have produced dates consistent with exhumation of 

post-peak metamorphic lower crustal terranes (Baldwin et al., 2004; Flowers et al., 2006; Mezger et al., 

1989). Schmitz and Bowring (2003b), however, applied U-Pb accessory phase thermochronology to 

explore the thermal relaxation of ancient cratonic lithosphere by dating rutile, titanite and apatite from 

exhumed lower crustal xenoliths. Lower crustal xenoliths may preserve ancient cooling histories, from the 

high temperatures during and following igneous crystallization and/or metamorphism (700->1000 °C), to 

the low temperatures predicted for a steady state geotherm in the lower crust (ca 450-~500 °C). This 

history is initially recorded by high temperature geochronometers such as zircon or monazite, while 

cooling is recorded by moderate temperature thermochronometers apatite, rutile and titanite. Archean 

cratons are characterized by thick (>200 km) lithospheric mantle of depleted peridotite that effectively 

insulate the crust from thermal and tectonic perturbations (Jordan, 1988). Though the antiquity of the 

crust and keels is well established, the time-scales of cooling and stabilization of these cratons is poorly 

understood. U-Pb thermochronology of lower crustal xenoliths can be used to constrain the long-term 

thermal relaxation of these tectonic terranes, and potentially decipher the magnitude of heat transfer 

mechanisms operating over the history of a craton.  

An additional contrast between U-Pb and noble gas thermochronology is the U-Pb system’s dual 

decay scheme, where two parent isotopes, 238U and 235U, decay to daughter isotopes 206Pb and 207Pb 

respectively. The difference in decay rates between parent isotopes imposes a time-variant parent and 

daughter isotopic composition for any point in Earth’s history. Volume diffusion behavior, in particular 

for slowly cooled systems, induces age gradients within single grains and among grains of varying size as 

a result of partial retention of radiogenic daughter and diffusion’s length-scale dependency. This results in 

the retention of Pb between grains of different sizes over different time-scales, with each grain acquiring a 

unique parent-daughter ratio and daughter isotopic composition. The dual decay scheme can be exploited 

as two separate thermochronologic systems that when combined, can yield data that is unique to a 

particular cooling path. This is a distinct advantage over single isotope systems that are often plagued by 
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non-unique data sets in particular the ambiguity of potentially identical internal diffusion profiles and 

grain size-age relationships that can be produced by slow-cooling and reheating time-temperature (t-T) 

paths.   

The purpose of this paper to is to: 1) outline new numerical and laboratory procedures for U-Pb 

thermochronology, 2) demonstrate how the U-Pb system’s dual decay scheme can yield time sensitive 

information on Pb diffusion allowing for the determination of unique cooling paths, 3) show how duration 

in the Pb PRZ affects the topology of U-Pb data plotted on a concordia diagram, which in turn can 

provide a robust estimate of cooling rate and 4) demonstrate that an approach involving multiple xenolith 

samples from different depths can further be used  to decipher thermal histories for the deep lithosphere. 

 

2.2  U-Pb thermochronology 

A major goal of radioisotopic thermochronology is to determine an accurate time-temperature 

history for a sample as it passes through the closure interval of different mineral-isotopic chronometers. 

Temperature sensitive U-Pb dates are the result of thermally activated volume diffusion of radiogenic Pb 

that is produced by the decay of U. In order to assign meaningful temperatures to U-Pb dates, we need a 

quantitative assessment of Pb diffusion behavior within the accessory minerals of interest (rutile, apatite, 

titanite). This behavior can be approximated by the 1-D diffusion-production equation: 

 

 

!C
!t

= D(T )i!
2C
!r2

+ P
    (1) 

 

where the change in concentration of an element (C) (in this case Pb) with time (t) is equal to the second 

order spatial derivative of the element concentration multiplied by a Diffusion constant (D), which is 

itself a function of temperature (T). A production term (P) accounts for the in-situ decay of radiogenically 

produced daughter. A successful solution to this equation will provide us with a book-keeping method for 

radiogenically produced 206Pb and 207Pb as it varies within a grain from diffusion (D) and decay of 

uranium (P) as a function of time. 

 The variability of both daughter production and daughter retention with temperature and time 

presents a significant complication in understanding the meaning of measured dates of whole mineral 

grains. The open vs. closed system behavior of elements in solids is dependent upon whether diffusion or 

production controls the budget of Pb within an accessory phase. Open system behavior occurs at higher 

temperatures when diffusion is fast enough to induce the loss of radiogenic daughter as quickly as it is 

produced by decay. Closed system behavior occurs at low temperatures when diffusive loss of Pb is so 

slow that all radiogenically produced Pb is effectively retained. The region of time-temperature space 
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between open and closed system behavior is defined as the Partial Retention Zone (PRZ), a region where 

both production and diffusion are operating at or a near a balance resulting in the partial retention of 

radiogenic daughter.  Any measured U-Pb date, is a result of the daughter isotope gained since the time of 

system closure plus the daughter acquired in the PRZ. The partial retention of radiogenic daughter is 

controlled by three different variables, all simultaneously and independently operating to create a unique 

partial retention zone for a particular thermal history. These variables are: 1) temperature dependent 

diffusion of radiogenic daughter, 2) production of radiogenic daughter and 3) diffusion’s length 

dependency. This first variable, the diffusion of radiogenic daughter, is controlled by the sample’s time-

temperature path and results in a unique PRZ for a specific t-T path. For example, fast cooling rates 

condense the values of diffusivity that may yield partial retention behavior and limit the effects of PRZ 

residence.  Slow cooling, in contrast, results in prolonged time periods with an effective diffusivity that 

induces partial loss of daughter, yielding a PRZ that is unique to a cooling path. The second key variable, 

daughter production, will vary both in time as the activity of the parent isotope changes and between 

different radiometric system. For example, the difference in daughter production rates from the decay of 
238U and 235U results in a unique PRZ for the 235U-207Pb and 238U-206Pb systems. Lastly, the length scale 

dependency of diffusion requires that radiogenic daughter that is produced within the cores of grains has a 

physically longer distance to travel than the daughter product produced at the edges. The difference in 

time-scales between Pb-retention in the core and rim of a grain leads to an apparent difference in the time 

of grain core vs. rim closure while simultaneously providing a temporal record of PRZ residence. For 

grains of variable size, this length scale-dependency will result in each individual grain size partially 

retaining Pb over different time periods which in turn results in each grain having its own unique PRZ. 

The ultimate goal of assigning a meaningful temperature to any measured thermochronometric date 

requires an understanding for how all of these variables contribute to affect the duration of PRZ 

residence. The most commonly used method for estimating PRZ residence and assigning a temperature to 

a measured thermochronologic date is the Dodson method (Dodson, 1973). 

 The Dodson method has been successfully applied to upper-crustal thermochronologic studies, 

but some of the models inherent assumptions are likely violated in the lower crust. These assumptions 

include: 1) a monotonic cooling path and 2) cooling through the PRZ occurs on time-scales far shorter 

than the half-lives of radioactive parent elements, allowing the solution to assume a linear production of 

radiogenic daughter.  One characteristic of the U-Pb rutile and titanite data produced in this study as well 

as two previous studies of lower crustal xenoliths (Davis et al., 2003; Schmitz and Bowring, 2003a) are 

discordant arrays of U-Pb dates. Measurements of varying grain size yield dispersion in measured U-Pb 

dates of hundreds of millions of years, defining a curvilinear array on a concordia diagram. This extreme 

discordance indicates a loss of equilibrium within the U-Pb system that could potentially be interpreted as 
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the result of two different t-T paths: 1) reheating, violating the monotonic cooling history required to use 

Dodson’s approach and 2) slow-cooling, which must consider radiogenic production over the hundreds of 

millions of years of potential PRZ residence. This requires that we utilize a solution to the diffusion-

production equation that allows testing of both slow cooling and reheating time temperature paths, and 

that accounts for the production of specific Pb isotopes during prolonged residence within the PRZ.  

 

2.2.1 Analytical solution to the diffusion equation 

In the late 1950’s and early 1960’s as U-Pb zircon geochronology was being developed, volume 

diffusion theory and analytical solutions to the diffusion equation were derived in an effort to explain the 

loss of Pb and discordance observed in nearly all zircon measurements. Wetherill (1956) developed a 

graphical method using the concordia curve to determine both the timing of zircon crystallization and a 

secondary reheating event, potentially a reheating event, that he hypothesized induced the diffusive loss 

of Pb,. The topology of data predicted by the episodic Pb-loss model is a straight line connecting the U/Pb 

ratios corresponding to the time of initial system closure (t1) and the time of system reset or partial reset 

(t2) (Fig. 1a). In this model the variation in U/Pb ratios along this discordia line is due to volume-

diffusion’s dependence on diffusion domain (a). The smallest domains are most susceptible to loss and 

yield the youngest dates, while the larger domains are less susceptible to Pb loss and yield older dates.  

Seeking an alternative mechanism for Pb-loss within zircons, Tilton (1960), suggested a model 

for the ‘continuous’ loss of Pb within zircons. This diffusion model assumed that zircon grains were 

continually losing lead between the time of system formation until the time of system closure. Tilton 

(1960) presented an analytical solution to the diffusion equation for both U-Pb systems and thus plotted 

on a U-Pb concordia diagram. This analytical solution is restricted to using a constant diffusivity, i.e. 

temperature sensitive diffusivity cannot be modeled.  Results from this solution are plotted in Figure 1b 

(cross symbol). Start time in this sample calculation is 3000 Ma. Unlike the secondary Pb-loss event 

model, the modeled data define a curvilinear array between the time of system formation and the origin. 

The curvilinear diffusion trajectory curves asymptomatically as it approaches the origin. The asymptotic 

nature of the Pb diffusion trajectory as it approaches concordia is unique to continuous diffusion and will 

serve as a characteristic signature within real data sets.  

Though the analytical solutions are restricted to a constant diffusivity, the difference in the data 

topology between the two models demonstrates how powerful the dual U-Pb system can be for 

monitoring time-variant Pb diffusion. The Wetherill and Tilton models for Pb loss are analogous to the 

end-member cases of reheating and slow cooling t-T paths, respectively. Below we will show how 

modeling reheating and slow cooling t-T paths within systems obeying temperature dependent diffusion 

will produce data topologies with the same distinguishable characteristics as the Wetherill and Tilton 
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models.  

 

2.2.2 Numerical Solution to Diffusion equation 

 

A more flexible solution to equation 1 by finite different methods can be used to calculate Pb 

concentration profiles for grains with variable temperature dependent diffusivity. A forward time, 

centered space solution to the diffusion equation provides a means to forward model synthetic U-Pb data 

for comparison to measured thermochronometric data (Schoene and Bowring, 2007).  In general terms, 

the concentration of radiogenic daughter is solved for by assuming a time-temperature path, parent 

element distribution, and grain size. Both age and grain size can be accurately measured for each real 

grain that is dated. The key parameter space that remains to be explored is the t-T path.  In this 

exploratory study we assume a homogenous distribution of parent elements. By forward calculation of the 

Pb concentrations for a series of grain sizes, we can create a synthetic data set that includes the predicted 

Pb diffusion profile, grain size vs. age curve, and data topology in U-Pb concordia space, for any pre 

assumed t-T path. The correct time temperature path is qualitatively deduced by how synthetic data 

compare to measured thermochronometric dates. The accuracy of the finite-difference solution has been 

evaluated by comparing results (at a constant T) to the analytical solution developed by Tilton (1960). 

Figure 1b shows the results of a comparison of constant diffusivity between the finite difference (circles) 

and analytical solutions (cross). The U/Pb values produced by the numerical solution agree with no more 

than 0.4% deviation from the analytical solution.  

 

2.3 Data Topology 

2.3.1 Resolving a unique cooling path 

 The nearly identical data produced by both slow cooling and reheating has long been noted and 

debated in thermochronology (Heizler, 2002; Hodges and Bowring, 1995; Schoene and Bowring, 2007). 

In past studies, geological considerations and the magnitude of local and regional thermal events have 

been used to decide between slow-cooling and reheating t-T paths (Hodges and Bowring 1995). 

Ambiguity in a rock’s cooling path arises from the possibility that data from internal diffusion profiles 

and grain size-age relationships may be produced from either slow-cooling or reheating time-temperature 

paths.  The finite difference solution to the diffusion equation can be used to demonstrate how the dual 

decay scheme can be employed to distinguish between continuous diffusion in a slow cooling system and 

Pb-loss during some secondary event. Figure 2 shows the modeled U-Pb results from both reheating and 

slow cooling time-temperature paths.  The Pb diffusion profiles (Fig. 2a) and grain size-age relationships 

(Fig. 2b) produced by the two t-T paths (fig 2 inset) are nearly identical and are beyond resolution of any 
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analytical technique.  The same t-T paths shown in the figure 2 inset are used to produce U/Pb ratios for 

both the 238U and 235U decay schemes and are plotted in U-Pb concordia space (fig 2c); the topologies are 

distinguishable for each t-T path. The slow-cooling modeled data define curvilinear arrays that become 

asymptotic near the lower intercept and are easily distinguishable from the straight-line of the reheating t-

T path. The topology of data exhibited by a single sample will be an important tool to deciphering cooling 

paths for the case study region presented below. In the following sections we will explore why each t-T 

path results in the data topologies and how we can exploit these data trends to further interpret a samples 

t-T path.  

 Interpreting thermochronologic data on a concordia diagram also allows users to extract cooling 

rates from samples that do not exhibit perfect single domain behavior.  In a grain size vs. age plot (fig 2c), 

an internal fast diffusion pathway (grain cracks, defects or inter-growths) would yield a younger 

measured date and thus ‘fall’ off an array of data points. On a concordia diagram this data would still lie 

on the diffusion trajectory, however the data would have lower 206Pb/238U and 207Pb/235U ratios than well-

behaved single domain grains of the same size. Mixing two separate diffusion domains that have 

experienced the same thermal history will always plot on the diffusion trajectory as a mixture between the 

domain sizes (Tilton, 1960). 

 

2.3.2 Slow Cooling : Relationship between internal Pb profiles and whole grain U-Pb dates 

 Diffusion is a length-scale dependent process. As such, radiogenic daughter that is produced within 

the cores of grains has a physically longer distance to travel than the daughter product produced at the 

edges. This results in a difference in the time of grain core vs. rim closure. In the context of the slow 

cooling model the timing of entry and exit into the PRZ is recorded by the core and rims of a grain, 

respectively. If the sample cooled slowly enough, the resulting difference in time between core and rim 

closure may be significant, with longer durations in the PRZ yielding larger differences. To illustrate the 

relationship between a grain’s internal Pb diffusion profile and whole grain U-Pb date, figure 3 shows a 

concordia diagram with the U-Pb ratios from along a grain’s diffusion profile and the whole grain 

measurement that results from this internal profile. The internal U-Pb dates across the radius of this 200 

micron grain (lower inset) were produced by a model run for slow cooling at a rate of 0.1 °C/Ma (upper 

inset). Plotting the internal profile in 2 micron increments (circles) on a concordia reveals a curvilinear 

array spanning between the apparent time of core and rim closure. A whole-grain analysis (star) reflects 

mixing of these internal dates and their corresponding 238U/235U values, yielding a discordant analysis.  

 These profile U-Pb dates (dots) plotted in U-Pb concordia space however, are not concordant, 

because each U-Pb decay scheme has a unique PRZ as a result of different production rates for 206Pb and 
207Pb. At high temperatures the diffusion of lead is the dominant process. As the rock cools and diffusion 
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decreases, diffusion will come into balance with the high production rate 235U-207Pb system prior to the 
238U-206Pb system (fig 3 upper inset). At the bottom of the partial retention zone, the production of 207Pb 

will exceed the lower diffusivity that accompanies decreased temperatures, leading to the complete 

closure of the 235U-207Pb system prior to the 238U-206Pb system. This off-set in each U-Pb system’s partial 

retention zone leads to a small excess of 207Pb within slowly-cooled minerals as a direct result of the 235U-
207Pb earlier system closure. We can see this effect of relative system closure by comparing the U-Pb 

system’s internal age profiles (fig 3 lower inset) as well as the location of the internal U-Pb profile dates 

plotted on concordia.  

 The length scale dependency of diffusion also predicts that the resulting Pb diffusion profile and 

the temperatures of Pb retention will vary as a function of grain size, for any one time-temperature path. 

Because of this dependency, each individual grain size will have a distinct Pb diffusion profile, partial 

retention zone and whole-grain parent daughter ratio (i.e. location on concordia plot). Figure 4, serves to 

illustrate this relationship between these parameters. Lead diffusion profiles (Fig 4a) are shown for grains 

with radii of 25, 50, 100 and 200 micrometers. Length scale dependency causes larger diffusion domains 

to retain Pb at higher temperatures than smaller grains.  As stated above these apparent U-Pb dates across 

the radius of the crystal provide us with the approximate time-span of partial lead retention. Figure 4b 

shows how the timing of this partial lead retention can be superimposed on a slow cooling time-

temperature path (0.1 °C/Ma) for each grain size. The length-scale dependency of Pb, leads directly to a 

unique and separate PRZ for every grain size. As such, large and small grains can be used to resolve 

different parts of the time-temperature history. As an individual grain cools through its partial retention 

zone, the whole-grain age evolution through time of this grain can be tracked and plotted in U-Pb 

concordia space. The bulk grain age-evolution of 25, 50, 100 and 200 micron radius grains are plotted in 

figure 4c in 50 Ma increments. Each grain is concordant at the top of its PRZ when it first begins to retain 

Pb produced by a singular or narrow composition of 238U/235U. As each grain cools through its’ PRZ it 

retains Pb of different isotopic compositions as a result of the time-variant parent isotopic compositions 

(238U/235U). A whole-grain analysis of a grain with this internal diffusion profile will result in a mixture of 

these different Pb compositions that will become increasingly discordant as the grain incorporates a 

higher variability of 207Pb/206Pb (fig 4c). U-Pb whole grain dates for this same range of grain sizes and 

cooling paths is shown in figure 4d. The discordant array of data has an asymptotic topology that occurs 

as a result of each grain having its own unique PRZ and acquiring different amounts of variable isotopic 

compositions of Pb. Below we will see how these asymptotic trajectories in slow-cooling systems are 

highly sensitive to duration and thus cooling rate through the PRZ and can be used as a tool to determine 

time-temperature histories.  
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2.3.3 Slow Cooling: Resolving unique cooling rates 

 Cooling rate estimates are derived from the relationship between cooling rate and duration in the 

PRZ; the slower the cooling rate through the PRZ the longer the duration.  Forward modeled U-Pb data 

with variable linear cooling paths are plotted in figure 5. Results of calculations using titanite (Cherniak, 

1993), rutile (Cherniak, 2000) and apatite (Cherniak et al., 1991) diffusion kinetics are plotted in figures 5 

a, b and c respectively. For each set of kinetics, cooling rates between 10 and 0.075 °C/Ma are explored. 

For cooling rates of 10 °C/Ma or faster, data plots near the model start time (3000 Ma). This relatively 

rapid cooling rate through the PRZ causes little to no difference between large and small grains. For 

cooling rates slower than 10 °C/Ma the effect of grain size causes a dispersion of data along concordia, 

with smaller grains yielding younger dates. Cooling rates slower than ~0.25 °C/Ma are not only dispersed 

according to grain sizes but become discordant and highly asymptotic to concordia. A general trend of 

slower cooling rates and thus longer time spent within the PRZ, is shown to yield extended arrays of data. 

Calculated data sets for multiple minerals with different diffusion kinetics are shown to demonstrate the 

relative independence between diffusion kinetics and data topology. Though each mineral retains Pb at a 

different temperature range (figure 5 insets), the data topologies for all three minerals at one cooling rate 

are similar. Trends between data topology and cooling rate will not only aid in deciphering cooling rates, 

but also help us resolve time-temperature paths even for minerals such as rutile where the temperature of 

Pb-closure is still debated.   

   

2.3.4 Episodic Pb-loss and reheating t-T paths 

 Episodic Pb-loss or reheating can induce discordant U-Pb data similar to what is observed in 

accessory minerals from lower crustal xenoliths. In this end member thermal history, a rock has 

experienced rapid cooling during some initial event followed by open to partially open system behavior 

during a subsequent reheating event.  As shown in figure 1a, the upper intercept records the initial time of 

system closure, while the lower intercept records the time of a secondary reheating event. 

 As in the case of slow cooling, each whole grain analysis is discordant a result of mixing an 

internal Pb diffusion profile of different U-Pb ratios. Figure 3b shows a plot of the calculated U-Pb dates 

along the radius of a 200 um grain on a concordia diagram (dots). The model whole grain date that results 

from this profile is also plotted (star) and unlike the case of slow cooling, lies on the mixing line between 

the initial rapid cooling (t1) and subsequent reheating event (t2). Prior to the reheating event, this grain had 

a uniform profile across the radius. The heating event results in a continuous gradient of dates along the 

radius of the grain that lie between the initial and secondary event. 

 The finite difference diffusion model allows us to explore the effects of different heating 

magnitudes and durations. Figure 1 shows the results of forward modeled titanite U-Pb dates for reheating 
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of grains of varying size. A reheating event at 1000 Ma is modeled as a dike or half-space intrusion of 

variable half-widths and an initial temperature of 1200 °C. All parameters, including start time and 

temperature, distance from the intrusion to the sample, grain sizes and initial cooling rate are held 

constant. Only the size of the intrusion is varied between model runs. Comparison of reheating data sets 

to the linear cooling reveal that heating events such as the 100m half-width dike cause sufficient lead loss 

to completely change the data topology. Much like the internal profile for a reheating path shown in 

figure 3b, the variable grain size data define a linear array between the initial start of the system and the 

time of reheating (fig 1b). Small deviations from the linear array are due to the conductive cooling of the 

half-space after reheating. Larger intrusions on the order of 1km, yield extremely discordant data arrays 

that nearly span the distance between primary and secondary events. A large event will induce almost 

complete Pb loss, with modeled data clustered at a lower intercept. For a given mineral, there is a trade-

off between duration and temperature of heating events such that small intrusions of high temperature can 

induce the same Pb loss as larger intrusions at lower temperatures.  Analysis of multiple 

thermochronometers can solve this ambiguity and deliver a unique cooling path (Schoene and Bowring 

2007).  

 

2.3.5 Multiple sample approach 

 In addition to using the topology of individual data sets to determine cooling path and rate, we 

can employ a multiple sample approach where data from multiple xenoliths, each of a different depth, 

contribute to a unique thermal history for the entire lithospheric column.  This method assumes that the 

thermal history recorded by a suite of xenoliths reflects that of the lithosphere. Let us consider the two 

end-member t-T paths of reheating and slow cooling within a section of lithosphere where three xenoliths, 

each from a different depth are dated.  

Slow cooling t-T paths for samples of variable depth can be modeled by allowing a column of 

lithosphere at a specified initial temperature, thickness and internal heat production, to cool by 

conduction. The purpose of this thermal model is to predict how variable depths influence the time 

temperature path and the resulting U-Pb thermochronometric data.  Time-temperature paths for ‘samples’ 

at 20, 30 and 40 km depths within the lithosphere have the same shape, cool at comparable rates, but at 

different times (fig 6a). The initial cooling along an exponential t-T path is controlled by sample depth, 

with the shallowest samples cooling fastest and the deep sample the slowest. Once a near steady thermal 

state is reached, however, samples cool at similar rates independent of residence depth (fig. 6a inset). Like 

modeled data from previous slow cooling model runs, modeled U-Pb data arrays are highly discordant 

and become asymptotic to concordia. Because the time of entry and exit into the PRZ is different for each 

depth, both the lower and upper intercepts of these data arrays are resolvable from one another.  
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 A similar multiple sample analog can be set up to examine the effects of reheating on a column of 

lithosphere where 3 xenolith samples, each at a different depth, are heated during a large-scale regional 

thermal event. The duration and temperature of reheating events required to induce a similar magnitude of 

discordance as those observed in the data are considerable (>50% fractional loss Pb); requiring holding 

times on the order of millions of years for reheating events below 1000 °C and durations in the hundreds 

to thousands of years at mantle temperatures (Schmitz and Bowring, 2003). Any significant thermal event 

such as this will likely be recorded by each sample within the lithosphere with the effects of the reheating 

event varying as function of the sample distance from the heat source. To simulate this setting, a half-

space model was used to heat the base of the lithosphere, with samples positioned at 20, 30 and 40 km 

from the heat source margin (fig. 6b inset). Because each sample is from a different distance from the 

source of heat, each will experience a different magnitude of reheating, simulating the effects of variable 

xenolith residence depth. The U-Pb thermochronologic data that results from t-T paths for each sample 

are plotted on concordia diagram in figure 6b. Unlike the slow cooling end member, the discordant arrays 

of data share a common lower intercept that is coincident in time with the reheating event.  

 

2.3.6 Testing the effects of magmatic exhumation 

 In addition to understanding the thermal history of lower crustal samples, we must quantify the 

thermal affects of volcanic exhumation on the U-Pb systematics in accessory phases.  Petrologic and 

experimental studies of xenolith bearing magmas (Canil and Fedortchouk, 1999; Edgar et al., 1988; 

Eggler and Wendlandt, 1979; Esperanca and Holloway, 1987) along with dynamical force balancing 

(Morin and Corriveau, 1996; Sparks et al., 2006; Spera, 1984) allow us to estimate the temperatures and 

holding times experienced by a lower crustal sample during exhumation. These conditions can then be 

used to calculate the minimum temperatures and holding times required to perturb U-Pb systematics 

within accessory phases.  

 Reliable estimates of xenolith residence time and host magma temperature are key to 

understanding the effects of volcanic exhumation on U-Pb systematics.  Magma ascent rates for alkalic, 

mantle-derived magmas can in general be considered a rapid process. The occasional presence of 

diamonds, abundant xenoliths, some as large as 100 cm in diameter, imply that eruption rates are fast 

enough to transport the xenolith load from lower crustal and upper mantle depths. Typical ascent rates for 

alkaline magmas are estimated to be on the order of 101-103 cm/s or 1-5 day durations from upper mantle 

to lower crustal depths (Rutherford, 2008). Kimberlite and minette eruption rates have been further 

refined to rates on the order of hours to days by both dynamic calculations and experimental studies 

(Canil and Fedortchouk, 1999; Morin and Corriveau, 1996; Rutherford, 2008).  An upper bound of 

magma temperatures can be provided from estimates of magma liquidus temperatures, which for 
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kimberlite and minette magmas has been estimated between 1050-1200 °C (Edgar et al., 1988; Eggler and 

Wendlandt, 1979; Esperanca and Holloway, 1987). The actual magma transport temperatures are likely 

lower than the liquidus temperatures as a result of heat loss to country rock/xenoliths and volatile 

degassing (Sparks et al., 2006).  

 The extreme upper boundary conditions of 5 days and 1200 °C can be used to estimate the 

maximum effects of volcanic transport on the topology of U-Pb data. This calculation has typically been 

solved for using the fractional loss equations from Crank (1956).  This calculation provides us only with a 

minimum estimate to the conditions required to induce Pb-loss, as the solution assumes a homogenous 

initial distribution of diffusant within the crystal prior to perturbation. Accessory minerals that have 

experienced slow cooling or reheating, however, have pre-existing rounded diffusion profiles that will 

respond more slowly to diffusive loss during thermal perturbation. In reality the transporting magma 

would have to be hotter and/or heat longer to induce the same amount of fractional loss as with a 

homogenous distribution of Pb. The finite different model presented above can be used to simulate the 

conditions of magmatic heating on a rounded diffusion profile demonstrating that the fractional loss of Pb 

is as much as 10% less with a rounded initial profile when compared to a homogenous one. The finite 

difference calculation suggests that short-lived high temperature heating events of this magnitude do 

induce some Pb-loss even on grains with rounded initial profiles. Figure 7 shows the predicted effect of 

magmatic heating on U-Pb thermochronologic data.  The 5 day maximum of holding time at the 

temperature of 1200 °C is shown to have a slight effect on the topology of U-Pb data, shifting all data 

points to lower U/Pb values. The loss of Pb, however, has little effect on the topology of U-Pb data and 

the final interpretation of a t-T path. This observation coupled with the likelihood that the eruptions of the 

xenolith bearing lavas are likely faster and cooler than the maximum limit modeled here, suggest that the 

effect of Pb loss from magmatic heating can largely be ignored. Only titanite and apatite kinetics allow 

loss of Pb, there is no appreciable Pb loss (<0.25%) using rutile diffusion kinetics. The accuracy of this 

finite difference calculation can be tested using a homogenous initial concentration of Pb prior to the 

reheating event and comparing the results to the fractional loss equations calculated with the same initial 

conditions (fig. 7 inset).   

 

2.4 Rutile diffusion kinetics 

 Calculating Dodson closure temperatures from experimentally determined diffusion kinetics for Pb 

in accessory phases provides a means to compare the relative closure between different phases.  The 

Dodson closure temperatures (TC) calculated using kinetic values from Cherniak and Watson (2001),  

Cherniak (1993, 2000) and Cherniak et al. (1991) yield a relative order of Pb closure: Zircon (TC >1000 

°C), Rutile (TC ~600-700 °C), Titanite (TC ~600-650 °C) and Apatite (TC ~450-500 °C) (fig. 8). Empirical 
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estimates for the temperatures of Pb closure yield a relative order that contrasts with experimentally 

determined values: zircon and Monazite (TC >1000 °C) Titanite (TC ~600-650 °C), Apatite (TC ~500-550 

°C), Rutile (TC 450±50 °C) (Mezger et al., 1989; Schmitz and Bowring, 2003b). The rutile Pb closure 

temperature estimates from over ten U-Pb thermochronologic studies have been compiled and plotted in 

figure 8 (black circles). Estimates of rutile closure, grain size and cooling rate are cited directly from the 

reference when available. When closure estimates were unspecified, comparison between available 

titanite and apatite U-Pb and amphibole, phlogopite, muscovite 40Ar/39Ar data were used to bracket a 

temperature. In all but one study, rutile U-Pb dates are younger than titanite U-Pb and amphibole 
40Ar/39Ar dates. The exception to this is an overlapping rutile U-Pb and amphibole 40Ar/39Ar dates from a 

moderately slowly cooled terrane (DT/dt= 1.5 °C/) (Mezger et al., 1989). In four studies, rutile U-Pb dates 

are younger or overlap with apatite U-Pb dates (Corfu and Easton, 2001; Corfu and Stone, 1998; Flowers 

et al., 2006; Schmitz and Bowring, 2003b). In several additional studies, rutile Pb closure is constrained 

between Titanite U-Pb/Amphibole 40Ar/39Ar and the lower temperature muscovite and biotite 40Ar/39Ar 

chronometers, (Anderson et al., 2001; Flowers et al., 2006; Mezger et al., 1989; Miller et al., 1996; 

Moller et al., 2000). Two conclusions can be drawn from this data compilation (fig 8): 1) Empirical 

estimates of rutile closure are significantly lower than predicted by diffusion kinetics, 2) Rutile has a Pb 

closure temperature between 400 and 500 °C.  

 

2.5 Case Study  

2.5.1 Geologic overview 

 Eocene minettes and kimberlites (~50 Ma) have exhumed a large population of lower crustal 

xenoliths just east of the Cordilleran deformation front in central Montana. Beneath the Phanerozoic 

sedimentary cover, the Archean Medicine Hat Block (MHB) to the north and the Wyoming Province 

(WP) to the south are separated by the largely unexposed Great Falls Tectonic Zone (GFTZ) (Davis and 

Ross, 1999; Gorman et al., 2002; Mueller et al., 2005; Mueller et al., 2002). To demonstrate the numerical 

and laboratory techniques described here, a case study for lower crustal xenoliths collected from the 

Sweetgrass Hills minette within the MHB are presented. U-Pb zircon data from basement rocks sampled 

by drilling reveal crystallization ages that range from 2.6-3.2 Ga, with the majority of samples yielding 

ages of ~2.7 Ga (Villeneuve et al., 1993). The Deep Probe seismic refraction study conducted as part of 

Lithoprobe, produced a high-resolution model for crust beneath the Northern Rockies (Gorman, et al., 

2002). Velocity models indicate a thick (10-15 km) high velocity layer beneath the region at depths 

between 40 and 55km. Previous zircon U-Pb analyses from lower crustal xenoliths exhumed from the 

MHB yield a range of dates between 2.7 and 1.7 Ga (Davis et al., 1995). While tonalitic middle to lower 

crustal xenoliths from the Medicine Hat Block indicate Archean zircon growth, all lower crustal xenoliths 
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analyzed by these workers (four mafic and one felsic sample) yielded only ~1.8-1.7 Ga zircon dates. This 

led to an interpretation that the high-velocity layer is a Paleoprotoerzoic magmatic under-plate associated 

with the formation of the GFTZ (Gorman, et al. 2002). 

 

2.6 Methods 

2.6.1 Sample description and petrology 

   Three xenoliths from the Sweet Grass Hills minettes were selected for analysis. Two of the 

samples (05SG02 and 05SG05) have similar primary metamorphic mineral assemblages of Grt + Pl + Kfs 

+ Bt (minor) ± Sil + Qz + Rt (Whitney and Evans, 2010). The third sample contains the mafic assemblage 

Grt + Cpx + Pl + Rt + Ilm. All three samples are well-preserved and exhibit granoblastic textures. Sample 

05SG05 contains mm-scale gneissic layering defined primarily by garnet, feldspar, and quartz. In all 

samples, rutile is relatively abundant (~0.3-0.6 volume % - see appendix for details), occurs in the matrix 

and as inclusions within garnet and other major phases, and is interpreted as part of the peak metamorphic 

assemblage. This is an important constraint because it establishes initial rutile growth prior to or during 

development of peak temperatures, which are well above the temperatures of rutile Pb retention (Fig 8). 

Thus, the mineral can be utilized as a reliable thermochronometer. Minor ilmenite overgrowths on some 

rutile grains represent a late phase that probably developed during exhumation. 

 Thermobarometric estimates of peak metamorphic conditions were determined via several 

methods. First, initially determinations used the program TWQ 2.34 (Berman, 1991, 2007). Isochemical 

phase diagrams were also calculated with the program Perple_X (Connolly and Petrini, 2002) using the 

Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2 chemical system. Temperatures were also estimated 

based on Zr-in-rutile thermometry (Ferry and Watson, 2007; Watson et al., 2006). The best estimates of 

peak metamorphic conditions for samples 05SG02, 05SG05 and 05SG20 are 0.8 GPa/900 °C, 1.1 

GPa/900 °C and 1.3GPa/890 °C, respectively. These data allow us to construct a relative stratigraphy 

between the MHB samples; from shallow to deep, 05SG02, 05SG05 and 05SG20. Thermobarometry data 

is included in the inset of figure 9. Additional sample description and details of thermobarometric 

calculations are included in the appendix. 

 

2.6.2 U-Pb Laboratory Methods 

 Accessory phases used by this study were extracted from collected xenoliths following standard 

rock crushing and mineral separation procedures. Crushed rocks were then hand washed, dried and 

separated using standard magnetic and heavy mineral separation techniques were used to isolate heavy 

minerals such as apatite, titanite, rutile and zircon. Prior to dissolution and analysis, all grains were 



 35 

photographed and measured. In the case study presented here, rutile was dated by U-Pb methods 

following procedures outlined by Schmitz and Bowring (2003) and Schoene and Bowring (2007). A 

mixed 205Pb-233U-235U tracer solution was used for all ID-TIMS analyses. Samples were dissolved using 

standard Parr vessel HF/HCl treatments. Separates of U and Pb are purified separately using standard HBr 

and HCl column chemistry. Typical Pb blanks ranged between 0.5 and 1.2 pg. All U and Pb analyses 

were run on the Sector 54 Thermal Ionization Mass Spectrometer (TIMS) at MIT. 

 For sample presented here, at least ten rutile grains of varying size were dated by the above 

methods. The typical grain sizes  (shortest radius) in lower crustal samples range between 10 and 250 

microns. Grains without inclusions that had euhedral habit and no cracks produced reproducible grain-

size age relationships. In preliminary study, poor quality grains, in particular large non-gem quality black 

rutiles often displayed multi-domain behavior, yielding younger U-Pb dates than previous analyses from a 

much smaller grain. To empirically demonstrate the presence of diffusion profiles, the edges of grains 

were isolated for U-Pb analysis. Whole rutile grains from sample 05SG05 were mounted in epoxy resin 

with the a/b axis of grains exposed at the polishing surface. Grains were then polished to remove over 

95% of material. Isolated rims were dated using the procedures described above. Rutile grains from 

sample 05SG02 were mechanically abraded in attempt to enhance the older recorded cooling history 

within the core of the grain. Both grain cores and rims were excluded from comparison to forward 

difference models, which calculate data for whole grains.  

Zircon grains from lower crustal rocks often have complicated growth histories, with individual 

grains consisting of an older core surrounded by as many as 1-3 periods of zircon growth. Procedures for 

dating complex zircons include imaging grains by Cathode Luminescence (CL) followed by micro-

sampling each distinct zircon growth history for analysis using Chemical Abrasion U-Pb Thermal 

Ionization Mass Spectrometry (CA-TIMS) (Mattinson, 2005).  

 

2.7 Results 

2.7.1 U-Pb data 

 

  Zircons were recovered only from samples 05SG02 and 05SG05, the middle/lower crustal felsic 

granulites. and analytical results are tabulated in table 1. Grains from sample 05SG05 were homogenous 

and yielded dates of ~1.8 Ga. Distinct cores of grains from 05SG02 were as old as 2.7Ga, with rims 

plotting discordantly between ~2.7 and 2.0 Ga. Whole grain analyses from 05SG02 were discordant 

between 2.7 and 2.0 Ga. There were no zircons recovered from sample 05SG20. 

 Single grain rutile analyses of variable grain sizes (Fig. 9) define discordant data arrays for all three 

samples. The most shallow sample from the MHB, 05SG02, yields 238U-206Pb dates that range between 



 36 

~1000 and 1400 Ma, sample 05SG05 a range between ~600 and 1100 Ma and the deepest sample 05SG20 

a range between ~200 and 400 Ma. Each array of data define a curvilinear trajectory that becomes 

asymptotic to concordia. The data as a whole, roughly define a single trajectory, with the oldest analyses 

from sample 05SG20 overlapping in concordia space with a young analyses from 05SG05. The same 

phenomena occur between several old analyses from 05SG05 and younger grains from 05SG02.  

 Mechanically isolated rutile rims from sample 05SG05 yield overlapping 238U-206Pb dates within 

error of the minette host rock eruption age and demonstrate empirically that volume diffusion is operating 

in these grains. Isolated grain cores from sample 05SG02 yield U-Pb dates far older than whole grain, 

again empirically demonstrating the presence of diffusion profiles. Euhedral, gem quality rutile grains in 

samples 05SG02 and 05SG05 often contained no common lead, with analyses yielding laboratory blank 

levels. High common Pb rutile grains typically have black ilmenite rims and ilmenite intergrowth within 

the interior of grains. Sample 05SG05 had no ilmenite intergrowths and demonstrated a near perfect age 

vs. grain size relationship, with the smallest grains yielding the youngest dates and the largest yielding the 

oldest. Sample 05SG02 behaved similarly at small grain sizes, between 20 and 50 microns, however this 

relationship breaks down with larger poor quality grains that contained ilmenite intergrowths. Rutile U-Pb 

results are tabulated in table 2.  

 

2.7.2 Modeling U-Pb data 

 Here we evaluate the potential time-temperature paths that can explain the U-Pb data presented 

above. Each sample is considered individually and fit with modeled data from both reheating and slow-

cooling T-t paths. Modeled grain sizes for each sample use the minimum and maximum range of sizes 

recorded from dated grains using diffusion kinetics from Cherniak (2000). Zircon U-Pb analyses and 

geothermometry constrain the model start time/temperature to 1800 Ma/900 °C for these samples. Model 

calculations for reheating paths that attempt to fit rutile data from MHB are presented in figure 10a. For 

this end-member t-T path the shallowest sample, 05SG02, would have had to cool quickly through the Pb 

PRZ at 1800 Ma and been reheated at 800 Ma. Deeper samples 05SG05 and 05SG20 can be fit by similar 

paths with each quenching and reheating events occurring at different and younger times. As in the 

modeled data presented in figure 1a, the topology of the modeled data is a straight line between the timing 

of the initial cooling and the subsequent reheating event. Unlike the singular lower intercept produced 

during the reheating of multiple samples of variable depth test presented in figure 6b, these data could 

only be explained by multiple reheating events, each with is own resolvable lower intercept. This model 

has an additional requirement that each individual thermal event remain thermally isolated from the 

samples of different depths. 

 Forward calculated U-Pb data from slow cooling t-T paths can also be fit to each sample from 
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Sweetgrass (fig 10 b-d).  To make systematic modeling easier, exponential cooling paths are 

approximated as segmented linear cooling paths.. Several cooling rates through the rutile Pb PRZ are then 

tested to bracket the array of measured data. Each sample from Sweetgrass cools through the Pb PRZ at 

rates lower than 0.25 °C/Ma with the shallowest sample cooling first and the deepest sample cooling last. 

The modeled data for each sample consists of a discordant array of data with an upper and lower intercept 

that is resolvable from the other samples. The topology of the modeled data is curvilinear and becomes 

asymptotic as it approaches concordia.  

 

2.8 Discussion 

 Each rutile U-Pb dataset can be approximated with modeled data produced from reheating and slow 

cooling time-temperature paths (fig 10) and suggests the interpretation of data would be aided by a more 

general analysis of data trends.  Though reheating t-T paths can roughly fit the data, this model requires 

discrete quenching and heating events throughout the history of the lithosphere (fig 10a inset). Zircon U-

Pb data from these xenoliths as well as previous U-Pb zircon data from the region record only one 

significant thermotectonic event: the formation of the GFTZ at ~1.8 Ga (Table 1), (Bolhar, et al. 2007; 

Davis and Ross 1999; Gorman et al. 2002). There are no geochronologic data within these xenoliths or 

from regional surface exposures that record high temperature events coincident in time with the lower 

intercepts from samples 05SG02 and 05SG05 (~800 and 500 Ma respectively).   Furthermore, the 

reheating model would require that each individual event is large enough to cause significant loss of Pb 

within one sample yet remain thermally insulated from the samples above and below. This is inconsistent 

with the expectations for a multi-sample approach (fig 6b), where reheating events resulted in samples 

from different depths sharing a common lower intercept as a result of reheating.  

  We can also evaluate the fit of the modeled slow cooling t-T paths to the data.  Each sample U-Pb 

data set defines a curvilinear array that is asymptotic to concordia, consistent with the expected topology 

of data for slow cooling samples. Each array of data can be well-bracketed with model data with the same 

curvilinear trajectory and asymptotic curvature (fig 10 b-d). When we consider the 3 data sets as a whole 

the most important trend is the correlation between U-Pb dates for each xenolith and it’s estimated 

residence depth. The simplest way to explain this trend is that these samples all record the progressive 

relaxation of a post-orogenic geothermal gradient. At ~1.8 Ga during the orogenic event, this geothermal 

gradient was sufficiently high to prevent lead retention in rutile from all depths. As the lithosphere 

cooled, the shallowest sample first entered the rutile PRZ, the timing of which is marked by the sample’s 

upper intercept. The upper intercept of the shallowest sample (~1800 Ma) is coincident with 40Ar/39Ar 

biotite and amphibole dates from nearby surface exposures (Holm and Schneider, 2002). This is 

interpreted to indicate that temperatures within the MHB at ~25 km depth were  <500 °C shortly after the 
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collision event.  The next deepest sample, 05SG05 cooled to the top of its PRZ by ~1.5 Ga. Finally the 

deepest sample 05SG20 began to retain Pb by ~1.0 Ga. In the slow cooling model, the lower intercepts of 

each data set records the samples’ exit from the rutile Pb PRZ.  The coincidence of the lower intercept of 

05SG20 with the age of the kimberlite is significant, as it marks the exhumation of the xenolith from 

within the rutile PRZ onto the Earth’s surface where it was quenched. This also indicates that the crust at 

this depth was 450±50 °C at ~50 Ma. The trend of overlapping data previously modeled in figures (6a) is 

also observed within the rutile data from the MHB, suggesting that the slow cooling  recorded by each 

sample occurred at a comparable rate. The slow-cooling model does not require temporally discrete 

quenching or reheating events and the trends within the data can be explained by a simple model for 

lithospheric thermal evolution.  In the following section we will try to define an upper limit to the cooling 

rate for these samples by exploring the relationship between data topology and diffusion kinetics.  

 

2.8.1 Data topology and the effects of diffusion kinetics 

 In a slowly cooled system, the degree of discordance in the U-Pb system is controlled by the 

cooling rate through PRZ. The extent of the PRZ in time-temperature space, based on numerical modeling 

(fig. 5), is fairly insensitive to the diffusion kinetics. Further exploration of the relationship between PRZ 

residence time and diffusion kinetics can be made using the Dodson solution for closure temperature 

(Dodson, 1973). This analytical solution provides a rapid way to evaluate how variation in diffusion 

kinetics affects the duration of partial system behavior; the later of which is roughly approximated by the 

difference in time (∆t) between the largest and smallest grain sizes for a particular cooling rate (fig. 11). 

At the slow cooling rates we are examining, the absolute values of ∆t predicted by the Dodson solution 

are inaccurate, as the solution does not accurately account for exponential Pb production by radiogenic 

decay. However, for our purpose of examining the trends between variable diffusion kinetics and the 

extent of partial system behavior, the Dodson solution is suitable. At cooling rates of 1.0 °C/My and 

faster, the size of the PRZ is nearly completely insensitive to diffusion kinetics, yielding comparable ∆t’s 

for all combinations of kinetic values (fig.11). At cooling rates slower than 1.0 °C/My, diffusion kinetics 

have an increased though second order effect on the size of the PRZ. For example, at a rate of 0.25 

°C/My, the entire range of Pb activation energies and diffusion coefficients yields a ~50% maximum  

range of ∆t’s , while decreasing the cooling rate from 0.25 to 0.1 °C/My would change the ∆t over 200%. 

At cooling rates as low as 0. 1 °C/My, the range of the PRZ becomes highly sensitive to diffusion 

kinetics, thus decreasing our ability to conclude on a cooling rate a this range. At cooling rates between 1-

0.25 °C/My relative independence between diffusion kinetics and the size of the PRZ suggests that the 

topology of rutile U-Pb data alone can be used to place an upper limit to the cooling rate through the 

minerals’ PRZ.  
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 Though one cannot accurately model the exact temperatures of Pb retention in rutile without 

accurate diffusion kinetics, U-Pb data does confirm that rutile is obeying volume diffusion behavior based 

on the grain size dependencies in measured U-Pb dates, in particular the high quality grains from sample 

05SG05 and 05SG02 (fig 10). Combining the empirical constraints on rutile Pb closure (fig. 8) and a 

demonstration of cooling rate dependent data topology that is relatively insensitive to diffusion kinetics 

(figs. 5 and 11) allows for the conclusion that the cooling rate for samples from the Sweetgrass hills, 

through the rutile thermal window (450±50 °C) is on the order of 0.25 °C/My or less.    

 

2.8.2 Thermal state recorded by lower crustal thermochronometers 

 We can evaluate the thermal/tectonic state and mechanism of cooling within the lithosphere 

through a comparison of both the absolute temperatures recorded by the lower crustal 

thermochronometers and those predicted by physical models for heat transfer in the lithosphere (Ehlers et 

al., 2005).  One of the most broadly applicable lithosphere thermal models is a stratified 1-D calculation, 

first described by (Pollack and Chapman, 1977), that extrapolates the measured surface heat flux to the 

rest of the lithosphere while stripping out the internal heat contribution from the crust, lower crust and 

lithospheric mantle.  This model allows us to test the sensitivity of lower crustal temperatures to any 

model parameter and explore a possible range of lower crustal temperatures. The assumed surface heat 

flux in this calculation has the most significant effect on lower crustal temperatures, with temperatures at 

40 km depth ranging between 380 °C on a cratonic geotherm (40mW/m2) to over 800 °C at a high 

geothermal gradient (80mW/m2) (Chapman, 1986).  Other influential parameters include the distribution 

and concentration of heat producing elements (HPE) within the crust (Rudnick et al., 2003; Rudnick et 

al., 1998), thermal conductivity and Moho depth. Realistic variations in each of these parameters can 

cumulatively effect the temperature at 40 km depth by over 10%, yielding a range of lower crustal 

temperatures between 380 and 450 °C for a cratonic geotherm (40mW/m2)(Chapman, 1986). These 

temperatures predicted for the low cratonic geothermal gradient are well within the temperatures of rutile 

Pb retention.  

 

2.9 Conclusions 

 We have demonstrated how U-Pb thermochronology can be used to resolve unique time-

temperature paths for lower crustal rocks exhumed by volcanic eruptions. Numerical solutions to the 

diffusion equation provide us with the means to exploring the U-Pb thermochronologic system’s 

dependencies on: (1) grain size, (2) decay rate (238U vs. 235U), (3) cooling rate through the partial retention 

zone (PRZ) and  (4) sensitivity to diffusion kinetics. 
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(1) The length scale dependency of Pb diffusion causes grains of variable size to each have its own unique 

zone of Pb retention in time-temperature space. This results in grains of one size to retain a different Pb 

isotopic composition (produced by the decay of a different composition of parent U) than a grain of any 

other size.   

(2) The dramatically different decay rates for 238U and 235U are manifested in two ways. First, because the 

PRZ of any system is dependent upon production rate, the 235U-207Pb and 238U-206Pb systems each have 

their own PRZ. The higher production rate of 207Pb leads to a relative excess in retained 207Pb. Second, the 

difference in 238U and 235U decay constants yields time sensitive information on Pb diffusion that can be 

utilized for resolving the difference between reheating and slow-cooling events. Reheating time-

temperature paths lie along a straight line between the time of initial quenching and the subsequent 

thermal event. Slow cooling t-T paths yield an asymptotic topology of data for multiple analyses of 

variable grain size.   

(3) The topology of data produced by slow cooling t-T paths is strongly dependent upon cooling rate 

through the PRZ. Longer durations yield longer more discordant arrays of data providing a tool for 

estimating the cooling rate through the PRZ.  

 (4) The topology of this variable grain size data is generally insensitive to kinetics in comparison to 

cooling rate, allowing users to estimate cooling rate for minerals with poorly constrained diffusion 

kinetics.   

 In the Montana study area, rutile U-Pb data from three xenoliths derived from different depths from 

a single volcanic epicenter are best interpreted by slow cooling t-T paths where the shallowest sample 

cooled first and the deepest last. Combining the topological dependence of U-Pb data on cooling path 

with the multiple sample of variable depth approach supports the conclusion that lower crustal 

thermochronometers record a slow thermal relaxation since the Paleoproterozoic. Comparing the rates 

predicted by these thermochronologic results with the rates predicted for physical models of heat transfer 

within the earth will allow future studies to evaluate the mechanisms for cooling and heat transfer within 

the lithosphere. 
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2.10 Figure Captions 
 
 
Fig. 1 Comparison of data topologies on U-Pb concordia diagram for a) Episodic/reheating and b) 
continuous or slow cooling time temperature paths. Forward calculated reheating time-temperature paths 
are plotted as symbols along with the graphical solution in black (line) from Wetherill, (1956) (a). 
Discordant arrays of data are produced by rapidly cooling the sample at some initial time (t1) followed by 
a secondary reheating event at t2. The reheating event is modeled as a half-space model.  Constant model 
parameters for all tested t-T paths include: grain sizes, start temperature and time, distance of sample from 
dike, diffusion kinetics, intrusion temperature and intrusion time. Only the size of the intrusion is varied. 
(b) A comparison between analytical (crosses) and numerical solution (circles) for continuous diffusion is 
used to test the accuracy of the finite difference solution  
 
Fig. 2 Forward modeling of time temperature paths for reheating (squares) and slow cooling (circles) 
reveal the potentially indistinguishable data sets for both a) grain size vs. age relationships or b) internal 
diffusion profiles; two data types often produced by single isotopic thermochronometric systems to 
elucidate t-T paths. Plotting U-Pb ratios for both systems on Concordia diagram (c) for the same reheating 
and slow cooling time temperature paths reveals data topologies that are distinguishable from one 
another. Diffusion occurring continuously during a slow cooling t-T path yields an asymptotic topology 
(circles) that is resolvable from the straight-line topology produced from the reheating t-T path (squares) 
 
Fig. 3 Comparison of internal U-Pb profiles (dots) and whole-grain U-Pb dates (star) plotted on concordia 
diagram for a) reheating and b) slow cooling t-T paths. Slow cooling t-T paths (a) produce discordant 
whole-grain points as a result of mixing Pb produced from different isotopic compositions of U. 
Additional processes inducing disequilibrium between the different decay schemes are the offset between 
the 238U-206Pb and 235U-207Pb PRZ’s (upper inset). The different decay rates for each daughter product 
leads to different times in which daughter production comes to balance with daughter diffusion. 
Reheating t-T paths  (b) induce internal Pb diffusion profiles where the core records the initial time of 
cooling (t1) and the grain rim, the subsequent reheating event (t2)  
 
Fig. 4 For a single slow cooling path, variable grain sizes yield different ranges of internal U-Pb dates (a) 
with large grains retaining Pb at earlier times and higher temperatures. Subplot (b) plots the PRZ for each 
grain size on the tested time-temperature path. Each grain is recording a discrete region of the time 
temperature path. This results in a unique set of: internal U-Pb dates (a), and a different U-Pb whole grain 
date. Subplot (c) tracks several grains in 50 Ma increments. Upon entry into the PRZ every grain is 
concordant, meaning it contains Pb produced by a uniform 238U/235U. Each grain becomes more discordant 
through time, as the whole grain begins to retain more Pb produced by the decay of different 238U/235U. 
Length scale dependency of diffusion leads to discrete ranges of Pb retention for each grain size which in 
turn leads to the asymptotic topology (d)  
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Fig. 5 Series of concordia plots showing the results of slow cooling time-temperature paths at a variable 
cooling rate. Colors of data correlate to the colors of cooling rates shown in the inset time-temperature 
path. Slower cooling rates yield longer durations in the PRZ, in turn resulting in longer discordant data 
arrays. Start time and temperature, grain sizes are kept constant. Only the cooling rate and diffusion 
kinetics are variable; (a) titanite, (b) rutile, (c) apatite. Modeled results using multiple diffusion kinetics 
are plotted to demonstrate the potential for different U-Pb thermochronometers as well the relative 
independence between diffusion kinetics and data topology 
 
Fig. 6 Forward modeling U-Pb data for multiple xenolith samples of different depths within the 
lithosphere produced by thermal models for lithosphere a) slow cooling and b) reheating.  Multiple 
sample analyses of a Slow cooling (b) lithosphere yields curvilinear discordant arrays of U-Pb data with 
resolvable and unique upper and lower intercepts.  Reheated lithosphere (a) produce overlapping straight 
lines of discordant U-Pb data with a common irresolvable lower intercept. The intercepts of these lines 
are coincident in with the timing of initial cooling and the reheating event or with cooling shortly after 
 
Fig. 7 Concordia plot showing the effects of magmatic exhumation on U-Pb data. Finite difference model 
tests the effects of short-lived heating events on thermchronometers with rounded initial profiles. 
Rounded diffusion profiles lessen the diffusant loss during a secondary reheating event. Independent 
constraints on magma temperature and eruption rate can only place maximum heating conditions at 1200 
°C and 5 days, though lower temperatures and shorter holding times are more likely. Decreasing the 
magma holding temperature to 1000 °C yields Pb loss below 1%. Titanite and apatite kinetics are used, 
rutile kinetics predict negligible loss at these conditions. Figure inset show an accuracy test of this 
calculation using the same initial conditions in the numerical solution (blocks and circles) as those used 
by the analytical solution (solid lines) 
 
Fig. 8 Three-dimensional plot showing the variation of Dodson closure temperature as a function of both  
cooling rate ( °C/ My) and grain radius (μm). Three-dimensional planes are calculated using Dodson 
equations and experimentally measured diffusion kinetics. Circles mark the estimated closure for rutile 
based on empirical studies, see text for references. Diffusion kinetics for 40Ar/39Ar chronometers are from 
Harrison (1982), Giletti (1974), and Hames and Bowring (1994) 
 
Fig. 9 Rutile U-Pb data plotted on a single Concordia diagram. Samples 05SG02(green), 05SG05(blue), 
and 05SG20 (red). Figure inset shows P-T diagram of thermobarometry, where the shaded regions 
represent calculated stability fields for the peak assemblages from phase assemblage diagrams. Solid red 
lines for 05SG20 show intersection of Grt-Cpx-Pl-Qz equilibria calculated with TWQ. Dashed lines are 
Zr-in-rutile thermometer results. See appendix for more detailed description 
 
Fig. 10 Concordia plots showing a comparison between measured U-Pb data from lower crustal samples 
from the Sweetgrass volcanics (MHB) and forward calculated data assuming (a) reheating paths and (b-d) 
slow cooling paths 
 
Fig. 11 Dodson equation calculated difference in time between small and large diffusion domains (∆t) 
over a range of diffusion coefficients, activation energies (Ea) and cooling rates (DTdt). Boxes are placed 
at the intersection of Ea and D0 for each phase, marking the ∆t at a particular cooling rate for that phase. 
The Dodson analytical solution provides a rapid way to test how sensitive the size of the Pb partial 
retention zone is to diffusion kinetics 
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Figure 2.2
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Figure 2.3
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Figure 2.4
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Figure 2.5
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Figure 2.6
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Figure 2.7
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Figure 2.8
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Figure 2.9
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Figure 2.10
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Figure 2.11
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Table 2.1

Table 2.1 Zircon U
-Pb data

         
A

ge (M
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206Pb/
207Pb/

207Pb/
206 Pb

207 Pb
207 Pb
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Pbc
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238U
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 %
 

235U
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206Pb
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238 U

235 U
206 Pb
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(pg) 

Pbc 
Fractions 
05SG

02:zircon
         

z1.1      
0.50552

0.090
13.090 

0.11 
0.18781 

0.058
2637

2686
2723

0.839
 4.92

  72 
z2      

0.52118
0.070

13.783 
0.090

0.19180 
0.055

2704
2735

2758
0.788

 1.35
 155 

z3      
0.50969

0.074
13.232 

0.090
0.188292

0.051
2655

2696
2727

0.823
 1.95

 415 
z4      

0.36990
0.17 

 6.711 
0.20 

0.13158 
0.093

2029
2074

2119
0.881

 0.80
  66 

z5      
0.42974

0.062
 9.2243

0.081
0.155680

0.052
2305

2361
2409

0.763
 0.75

 121 
z6      

0.43072
0.14 

 9.375 
0.18 

0.15786 
0.10 

2309
2375

2433
0.810

 1.22
  87 

z7      
0.4779 

0.54 
12.043 

0.57 
0.18278 

0.17 
2518

2608
2678

0.952
 1.85

  26 
z9      

0.50179
0.058

13.026 
0.084

0.18827 
0.060

2621
2682

2727
0.699

 0.74
 250 

SG
05:zircon

z3      
0.32382

0.096
 4.973 

0.26 
0.11138 

0.22 
1808

1815
1822

0.601
 0.84

1013 
z2      

0.32419
0.063

 4.9556
0.10 

0.110865
0.056
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1814
0.854

 1.12
 247 

z4      
0.32596

0.16 
 5.051 

0.70 
0.11238 

0.61 
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1828
1838

0.660
39.25

   7 

 a  Isotopic dates calculated using the decay constants 
238 = 1.55125E-10 and 

235 = 9.8485E-10 (Jaffey et al. 1971).
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Table 2.2

Table 2.2 R
utile U

-Pb data
A
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est. Pb

grain
grain size (
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oncentration (ppm
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Chapter 3: An exhumation history of continents over billion 
year time-scales 
 
 

 
Blackburn, T,J., Bowring, S.A., Perron, T., Mahan K., Dudas F., Barnhart, K. (2012) An 
exhumation history of continents over billion year time-scales, Science, v. 335, p 73-76. 
 
 
 
 
3.1 Introduction: The continental lithosphere contains the oldest and most stable structures on 

Earth, where fragments of ancient material have withstood destruction by tectonic and surface 

processes operating over billions of years. Though present-day erosion of in these remnants is 

slow, a record of how they have uplifted, eroded and cooled over Earth’s history can provide 

insight into the physical properties of the continents and forces operating to exhume them over 

geologic time. We constructed a continuous record of ancient lithosphere cooling using U-Pb 

thermochronology on volcanically exhumed lower crustal fragments. Combining these 

measurements with thermal and Pb-diffusion models constrains the range of possible erosion 

histories. Measured U-Pb data are consistent with extremely low erosion rates persisting over 

time scales approaching the age of the continents themselves.  

 

The preservation of ancient fragments of Archean continental crust, or “cratons,” over 

geologic time is intimately linked with the presence of a low-density mantle root that buoyantly 

supports and protects the overlying continent (Jordan, 1988). The long-term stability of these 

roots implies an apparent “isopycnic” balance between the negative thermal buoyancy from 

contraction during cooling and the positive chemical buoyancy from the depletion of the root’s 

denser basaltic component during craton formation (Forte and Claire Perry, 2000; Jordan, 1988). 

Despite this stability, cratons must survive exposure to surface processes working to erode on 
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durations lasting billions years, a process that results in continued rock exhumation towards the 

Earth’s surface. Though present-day erosion within these stable regions is low, the assembly of 

continental masses through mountain building processes (Hoffman, 1988) requires these terranes 

experienced periods of rapid erosion following the construction of topographically high 

mountain belts. An erosional history recording the duration of this early rapid erosional phase 

and the timing and rate of transition to the slow erosion observed today will provide a test to this 

isopycnic hypothesis, allowing us to understand more about the composition and density of the 

lithosphere, its relationship with the underlying mantle, and the thermal, buoyant and mechanical 

forces operating to exhume or bury the continents over the geologic history of the Earth. 

Because the exhumation or burial of the Earth’s surface has a direct effect on the rate of 

heat loss within the lithosphere, a continuous record of lithosphere exhumation can be 

reconstructed through the use of a temperature-sensitive radiometric dating technique known as 

thermochronology. The combination of thermochronologic data with thermal models for heat 

transfer in the lithosphere can be used to measure the processes operating to cool or heat the 

lithosphere in the geologic past (Ehlers and Farley, 2003). Thermochronologic studies have 

typically employed geochronologic systems sensitive to cooling at temperatures  <110 °C. These 

techniques are most useful for measuring cooling due to deformation in the upper crust and 

erosion of topography (Braun, 2002). A thermochronologic system sensitive to cooling at higher 

temperatures and greater depths is insensitive to the “noise” associated with near-surface cooling 

and therefore provides a measure of the background rate of erosion or burial associated with the 

vertical motions of a craton. The U-Pb thermochronologic system is sensitive to cooling at 

temperatures of ~400-650 °C, corresponding to lower crustal depths in cratonic regions of ~20-

50 km (Schmitz and Bowring, 2003). Here we utilize this technique to reconstruct an ancient and 

long-lived thermal history of volcanically exhumed lower crustal fragments, samples that resided 

at depth for billions of years before recent volcanism transported them to the surface as 

“xenoliths”. A high fidelity reconstruction of time-temperature paths for these samples is 

produced using the U-Pb system’s dual decay scheme, where parent isotopes 238U and 235U decay 

at different rates to daughter isotopes 206Pb and 207Pb, respectively. Coupling this dual isotopic 

system with diffusion’s length scale dependency, which causes different crystal sizes to retain Pb 

over different absolute time scales, results in a set of parent and daughter isotopic compositions 

for a range of crystal sizes that is unique to the time-temperature history of the sample 
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(Blackburn et al., 2011). Measured and modeled U-Pb results presented here explore a range of 

crystal grain sizes to exploit these advantages . 

The thermal processes operating to cool or heat the deep lithosphere include conductive 

heat loss, heat input from the underlying mantle, heat production from the decay of heat 

producing elements (HPE), and cooling or insulation due to surface erosion or burial, 

respectively. The combined effects of these processes on the U and Pb isotopic evolution of a set 

of rutile crystals can be described with a simple thermal model . The modeled lithosphere 

thermal history begins with a steep geothermal gradient, consistent with formation or reheating 

during mountain building events, that is followed by cooling due to heat loss at the lithosphere 

surface (Fig. 1A). The time-temperature histories for crustal depths from the thermal model (Fig. 

1B) are then used as the input to a model of Pb production and diffusion . Modeled U-Pb 

thermochronologic data correlate directly with sample depth (Fig. 1C). Shallow samples cool 

quickly through the 400-600 °C rutile thermal window, yielding U-Pb dates that are consistent 

with the model start time, while the deepest samples never cool below the Pb closure for rutile, 

accumulate no radiogenic Pb and yield U-Pb dates of 0 Ma (Fig. 2C). The faster cooling, shallow 

samples yield dates that plot on the concordia curve, indicating agreement between the 238U-206Pb 

and 235U-207Pb systems and closed system behavior. Samples at intermediate depths accumulate 

different amounts of radiogenic Pb, depending on depth, forming a curvilinear ‘discordant’ array 

off concordia that indicates partially open system behavior. Mineral grains that spend a long time 

in the Pb-Partial Retention Zone (PRZ), a temperature range where the diffusion and production 

of radiogenic daughter are at or near a balance, result in the partial retention of Pb with a range 

of isotopic compositions (207Pb/206Pb). A whole-crystal analysis yields an integrated measure of 

the internal Pb-diffusion profile, resulting in the apparent difference between the measured 235U-
207Pb and 238U-206Pb dates (hereafter referred to as ∆ U-Pb). Slower cooling, and thus longer 

durations in the PRZ, results in a Pb diffusion profile containing a wider range of 207Pb/206Pb 

compositions, and thus a greater ∆ U-Pb age difference (Fig. 1D) (Blackburn et al., 2011). 

Because the vertical advection of lower crustal rocks towards the Earth’s surface increases the 

rate of cooling at depth, there is a strong correlation between the maximum ∆ U-Pb value and net 

exhumation, where higher net exhumation rates yield lower ∆ U-Pb values (Fig. 1D). The U-Pb 

system’s sensitivity to cooling rate and, in this thermal setting, to exhumation rate, is the key 

factor that allows constraints to be placed on the long-term evolution of continental surfaces.  
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Along the southwestern edge of the North American Craton within Montana, USA, the 

Archean Medicine Hat Block (MHB) and Wyoming Province (WP) collided at ~1800 Ma to 

form the Great Falls Tectonic Zone (GFTZ), a Proterozoic suture between the two terranes 

(Mueller et al., 2002) (Fig. 2B inset). Lower crustal xenoliths used in this study were collected 

from four ~50 Ma volcanic epicenters within each terrane. The volcanic entrainment of samples 

at 50 Ma is so rapid that U/Pb loss due to volcanic reheating is insignificant (Blackburn et al., 

2011). Lower crustal U-Pb thermochronologic data yield the “humped” topology of ∆ U-Pb data 

predicted by the thermal model (Fig 1D), supporting the use of this model to infer lithosphere 

exhumation rate (Fig. 2). The onset of cooling in both regions is recorded by the higher 

temperature titanite U-Pb thermochronometer. Within the Archean regions this occurs at ~2000 

Ma, indicating the diffusive loss of a Archean cooling record during the younger reheating event 

(Fig. 2A). Within the Proterozoic GFTZ, the onset of cooling in the region does not occur until 

~300 My after the formation of the inferred mountain belt, a delay in cooling that is consistent 

with rapid erosion rates between 1800 and 1500 Ma (Fig. 2B)). The subsequent long-term 

cooling history in each terrane is recorded by the lower temperature rutile thermochronometer, 

where analyses from xenoliths of different depths provide a continuous and overlapping cooling 

record lasting more than ~1500 My (Fig. 2). Thermobarometrically determined xenolith depths 

(Barnhart, 2010; Blackburn et al., 2011) correlate with the timing of cooling, with the shallowest 

samples cooling first and deeper samples cooling at progressively younger times (Fig. 2).  

Assuming an intermediate lithosphere thickness of 225 km (Burdick et al., 2008; Hearn, 2004; 

Yuan and Romanowicz) and the recommended HPE concentrations from compiled datasets 

(Rudnick et al., 2003; Rudnick et al., 1998), forward modeled rutile data for a range of 

exhumation rates from -2.5 to 2.5 m/My (where a negative exhumation rate corresponds to 

burial) bracket the measured data (Fig. 2). Secular variations in exhumation rate control the 

symmetry of the ∆ U-Pb vs. time curves. For example, decreasing the exhumation rate over time 

skews the curve left, yielding modeled data that are also consistent with the measured results, yet 

their average exhumation rates are bracketed by those assuming constant exhumation (Fig. 2A).  

Though the long-term exhumation rates reported here (-2.5-2.5 m/My) are in good 

agreement with shorter duration observations of some of the slowest-eroding surfaces on Earth 

(Portenga and Bierman, 2011), they are far slower than what is observed for the majority of 

continental surfaces (50-500 m/My) (Portenga and Bierman, 2011). This disparity can be 
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attributed to the difference in the time scales of observation and secular variations in 

exhumation.  The exhumation rates presented here are long-term integrated estimates, and do not 

preclude the occurrence of brief periods of faster exhumation associated with tectonic (Portenga 

and Bierman, 2011) or climatic forces (Reiners et al., 2003) operating over intervals much 

shorter than the observational time-scale for this technique.  Once a continental mass is laterally 

isolated from active plate boundaries and vertically supported by a thickened mantle root, the 

long-term uplift of a mountain belt is more likely dominated by the relative densities of the 

lithosphere and mantle (isostasy) (Fischer, 2002) with a potentially transient and smaller 

contribution to uplift or burial imposed by density and thermal anomalies in the underlying 

convecting mantle (dynamic topography)(Braun, 2010).  

The U-Pb system’s sensitivity to the magnitude and time variability of exhumation rate 

can be used to set limits on the timing and duration of events that exhumed or buried the surfaces 

of continents in the deep geologic past. First, we can gauge the duration of rapid erosional 

unroofing following mountain building from the difference between collision age and onset of 

cooling. Within the GFTZ (Fig. 2B), the 300 My difference between the onset of cooling and the 

mountain building event establishes an upper limit at which isostatically driven uplift can persist 

at the rates observed in young and topographically high mountain belts (50-100 m/My)(Fischer, 

2002).  Second, we can rule out erosional histories that include periods of exhumation or burial 

faster than a given rate or longer than a given time interval (with a trade-off between duration 

and rate).   For example, we can dismiss histories for the GFTZ with exhumation or burial lasting 

longer than 50 My at rates that exceed ± 50 m/My.   More subtle transient deformation 

mechanisms such as dynamic topography, with a characteristic amplitude less than 1 km over a 

distance of 1000 km or more, will be undetected on the short time scales (tens to hundreds of 

My) and modest exhumation/burial rates (10 to 100 m/Ma) at which this process operates 

(Braun, 2010). Despite the possibility of brief erosional or burial events of moderate magnitude, 

the data presented here require an overall cratonic history dominated by vertical motion rates 

near zero. This indicates that the isostatic balance observed in the present-day continents has 

been largely maintained over geologic time, extending back at least to the onset of cooling within 

each terrane.  Since this stability was first meet, the craton has experienced a balance between 

erosion and burial, with a corollary balance between the lithosphere’s internal buoyancy forces 

(1, 2) and near zero isostatic uplift, further indicating a minimal change in the relative densities 
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of the lithosphere and mantle over intervals lasting billions of years. 

 
3.2 Figure Captions 
 
Figure 1. Thermal history for the lithosphere (A) used to produce time-temperature paths (B) for 
samples at middle to lower crustal depths. (C) Time-temperature paths are used to calculate 
modeled U-Pb thermochronologic data for each sample depth (colors) and over a range of grain 
sizes. The “concordia” curve represents the daughter to parent ratios of 235U-207Pb and 238U-206Pb 
for a U-Pb system that remains closed throughout Earth history. The shallowest samples cool 
quickly through the Pb Partial Retention Zone (PRZ), yielding old 238U-206Pb dates that plot on 
concordia (C) or yield ∆ U-Pb values close to zero (D). The deepest samples reside at 
temperatures that are too hot for Pb retention in rutile, and thus yield young to 0 Ma dates. The 
middle to lower crust spends a long time in the Pb-PRZ, resulting in discordance (C) and a large 
apparent offset between the two U-Pb systems (D). The magnitude of ∆ U-Pb values (D) is 
correlated with lithosphere exhumation rate. 
 
Figure 2. Plot of ∆ U-Pb vs. time for measured and modeled lower crustal xenolith data from a 
NW-SE transect through Montana: (A) Archean Medicine Hat Block (MHB) and Wyoming 
Province (WP), (B) Proterozoic Great Falls Tectonic Zone (GFTZ). Figure inset provides sample 
number and geobarometrically determined depth. Faster-cooling, shallow samples yield older 
dates with a trend of increasing ∆ U-Pb in time, while deeper samples decrease with time, 
consistent with the results predicted by the thermal model (Fig. 1D).  Uncertainties on individual 
analyses are shown at the 2σ level and are dominated by the uncertainty of the 235U-207Pb date.  
Dashed, dotted and solid lines mark the forward-modeled U-Pb results with exhumation rates of 
-2.5 to 2.5 m/My. A dashed-dot line in (A) marks the data produced by an erosional history that 
decreased in time. Figure inset: simplified geologic terrane map of Montana, USA. Stars mark 
the xenolith sample location within each geologic terrane.  
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Figure 3.2
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Chapter 4: Zirconium in rutile speedometry: constraining 
lower crustal cooling rates and residence temperatures 
 
 
 
Blackburn, T., Bowring, S.A., Schoene B., Mahan K., (2012) Zirconium in rutile speedometry: 
constraining lower crustal cooling rates and residence temperatures., Earth and Planetary 
Science Letters, v. 317-318, p 231-240.  
 
 
 
Abstract: The incorporation of zirconium into the mineral rutile (TiO2) has been both 
empirically and experimentally calibrated as a measure of rutile crystallization temperatures 
(Watson et al., 2006). This temperature sensitive system has been employed as a geothermometer 
with applications to a number of different geologic settings and rock types. Experimentally 
measured kinetics for Zr diffusion in rutile (Cherniak et al., 2007) indicate that Zr can be lost to 
temperature dependent diffusion, warranting further investigation of the geologic significance of 
calculated temperatures. Coupling diffusion kinetics with numerical solutions to the diffusion 
equation provides a means to forward model the time and temperature dependency of the system. 
Modeled results indicate a strong dependency of Zr concentration in rutile on both: 1) initial 
cooling rate following high-temperature metamorphism/crystallization and 2) temperature and 
duration of long-term geologic residence. Zr concentrations measured in rutile from lower crustal 
xenoliths that resided at 25-45 km depths for ~2000 My, reveal Zr concentrations in the 
approximate grain center that are consistent with temperatures measured by independent 
thermometers. Forward models for Zr diffusion show that preserving a Zr record of these initial 
temperatures in the center of a rutile crystal with a 50 µm radius requires rapid cooling  (>300 
°C/Ma) from magmatic/metamorphic temperatures followed by a long-term residence (2000 My) 
at temperatures <550°C. This provides a new way to determine cooling rates between 900-500 
°C and for constraining the temperature of the deep crust. Modeled temperature-time paths using 
combined rutile Zr and U-Pb geochronological data permit evaluation/refinement of published 
diffusion kinetics. Properly quantified, this system can be utilized as a high temperature geo-
speedometer: a powerful tool for evaluating heat transfer rates at these very high and often 
unconstrained temperatures. 
 
4.1 Introduction:  

 Creating a comprehensive model for any solid Earth system, whether a study in rock 

rheology, mantle dynamics or planetary formation, often requires a measure of a system’s initial 
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temperature. Geothermometry, as broadly defined, permits estimation of equilibrium 

temperatures for systems using empirical or experimental calibrations of a measured state of 

mineral phase equilibrium. Utilizing a temperature sensitive equilibrium of silica, zirconium and 

titanium in the minerals quartz, zircon and rutile, the Zr-in-rutile thermometer (ZRT) has 

recently been developed to constrain the crystallization temperatures of a variety of rocks. The 

original calibration of the system utilized temperature constraints from independent 

thermometers, correlated with Zr concentration in rutile (Zack et al., 2004).  The ZRT was 

verified and refined by several experimental studies (Ferry and Watson, 2007; Tomkins et al., 

2007; Watson et al., 2006) resulting in a well-defined relationship between rutile Zr 

concentration and equilibrium temperature and pressure. This novel accessory mineral 

thermometer has been applied to a wide variety of rock types and extreme geologic 

environments, from ultra-high-temperature (UHT) granulites (Baldwin and Brown, 2008) to 

ultra-high pressure eclogites and blueschists (Spear et al., 2006; Zack and Luvizottow, 2006). 

The mobility of Zr in rutile by solid state diffusion was investigated by Cherniak et al. (2007) in 

order to evaluate the potential for diffusive loss of Zr from rutile. This previous experimental 

study indicates that Zr in rutile obeys thermally activated volume diffusion with an activation 

energy (Ea) and prefactor (D0) of 170±30 kJ/mol and 9.8e-15 m2/s, respectively (Cherniak et al., 

2007).  An important implication derived from this study is that high temperature rocks (800-

1000 ºC), including the previously studied granulites and high temperature eclogites, will only 

retain the Zr concentration associated with UHT/HT conditions if cooling rates following these 

high temperatures are extremely rapid (>104 ºC/M; (Cherniak et al., 2007). Therefore, the 

preservation of high-temperature systems recorded by the ZRT implies that the extremely rapid 

cooling required to preserve these concentrations is perhaps inherently linked with UHT/HT 

conditions.   

The purpose of this paper is to systematically explore the temperature and time 

dependence of Zr concentrations in rutile by applying the experimentally determined diffusion 

kinetics (Cherniak et al., 2007) and numerical solutions to the diffusion equation to 

understanding intracrystal Zr concentration measurements in rutile.  We show that the Zr-in-

rutile system for lower crustal rocks may or may not yield a temperature of crystallization, but 

can record: 1) the cooling rate through a thermal window of approximately 1000-500 ºC (Fig. 1a) 

and 2) a maximum estimate for the long-term residence temperature experienced by the sample. 
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Quantifying the degree of Zr diffusion in rutile from lower crustal samples can constrain thermal 

histories not recorded by other thermochronometric techniques. Previously employed 

temperature sensitive systems such as the U-Pb and 40Ar/39Ar thermochronometers have an initial 

state with a concentration gradient of zero that increases only with the in-situ production of 

daughter isotope(s) and decreasing temperatures (Fig. 1b). The Zr-in-rutile system, however, 

begins with an extremely steep gradient making it highly susceptible to diffusive loss during 

initial cooling from magmatic/metamorphic temperatures, and thereby provides a measure of 

cooling rates between 700-1000 ºC; a temperature range that other thermochronometers remain 

insensitive to. Determining the amount of Zr lost by diffusion can provide new insight into the 

Earth’s thermal history and allow users to quantify the rates of heat transfer in underexplored 

regions of the lower crust and upper mantle.  

 

4.1.1 Geologic applications: High temperature cooling rates and long-term residence 

temperatures 

There has been a great deal of interest in understanding the geologic setting of rocks 

recording high-temperature (HT) and ultra-high temperature (UHT) metamorphism (Baldwin 

and Brown, 2008; Harley, 1998). Understanding the time-scales and conditions for UHT 

petrogenesis and the subsequent exhumation of these samples holds important information on the 

conditions and composition of the deep crust and the plate tectonic processes operating to 

exhume them (Hacker et al., 2005). Despite the focus on these unusual rocks, the time-scales and 

processes leading to their subsequent exhumation to the Earth’s surface remain unclear (Baldwin 

et al., 2004; O'Brien and Rötzler, 2003). This may be due to an incomplete determination of their 

P-t-T history, in particular at a gap between the UHT and HT conditions (>800 °C) recorded by 

geothermometers and the low to moderate temperatures (400-600 °C) recorded by 

thermochronologic systems (U-Pb, 40Ar/39Ar). The Zr-in-rutile system has potential as a 

geospeedometer capable of describing the cooling rates of rocks through this previously 

unconstrained thermal window (700-1000 °C), thus providing insight into physical models for 

heat transfer in the Earth. 

Similarly enigmatic are the long-term residence temperatures that lower to middle crustal 

rocks experience after the initial cooling from magmatic/metamorphic conditions. There remains 

a 200-300 °C discrepancy in lower crustal temperature estimates inferred from different sources 
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of data used for measuring the lithosphere’s geothermal gradient.  Geothermal gradients 

produced by mantle xenolith P-T arrays when extrapolated upwards yield lower crustal 

temperatures of 600 °C or more (McKenzie et al., 2005). Meanwhile, thermal models utilizing 

surface heat flux measurements, often yield lower crustal temperatures of 500 °C or less (Jaupart 

and Mareschal, 1999; Pollack and Chapman, 1977). Similar temperatures are implied by U-Pb 

thermochronologic data from lower crustal xenoliths that record slow cooling over a billion years 

or more at lower crustal temperatures between 400-600 °C (Blackburn et al., 2011; Schmitz and 

Bowring, 2003). By measuring Zr concentrations in rutile from a suite of lower crustal xenoliths 

over a range of depths, one can place maximum estimates on the long-term residence 

temperatures for these samples. The Zr-in-rutile system’s sensitivity to holding temperature over 

geologic time can be employed to place limits on the temperatures experienced at middle to 

lower crustal depths and resolve the discrepancy between mantle xenolith and surface heat 

flux/model geothermal gradients.  This information will help to inform a new and independent 

measure of lithosphere temperature conditions as recorded at lower to mid-crustal depths. 

 

4.2 Methods 

To quantify a sample’s thermal history over the 1000 -500 ºC temperature range in which 

the Zr-in-rutile system is sensitive, one must either: 1) characterize the diffusion profile of Zr 

within a single grain or 2) measure the Zr concentrations in grains of variable size. Accurate 

measurement of a diffusion profile using intracrystal measurement techniques is often 

complicated by variations in grain orientation, and level of sectioning into the grain. Because of 

these variations, any intracrystal Zr measurement from a rutile crystal with a 3-D Zr diffusion 

profile will lack sufficient spatial control with which to infer any meaningful information about 

the diffusion profile and thus the time-temperature history of the sample. In short, a singular 

“spot” analysis represents a spatially uncontrolled sub-sampling of a diffusion profile and by 

itself has limited significance. Previous ZRT studies have commonly used an ion microprobe 

(SIMS) or electron microprobe (EMP) techniques for Zr analyses.  Because the majority of 

published ZRT data were acquired using these techniques, the numerical modeling results 

presented here will focus on extracting information from these in-situ data.  

A criterion for evaluating Zr diffusion from intracrystal measurements must be developed 

in order to place meaningful limits on a sample’s thermal history. The essential constraint 
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employed here is the presence or absence of “center retention” – a term previously used by 

Cherniak et al. (2007) to describe whether equilibrium Zr concentrations within the core of the 

grain have been preserved after particular t-T history (Fig. 1). Numerical modeling presented 

here will focus on extracting information pertaining to a sample’s time-temperature history based 

on the retention or loss of equilibrium conditions within the grain center. Importantly, the center 

retention criterion can be evaluated using SIMS or EMP techniques. An independent measure of 

the system’s initial temperature is required for comparison, with the further assumption that both 

thermometers are recording the same maximum temperatures.  

 

4.2.1 Zr laboratory methods 

In this study, Zr concentrations were determined using a Cameca IMS 1280 ion 

microprobe at the Northeast National Ion Microprobe Facility at Woods Hole Oceanographic 

Institution. A beam of negatively charged oxygen ions (16O-) with a current ranging from 750 pA 

to 1.1 nA was focused to a spot of approximately 10 – 15 mm. Secondary ion intensities of 46Ti+ 

and 90Zr+ were measured by jumping magnetic field from 46Ti to 90Zr cyclically 10 times for each 

analysis with a mass resolving power of 5500. Natural and synthetic rutiles standards with Zr 

concentrations ranging from 4.45 ppm to 769 ppm (Zack et al., 2004) were used to determine a 

relationship between Zr contents and 90Zr/46Ti intensity ratios (a calibration line). The calibration 

line is expressed as: Zr (ppm) = 7.22E5 * (90Zr/46Ti) with an error (2s) for the slope of ±2.5%, 

and the session-to-session reproducibility of the slope is within ±5%. For the range of 

concentrations encountered here (>2500 ppm), the largest uncertainties are derived from the 

calibration line slope error described above, since errors for 90Zr/46Ti measurements are much 

less than 1% (2s). Zr measurements were collected from rutile samples mounted length-wise, 

ground down/sectioned so that the approximate grain center was exposed and polished. Spot 

analyses were made from both the grain centers and grain tips.  

 

4.2.2 Modeling Zr diffusion in rutile 

  Modeled intracrystal Zr diffusion profiles for rutile are produced using numerical forward 

models and are used to evaluate the temperature and time dependence of Zr retention/diffusion 

within rutile. Numerical solutions to the diffusion equation using experimentally determined 

kinetics have previously been employed to develop accurate and stable solutions to model 
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diffusion in other temperature dependent systems (Blackburn et al., 2011; Schoene and Bowring, 

2007). The finite difference model employed here utilizes a Crank-Nicholson solution to the 

spherical form of the diffusion equation and results in an intracrystal Zr concentration profile for 

any pre-assumed time temperature path. The spherical form of the diffusion equation provides a 

suitable replacement for cylindrical grains with equivalent surface to volume ratios (Meesters 

and Dunai, 2002). Unlike analytical solutions to the diffusion equation, numerical models are not 

restricted to a constant diffusivity and allow testing of time-temperature paths in any form. The 

initial Zr concentration within a modeled rutile crystal are homogeneously distributed and set to 

a value that corresponds to the initial temperature for the model run using the algorithm from 

Ferry and Watson (2007) (Fig. 1a). Employing this model for measuring rock cooling rates and 

residence temperatures is based on two assumptions: 1) equilibrium is attained continuously at 

grain edges at all temperatures and (2) the system is continuously saturated with Zr at all times. 

These assumptions make it possible to convert all Zr concentrations to temperatures with the 

experimental calibrations for Zr and temperature. Further, the homogenous initial condition 

assumes that any variations in the initial Zr concentration as a result of changes in temperature or 

Zr activity during rutile crystallization are negligible.  Equilibrium conditions at the grain edge 

are modeled using a boundary condition that changes with temperature and time, reflecting the 

equilibrium Zr concentration within the surrounding host rock (Fig. 1a) (also using the algorithm 

from Ferry and Watson (2007)). Exponential cooling paths, typical for rocks in the lithosphere, 

result in a significant early decrease in temperature and are thus accompanied by an early 

decrease in Zr at the grain edge. The resulting large concentration gradient between the high Zr 

concentrations within rutile and low concentrations in the host rock leads to the possible 

diffusive loss of Zr (Fig. 1a). The purpose of this model is to constrain: 1) the minimum initial 

cooling rates required to preserve Zr concentrations consistent with metamorphic/igneous 

temperatures and 2) place a maximum estimate on the long-term residence temperatures required 

to preserve Zr over geologic time scales. 

 

4.2.2.1 Cooling rate sensitivity  

The retention of Zr concentrations consistent with equilibrium conditions within a rutile 

grain is highly sensitive to the sample’s cooling rate, allowing the system to be employed as a 

geospeedometer. Forward modeled results indicate that quickly cooled grains retain Zr 
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concentrations consistent with initial temperatures, while slow cooling allows for the diffusive 

loss of Zr from the rutile crystal, resulting in a rounded Zr profile and (potentially) sufficient loss 

of Zr so that center retention criteria are no longer meet. Figure 1a shows the internal diffusion 

profiles for a range of cooling rates (101 – 105 °C/Ma, for an initial temperature of 900 °C). With 

decreasing cooling rate the difference between the initial core concentration and the measured 

core concentration (∆ core) will consistently increase (Fig. 2). If the measured core concentration 

is equal to the initial core concentration, then center retention criteria are met. To utilize the 

relationship between initial and measured core concentration as a geospeedometer one must have 

an independent measure of the systems initial temperature. Though the difference between core 

and rim concentrations of a single grain is indicative of a diffusion profile (∆ core-rim), the 

relationship between cooling rate and this value is also dependent upon core concentration value 

(Fig. 2). For a 50 µm radius grain within an initial temperature of 900 °C, cooling rates as low as 

500 °C/Ma can meet center retention, assuming the highest experimentally determined activation 

energy (200 kJ/mol) within the reported uncertainty (170±30 kJ/mol, Cherniak et al., 2007). 

Cooling rates of at least 104 °C/Ma and 106 °C/Ma are required to meet center retention of 170 

kJ/mol and 140 kJ/mol Ea, respectively; rates that exceed expectations for cooling in the dry and 

conductive lower crust. Increased temperatures are accompanied by an increase in Zr diffusivity, 

requiring even faster cooling to preserve UHT conditions.  For example, with an initial 

temperature of 1000 °C, cooling rates of more than 2500 °C/Ma are required to maintain center 

retention. At lower initial temperatures of 800 °C, cooling rates of at least 100 °C/Ma will meet 

center retention for a crystal with a 50 µm radius. Similarly, decreasing the grain radius to 20 µm 

will require increased cooling rates (>1500 °C/Ma) to meet center retention for an initial 

temperature of 900 °C.  

 

4.2.2.2 Constraining maximum residence temperatures 

 Following initially rapid cooling, the future preservation of Zr in the system is then 

dependent upon the long-term residence temperature of the system. Forward models assuming 

initially rapid cooling followed by isothermal holding can be used to explore the relationship 

between long-term residence temperature and the concentration of Zr within the center of a rutile 

crystal. The resulting center retention partial retention zone (CR-PRZ) shown in figure 3, 

describes the Zr concentration within the center of crystals with radii between 10 and 50 µm as a 
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function of increasing temperature or depth through the lithosphere. Plotted along with the CR-

PRZ are the experimental (Ferry and Watson, 2007; Tomkins et al., 2007; Watson et al., 2006) 

and empirical calibrations of Zr (Zack et al., 2004) for comparison.  

Grains retaining Zr concentrations consistent with initial high temperature equilibrium 

extend to isothermal holding temperatures of 450-550 °C, where the range in temperature 

correlates to grain sizes of 10 and 50 µm. At these low holding temperatures, diffusion is slow 

enough to prevent the diffusive loss of Zr, yielding a reliable record of initial temperature 

conditions. At temperatures greater than 600 °C, diffusion is sufficient to permit the loss of Zr 

associated with initial temperatures and instead yield Zr concentrations consistent with the 

isothermal holding temperatures (Fig. 2). This indicates that rutile residing above 600 °C will 

yield Zr concentrations that correlate to the sample’s temperature at the time of exhumation 

towards the surface. The ~450-600 °C temperature window between these two regimes marks the 

CR-PRZ for the system, a region where grains experience partial loss of Zr derived from initial 

high temperature equilibrium, yet still yield Zr concentrations hundred’s to thousand’s of ppm 

higher than the Zr concentrations predicted by the experimental and empirical calibrations for 

these temperatures (Fig. 3).  The convergence between the CR-PRZ at temperatures > 600 °C 

and the experimental calibrations are the direct result of our model’s use of a changing boundary 

condition where the Zr concentration at the grain edge correspond to the system temperature. If 

the model employed a zero concentration boundary condition for the grain edge, the CR-PRZ 

would be near identical at temperatures above 600 °C, yet would decrease to zero concentrations 

with increasing temperature. 

   Preservation of high Zr concentrations associated with metamorphsim/igneous events 

can be used to infer a residence at temperatures less than ~550 °C (for durations of 2000 My); a 

value that is insensitive to initial Zr concentration (i.e. equilibrium temperature) (Fig. 3). This 

550 °C estimate serves as a maximum value, as it uses the maximum activation energy permitted 

by the reported uncertainty (200 kJ/mol) (Cherniak et al., 2007). Lack of center retention may be 

the result of either cooling at rates <103 °C/Ma through 700-1000 °C or holding at temperatures 

> 550 °C. The presence of center retention permits the conclusion that both requirements of a 

minimum initial cooling rate of 103 °C/Ma and long-term residence below ~550 °C were met. 

Variations from these simple cooling paths, such as short reheating events, can potentially go 

unrecorded. For example, samples experiencing long-term residence at 450 °C, could still retain 
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center retention while being reheated to 600 °C for 100 My or to 800 °C for < 2 My. Higher 

temperatures or longer durations of reheating will result in the loss of center retention. 

Predictably, the system becomes more sensitive to reheating events at higher residence 

temperatures, i.e. durations of reheating are even shorter if long-term residence is 550 °C. The 

system’s sensitivity to reheating events allows users to conclude that if center retention is 

observed, than the majority of the sample’s time-temperature history is consistent with rapid 

initial cooling (>103 °C/Ma) followed by residence below 550 °C. By assuming a geothermal 

gradient for the region, a temperature can be assigned to each xenolith depth, permitting 

measured Zr data to be compared to the modeled CR-PRZ (Fig. 3). Varying the assumed 

geothermal gradient will cause the CR-PRZ to move either closer (hotter geotherm) or further 

(colder geotherm) from the Earth’s surface. 

 

4.2.2.3 Detecting volume diffusion with intracrystal analyses  

This study’s use of center retention criterion to place constraints on the time-temperature 

history of the sample provides a means to evaluate histories without the requirement of 

producing a direct measure of a crystal’s internal diffusion profile. Despite this, it is worthwhile 

exploring how volume diffusion may manifest itself within a dataset produced by intracrystal 

measurement techniques.  Figure 4 presents a schematic illustration of the data that could result 

from an internal transect of Zr “spot” analyses oriented parallel to the c-axis of a grain. We 

consider cases of both isotropic (Fig. 4a) or anisotropic (Fig. 4b and c) diffusion operating. 

Experimental diffusion data for Zr in rutile were measured for diffusion parallel to the c-axis 

(Cherniak et al., 2007).  

In cases of isotropic (Fig 4a) or anisotropic diffusion where diffusion is faster in the a/b 

direction than c (Fig 3b), the variation in Zr concentration revealed by intracrystal analyses 

would depend on the depth of sectioning into the grain (Fig. 3d). Any observed variation in 

concentration from core to rim would yield an apparent profile dependent on the level of 

sectioning into the grain (Fig. 4a). Information pertaining to the time-temperature history of the 

sample, may be constructed through a series of measurements through the grain parallel to the a 

or b axis. If, however, Zr diffusion were anisotropic with the dominant direction of diffusion 

parallel with the c-axis, grains mounted parallel to the c-axis (length-wise) would allow the 
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diffusion profile to be mapped by several spot analyses from core to rim (Fig. 4c). Any measured 

variation with Zr concentration would reflect the actual diffusion profile. 

In the case of isotropic or a/b dominant diffusion, if the centers of several grains of 

approximately the same grain size were analyzed, with each grain (unavoidably) sectioned to a 

different depth, we can anticipate a range of Zr concentrations that reflect the true variation of 

values along some portion of the true diffusion profile (Fig 4d).  For example, in a quickly 

cooled sample, the Zr-in-rutile system would record a uniform concentration among grains, 

independent of the level of polishing. Slow cooling or high temperatures over long time-scales 

however, will yield significant variations in Zr concentration from grain to grain. This model 

predicts an increase in the variability in Zr from the centers of grains with increasing depth into 

the crust (xenolith depth). These data would only be symptomatic of diffusion and because the 

data is not spatially controlled one cannot reconstruct a diffusion profile. An enhanced measure 

of Zr diffusion could be provided by whole grain Zr concentration measurements over a range of 

rutile grain sizes, where internal diffusion profiles are inferred based on variations in Zr with 

grain size. 

 

4.3 Geologic Setting: Pressure-Temperature-time constraints  
 Zr concentration in rutile grains were measured from middle to lower crustal xenolith 

samples, derived from the Archean Medicine Hat Block (MHB) and adjoining Great Falls 

Tectonic Zone (GFTZ), both located within Montana, USA (Fig. 5c inset). Previous published 

data for samples SG02 and SG05 from the MHB include, major element/phase 

thermobarometery and pseudosection analysis, U-Pb rutile thermochronology and U-Pb zircon 

geochronology (Blackburn et al., 2011). Rutile and zircon data for sample ROB1 from the GFTZ 

are included in the appendix. Pressure estimates are 0.8 for SG02, 1.0 GPa for SG05 and 1.3 GPa 

for ROB1. Temperature estimates from pseudosection construction lie between 800-950 °C for 

SG02 and 700-900 °C for SG05.  Garnet-biotite thermometry for these samples yield 

temperatures on the lower end of this range at ~700 °C. Garnet-Biotite and garnet-

clinopyroxene-thermometry yield temperature estimates of 800 and 750 °C respectively for 

ROB1 (Barnhart, 2011). Zircon U-Pb data record Archean protolith formation for the shallowest 

sample SG02, with zircon overgrowths at ~1800 Ma from what is interpreted to be the timing of 

the amalgamation of the MHB craton onto North America (Mueller et al., 2002). Zircon from 
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SG05 and ROB1 record crystallization between ~1680 and 1800 Ma (ROB 1 see DR Table 3). 

Rutile U-Pb thermochronometry from each of these samples record a post-Archean cooling 

history (Blackburn et al., 2011). Paleoproterozoic zircon U-Pb dates and a post-Archean cooling 

history both suggest that measured Zr concentrations and ZRT temperatures from these samples 

were derived during this younger orogenic event. 

Following the Proterozoic orogenic event rutile U-Pb thermochronometric data record 

extremely slow cooling through the ~400-600 °C rutile Pb PRZ. The shallowest sample SG02 

yields U-Pb rutile dates over a range of ~1400 to 1000 Ma, where the largest rutile crystal yields 

the oldest date and the smallest crystal the youngest –consistent with volume diffusion. The next 

deepest sample SG05 yields dates between 1100 and 650 Ma, also correlating with grain size. 

The deepest, 45 km sample from the nearby GFTZ records cooling between ~550 and 50 Ma. 

The significant span of dates within each sample combined with a trend of younging downward 

with sample depth are interpreted to indicate prolonged lower crustal residence and slow 

relaxation of a conductive geotherm (Blackburn et al., 2011).  

 
4.4 Results  

Zirconium concentration measurements for the xenolith samples ranged between ~2800-

3500 for the shallowest sample SG02, ~3800-5000 ppm for the deeper xenolith SG05 and 

between ~165 and 1600 ppm for the deepest sample ROB1 (core Zr concentrations plotted Fig. 3 

and 5). Multiple spot analyses within single grains were measured yet systematic variations in Zr 

concentration were only detected within sample ROB1, where spot measurements close to the 

grain tip decrease by as much as 120 ppm (0-50%) when compared to the core measurement. 

Shallower xenolith samples SG02 and SG05 were homogenous on the ~100-200 ppm level, with 

these small-scale variations (2-3%) both increasing and decreasing towards the grain edge. A full 

report of measured Zr data is included in table A.1. The measured concentrations yield 

temperatures of ~870-900 °C for SG02, ~900-940 °C for SG05 and  ~600-800 °C for ROB1 

using the Ferry and Watson (2007) thermometer. Center retention is met for all three samples 

with at least one analysis from each sample reaching concentrations consistent with or exceeding 

independent temperature estimates (Fig. 5a). For the ~40-50 µm grains (radius) in sample ROB1 

this implies initial cooling rates of at least 300 °C/Ma, followed by long-term residence at 

temperatures less than ~550 °C. The smaller range of grain sizes (~20-30 µm radius) from SG02 
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and SG05 require lower long term holding temperatures of ~ 500-520 °C and faster cooling rates 

on the order of 2000 °C/Ma.  

Deviations from this center retention value were observed in each sample. In the shallow 

sample SG02, deviations of up to 20-26 % are observed for a range of ~10-25 µm (radius) 

grains, up to 30- 60% difference over a range of 10-50 µm grains in the 35km sample SG05 and 

up to 130-160 % for 30-45 µm grains from the 45km deep sample ROB1 (Fig. 5c). The trend of 

increasing percent variation with xenolith residence depth suggests an increase in the diffusive 

loss of Zr with sample depth (Fig. 5c). 

 

4.5 Discussion  
4.5.1 Evaluating rapid cooling rates 

A limit on the body size of intrusive bodies for the lower crustal samples studied here can 

be placed by examining the rates of cooling predicted for 2 end-members of cooling within the 

lithosphere: 1) conduction only and 2) magmatic cooling. The well-insulated and dry lower crust 

should thus represent a near end-member of slower cooling that can be approximated by a purely 

conductive thermal model where the time-scale of cooling (t) is proportional to the size of the 

intrusive body and the temperature of the surrounding country rock (t~pluton radius2)(Spera, 

1980). We can refine this calculation using a model for the temperature dependent thermal 

diffusivity from Whittington (2009) and a analytical half-space solution from Carslaw and Jager 

(1959). For a minimum country rock temperature of 400 °C, the largest intrusive body radius that 

yield cooling rates consistent with the requirement of the Zr data presented here  (>103 °C/Ma) is 

~5 km.  

Within a magma chamber there are several additional processes operating to both cool 

and heat the system. Cooling processes include conduction, both at the intrusion wall as well as 

within the magma, convection both within the magma and externally by hydrothermal 

circulation. The efficiency of this cooling is highly variable and dependent upon such variables 

as magma composition and viscosity, magma water content, and the depth of intrusion (Spera, 

1980). These processes potentially culminate in cooling timescales (t) far shorter than from just 

heat conduction alone (t~pluton radius1.3), permitting the intrusion body sizes slightly larger than 

5 km (Spera, 1980).  
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In the case of xenoliths from Montana, the presence of 1800 Ma zircon growth and the 

lack of any Archean cooling signature recorded by the rutile U-Pb system suggest the partial 

remelting and massive reheating of an Archean protolith occurred during amalgamation of the 

MHB terrane onto the North American craton. Cooling following this event could only occur at 

rates up to 103 °C/Ma if rocks were juxtaposed onto colder material. The fact that center 

retention is met by samples from the lower crust at all depths between ~25-45 km indicate that 

only small and localized regions of the lower crust, likely smaller than 5km in radius, are heated 

during magmatism and/or metamorphism and then cooled rapidly due to low temperatures in the 

surrounding country rock. 

 

4.5.2 Differences in t-T path sensitivity between the Zr and Pb systems in rutile 

The U-Pb and Zr rutile systems deliver information used to constrain a different portion 

of sample’s cooling history. The rutile U-Pb system is highly sensitive to a sample’s low to 

moderate temperature cooling history (400-600 °C). Though long-term temperatures also control 

the Zr-in-rutile system, this system is highly sensitive to the initial cooling rate from magmatic or 

metamorphic temperatures; a temperature range the U-Pb system cannot constrain. The cause for 

difference in the temperature range at which each system is sensitive to lies in the relative 

difference between internal concentration gradients of each diffusant at the time of system 

formation. The Zr-in-rutile system begins with a high initial concentration that correlates to 

equilibrium temperatures. As a rock cools and the concentration at the grain boundary decreases, 

a large concentration gradient develops between the high Zr concentrations within the grain and 

the lower concentrations in the surrounding matrix or host rock (Fig. 1a). The system’s 

sensitivity to cooling rate from high temperatures is the direct result of this large concentration 

gradient; without rapid initial cooling, Zr concentrations that correlate to maximum temperatures 

would be lost by diffusion. The rutile Pb system however, has zero radiogenic lead at the time of 

system formation. Only with decreased temperature/diffusion can Pb produced by decay of U 

begin to accumulate and build a Pb diffusion profile. Figure 1 plots the internal concentration 

profiles of Pb and Zr within a rutile grain for the same time-temperature path (Fig. 1 inset). Zr 

concentration decreases dramatically along the rutile grain rim in a time frame (<1 My) where no 

Pb retention has occurred. The two systems complement one another to provide complete (>900-

400 °C) constraints on a sample’s time-temperature history.  
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4.5.3 Combining U-Pb and Zr rutile systems and refining Pb/Zr diffusion kinetics 

A time-temperature path for the lower crustal xenoliths from Montana can be determined 

by finding the thermal histories that fit observed data from both the Zr and U-Pb systems. The Zr 

system sets a limit to the maximum temperature for the lower crust; samples residing at 

temperatures higher than this maximum will result in a loss of Zr center retention. The U-Pb 

system, however, provides a minimum temperature limit to this long-term residence: measured 

U-Pb data require slow cooling through the rutile Pb PRZ, faster cooling rates will result in 

model dates that are too old and lack the observed discordance and ~500 Ma spread dates in 

grain size vs. age (Fig. 6). By testing a series of t-T paths with initially rapid cooling followed by 

slow cooling through a range of residence temperatures, we can find which paths yield forward 

modeled data that agree with both U-Pb and Zr rutile data. Finding a time-temperature path that 

fits each system provides an independent test for the diffusion kinetics for Pb in rutile, the 

accuracy of which has been debated due to the differences between apparent field closure (400-

500 °C) (Mezger et al., 1989) and Dodson closure temperatures calculated using the measured Pb 

in rutile kinetics (TC=485-630 °C, DTdt = 0.1-100 °C/Ma) (Cherniak, 2000; Dodson, 1973).   

 The temperature range at which Pb retention in rutile occurs is highly sensitive to the 

diffusion kinetics of the system. The diffusion kinetics, however, have little affect on the 

interpreted cooling rate, as this value is interpreted from the topology of U-Pb data utilizing the 

U-Pb system’s dual decay scheme (Blackburn et al., 2011). A lower Ea for Pb would permit 

cooling at a lower temperature and not affect the conclusion of ~0.05-0.1 °C/Ma cooling rates 

(Fig. 6). Zr activation energy is at their maximum for this analysis, suggesting a lower activation 

energy for Pb diffusion is the only variable remaining to be explored. The nominal published 

kinetics for Pb diffusion in rutile measured in a synthetic sample are: Ea 250±12 kJ/mol and (D0) 

of and 3.9e-10 m2/s (Cherniak, 2000). Additional experiments for Pb diffusion in rutile by 

Cherniak (2000) used natural rutile samples with experimental data reported for both parallel to 

c-axis and normal to c-axis diffusion. Our regression of diffusion kinetics from this data yields 

an Ea = 260 ± 30 kJ/mol and D0 = 6.9e-10m2/s for parallel to c-axis diffusion and Ea =220 ± 22 

kJ/mol and D0 =2.08e-11m2/s for normal to c-axis diffusion (Fig. 6b inset).  

Measured rutile U-Pb data from each xenolith and the forward modeled U-Pb data 

following Blackburn et al. (2011) are plotted on a concordia diagram in figure 6a. The measured 
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U-Pb data are bracketed by modeled data with cooling paths that are initially rapid (2000 °C/Ma) 

until a specified inflection temperature (Tinfl), followed by slow cooling at a rate between 0.05-

0.1 °C/Ma (Fig. 6). Using the nominal diffusion kinetics for Pb, the inflection temperatures that 

yields a good fit with the data are is consistently too high to permit the retention of Zr (Fig. 6d).  

To satisfy both systems, the kinetics for Pb diffusion in natural rutile (220 ± 22 kJ/mol, 2.08e-11 

m2/s) with a activation energy of at least 220 kJ/mol (Fig. 6b inset) are required. This value lies 

outside the uncertainty of activation energies reported for the synthetic rutile (Fig. 6a inset).  

It is important to note that this analysis assumes a maximum Zr Ea of 200 kJ/mol and 

values for Pb would change if a lower Zr value were used. Lower Ea values for Zr diffusion, 

however, were shown previously to require cooling rates to meet center retention far above those 

anticipated in the conductively cooling lithosphere. Because of this we support a value of 200 

kJ/mol, 9.8e-15 m2/s for Zr and 220 kJ/mol, 2.08e-11m2/s for Pb diffusion in rutile as the most 

internally self-consistent values.  This corresponds to a Dodson TC for Pb in rutile of 420-570 °C 

(DTdt = 0.1-1 °C/Ma, a = 10-100 µm); values that are consistent with field studies (Anderson et 

al., 2001; Corfu and Easton, 2001; Corfu and Stone, 1998; Flowers et al., 2006; Mezger et al., 

1989; Miller et al., 1996; Moller et al., 2000; Schmitz and Bowring, 2003). These kinetics are 

used to conclude a lower crustal history where maximum residence temperatures of 500 °C at 

depths up to 35 km and 550 °C at a depth of 45 km are met within <0.5 Ma following orogenesis 

at ~1800 Ma. The initial rapid cooling is followed by prolonged slow cooling at rates between 

0.05-0.1 °C/Ma, where the shallowest xenoliths cool first and the deepest last. 

 

4.6 Conclusions 
 The use of temperature sensitive chemical reactions provides the fundamental basis for 

which geothermometry can yield reliable temperature estimates for a particular system within the 

Earth. The preservation of this state of chemical equilibrium, and thus the temperatures derived 

from any measurement, are susceptible to alteration through many processes, including diffusion. 

Experimental measurements of Zr in rutile indicate that Zr obeys temperature dependent volume 

diffusion (Cherniak et al., 2007). Forward modeled calculations presented here indicate a strong 

dependency of the preserved Zr concentration on the rate at which the sample cools. 

Characterizing the internal diffusion profile or the correlation between grain size and Zr 

concentration allows the system to be exploited as a geo-speedometer, used to estimate the 
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sample cooling rate through a temperature range of ~500-1000 °C. Measurements of Zr in rutile 

have nearly always been conducted using intracrystal measurement techniques. The preservation 

of Zr concentrations that correlate to the equilibrium temperatures within the center of a rutile 

grain or center retention provides a means to constrain some aspects of a sample’s time-

temperature history. This method requires independent measure of the system’s initial 

temperature for comparison. Preservation of center retention within a grain is sensitive to both 

initial cooling rate of a system and long term holding temperature. This allows users to fill the 

once unconstrained gap between high magmatic and metamorphic temperatures and the 

temperatures recorded by moderate temperature thermochronometers.  The Zr-in-rutile system’s 

sensitivity to long-term residence temperature allows an independent maximum constraint to be 

placed on temperatures within the lower crust and a means to independently evaluate the 

accuracy of diffusion kinetics for Pb. We conclude here that the maximum activation energy for 

Zr diffusion within the reported uncertainty of 200 kJ/mol and that the experimentally 

determined values for Pb diffusion in natural rutile perpendicular to the c-axis (220 kJ/mol, D0 of 

2.08e-11 m2/s) are the most self-consistent values.  In the presented case study of xenoliths from 

Montana, integrating ZRT data with independent temperature and pressure constraints allows a 

maximum estimate of 500-550 °C to be placed on temperatures within the lower crust providing 

a new data point for accurately constructing geothermal gradients for the lithosphere.  

 

 

4.7 Figure Captions 

Fig. 1. Zr and Pb evolution in a single rutile grain. (a) Internal concentration profiles of Zr and 
(b) Pb for a 50 µm radius rutile grain that experienced the time-temperature path shown in figure 
inset. The initially high concentration profile for Zr causes the system to be highly susceptible to 
diffusive loss during the initial cooling following high temperatures associated with 
metamorphism/magmatism. Note that the boundary at the grain edge changes from high 
concentrations equivalent to equilibrium temperatures, to concentrations < 200 ppm that 
correlate to lower crustal temperatures < 600 °C. This change in boundary condition during 
cooling permits the diffusive loss of Zr. The Pb system, however, begins with zero retained 
radiogenic Pb, and does not build a diffusion profile until sufficient time and decreased 
diffusivity permits the retention of radiogenic Pb. The Pb system is thus more sensitive to low-
temperature (400-600 °C) diffusive loss. Together the Zr and Pb systems can constrain the time-
temperature path of a single sample from over 1000 °C to less than 400 °C.  
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Fig. 2. Effect of initial cooling rate on internal Zr concentration diffusion profiles. Results of 
forward modeled calculations for internal diffusion profiles with variable cooling rate. (A) A 
minimum cooling rate of ~300 °C/Ma) is required to maintain center retention (Ea = 200 kJ/mol, 
50 µm radius). Modeled boundary condition assumes minimum temperature of 600 °C, 
correlating to 170 ppm Zr. The difference between initial core concentration and measured core 
concentration (∆ core) will consistently increase with decreasing cooling rate (B,C). The 
difference between the core and rim concentration (∆ core-rim), though symptomatic of 
diffusion, does not yield a consistent relationship with cooling rate and is a less useful parameter 
for quantifying a thermal history. 
 
Fig. 3. Center retention Partial retention zone (CR-PRZ). Modeled Zr concentrations for the 
center of a rutile grain plotted as a function of isothermal holding temperature. Model runs 
assume an initially rapid cooling rate (>103 °C/Ma) followed by isothermal holding at variable 
temperatures for a duration of 2000 My. All runs use a maximum Ea of 200 kJ/mol. Center 
retention is maintained at isothermal holding temperatures less than 450-550 °C (depending on 
grain size). At temperatures > 600 °C diffusion is sufficient to permit loss of Zr associated with 
initial high temperatures, yielding Zr concentrations that record long-term residence 
temperatures. The CR-PRZ lies between these two regimes (450-600 °C), where rutile grains 
retain a portion of Zr derived from initial high temperature equilibrium, yet still yield 
concentrations far higher than what is predicted by experimental Zr calibrations for these 
temperatures (< 170 ppm).  Zr measurements from grain centers for Montana xenoliths are 
plotted as a function of depth (assuming a geothermal gradient of 50 mW/m2). Center retention 
in each sample suggests each sample cooled quickly from initial temperatures (>103 °C/Ma) and 
resided at temperatures less than ~550 °C for the duration their history.  
 
Figure 4.  Cartoon illustrating the how volume diffusion manifest itself in intracrystal analyses. 
The lack of spatial control within a 3-D diffusion profile ensures that intracrystal analyses cannot 
directly constrain a Zr diffusion profile. Potential data that would result from (a) isotropic 
diffusion  (b) a-b axis dominated diffusion and (c) c-axis dominated diffusion.  If diffusion is 
isotropic or is faster along the a/b axis, the depth of sectioning into grains will affect the data 
produced from intracrystal analyses.  
 
Fig. 5. Zirconium in rutile data for grain centers from Montana xenoliths. Each sample meets 
center retention, i.e. one or more core analyses match the independent constraints on sample 
temperature. (a) Over a narrow range of grain sizes, that differs for each sample, the 
concentration from a grain center can vary from the maximum values that correlate to (or 
exceed) the independent T estimate by 100-1000’s ppm or (b) 1-160 % . (c) The correlation with 
this % difference and depth is interpreted to reflect an increase in diffusive loss of Zr with depth. 
 
Fig. 6. Refining Zr and Pb rutile diffusion kinetics. The coupled Zr and Pb in rutiles systems 
requires that an acceptable time-temperature path to remain consistent with both systems. (a-c) 
Measured U-Pb data from Montana xenoliths can be bracketed by forward modeled U-Pb 
produced following (2011) by a t-T path with initially rapid cooling from high temperatures 
followed by slow cooling at rates of  ~0.05-0.1 °C/Ma after a inflection temperature is meet. 
Note that forward modeled U-Pb data for a common cooling rate overlap despite different 
diffusion kinetics. Cooling rate dominates the position on concordia of modeled data, only the 
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temperatures at which Pb retention occurs change with each set of kinetics. To maintain Zr 
concentrations in the center of a 20-50 µm grain for each sample, requires long-term residence 
temperatures < 500-550 °C depending on the grain size (d). Using the nominal Pb diffusion 
kinetics for synthetic rutile experiments from Cherniak (2000) yields thermal histories with 
significant periods of time at temperatures above 500-550 ºC that permit diffusive loss of Zr at 
the grain center (d). Time-temperature paths using kinetics for Pb published for natural rutile 
perpendicular to the c-axis yields forward modeled data that match the U-Pb data and whose t-T 
paths permit center retention of Zr.  
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Figure 4.2
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Figure 4.3
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Figure 4.4
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Figure 4.5
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Figure 4.6
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Chapter 5: Sink to survive: The preservation of ancient 
mountain belts through crustal density changes 
 

 

 

 
Abstract: Mountain belts form when collisions between continents thicken the Earth’s crust, 
which buoyantly rises to remain in isostatic equilibrium with the underlying asthenosphere.  Just 
as isostasy leads to the birth of mountains, it contributes to their destruction by uplifting them in 
response to erosion, maintaining high elevations and promoting further erosion, a process that 
could result in the destruction of the mountain belt.  And yet the ancient roots of Earth’s oldest 
mountains have persisted for billions of years, remaining far thicker than the mountain belt 
surficial relief. One previous explanation (Fischer, 2002) for this preservation proposes that the 
magnitude of isostatic rebound during mountain belt erosion decreases shortly after formation in 
response to an increased in crustal density that accompanies lithosphere cooling. The 
implications of this hypothesis are that the surficial erosion rate within a mountain belt is linked 
to the thermal and density evolution of the lithosphere.  Here we test this hypothesis using a 
global survey of erosion rates in mountain belts with formation ages ranging from 0 to 2 billion 
years.  We compare this data set with a model for the thermal, erosional, and density history of 
an idealized mountain belt.  Measured and modeled data indicate that erosion is fastest in young, 
hot, low-density, and topographically high mountain belts, and that erosion rates decrease 
dramatically after several hundred million years, consistent with the timing of metamorphic 
garnet growth (Scherer et al., 2000; van Calsteren et al., 1986) and densification of the lower 
crust (Jull and Kelemen, 2001) that accompany lithospheric cooling (Blackburn et al., 2012; 
Schmitz and Bowring, 2003).  Though erosion rates may vary within active mountain belts with 
different tectonic (Dadson et al., 2003) or climatic setting (Peizhen et al., 2001) settings it is 
isostasy coupled to the thermal and density evolution of the crust that dominantly controls the 
long-term erosional history of the lithosphere and ultimately leads to the preservation of Earth’s 
ancient mountain roots.  

5.1 Introduction  

The elevation of Earth’s surface, from the summits of the tallest mountains to the depths of 

the ocean’s abyssal plains, is dominantly controlled by isostasy, the principle that the buoyant 
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lithosphere floats on the denser underlying asthenosphere at a height determined by the density 

and thickness of the lithosphere and the density of the asthenosphere (Fig. 1).  The collision of 

continents at tectonic plate boundaries results in the mechanical thickening of continental crust 

and the formation of mountain belts or collisional “orogens”. To compensate for this excess mass 

and maintain isostatic equilibrium, the lithosphere in this thickened region will buoyantly rise, 

producing the extreme relief and high elevations observed in the world’s highest mountain 

ranges. Isostasy also controls the response within mountain belts to the erosion of their upper 

surfaces: as rocks are eroded from the top of a mountain belt and transported away, the 

lithosphere will buoyantly rebound. If the continental crust consisted of a single, constant density 

layer (Fig. 1b), the erosive removal of mass followed by isostatic rebound could continue until 

the crust was completely eroded, ending only when a state of neutral buoyancy between the 

remaining lithosphere and the underlying asthenosphere was attained.  This simple scenario, 

however, is inconsistent with the observation that mountain belts have avoided complete 

destruction, maintaining crusts 30-50 km thick even after billions of years of erosion 

(Christensen and Mooney, 1995).     

For mountain belts and continental crust to persist, erosion rates must attenuate more quickly 

than the uniform crustal density model would predict. A second, layered model with a dense 

lower crust underlying a light upper crust (Fig. 1b) would result in such attenuation.  In this 

scenario, as the low-density cap erodes away, the mean crustal density increases, causing the 

crust to float lower, slowing erosion and working to preserve the crust. A third model1 proposes 

that ancient mountain belts can be preserved if the lower crust increases in density as the crust 

undergoes metamorphic phase changes that accompany lithosphere cooling (Fig 1). These three 

scenarios – constant, layered or temperature-dependent crustal density – predict distinct erosional 

histories that can be evaluated through comparisons with reconstructed erosional histories of 

decaying mountain belts. Here we present such a reconstruction using a global compilation of 

previously published apatite fission track (AFT) and cosmogenic 10Be measurements of erosion 

rates in mountain belts ranging in formation age from ~2 billion years ago to the present and 

compare this data to predictions made from a model designed to simulate the thermal, density 

and erosional history of a decaying mountain belt (Fig 2a, Table S1). This approach assumes that 

the erosion rates observed within modern and ancient mountain belts are representative of the 

erosional decay of a single, idealized mountain belt. 
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5.2 Results 

Concentrations of cosmogenic 10Be in minerals at the Earth’s surface provide measures of 

erosion rates over relatively short timescales (103-105 years) (Portenga and Bierman, 2011). 

Longer timescale (106-108 years) erosion rates from AFT data are calculated here by assuming 

that the measured AFT date corresponds to the time at which the 120 ± 10 °C isotherm (Gleadow 

and Duddy, 1981) and corresponding closure depth (assuming a geothermal gradient of 25 ± 10 

°C/km) were attained. Although the AFT derived erosion record may be complicated by 

additional factors (Methods), the agreement between the apparent erosion rates derived from 

AFT and 10Be derived erosion rates suggests that this simplified approach is suitable for 

resolving the drastically different erosion rates observed in modern and ancient orogens 

(Supplementary material, Fig. S1, S2). The compiled erosion rates plotted as a function of 

mountain belt formation age (Fig. 2a) define a trend in which young orogens erode rapidly, 

whereas orogens older than ~300 million years (Ma) erode at far slower rates.  

We combine these erosion rate measurements with previously compiled seismic and surface 

relief data documenting the preservation of mountain roots (Fischer, 2002; French et al., 2009) 

(Fig. 2b).  In a global survey of mountain belts, Fischer(Fischer, 2002) observed that the ratio (R) 

between mountain belt surface relief and root thickness decreases with orogen age.  To explain 

the dramatic decrease in R early in an orogen’s evolution (<300 Ma) and the coincident increase 

in crustal root density, Fischer (Fischer, 2002) proposed that lithospheric cooling and 

metamorphic phase changes(Jull and Kelemen, 2001) could increase the density of the lower 

crust, and thereby induce a waning isostatic response to ongoing erosion (Fig 2b, Table S2).  

To evaluate which of the crustal density scenarios – constant, layered or temperature-

dependent crustal density – will result in the erosional rate and R-values most consistent with the 

observed secular trends (Fig. 2), we’ve built a numerical model that describes the thermal, 

density and erosional history of a decaying mountain belt (Methods). Model tests were 

performed to find whether secular changes in erosion rate are consistent with an erosion law 

where erosion rate is proportional to elevation(Pinet and Souriau, 1988) or relief (Ahnert, 1970; 

Summerfield and Hulton, 1994); concluding that relief produced the model results most 

consistent with measured data (Fig. S3). Each model scenario will results in 2 erosional histories: 

1) the true model erosion rate input into the model at each time step (Fig. 2a dashed lines) and 2) 

the apparent erosion rate generated by the interpretation of AFT data (Fig 2a, solid lines) 
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(Methods). The sensitivity of AFT data to heat loss through conduction will result in the 

overestimation of true erosion in the oldest orogens (Fig S2). Additional model-biases result 

from initial conditions, where rapid cooling through conduction and erosion results in the 

apparently high erosion rates at 0 Ma that far exceed the true erosion rate.   Scenarios using a 

uniform, non-temperature dependent densities yield apparent erosion rates that underestimate the 

erosion rates observed in the oldest mountain belts. The simplest uniform density model is 

incapable of reproducing the secular changes in R-values, resulting in a decrease proportional to 

the model chosen erosion constant (Fig 2b). While a tiered, constant density model is capable of 

mimicking the erosional histories recorded by the measured data, yet cannot simultaneously 

match R-values of both moderate and oldest orogens (Fig. 2b). Each of these constant density 

models results in the over-thinning of continental crust and elevations near sea level.  A model 

employing temperature-dependent density for the middle and lower crust yields erosion rates and 

R-values that are consistent with measured data (Fig 2). By increasing density, decreasing relief 

and along with it erosion, this scenario preserves more low-density upper crust than other 

scenarios, a result that produces long-term elevations consistent with those observed in stable 

continents (~500 m). Because the initial R-value for each model is controlled by the crustal 

thickness and density, no single model run can match every data point for present day orogens, 

which differ from one another in these quantities. For example, the Tibetan plateau and Alps 

have different crustal thicknesses and elevations and thus different R-values. The increase in 

lower crustal density makes the lithosphere sink lower in the asthenosphere, decreasing 

elevation, relief, and erosion rate, and permitting the preservation of low-density upper crust. 

Interestingly, the near neutral buoyancy and stability are attained rapidly, within ~ 300 million 

years (My) following orogenesis, suggesting that the slow present-day erosion rates(Wilkinson 

and McElroy, 2007) and minimal gravity anomalies(Shapiro et al., 1999) observed in Earth’s 

most stable regions were attained relatively quickly following mountain belt formation.   

Additional constraints on the timing of crustal density increase and the correlated change in 

mountain range erosion are provided by lower crust thermal histories and direct dating of garnet 

growth, both measured from volcanically exhumed fragments of the lower crust (xenoliths). 

High-temperature U-Pb thermochronologic analyses of xenoliths can be used to reconstruct the 

thermal history of the lower crust, including the time at which temperatures consistent with 

lower crustal densification (i.e., garnet growth) were attained.  In the two available examples 
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(Blackburn et al., 2012; Schmitz and Bowring, 2003), titanite U-Pb data for lower crustal 

xenoliths record cooling to temperatures of ~650 ºC within 200-300 My after regional 

orogenesis, roughly the same time duration as the period of rapid erosion observed in the 

measured and modeled erosion histories (Fig. 2a). Additional support for this timeline is 

provided by dating of lower crustal garnet growth from the same orogens, where Sm-Nd and/or 

Lu-Hf garnet-whole rock isochron dates are consistent with garnet growth within 300-450 My 

following orogenesis (van Calsteren et al., 1986),(Scherer et al., 2000). Though there is some 

uncertainty as to whether these dates record the time of garnet growth and/or crustal cooling, the 

fact that the reported closure temperatures for these systems  (~600-800 ºC (Dutch and Hand, 

2009; Mezger et al., 1992; Scherer et al., 2000; Skora et al., 2008; Tirone et al., 2005; Van 

Orman et al., 2002)) are at least as high as temperatures of lower crustal garnet growth suggests 

that these systems applied to lower crustal depths provide a direct date for crustal densification.  

Thus, geochronologic data at various timescales, from geologically recent erosion rates to 

ancient thermal histories recorded in lower crustal xenoliths, are consistent with an isostatic 

model that links the erosional decay of a collisional orogen to its thermal and density evolution. 

Given the geologic and climatic diversity of mountain ranges around the world, it is striking that 

their erosion rates are generally consistent with a single, relatively simple model. Regional 

geologic and geomorphologic studies have long recognized complexities in present day 

mountain belt erosion, having linked climate(Peizhen et al., 2001), tectonics(Dadson et al., 

2003), topographic relief(Ahnert, 1970; Summerfield and Hulton, 1994) or elevation(Pinet and 

Souriau, 1988) to the erosion rate or spatial pattern within a specific young mountain belt or 

region. The assumed linear relationship between erosion rate and elevation may indirectly 

simulate how at high elevations, glacial erosion, precipitation, relief and slope could all 

contribute towards enhancing erosion in young mountain belts. Similar variability in erosion 

rates can occur among the Earth’s most stable, ancient orogens. Even when laterally protected 

from destructive plate margins within the interiors of continental masses, ancient mountain belts 

are still susceptible to long-wavelength, low-amplitude uplift or burial driven by dynamic or far-

field crustal loading(Braun, 2010). Despite the potential for such effects to influence erosion 

rates in young and old orogens, the secular trends in erosion rate presented here argue that the 

long-term erosional history of mountain belts is dominantly controlled by isostasy, which in turn 

is controlled by the thermal and density evolution of the lithosphere.  
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The scenario in which fast erosion rates only occur in young, hot, low-density orogens while 

older, colder, denser orogens erode for billions of years at extremely low rates provides an 

explanation for the preservation of Earth’s oldest mountain belts, a pattern that has long puzzled 

geologists. The importance of this process is compounded by the fact that continental landmasses 

are constructed almost entirely through mountain building processes: like jigsaw puzzles with 

many pieces, continents are amalgamations of ancient mountain belts assembled over geologic 

time(Hoffman, 1988).  Temperature-dependent densities play a global role in the long-term 

evolution of mountain belts and continents, influencing the preservation of all continental 

lithosphere throughout geologic time.    

 

5.3 Methodology 

Methods employed in this study include: 1) the treatment of measured apatite fission track 

data (AFT) for reconstructing erosional histories and 2) the thermal, density and isostatic model 

designed to simulate the erosional decay of a mountain belt. 1) The method employed here for 

calculating erosion rates using Apatite fission track data assumes both a constant geothermal 

gradient and 1-D geometry, neglecting the role that secular cooling through conduction and 

surface topography have in influencing measured AFT dates. Because both conductive heat 

transfer and surface topography will undoubtedly play a role in cooling the lithosphere, the rates 

presented here place a maximum estimate on the true erosion (Fig. S2). Model generated AFT 

data will also be biased the same way, assuming a constant geothermal gradient and a 1-D model 

geometry, permitting us to generate a modeled apparent erosion rate for comparison to measured 

data. The ancient mountain belts studied here include those that were laterally armored from 

subsequent thermal or tectonic events by surrounding terranes.  2) We constructed a forward 

model that describes the thermal, density and erosional history of a decaying mountain belt. The 

thermal evolution of the mountain belt is described by a numerical model quantifying heat 

transfer through conduction, advection and heat production(Blackburn et al., 2012). Initial model 

conditions include orogen (Beck et al., 1996; Gebrande et al., 2006; Hirn, 1988; Hirn et al., 

1984) and lithosphere thicknesses, internal crustal layer thicknesses (Christensen and Mooney, 

1995), crust and asthenosphere densities (Jull and Kelemen, 2001; Kelly et al., 2003), heat 

producing element concentrations (Rudnick et al., 2003; Rudnick et al., 1998), and an initial 

geothermal gradient (Supplementary material, Table S3). Mountain belt relief and elevation are 
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calculated assuming isostatic equilibrium relative to reference continental and oceanic crustal 

columns, respectively (Fig. 1). Surface erosion rates are assumed to be linearly proportional to 

elevation.  For the proposed third mountain belt scenario (Fig 1b), modeled temperature and 

pressure dependent densities (Jull and Kelemen, 2001) for common middle and lower crust 

compositions are used to simulate the densification of the crust (Fig S4). As the lithosphere cools 

through conductive and advective heat loss, particularly as lower crustal (~1GPa)  temperatures 

drop below ~800 °C, the model simulates garnet growth resulting in an increase in mean crustal 

density (Fig. S4). The thermal histories of rocks brought to the surface are used to generate 

synthetic AFT data, which in turn are used to calculate modeled erosion rates using the same 

methods applied to the measured AFT database (Fig 2a). The ratio (R) between mountain belt 

relief and root thickness through time is also calculated for comparison to measured data (Fig 

2b).  

 
5.4 Figure captions 

Figure 1.  Schematic illustration of density profiles for three mountain belt scenarios and 
reference continental and oceanic crust (inset). (A) Mountain belt relief (h) is the elevation 
difference between the mountain belt and reference continental crust. Root thickness (m) is the 
difference in depth of the base of the crust between the mountain belt and reference crust. (B) 
Close-up of crustal density structures for reference columns and mountain belt scenarios. 
Numbers are density values in kg/m3. Isostasy calculations include full columns shown in upper 
inset. Modeled temperature- and pressure-dependent densities are used for middle to lower crust 
and mantle. Reference continental crust thickness and internal layer thickness are based on the 
idealized “shield and platform” model from Christensen and Mooney. The crustal thickness of 
Earth’s youngest orogens ranges from 55 to 80 km and controls the relief and elevation attained. 
Oceanic and continental lithosphere densities are distinct.  

Figure 2. Measured (points) and modeled (curves) mountain belt characteristics as a function of 
formation age in millions of years before the present (Ma). (a) Erosion rate (m/Ma) from apatite 
fission track data (diamonds, upper case labels) and cosmogenic 10Be measurements (circles, 
lower case labels). (b) Ratio (R) of mountain belt relief to root thickness. Inset map shows 
locations of mountain belts. Abbreviations: EA, Eastern Alps; WA, Western Alps; TP, Tibetan 
Plateau; TS, Tian Shan; AN, Andean Plateau; BR, Brooks Range; LL, Lachlan orogen; AP, 
Appalachian Plateau; SA, Southern Appalachians; NU, Northern Urals; SU, Southern Urals; CN, 
Cantabrian Mountains; CR, Carpathian Mountains; GA, Grenville Orogen; SF, Svecofennian 
Orogen; TH, Trans-Hudson Orogen; PR, Pyrenees Mountains; VK, Verkhoyansk Mountains; 
AS, Alice Springs Orogen;IO, Isan Orogony; DO, Delamerian Orogen; VR, Variscan Orogen. 
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Chapter 6: High-precision U-Pb zircon geochronological 
constraints on the End-Triassic Mass Extinction and the late 
Triassic Astronomical Time Scale  
 

 
 
 
Abstract: The apparent temporal coincidence of the end Triassic extinction event (ETE) and 
emplacement of the Central Atlantic Magmatic Province (CAMP) has often been used as 
evidence to suggest a causal relationship between the two major events. Here we present high 
precision geochronologic data for eight CAMP flows and sills from both the eastern U.S. and 
Morocco using zircon U-Pb ID-TIMS geochronology. These data are used to first, test the 
astronomical time scale for sediment accumulation within the Triassic-Jurassic rift basins along 
the eastern North America, and second, are combined with the stratigraphic and astronomical 
datum to constrain the onset and duration of the CAMP, while clarifying the relationship in time 
between the magmatic province and the ETE. Basalt flows, such as the North Mountain and 
Preakness basalts provide the best stratigraphic constraints with which to test astronomical 
calibrations, and the difference in weighted mean 238U-206Pb dates between these flows (285 ± 50 
ky) overlaps within uncertainty with the duration of time predicted by astrochronology (250 ± 20 
ky). Combining the astrochronologic and geochronologic datum for the Newark Basin places an 
absolute date on the ETE of 201.56 ± 0.024 Ma. Though CAMP lies stratigraphically above the 
ETE in eastern North America, the absolute time constraint on the ETE allows for any CAMP 
intrusion to be dated by geochronology and evaluated as potential trigger to the late Triassic 
extinction. We use this time-constraint to clarify the relationship between the ETE and the 
stratigarphically oldest known CAMP unit, the Tasquint Basalt in Morocco. A combination of 
geochronologic and stratigraphic data permits this CAMP unit to pre-date or erupt synchronously 
with the ETE.  
 

6.1 Introduction 

 The Central Atlantic magmatic Province (CAMP) is a large igneous province  (LIP) 

comprised mostly of basaltic thoeliites, gabbroic sills and dikes (Fig. 1). The eruption of CAMP 

comes late in the history of Triassic rifting within the Pangean supercontinent and based on 

stratigraphic and geochronologic constraints appears coincident in time with the end-Triassic 

extinction (ETE) event and the closely following Triassic-Jurassic boundary (TJB). The seeming 

coincidence of CAMP with the ETE and the apparent short duration of the CAMP has lead to the 
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hypothesis that flood basalt magmatism or associated intrusion caused or contributed to the 

extinction (Marzoli et al., 1999; Rampino and Stothers, 1988) plausibly via a methane- or CO2-

driven super-greenhouse (Marzoli et al., 1999; McElwain et al., 1999; Schaller et al.). However, 

both the tectonic setting and magmatic source of CAMP and its potential role in the cause of the 

ETE remain highly contentious. The geographic extent of the magmatism is significant, with 

CAMP related volcanics and intrusives spread along the Atlantic margins of North America, 

Africa, southwestern Europe, as well as the interior South America (Fig. 1) with an estimated 

volume of between 3 and 11 x 106 km3 (Marzoli et al., 1999; McHone, 2003). Strata of the 

Triassic-Jurassic rift basins of the Eastern North America, the Newark Supergroup, are the best-

preserved and studied terrestrial sections from this time period. The integration of paleomagnetic 

and astrochronological tuning has revealed a high-resolution record for the duration of large 

igneous province volcanism within these basins, estimated at 610 ky (Kent and Olsen, 1999; 

Olsen et al., 1996; Olsen and Kent, 1996; Olsen et al., 2003; Whiteside et al., 2007). This short 

duration combined with large volumes implies very high eruptive rates capable of causing rapid 

global fluctuations in the composition of the Earth’s atmosphere and hydrosphere that could have 

led to the end-Triassic biotic crisis. However, significant ambiguity in evaluating the causal 

relationship between CAMP and the ETE an TJB exists because CAMP volcanism is preserved 

almost entirely in continental sedimentary sequences within Triassic-Jurassic rift basins located 

along the Central Atlantic margins, while the record of the invertebrate extinctions of the ETE, 

and the TJB, as defined by the first appearance of the Jurassic ammonite Psiloceras spelae, are 

preserved only in marine sedimentary sequences where CAMP is absent (Hillebrandt et al., 

2007; Morton, 2008; Whiteside et al., 2007). Previous work linking these stratigraphic sections 

through paleomagnetic and paleontological data has remained contentious with several different 

models brought fourth for the relative timing of CAMP and the TJB in Eastern North America 

(Cirilli et al., 2009; Knight et al., 2004; Marzoli et al., 2004; Whiteside et al., 2007). Until 

recently, radioisotope geochronology has added very little to this debate, with most dates on the 

time period having associated uncertainties up to an order of magnitude larger than the total 

CAMP duration (610 ky constrained by astrochronology) largely because of the inherent 

difficulty in dating mafic basalt and gabbroic rocks.  

 Recent analyses of stable carbon isotopes from continental organic matter have provided 

a link between the carbon isotopic excursion originally observed with marine sequences and the 
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terrestrial sedimentary sequences containing CAMP (Whiteside et al., 2010). These new data 

confirm previous stratigraphic and palynological data suggesting the CAMP slightly post-dates 

the ETE in the eastern US (Olsen and Kent, 1996; Olsen et al., 2003; Whiteside et al., 2007), 

while still permitting the possibility that CAMP magmas in Morocco could be synchronous with 

the ETE (Fig. 2) (Deenen et al., 2010).  High precision absolute dates for the CAMP magmas 

collected from the Argana basin, Morocco will provide a means to test the trans-Atlantic 

correlation between the Argana and Newark basins (Deenen et al., 2010). Combining this 

geochronologic data with stratigraphic, magnetostratigraphic and cyclostratigraphic data for the 

Argana basin will permit estimates to the absolute timing of the geochronologically undated 

lower basaltic unit in the Argana basin. This absolute time constraint on what has been suspected 

to be the stratigraphically oldest known CAMP magma can be used to test the hypothesis that it’s 

eruption coincides with the palynological turnover and vertebrae extinctions recorded in the 

Newark terrestrial sections (Deenen et al., 2010).  

Results of our U-Pb analyses of CAMP extrusives and intrusives accomplish two goals: 

first to test the astrochronological time scale developed within the eastern North American, 

Triassic-Jurassic rift basins and interbedded CAMP using U-Pb geochronology; second, to use 

these geochronologic and astronomical data to constrain the onset and duration of the CAMP and 

clarify the relationship in time between the magmatic province and the ETE. 

 

6.2 Methods 

 Testing the temporal estimates on CAMP provided by astrochronology requires that at 

least two individual horizons within the sedimentary sequence be dated by radioisotope 

geochronology. The difference in time between the two horizons determined by geochronology 

and astrochronology can then be compared. The astrochronologic models yield estimates on the 

duration between the older two major CAMP lava formations in eastern North America of ~250 

ky (Whiteside et al., 2007). A resolvable difference in radioisotopic dates for individual horizons 

requires analytical uncertainties an order of magnitude smaller than the time difference. Thus the 

goal is to produce  a resolvable difference in geochronologic dates for each horizon of 

comparable precision. Though there are several accessory phases found in mafic rocks amenable 

to U-Pb dating (zircon, baddelyite, zirconolite, titanite), only zircon is capable of yielding the 

level of precision and accuracy required to test the duration of CAMP. Zircon (ZrSi04), a 
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refractory mineral, is not as common in mafic rocks as intermediate to felsic rocks. Despite this, 

primary zircon is found in coarse-grained mafic gabbroite, pegmatoidal or granophyric 

separations within both gabbroic sills and thick thoeliitic flows of CAMP. In the study presented 

here, 8 CAMP zircon-bearing bodies are dated using U-Pb methods. 

 Zircons were separated using standard rock crushing and mineral separation techniques. 

Single grain zircon analyses were dated using the Chemical Abrasion or CA-TIMS method 

(Mattinson, 2005). Zircon analyses were conducted using the isotopic tracer solution ET2535 

containing 202Pb, 205Pb, 233U and 235U. Use of the 202Pb-205Pb tracer solution allows for accurate 

measure of Pb mass-dependent fractionation within the mass spectrometer during a Pb-analysis. 

The measured 233U/235U permits correction of uranium fractionation.  The decreased uncertainty 

from using the 202Pb-205Pb tracer leads to a lower propagated uncertainty on an individual date 

with total uncertainties on mean error-weighted dates improved by up to 20 ky (0.01%) for the 

CAMP data presented here. All dates are calculated using an isotopic composition of uranium 

(238U/235U) of 137.818 (Hiess et al., 2012). For the zircon U-Pb CAMP data, the variation in 

uranium isotopic composition (238U/235U ) required to change a 238U-206Pb date by just 1 ky, are on 

the order of  +0.05/-0.13. This range in uranium isotopic compositions is outside the observed 

range for uranium in zircons (Hiess et al., 2012). Uranium was analyzed as an oxide, assuming 

and 16O/18O composition of 0.00205.  Use of EARTHTIME tracer solutions allows a datum 

produced by this study to be compared to data from other labs using EARTHTIME tracers 

without propagating the ca 0.1% uncertainty derived from tracer calibration. All U-Pb data were 

reduced using Tripoli and U-Pb redux software (Bowring et al.; McLean et al.). 

 

6.3 Samples 

 Basalts and gabbroic portions of sills from the CAMP were sampled in eastern North 

America from North Carolina to Nova Scotia and within the Argana basin, Morocco. Sample 

collection focused on identifying coarse-grained layers or segregations within basalts and 

gabbros. Zirconium is a refractory element and will remain within the crystallizing melts. As 

these large intrusive and extrusive bodies undergo fractional crystallization, the remaining 

residual liquid is physically isolated into layers or lenses within the magmatic body through 

either the compaction of crystals or buoyancy driven separation (Philpotts et al., 1996; Puffer and 

Horter, 1993; Puffer et al., 2009). This physical concentration of the remaining liquid in turn 
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concentrates the refractory elements, including zirconium, allowing igneous zircons to crystallize 

from the once wholly mafic magma. The zircons that crystallize from these coarse grain 

segregations are morphologically distinct from typical upper crustal zircons. Typical 

characteristics for zircons from this study include: a blocky aspect ratio, often un-terminated 

crystals, a weak metamict discoloration and occasionally melt or baddelyite inclusions oriented 

parallel with the c-axis (Fig. 3). 

 The 8 CAMP bodies sampled for autochthonous zircons are from gabbroids from 

intrusions and flows that are from north to south: 1) the East Ferry Member of the North 

Mountain Basalt (flow) of the Fundy basin, Nova Scotia; 2) the Palisade sill (intrusive) of the 

Newark basin, New Jersey; 3) the “second flow” (following Tollo and Gottfried, (1992)) of the 

Preakness Basalt of the Newark basin in New Jersey; 4) the Rossville Diabase, Rossville 

Pennsylvania; 5) the York Haven Diabase, York Haven, Pennsylvania; 6) the Rapidan sheet 

(intrusive) of the Culpepper Basin in Virginia; 7) the Butner olvine diabase sheet (intrusive) of 

the Deep River basin, North Carolina; and 8) the Alemena sill found to feed the Alemizi basalt 

(i.e. the upper Argana Basalt), Argana Basin, Morocco (Fig. 1).  

 The two basalt flows, the Preakness basalt and the previously dated North Mountain 

basalt and the intrusive Palisade sill, via its feeder relationship with the Orange Mountain Basalt 

of the Newark basin, provide stratigraphic constraints that can be used to test the 

astrochronological time-scale (Fig. 2). Samples from the North Mountain basalt, include material 

the granophyric layer within the basal East Ferry member of the flow, the very same unit at the 

same locality previously dated by Schoene and others (2006; 2010) as well as a second sample of 

North Mountain basalt from core AV-C- 2 from about 50 km west, southwest on Brier Island, 

Nova Scotia.  

 The North Mountain Basalt, constitutes the basal eruption of CAMP within the Fundy 

basin and is correlative with the Orange Mountain basalt at the base of the Newark basin CAMP 

sequence (Olsen et al., 2003)based on major and trace element geochemistry (Puffer, 1994; 

Deenen et al., 2010). The Preakness Basalt is the second basalt flow formation in the Newark 

sedimentary sequence. The difference in stratigraphic placement between the Preakness basalt 

and the onset of CAMP magmatism marked by the North and Orange Mountain basalts allows us 

to test the previously established astrochronological time constraints placed on the sedimentary 

sequence between these flows (Olsen and Kent, 1996; Olsen et al., 2003; Whiteside et al., 2007).  
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Below we will examine the evidence permitting the correlation between the Fundy and Newark 

basins and the basal Orange and North Mountain basalts. Geochronologic data from the 

remaining CAMP sills and gabbroites are used to explore the potential range of dates for the 

CAMP magmatic event. 

 Outside the eastern US, samples were collected from the coarse grain gabbroic Alemena 

sill, found to feed the upper Argana basalt, Argana basin, Morocco. Both the dated sill and the 

upper Argana basalt (Alemizi fm) flow are identical in composition and have previously been 

correlated based on basalt composition to the lower basalts in the Fundy (North Mountain) and 

Newark (Orange Mountain) basins (Deenen et al., 2010)(Fig. 2). The sill cross cuts the 

stratigraphically lower Argana basalt (Tasguint fm) as well as the lacustrine sediments 

intercalated between upper and lower Argana basalts (Fig 2). The sill does not reach the younger 

sediments deposited on top of the upper Argana basalt, placing a maximum depositional age for 

the sill. Carbon isotopic data for Triassic sediments in the Argana basin morocco reveal a 

negative carbon isotopic excursion at the base of this lower most basalt, which has previously 

been interpreted to mark the ETE (Deenen et al., 2010). It remains possible however, that the 

carbon isotopic data is altered during the emplacement of the overlying basalt (Whiteside et al., 

2010). Cylostratigraphic models for the Newark and Argana basins, place the compositionally 

“intermediate” basalts ~40 ky above the top of the magnetic reversal E23r (Deenen et al., 2010; 

Olsen et al., 2002a; Olsen et al., 2002b). High precision zircon U-Pb dates permit testing of the 

magnetostratgraphic and basalt chemistry correlation between the Newark and Argana basins 

(Deenen et al., 2010). Further, the absolute time constraint provided by the geochronology 

presented here combined with the astrochronologic time-scale for the Argana basin (Deenen et 

al., 2010), will clarifying this relationship between the stratigaphically oldest known CAMP 

basalts (lower Argana basalt) and its emplacement relative to the ETE (Fig. 2).  

 There have been several previous geochronologic studies of CAMP, using both 40Ar/39Ar 

and U-Pb techniques and applied to samples from a significant geographic distribution. The great 

majority of work has applied 40Ar/39Ar dating of groundmass plagioclase separates from CAMP 

basalts and sills. Calculated plateau, mini-plateau and isochron dates are typically cited with 

analytical uncertainties on the order of ~1-2 My. Analyses of ground mass plagioclase are often 

susceptible to Ar-recoil (Jourdan et al., 2007) or excess Ar (Kelley, 2002; Seidemann, 1988), 

however, the low parent to daughter ratio is likely the key contributor to the high uncertainty 



 113 

reported on measured dates. A comparison between CAMP 40Ar/39Ar and U-Pb data from Eastern 

North America inevitably reveals a 1-1.5% age bias, linked to the uncertainties on the age of 

neutron flux monitoring standards and the decay constants for 40K (Renne et al., 2010).  Two new 

methods for the independent re-determination of the Fish Canyon Tuff (FCT) standard date 

(Kuiper et al., 2008; Renne et al., 2010) and 40K decay constants (Min et al., 2000; Renne et al., 

2010) allow for recalculated CAMP 40Ar/39Ar data sets to be compared with U-Pb data. Though 

each of these revised decay constant and FCT values yield dates that are no longer systematically 

biased 1-1.5% younger than U-Pb dates, the level of uncertainty on each individual date is still 

over 1 Ma larger than the analytical uncertainty associated with a single grain U-Pb zircon date 

and over a full order of magnitude larger than the error-weighted mean date of the U-Pb zircon 

data (Fig. 4). Evaluating the accuracy of astrochronological constraints on CAMP requires 

precision on individual dates less than the total duration of CAMP. For these reasons we will 

restrict our study to utilizing higher precision U-Pb data.  

 Previous U-Pb geochronologic data form CAMP include a study by Dunning and Hodych 

(1990), where zircon and baddelyite U-Pb analyses produced a 238U-206Pb date for the Gettysburg 

and Palisades sill of 201±1 Ma (Fig. 4). Similar coarse grain material was sampled from the 

North Mountain Basalt in the Fundy Basin, Nova Scotia first by Hodych and Dunning (1992) 

and obtained an age of 238U-206Pb age of 202±1 Ma. The same unit was analyized by Schoene et 

al. (2006), where air abraded zircons were dated using ID-TIMS yielding a non-thorium 

corrected 238U-206Pb age of 201.27±0.03 Ma. More recently Schoene and others (2010),published 

a new date for the North Mountain basalt, from zircons dated by CA-TIMS (Mattinson, 2005) 

201.38± 0.02 Ma (Fig. 4). We present here, new North Mountain basalt zircon analyses reduced 

using a revised tracer calibration. 

 

6.3.1 Feeder relationship between the Palisade sill and the Orange Mountain basalt 

 A discordant arm of the Palisade sill connects directly with basalt flows at the northeast 

terminus of the Newark basin in Ladentown, New York suggesting a feeder relationship 

(Ratcliffe, 1988) that allows the Palisade sill date to effectively date the Orange Mountain Basalt 

(Fig. 2). The detailed major and trace element chemistry of the flows is identical to the adjacent 

arm of the Palisade sill (Puffer et al., 2009). In addition, at least a portion of the intrusive 

Palisade intrudes the locally lowest flow at Ladentown. However, Ratcliffe (1988) argued that 
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while the Palisade sill did feed the Ladentown flows they did so after extrusion of the Orange 

Mountain Basalt. Ratcliffe’s argument is based on the presence of basalt clasts below the Union 

Hill basalt in Suffern, New York and basalt clasts in metamorphosed conglomerate in contact 

with the Palisade sill close to the Ladentown flows. Because the Orange Mountain Basalt is the 

oldest known flow in the basin, these conglomerates must postdate it and thus both the local 

discordant arm of the sill and the Ladentown flows must postdate the Orange Mountain Basalt, 

providing a minimum age estimate on the flow, despite having identical chemistry. 

 

6.3.2 Correlation between the Fundy and Newark basin basalts 

 The base of the CAMP in the Fundy and Newark basins, along with their basal CAMP 

flows, the North Mountain and Orange Mountain basalts respectively, have been temporally 

correlated using geochemical data, as well as paleomagnetic and palynological data from just 

below the basalts. The CAMP in eastern North America consists of 4 geochemically distinct 

tholiites based on major element chemistry: High Titanium Quartz Normative (HTQ), High Iron 

Quartz Normative (HFQ), Low Titanium Quartz Normalitive (LTQ) and High Iron High 

Titanium Quartz Normative (HFTQ) basalts (Puffer, 1992). Each of these compositions marks a 

distinct horizon, for example within the Newark basin, the Orange mountain basalt (HTQ) is 

chemically distinct from the stratigraphically higher Preakness basalt (HFQ/LTQ) and the even 

higher Hook Mountain basalt (HFTQ) (Fig. 2). The North Mountain basalt and Orange Mountain 

basalt are both High Titanium Quartz Normative Basalts (HTQ: Puffer, 1992) and share 

indistinguishable incompatible trace element patterns (Deenen et al., 2010; Puffer et al., 2009), 

suggesting a shared reservoir and potentially a shared eruption time for the two units. 

Second, preserved within meters below each CAMP eruption within both the Newark and 

Fundy basins are key stratigraphic markers including: 1) the last occurrence of several Triassic 

sporomorph taxa, marking a major palynological turnover event marking the base of the ETE 

(Cirilli et al., 2009; Fowell and Traverse, 1995; Kent and Olsen, 1999; Olsen et al., 2002a; Olsen 

et al., 2002b; Whiteside et al., 2007), 2) the very short magnetic reversal E23r, and 3) several 

small iridium anomalies  (280-300 ppt: (Olsen et al., 2002a; Tanner and Kyte, 2005; Tanner et 

al., 2008). Though the origin of the small iridium anomalies and their relationship to the ETE 

remain controversial, their presence in the same relative position relative to the basalt and the 

ETE in both the Fundy and Newark basins strongly suggests a temporal correlation (Fig 2). 
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Below both the palynological transition making the base of the ETE and the iridium markers lies 

the short magnetic reversal (E23r), first observed within the Newark basin (Kent and Olsen, 

1999) and recently found within the Partridge island section of the Fundy basin, as well as in 

Morocco (Deenen et al., 2010). This magnetic reversal has been estimated by cyclostratigraphy 

to have a duration of <20 kyr (Olsen et al., 2003; Whiteside et al., 2007), providing a short term 

and thus high confidence correlation between the Fundy to Newark basin.  

The significance of the ETE and its correlations to marine sequences has recently been 

demonstrated by correlation of terrestrial and marine carbon isotopic records (Whiteside et al., 

2010). The presence of this transition beneath the North and Orange mountain basalts further 

strengthens a correlation between these two basal basalt units (Fig. 2).  

 

6.4 Results 

 We report U-Pb zircon data for eight CAMP bodies, which are from oldest to youngest: 

the Amelal sill, the North Mountain Basalt, the Palisade sill, the York Haven Diabase, the 

Rapidan sheet in the Jet Mist quarry,  the Preakness Basalt, the Rossville Diabase and the Butner 

olivine gabbroites. All reported dates are 238U-206Pb thorium-corrected mean error-weighted 

values. Testing the age sensitivity to this Th-correction is presented below in the following 

section. The date uncertainties reported within the text are analytical uncertainties alone. For the 

purpose of calculating a difference in time between two layers dated using the same tracer 

solution and same radiogenic system, only the analytical uncertainties need be propagated. 

Uncertainties that include tracer calibration and decay constant uncertainty are included in figure 

1. 

 Starting with the sills and gabbroic bodies (Fig. 1), zircon analyses from a thick 

pegmatitic layer within the Palisade sill yield  a mean date of 201.520±0.034 Ma . Zircon 

analyses from the Jet mist gabbroite in the Rapidan sheet gave a mean date of 201.501±0.032 

Ma. Zircon U-Pb analyses from the he gabbroic sill feeding the upper Argana basalt within the 

Argana basin, Morocco, yield a mean date of 201.573±0.053 Ma. These oldest diabase intrusions 

are all compositionally similar (HTQ) and similar in chemistry to the North and Orange 

Mountain basalts.   The emplacement of the Rossville diabase, a compositionally distinct HFQ 

intrusion can be placed to 201.279±0.044 Ma. The youngest date comes from the intrusive 

Butner olivine normative gabbroite at 200.932±0.076 Ma, a result that challenges previous 
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petrologic models (Ragland et al., 1992), but is consistent with trace element geochemistry 

(Deenen et al., 2010). 

 Several samples from the basaltic flows (Fig 1) of the North Mountain and Preakness 

basalt were dated. Over ten single grain analyses from North Mountain Basalt, sample 

NMB0301, were dated yielding an age of 201.575±0.033 Ma. Sample AV-C-1-2 from Brier 

Island contained small, metamict zircon grains yielding lower precision analyses. This secondary 

sample from the North Mountain basalt was dated to 201.527±0.058 Ma and is with uncertainty 

of sample NMB03-01 suggesting a uniform emplacement time for this CAMP unit. The 

Preakness Basalt was dated comparable precision as North Mountain Basalt, yielding a 

statistically distinguishable date of 201.282±0.031 Ma. This relatively younger CAMP intrusion 

age agrees within uncertainty to the Rossville Diabase dike, an HFQ sill which shares the sample 

geochemical signature as the Preakness basalt (Smith et al., 1975). The difference in time 

between the North Mountain Basalt and Preakness basalt is 285±50 kyr and the Palisades sill and 

the Preakness basalt is 240±60 kyr (Fig 1). Both values are within uncertainty of the 

astrochronologic estimate (250±20ky) on the duration of deposition of intercalated sediments 

between these two stratigraphic markers (assuming the feeder relationship between the Orange 

mountain and Preakness basalt). 

  

6.4.1 238U-206Pb age correction for initial 230Th disequilibrium 

The U-Pb dates reported here are the Thorium-corrected, mean error-weighted 238U-206Pb 

date. The Thorium correction, accounts for the preferential exclusion of intermediate daughter 

product 230Th from the zircon crystal and the eventual deficiency in 206Pb radiogenic daughter. 

The zircon Th/U value is calculated from the measured 208Pb/206Pb ratio further assuming 

concordance between the 232Th-208Pb and the 238U-206Pb systems. The distribution coefficients for 

Th and U of zircon within magma are calculated from using this known Th/U withint he zircon 

and an assumed or estimated magma Th/U. Key to an accurate correction for the exclusion of 

intermediate daughter products is a reliable estimate for the Th/U ratio of the magma from which 

the zircon crystallized. A compilation of Th/U measurements from CAMP rocks worldwide 

yields an average Th/U of 4.2 ± 0.7 (1σ) (Bertrand et al., 1982; Cebria et al., 2003; Heier and 

Rogers, 1963). This average for CAMP rocks is supported by the median value of 3.7 from over 

15,000 Th/U measurements from basalts, diabases and tholites compiled in the Earthchem 
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database (Fig. 5 inset).  The physical and chemical processes required to concentrate refractory 

elements leading to the crystallization of zircon suggest that a whole rock measurement of Th/U 

is unlikely to represent the composition of melts from which the zircon crystallized. One can 

however, utilize this whole rock composition as a starting Th/U composition. This initial 

condition combined with petrologic descriptions (Kontak, 2008; Puffer and Horter, 1993; Puffer 

and Volkert, 2001) can be used to develop a crystallization sequence for CAMP magmas, which 

in turn can be used as an input into a model describing the Th/U evolution within a crystallizing 

magma. The mass balance equation capable of describing the Th/U ratio of an evolving magma 

is: 

 

Th
U magma

= Th
U initial

! F + Dbulk
U !(1" F)

F + Dbulk
Th !(1" F)  ,  (1)  

 

where F is the fraction of crystals in the magma, Th/Uinitial  is the initial or whole rock 

measurement. The bulk partition coefficient (Dbulk) for either uranium or thorium given by:  

 

Delementa
bulk = Dminerali

elementa ! xminerali + Dmineral j
elementa ! xmineral j ,  (2) 

 

where Dmineral describes the partition coefficient for a specific mineral in a basaltic liquid and 

xmineral describes the fraction of that mineral within the rock. Experimentally and empirically 

determined partition coefficients for uranium and thorium of minerals quartz, plagioclase, 

pyroxene, ilmenite, magnetite and apatite are used to predict the potential fractionation of Th 

from U during the crystallization sequence of a CAMP magma (Table 2) (Adam and Green, 

2006; Beattie, 1993; Benjamin et al., 1978; Bindeman and Davis, 2000; Dostal et al., 1983; 

Hauri et al., 1994; Klemme et al., 2002; LaTourrette and Burnett, 1992; Lemarchand et al., 1987; 

Luhr et al., 1984; Matsui et al., 1977; McKenzie and O'Nions, 1991; Onuma et al., 1968; 

Villemant et al., 1981; Wood and Trigila, 2001; Zack and Brumm, 1998). Modal abundances of 

these minerals reported for a variety of CAMP flows and sills are input for the fraction of a 

mineral (xmineral) (Table 2) (Philpotts et al., 1996; Puffer and Volkert, 2001) (Fig. 5). In major 

phases plagioclase, pyroxene and Fe-Ti oxides, both uranium and thorium are highly 
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incompatible and do not fractionate until low remaining melt fractions (F<0.2). Pyroxene, 

feldspars and Fe-Ti however, constitute up to 70% or more of the coarse grain segregation sheets 

or granophyres (Philpotts et al., 1996), concentrating the remaining U and Th (unfractionated) 

within the interstitial mesostasis. This remaining interstitial magma or mesostasis crystallizes as 

fine grain pyroxene, feldspars, quartz, magnetite, apatite and glass (Kontak, 2008; Philpotts et 

al., 1996; Puffer and Horter, 1993; Puffer and Volkert, 2001). In these remaining trace phases 

thorium is either not fractionated (glass, magnetite, pyroxene) or preferentially incorporated into 

the solid over uranium (apatite), increasing the melt Th/U from which zircon can crystallize from 

(Fig 5). This permits the initial value to act as a minimum estimate to the Th/U from which a 

zircon will crystallize. A high Th/U magma composition is consistent with the observation that 

the Th/U values for CAMP zircons are some of the highest ever reported. The magnitude of the 
238U-206Pb Th-correction is correlated with the difference in a zircon Th/U value from the whole 

rock value (Fig 6a). The large difference in Th/U between CAMP whole rock data (>4.2) and 

CAMP zircons (1.3-2.5) results in a correction that is insensitive to the value of the melt 

composition at Th/U values above ~3.5. The extreme fractional crystallization histories that 

permit the crystallization of zircon in these magmatic bodies are accompanied by a fractionation 

in Th/U that will only increase the initial whole rock value. The fact that whole rock Th/U values 

serve as a minimum value ensures that the magnitude of Th/U correction is nearly constant 

yielding the 238U-206Pb Thorium corrected age plateau observed in figure 6a. Tabulated data and 

data reported in figure 1 are calculated assuming a Th/U of 4.0.  

 

6.5 Discussion 
6.5.1 Estimating Zircon-magma residence times 

The U-Pb system in zircons is chemically and physically robust chronometer that behaves 

as a closed system in nearly all cases (i.e. U and Pb are retained). The chronometer thus delivers 

a temporal record since zircon crystallization that is resistant to thermally activated diffusive loss 

of Pb even at the high temperatures found within magmatic bodies (Cherniak, 2010). As a result, 

the system is prone to recording the time spent within a magma chamber in addition to the time 

since magma ejection and/or cooling. We can evaluate the time-scales of magma chamber 

residence recorded by the U-Pb in zircon system by utilizing a thermal half-space model to 

simulate the cooling history of any CAMP magmatic body.  Contrary to the suggestion by 
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Jourdan and others (2009) that zircons derived from CAMP bodies have experienced prolonged 

magma residence,  zircons within the CAMP gabbros and basalts are the result of in-situ 

fractional crystallization, and not any pre-emplacement magmatic processes (i.e. zircon 

crystallization at depth). This assumption is supported by petrologic observations for the physical 

concentration of refractory elements within CAMP bodies (Puffer and Horter, 1993) as well as 

field observations for the physical separation of residual melts within these magmatic bodies 

(Philpotts et al., 1996; Puffer and Horter, 1993). This assumption allows the measured 

dimensions of the CAMP flows, sills and dikes to be input directly into a thermal model to 

estimate the time-scales of zircon residence. Results for thermal calculations consider both a sub-

ariel flow and shallow depth dike (Fig. 6 a,b respectively). Model input parameters are chosen to 

deliver the longest potential residence times. These parameters include a maximum intrusive 

temperature of 1300 °C and a maximum flow or sill thickness as measured from the thickest 

dated bodies, the Preakness basalt flow (200 m) and Palisades sill (300 m).   A country rock 

temperature of 200 °C is used for the intrusive body calculation, determined assuming at depth 

estimate of emplacement of 3-5 km and a higher rift-setting geothermal gradient of 40 °C/km. 

Calculations for cooling assume conduction alone, a simplification that will yield cooling time-

scales longer than a more realistic model that considers advective heat transfer at the rock-air 

boundary as well as within the center of the magmatic bodies. This model further assumes 

instantaneous magma emplacement and that the time-scale of cooling begins once the magmatic 

addition within a flow has stopped. Though these model parameters may not accurately reflect 

the setting of emplacement,  the over-estimation of each condition, however, yields a reliable 

maximum constraint on the time-scales of zircon residence. The time-temperature path from 

magmatic temperatures (1300 °C) to complete cooling (0 °C for flow, 200 °C for dike) does not 

need to be considered for our goal of estimating zircon residence. Instead we can examine the 

segment of the t-T path from magmatic temperatures to the minimum temperatures anticipated 

for crystallization of zircon(~900 and 600 °C (Valley et al., 2006)). Results from the thermal 

modeling indicate that cooling from the intrusive temperatures below the temperatures 

anticipated for zircon crystallization occurs within 100 years for a basalt flow and 2000 years 

within the sills. These results suggest that the magma residence time of zircons within the 

basaltic flows and dikes are insignificant and far below the resolution of the U-Pb data.  
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6.5.2 The timing of CAMP and the Late Triassic Extinction 

The high-precision zircon U-Pb dates reveal statistically valid differences between the 

different CAMP magmatic bodies. The difference in time between the North Mountain Basalt or 

Palisades Sill and Preakness Basalts (285±50/240±60 kyr) and as constrained by geochronology 

are in agreement with the previously published constraints placed by cyclostratigraphy (250±20 

kyr) (Olsen et al., 2003; Whiteside et al., 2007). This geochronologic test of previously published 

astrochronologic data corroborates the astronomical tuning model for the Newark Basin section. 

Further integration of these two geochronologic data sets can be used to clarify the relationship 

between CAMP and the ETE.  

 Recent stable carbon isotopic data from bulk organic carbon, wood, and n-alkanes allow 

for a means of comparison between the terrestrial and marine sections (Whiteside et al., 2010). 

The palynological base of the ETE is coincident with the base of the 13C excursion in the Newark 

basin. This strongly suggests that the ETE and biotic crisis do predate the CAMP in Eastern 

North America and further implies that using that the geochronologic data presented in this study 

can be used to anchor the high fidelity cyclostratigraphic record to the absolute time scale. If the 

cyclostratigraphic constraints place the ETE within 14±30 kyr beneath the basal CAMP unit 

(Orange Mountain Basalt/Palisades Sill). Following the Meyers et al., (2011) a mean-error 

weighted date on the ETE can be calculated by combining the geochronologic data with the 

cyclostratigraphic measurements for the differences in time between the geochronologically 

constrained units and the ETE. Restricting the analysis to the cyclostratigraphically constrained 

Newark Basin, the differences in time between the ETE and Preakness basalt (∆t = 264±30 ky) 

and Orange Mountain/Palisades Sill (∆t = 14±30 ky) combined with the date for each unit yields 

an estimate for the ETE of 201.54 ± 0.031 Ma.  Utilizing all the stratigraphically constrained 

units (NMB,PB,AM,PS) and assuming the stratigraphic correlation at the base of the HTQ units 

is reliable the ETE date is refined to 201.56 ± 0.024 Ma. This absolute time constraint on the 

timing of the ETE provides a tie-point on the absolute time-scale with which to compare any 

stratigraphically uncontrolled CAMP units with the boundary and evaluate a potential causal 

relationship.  

Defining the ETE in absolute time on a <100 ky level (201.56 ± 0.024 Ma) provides an 

opportunity to test hypothesis that CAMP magmatism in Morocco either pre-date the ETE as 

suggested by Knight et al. (2004) or is synchronous with the ETE as suggested by Deenen et al., 
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(2010). Knight and others (2004), correlated paleomagnetic reversals observed within the 

intermediate composition upper Argana basalts of Morocco, with E23r, placing the eruption of 

these basalts prior to the ETE by 20ky and supporting for a causal relationship between CAMP 

and the biotic crisis at the ETE. The geochronologic data presented here, however, permits a high 

confidence correlation between the upper Argana basalt, the Alemizi formation (Fig. 2), and the 

contemporaneous lower most units in eastern North America; placing all these units at least ~40 

ky after E23r. This result refutes the hypothesis by Knight and others(2004) that these Alemizi 

formation  predates the ETE by 20ky. Within the Argana basin, Deenan others have documented 

E23r within the sediments below the Tasguint formation (Fig. 2), pacing E23r below CAMP just 

as in North America. A recent attempt by Font and others (2011) to test and improve the 

paleomagnetic results with a high-fidelity study of the Argana section, could not reproduce the 

reversals reported by Knight and others, suggesting that all of CAMP lie in a single normal chron 

(E24n) and are thus remain consistent with the stratigraphy across the Atlantic.  

 An alternative model suggested by Deenan et al (2010) speculates that the ETE is 

coincident with the emplacement of the Tasguint formation, the lower Argana basalt.  This 

model is supported by carbon isotopic data, which places the onset of isotopic excursion just 

below the basalt. It remains unclear, however, how or if the emplacement of the basalt could 

perturb the carbon isotopic system in the underlying sediments (Whiteside et al., 2010). Triassic 

spores, however, are found up to the base of the lower-most Argana basalt, leaving open the 

possibility that this Tasguint formation is correlative or pre-dates the ETE. A similar sediment 

thickness between the magnetic reversal E23r and the ~201.5 HTQ basalts suggests  the time 

interval between E23r and the lower Argana basalt is the same as in North America (14 ± 30 ky)  

thus placing this lower-most eruption within uncertainty of the ETE (Fig. 2) (Deenen et al., 

2010).   

 

6.6 Conclusions 

 The previously reported cyclostratigraphic models for the Newark basin place the 

duration of CAMP in the eastern US at ~610 kyr (Whiteside et al., 2007). High precision zircon 

U-Pb on two horizons within these astronomically tuned sections provides an opportunity to test 

this estimate and the application of astrochronology. Zircons were recovered from 8 CAMP 

magmatic bodies including basalt flows, the Preakness and North Mountain Basalts as well as 6 
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sills or gabbroic bodies, including the Palisades sill, which is interpreted to have a feeder 

relationship with the stratigraphically placed Organge Mountain basalt. New U-Pb data from the 

Preakness and North Mountain basalts yields a difference in time of 285±50 kyr, while the 

difference in time between the Preakness and Palisades sill/Orange Mountain basalt is 240±60 

kyr.  These durations are consistent with the astrochronologic constraints on the cyclic 

sedimentary interval between these two flows of 250±20 kyr. The total range in U-Pb dates for 

the 8 dated CAMP bodies exceeds ~630 ky, a result placing the youngest and mostly southerly 

intrusion, the Butner quarry sill, just outside the cyclostratigraphic constraints (618 ky) for 

CAMP duration in the Newark basin. The in situ fractional crystallization that occurs to produce 

zircons within these mafic bodies allows us to employ a simple thermal model to place a 

maximum zircon residence times at the 100-1000 year timescale.  

 In the eastern US, carbon isotope and palynological data place the ETE boundary prior to 

the onset of CAMP volcanism, with cyclostratigraphic estimates on the intervening duration at 

~20 ky (Olsen et al., 2003; Olsen et al., 2002b). Using the U-Pb data to anchor the 

astochronologic data to the absolute time scale places an estimate on the ETE between 201.5-

201.6 Ma, an absolute time constrain on the TJB that can be used to evaluate other CAMP 

magmatic bodies as potential triggers to the extinction. Geochronologic dates for basalts 

collected from the Triassic Argana basin, Morocco, provide a high-confidence trans-Atlantic 

correlation between the Newark and Argana basins, that agrees with previous correlations 

relying on magnetostratgrahy and basalt chemistry (Deenen et al., 2010; Font et al., 2011). A 

combination of absolute dates on the Alemizi formation basalt in the Argana basin and both 

stratigraphic and astrochronologic data from the underlying sediments suggests the 

stratigraphically oldest CAMP magma, the Tasguint formation, erupted either before or 

coincidently with the end Triassic extinction event, permitting a causal relationship between 

CAMP and the late Triassic biotic crisis.  

 
6.7 Figure Captions 
 
Fig. 1 Map showing the distribution of the Central Atlantic Magmatic Province (CAMP) 
modified from. Zircon 238U-206Pb data for CAMP sills and gabbroic intrusives (a) and basalt 
flows (b). Horizontal bars represent the 238U-206Pb Th-corrected date for a single crystal zircon 
analyses at 2σ. The color of each bar indicates geochemical group, pattern indicates the volcanic 
body geometry. Lightly shaded analyses are outliers and excluded from mean calculations. Solid 
vertical line marks the mean error weighted date. The inner and outer vertical boxes surrounding 
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the mean display the uncertainty on this mean at 65% and 95% confidence intervals, 
respectively. All values dates calculated using a Th/U of 4.0. Numbers on map correlate to 
numbered data on right column. Mean Square Weighted Deviation (MSWD) provides a measure 
of data coherence, where a value above 1 indicates scatter beyond what can be anticipated by 
analytical uncertainties alone, while a value below one is consistent with scatter from analytical 
uncertainties alone. 
 
Fig. 2 Schematic stratigraphic sections for the Newark, Fundy and Argana basins showing the 
astrochronological ages and U-Pb dates from the eastern US and Argana basins pinned to the 
Palisade sill date (PS), which is a feeder to the Orange Mountain Basalt, and hence also provides 
a date for the basalt. Astrochronologic estimates for the time interval between the Late Triassic 
extinction (ETE) and magnetic reversal E23r in the Newark basin, permits constraints to be 
placed on the placment of the ETE with respect to the stratigraphically oldest CAMP unit the 
Tasguint basalt (Argana basin). Astrochronology from Whiteside et al. (2007). 
 
Fig. 3 Cathode Luminesence (CL) (A) and transmitted light (B) images of zircons from the 
Palisades sill (A) and Rapidan Sheet (B). CL images reveal a simple single stage crystallization 
history (i.e. no zircon cores, embayments or reabsorbtion). Transmitted light images highlight the 
characteristics of nearly all “basaltic zircons” dated in this study; block aspect ration, un-
terminated, slightly metamict.  
 
Fig. 4 Comparison between 40Ar-39Ar (previously published) and U-Pb zircon data (previously 
published and data presented here) for CAMP related basalt flows and intrusions from the 
Eastern US and Morocco. The ability to evaluate the cyclostratigraphic model for sediment 
accumulation in the Newark basin or to evaluate a potential causal relationship between the Late 
Triassic extinction event and CAMP requires geochronologic data with uncertainties smaller 
estimates for flood basalt duration (~620kyr). The large uncertainties associated with 40Ar-39Ar or 
SIMS U-Pb data forces us to rely on U-Pb zircon ID-TIMS data alone for evaluating the 
astrochronologic time-scale and clarifying the relationship between CAMP and the ETE.   
 
Fig. 5 Model results for Th/U evolution of CAMP magma. Petrologic descriptions and modal 
abundances provide a probably crystallization sequence for CAMP magmas (Table 2). Combined 
with partition coefficients for thorium and uranium for each mineral (Table 2) the Th/U 
evolution of a typical CAMP magma can be estimated. Shown are magmas with average 
reported initial Th/U (4.0) and minimal reported values at 1σ (3.3).  The Th/U evolution of a 
system always results in fractionation of Th/U to higher values. Horizontal dashed lines marked 
the modal estimates for % Mesostasis or quenched interstitial magma found in the North 
Mountain and Preakness Basalts. As zircon crystallization likely occurred before the mesostatis 
was quenched, the intersection of the modeled Th/U evolution curves and the % mesostatis lines 
places a maximum constrain on Th/U values.  For this reason the average CAMP Th/U value of 
4.0 provides a minimum estimate for the composition that zircons crystallized from. Inset shows 
a compilation of over 15,000 Th/U measurements from volcanic rocks defined by the Earthchem 
database to be “basalts”, “diabase” or “tholeiite”. The data sets modal value of 4 supports the use 
of this Th/U value to model CAMP U-Pb zircon data.  
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Fig. 6 (A) Model Th-corrected 238U-206Pb error-weighted mean dates for North Mountain (blue) 
and Preakness basalts (green) for a range of Th/U magma compositions. (B) Difference in time 
between stratigraphic markers North Mountain Basalt and Preakness basalt for the same range of 
Th/U compositions. Minimum estimate on the Th/U of CAMP magmas of 4.0 suggests a 
difference between the North Mountain and Preakness basalts near ~250 ky, that is insensitive to 
the likely range in the Th/U of the magmas (Fig. 7).   
 
Fig. 7 Results of simple thermal conduction model for basaltic flows (a) and sills (b) intended to 
evaluate the potential time-scale of zircon residence. Petrologic and geochemical evidence 
suggests that zircon crystallized within the fractional crystallizing and cooling basalt. The tested 
model conditions are intended to place a maximum estimate on the cooling time-scales for a sub-
aerially cooling (a) and shallow intrusion (b). The temperature range in which zircon is likely to 
crystallize us highlighted in blue.   
 
Table 6.1 Tabulated zircon U-Pb data for CAMP basalt flows and intrusives dated by this study 
Table 6.2 Summary of Modal abundances and distribution coefficients used to model the Th/U 
evolution of CAMP magmas. 
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Figure 6.3
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Figure 6.6
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Figure 6.7 0
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 c  Th contents calculated from
 radiogenic 208P

b and the 207P
b/206P

b date of the sam
ple, assum

ing concordance betw
een U

-Th and P
b system

s.
 d  Total m

ass of radiogenic P
b.

 e  Total m
ass of com

m
on P

b.
 f  R

atio of radiogenic P
b (including 208P

b) to com
m

on P
b.

Table 6.1 (cont)

137



Puffer and Volkert 2001
M

ineral-Elem
ent partition coeficients

M
odal/G

abbroid
M

odal/Pegm
atoid

D
Th

D
U

Partition coeficient R
eferences

Plagioclase
35.6

34.1
0.05+/-0.025

0.07+/- 0.05
1-5

Pyroxene
34.4

31.6
0.01+/-0.02

0.007+/-0.02
1,2,6-15

Fe-Ti oxide
8.1

8.3
0.1

0.11
4

M
esostatis

21.5
25.4

-
-

quenced m
agm

a does not fractionate Th/U
Apatite

*
0.40%

0.40%
17.1

1.82
16

*M
axim

um
 estim

ate from
 reported P

2 0
5  concentrations

R
eferences: 1: Villem

ant et al., 1981; 2: M
cKenzie & O

'N
ions 1991; 3: Bindem

an & D
avis, 2000; 4: Lem

archand et al., 1987;
 5: D

ostal et al., 1983; 6: Latourrette & Burnett 1992; 7: Beattie, 1993; 8: M
atsui et al., 1977; 9: H

auri et al., 1994; 
10: Benjam

in et al., 1978; 11 Zack & Brum
m

, 1998;12: O
num

a et al., 1968; 13:Klem
m

e & Bundy 2002; 14: W
ood & Trigila 2001;

 15: Adam
 & G

reen 2006; 16: Luhr et al., 1984
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Chapter 7: U-Pb geochronologic and thermochronologic 
time-temperature constraints of 40Ar/39Ar hornblende 
standard HB3gr 
 
 
Abstract: HB3gr hornblende has served as irradiation standard in 40Ar/39Ar studies for decades. 
In order to compare the apparent age bias that currently exists between the U-Pb and 40Ar/39Ar 
systems, zircon and titanite from the same rock from which the hornblende 40Ar/39Ar standard 
HB3gr was derived, were dated by high-precision Isotope Dilution Thermal Ionization Mass 
Spectrometry (ID-TIMS). Radiogenic Pb is retained within zircon at high temperatures over 
geologic time, often providing an age for initial crystallization. Radiogenic Pb in titanite obeys 
temperature dependent volume diffusion, with a nominal closure temperature of ~600 °C. 
Together, the zircon and titanite permit constraints to be placed upon the timing of initial 
crystallization of the rock as well as the rate of any subsequent thermal relaxation. 
Reconstruction of the time-temperature path for the host rock of the hornblende 40Ar/39Ar 
standard HB3gr will allow for an evaluation of the closed/open system behavior of the 
hornblende 40Ar/39Ar system in this sample. Zircon U-Pb data indicate initial crystallization at 
1090.10±0.16 Ma, a date that is 1.7% older than the accepted K-Ar date (1072±11) for Hb3gr; an 
offset that exceeds the typical 0.5-1% bias between the two systems (though remaining within 
uncertainty due to the large uncertainties in the 40K decay constant). Single grain titanite analyses 
range between 1082±0.75 and 1086±0.81 Ma and are interpreted to record the subsequent 
cooling following crystallization at rates between 30-50 °C/Ma. This is supported by the 
observation that hornblende 40Ar/39Ar dates corrected for decay constant bias are more consistent 
with titanite U-Pb dates than zircon, permitting the conclusion that both titanite U-Pb and 
hornblende 40Ar/39Ar systems provide a record of cooling. Future use of the HB3gr should 
evaluate whether the cooling history is manifested in hornblende grain size-date relationships.  
 
7.1 Introduction 

 Significant advancements in radioisotopic geochronology have provided unprecedented 

levels of precision. This has in turn highlighted the resolution of a systematic bias between the 

two most commonly applied chronometers, the U-Pb and 40Ar/39Ar systems. The EARTHTIME 

initiative has encouraged the development of a high-precision absolute time line for Earth’s 

history that can use geochronologic data from any radioisotopic system. In order to accomplish 

this goal, several recent studies have focused on reducing the systematic uncertainties and/or 

inaccuracies that contribute to the biases between different radiometric systems (Kuiper et al., 
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2008; Min et al., 2000; Renne et al., 2010). Calculated dates for samples using both U-Pb and 
40Ar/39Ar reveals a systematic, 0.5-1.5 % age bias, where the U-Pb yields the older date. This 

systematic age discrepancy has typically been attributed to uncertainties and/or inaccuracies 

associated with the 40K decay constants and/or the “true” age of neutron flux standards used in 
40Ar/39Ar studies (Renne et al., 2010). There have been several different approaches aimed at 

reducing or minimizing these uncertainties. These include: Intra-system comparisons, where 
40Ar/39Ar standards are co-irradiated and analyzed in order to reevaluate the true age of standards 

through calibration with other independently known standards (Jourdan and Renne, 2007). 

Second, determination of a 40Ar/39Ar standard’s true age using an independent chronological 

technique such as astrochronology (Kuiper et al., 2008). Lastly, the redetermination of 40K decay 

constants and age of 40Ar/39Ar standards through inter-system comparison with the U-Pb system 

(Kwon et al., 2002; Min et al., 2000; Renne et al., 2010). Correct use of this inter-system 

comparison requires that important criterions be met. First, the precision and reproducibility of 

data produced by both the 40Ar/39Ar and U-Pb systems must be high. Second, both systems must 

have remained closed throughout the sample’s history. This requires that both chronometers 

record the same geologic event and that no slow cooling, thermal reheating, or chemical/physical 

alteration of the radioisotopic systems violate closed system behavior. 40Ar/39Ar standards 

derived from plutonic rocks have typically been excluded from these inter-comparison studies 

because of the potential geologic bias that slow cooling will induce on the different 

chronometers. Exceptions to the bias between the 40Ar/39Ar and U-Pb systems in plutonic rocks 

include the McClure Mountain Syenite a ~520 Ma intrusive where the hornblende 40Ar/39Ar and 

K-Ar data overlap within uncertainty with the zircon, titanite and apatite U-Pb dates, indicating 

rapid cooling of this plutonic rock and its potential usefulness in inter-calibration studies 

(Schoene and Bowring, 2006). 

To further contribute to the inter-calibraiton of the 40Ar/39Ar and U-Pb systems, we 

present here U-Pb zircon and titanite data from a sample of granite pluton that is the source of 

the 40Ar/39Ar hornblende standard HB3gr. Zircon and titanite U-Pb geo/thermochronology have 

the potential to constrain the thermal evolution of the sample, which in turn can be used to 

evaluate whether this sample should be used as a primary standard and for inter-calibration 

studies. Evidence for protracted cooling or reheating can then be used to model the expected 

effects of volume diffusion of Ar in hornblende for this thermal history. Titanite is a U-rich 
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accessory phase with a nominal Pb closure temperature of ~600 °C that has been both 

empirically (Mezger et al., 1991) and experimentally (Cherniak, 2010) calibrated. The zircon U-

Pb system has a high experimentally measured closure temperature of ~850-1000 °C (Cherniak, 

2010) and has been shown to retain Pb at even higher temperatures over long periods of geologic 

time. In the case of sample HB3gr, zircon is anticipated to yield the age of crystallization within 

a granitic magma.  A combination of U-Pb titanite and zircon data allows construction of a time-

temperature path from magmatic crystallization through the closure of the U-Pb titanite system. 

The geologic significance of the hornblende 40Ar/39Ar data can then be evaluated by comparison 

to the time-temperature history based on U-Pb systematics. 

 

7.2 3gr Sample Overview 

 The Lone Grove batholith is one of several syn- to post-tectonic granites that intrude 

metasedimentary and metaigneous rocks of Grenville origin and are collectively known as the 

Town Mountain Granite. The host rock for the standard hornblende was collected from the 

Petrick quarry (3gr) described by Zartman (1964) as a grayish-pink, coarse-grained porphyritic 

granite. This intrusive complex seems to have a simple history including: intrusion into the 

shallow crust, post-dating the Grenville orogony, followed by thermal relaxation with no 

apparent deformation. This simplicity made it an attractive case study area for Zartman’s (1964) 

seminal paper that compared the K-Ar and Rb-Sr systematics of a variety of different mineral 

phases, examined the effects of weathering, and produced the first K-Ar date for what would 

later become the HB3gr hornblende standard of 1050±20 Ma (Fig. 1). Turner and others, (1971) 

used Hb3gr as a neutron flux monitor in an 40Ar/39Ar  study of lunar rocks. The characteristics of 

HB3gr, including its relative antiquity and high K/Ca ratio, makes it an attractive standard for 

studying older rocks. Turner and others (1971), purified the original hornblende separate material 

from Zartman’s 1964 study, publishing a new K-Ar date of 1060 ± 20 Ma (Fig. 1). This K-Ar 

was later recalculated by Roddick (1983) using the decay constants from Steiger and Jager 

(1977) yielding what has become the accepted date for Hb3gr of 1072±11 Ma (Fig. 1) (2σ 

including decay constant uncertainties). The overall reproducibility and apparent homogeneity of 

the 3gr Hornblende led to the development and use of the sample as a neutron flux monitor in 

several studies (Jourdan et al., 2004; Nomade et al., 2001; Renne, 2000; Verati et al., 2005). A 

recent effort by Jourdan and others (2006) to evaluate the reproducibility of Hb3gr at the single 
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grain level produced a large data set of single grain UV laser analyses on 125-200 μm material. 

In this study, over 70 single grain analyses from 3 different irradiation batches yield a mean date 

that lies within analytical uncertainties of the previously published K-Ar date (Fig. 1). The error-

weighted mean date of a similar number of single grain analyses from just a single irradiation 

agree with the published K-Ar dates as well (Renne, 2000). Each of these studies used the 

sanidine separated from the Fish Canyon Tuff (FCs) standard as a neutron flux monitor, while 

more recently, Schwartz and Treiloff (2007) report data for HB3gr inter-calibrated and co-

irradiated with 3 different K-Ar standards, yielding an age of 1073.6 ±9.2/ x Ma (2σ excluding 

decay constants). For a range of different irradiation procedures, laboratories, and external 

standards, the HB3gr standard yields a highly reproducible mean date that is in good agreement 

with the accepted K-Ar date (Fig. 1).  Despite the overall agreement in mean age, single crystal 

UV laser analyses reveal a slight “40Ar/39Ar age heterogeneity” as suggested by Jourdan and 

others (2006). The reported mean error-weighted date from this single grain study has an 

unreported MSWD = 4.6, a value that indicates that the scatter in the data cannot be explained by 

analytical uncertainties alone. The cause of single grain date variability has been suspected to be 

the result of alteration, variation in K/Ca ratios and/or variation in neutron flux or flux gradients, 

although these provide no definitive explanation for the variation observed in Hb3gr (Jourdan et 

al., 2006). A source of heterogeneity that has not been considered is that slow cooling could 

induce rounded 40Ar diffusion profiles and heterogeneity in calculated dates between grains as 

well as within single grains. Constraining the thermal history using U-Pb geo/thermochronology 

permits testing of the hypothesis that slow cooling and volume diffusion as the cause of variable 

dates in Hb3gr.  

 

7.3 U-Pb Methodology 
 Zircon grains were separated from 3gr using standard crushing and mineral separation 

techniques. All reported zircon U-Pb analyses are either single grain or fragments of single 

grains and the Chemical Abrasion method (CA-TIMS) (Mattinson, 2005) was applied to all.  

Prior to analysis several grains were imaged using CL and backscatter techniques (fig 2). Zircon 

images reveal a relatively simple texture suggesting a relatively single stage growth history. Over 

10 single grain analyses were measured using the EARTHTIME tracer ET2525 (202Pb, 205Pb, 
235U, 233U), allowing for the internal fractionation correction using the measured 202Pb/205Pb. Mass 
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dependent fractionation of uranium isotopes were corrected for using the measured 233U/235U 

ratio. Both titanite data and an additional >10 zircon analyses are conducted using the 

EARTHTIME tracer solution ET535 (205Pb, 235U, 233U) and externally correct for Pb-fractionation 

using fractionation coefficients determined from long-term measurements of isotopic standard 

NBS-981. Zircon dates are calculated using an isotopic composition of uranium (238U/235U) of 

137.818 (Hiess et al., 2012). Uranium and lead data for both zircon and titanite were analyzed 

and U-Pb dates calculated using the programs Tripoli and U-Pb Redux, respectively (Bowring et 

al., 2011; McLean et al., 2011). 

Individual titanite grains were dated following procedures similar to those of Schoene 

and Bowring (2006). This includes grain size measurement, a cleaning step in weak HNO3, 

followed by U-Pb tracer addition and a 2 step dissolution procedures (HF/HCL).  Separates of Pb 

and U are isolated and purified using HBr ion chromotogrpahy followed by measurement using 

the VG Sector Thermal Ionization Mass Spectrometer at MIT. Single grain titanite U-Pb data 

from grains of variable diffusion domain size allows evaluation of the granite’s cooling rate 

through the titanite closure window for Pb diffusion. Numerical solutions to the 

diffusion/production equation allow forward modeling of the U-Pb system and an ability to 

match grain size vs. U-Pb date relationships derived from laboratory measurements with the 

forward modeled results for any time-temperature path. Diffusion kinetics for Pb in titanite from 

Cherniak (2010) are used and all modeled cooling paths are linear. Important initial conditions 

include the initial temperature, previously estimated at 750-850 °C (Smith et al., 2010), and start 

time, which is provided from by the zircon crystallization age. All numerical solutions assume a 

spherical grain geometry.  

 

7.4 Results 
7.4.1 U-Pb geo/thermochronologic data 

 U-Pb zircon dates are reported as thorium corrected 206Pb/238U dates ± uncertainty 

(Th/UMagma= 4). Reported uncertainties are: analytical/analytical + tracer calibration/all 

uncertainties including decay constants.  The mean error-weighted 238U-206Pb date using isotopic 

tracer ET2535 is 1090.10 ± 0.16/0.71/1.4 Ma, with an MSWD of 4.2 (n=9) (Fig 3). An additional 

zircon data set using isotopic tracer solution ET535, yields a statistically uniform population due 

to larger individual analysis uncertainties associated with Pb-fractionation, with a mean date of 
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1090.17 ± 0.20/0.47/1.3 Ma and an MSWD of 1.7 (Fig. 3 inset).   The mean error-weighted value 

including decay constant uncertainties will be used to compare to the available K-Ar and 
40Ar/39Ar data. Titanite yield a range of 238U-206Pb dates between 1082.2±0.75 and 1086.3±0.81 

Ma over a range of grain sizes between ~30 and 110 microns. There is an ~ 6 My difference 

between the zircon and titanite U-Pb dates (Fig 3). No statistically significant mean data could be 

assigned to the titanite U-Pb data because of volume diffusion effects. For comparison to 
40Ar/39Ar data the youngest date (of 1082.2±0.75 Ma) is used, corresponding to the smallest 

crystal and thus the closest effective closure temperature to Ar in hornblende. Results for both 

zircon and titanite U-Pb measurements are tabulated in table 1.  

Several recent U-Pb zircon studies have worked to constrain the time-scales of granite 

pluton construction have revealed, tens to hundred of thousand year assembly times within a 

single granitic body (Schaltegger et al., 2009) . These studies have typically focused on younger 

granitic bodies, where the percentage uncertainty any U-Pb date (<0.05%) can easily resolve the 

prolonged pluton assembly in these younger granitoids. In the case of sample 3gr, U-Pb zircon 

data generated using single Pb isotopic tracer ET535 show a homogenous population of grains, 

leading to the interpretation of a single stage formation of the granitic body. Use of a Pb double 

spike ET2535 (205Pb, 202Pb) however, allows for the internal fractionation of Pb within the mass 

spectrometer a reduction in the uncertainty associated with Pb fractionation correction (the 

dominant source of uncertainty for the 205Pb analyses), resulting in a far more precise individual 

analysis (Fig. 3 inset). The resulting data from several single grain measurements using this 

technique, provides sufficient precision to rule-out an instantaneous formation and cooling of the 

granite body, suggesting a slightly prolonged period of pluton assembly. This may be one of the 

first examples of ~1 Ga pluton assembly being resolved at the <1 Ma level.   

 

7.4.2 Numerical Modeling of Titanite U-Pb and Hornblende 40Ar/39Ar systems 

 Numerical solutions to the diffusion equation allows for forward modeling of the titanite 

U-Pb system. Using a model start time of 1090 Ma and initial temperatures of 750-850 °C(Smith 

et al., 2010), the forward calculation can produce synthetic titanite U-Pb data for any tested time-

temperature path. The measured grain size age relationship can be reasonably well fit by 

modeled data for a range of cooling rates between 30-50 °C/Ma (Fig 4). A single titanite analysis 

(T14) remains an outlier to these modeled grain size vs. age curves. All other measured titanite 
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dates are in good agreement with modeled results.  The large range of estimates on start 

temperature/granite crystallization temperature are the dominant source of uncertainty 

contributing to the range of estimated cooling rates. 

 The cooling rates determined for the titanite U-Pb system can then be used as a maximum 

estimate of the cooling rate for the rock as the hornblende cooled through the Ar Partial 

Retention Zone (PRZ). Igneous rocks emplaced in the upper crust are assumed to follow 

exponential cooling paths and thus it is likely that cooling rate slowed through the lower bound 

of the 40Ar Hornblende PRZ; resolution of this is not possible given the relatively large 

uncertainties on 40Ar/39Ar measurements. Forward modeling of the 40Ar hornblende system 

allows us to predict the variation in measured date with grain size that could result from the 

upper bound on this cooling rate. The influence that slow cooling and diffusive loss of 40Ar for 

the grain sizes analyzed in previous studies (Jourdan et al., 2006) can then be evaluated as a 

potential source of 40Ar/39Ar age heterogeneity observed on the single grain scale. Using the 

range of cooling rates constrained by the titanite U-Pb data, the total range in 40Ar/39Ar dates 

induced by volume diffusion is less than 1 My for the reported grain size range. However, if we 

assume that these grains did not obey as a single domain, and that the effective diffusion 

dimension may be as low as 1 μm, forward model calculations will produce a spread in dates no 

greater than ~6 my, just a small percentage of the observed range in 40Ar-39Ar dates (>20 Ma), 

suggesting that volume diffusion cannot account for all of the observed age heterogeneity 

revealed by single grain 40Ar/39Ar studies. The values of modeled 40Ar/39Ar dates for these 

cooling rates lies between ~1078.0-1081.5 Ma, a value that agrees within uncertainty (including 

decay constants) with the average of the previously published 40Ar/39Ar data.  

 

7.5 Discussion 

7.5.1 U-Pb 40Ar/39Ar comparison 

The available 40Ar/39Ar and K-Ar data for Hb3gr must be recalculated using revised 

decay constant and FCs values to permit a systematic comparison with the U-Pb data presented 

here. The previously published 40Ar/39Ar and K-Ar dates and associated uncertainties for Hb3gr 

have been recalculated using three different data reduction methods: 1) Renne and others (1998) 

used decay constants from Steiger and Jager (1977) and a FCs value of 28.02 Ma; 2) Kuiper and 

others (2008) used decay constants from Min and others (2000) and an orbitally tuned date for 
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the FCs of 28.201 Ma; 3) decay constants and FCs values defined in Renne and others (Renne et 

al., 2011; Renne et al., 2010). All recalculated data are reported at the 2σ level with uncertainties 

that include decay constants. Presented in Table 2 are the comparisons between the zircon and 

titanite dates for 3gr reported here and the previously published K-Ar (Turner et al., 1971) and 
40Ar/39Ar dates (Jourdan et al., 2006; Renne, 2000).   

In all nearly all comparisons between the recalculated K-Ar/40Ar/39Ar and U-Pb data, the 

large uncertainties on 40K prevent the ability to resolve any difference between the older U-Pb 

zircon date and the hornblende K-Ar/Ar-Ar date. The singular acceptation to this, the re-

reduction of data from Jourdan and others (2006) using decay constants and FCs values from 

Renne and others (2011), results in a resolvable difference of ~7 ± 5 My (0.5 ± 0.4 %). The 

persistence of a bias between the 40Ar/39Ar hornblende and zircon U-Pb systems even after using 

the most recent estimates of decay constants and FCs suggests that slow cooling and the 

diffusive loss of Ar from hornblende may be contributing to the difference between U-Pb zircon 

and 40Ar/39Ar hornblende dates. This is supported by the observation that the recalculated 
40Ar/39Ar dates and the U-Pb titanite dates overlap within uncertainties.   This allows us to make 

a strong case for the hypothesis that the Ar in hornblende system is recording the cooling of the 

Lone Grove pluton. 

 

7.5.2 Time-temperature path for Hb3gr 

Geo/thermochronologic data from sample 3gr collected from the Lone Grove Pluton, can 

be used to reconstruct its time-temperature history. U-Pb zircon dates are interpreted to record 

crystallization of the granitic pluton at a 1090.10 ± 0.16 Ma. The dispersion in single grain 

zircon U-Pb dates results in a relatively high MSWD of 4.2, and suggests that the zircon U-Pb 

dates may record a prolonged crystallization history.  Subsequent to crystallization, both U-Pb 

titanite and 40Ar/39Ar hornblende thermochronometers record the sample’s cooling path. The 

resolvable difference in time of ~5± my revealed by the zircon and titanite data sets indicates 

cooling at rates between 30-50 °C/my. This cooling rate is consistent with the modeled grain size 

vs. date relationships derived from numerical modeling of titanite U-Pb data (Fig 4). The dates 

produced using the decay constants from Min and others (2000) and Renne and others (2010) fall 

on or very near the time temperature paths predicted from the titanite U-Pb data (Fig. 5). 

Construction of this time-temperature path strongly suggests that both the titanite U-Pb system 
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and hornblende 40Ar/39Ar system have not remained closed to radiogenic daughter throughout the 

history of the sample and records the cooling history of the HB3gr host rock. This indicates that 

this 40Ar/39Ar standard is not suitable for intersystem comparison studies and the refinement of 

the 40Ar/39Ar system.  

 

7.6 Conclusions 

The reduction of intersystem biases between the 40Ar/39Ar and U-Pb system by 

intercomparision requires: 1) precise and accurate dates for a single sample using both systems, 

and 2) a sample where the 40Ar/39Ar and U-Pb systems are closed to parent/daughter loss over the 

entire history of the sample. For sample HB3gr, new high-precision U-Pb zircon dates using CA-

TIMS are presented here. A Th-corrected 238U-206Pb mean error weighted date of 1090.10± 1.4 

Ma (2σ including decay constants) remains ~7 My older than the K-Ar or 40Ar/39Ar dates, 

recalculated using new decay constants. Single grain titanite U-Pb dates for the HB3gr yield a 

range of 238U-206Pb dates between 1082.2±0.75 and 1086.3±0.81 Ma, approximately 6 ± 2 my 

younger than the zircon date. This difference in dates and forward models used to predict the 

grain size vs. age relationship in the U-Pb titanite system indicates that the sample experienced 

protracted cooling after initial crystallization at 1090 Ma.  The reconstruction of a time-

temperature path for the host rock of the hornblende 40Ar/39Ar standard HB3gr reveals that 

cooling at rates between 30-50 °C/Ma have also likely influenced the 40Ar/39Ar and K-Ar data. 

The implication of this history is that HB3gr is not an acceptable sample for intersystem 

comparison studies. It also suggests that any future use of this standard in 40Ar/39Ar studies must 

consider the effects of Ar-loss through volume diffusion.  

 

7.7 Figure Captions 

Fig. 1 Summary of K-Ar and 40Ar-39Ar dates for standard HB3gr plotted against the year of 
publication for each data point. All uncertainties are at the one sigma level and do not include the 
decay constant uncertainties.  
 
Fig. 2 Photomicrograph of zircon grains from Hb3gr using transmitted (A) and cathode 
luminescence(B). Transmitted light images reveal zircon grains contain melt or apatite 
inclusions, either of which could contribute to common Pb to a zircon analysis. Use of 
Mattinson’s (2005) chemical abrasion technique removes these inclusions from the analyzed 
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zircon. Lack of multiple growth histories, embayed grains or inherited cores shown in the  
Cathode luminescence images(B) suggests a single stage growth history for zircons from Hb3gr. 
 
Fig. 3 U-Pb Concordia diagram displaying both zircon U-Pb analyses and titanite U-Pb analyses. 
Only the zircon grains dated using double Pb tracer ET2535 are shown on condordia.  The figure 
inset plots the Th-corrected 238U-206Pb dates for titanite and zircons dated using both single and 
double Pb tracers.  A resolvable difference of ~5 my between zircon and titanite data is apparent 
in both diagrams.  
 
Fig. 4 Titanite 238U-206Pb date (Ma) plotted (black diamonds) against the diameter for each 
analyses (µm). Grain size vs. age correlations can be utilized to determine a cooling rate (°C/Ma) 
through the titanite Pb partial retention zone. Forward calculated U-Pb dates for the same range 
of grain sizes and over a range of potential thermal histories are plotted for comparison with the 
real data. A range of system start temperatures between 750- 850 ° C and cooling rates between 
25-50 °C/Ma are tested. Diffusion kinetics for titanite are from Cherniak (2010).  
 
Fig. 5 Plot of a reconstructed time-temperature path for 3gr. Zircon U-Pb analyses and estimates 
of initial temperature between 750-850 °C (Smith et al., 2010) constrain the initial conditions. 
Cooling rates between 30-50 °C/Ma from this range of temperatures are consistent with the 
measured titanite U-Pb data. For comparison, the 40Ar-39Ar data from Jourdan and others (2006) 
is plotted using the decay constant and fish canyon tuff monitor ages described in the text. The 
uncertainties are reported at the 2σ level and include those from decay constants. 
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3gr

206Pb/ 206Pb/238U
206Pb/ ±2 238U ±2 207Pb/ ±2 207Pb/ ±2 Corr. Th/ Pb* Pbc Pb*/ 206Pb/ 206Pb/ 207Pb/ 207Pb/ -

Fraction   238U a abs <Th> b abs 235U a abs 206Pb a abs coef. % disc c U d (pg) e (pg) f Pbc g 204Pb h 238U i ±2  % 235U i ±2  % 206Pb i ±2  % 207Pb/235U Fraction   
Titanite

T1      1083.10 1.50 1083.10 1.50 1084.60 1.60 1087.80 3.20 0.8 0.43 0.48 84 4.5 19 1141 0.18295 0.15 1.9101 0.24 0.07572 0.16 0.75 T1      
T7      1085.07 0.63 1085.15 0.63 1086.23 0.76 1088.60 1.40 0.8 0.32 0.42 594 20.55 29 1786 0.18332 0.063 1.9147 0.11 0.075754 0.069 0.83 T7      

T7b      1083.70 1.10 1083.80 1.10 1086.90 1.40 1093.30 2.90 0.7 0.88 0.47 207 8.13 25 1550 0.18306 0.11 1.9166 0.21 0.07593 0.14 0.74 T7b      
T8      1083.95 0.83 1084.03 0.83 1084.73 0.94 1086.30 1.50 0.9 0.22 0.47 441 16 28 1684 0.18311 0.083 1.9104 0.14 0.075668 0.074 0.9 T8      

T8b      1082.50 1.50 1082.60 1.50 1084.30 1.30 1087.80 1.70 0.9 0.48 0.5 242 9.59 25 1528 0.18285 0.15 1.9091 0.2 0.075723 0.084 0.92 T8b      
T9      1083.95 0.63 1084.03 0.63 1084.42 0.81 1085.40 1.50 0.9 0.13 0.63 599 22.16 27 1587 0.18311 0.063 1.9095 0.12 0.075633 0.073 0.87 T9      

T9b      1082.48 0.59 1082.57 0.59 1083.90 1.00 1086.80 2.50 0.6 0.39 0.39 165 7.99 21 1288 0.18284 0.059 1.908 0.15 0.075685 0.12 0.62 T9b      
T10      1083.37 0.78 1083.45 0.78 1083.80 1.10 1084.50 2.20 0.8 0.11 0.62 257 15.04 17 1011 0.18301 0.078 1.9076 0.16 0.075602 0.11 0.84 T10      

T11b      1082.24 0.75 1082.32 0.75 1083.30 1.00 1085.40 2.10 0.8 0.29 0.51 339 13.14 26 1561 0.1828 0.075 1.9063 0.15 0.075634 0.11 0.77 T11b      
T13      1085.00 1.00 1085.00 1.00 1085.30 1.40 1086.10 3.00 0.7 0.1 0.52 413 16.97 24 1469 0.1833 0.1 1.9121 0.21 0.07566 0.15 0.71 T13      
T14      1086.26 0.81 1086.34 0.81 1086.10 1.10 1085.70 2.50 0.7 -0.05 0.5 149 5.77 26 1562 0.18354 0.081 1.9143 0.16 0.075646 0.12 0.68 T14      

zircon --ET535
z2o2      1090.07 0.58 1090.15 0.58 1090.33 0.82 1090.90 1.60 0.8 0.07 0.45 68 0.52 131 7885 0.18423 0.058 1.9265 0.12 0.075874 0.081 0.82 z2o2      
z3o1      1090.02 0.57 1090.10 0.57 1090.03 0.79 1090.10 1.60 0.8 0 0.6 72.4 0.4 182 10539 0.18423 0.057 1.9257 0.12 0.075844 0.077 0.82 z3o1      
z3o4      1091.40 0.91 1091.48 0.91 1089.40 2.00 1085.30 5.00 0.7 -0.57 0.68 23.1 0.69 33 1915 0.18448 0.091 1.9237 0.3 0.07566 0.25 0.65 z3o4      
z4o1      1091.11 0.61 1091.19 0.61 1091.40 1.10 1091.90 2.50 0.8 0.07 0.66 31.7 0.42 76 4372 0.18443 0.061 1.9295 0.17 0.075914 0.12 0.78 z4o1      
z4o2      1090.90 1.40 1091.00 1.40 1091.00 1.60 1091.10 3.60 0.7 0.02 0.66 23.9 0.37 64 3660 0.18439 0.13 1.9283 0.24 0.07588 0.18 0.7 z4o2      

z5      1090.05 0.91 1090.13 0.91 1090.80 2.00 1092.30 4.90 0.6 0.2 0.59 72 2.44 30 1731 0.18423 0.09 1.9278 0.29 0.07593 0.25 0.64 z5      
z6      1089.88 0.73 1089.97 0.73 1090.80 1.10 1092.70 2.50 0.8 0.26 0.47 68.3 0.87 79 4722 0.1842 0.073 1.928 0.17 0.075945 0.12 0.78 z6      
z9      1090.90 1.50 1091.00 1.50 1091.40 1.60 1092.00 0.00 1.4 0.13 0.59 32.5 0.43 76 4423 0.18439 0.14 1.9296 0.24 0 0 1.4 z9      

z10      1089.62 0.71 1089.71 0.71 1089.45 0.87 1089.10 2.10 0.6 -0.05 0.45 92 0.64 144 8684 0.18415 0.071 1.924 0.13 0.075808 0.1 0.6 z10      
z13      1089.80 1.00 1089.90 1.00 1090.20 1.60 1090.80 4.60 0.3 0.09 0.54 32.1 0.53 61 3572 0.18419 0.099 1.926 0.24 0.07587 0.23 0.33 z13      
z15      1089.74 0.53 1089.82 0.53 1090.34 0.87 1091.50 1.90 0.8 0.16 0.63 68.6 0.38 179 10313 0.184175 0.053 1.9266 0.13 0.0759 0.092 0.79 z15      
z16      1090.70 1.20 1090.80 1.20 1091.70 2.20 1093.70 5.40 0.7 0.28 0.43 9.4 0.32 29 1780 0.18436 0.12 1.9306 0.33 0.07598 0.27 0.65 z16      
z20      1089.50 1.40 1089.60 1.40 1090.60 1.80 1092.80 4.80 0.5 0.3 0.51 48.6 0.86 56 3359 0.18413 0.14 1.9273 0.28 0.07595 0.24 0.51 z20      
z22      1089.16 0.78 1089.24 0.78 1089.50 1.40 1090.10 3.00 0.9 0.09 0.45 62.6 1.13 55 3336 0.18407 0.078 1.9241 0.21 0.07585 0.15 0.86 z22      
z23      1090.42 0.50 1090.50 0.50 1090.70 1.30 1091.30 2.80 1.1 0.08 0.44 37.7 0.55 69 4154 0.184299 0.05 1.9276 0.2 0.07589 0.14 1.1 z23      

zircon ET2535
202_z2      1089.47 0.36 1089.55 0.36 1090.15 0.48 1091.50 1.20 0.6 0.18 0.5 71.2 0.24 295 17515 0.184126 0.036 1.926 0.073 0.075898 0.049 0.61 202_z2      
202_z3      1090.78 0.60 1090.86 0.60 1090.93 0.65 1091.20 1.70 0.5 0.04 0.59 55.5 0.36 153 8900 0.18437 0.059 1.9282 0.098 0.075888 0.078 0.51 202_z3      
202_z4      1092.27 0.82 1092.35 0.82 1091.43 0.95 1089.80 2.40 0.5 -0.23 0.54 18.1 0.25 74 4353 0.18464 0.082 1.9297 0.14 0.075832 0.12 0.52 202_z4      
202_z5      1089.66 0.74 1089.74 0.74 1089.43 0.67 1089.00 1.50 0.7 -0.06 0.54 37.9 0.19 197 11557 0.18416 0.073 1.9239 0.1 0.075803 0.067 0.67 202_z5      
202_z15      1089.50 0.46 1089.58 0.46 1090.59 0.94 1092.80 2.20 0.8 0.3 0.6 45.1 0.64 71 4109 0.18413 0.046 1.9273 0.14 0.075947 0.1 0.77 202_z15      
202_z16      1089.95 0.48 1090.03 0.48 1090.47 0.66 1091.50 1.60 0.6 0.14 0.37 70.6 0.42 166 10209 0.184213 0.047 1.9269 0.098 0.075899 0.074 0.58 202_z16      
202_z17      1090.54 0.31 1090.62 0.31 1090.54 0.39 1090.50 2.70 -4.0 0 0.59 39.5 0.44 89 5175 0.184321 0.031 1.9271 0.058 0.07586 0.13 -4 202_z17      
202_z19      1090.00 1.00 1090.10 1.00 1090.80 1.00 1092.40 2.30 0.7 0.22 0.51 25.5 0.34 75 4434 0.18423 0.099 1.928 0.15 0.075934 0.11 0.68 202_z19      
202_z20      1089.85 0.71 1089.93 0.71 1091.50 1.30 1094.90 3.40 0.5 0.46 0.48 28.4 0.63 45 2702 0.18419 0.071 1.93 0.19 0.07603 0.17 0.5 202_z20      
202_z21      1090.16 0.73 1090.24 0.73 1090.90 2.20 1092.40 6.00 0.5 0.21 0.43 26.3 1.3 20 1238 0.18425 0.072 1.9282 0.33 0.07593 0.3 0.53 202_z21      

 a  Isotopic dates calculated using the decay constants 238 = 1.55125E-10 and 235 = 9.8485E-10 (Jaffey et al. 1971).
 b  Corrected for initial Th/U disequilibrium using radiogenic 208Pb and Th/U[magma] = 4.
 c  % discordance = 100 - (100 * (206Pb/238U date) / (207Pb/206Pb date))
 d  Th contents calculated from radiogenic 208Pb and the 207Pb/206Pb date of the sample, assuming concordance between U-Th and Pb systems.
 e  Total mass of radiogenic Pb.
 f  Total mass of common Pb.
 g  Ratio of radiogenic Pb (including 208Pb) to common Pb.
 h  Measured ratio corrected for fractionation and spike contribution only.
 i  Measured ratios corrected for fractionation, tracer, blank and, where applicable, initial common Pb.

Dates (Ma) Composition Isotopic Ratios Correlation Coefficients

Table 7.1
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Decay Constants/ Fish Canyon Tuff Ar- data source abs dif zircon unc abs dif titanite unc
1/- K-Ar (Turner et al., 1971) 18.1 20.0 10.2 18.1
1/a Ar-Ar (Jourdan et al. 2006) 16.5 17.7 8.6 16.5
1/a Ar-Ar (Renne 2000) 16.1 16.1 8.2 16.1
2/- K-Ar (Turner et al., 1971) 13.2 24.0 5.3 24.0
2/b Ar-Ar (Jourdan et al. 2006) 6.6 42.6 -1.3 42.6
2/b Ar-Ar (Renne 2000) 8.1 43.2 0.2 43.2
3/- K-Ar (Turner et al., 1971) 11.2 12.8 3.4 12.8
3/c Ar-Ar (Jourdan et al. 2006) 7.4 5.3 -0.5 5.2
3/c Ar-Ar (Renne 2000) 8.4 11.2 0.5 11.1

Decay constants: 1 = Steiger and Jager, 1971, 2= Min et al., 2000, 3=Renne et al., 2010
FCT values : a = Renne et al., 1998, b = Kuiper et al., 2008, c = Renne et al., 2010

Table 7.2
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Appendix:   

A.1 Chapter 3 appendix 

Methods 
Lithosphere thermal models 
 

The thermal processes operating in the lithosphere include heat conduction, heat producing element decay, 
exhumation or burial and lithosphere thickness. To model this setting we employed a thermal model consisting of a 
one-dimensional, conductive depth profile in a reference frame fixed with respect to Earth’s surface. Source and 
advection terms are included to account for heat production and advection. A 1-D thermal model is suitable for 
studying the deep lithosphere, as lateral variations in isotherms at depths corresponding to 400 °C or higher cannot 
be induced by surface topography and are unlikely within the stable continental interior. Lithosphere exhumation is 
simulated using a semi-lagrangian method to quantify the effects of sample cooling/warming by uplift/burial 
through the conductive column towards/away the heat-loss surface. A source term accounts for the heat contributed 
from the decay of heat producing elements (HPE). Total lithosphere HPE concentrations are allocated between the 
upper, middle and lower crusts and the mantle lithosphere. Compiled data sets of HPE concentrations from (12, 13) 
were used (appendix Table 2). A model for temperature dependent thermal diffusivity is employed for the crust (30) 
and an average value for olivine thermal diffusivity is used for the mantle (31-33). Input parameters that match the 
regional setting for the lithosphere are used, including a tested range of lithosphere thicknesses between 200-250 
km, consistent with seismologic (34) and mantle xenolith data (16),  and upper, middle and lower crustal thicknesses 
derived from seismic velocity models for the regions crust (14). The initial geothermal gradient was chosen by 
assuming the maximum temperature condition associated with each lithosphere layer; crust at 700 °C, lower crust 
900 °C, and mantle lithosphere 1450 °C. Varying these initial temperature conditions has a negligible effect on the 
lower temperature U-Pb thermochronometric data, as these variations in initial geothermal gradient only effect the 
rate and magnitude of the initial relaxation from high temperatures and does not effect the rate of long-term slow 
cooling or absolute temperatures experienced by lower crustal samples, the later of which is controlled by 
lithosphere thickness and sample depth. Surface temperature is fixed to 10 °C, while the basal boundary condition 
employs a dirichlet boundary condition that changes with our estimate of the absolute temperature and secular 
cooling rate of the mantle. A complied literature summary of mantle secular cooling rates and absolute mantle 
temperatures is provided by (35) and references therein. These values are supported by more recent work by (36, 37) 
The mantle secular cooling rate and absolute temperature at 2.0 Ga used for this study is 0.05 ºC/Ma and 1450 ºC 
respectively. Varying these each of these parameters over a broader range of reported values (35) has little to no 
effect on the lower crustal thermal histories (<3% difference in maximum ∆ U-Pb) and this study’s conclusion that 
lithosphere exhumation is low (Fig S1). In addition to exhumation, both lithosphere thickness and HPE distribution 
and concentration play a secondary role in controlling the rate of heat loss and the topology of U-Pb data. Exploring 
a minimum to maximum range of compiled HPE concentrations from compiled databases for the upper, middle and 
lower crust (12) as well as the mantle lithosphere (13) yields a <20% variation in the maximum ∆ U-Pb when 
compared to the nominal HPE values (Fig S1) (12, 13). Varying the lithosphere thickness ±25 km about 225 km 
yields variations in ∆ U-Pb of <15 % (Fig S1). If in reality the HPE concentration were lower than the nominal 
values and lithosphere thickness were 25 km less than the modeled value any comparison between modeled and 
measured data would overestimate exhumation by up to 0.0025 km/Ma. A maximum exhumation rate of 0.0025 
km/Ma for a lithosphere thickness of 250 km and HPE concentrations at a minimum is consistent with both the 



 
 

 
 

158 

modeled data for 0.00 km/Ma and the measured U-Pb data presented in the main text. For this reason the 0.0025-
0.005 km/Ma can serve as a maximum range in exhumation rate. 

 
Diffusion models for the U-Pb system 

Resulting time-temperature paths from the thermal model at lower crustal depths are then exported to a 
forward model to calculate the U-Pb data that would result for this thermal history. The spherical form of the 
production-diffusion equation is solved using a Crank-Nicholson scheme resulting in a singular internal Pb diffusion 
profiles for the tested t-T path. Assuming the grain boundary acts as infinite reservoir to Pb diffusion, the end of 
each grain radius is held at zero. The grain center boundary is set to have center symmetry. The solution is carried 
out for multiple grains of varying size and repeated for time-temperature paths for any sample depth. Diffusion 
kinetics for rutile used values reported for natural rutile with normal to c-axis diffusion (38). Convergence tests 
evaluating the accuracy of both the internal Pb diffusion profile, and the whole grain U-Pb date were conducted over 
a range time and spatial increments (Fig S2). Internal Pb diffusion profiles were evaluated by comparison to 
analytical solutions for spherical diffusion from Crank (Fig S2a) (39). Whole grain U-Pb dates were evaluated by 
analytical solutions for whole grains that includes a Pb source from Tilton (Fig S2b) (40). 

 
Analytical methods 

Reported U-Pb rutile and titanite data are whole-crystal analyses using Isotope Dilution-Thermal Ionization 
Mass Spectrometry (ID-TIMS) following methods by (9). Dissolution of an entire crystal provides an integrated 
measure of the internal Pb-diffusion profile. The internal diffusion profile of a grain can be inferred by U-Pb 
analysis of multiple grains over a range of grain sizes. Exploiting diffusion’s length-scale dependency, where the 
largest crystals retain Pb at the highest temperatures and oldest times and the smallest crystals at lower temperatures 
and a younger time. Similarly, measuring multiple xenoliths, each from a different depth, provides a measure on the 
long-term cooling of the lithosphere where the shallowest samples cool first and the deepest last. By measuring 
multiple grains of varying sizes the thermal record from one xenolith extends up to 500 Ma or more, typically 
overlapping with the history recorded by shallower/deeper samples. The overlap in thermal histories increase the 
likelihood that a unique thermal setting for the lithosphere can be achieved by finding a modeled thermal history that 
matches the measured data at all depths. 

 

Multi-domain behavior in U-Pb accessory phases 
Dispersion in measured U-Pb data cane result from multi-domain behavior, where an analyzed single 

crystal effectively behaves as two or more isolated diffusion domains. The whole grain integration of these domains 
using the analytical procedures employed here will yield a mixture of the two (or more) domains resulting in delta 
U-Pb value that will always overestimate the true value. Single domain behavior (or near to) is thus required to yield 
a reliable exhumation history. Correlations between measured grain size and U-Pb age were used to test whether 
samples exhibit single domain behavior and evaluate accuracy.  Here we present the how the reduction of a crystals 
effective diffusion grain radius to a size smaller than the grain itself will effect the U-Pb data from slow cooling 
lower crustal rocks. Reduction of the effective diffusion dimension could result from fast diffusion pathways 
including cracks or grain defects. The whole-grain analysis of a single crystal experiencing multi-grain behavior will 
result in a mixture of the total Pb and U from each diffusion domain. Mixtures of different diffusion domains will 
result in a secondary trajectory on a delta U-Pb vs. time plot (Appendix fig 3a), multi-domain behavior will 
systematically shift analyses to higher delta-U-Pb values. For example, a mixture between a 25-micron grain and 
any number of 1-micron sub-domains will result in a data point lying along a secondary curvilinear trajectory that 
yields higher delta U-Pb values than the main array. 
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Fig. S1. 

Sensitivity testing of thermal model parameters. Modeled U-Pb thermochronologic data are presented for 
constant exhumation (0.00km/Ma) while varying additional thermal model parameters, including Heat Producing 
Elements (HPE), lithosphere thickness and basal temperature boundary conditions. Legend reports lithosphere 
thickness, heat producing element concentration, Initial mantle temperature, mantle secular cooling rate and percent 
different in maximum ∆ U-Pb value from data calculated using a lithosphere thickness of 225 km, and nominal HPE 
concentrations (black). The largest deveiation from thes middle values is achieved by combining HPE 
concentrations at a minimum and a lithopshere thickness of 250 km. This deviation in maximum ∆ U-Pb can be 
compensated for (decrease ∆ U-Pb ) by emplying an exhumation rate of 0.0025 km/Ma.  
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Fig. S2 
Convergence tests for U-Pb production diffusion models. Accuracy of U-Pb production/diffusion models are 
evaluated through comparison with analytical solutions for the (a) internal diffusion profile and (b) whole grain U-
Pb date. Convergence is observed with both decreasing spatial increment and time step increment. 
 



 
 

 
 

161 

0 200 400 600 800 1000 1200 1400 1600 1800
0

50

100

150

200

250

300

238U-206Pb date (Ma)

1 micron

50 micron

100 micron

5 micron

10 micron 20 micron

1 & 20 micron mix

1 & 15 micron mix

1 & 10 micron mix

1 & 5 micron mix

1 & 50 micron mix

 

Fig. S3 
Modeled effects of multi-domain behavior. Modeled U-Pb thermochronologic data from a single sample, 
experiencing a simple thermal history are plotted in blue. Variations in 238U-206Pb age and ∆ U-Pb are the result of 
volume diffusion behavior, where different sized crystals retain Pb at different temperatures and thus different times. 
Mixing domains of different size, as would a whole crystal analysis of a grain with cracks or other fast diffusion 
pathways, will result in deviations (red) from the array of data shown in blue. Secondary trajectories shown in red 
are mixtures between different domain sizes and a 1 micron domain, where the number of 1 micron domains varies 
from 1 (plotting near the larger domain) to many thousands 1 micron domains (plotting closer to 1 micron).  
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206Pb/ ±2! 207Pb/ ±2! 207Pb/ ±2! Delta U-Pb ±2! Corr. Th/ Pb* Pbc Pb*/ 206Pb/ 207Pb/ 207Pb/
Fraction   238U a abs 235U a abs 206Pb a abs (Ma) abs coef. % disc b U c (pg) d (pg) e Pbc f 238U h ±2! % 235U h ±2! % 206Pb h ±2! % 
Great Falls Tectonic Zone: ROB = Robinson Ranch, LSC = Little Sand Creek
ROB5

5r16     53.063894 0.706407 58.617949 10.653137 291.843798 403.029619 5.55 11.36 0.80446862 81.82 0.10 0.74 1.34 0.55 0.008266 1.336725 0.059429 18.703482 0.052147 17.645995
5r9     80.163615 0.532772 89.264241 7.550283 339.955217 189.023614 9.10 8.08 0.74765692 76.42 0.00 0.84 0.75 1.13 0.012513 0.668747 0.091892 8.835592 0.053262 8.347409

5r12     278.040136 1.061430 358.919504 7.338225 921.708817 45.851269 80.88 8.40 0.56354656 69.83 0.27 5.11 1.58 3.24 0.044075 0.390046 0.424017 2.427129 0.069774 2.230666
5r11     467.705399 1.276928 517.458800 6.192648 743.639008 29.174367 49.75 7.47 0.589181041 37.11 -0.01 13.33 2.89 4.61 0.075250 0.283044 0.664657 1.527473 0.064061 1.379718
5r10     55.859014 0.500866 57.319090 8.971192 118.760937 363.859089 1.46 9.47 0.747491599 52.97 -0.03 1.11 1.80 0.61 0.008703 0.900552 0.058074 16.097237 0.048398 15.435671

ROB3
3r4     786.918006 3.547243 844.125789 9.195163 997.705960 26.705283 57.21 12.74 0.699446875 21.13 0.01 10.22 2.28 4.48 0.129834 0.478850 1.296388 1.604131 0.072418 1.314450
3r5     585.876488 2.421630 633.099170 6.887468 805.552844 26.547259 47.22 9.31 0.566658966 27.27 0.01 5.44 1.28 4.24 0.095142 0.432402 0.865460 1.462071 0.065974 1.268041

309r7     62.878424 2.454043 71.424019 15.166287 367.834735 467.271888 8.55 17.62 0.399469427 82.91 0.13 0.56 1.34 0.42 0.009802 3.921904 0.072875 21.989736 0.053923 20.737112
ROB1

1r21     229.527418 6.991673 275.160174 31.487798 683.776580 239.664136 45.63 38.48 0.670121985 66.43 0.01 1.64 2.39 0.69 0.036247 3.100668 0.311264 13.063926 0.062281 11.224570
1r20     115.913943 3.709563 127.104280 21.518658 341.795606 371.685962 11.19 25.23 0.560969085 66.09 -0.02 0.98 1.81 0.54 0.018144 3.229132 0.133351 18.011658 0.053305 16.419279
1r15     419.146217 1.122293 471.170129 4.776287 733.231215 24.822606 52.02 5.90 0.43987603 42.84 0.00 8.02 1.37 5.85 0.067180 0.276556 0.590474 1.267029 0.063747 1.171907
1r14     246.471981 1.968493 276.331852 8.468553 537.468261 65.547467 29.86 10.44 0.691733508 54.14 2.12 9.25 2.24 4.12 0.038974 0.814034 0.312778 3.500536 0.058205 2.995651

1r5     487.839107 0.926327 523.774577 1.883446 683.674840 7.817711 35.94 2.81 0.642834583 28.64 0.00 47.54 2.17 21.92 0.078613 0.197159 0.675044 0.460275 0.062278 0.365846
1r16     355.843007 6.447143 392.322288 23.209800 613.420362 124.878817 36.48 29.66 0.787524111 41.99 0.04 11.60 7.16 1.62 0.056752 1.862260 0.471642 7.132329 0.060274 5.780807

1r4     515.069796 0.554812 556.476926 1.883692 729.690864 8.858540 41.41 2.44 0.316094624 29.41 0.01 34.86 1.69 20.59 0.083179 0.112076 0.729870 0.439691 0.063640 0.417763
1r3     341.456090 1.949257 377.827341 6.465467 607.287377 37.150529 36.37 8.41 0.662569872 43.77 0.01 8.99 2.23 4.03 0.054396 0.586119 0.450783 2.049298 0.060103 1.717929
1r7     135.157563 0.475887 154.249523 1.998750 458.636179 25.308346 19.09 2.47 0.779975962 70.53 0.00 39.34 4.76 8.27 0.021188 0.355802 0.164059 1.396705 0.056158 1.141030

LSC18
18r3     886.092272 1.903737 948.563107 3.890767 1096.486509 12.455876 62.47 5.79 0.220408907 19.19 0.01 11.81 1.25 9.44 0.147350 0.229950 1.545157 0.631171 0.076054 0.622145
18r5     852.284639 2.303664 922.896160 5.573667 1095.679211 18.205204 70.61 7.88 0.19125038 22.21 0.01 10.64 1.49 7.16 0.141349 0.288554 1.481627 0.919409 0.076023 0.909334
18r6     917.479435 3.901725 978.352336 11.065037 1117.621486 35.540384 60.87 14.97 0.0871653 17.91 0.02 8.25 2.01 4.11 0.152950 0.456246 1.620933 1.762032 0.076862 1.781168
18r8     1130.350238 2.685856 1152.986287 4.169690 1195.796290 10.242095 22.64 6.86 0.521767349 5.47 0.00 37.74 2.06 18.36 0.191658 0.259053 2.112787 0.605017 0.079952 0.519027
18r9     1170.627049 3.768341 1195.987572 6.148374 1242.108309 16.366060 25.36 9.92 0.311398726 5.75 0.04 88.31 6.66 13.27 0.199127 0.352020 2.247444 0.874950 0.081857 0.835119

18r15     737.445617 2.552543 785.573740 7.337008 924.792311 26.556596 48.13 9.89 0.267242799 20.26 0.00 32.17 3.50 9.19 0.121196 0.366309 1.167712 1.341390 0.069879 1.292545
1809r1     722.752527 18.040308 802.714692 28.787736 1031.567240 84.445800 79.96 46.83 0.599964415 29.94 0.01 0.94 0.61 1.56 0.118644 2.638595 1.204616 5.188739 0.073638 4.178132
1809r2     854.313647 6.589459 898.189818 17.340646 1007.755810 52.631889 43.88 23.93 0.502362594 15.23 0.00 2.45 0.91 2.70 0.141708 0.823554 1.421972 2.908797 0.072777 2.594660
1809r3     842.746357 3.864391 885.170478 10.317762 992.749578 29.373445 42.42 14.18 0.703732471 15.11 0.00 3.56 0.50 7.17 0.139661 0.489173 1.391116 1.746598 0.072241 1.444701
1809r4     962.297856 3.992538 1007.090608 5.733694 1105.874908 14.724273 44.79 9.73 0.576801727 12.98 0.00 6.41 0.70 9.11 0.160994 0.446634 1.696173 0.897599 0.076412 0.736531
1809r5     759.250690 1.719522 820.473716 2.681126 990.267821 7.758751 61.22 4.40 0.60793445 23.33 0.00 12.36 0.58 21.33 0.124995 0.240075 1.243514 0.476393 0.072153 0.381204
1810r2     716.494742 8.358282 771.955755 14.676892 935.948981 48.082152 55.46 23.04 0.506937794 23.45 -0.06 7.43 1.21 6.15 0.117558 1.232581 1.138834 2.714694 0.070260 2.344376

1810r10     1171.334188 0.945802 1205.806653 1.999605 34.472465 2.945407 34.47 2.95 1268.087387 1.74 0.56 8.34 0.00 54.46 50.197800 3362.570801 0.199258 0.080746 2.279001 0.165831
1810r11     1030.914487 2.645707 1063.817957 3.735213 32.903470 6.380920 32.90 6.38 1131.937408 2.57 0.76 9.66 0.00 51.65 19.121300 1249.905029 0.173418 0.256637 1.851089 0.351114
ROB 9 Titanite

T2      1465.221873 8.051433 1476.380847 11.640363 1492.457765 20.218213 11.16 19.69 0.801923655 1.82 2.06 313.86 35.01 8.96 0.255197 0.614315 3.280260 1.495886 0.093225 1.068176
T3      1433.076525 8.932487 1451.066314 13.141122 1477.516017 23.120266 17.99 22.07 0.800118781 3.01 1.66 424.88 57.28 7.42 0.248953 0.695156 3.174868 1.701843 0.092492 1.219076
T4      1366.113313 17.584417 1386.544751 27.343172 1418.130412 50.023906 20.43 44.93 0.800361056 3.67 2.39 208.32 51.10 4.08 0.236047 1.428389 2.917833 3.615801 0.089652 2.616627
T5      1382.294936 7.364075 1395.103808 11.383692 1414.740082 20.778018 12.81 18.75 0.800977101 2.29 1.56 274.20 32.34 8.48 0.239154 0.591900 2.950997 1.501036 0.089493 1.086263
T6      1288.491995 9.971877 1319.259662 16.351722 1369.598959 31.082814 30.77 26.32 0.799655568 5.92 2.24 74.54 11.54 6.46 0.221253 0.853838 2.666630 2.214307 0.087412 1.615003
T7      1398.829685 8.812146 1421.816124 13.299066 1456.409250 23.770205 22.99 22.11 0.800628528 3.95 2.42 109.75 13.44 8.17 0.242336 0.700785 3.056318 1.738300 0.091470 1.249786

Northern Wyoming Province, Homestead Kimberlite
HS01 Titanite

T2      1789.101692 1.053042 1818.180919 1.144433 1851.664809 1.412229 29.08 2.20 0.918052944 3.38 0.61 368.32 4.65 79.28 0.319872 0.067404 4.993260 0.135282 0.113216 0.076756
T3      1707.853574 1.024835 1743.307791 1.059976 1786.101498 1.428837 35.45 2.08 0.846247005 4.38 0.35 340.34 4.12 82.68 0.303341 0.068307 4.567225 0.127248 0.109199 0.077049
T4      1753.712460 1.631911 1780.783829 1.231296 1812.660687 1.193773 27.07 2.86 0.913726864 3.25 0.69 849.98 5.34 159.31 0.312646 0.106285 4.776540 0.146652 0.110805 0.064098
T6      1793.999784 1.399259 1820.562892 2.096177 1851.092695 3.846339 26.56 3.50 0.543759757 3.08 0.58 756.56 32.94 22.97 0.320875 0.089352 5.007336 0.247670 0.113180 0.212243
T8      1816.934062 1.833568 1838.072358 4.814643 1862.092615 9.431768 21.14 6.65 0.471886794 2.43 0.50 361.31 38.80 9.31 0.325582 0.115804 5.111826 0.566930 0.113871 0.522157
T9      1763.840129 1.809924 1793.182450 2.095266 1827.485922 3.543801 29.34 3.91 0.642561819 3.48 0.49 767.24 28.89 26.56 0.314709 0.117290 4.847509 0.248921 0.111714 0.194905

T10      1750.605291 2.226820 1776.096968 1.658987 1806.191981 2.003195 25.49 3.89 0.83670121 3.08 0.65 232.15 4.07 57.03 0.312013 0.145255 4.749938 0.197783 0.110411 0.109232
T13      1640.690661 0.964376 1674.331127 0.917205 1716.756523 0.877294 33.64 1.88 0.984578903 4.43 0.33 188.63 0.63 301.47 0.289832 0.066576 4.201593 0.111830 0.105140 0.045466
T16      1820.159786 1.152943 1841.848719 1.061097 1866.441836 1.203179 21.69 2.21 0.904962393 2.48 0.69 501.10 2.77 181.09 0.326246 0.072706 5.134599 0.124855 0.114146 0.065073
T17      1756.345172 1.246821 1791.570799 1.423595 1832.835049 2.210626 35.23 2.67 0.740352765 4.17 0.59 222.12 5.10 43.54 0.313182 0.081099 4.838235 0.169181 0.112044 0.121132

HS02 rutile
r1      820.157996 1.698362 878.935527 5.713423 1030.013199 17.580757 58.78 7.41 0.551046866 20.37 0.04 14.94 2.80 5.33 0.135675 0.220530 1.376478 0.971474 0.073582 0.869524
r4      957.882455 2.284360 1045.099093 4.514900 1232.240321 12.558861 87.22 6.80 0.379682324 22.26 0.02 3.04 0.40 7.62 0.160199 0.256637 1.799010 0.691814 0.081447 0.639873
r5      639.567149 0.739930 693.970111 4.538146 874.476447 18.059879 54.40 5.28 0.314036415 26.86 0.01 3.20 0.86 3.70 0.104301 0.121526 0.980712 0.902669 0.068195 0.872050
r6      751.260977 5.130342 847.834644 7.483483 1109.812255 21.501295 96.57 12.61 0.562552799 32.31 0.00 2.60 0.53 4.93 0.123602 0.723462 1.304791 1.301861 0.076562 1.076267
r7      871.151319 1.972467 946.681967 5.179717 1126.716146 15.388294 75.53 7.15 0.417241686 22.68 0.00 3.06 0.79 3.89 0.144694 0.242064 1.540446 0.841278 0.077214 0.772138
r9      480.094403 2.848595 521.081524 12.360409 705.025490 51.236332 40.99 15.21 1.011414563 31.90 0.00 14.70 2.15 6.85 0.077318 0.615709 0.670607 3.032558 0.062905 2.407970

 a  Isotopic dates calculated using the decay constants "238 = 1.55125E-10 and "235 = 9.8485E-10 (Jaffey et al. 1971).
 b  % discordance = 100 - (100 * (206Pb/238U date) / (207Pb/206Pb date))
 c  Th contents calculated from radiogenic 208Pb and the 207Pb/206Pb date of the sample, assuming concordance between U-Th and Pb systems.
 d  Total mass of radiogenic Pb.
 e  Total mass of common Pb.
 f  Ratio of radiogenic Pb (including 208Pb) to common Pb.
 g  Measured ratio corrected for fractionation and spike contribution only.
 h  Measured ratios corrected for fractionation, tracer, blank and initial common Pb.

Dates (Ma) Composition

 

Table S1. 
Tabulated U-Pb rutile and titanite data. Each analysis is a single, whole crystal measurement using isotope dilution 
and thermal ionization mass spectrometry techniques.  
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Heat producing elment (HPE) concentrations
U (ppm) Th (ppm) K20 (wt%)

UC suggested* 2.7 10.5 2.8
UC Min/Max* 1.5/2.8 8.6/10.7 2.68/4.13

MC suggested* 1.3 6.5 2.3
MC Min/Max* 0.9/2.2 6.1/8.4 2.07/3.36

LC suggested* 0.2 1.2 0.6
LC Min/Max* 0.05/1.38 0.42/5.74 0.17/3.41

MLsuggested**a 0.0 0.1 0.0
ML Min/Max**b 0.009/0.138 0.034/.537 0.01/0.166

aalkali basalt hosted xenoliths
bmins = median off-craton massif, max = kimberlite hosted xenoliths
UC = upper crust
MC = Middle crust
LC = Lower crust
ML = Mantle Lithosphere

 

Table S2. 
Compiled Heat Producing Element concentrations for crust and mantle lithosphere values used in thermal model. 
Symbols (*) data from (12) and (**) from (13). 
 
 
 
 

 

 

 

 

 



 162 

 

 

A.2 Chapter 4 appendix 



Table 4.1

Grain Size (microns) Calculated Temperatures ( C)
Grain # Core/RimWidth 1 Height spherical diameter Zr conc (ppm) Watson et al. 2007 Zack et al. 2004 Tomkins et al., 2007
Sample : SG02 - - - - - - -
Sb-7 C 45 195 30 3038 878 1015 871
Sb-7 R 45 195 30 3267 887 1024 880
Sb-7* C 45 190 30 3322 889 1026 882
Sb-8 C 70 150 43 2908 872 1009 866
Sb-8 R 70 150 43 2853 870 1007 863
Sb-12 C 50 152 32 2997 876 1013 869
Sb-12 R 50 160 32 3051 878 1015 872
Sb-12 R 50 160 32 2718 864 1001 857
Sb-13 C 45 165 30 2706 863 1000 857
Sb-13 R 45 165 30 2678 862 999 856
Sb-13 R 45 165 30 2808 868 1005 861
Sb-13* C 45 165 30 3516 896 1033 890
Sb-10 C 50 200 33 2877 871 1008 864
Sb-18 C 50 190 33 3535 897 1034 890
Sb-18* C 50 190 33 3813 907 1044 900
L-3 C 120 345 77 3626 900 1037 894
L-4 C 90 191 55 4641 934 1069 927
L-5 C 105 190 62 4111 917 1053 910
L-5 R 105 190 62 4116 917 1054 910
L-7 C 90 230 56 4417 927 1063 920
L-7 C 90 230 56 4417 927 1063 920
L-7 R 90 230 56 4501 930 1065 922
LS-9 C 23 127 16 3168 883 1020 876
LS-9 R 23 127 16 3461 894 1031 888
LS-12 C 24 163 17 3174 883 1020 877
LS-12 R 24 163 17 3380 891 1028 885
LS-13 C 27 130 18 3501 896 1033 889
LS-13 R 27 130 18 3853 908 1045 902
LS-14 C 25 114 17 3140 882 1019 875
LS-14 R 25 114 17 3100 880 1017 874
LS-16 C 18 100 12 3172 883 1020 877
LS-16 R 18 100 12 3267 887 1024 880
LS-19 C 30 180 21 3078 879 1016 873
LS-19 R 30 180 21 3439 893 1031 887
LS-28 C 32 173 22 1033 755 877 751
LS-28 R 32 173 22 343 654 736 651
LS-29 C 25 189 18 3110 880 1018 874
LS-29 R 25 189 18 2980 875 1012 869
LS-30 C 33 170 23 188 607 659 604
LS-30 R 33 170 23 135 583 617 581

Grain Size (microns) Calculated Temperatures ( C)
Grain # Core/RimWidth 1 Height spherical diameter Zr conc (ppm) Watson et al. 2007 Zack et al. 2004 Tomkins et al., 2007
LS-30 R 33 170 23 182 605 655 602
LS-31 C 25 93 17 3152 882 1020 876
LS-31 R 25 93 17 3397 892 1029 885
S R10 C 54 158 35 2837 869 1006 863
S R11 C 56 224 37 2854 870 1007 863
S R12 C 47 288 33 2982 875 1012 869
S R13 C 42 180 28 2930 873 1010 867
S R14 C 47 263 32 3515 896 1033 890
S R15 C 41 191 28 3320 889 1026 882
S R16 C 56 130 35 3492 895 1033 889
S R17 C 36 147 24 3298 888 1025 881
S R19 C 42 187 28 3257 886 1024 880
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Table 4.1

S R20 C 44 112 28 3475 895 1032 888
S R21 C 44 148 29 2950 874 1011 867
S R22 C 42 155 28 3153 882 1020 876
S R23 C 35 180 24 2896 871 1009 865
Sample: SG05 - - - - - -
Sb-1 C 68 133 41 3902 910 1047 914
Sb-1 R 68 133 41 3895 910 1047 914
Sb-1 R 68 133 41 3837 908 1045 912
Sb-1 pst pol C 68 133 41 3879 909 1046 913
Sb-2 C 90 170 53 3885 910 1046 914
Sb-2 R 90 160 53 3912 911 1047 914
Sb-2 R 90 160 53 3885 910 1046 914
Sb-2 R 90 160 53 3912 911 1047 914
Sb-2 R 90 160 53 3885 910 1046 914
Sb-5 C 60 125 36 4054 915 1052 919
Sb-5 R 60 125 36 4008 914 1050 918
Sb-5 R 60 125 36 4085 916 1053 920
XL-6 C 115 270 71 4673 935 1070 939
XL-6 R 115 270 71 4207 920 1056 924
XL-2 C 150 210 83 3979 913 1049 917
XL-3 C 106 260 66 3615 900 1037 904
XL-3 R 106 260 66 3316 889 1026 893
XL-3 R 106 260 66 3698 903 1040 907
XL-3 R 106 260 66 3658 902 1039 906
XL-3 R 106 260 66 3628 900 1038 904
XL-3 R 106 260 66 3612 900 1037 904
L-1 C 95 270 61 4758 937 1072 941
L-1 R 95 270 61 4750 937 1072 941
L-1 R 95 270 61 4553 931 1067 935

Grain Size (microns) Calculated Temperatures ( C)
Grain # Core/RimWidth 1 Height spherical diameter Zr conc (ppm) Watson et al. 2007 Zack et al. 2004 Tomkins et al., 2007
L-2 C 90 310 59 5770 965 1097 969
L-2 R 90 310 59 6504 983 1112 986
L-2 R 90 310 59 5980 970 1101 974
S 32 C 26 78 17 4676 935 1070 939
S 32 R 26 78 17 4527 930 1066 934
S 33 C 39 175 26 4673 935 1070 939
S 33 R 39 175 26 4632 934 1069 937
S 34 C 37 102 23 5451 957 1090 960
S 34 R 37 102 23 5311 953 1086 957
S 35 C 32 63 19 5009 945 1079 948
S 35 R 32 63 19 5344 954 1087 958
S 36 C 27 140 18 4740 937 1072 941
S 36 R 27 140 18 5032 945 1079 949
S 41 C 29 112 19 4145 918 1055 922
S 41 R 29 112 19 4148 918 1055 922
S 42 C 20 102 14 5130 948 1082 952
S 42 R 20 102 14 4995 944 1078 948
S R6 C 78 137 46 4997 944 1078 948
S R4 C 44 205 30 4292 923 1059 927
S R4 R 44 205 30 4280 923 1059 927
S R4 R 44 205 30 4270 922 1058 926
S R2 C 50 122 31 3093 880 1017 884

* Analyses taken in the center of the grain, after grain was ground down to remove material
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A.3 Chapter 5 appendix 

 

 

 

 

 

 

 

Model 

This finite difference calculation separately determines the temperature as function of depth, 
temperature and pressure dependent density profile, elevation, relief and erosion rate at each time 
step. Beginning with temperature, the thermal processes operating in the mountain belt include 
heat conduction, heat producing element decay, advection  (i.e. erosion). To model this setting 
we employed a one-dimensional thermal model consisting of a conductive depth profile in a 
fixed reference frame with respect to orogen surface using a Crank-Nicholson solution to the 1-D 
diffusion equation: 

 
Ti

n+1 = Ti
n + dt i!
2(dz)2

(Ti"1
n+1 " 2Ti

n+1 +Ti+1
n+1)+ (Ti"1

n " 2Ti
n +Ti+1

n )#$ %&  (1),  

where α is the thermal diffusivity (Table S3), and dt and dz are the time and spatial increments 
respectively.  A temperature dependent thermal diffusivity of the upper and middle crust 
following Whittington(2009) is used, while a constant value of 0.8e-6 m2/s is used for the mafic 
lower crust and mantle lithosphere. Both upper and lower thermal boundaries employ a fixed 
boundary condition where the upper boundary is fixed to 10 °C, while the basal temperature is 
fixed by a model describing the secular cooling of the underlying mantle (Grigne et al., 2005).A 
source term accounts for the heat contributed from the decay of heat producing elements (HPE). 
At each time step the heat produced (H) through decay of HPE’s is calculated following Turcotte 
and Schubert,(Turcotte and Schubert, 2001) 

 
(2) 

 
 H (t) = R238 iCU iHU 238 i e!238 it + R235 iCU iHU 235 i e!235 it +1iCTh iHTh232 i e!232 it + RK 40 iCK iHK 40 i e!40 it
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where: C is the total present day concentration of U, Th or K; R is the isotopic ratio of each 
radioactive nuclide to total U, Th or K; H the heat production constant (W/kg) ; λ to the decay 
constants for each radionuclide (1/time); and t is time before the present (Ma)  (Table S2). 
Compiled data sets of HPE concentrations for the crust and mantle lithosphere are used(Rudnick 
et al., 2003; Rudnick et al., 1998). The minimum and maximum HPE concentrations and their 
effect on the lithosphere erosional history is presented in the supplementary figure S4.  
Continental lithosphere structure including the upper, middle, lower crustal and mantle 
lithosphere thicknesses use generalized models based off of present day crustal sections from 
Chistensen and Mooney(Christensen and Mooney, 1995) (Fig. 2). We explore variations in 
mountain belt thickness and individual layer thickness and determine their influence on the 
erosional history. The initial temperature profile assumes a high geothermal gradient, consistent 
with conditions during the onset of orogen formation (Fig. 2). Lithosphere exhumation is 
simulated using a semi-lagrangian method to quantify the effects of sample cooling by uplift 
through the conductive column towards the heat-loss surface and to advect the different crustal 
densities upwards according to the level of erosion. As heat is lost at the lithosphere surface by 
both conductive and advective heat loss, this high geothermal gradient will relax.  

Temperature and pressure dependent density models for idealized lower crust compositions 
from Jull and Kelemen(Jull and Kelemen, 2001) are used.  Upper crustal layers are fixed at a 
constant density. At each time step, the temperature profile is used to calculate the corresponding 
density profile. The integrated lithosphere density is used to calculate the height to which the 
lithosphere isostatically floats in the underlying asthenosphere. The asthenosphere mantle 
density is calculated using the pyrolite mantle composition with modeled temperature and 
pressure dependent densities from Kelly and others (Kelly et al., 2003) (Table 2). The 
asthenosphere density increases as the mantle/lithosphere basal boundary condition cools with 
time. The lithospheric mantle plays a critical role by thermally insulating the lower crust from 
the convecting asthenosphere, permitting the lower crust to reach temperatures consistent with 
garnet growth. The density of the mantle lithosphere is set equal to the convecting mantle (i.e. 
“isopycnic”(Jordan, 1988)) (Fig. 1) , while the density of the oceanic lithosphere is 40 kg/m3 less 
than the convecting mantle(Afonso et al., 2007). Assuming isostatic equilibrium is maintained, 
the elevation (E) of the orogen relative to an “old” ocean column is calculated following,  

 
E = (1! "l

"a

) i zl ! (1!
"w

"a

) i zw ! (1!
"oc

"a

) i zoc ! (1!
"ol

"a

) i zol    (3) 

 
where density of each reservoir is denoted as ρ and the thickness by z. The indices for the 
continental lithosphere, asthenosphere, ocean water, oceanic crust(Carlson and Raskin, 1984), 
and oceanic lithosphere are denoted as l, a, w, oc and ol respectively (Table 2). To calculate 
mountain belt relief (h) the height of the orogen is calculated instead to a reference column of 
continental crust, 
 

 
h = (1! "l

"a

) i zo ! (1!
"cc

"a

) i zcc  (4) 

 
The surficial erosion rate at each time step is determined assuming a linear relationship between 
erosion rate and orogen relief, related by an erosional constant (Ek = 0.06 (1/My)). Where again 
the density of each reservoir is denoted as ρ and the thickness by z, while the indices for the 
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reference column of continental crust is denoted as cc (Fig. 2, Table S2). The root thickness of 
the mount belt (m) is defined as the difference between the total orogen thickness and the 
thickness of the reference column of continental crust and the regional relief (Fig. 2, Table S2). 
To conserve mass during density changes, the amount of contraction (∆H) at each point through 
the lithosphere (z) is calculated from the ratio between the density from the present (t) and 
previous time step (t-1) using, 

   

(5). 

 

Initial values and constants used are reported in supplementary table S3, and figure 2. The 
influence of varying these variables on the model-generated data are explore in figure S3.  

Survey of erosion rates in mountain belts ranging in age from 2000 Ma to the present 

This exhumation rate is an integrated measure over the time between the present day (0 Ma) and 
the time at which the sample reached the 120 ± 10 °C isotherm (AFT date) (Fig. S1). This 
method of erosion rate calculation assumes that the geothermal gradient has remained constant 
between the time recorded by the AFT system and the present day, neglecting secular cooling by 
conductive heat transfer over this duration of time. This method assumes a 1-D geometry, 
neglecting the effects of surface topography on lithosphere cooling. Because both conductive 
heat transfer and surface topography will undoubtedly play a role in cooling the lithosphere, the 
rates presented here place a maximum estimate on the true erosion (Fig. S2). Model generated 
data will also be biased the same way, assuming a constant geothermal gradient and a 1-D model 
geometry, permitting us to generate a modeled apparent erosion rate. Using the method of 
exhumation rate calculation employed here, the average exhumation rate for time-temperature 
paths (t-T) A, B and C are equal. Despite the potential for producing an overestimation of 
erosion rates using the AFT data (Fig. S1, S2), the good agreement between AFT and 10Be data 
suggests the simplistic method of erosion rate calculation using the AFT data employed here is 
suitable for resolving the drastically different erosion rates observed in modern and ancient 
orogens. All 10Be cosmogenic nuclide data was collected from a global database of 
measurements(Bierman, 1994), restricting the data to collisional orogens. The tabulated and 
plotted erosion rates (table S3, Figure 1b) use the cited “CHRONUS” erosion rate and 
uncertainty. 

Additional complications to this AFT erosional record arise from partial resetting of the AFT 
system during burial induced heating. A phenomenon likely restricted to the oldest orogens, 
burial within a foreland(Lorencak et al., 2004) or a dynamically driven(Flowers et al., 2012) 
basin can be included as a period of negative exhumation (burial) within the integrated measure 
of erosion rate between the time of AFT closure and the present day.  Though the resulting 
thermal insulation would have been sufficient to perturb the low-temperature AFT system, it is 
unlikely to cause significant changes in lower crustal density. As such, after the cessation of 
subsidence driving forces, the subsequent erosion of sediments would likely occur at rates 
controlled by the temperature and density of the crust, meaning that the cold, dense state of these 
orogens will require that subsequent erosion rates be representative of long-term orogen decay 
even after regional deposition.  
 

 
!H (z) = dz i (1" (#(z)t"1

#(z)t
)
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Supplementary Figure S1. Schematic illustration of how integrated exhumation rates are 
calculated from apatite fission track data.  
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Supplementary Figure S2. Modeled output from thermal model where the input exhumation 
(km/Ma) is plotted against the apparent exhumation rate calculated from modeled apatite fission 
track data. At low exhumation rates and/or long model runs the apparent exhumation may 
overestimate the true exhumation rate by as much as 100%. This occurs because the AFT data 
provides a record in response to lithosphere cooling and is not solely the result of exhumation. 
Calculating a surface-AFT isotherm exhumation rate (see text), assumes that the geothermal 
gradient has remained constant between the timing recorded by the AFT system and the present 
day; i.e. conductive heat transfer has not contributed to secular cooling within the orogen. The 
exhumation rates shown here demonstrate that this assumption has not been meet, leading to an 
overestimate in exhumation/erosion rate.  
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Supplementary Figure S3. Plot of model generated (A) erosion rate and (B) R-value i.e. ratio 
between orogen relief and root thickness, exploring the effects of erosion law, relating erosion 
rate to elevation instead of relief.  
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 Supplementary Table S1. Summary of orogen erosion rate data from Apatite fission track (AFT) 
(Anders et al., 2002; Barnes et al., 2006; Barnes et al., 2008; Benjamin et al., 1987; Blackmer et 
al., 1994; Blythe et al., 1998; Blythe et al., 1997; Boettcher and Milliken, 1994; Bogdanoff et al., 
2000; Bullen et al., 2003; Cederbom et al., 2000; Crough, 1983; Danišík et al., 2009; Ege et al., 
2007; Fitzgerald et al., 1999; Flowers et al., 2012; Gibson et al., 2007; Glasmacher et al., 2002; 
Grobe et al.; Gunnell et al., 2009; Hejl, 1997; Hendriks et al., 1993; Hendrix et al., 1994; Huigen 
and Andriessen, 2004; Jolivet et al., 2001; Kohn et al., 2002; Leech and Stockli, 2000; Martin et 
al., 1998; Moser et al., 2005; Murrell and Andriessen, 2004; O'Sullivan et al., 1995; Osadetz et 
al., 2002; Perilli, 2000; Reinecker et al., 2008; Roden, 1991; Roden and Miller, 1989; Seward 
and Mancktelow, 1994; Seward et al., 1997; Sinclair et al., 2005; Spotila et al., 2004; Toro et al., 
2004; Wagner et al., 1979) and cosmogenic nuclide 10Be data (Bierman, 1994).  

 

Exh rate (m/Ma)

Orogen orogen age AFT 2s unc Be10* unc

TS 0 215 143.3 - -
TP 0 1485 409.2 402.3 15.9
CR 0 92 4.3 - -
AN 0 244 64.7 279.4 11.8
EA 0 705 216.2 684.4 47.5
PR 25 136 23.8 - -
VK 120 70.9 50.0 - -
BR 20 106 23.6 - -
LL 280 30.6 7.6 - -
SU 300 18.5 8.2 - -
VA 300 24.6 10.3 38.0 1.2
AP 325 30.2 18.1 21.2 12.6
SA 325 36.4 21.0 18.5 0.2
CN 23 32.2 10.5 - -
AS 450 14.3 3.8 9.1 0.9
DL 500 21.4 7.6 13.0 2.1
AD 1100 35.3 11.0 - -
GA 1100 19.6 14.5 - -
LU 1100 13.5 16.7 33.5 22.0
IO 1600 15.3 4.5 - -
TH 1800 10.4 7.3 - -
SF 1900 14.8 8.1 - -
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Supplementary Table S2. Summary of orogen R-value (mountain belt relief divided by root 
thickness) and orogen formation age, plotted in figure 2b.  (Fischer, 2002; French et al., 2009; White et al., 2005) 

Orogen formation age (Ma) R R error
S. Appalachians (34N)** 320 0.023 0.02
S. Appalachians (36N) 320 0.07 0.02
C. Appalachians (38.5N) 320 0.06 0.02
Appalachian Plateau (41.5N) 320 0.04 0.02
Central Andes 0 0.15 0.03
S. Urals 300 0.03 0.02
C. Urals 300 0.04 0.02
N. Urals 300 0.055 0.02
E. Alps 0 0.0955 0.02
W. Alps 2 0.127 0.02
Carpathians 0 0.11 0.03
C. Pyrenees 25 0.086 0.03
Tibetan Plateau 0 0.166 0.025
Tien Shan 0 0.183 0.04
Brooks Range 170 0.088 0.02
Verkhoyansk Mtns 150 0.075 0.03
Lachlan Orogen 280 0.077 0.03
Cantabrian Mtns 350 0.08 0.04
Sveco-Fennian Orogen 1900 0.001 0.01
N. Trans-Hudson (54-55N)* 1800 0.014 0.01
Namaqua-Natal Orogen 1000 0.0133 0.01
NW Grenville Orogen 1100 0.01 0.01
U.S. Trans-Hudson (45-48N)** 1800 0.007 0.01

*White et al. (2005)
**French et al. (2009)
Other references in Fischer (2002)
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Supplementary Table S3. Tabulated values for model constants, initial and boundary conditions. 
(Carlson and Raskin, 1984) 
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