
Magnetic Resonance Spectroscopic Imaging with 2D 
Spectroscopy for the Detection of Brain Metabolites 

by  

Trina Kok 
 

B.Eng, Duke University, 2005 
S.M., Massachusetts Institute of Technology, 2009 

 
Submitted to the Department of Electrical Engineering and Computer Science  

in Partial Fulfillment of the Requirements for the Degree of  
 

Doctor of Philosophy 
 

at the  

MASSACHUSETTS INTITUTE OF TECHNOLOGY 

September, 2012 

©2012 Massachusetts Institute of Technology. All rights reserved. 

 
 
Author______________________________________________ 

Department of Electrical Engineering and Computer Science 
August 23rd, 2012 

 
Certified by___________________________________________ 

Elfar Adalsteinsson 
Associate Professor of Electrical Engineering 

 Associate Professor of Health Sciences & Technology 
Thesis Supervisor   

 
Accepted by___________________________________________ 

Leslie A. Kolodziejski 
Professor of Electrical Engineering 

Chairman, EECS Committee of Graduate Students 



2 
 

  

THIS PAGE INTENTIONALLY LEFT BLANK 



3  

Magnetic Resonance Spectroscopic 
Imaging with 2D Spectroscopy for the 

Detection of Brain Metabolites 

by 

 Trina Kok 

Submitted to the Department of Electrical Engineering and Computer Science on 
September, 2012 in Partial Fulfilment of the Requirements for the Degree of  

Doctor of Philosophy  

Abstract 

While magnetic resonance imaging (MRI) derives its signal from protons in 
water, additional biochemical compounds are detectable in vivo within the 
proton spectrum. The detection and mapping of these much weaker signals is 
known as magnetic resonance spectroscopy or spectroscopic imaging. Among 
the complicating factors for this modality applied to human clinical imaging 
are limited chemical-shift dispersion and J-coupling, which cause spectral 
overlap and complicated spectral shapes that limit detection and separation 
of brain metabolites using MR spectroscopic imaging (MRSI). Existing 
techniques for improved detection include so-called 2D spectroscopy, where 
additional encoding steps aid in the separation of compounds with 
overlapping chemical shift. This is achieved by collecting spectral data over a 
range of timing parameters and introducing an additional frequency axis. 
While these techniques have been shown to improve signal separation, they 
carry a penalty in scan time that is often prohibitive when combined with 
MRSI. Beyond scan time constraints, the lipid signal contamination from the 
subcutaneous tissue in the head pose problems in MRSI. Due to the large 
voxel size typical in MRSI experiments, ringing artifacts from lipid signals 
become more prominent and contaminate spectra in brain tissue. This is 
despite the spatial separation of subcutaneous and brain tissue. 

This thesis first explores the combination of a 2D MRS method, Constant 
Time Point REsolved SpectroScopy (CT-PRESS) with fast spiral encoding in 
order to achieve feasible scan times for human in-vivo scanning. Human trials 
were done on a 3.0T scanner and with a 32-channel receive coil array. A lipid 
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contamination minimization algorithm was incorporated for the reduction of 
lipid artifacts in brain metabolite spectra. This method was applied to the 
detection of cortical metabolites in the brain and results showed that peaks 
of metabolites, glutamate, glutamine and N-acetyl-aspartate were recovered 
after successful lipid suppression. The second task of this thesis was to 
investigate under-sampling in the indirect time dimension of CT-PRESS and 
its associated reconstruction with Multi-Task Bayesian Compressed Sensing, 
which incorporated fully-sampled simulated spectral data as prior 
information for regularization. It was observed that MT Bayesian CS gave 
good reconstructions despite simulated incomplete prior knowledge of 
spectral parameters. 

Thesis Supervisor: Elfar Adalsteinsson 
Title: Associate Professor of Electrical Engineering and Computer Science, 
        Associate Professor of Harvard-MIT Health Sciences & Technology 



5  

Acknowledgements 

This thesis would not have been possible without the love and support of many friends 
and family and I would like to make special mention of them here.  

I am most grateful to my advisor Elfar Adalsteinsson. He has been a strong and 
encouraging presence at every step of my graduate school career. Discussions with him were 
always enlightening and I have benefitted a lot from his depth and breadth of knowledge. He 
taught me what it takes to do good science while providing me the freedom to pursue 
independent research. I am truly fortunate to have such a brilliant and supportive mentor.  

I would like to express my sincere gratitude to my thesis committee 
members, Dennis Freeman and Vivek Goyal, for their constructive comments and 
insightful questions. They are always eager to help and they have my heartfelt 
appreciation for that. 

My sincerest thanks go to members of the MRI group at MIT, Audrey Fan, 
Divya Bolar, Borjan Gagoski, Berkin Bilgic, Joonsung Lee, Joseph Cheng, Lohith 
Kini, Filiz Yetisir, Itthi Chatnuntawech, Paula Montesinos, Obaidah Abuhashem, 
Shaoying Huang, Padraig Cantillon-Murphy, Kawin Setsompop, Adam Zelinski and 
Arlene Wint. They are extremely supportive friends and I am glad to have gotten 
to know them! I also thank Colin Stultz, who shares our suite and never fails to 
bring a smile to the members in our lab.  

For my first research project, we collaborated with Florian Eichler and Eva Ratai and I 
gained a lot from that experience. I thank them for being so patient, encouraging and helpful. I 
also wish to thank Daniel Weller, Christin Sander, Kyoko Fujimoto, Wei Zhao, Thomas Witzel 
and Bo Zhu for their friendship and great company, especially at the annual ISMRM meetings. 
I am grateful to Christina Triantafyllou, Steven Shannon and Sheeba Arnold at the McGovern 
Institute at MIT. They have made running experiments at MIT a much smoother process, and 
were always responsive to my questions.  

I extend my sincere thanks to my academic advisor Muriel Medard, and Terry Orlando 
and Janet Fischer at the MIT graduate office. They were instrumental in helping me stay on 
track towards the completion of my graduation requirements.  

I would like to acknowledge the support I received from friends and colleagues at the 
Agency of Science, Technology and Research (A*STAR) in Singapore. I embarked on this 
amazing journey almost ten years ago with fellow recipients of the A*STAR scholarship and 
have forged close friendships with some of them. In particular, I thank Rinawati Rahmat, 
Huanqian Loh, Yvonne Koh, Nicole Tsang, Wuisiew Tan, Zhaoru Lin, Vincent Tan, Huili Goh, 
Xingfang Su, Huimin Tan, Huibin Zhang, Weibin Zhang and Anjan Soumyanarayanan for 



6 
 

giving me advice and words of encouragement even when we are separated by thousands of 
miles. I look forward to seeing them again in Singapore.  

I am heartily thankful to the friends outside of academia who made my Boston and 
MIT experience extraordinary. The instructors and students at Firebeat Dancesport Studios 
and on the MITBDT showed true dedication in doing what they love. There are too many to 
list here but I would like to thank them for helping me balance work and play. I also thank the 
Japanese Sports Meetup members for their friendship and for ensuring that my Sundays are 
always adrenaline-pumping. 

The Singaporeans at MIT have given me much support and laughter. I would like to 
specifically thank Lynette Cheah, Kenneth Lim, Xiaojuan Khoo, Daryl Lim, Kongjie Kah, 
Songliang Chua, Maple Ye, Thomas Yeo and Nancy Chen for being great company and for 
cooking me lots of delicious Singaporean fare.  

My warmest thanks are due to James Nowselski for his unwavering belief in me. He has 
supported me through my trials and was always there for me.   

My parents and grandparents have showered me with much love and support and I owe 
them my deepest gratitude for that. I am grateful to my parents for giving my brother and I 
the best they can. Pursuing an overseas education would have been impossible without their 
love and encouragement. My grandpa was a fine example of life-long learning- I will forever 
remember him bent over his dictionary and brows furrowed in concentration. I hope this work 
makes you proud. I wish to thank my brother and his family for always giving me sound advice 
and trusting me to make my own decisions. They have made this crucial past year at MIT 
enjoyable and comforting. I am indebted to my extended family. Auntie Chik Yah played a 
crucial part in my education, always reminding me to do my best. Uncle Chik Ee and my 
cousins have supported me through this journey in their various ways. I dedicate this thesis to 
my family. 

Cambridge, Massachusetts, August 2012 

Trina Kok 

 

 

  



7  

Table of Contents 
 

 

 

 

 

 

 

 

Chapter 1 Introduction and Motivation ...................................................... 15 

1.1 Thesis Organization ...................................................................................................... 17 

1.2 Bibliographical Notes .................................................................................................... 18 

Chapter 2 Background: Magnetic Resonance Spectroscopic Imaging ......... 20 

2.1 Magnetic Resonance Spectroscopy ............................................................................... 22 

2.1.1 N-Acetyl Aspartate, Glutamate and Glutamine ....................................................... 24 

2.1.2 Water Suppression .................................................................................................... 26 

2.1.3 Lipid Suppression ...................................................................................................... 28 

2.2 2D Magnetic Resonance Spectroscopy ......................................................................... 30 

2.2.1 Correlated Spectroscopy ........................................................................................... 33 

2.2.2 J-resolved MRS: 2D JPRESS ................................................................................... 34 

2.2.3 Constant Time PRESS ............................................................................................. 36 

2.3 Magnetic Resonance Spectroscopic Imaging ................................................................ 39 

2.3.1 Signal Equation ......................................................................................................... 39 

2.3.2 Conventional Phase Encoded MRSI ......................................................................... 41 

2.3.3 Echo-Planar Spectroscopic Imaging .......................................................................... 42 

2.3.4 Spiral Spectroscopic Imaging .................................................................................... 43 

2.4 2D MRS with Spectroscopic Imaging ........................................................................... 45 

 



8 
 

 

Chapter 3 Detection of Cortical Metabolites with Lipid Artifact 
Suppression in High-Resolution CT-PRESS  .............................................. 47 

3.1 Spiral Encoded 17-Step CT-PRESS Pulse Sequence ................................................... 48 

3.2 Lipid Minimization Algorithm ...................................................................................... 50 

3.3 In-Vivo Trials ................................................................................................................ 50 

3.3.1 Validation of Lipid Artifact Minimization ................................................................ 52 

3.4 Results ........................................................................................................................... 53 

3.4.1 Validation of Lipid Artifact Minimization ................................................................ 59 

3.5 Discussion ...................................................................................................................... 62 

3.6 Conclusion ..................................................................................................................... 64 

Chapter 4 Multi-Task Bayesian Compressed Sensing in Sparse 2D 
Spectroscopy ............................................................................................... 65 

4.1 Introduction: Compressed Sensing ............................................................................... 66 

4.1.1 Random Under-sampling .......................................................................................... 67 

4.1.2 Non-Linear Reconstruction ....................................................................................... 67 

4.2 Introduction: Bayesian Compressed Sensing ................................................................ 68 

4.3 Multi-Task Bayesian Compressed Sensing .................................................................... 71 

4.4 Evaluation of MT Bayesian CS .................................................................................... 72 

4.4.1 Results ....................................................................................................................... 74 

4.4.2 Discussion .................................................................................................................. 77 

4.5 Parameters for Noise Modeling in MT Bayesian CS .................................................... 78 

4.5.1 Results and Discussion .............................................................................................. 80 

4.6 Conclusion ..................................................................................................................... 82 

Chapter 5 Conclusions and Future Work .................................................... 84 

5.1 Conclusions ................................................................................................................... 84 

5.2 Future Work .................................................................................................................. 85 

5.2.1 2D MR Spectroscopic Imaging with Lipid Minimization ......................................... 85 

5.2.2 Compressed Sensing for 2D MRS ............................................................................. 86 

Chapter 6 Bibliography ............................................................................... 87 

 



9  

List of Figures 
Figure 2-1: MP-RAGE images from an in-vivo experiment oriented in medical convention           
(a) before skull-stripping with FSL (b) after skull stripping with FSL ...................................... 21 
 

Figure 2-2: Simulated 1H NMR spectrum of NAA, Glu and Gln from a spin echo pulse sequence 
at 3.0T and echo time (TE) = 30ms showing spectral overlap. .................................................. 24 
 

Figure 2-3: In-vivo spectra obtained with PRESS at TE = 151ms, scan time = 56s from a 
1.11cc voxel at location specified in structural image. All spectra are scaled to the amplitude of 
the creatine (Cr) peak at 3.0ppm. (a) Spectrum obtained without suppression of water or lipids. 
(b) Spectrum obtained with the suppression of water and without lipid suppression. (c) 
Spectrum obtained with the suppression of water and lipids. ..................................................... 27 
 

Figure 2-4: OVS bands (highlighted in yellow) are applied along the skull to null out lipid 
signals. The white rectangle indicates tissue volume excited. Signals from tissue near the skull 
are traded off for lipid suppression. ............................................................................................. 29 
 

Figure 2-5: (a) Energy transitions for a single spin and the corresponding singlet lines of 
resonance in the frequency spectrum. (b) Energy transitions for two spins that are weakly 
coupled and the doublet lines of resonance separated by the coupling constant JAM. The dotted 
line indicates energy transitions for nuclei A and the solid line indicates energy transitions for 
nuclei M. ....................................................................................................................................... 31 
 

Figure 2-6: General Scheme of a 2D MRS pulse sequence .......................................................... 32 
 

Figure 2-7: Cartoon representation of a COSY 2D spectrum with diagonal and cross peaks .... 33 
 

Figure 2-8: 2D JPRESS spectrum before 45o tilt with 16 TE values, starting at 17ms and 
incremented in steps of 17ms.  Spectrum was simulated at 3.0T with SPINEVOLUTION. ...... 35 
 

Figure 2-9: (a) CT-PRESS spectrum of NAA at 3.0T with 129 t1 steps, with TE starting at 
48.6ms and incremented in steps of 1.6ms.  Spectrum was simulated with SPINEVOLUTION. 
(b) Decoupled spectrum of NAA obtained by projecting 2D spectrum along f2 onto f1. ............ 36 



10 
 

Figure 2-10: CT-PRESS spectrum of NAA at 3.0T with 17 t1 steps, with TE starting at 48.6ms 
and incremented in steps of 12.8ms. Spectrum was simulated with SPINEVOLUTION. Non-
overlapping aliasing is observed. .................................................................................................. 37 
 

Figure 2-11: (a) 2D CT-PRESS spectrum from an in-vivo experiment at 3.0T with 17 t1 steps, 
with TE starting at 48.6ms and incremented in steps of 12.8ms. Voxel size = 1.11cc and total 
scan-time = 13:44min. (b) Corresponding diagonal spectrum normalized to amplitude of 
creatine (Cr) peak at 3.0ppm ...................................................................................................... 38 
 

Figure 2-12: (a) Pulse sequence diagram of phase-encoded MRSI scheme (b) k-space trajectory
...................................................................................................................................................... 41 
 

Figure 2-13: (a) Pulse sequence diagram of EPSI scheme (b) k-space trajectory ....................... 43 
 

Figure 2-14: (a) Pulse sequence diagram of a spiral SI scheme (b) k-space trajectory ............... 44 
 

Figure 3-1 SNR maps obtained from gradient echo scans for (a) a 32-channel coil and (b) a 8-
channel coil (courtesy of LL Wald). Greatest SNR increase is in the brain tissue region near the 
skull. ............................................................................................................................................. 48 
 

Figure 3-2: Scheme of the CT-PRESS experiment implemented with spiral encoding. WET was 
used for water suppression. The last 180o pulse of the PRESS module was shifted in increments 
of ∆t1/2 for encoding J-coupling and chemical shift information. No OVS module for lipid 
suppression was applied. .............................................................................................................. 49 
 

Figure 3-3: Anatomical MP-RAGE of Subject 1 – 1st trial, Subject 1 – 2nd trial and Subject 2 
with prescribed slice overlay in sagittal, coronal and axial view. Images are obtained after brain 
extraction with FSL. .................................................................................................................... 51 
 

Figure 3-4: (a) Anatomical image with prescribed FOV and volume of interest in white 
rectangle. The entire axial slice was excited and no additional RF pulses were used for 
excitation. (b) Anatomical image with prescribed FOV and selected volume of interest (in white 
rectangle) overlaid. OVS bands are placed around the brain tissue in the excited volume. ....... 52 
 

Figure 3-5: Projections in linear scale taken by summing over the range of lipid resonance 
frequencies in the diagonal decoupled spectra (a,c,e) before lipid artifact suppression algorithm 



11  

is applied and (b,d,f) after lipid suppression algorithm is applied for the three in-vivo trials of 
(I) Subject 1 – 1st trial (II) Subject 1 – 2nd trial (III) Subject 2 .................................................. 53 
 

Figure 3-6: Diagonal spectrum of a voxel near the skull from Subject 1-2nd trial.  All spectra are 
normalized to the amplitude of the creatine (Cr) signal at 3.0ppm.              (a) Spectrum 
showing substantial lipid contamination that obscures metabolite signals.  (b) Spectrum 
zoomed in so that the metabolites may be better presented. ...................................................... 54 
 

Figure 3-7: Map of diagonal decoupled spectra from 2nd trial of Subject 1 at four regions of 
brain tissue near the subcutaneous layer. Black lines are spectra obtained after lipid suppression 
algorithm was applied; Blue lines are spectra obtained before lipid suppression algorithm was 
applied. ......................................................................................................................................... 55 
 

Figure 3-8: Corresponding diagonal decoupled spectra and 2D unwrapped contour plots for 
Subject 1- 1st trial, for five CSI voxels highlighted at locations ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. Voxels 
at ‘A’-‘D’ are near the skull while voxel at ‘E’ is near the middle of the brain .......................... 56 
 

Figure 3-9: Corresponding diagonal decoupled spectra and 2D unwrapped contour plots for 
Subject 1- 2nd trial, for five CSI voxels highlighted at locations ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. Voxels 
at ‘A’-‘D’ are near the skull while voxel at ‘E’ is near the middle of the brain .......................... 57 
 

Figure 3-10: Corresponding diagonal decoupled spectra and 2D unwrapped contour plots for 
Subject 2- 1st trial, for five CSI voxels highlighted at locations ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. Voxels 
at ‘A’-‘D’ are near the skull while voxel at ‘E’ is near the middle of the brain .......................... 58 
 

Figure 3-11: Diagonal spectra from voxels at locations indicated by ‘F’ ‘G’, ‘H’ and I in the 
anatomical image. Lipid artifact minimization using proposed algorithm successfully reduces 
lipid artifacts between 2.2ppm and 2.8ppm. Spectra processed with lipid minimization 
algorithm are compared with spectra obtained with lipid suppression using OVS bands and 
shows good agreement. ................................................................................................................. 59 
 

Figure 3-12: The 4 x 4 volume for which RMSE between spectra obtained with the proposed 
lipid minimization algorithm and with OVS bands applied are calculated. Mean RMSE values 
obtained by averaging across the 16 voxels. ................................................................................ 60 
 

Figure 3-13: Mean RMSE values between spectra obtained with the proposed lipid 
minimization algorithm and with OVS bands applied for different frequency ranges ................ 61 



12 
 

Figure 3-14: Mean RMSE values between spectra obtained with the proposed lipid 
minimization algorithm and with OVS bands applied for different frequency ranges ................ 61 
 

Figure 3-15: (a) L-curve traced by the data consistency and lipid-basis penalty terms as 
regularization parameter ૃ varies for the 1st t1 step at TE = 48.6ms (b) Projections over lipid 
frequencies of the recovered spectral data for selected ૃ values. ................................................. 62 
 

Figure 4-1: Anatomical MP-RAGE with prescribed Outer Volume Suppression (OVS) pulses for 
fat suppression. The white box indicates the excited volume. 2D spectral data from the voxel 
outlined in red is retrospectively under-sampled and reconstructed with MT Bayesian CS ...... 73 
 

Figure 4-2: (a) Diagonal spectrum from noise-free fully sampled simulated 2D CT-PRESS 
spectrum (b)-(f) 1D diagonal spectra from reconstructed 2D CT-PRESS spectra. Glu, NAA 
and Gln peaks are only seen in (c) and (f) .................................................................................. 75 
 

Figure 4-3: Mean RMSE of diagonal spectra from reconstructed 2D CT-PRESS spectra. 
Reconstructions by least squares fitting have the lowest mean RMSE. MT Bayesian CS 
reconstructions have the next lowest mean RMSE. ..................................................................... 75 
 

Figure 4-4: (a) Diagonal spectrum from noise-free fully sampled invio 2D CT-PRESS spectrum 
(b)-(f) 1D diagonal spectra from reconstructed 2D CT-PRESS spectra. Glu, NAA and Gln 
peaks are best reconstructed in (f) .............................................................................................. 76 
 

Figure 4-5: Mean RMSE of diagonal spectra from reconstructed 2D CT-PRESS spectra. 
Reconstructions by least squares fitting have the lowest mean RMSE. MT Bayesian CS 
reconstructions have the next lowest mean RMSE. ..................................................................... 77 
 

Figure 4-6: Individual Metabolite Spectra superimposed on in-vivo spectra show insufficient 
modeling of the parametric model. Relative amplitudes of frequency peaks from NAA are 
different from that of the in-vivo spectra. ................................................................................... 78 
 

Figure 4-7: Diagonal spectra from (a) noise-free and (b) noisy simulated 2D CT-PRESS 
spectra. Gaussian noise was added to the 2D spectrum so that peak SNRNAA = 20 .................. 80 
 

Figure 4-8: RMSE evaluated for low-SNR peaks evaluated with different values of b for under-
sampling factor of R = 2 and R = 4 using MT Bayesian CS with perfectly phase priors. ........ 81 



13  

Figure 4-9: Diagonal spectra from reconstructed 2D CT-PRESS spectra with different values of 
a and b for under-sampling factors R = 2 and R = 4. ................................................................ 81 
 

Figure 4-10: RMSE evaluated for low-SNR peaks evaluated with different values of b for under-
sampling factor of R = 2 and R = 4 using MT Bayesian CS with imperfect phase information.
...................................................................................................................................................... 82 

 

  



14 
 

List of Tables 

Table 1: Chemical shifts and coupling constants of protons in NAA, Glu, Gln as reported in [18] 
which are used in simulation studies in Chapter 4 ...................................................................... 25 

  



15  

 

 

 

 

Chapter 1   

 

Introduction and Motivation   

 

 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality that 

provides visual representation of soft tissue without ionizing radiation effects. MRI 

has advanced greatly since its invention in the 1950s and now, in addition to 

providing high-contrast soft tissue visualization, is used to map fiber orientation in 

brain tissue  (Diffusion Tensor Imaging), temporal signal variations arising from 

functional activation (functional MRI), flow properties due to blood in vessels, and 

tissue biochemistry (MR Spectroscopic Imaging- MRSI).  

MRSI gives a frequency spectrum of biochemical compounds, e.g. brain 

metabolites present in each spatial voxel of tissue. The signals from these compounds 

are separated in frequency from the dominant water signal via subtle shifts that 

depend on the chemical structure of the particular compound. It is due to this 

frequency shift that there is a potential for physiological evaluation and material 

characterization of a volume of interest. MRSI is widely applied for studying the role 
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of metabolites in many brain pathologies, e.g. N-Acetyl-Aspartate (NAA) is a known 

marker for neuronal health and its deficiency is associated with neurodegenerative 

diseases such as adrenoleukodystrophy (ALD) [1-3] and Alzheimer’s disease [4-7]. 

Brain metabolites however, have very small concentration compared to water signals 

so that MRSI scans have intrinsically low signal-to-noise ratio (SNR) compared to 

conventional MRI. Metabolite concentrations are expressed in mole/liter (M). The 

concentrations of observable brain metabolites in vivo are typically on the order 1-10 

mM compared to 50M for water.  SNR is proportional to voxel size and the square 

root of acquisition time. This means that voxel sizes for MRSI scans are typically on 

the order of 1 cm3 and take tens of minutes, while voxel sizes for structural MRI 

scans are on the order of 1 mm3 and take minutes.  

Beyond the limitations on voxel sizes and scan times, the dominant water 

signal also overwhelms the signal from the metabolites, rendering water suppression 

techniques necessary for detecting brain metabolites. Detection of brain metabolites 

are further complicated by strong lipid contamination that arises from lipid signals in 

the subcutaneous tissue in the skin, scalp and bone marrow of the skull. Even though 

the subcutaneous tissue and the brain are spatially separate, ringing artifacts from 

the lipid signals contaminate MRSI spectra of tissue well within the brain. These lipid 

signals resonate close in frequency to the 2.0ppm NAA peak and often overlap with 

the NAA, Glutamate (Glu) and Glutamine (Gln) signal.  

However, low SNR is not the only challenge in MRSI. Line splitting caused by 

J-coupling between different nuclei of the same compound further reduces the SNR of 

the frequency spectrum of the brain metabolites. Complicated J-coupling results in 

multiplets for a single metabolite and these multiplets overlap with the spectra of 

other metabolites, making metabolite quantification and detection difficult.  



17  

In addition, complicating factors such as inherent B0 and B1 inhomogeneities, 

subject-induced magnetic susceptibility variations, RF coil design and subject motion 

further hamper low-SNR metabolite estimation. Other types of signal contaminations, 

such as patient movement, also contribute to the challenge of obtaining spectroscopic 

images of high quality.  

The motivation of this thesis is the development of MRSI techniques for the 

detection of J-coupled metabolites within reasonable scan times. This thesis 

investigates the combination of fast two-dimensional (2D) MRSI techniques with a 

lipid artifact reduction algorithm implemented at 3.0T and a multi-channel receiver 

coil array for increased SNR. The dissertation also explores the possibility of reducing 

scan times by under-sampling in one of two spectral dimensions of a 2D MRS 

experiment.  

1.1 Thesis Organization  

Attempts were made to re-define acronyms and acquisition techniques so that 

each of the chapters is self-contained and can be read independently of the other 

chapters. The remainder of this thesis is as follows.  

Chapter 2 provides a background overview of the theory and the acquisition 

methods entailing a typical MRSI experiment. Information regarding the spectral 

properties of metabolites NAA, Glu and Gln are also included for motivating the work 

in this thesis. It also contains more detailed descriptions of common 2D MRS, MRSI, 

and 2D MRSI methods. CTPRESS and spiral spectroscopic image encoding, which are 

techniques that this dissertation is based on are described at length here.  

Chapter 3 presents the work done for the detection of cortical metabolites via 

CT-PRESS implemented with spiral encoding and incorporated with a lipid 



18 
 

minimization algorithm. Results from three high-resolution 1.11cc in-vivo trials are 

discussed in detail and compared with a standard lipid suppression technique using 

Outer Volume Suppression (OVS) bands for fat signal nulling.  

Chapter 4 introduces the concept of compressed sensing (CS) and Bayesian CS 

for reconstructing randomly under-sampled data. Simulated and in-vivo under-sampled 

2D MRS were reconstructed with MT Bayesian CS and its results compared with three 

other reconstruction methods. This chapter also investigates noise modeling by 

incorporating noise information in the hyper-parameters associated with MT Bayesian 

CS.  

Finally, Chapter 5 summarizes the contents and contributions of this 

dissertation and describes future possible undertakings.  

1.2 Bibliographical Notes 

The results from Chapter 3 have been presented in the following publications. 

 T. Kok, B. Bilgic, B. Gagoski, E. Adalsteinsson, “Lipid Artifact Suppression for 
Detection of Cortical Metabolites in High-Resolution CTPRESS”, Proc. 
ISMRM, Melbourne, 2012 
 

 T. Kok, B. Gagoski, E. Adalsteinsson, “High Resolution 2D CTPRESS with 2D 
Spiral Encoding”, Proc. ISMRM, Melbourne, 2012 
 

 T.Kok, B. Bilgic, B. Gagoski, E. Adalsteinsson, “Detection of Cortical 
Metabolites with Lipid Artifact Suppression in High-Resolution CT-PRESS”, in 
preparation for submission to J. Magnetic Resonance in Medicine, 2012 

The results from Chapter 4 have been presented in the following publications 

 T. Kok, E. Adalsteinsson, “Optimized Reconstruction Parameters for Noise 
Modeling in Multi-Task Bayesian Compress Sensing for 2D Spectroscopy”, Proc. 
ISMRM, Melbourne, 2012 
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 T. Kok, B. Bilgic, E. Adalsteinsson, “Multi Task Bayesian Compressed Sensing 
in Sparse 2D Spectroscopy”, Proc. ISMRM, Montreal, 2011 

Other published work broadly related to the work in this thesis but not described in 

detail include  

 T. Kok, E-M Ratai, F. Eichler, E. Adalsteinsson, “Analysis of 1H metabolite 
ratios using image segmentation at 7T in adult patients with X-linked 
adrenoleukodystrophy”, Proc. ISMRM, Toronto, 2008 
 

 E. Ratai, T. Kok, C. Wiggins, G. Wiggins, E. Grant, B. Gagoski, G. O’Neill, E. 
Adalsteinsson, F. Eichler, “7 Tesla proton magnetic resonance spectroscopic 
imaging in adult X-linked adrenoleukodystrophy”,  Proc. ISMRM, Berlin, 2007 
 

 E. Ratai, T. Kok, C. Wiggins, G. Wiggins, E. Grant, B. Gagoski, G. O’Neill, E. 
Adalsteinsson, F. Eicheler. “Seven-Tesla Proton Magnetic Resonance 
Spectroscopic Imaging in Adult X-Linked Adrenoleukodystrophy”, Arch. Neurol. 
2008:65(11):1488-1494 
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Chapter 2   

 

Background:                                     
Magnetic Resonance Spectroscopic Imaging  

 

Nuclear Magnetic Resonance (NMR) was discovered independently by Felix 

Bloch [8]  and Edward Purcell [9] in 1946, and in the 1950’s, NMR was used 

extensively in chemistry and physics for the evaluation of molecular structure and 

kinematics. In 1973, Paul Lauterbur demonstrated the possibility of using linear 

gradient fields to spatially map molecules in a strong magnetic field. This opened up 

new applications for Magnetic Resonance Imaging (MRI), particularly in medical 

diagnostics for imaging soft tissue without the ionizing radiation effects of X-Ray and 

Computed Tomography (CT) imaging.  

MRI uses strong magnetic fields to provide spatial information of biological 

tissue. The static main field of clinical MRI scanners is typically in the range of 1.5 to 

4.0 Tesla, about 30,000 to 80,000 times stronger than the earth’s magnetic field. 

Protons, which are abundant in living tissue (e.g. in water molecules) are 

paramagnetic and tend to align with the magnetic field they are within. It is the 
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presence of this para-magnetism that allows us to manipulate signals from living 

tissue for creating MR images. 

Images are generated in two stages, excitation and readout. In the excitation 

phase, energy is imparted by oscillating radio-frequency pulses (RF) played at the 

resonant frequencies of the protons. As the protons relax to their ground state, 

electromagnetic energy is released and picked up by inductive coils during the readout 

phase.  

Gradient fields are applied to generate a magnetic field that increases in 

strength along one spatial direction. Spatial directions are relative to the main 

magnetic field with z being parallel, and x and y being perpendicular to the main 

field. By applying magnetic gradient fields in x, y, and z during excitation, one can 

selectively excite a three-dimensional volume of tissue. Magnetic gradient fields 

applied during the readout acquisition enable the generation of a spatial map of the 

received signal.  

 

Figure 2-1: MP-RAGE images from an in-vivo experiment oriented in medical convention           
(a) before skull-stripping with FSL (b) after skull stripping with FSL 
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In displaying MRI images such as those in Figure 2-1, there are conventions about 

the orientations in which the images are oriented. For sagittal slices, the image is 

oriented as it would appear if the observer were looking at the subject’s left side. 

Coronal slices are viewed from the subject’s front as if the observer is facing the 

subject, and axial slices are viewed from the subject’s feet with his or her anterior 

(front) at the top of the image. The images in Figure 2-1 are obtained with the 

Magnetization-Prepared Rapid Acquisition with Gradient Echoes (MP-RAGE) [10] 

pulse sequence and post-processed with the Oxford Centre for Functional MRI of the 

Brain (FMRIB) Software Library (FSL) [11, 12]. Using the brain extraction tool [13], 

the skull, eye orbitals, sinuses and other non-brain tissues are removed.   

2.1 Magnetic Resonance Spectroscopy 

Protons are present in water as well in other chemicals e.g. brain metabolites. In 

addition to anatomical imaging, magnetic resonance can also provide physiological 

and biochemical information on these metabolites via Magnetic Resonance 

Spectroscopy (MRS). MRS is an imaging technique where one obtains a frequency 

spectrum of signals, e.g. brain metabolites in vivo, from an isolated volume of tissue. 

MRS is based on the MR phenomenon of chemical shift, a subtle frequency shift in 

the signal that is dependent on the chemical environment of the particular compound. 

Chemical shift is defined as a small displacement of the resonance frequency due to 

shielding created by the orbital motion of the surrounding electrons in response to the 

main static B0 field. Protons from water and protons from individual metabolites have 

different resonance frequencies from one another because they experience different 

shielding effects.  

In the presence of the main magnetic field B0, the effective field experienced by 

the nucleus is: 
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Bୣ୤୤ ൌ B଴ െ B଴σ ൌ B଴ሺ1 െ σሻ. Eq. 2.1

where ߪ represents a shielding constant dependent on the chemical environment of 

the nucleus. From the Larmor relationship ω = γB with γ being the gyromagnetic 

ratio, we can write the above equation as 

ωୣ୤୤ ൌ ω଴ െ ω଴σ ൌ ω଴ሺ1 െ σሻ Eq. 2.2

ω0σ is the displacement of the resonant frequency. Thus the change in frequency is 

proportional to the magnetic field B0.  By expressing this displacement in resonance 

frequency in units of “parts per million” (ppm) with respect to a reference frequency 

ωR, the displacement in frequency can be compared across scans with different main 

magnetic field strengths, Bo. If the resonant frequency of the sample is ωs, then the 

chemical shift ߜ in ppm is  

ߜ ൌ 	
߱௦ െ ߱ோ

߱ோ
	ൈ 10଺ 	ൌ 	

௦ߪ െ ோߪ
1 െ ோߪ

ൈ 10଺ ൎ ሺߪ௦ െ ோሻߪ ൈ 10଺ because	ߪோ ≪ 1 Eq. 2.3

The reference frequency ωR is that of tetramethylsilane, which is not found in 

human tissues but chosen to represent the 0 ppm point because of its stability in the 

presence of temperature and pH changes. The frequency axis in MRSI is displayed in 

ppm and for historical reasons, is such that the frequency decreases from left to right.  

By placing a sample of material in a magnetic field, exciting it, recording the 

signal from its Free Induction Decay (FID), and then applying the Fourier Transform 

to the FID, the resultant MR spectrum shows resonances at different frequencies 

corresponding to different chemical shifts. The amount of displacement and the 

amplitude of the peaks in the spectrum depend on the molecular structure of the 

compound of interest. 
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2.1.1 N-Acetyl Aspartate, Glutamate and Glutamine 

NAA is the second most abundant amino acid found in the brain.  It is 

believed to be a marker of neuronal health and has been widely studied in many 

neurological applications e.g. brain injury [14], multiple sclerosis [15] and 

neuropsychiatric diseases [16, 17].  

Glutamate is the most abundant amino acid found in the brain at 

approximately 12 mM/kg [18], and acts as an excitatory neurotransmitter. Together 

with its storage form Gln, Glu and Gln are also potentially important indicators of 

psychiatric diseases e.g. bipolar disorder [19, 20] and neurological diseases such as 

multiple-sclerosis [15]. This thesis focuses on resolving glutamate (Glu) and glutamine 

(Gln) for human brain spectroscopy at 3T. 

 

 

Figure 2-2: Simulated 1H NMR spectrum of NAA, Glu and Gln from a spin echo pulse sequence 
at 3.0T and echo time (TE) = 30ms showing spectral overlap. 
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Table 1: Chemical shifts and coupling constants of protons in NAA, Glu, Gln as reported in [18] 
which are used in simulation studies in Chapter 4 

Figure 2-2 shows the 1H spectrum of N-acetyl aspartate (NAA). This spectrum 

is simulated at 3.0T using the SPINEVOLUTION software package. The three 

protons of the N-acetyl CH3 group provides the most prominent resonance at 

2.0080ppm. The three doublet-of-doublets centered at 2.4863, 2.6727ppm and 

4.3817ppm arise from the protons of aspartate CH2 and CH groups. The protons of 

the CH3 group experience less shielding compared to the protons in the CH2 and CH 

groups, so that the resonant frequency for CH3 deviates less from the reference 

frequency at 0ppm. It also has an amide proton in the NH group which gives a 

Metabolite Group Chemical shift 
(ppm) 

Connectivity Coupling Constant  
J (Hz) 

      
N-Acetyl Aspartate 1 CH 3 2.0080  
 2 CH 4.3817 2-3 3.861 
 3 CH 2 2.6759 2-3’ 9.821 
 3’  2.4866 3-3’ -15.592 
 4 NH 7.8155 2-4 6.400 
      
Glutamate 1 CH  3.7433 1-2 7.331 
 2 CH 2 2.0375 1-2’ 4.651 
 2’  2.1200 2-2’ -14.849 
 3 CH 2 2.3378 2-3’ 8.406 
 3’  2.3520 2’-3’ 6.875 
    2-3 6.413 
    2’-3 8.478 
    3-3’ -15.915 
      
Glutamine 1 CH  3.7530 1-2 5.847 
 2 CH 2 2.1290 1-2’ 6.500 
 2’  2.1090 2-2’ -14.504 
 3 CH 2 2.4320 2-3 9.165 
 3’  2.4520 2-3’ 6.347 
    2’-3 6.324 
    2’-3’ 9.209 
    3-3’ -15.371 
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doublet at 7.8205ppm (not shown in figure). The coupling constants and chemical 

shifts are summarized in Table 1. 

Glu has four protons in two methylene groups at 2.0375ppm, 2.1200ppm, 

2.3378pm and 2.3520ppm, and one proton in a methine group at 3.7433ppm that are 

strongly coupled with one another, giving a complex spectrum at 3T with low-intensity 

multiplets. The Glu spectrum overlaps with resonances of Gln, ߛ-Aminobutyric acid 

(GABA) and NAA, making detection and in-vivo quantification difficult.  

Gln is a storage form of Glu and is present in the range of 2-4 mM/kg [14]. Gln 

has four protons in two methylene groups at 2.1090ppm, 2.1290ppm, 2.4320ppm and 

2.4540ppm  and another proton in a methine group at 3.7530ppm that are strongly 

coupled at 3T. The coupling constants and chemical shifts of Glu and Gln as reported 

from Ref.[14] are also summarized in Table 1.   

Due to the many overlapping multiplets of Glu and Gln, separation of Gln and 

Glu is very difficult at low field. Figure 2-2 also shows the simulated spectra of Glu and 

Gln and illustrates the spectral overlap of many of the resonances from Glu, Gln and 

NAA. 

2.1.2 Water Suppression 

Water is the most abundant source of protons in human tissue and thus its 

signal is dominant in an MRS spectrum and much higher than that of brain 

metabolites. Figure 2-3a shows an MRS spectrum from an in-vivo trial where water 

signal was not suppressed and Figure 2-3b shows the same experiment done with water 

suppression. It is important to suppress as much of the water as possible in order to see 

frequency peaks of the brain metabolites in an MRS spectrum. CHEmical Shift 

Selective imaging (CHESS) and Water suppression Enhanced through T1 effects (WET) 
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are common techniques applied before the excitation part of an MRS pulse sequence for 

water suppression.  

 

Figure 2-3: In-vivo spectra obtained with PRESS at TE = 151ms, scan time = 56s from a 
1.11cc voxel at location specified in structural image. All spectra are scaled to the amplitude of 
the creatine (Cr) peak at 3.0ppm. (a) Spectrum obtained without suppression of water or lipids. 
(b) Spectrum obtained with the suppression of water and without lipid suppression. (c) 
Spectrum obtained with the suppression of water and lipids. 

In CHESS, a spectrally-selective 90o pulse is played so that most of the water 

signals are brought to the transverse x-y plane, leaving negligible amounts of 

longitudinal components in the z direction. A spoiler gradient immediately follows and 

de-phases the transverse signals. The excitation pulse played after the spoiler gradient 
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excites only a small residual water signal along the z-direction, and water suppression is 

achieved. 

In WET, a series of spectrally selective RF pulses are played τ milliseconds 

apart to incrementally decrease the transverse z component of the water signal. The 

optimal set of flip angles of the RF pulses for uniform water suppression across the 

brain are determined from field maps and T1 values of brain tissues.  

2.1.3 Lipid Suppression 

Lipids exist in the subcutaneous tissues of the skin, scalp and bone marrow in 

the skull and have a much higher concentration than metabolites in the brain, severely 

hampering the detection and estimation of brain metabolites. Even though the 

subcutaneous tissues and the brain are spatially separate, side-lobe ringing from the 

impulse response of the image encoding yield severe lipid artifacts in the metabolite 

spectra of tissue near the skull. The spatial resolution of MRS and MRSI is limited by 

the low SNR of metabolite signals, leading to voxel sizes on the order of ~cm3 compared 

to voxel sizes on the order ~mm3 for structural MR imaging. The combination of large 

voxel sizes and strong lipid signals result in prominent ringing artifacts, which 

contaminate spectra inside the brain despite clear separation of brain and skull. Figure 

2-3b shows a spectrum without lipid suppression, where lipid artifacts can be observed 

between 0.8-1.9ppm and between 2.2ppm-2.8ppm. These lipid ringing artifacts are 

removed from the spectrum in Figure 2-3c after the application of Outer Volume 

Suppression (OVS) bands. 
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Figure 2-4: OVS bands (highlighted in yellow) are applied along the skull to null out lipid 
signals. The white rectangle indicates tissue volume excited. Signals from tissue near the skull 
are traded off for lipid suppression. 

Methods such as OVS [21-24] and inversion-recovery [25-27] can be used to 

effectively suppress lipid signals. Figure 2-4 shows an example with OVS bands applied 

around the brain tissue. OVS pulses are spatially selective and played to saturate signal 

from the skull. However their placement and the restriction of a rectangular volume of 

interest during excitation means that signals from the peripheral brain tissue close to 

the skull must be traded off to suppress lipid signals.  

In inversion recovery (IR), spins across all frequencies and space are inverted to 

the negative z direction by a non-selective inversion adiabatic pulse. Excitation pulses 

are then played at inversion time (TI) when all lipid signals are in the transverse 

component and signals in the longitudinal direction are close to zero. TI is determined 

from the T1 relaxation time constant of the lipids. Since the inversion pulses are non-

selective, they indiscriminately invert the metabolite signals as well causing metabolite 

signal-to-noise-ratio (SNR) loss of about 15-20%.  

Spectrally selective adiabatic pulses can be used during IR to invert only lipid 

signals so that most of the signals are nulled when the excitation pulses are played, and 



30 
 

successful lipid suppression has been demonstrated at 7.0T [28]. However this method 

relies on sufficient spectral separation between lipid and metabolite peaks, which might 

be difficult at lower field strengths of 3.0T where the lipid and metabolite peaks are 

typically less than 100Hz apart.  

Variable density spiral trajectories with matched apodization filters have been 

proposed to reduce the magnitude of spatial side lobes in the spatial impulse response 

[29] and successful lipid suppression without SNR loss has been demonstrated for this 

method. 

2.2 2D Magnetic Resonance Spectroscopy 

In addition to chemical shifts caused by the shielding of electrons, subtle 

chemical shifts also result from J-coupling effects within molecules. Proton nuclei that 

are close to one another in chemical shift exert an influence on each other’s magnetic 

field and this influence is known as J-coupling. Coupling between nuclei causes line 

splitting that complicates the appearance of a 1D spectrum and reduces the available 

SNR.   

Here we discuss an example of weak J-coupling and the line-splitting that 

results from it.  Consider a molecule containing two different spin-½ nuclei, A and M, 

where their nuclei could be either spin-up (+½) or spin-down (-½). In the case of a 

proton nucleus, the spin-down (-½) has the lowest energy. After excitation, a proton 

nucleus moves from spin-down (-½) to spin-up (+½). The proton nucleus releases this 

energy during readout data acquisition as it transitions back to the spin-down (-½) 

state. Without any J-coupling, there is only one energy transition as either nucleus A 

or M moves from +½ to -½. This energy transition is reflected in Figure 2-5a where 

there is a peak in the frequency spectrum at each of the chemical shifts, νA and νM of 

nuclei A and M respectively.  
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Figure 2-5: (a) Energy transitions for a single spin and the corresponding singlet lines of 
resonance in the frequency spectrum. (b) Energy transitions for two spins that are weakly 
coupled and the doublet lines of resonance separated by the coupling constant JAM. The dotted 
line indicates energy transitions for nuclei A and the solid line indicates energy transitions for 
nuclei M. 

Figure 2-5b shows the available spin configurations when two nuclei are 

coupled. Only one spin-up/spin-down change is allowed in a transition, so the four 

possible spin configurations of A and M results in four different transitions- two for 

nucleus A and two for nucleus M. The frequency spectrum exhibits two peaks with 

reduced amplitudes centered at the chemical shifts, νA and νM of nuclei A and M 

respectively instead of the single peak in Figure 2-5a. This effect is known as line-

splitting and the frequency separation of the peaks is determined by the J-coupling 

constant JAM. More complicated line-splitting occurs as more nuclei are coupled to one 

another through weak and strong coupling. It is possible to work out the resultant 
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frequency spectrum by hand or computer simulation but this is beyond the purpose of 

this thesis. The interested reader is directed to texts on 2D MRS for a more thorough 

analysis [30, 31].  

Spectral editing is a method of suppressing or enhancing metabolite signals by 

using its spin-spin coupling properties. Due to the effects of J-modulation, different 

timing parameters result in different metabolite spectra that can be manipulated to 

resolve the metabolite of interest. Spectral editing has been exploited in [32] to resolve 

Glu from an in vivo spectrum at 1.5T by the subtraction of metabolite spectra from 

echo time (TE) = 12ms and TE = 60ms. However, spectral editing techniques have 

to be tuned appropriately to the metabolite of interest and cannot simultaneous 

detect different coupled metabolites. 

 

Figure 2-6: General Scheme of a 2D MRS pulse sequence 

Two-dimensional (2D) MRS is a technique that introduces a second frequency 

axis, so that the 2D frequency spectrum reveals coupling information between 

different metabolites. By notational convention, ω2 (or f2) is used to resolve chemical 

shift, while ω1 (f1) encodes additional physical characteristics of the underlying spins, 

often J-coupling or a combination of J-coupling and chemical shift. The time 

variables corresponding to ω1 and ω2 are t1 and t2. The general scheme for a 2D MRS 

experiment is shown in Figure 2-6. During preparation, the tissue is excited by one or 

more RF pulses and the resultant magnetization is allowed to precess freely in t1. 

During mixing, the tissue is again excited by one or more pulses and the FID is 
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detected during t2. The precise meaning of the additional frequency axis t1 and ω1 

depends on the kind of experiment performed.  

There exist a number of different 2D MRS experiments, and this thesis will 

focus on the Constant Time Point Resolved Spectroscopy (CT-PRESS) to attempt to 

resolve Glu and Gln for human brain spectroscopy at 3T. 

2.2.1 Correlated Spectroscopy 

The pulse sequence for a Correlated Spectroscopy (COSY) [33, 34] experiment 

consists of two 90o pulses each played during preparation and mixing. The first 90o 

pulse flips the magnetization to the transverse x-y plane where it evolves under the 

influences of both chemical shift and J-coupling during t1. The second 90o pulse is used 

for coherence transfer between J-coupled metabolites. 

 

Figure 2-7: Cartoon representation of a COSY 2D spectrum with diagonal and cross peaks 

Figure 2-7  shows a cartoon representation of a 2D COSY spectrum and we first 

look at cross-peak ‘A’. The cross-peak ‘A’ at (f1 = 90Hz, f2 = 50Hz) indicates that a 

signal evolving at 90Hz during t1 was transferred by the second 90o pulse to another 

signal which evolved at 50Hz during t2. Similarly, the cross-peak ‘D’ at (f1 = 50Hz, f2 = 

90Hz) indicates the transfer of a signal evolving at 50Hz during t1 to a signal evolving 

at 90Hz during t2. In this way, the cross peaks indicate coupling between the nuclei at 
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chemical shifts of 50Hz and 90Hz. The diagonal peaks ‘B’ and ‘C’ just indicate the 

presence of two nuclei evolving at 50Hz and 90Hz throughout t1 and t2. Coupling 

information is encoded in cross peaks symmetrical along the diagonal of the 2D 

spectrum.  

A volume selective version of COSY, Localized-COSY (L-COSY) [35] introduces 

an additional 180o pulse after the first 90o pulse during preparation, exciting a 3D 

volume by playing magnetic gradients with the three pulses. While COSY-type 

methods are useful for identifying the coupling networks within a molecule, it suffers 

from reduced sensitivity because of the transfer of metabolite signals onto cross peaks.  

2.2.2 J-resolved MRS: 2D JPRESS 

In J-resolved MRS [36-38], the pulse sequence consists of a spin echo module 

i.e. a 90o pulse is played during preparation and a 180o pulse is played during mixing, 

so that data is acquired as a function of t1 = echo time (TE) and t2. After the 90o 

pulse, magnetization is transferred to the transverse plane and evolves with chemical 

shift and J-coupling. All de-phasing that occurred during t1 due to chemical shift are 

refocused by the 180o pulse. In this way, t1 encodes only J-coupling information. After 

the 180o pulse is played and chemical shift effects from t1 are refocused, signal 

continues to evolve with J-coupling and chemical shift during t2.  

To enable a volume selective experiment, an additional 180o pulse is applied 

after the 90o pulse during preparation. Gradient magnetic fields played during the 

three excitation pulses select for a volume in the x, y and z plane respectively. These 

three pulses (90o -180o -180o) make up the PRESS module commonly used in 1D 

spectroscopy for volume localization, and the 2D MRS technique is known as 2D 

JPRESS.  
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Figure 2-8: 2D JPRESS spectrum before 45o tilt with 16 TE values, starting at 17ms and 
incremented in steps of 17ms.  Spectrum was simulated at 3.0T with SPINEVOLUTION. 

A simulated 2D JPRESS spectrum of NAA is shown in Figure 2-8. Because J-

coupling manifests itself in both f1 and f2, the spectrum for coupled spins is tilted 

along the 45o-axis in the (f1, f2) plane. This 45o tilt is especially clear in the doublet-of-

doublets centered at 4.38ppm in Figure 2-8. In post-processing, the 2D spectrum is 

tilted by 45o along the diagonal to obtain only the J-coupling information in f1 and 

chemical shift information in f2.  

Since f1 encodes only J-coupling information, the 2D JPRESS spectrum does 

not have cross peaks. Instead, the spread of multiplets are seen in only f1 and the 

chemical shift of each proton nuclei group is seen in f2 after a 45o post processing tilt 

of the 2D spectrum. While such a 2D spectrum does not provide information about 

spin-spin coupling, a decoupled 1D spectrum could be obtained by taking the 

magnitude projection along the f1 axis onto the f2 axis so that the multiplets collapse 

into a single peak on f2. Other manipulations of the 2D JPRESS spectrum include 

taking the f1 = 0 component as an average across all the TEs for reliable detection of 

Glu [39].  
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2.2.3 Constant Time PRESS 

CT-PRESS [40, 41] is a 2D MRS method very similar to 2D JPRESS. It 

consists of a PRESS module for volume selection and an additional non-selective 

refocusing 180o pulse whose position is shifted within a constant time interval between 

the RF excitation pulses and signal acquisition. The extra 180o pulse was first 

introduced because of an imperfect slice profile selected with PRESS and insufficient 

spoiler gradients. In theory, the position of the last spatially selective 180o pulse could 

also be used to encode t1.   

 

Figure 2-9: (a) CT-PRESS spectrum of NAA at 3.0T with 129 t1 steps, with TE starting at 
48.6ms and incremented in steps of 1.6ms.  Spectrum was simulated with SPINEVOLUTION. 
(b) Decoupled spectrum of NAA obtained by projecting 2D spectrum along f2 onto f1.  

Since the time interval between excitation and acquisition is kept the same for 

each t1 step, modulation by J-coupling remains the same and line splitting in f1 is 

suppressed. Like in 2DJPRESS, magnetization is not transferred to the cross-peaks and 

they are eliminated in the 2D Fourier representation. All magnetization is instead 

transferred to the diagonal spectrum which contains signals of all uncoupled spins and 
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diagonal peaks of coupled spins. Figure 2-9a shows the diagonal pattern of the 2D CT-

PRESS spectrum of NAA and the reduced line splitting in f1 which is best illustrated 

by the doublet-of-doublets peaks centered at 4.38ppm. Since line-splitting is only 

manifested in f2, a decoupled 1D spectrum can be obtained by taking the projection of 

the 2D spectrum in f2 onto f1. Figure 2-9b shows the decoupled spectrum corresponding 

to the 2D spectrum of NAA in Figure 2-9a. Comparing this decoupled spectrum of 

NAA to Figure 2-1 obtained with 1D spectroscopy, the multiplets centered at 2.49 and 

2.67ppm have collapsed into three frequency peaks and the multiplet centered at 

4.38ppm has collapsed into a single peak at 4.38ppm.  

 

Figure 2-10: CT-PRESS spectrum of NAA at 3.0T with 17 t1 steps, with TE starting at 48.6ms 
and incremented in steps of 12.8ms. Spectrum was simulated with SPINEVOLUTION. Non-
overlapping aliasing is observed. 

Because chemical shift is encoded in both f1 and f2, CT-PRESS requires a 

considerably larger number of t1 steps compared to 2DJ-PRESS. About 128 t1 steps are 

required for a 1H chemical shift range of 5-10ppm with sufficient spectral resolution.  It 

is possible to reduce the number of t1 steps by noting that signals are only present near 

the diagonal of the 2D CT-PRESS spectrum. Some aliasing is tolerable, so sampling 
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below the Nyquist sampling can be adequate. This has been demonstrated by Mayer et 

al to achieve eight-fold under-sampling with a 17-step CT-PRESS sequence [42]. Figure 

2-10 shows the aliasing introduced by under-sampling eight-fold in t1 of the same 2D 

CT-PRESS experiment that gave Figure 2-9a. By summing signal along the diagonal 

for some frequency range in f2, the 1D decoupled spectrum shown in Figure 2-9b can be 

obtained. 

 

Figure 2-11: (a) 2D CT-PRESS spectrum from an in-vivo experiment at 3.0T with 17 t1 steps, 
with TE starting at 48.6ms and incremented in steps of 12.8ms. Voxel size = 1.11cc and total 
scan-time = 13:44min. (b) Corresponding diagonal spectrum normalized to amplitude of 
creatine (Cr) peak at 3.0ppm 

Note that since the diagonal spectrum is obtained by summing signal from the 

2D spectrum in magnitude mode, noise in the diagonal spectrum does not follow a 

zero-mean Gaussian distribution. Figure 2-11 shows a 2D spectrum and its 

corresponding diagonal spectrum obtained from an in-vivo experiment. Noise in the 

diagonal spectrum is Rayleigh distributed with a non-zero mean so that the diagonal 

spectrum is offset from the zero amplitude level. CT-PRESS has been demonstrated to 
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detect coupled resonances with high SNR and average TE could be optimized for 

increased SNR of Glu. The bulk of the work in this thesis is based on the 17-step CT-

PRESS variant introduced by Mayer et al. [42]. 

2.3 Magnetic Resonance Spectroscopic Imaging 

Magnetic field gradients can be applied to spatially map the FID acquired during 

the readout phase of an MRS experiment. An MRS imaging (MRSI) experiment is 

established as spatial encoding is enabled. Here we first introduce the basic principles of 

an MRI experiment resolved in (x, y, z) and extend the concepts for an MRSI 

experiment resolved in the 4D space of (x, y, z and f).  

2.3.1 Signal Equation 

In MRI, applying time-varying gradient fields Gx(t), Gy(t) and Gz(t) along  x, y, 

and z slightly alters the local magnetic field B at each (x, y, z) location so that: 

,ݔሺܤ ,ݕ ,ݖ ሻݐ ൌ ଴ܤ	 ൅ ሻݐ௫ሺܩ ∙ ݔ ൅ ሻݐ௬ሺܩ ∙ ݕ ൅ ሻݐ௭ሺܩ ∙ ݖ . Eq. 2.4

The signal detected from a receiver coil is a voltage induced by flux changes 

from the precessing magnetization in the transverse plane. Assuming the receiver coil is 

uniformly sensitive in space, this signal is the sum or integral of all the spins over the 

entire volume of the object.  

ሻݐሺݏ ൌ 	න න න ݉ሺݔ, ,ݕ ሻݖ
௭

ݔ݀
௬

ݕ݀
௫

 ݖ݀
Eq. 2.5

A spatially and time varying phase φ(x,y,z,t) is imparted on the spins: 

݉ሺݔ, ,ݕ ,ݖ ሻݐ ൌ ݉଴ሺݔ, ,ݕ ሻݖ ݁ି௜஦ሺ௫,௬,௭,௧ሻ Eq. 2.6
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where: 

φሺݔ, ,ݕ ,ݖ ሻݐ ൌ ׬	 ߱ሺݔ, ,ݕ ,ݖ ߬ሻ
௧
଴ ݀߬ ൌ ߛ ׬ ,ݔሺܤ ,ݕ ,ݖ ߬ሻ

௧
଴ ݀߬. Eq. 2.7

Substituting in Eq. 2.4 gives: 

φሺݔ, ,ݕ ,ݖ ሻݐ ൌ ݐ଴ܤߛ			 ൅ ሺන	ߛ ௫ሺ߬ሻ݀߬ܩ ∙ ݔ
௧

଴
൅ න ௬ሺ߬ሻܩ

௧

଴
݀߬ ∙ ݕ ൅ න ௭ሺ߬ሻܩ

௧

଴
݀߬ ∙ ሻ Eq. 2.8ݖ

so that: 

ሻݐሺݏ

ൌ 	න න න ݉଴ሺݔ, ,ݕ ׬݁ି௜ఊቀ		݁ି௜ఠబ௧	ሻݖ ீೣሺఛሻௗఛ∙௫
೟
బ ା׬ ீ೤ሺఛሻ

೟
బ ௗఛ∙௬ା׬ ீ೥ሺఛሻ

೟
బ ௗఛ∙௭ቁ

௭
ݔ݀

௬
ݕ݀

௫
 .ݖ݀

Eq. 2.9

Here ݁ି௜ఠబ௧ is dropped (assuming demodulation by ω0) and the variables ݇௫, ݇௬ 

and ݇௭ are defined as: 

݇௫ሺݐሻ ൌ
ߛ
ߨ2

න ௫ሺ߬ሻ݀߬ܩ
௧

଴
 Eq. 2.10

݇௬ሺݐሻ ൌ
ߛ
ߨ2

න ௬ሺ߬ሻ݀߬ܩ
௧

଴
 Eq. 2.11

݇௭ሺݐሻ ൌ
ߛ
ߨ2

න ௭ሺ߬ሻ݀߬ܩ
௧

଴
 Eq. 2.12

and the final form of the signal equation becomes: 

ሻݐሺݏ ൌ ׬	 ׬ ׬ ݉଴ሺݔ, ,ݕ ሻݖ ݁
ି௜ଶగ ሾ ௞ೣሺ௧ሻ ௫ ା ௞೤ሺ௧ሻ ௬ ା ௞೥ሺ௧ሻ ௭ሿ

௭ ௬ݔ݀ ௫ݕ݀ Eq. 213 .ݖ݀
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The signal recorded from the receiver coil	ݏሺݐሻ ൌ ,ሻݐ݇௫ሺ	ሺܯ 	݇௬ሺݐሻ, 		݇௭ሺݐሻ	ሻ, is a 

3D Fourier Transform (FT) with spatial frequency variables ݇௫ሺݐሻ, 	݇௬ሺݐሻ and	݇௭ሺݐሻ. 

This 3D FT space spanned by  ሺ݇௫, ݇௬, ݇௭ሻ is often called k-space. 

In MRSI, chemical shift is included in the signal equation: 

ሻݐሺݏ

ൌ 	න න න න ݉଴ሺݔ, ,ݕ ݁	ሻݖ
ି௜ଶగ		ൣ	௞ೣሺ௧ሻ	௫	ା	௞೤ሺ௧ሻ	௬	ା	௞೥ሺ௧ሻ	௭൧	݁ି௜ଶగ௙௧

௙
	݂݀

௭
ݔ݀

௬
ݕ݀

௫
 .ݖ݀

Eq. 2.14

Variable ݇௙ is defined as ݇௙=	ݐ and: 

,൫݇௫ܯ ݇௬, ݇௭, ݇௙൯

ൌ 	න න න න ݉଴ሺݔ, ,ݕ ݁	ሻݖ
ି௜ଶగ		ൣ	௞ೣሺ௧ሻ	௫	ା	௞೤ሺ௧ሻ	௬	ା	௞೥ሺ௧ሻ	௭൧	݁ି௜ଶగ௞೑௙

௙
	݂݀

௭
ݔ݀

௬
ݕ݀

௫
 .ݖ݀

Eq. 2.15

The signal recorded from the receiver coil ݏሺݐሻ ൌ ,ሻݐ݇௫ሺ	ሺܯ 	݇௬ሺݐሻ, 		݇௭ሺݐሻ, ݇௙ሻ is 

now a 4D FT, where the FID is collected along ݇௙=	ݐ as ሺ݇௫, ݇௬, ݇௭ሻ	space is traversed. 

Different MRSI methods travel in k-space along different trajectories and the following 

sections give a brief introduction to three MRSI techniques. 

2.3.2 Conventional Phase Encoded MRSI 

 

Figure 2-12: (a) Pulse sequence diagram of phase-encoded MRSI scheme (b) k-space trajectory  
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In conventional phase encoded MRSI, ሺ݇௫, ݇௬, ݇௭ሻ space is phase-encoded by 

incrementing linear Gx Gy and Gz gradients in a step wise fashion [43-45].  Figure 2-12 

shows a typical phase-encoded MRSI pulse sequence for a single repetition time (TR) 

and its associated k-space trajectory. After the excitation phase, the Gx Gy or Gz 

gradients are applied to travel to a particular ሺ݇௫, ݇௬, ݇௭ሻ point in k-space. After the 

spatial encoding step, spectral data is acquired without the application of any 

gradients. The spins are allowed to relax back to equilibrium state before the process is 

repeated in the next TR. Only one FID is acquired in each TR, so filling up a 

݇௫, ݇௬, ݇௭	spatial matrix of 16 x 16 x 16 = 4096 points will require a total time of 4096 x 

TR s. Assuming a TR of 2s for sufficient relaxation to equilibrium, a conventional 

phase-encoded MRSI with 16 x 16 x 16 spatial points will take about 2h 16min to 

perform, which is prohibitive for in-vivo applications.  

The sampling rate while spectral data is acquired is on the order of ~μs, leading 

to a spectral bandwidth ~MHz. However at 3.0T, the spectral bandwidth spanned by 

resonances from brain metabolites is only about 800Hz, requiring a sampling rate of 

just 1.25ms. This observation motivates the development of more efficient spatial 

encoding schemes such as spiral spectroscopic imaging and echo-planar spectroscopic 

imaging (EPSI).  

2.3.3 Echo-Planar Spectroscopic Imaging 

One can observe that within a sampling rate of 1.25ms necessary for a spectral 

bandwidth of around 800Hz at 3.0T, more than one ሺ݇௫, ݇௬, ݇௭ሻ point can be sampled. 

To traverse k-space during data acquisition, magnetic gradients are switched on during 

readout. In EPSI [46, 47], rapidly switching frequency-encoding gradients are turned on 

during data acquisition to move back and forth in ݇௫ or ݇௬ as spectral data is collected. 
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	݇௬ or ݇௫	and ݇௭ remains phase-encoded. Figure 2-13a shows the switching gradients in 

Gy and Figure 2-13b shows the corresponding back-and-forth traversal in	݇௬.  

 

Figure 2-13: (a) Pulse sequence diagram of EPSI scheme (b) k-space trajectory 

Subsequent ݇௙ samples for the same ሺ݇௫, ݇௬, ݇௭ሻ point cannot be separated by 

more than 1.25ms in order to satisfy spectral bandwidth requirements, i.e. τ < 1.25ms.  

Assuming that the necessary ݇௬ extent can be traversed in τ < 1.25ms, the total time 

required to fill up a spatial matrix of 16 x 16 x 16 points is now 256 x TR s. Field 

inhomogeneities and imperfect gradient switching lead to an asymmetrical zigzag 

trajectory and aliasing artifacts. Separate processing of “odd” and “even” echoes 

removes these artifacts but increases the spectral bandwidth requirement by two [47].  

The fast acquisition of 2D MRSI data with spatial resolution in x and y was 

demonstrated with a minimum scan time of 64 seconds for 1cc voxel size in a 32 x 32 

spatial matrix and field of view (FOV) = 26cm x 26cm at 3.0T [48].  

2.3.4 Spiral Spectroscopic Imaging 

In EPSI, data in a spatial and spectral dimension are collected simultaneously 

for fast traversal of k-space. Spiral SI [49] takes this principle a step further by 

simultaneously collecting spectral data in two spatial dimensions.  In Figure 2-14, 

spiral gradient waveforms applied along x and y trace out a spiral trajectory in ݇௬ and 
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݇௫ while ݇௭ remains phase-encoded. In order to meet spectral bandwidth requirements 

of 800Hz at 3.0T, the time τ between ݇௙ samples for the same ሺ݇௫, ݇௬, ݇௭ሻ point must 

be less than or equal to 1.25ms. If the entire necessary ݇௬	, ݇௫ extent can be traversed 

within τ < 1.25ms, the total time required to fill up a spatial matrix of 16 x 16 x 16 

spatial matrix is just 16 x TR s.  

 

Figure 2-14: (a) Pulse sequence diagram of a spiral SI scheme (b) k-space trajectory 

The spatial FOV of the adult human brain is about 20cm and it is impossible to 

traverse the entire ݇௬	, ݇௫ extent in 1.25ms with clinical gradient hardware for this 

FOV. Assuming that the entire  ݇௬	, ݇௫ space extent can only be traversed in τ = 

2.5ms, additional spiral lobes can be interleaved in the ݇௙ dimension by shifting the 

same spiral encoding to occur 1.25ms later during the readout acquisition of another 

TR. In this way, every (݇௫, ݇௬) point is temporally spaced 1.25ms apart and the 
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spectral bandwidth requirement is met. These interleaved spiral lobes are known as 

temporal interleaves. Note that temporal interleaving requires the spiral lobes to be an 

integer multiple of the minimum sampling rate, in this case 1.25ms.  

It is also possible to divide the desired k-space trajectory into sparser spiral 

trajectories that takes less time to traverse. Each of these sparser trajectories is then 

played again in another TR. These trajectories are known as angular interleaves. If 

data collected from these sparse spiral trajectories were used individually, each data set 

will produce a spatially aliased image due to violation of the Nyquist requirement.  

With both angular and temporal interleaves, fast acquisition of 2D MRSI data 

with spatial resolution in x and y is possible with a minimum scan time of 12 seconds 

(Navg =1) for 1.1cc voxel size in and field of view (FOV) = 20cm x 20cm at 3.0T [50].  

Spiral encoding MRSI efficiently encodes the spatial dimensions in spectroscopic 

imaging, and is amenable to combination with 2D MRS for reasonable scan times in 

in-vivo applications. All spectroscopic imaging in this thesis is implemented with spiral 

encoding.  

2.4 2D MRS with Spectroscopic Imaging 

Fast spatial encoding in MRSI enables the integration of 2D MRS techniques so 

that a 2D spectrum can be obtained for each voxel in the entire volume of interest 

within reasonable scan times.  

EPSI was combined with COSY at 3.0T to implement a spectroscopic imaging 

sequence known as EP-COSI [51] for applications to in-vivo human calf studies within a 

minimum scan time of 20-34min. EP-COSI has also been applied to prostate [52] and 

brain studies [53]. A constant time variant of COSY, CT-COSY was also implemented 

with EPSI encoding at 4.7T for in-vivo rat brain experiments with a minimum scan 
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time of 17min for a voxel size of 0.045cc [54], Timing parameters of this CT-COSY 

implementation were optimized for the detection of myo-Inositol (mI) and taurine 

(Tau).  

Spiral encoding has been implemented at 3.0T with the 17-step CTPRESS to 

achieve a voxel size of 4.5cc in vivo, within a minimum scan time (Navg = 1) of 1:16min 

using a quadrature birdcage coil [42]. Four averages were taken in this implementation 

for increased SNR and the total scan time was 4:40 min.  In another study, spiral k-

space trajectories were also used to speed up acquisitions of 2D JPRESS spectroscopic 

imaging data in-vivo at 3.0T within scan times of 17min [55]. This dissertation aims to 

extend further applications of CT-PRESS implemented with spiral encoding for fast 2D 

MRS imaging experiments.  
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Chapter 3   

 

Detection of Cortical Metabolites with Lipid 
Artifact Suppression in High-Resolution CT-
PRESS 

 

Multi-element receive coil arrays such as the 32-channel coil arrays offer 

significant SNR gains over birdcage coils [56], which can be traded for faster scans or 

improved spatial resolution. As shown in Figure 3-1, much of the SNR increase is in the 

cortical region near the skull. However, measurements in the changes of cortical 

metabolite levels, e.g. glutamate (Glu) and glutamine (Gln), in these regions are 

complicated by the spatial proximity of the cortex to the subcutaneous lipid layer. 

Despite the spatial separation between brain and skull, ringing artifacts from the lipid 

signals of the subcutaneous layer contaminate metabolite spectra within the brain. 

Methods such as outer-volume suppression (OVS) [21-24] and inversion-recovery [25-27] 

effectively suppress the lipid signals but must trade off outer cortical brain metabolite 

signals. In the work presented in this chapter, a recent lipid suppression technique [57] 
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that exploits the approximate orthogonality between lipid and metabolite spectra was 

combined with a high-spatial-resolution Constant-Time Point Resolved Spectroscopy 

(CT-PRESS) acquisition implemented with spiral encoding. Signals from cortical 

metabolites were successfully recovered in a high resolution 1.11c in vivo CTPRESS 

experiment with a  total scan-time of 3:32min (Navg = 1).  

 

Figure 3-1 SNR maps obtained from gradient echo scans for (a) a 32-channel coil and (b) a 8-
channel coil (courtesy of LL Wald). Greatest SNR increase is in the brain tissue region near the 
skull. 

3.1 Spiral Encoded 17-Step CT-PRESS Pulse Sequence 

Figure 3-2 shows the implemented pulse sequence at 3.0T for the 17-step CT-

PRESS experiment with Water suppression Enhanced through T1 effects (WET) and a 

PRESS module to excite a selected volume. PRESS was applied on a field of view 

(FOV) of 20cm x 20m and slice thickness of 1cm. The bandwidth for water suppression 

was 50Hz. The last 180o pulse of the PRESS-box was shifted in increments of ∆t1/2 = 

6.4ms to give a spectral bandwidth of 78.125Hz in f1, while the bandwidth in the f2 

dimension was 1200 Hz. Echo time (TE) ranged from 48.6ms to 253.4ms for an average 

TE of 151ms as reported in [42] for optimal SNR of Glu and myo-inositol (mI). The full 

axial slice was excited without localization within the brain and no additional RF 
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pulses were applied for lipid suppression. Data was acquired immediately after the 

spoiler gradient pulse of the last 180o pulse, using spiral trajectories with two angular 

and three temporal interleaves for k-space traversal. This resulted in a nominal voxel 

size of 1.05cm x 1.05cm x 1cm = 1.11cc. Together with four preparatory scans to bring 

the system to steady state, the minimum scan time for this acquisition was 3:32 min.  

Data was gridded in kx-ky space on a 2X grid using a Kaiser-Bessel kernel for 

convolution, and then apodized in t1-t2 space with a 2D tapered-cosine function. A 

phase term linear with the t1 step was applied to correct for the collection of data 

immediately after the last spoiler gradient pulse. Due to the eight-fold undersampling, 

2D spectra were unwrapped in f1 to obtain the 2D CTPRESS spectra. Decoupled 

diagonal spectra from the 2D CTPRESS experiment were obtained after lipid artifact 

minimization by integrating the unwrapped magnitude spectra along f2 within ±13Hz 

along the 2D spectrum diagonal. 

 

Figure 3-2: Scheme of the CT-PRESS experiment implemented with spiral encoding. WET was 
used for water suppression. The last 180o pulse of the PRESS module was shifted in increments 
of ∆t1/2 for encoding J-coupling and chemical shift information. No OVS module for lipid 
suppression was applied. 
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3.2 Lipid Minimization Algorithm 

Spectral data was normalized across the 17 t1 steps and the entire FOV. For each 

t1 step, lipid signals within the brain were suppressed by iteratively minimizing the cost 

function 

	‖۴࢞ െ ࢟‖ଶ
ଶ ൅ λ∑௜∈್ۻೝೌ೔೙

 , ௜‖ଵ࢞	۶ۺ‖

where x is the recovered spectral data with minimal lipid contamination within the 

brain, y is the data in the kx-ky-t2 dimension and Mbrain is a binary mask of the brain-

only region in the FOV. L is a lipid-basis matrix from the lipid-only region of the FOV, 

formed using the collected spectral data in the x-y-f2 dimension and spectrally masked 

to exclude water signal. F is the Fourier Transform operator and λ is a regularization 

parameter. While the first term in the cost function maintains consistency between the 

measured data and the recovered metabolite signals, the second term ensures minimal 

lipid signals within the brain. The lipid signal penalty term in Eq.3.1 penalizes for 

overlap of the metabolite spectra with spectra from all lipid-only voxels. This is because 

lipid signal artifacts within the brain tissue arise from side-lobe ringing of the impulse 

response and are estimated to be a linear combination of lipid spectra from all voxels in 

the subcutaneous layer. We used the value of λ = 0.1 for maximal lipid artifact 

reduction. The optimization was solved using the conjugate gradient algorithm and 

took approximately 40min on a 12-core 64bit 3.07GHz Linux machine. 

3.3 In-Vivo Trials 

MR structural imaging and 2D MR spectroscopic imaging were done on a 3.0T 

MRI scanner (Siemens AG, Erlangen, Germany) using a detunable birdcage coil for 

excitation and a 32-channel coil array for signal reception. Structural images were 

obtained with MP-RAGE to aid in placing the FOV and prescribing the volume of 

Eq. 3.1 
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interest, and post-processed with the brain extraction tool from the FMRIB Software 

Library (FSL) [11-13]. 

 

Figure 3-3: Anatomical MP-RAGE of Subject 1 – 1st trial, Subject 1 – 2nd trial and Subject 2 
with prescribed slice overlay in sagittal, coronal and axial view. Images are obtained after brain 
extraction with FSL. 

An automatic shim routine using first- and second- order shimming followed by 

final manual shimming adjustments were done before the 17-step CT-PRESS data was 

acquired. One average was taken (Navg = 1) for a total scan time of 3:32min. Under an 

institutional review board approved protocol, two subjects (Subject 1 and Subject 2) 

were recruited for participation. To demonstrate reproducibility, the same protocol was 

repeated after a span of four weeks on Subject 1.  Figure 3-3 shows the anatomical MP-
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RAGE after post-processing with FSL, with the prescribed slice overlay for each of the 

three trials.  

3.3.1 Validation of Lipid Artifact Minimization 

For validation of the lipid minimization algorithm, the same 17-step CT-PRESS 

experiment was repeated on Subject 1 and compared with a 17-step CT-PRESS 

experiment with identical acquisition parameters, except with OVS bands applied, a 

different location for the FOV = 20cm x 20cm, and a selected volume of interest of 

50cm x 50cm. Four averages were taken for increased SNR and the total scan time for 

each of the two experiments was 13:44min. Figure 3-4a and b show the FOV and 

PRESS box locations of the experiments without OVS and with OVS pulses 

respectively. Spectra from voxels near the vicinity of the skull are compared. These 

voxels are located in both volumes of interest with either lipid suppression method 

applied. 

 

Figure 3-4: (a) Anatomical image with prescribed FOV and volume of interest in white 
rectangle. The entire axial slice was excited and no additional RF pulses were used for 
excitation. (b) Anatomical image with prescribed FOV and selected volume of interest (in white 
rectangle) overlaid. OVS bands are placed around the brain tissue in the excited volume.   
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3.4 Results 

Figure 3-5 shows CSI images with and without lipid suppression, obtained by 

summing over the range of lipid resonance frequencies in the diagonal decoupled 

spectra from 0.1ppm to 1.9ppm. As shown, lipid signal in the brain is considerably 

reduced after the lipid minimization algorithm is applied.   

 

Figure 3-5: Projections in linear scale taken by summing over the range of lipid resonance 
frequencies in the diagonal decoupled spectra (a,c,e) before lipid artifact suppression algorithm 
is applied and (b,d,f) after lipid suppression algorithm is applied for the three in-vivo trials of 
(I) Subject 1 – 1st trial (II) Subject 1 – 2nd trial (III) Subject 2 
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Figure 3-6a and b show the diagonal spectrum obtained before application of 

the proposed lipid suppression method in blue, and the spectrum after application of 

the lipid minimization algorithm in black. Without lipid artifact reduction with the 

proposed algorithm, Figure 3-6a shows that the large lipid signal overcomes the 

metabolites signal, especially between 1ppm-2ppm and 2.2ppm-2.8ppm. Figure 3-6b is 

scaled for a better presentation of the metabolites resonances and figures presented 

henceforth will be scaled as such.  

A map of the diagonal spectra for cortical voxels in the vicinity of the skull from 

the 2nd trial of Subject 1 are displayed in Figure 3-7 demonstrating the successful 

suppression of lipid artifacts in all the voxels and the recovery of the dominant NAA 

peak at 2.0ppm which would have overlapped with the lipid signals. 

 

Figure 3-6: Diagonal spectrum of a voxel near the skull from Subject 1-2nd trial.  All 
spectra are normalized to the amplitude of the creatine (Cr) signal at 3.0ppm.              
(a) Spectrum showing substantial lipid contamination that obscures metabolite signals.  
(b) Spectrum zoomed in so that the metabolites may be better presented.  
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Figure 3-8, Figure 3-9, Figure 3-10 show the unwrapped contour 2D spectra and 

corresponding diagonal spectra for five specific voxels A, B, C, D and E in the brain 

tissue. Voxels A, B, C and D are near the skull while voxel E is approximately at the 

middle of the brain tissue. Baseline fluctuations due to macromolecular contamination 

are minimal in the diagonal spectra because of the long average TE used. Lipid signal 

is successfully suppressed so that the dominant peak of NAA at 2ppm is recovered. The 

peaks of Glu, NAA and Gln between 2.25ppm and 2.50ppm and 3.50-3.80 ppm, which 

would otherwise be obscured by spectral lipid artifacts, are also successfully recovered. 

Peaks of Glu, NAA and Gln between 2.25ppm and 2.50ppm and 3.50-3.80 ppm were 

not present in the spectra for voxel ‘E’. 

 

Figure 3-7: Map of diagonal decoupled spectra from 2nd trial of Subject 1 at four regions 
of brain tissue near the subcutaneous layer. Black lines are spectra obtained after lipid 
suppression algorithm was applied; Blue lines are spectra obtained before lipid 
suppression algorithm was applied. 
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Figure 3-8: Corresponding diagonal decoupled spectra and 2D unwrapped contour plots for 
Subject 1- 1st trial, for five CSI voxels highlighted at locations ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. Voxels 
at ‘A’-‘D’ are near the skull while voxel at ‘E’ is near the middle of the brain 
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Figure 3-9: Corresponding diagonal decoupled spectra and 2D unwrapped contour plots for 
Subject 1- 2nd trial, for five CSI voxels highlighted at locations ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. Voxels 
at ‘A’-‘D’ are near the skull while voxel at ‘E’ is near the middle of the brain 
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Figure 3-10: Corresponding diagonal decoupled spectra and 2D unwrapped contour plots for 
Subject 2- 1st trial, for five CSI voxels highlighted at locations ‘A’, ‘B’, ‘C’, ‘D’ and ‘E’. Voxels 
at ‘A’-‘D’ are near the skull while voxel at ‘E’ is near the middle of the brain 
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3.4.1 Validation of Lipid Artifact Minimization 

 

  Figure 3-11: Diagonal spectra from voxels at locations indicated by ‘F’ ‘G’, ‘H’ and I in the 
anatomical image. Lipid artifact minimization using proposed algorithm successfully reduces 
lipid artifacts between 2.2ppm and 2.8ppm. Spectra processed with lipid minimization 
algorithm are compared with spectra obtained with lipid suppression using OVS bands and 
shows good agreement.  

Figure 3-11 shows the diagonal spectra from four particular voxel locations ‘F’, 

’G’ and ‘H’ and ‘I’. Lipid contamination obscuring Glu, NAA and Gln signal in the 

2.2ppm-2.8ppm frequency range is completely removed by the proposed lipid 

minimization algorithm. Diagonal spectra obtained from applying the lipid 

minimization algorithm agrees with the spectra obtained with OVS bands applied. This 

demonstrates the validity of the lipid minimization algorithm. 
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Figure 3-12: The 4 x 4 volume for which RMSE is calculated for the spectra obtained with the 
proposed lipid minimization algorithm and with OVS bands applied. Mean RMSE values 
obtained by averaging across the 16 voxels. 
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To get a quantitative measure of the agreement between the two lipid 

suppression methods, the root mean square error (RMSE) between the two spectra is 

calculated using Eq. 3.2. fa-fb represents the frequency range for which the RMSE is 

calculated. x1(f) and x2(f) are the two spectra that are being compared.  

RMSE is determined for all the voxels in the 4 x 4 volume shown in Figure 3-12 

and for the frequency ranges 1.8-4.1ppm (ALL), 1.9-2.2ppm (NAA), 2.2-2.8ppm 

(NAA/Glu/Gln), 3-3.12ppm (Cr) and 3.15-3.3ppm (Cho). Mean RMSE values are 

summarized in Figure 3-13 and compared to that for the range between 0-0.75ppm, 

where we assume the absence of metabolite signal and consequently, only noise is 

present.  

The mean RMSE for the four peaks of metabolites NAA, Glu and Gln in the 

2.2-2.8ppm range is at 0.7  0.2, which is greater than the mean value of 0.5  0.1 

attributed to noise. This indicates that while we have eliminated enough fat to detect 

these four peaks, the difference between the two curves is not completely accounted for  

Eq. 3.2 
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Figure 3-13: Mean RMSE values between spectra obtained with the proposed lipid 
minimization algorithm and with OVS bands applied for different frequency ranges 

 

 

Figure 3-14: Mean RMSE values between spectra obtained with the proposed lipid 
minimization algorithm and with OVS bands applied for different frequency ranges 

by noise, and is likely due to incomplete fat suppression for voxels near the skull. The 

mean RMSE for the NAA peak in the 1.9-2.2ppm region is at 2.5  0.7, higher than 

that for the peaks between 2.2-2.8ppm. This is likely attributed to the reduced 

effectiveness of the proposed lipid suppression method in this region, as the resonant 

frequency is closer to that of the lipid signals.  
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Although the proposed method does not achieve fat suppression as well as with 

OVS bands applied, lipids are reduced by a substantial amount so that peaks of NAA, 

Glu and Gln in the 2.2-2.8ppm manifest as four distinguishable peaks. Figure 3-14 

summarizes the RMSE values between two spectra obtained with OVS bands applied 

and without any lipid suppression. In this case, RMSE values for the NAA, Glu and 

Gln peaks between 2.2-2.8ppm and for the NAA peak between 1.9-2.2 ppm are 

substantially higher than that for the proposed lipid minimization algorithm. 

3.5 Discussion 

 

Figure 3-15: (a) L-curve traced by the data consistency and lipid-basis penalty terms as 
regularization parameter ૃ varies for the 1st t1 step at TE = 48.6ms (b) Projections over lipid 
frequencies of the recovered spectral data for selected ૃ values.  

The regularization parameter λ determines the trade-off between the first term 

for data consistency and the second term for lipid artifact minimization. The iterative 

reconstruction was done for several different regularization parameters where the 

resulting data consistency term ‖۴࢞ െ ࢟‖ଶ  and lipid signal penalty term 

∑௜∈್ۻೝೌ೔೙
‖Lୌ	ݔ௜‖ଵ traced a curve. Figure 3-15a shows this curve for the 2nd trial of 
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Subject 1 and for the 1st t1 step at TE = 48.6ms. Figure 3-15b shows the corresponding 

projections over lipid frequencies of the recovered spectral data x for selected λ values. 

For lipid artifact suppression, we used the value of λ = 0.1 where the lipid signal 

penalty term is close to its minimum. For all 17 t1 steps, as λ is increased from 0.1 to 

1000, the increase in the data consistency term ‖Fݔ െ  ଶ ranged from 0.0070 % to‖ݕ

0.5615% and the decrease in the lipid signal term ∑௜∈୑್ೝೌ೔೙
‖Lୌ	ݔ௜‖ଵ  ranged from 1.05% 

to 12.48%.  

Hence a slightly over-regularized reconstruction is preferable for improved lipid 

artifact suppression since the data consistency term is relatively insensitive to higher 

values of λ.  

SNR gains from the receive coil arrays in the cortical region of brain tissue near 

the skull is traded off for a 1.11cc scan in a scan time of 3:24min. For both trials of 

Subject 1 and the single trial of Subject 2, peaks of Glu, NAA and Gln between 

2.25ppm and 2.50ppm and 3.50-380 ppm were recovered in voxels near the skull, 

demonstrating reproducibility of the 17-step CT-PRESS experiment across subjects. 

Peaks of Glu, NAA and Gln were not detectable in regions near to the brain center 

because of insufficient SNR in this region of brain tissue. To recover Glu, NAA and Gln 

peaks in this region, multiple averages can be taken for increased SNR due to the 

relatively short scan time of 3:24 min.  

For absolute metabolite quantitation based on the homonuclear decoupled 

spectra, Bo and B1 field variations and T2 decay have to be taken into consideration. Bo 

and B1 field mapping and correction methods could be done to correct for field 

variations. Each step of the CT-PRESS experiment was taken at incremental TE values 

and T2 values could be determined from the signal intensities at different TE steps.  
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The availability of multi-channel coils with more elements e.g. 96-channel receive coil 

arrays [58] allows for the possibility of a greater trade-off for higher resolution and 

shorter scan time. An immediate extension is to enable 3D spectroscopic imaging by 

incorporating phase-encoding in kz space. The corresponding increase in minimum 

measurement time could be traded off for higher resolution or better SNR.  

3.6 Conclusion 

A high-resolution 1.11cc CT-PRESS experiment with a total scan time of 3:24min 

was implemented with spiral encoding at 3.0T and with the 32-channel receive coil. 

Peaks previously obscured by artifactual lipid signal such as the Glu, NAA and Gln 

signal between 2.2ppm-2.8ppm were successfully recovered. Lipid suppression with the 

proposed algorithm was compared with lipid suppression via OVS bands. Diagonal 

spectra of voxels near the skull reconstructed after lipid suppression by the proposed 

lipid minimization algorithm was in good agreement with the corresponding spectra 

obtained with the application of OVS bands. With the increased SNR from the multi-

channel receive array, major cortical metabolites of NAA, Cr, Cho and Glu, Gln and mI 

are successfully imaged near the skull without the use of OVS or inversion recovery for 

fat suppression.   
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Chapter 4   

 

Multi-Task Bayesian Compressed Sensing in 
Sparse 2D Spectroscopy  

 

As mentioned in Chapter 2, Constant-Time Point Resolved Spectroscopy (CT-

PRESS) is a homonuclear decoupling method that encodes J-coupling information 

within metabolite molecules in a 2D frequency plane (f1-f2), and has been shown to 

successfully detect coupled resonances such as glutamate (Glu) and glutamine (Gln) at 

the expense of increased total scan time in a 129-step CT-PRESS experiment [40, 41]. 

A 17-step CT-PRESS experiment was implemented by Mayer et al [42] considering that 

all of the signals from a CT-PRESS experiment lie close to the diagonal in the 2D 

frequency plane, and therefore uniform under-sampling in f1 is possible without aliased 

signal overlap. Exploration of further under-sampling in 2D spectroscopy via 

compressed sensing appears promising as 2D spectra are naturally sparse and data 

sampling along the t1 encoding direction readily accommodates flexible sampling 

patterns.  

Metabolite spectra simulated with a software package SPINEVOLUTION [59] 

were included as prior spectral information for regularization during the reconstruction 
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of under-sampled 2D spectra with Multi-Task Bayesian Compressed Sensing (MT-

Bayesian CS) [60]. The performance of MT-Bayesian CS was evaluated via numerical 

simulation and in-vivo application, and compared with Single Task Bayesian 

Compressed Sensing (ST-Bayesian CS) [61], a solution via an l1-regularized formulation 

[62] and least squares fitting with individual simulated metabolite spectra. Linear 

Combination of Model Spectra LCModel [63] incorporates phase, chemical shift and 

line-width variations and is widely used for spectral fitting and accurate quantification 

of metabolites.  The least squares fitting model considered in this chapter is a simplistic 

model that does not include field variations or differences in relative peak amplitudes 

among resonances from the same metabolite, but included to demonstrate the 

robustness of MT-Bayesian CS reconstructions to inaccurate prior spectral information. 

Since spectroscopy data are intrinsically low SNR, noise modeling parameters for MT-

Bayesian CS were also briefly explored for improved reconstruction of under-sampled 

2D spectra in CTPRESS. 

4.1 Introduction: Compressed Sensing 

Different MRI images exhibit sparsity in different transform domains. MRI 

angiograms provide images of vessels and are largely piece-wise constant. They can be 

sparsely represented by computing the differences between neighboring voxels, i.e. with 

the Total-Variation (TV) transform. MRI brain images can be sparsely represented in 

the wavelet transform domain with little visual loss of information. 1D and 2D MRS 

data are naturally sparse in the f1-f2 domain so that the sparse transform domain is the 

image domain itself i.e. the identity transform.  

It has been proven that it is possible to recover images and data from a small 

number of randomly sampled k-space measurements with a non-linear reconstruction 

algorithm [64, 65]. This process is known as compressed sensing (CS). By exploiting the 
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sparsity of MRI images, compressed sensing has enabled significant reduction in scan 

time and high acceleration factors in in-vivo experiments. 

4.1.1 Random Under-sampling 

In conventional MR imaging, K-space has to be sampled frequently enough in 

order to meet FOV requirements of an MRI image e.g. the brain. If k-space samples are 

uniformly under-sampled, aliasing will occur due to the violation of the Nyquist 

criterion. The MRI image will fold onto its replica artifact and be no longer of 

diagnostic quality.  

Random under-sampling of k-space results in incoherent artifacts that behave 

like additive random noise in a zero-filled image. These artifacts are a result of leakage 

of energy from non-zero coefficients in image space. One could perform thresholding on 

the signal to recover high amplitude coefficients, calculate the interference caused by 

these components and subtract it from the zero-filled image to recover coefficients with 

smaller amplitude. By iteratively performing this thresholding procedure, even smaller 

coefficients can be recovered. 

In 2D MRS, data along one time dimension t1 is collected indirectly so that 

under-sampling along t1 is straightforward. Thus, under-sampling for the CT-PRESS 

experiment in this chapter is done along t1. 

4.1.2 Non-Linear Reconstruction 

Without prior knowledge that MRI images are sparse in some domain and given 

a randomly under-sampled set of k-space data, a reasonable approximation for 

obtaining the MRI image is to obtain a least squares estimate from the data collected 

in k-space i.e.  
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ෝ࢞ ൌ argmin࢞ ห|࢟ െ ۴௨࢞|หଶ
ଶ  Eq. 4.1

where y is the observed data in k-space, x is the true image data Fu is the under-

sampled FT operator 

In Eq. 4.2, an l0 norm is included to regularize the reconstruction of the image 

data x, in order to incorporate the knowledge that the data is sparse in some transfer 

domain, Φ. In the case of MRS data, Φ is simply the identity transform. Here the l0 

norm ห|Φݔ|ห
଴
 is not a true norm but represents the number of non-zero coefficients in 

Φݔ. Eq. 4.2 is a non-convex optimization problem, and in general finding the sparsest 

solution to this problem is NP-hard.  

ොݔ ൌ argmin௫ ห|ݕ െ F௨ݔ|หଶ
ଶ
൅ ߣ ||Φݔ||଴ Eq. 4.2

ොݔ ൌ argmin௫ ห|ݕ െ F௨ݔ|หଶ
ଶ
൅ ߣ ||Φݔ||ଵ Eq. 4.3

So, the optimization problem in Eq 4.2 is instead approximated by Eq 4.3 by 

replacing the l0 norm with the l1 norm. The l1 norm does not enforce a strict count of 

non-zero coefficients but nonetheless promotes sparsity. This l1-regularized formulation 

has been demonstrated to reconstruct under-sampled 2D MRS EPSI data with good 

fidelity to the original fully sampled data [66]. The entropy of MRS data was used for 

regularizing reconstructions from the Maximum Entropy algorithm (MaxEnt), yielding 

reasonable reconstructions for 2D MRS and MRS data with higher dimensionalities [67-

69].  

4.2 Introduction: Bayesian Compressed Sensing 

The previous section introduced compressed sensing and its approximate solution 

by an l1 regularized formulation. This section considers solving the inversion of 

compressive measurements by Bayesian linear regression analysis, in order to set up a 
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framework where simulated spectral information can be included to improve the 

reconstruction of under-sampled 2D CT-PRESS data.  

࢟ ൌ ۴࢞ ൅ ࢔ Eq. 4.4

ሺ࢟|࢞ሻ݌ ൌ ሺ2ߪߨଶሻି௄/ଶ expሺെ
1
ଶߪ2

ห|࢟ െ ۴௨࢞|ห
ଶ
ሻ Eq. 4.5

ሺ࢞ሻ݌ ൌ ሺ2/ߣሻெ expሺെߣ ෍|ݔ௜|
ெ

௜ୀଵ

ሻ 
Eq. 4.6

In Eq. 4.4 2D MRS data are modeled as being corrupted by additive white 

Gaussian noise with variance σ2, where y is the observed data in kf1-kf2 space, x is the 

true spectral data and is a naturally sparse signal, n is the additive noise and Fu is the 

under-sampled FT operator. K measurements are made of x and this gives us the 

likelihood model with Gaussian probability density function (pdf) in Eq. 4.5 for 

observing y given x. The knowledge that x is sparse is incorporated with a sparseness 

promoting prior via the Laplace density function in Eq. 4.6, where M is the number of 

sparse coefficients in x. 

Bayes rule in Eq. 4.7 provides the posterior probability and the maximum a 

posteriori solution given in Eq. 4.8, which is very similar to the l1 regularized 

formulation from Eq. 4.3.  

ሺ࢞|࢟ሻ݌ ൌ
ሺ࢟|࢞ሻ݌ ሺ࢞ሻ݌

ሺ࢟ሻ݌
 Eq. 4.7

࢞ெ஺௉ ൌ argmin࢞ ห|࢟ െ ۴௨࢞|หଶ
ଶ
൅ ߣଶߪ2 ||࢞||ଵ Eq. 4.8

The Laplace density function however is not conjugate to the Gaussian 

likelihood function and linear regression cannot be performed. Instead the hierarchical 

prior shown in Eq. 4.9 and 4.10 is used. 
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ሻࢻ|ሺ࢞݌ ൌ ෑܰሺݓ௜|0, ௜ିଵሻߙ

ே

௜ୀଵ

 
Eq. 4.9

,ܿ|ࢻሺ݌ ݀ሻ ൌ 	ෑГሺߙ௜|ܿ, ݀ሻ

ே

௜ୀଵ

ൌෑ
ܿௗ

Гሺܿሻ
௜௖ିଵߙ expሺെ݀ߙ௜ሻ

ே

௜ୀଵ

 
Eq. 4.10

The overall prior on x becomes:    

,ܿ|ሺ࢞݌ ݀ሻ ൌ 	ෑන ܰሺݔ௜|0ߙ௜ିଵሻ Гሺߙ௜|ܿ, ݀ሻ ௜ߙ݀
ஶ

଴
.

ே

௜ୀଵ

 
Eq. 4.11

A Gamma prior is also defined on the noise precision α0= σ2 in Eq. 4.12 and 

included in the signal prior of Eq. 4.13, so that we can integrate out α0 analytically 

when computing the posterior probability and circumvent the need for an initial 

estimate of σ2.  

,ܽ|଴ߙሺ݌ ܾሻ ൌ 	Гሺߙ଴|ܽ, ܾሻ ൌ
ܽ௕

Гሺܽሻ
଴௔ିଵߙ expሺെܾߙ଴ሻ 

Eq. 4.12

,ߙ|ሺ࢞݌ ଴ሻߙ ൌ ෑܰሺݓ௜|0, ,௜ିଵߙ ଴ିଵሻߙ

ே

௜ୀଵ

 
Eq. 4.13

The posterior probability for x can be expressed analytically as a Gaussian pdf 

with mean μ and covariance Σ 

ૄ ൌ ઱ ۴௨
்࢟ Eq. 4.14

઱ ൌ ሺ۴௨
்۴௨ ൅ ሻିଵۯ Eq. 4.15

where A =  diag(α1, α2,… … αN). The mean and covariance of the posterior is 

determined from the point estimates of α via evidence maximization (EM) or type-II 

maximum likelihood (ML) estimate. The EM process involves finding the point 

estimates that makes the kf1-kf2 space data most likely i.e. the α that maximizes 
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ሺહሻܮ ൌ logන݌ሺ࢟|ܠ, ଴ሻߙ ,ሺ࢞|હ݌ ଴ሻߙ ,଴|aߙሺ݌ bሻ݀࢞ ଴ Eq. 4.16ߙ݀

4.3 Multi-Task Bayesian Compressed Sensing 

Metabolite peak locations are frequently known and can be simulated via software 

packages such as GAMMA [70] and SPINEVOLUTION [59]. The hierarchical Bayesian 

model introduced in the previous section can capture the similarities between these 

simulated spectra and in-vivo spectra, via a shared set of hyper-parameters α, common 

across the simulated and in-vivo spectra. In this setting, a joint Bayesian linear 

regression can be performed. Since the simulated spectra are fully sampled, their 

inclusion in the joint Bayesian analysis will help in the estimation of α and 

subsequently the mean, μ and covariance, Σ corresponding to the under-sampled in-

vivo metabolite spectra. The likelihood function and signal priors are shown in Eq. 4.17 

and Eq. 4.18 respectively, where i indexes the fully sampled simulated and the under-

sampled in-vivo trials.  

ሻ࢏࢞|࢏ሺ࢟݌ ൌ ሺ2ߪߨଶሻି௄೔/ଶ expሺെ
1
ଶߪ2

ቚห࢟࢏ െ หቚ࢏࢞࢏۴࢛
ଶ
ሻ Eq. 4.17

,ܿ|࢏ሺ࢞݌ ݀ሻ ൌ 	ෑන ܰ൫ݔ௝ห0ߙ௝ିଵ൯ Г൫ߙ௝หܿ, ݀൯ ௜ߙ݀
ஶ

଴

ே

௝ୀଵ

 
Eq. X.8Eq. 4.18

Point estimates for the hyper-parameters α are determined by maximizing the 

logarithm probability in Eq. 4.19. This process ensures that the hyper-parameters α are 

estimated from both the simulated data and the in-vivo spectral data.  

ሻ࢏ሺહࡸ ൌ෍logන݌ሺ࢟࢏ܠ|࢏, ଴ሻߙ ,࢏હ|࢏ܠሺ݌ ଴ሻߙ ,଴|aߙሺ݌ bሻ݀ݔ௜ ଴ߙ݀

ۺ

ୀ૚࢏

 
Eq. 4.19

The implementation of this algorithm is done by a sequential greedy algorithm 

explained in [60] that starts with a single basis vector in the FT operator Fu. A basis 
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vector is added if it gives the greatest increase in logarithm likelihood, and basis vectors 

already present are either updated or deleted if that gives the greatest increase in log-

likelihood.  

4.4 Evaluation of MT Bayesian CS 

Using SPINEVOLUTION, seven brain metabolites [18], N-Acetyl-Aspartate 

(NAA), creatine (Cr), choline (Cho), glutamate (Glu), glutamine (Gln), myo-Inositol 

(mI), lactate (Lac) and water were simulated in a uniformly under-sampled, 17-t1 step 

CTPRESS experiment with non-interfering aliasing as proposed by Mayer et al [42]. 

These fully sampled simulated spectra are added (ratio = 1:1:1:1:1:1:1:1) and later used 

for regularization in MT-Bayesian CS to aid in reconstruction of under-sampled data.  

The simulated spectra were also combined in physiological ratios of 10.3mM 

NAA, 9.95mM total Cr, 1.63mM total Cho, 12mM Glu, 3mMGln, 6mMmyo-Inositol 

and 0.4mM Lac to constitute a simulation of the in-vivo trial. The 2D spectral data 

was under-sampled by 4 in the t1 dimension as determined by a random draw from a 

uniform distribution, and Gaussian noise was added so that peak SNRNAA = 68 in the 

2D spectrum. 

A 17-step CTPRESS CSI experiment with fast spiral encoding was applied in 

vivo on a 3.0 T MRI scanner (Siemens AG, Erlangen, Germany) using a 32 channel 

head coil. Shown in Figure 4-1, the PRESS box was applied for excitation of a 

rectangular volume of 8cm x 8cm in a FOV of 24cm x 24cm with slice thickness = 2cm. 

The 17-step 2D experiment was averaged twice for a total scan time of 4:40min. 2D 

spectral data was taken from a 4.5-cc voxel at the gray matter location in Figure 4-1 

and retrospectively under-sampled in the t1 dimension by R = 4. 
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Reconstructions of the under-sampled simulated and in-vivo 2D spectra were 

obtained via four methods: i) solution via an l1 regularized formulation [62], ii) least 

squares  

 

Figure 4-1: Anatomical MP-RAGE with prescribed Outer Volume Suppression (OVS) pulses for 
fat suppression. The white box indicates the excited volume. 2D spectral data from the voxel 
outlined in red is retrospectively under-sampled and reconstructed with MT Bayesian CS 

fitting, iii) Single Task Bayesian CS and iv) MT Bayesian CS. The solution via an l1 

regularized formulation is reproduced in Eq. 4.20 where y contains under-sampled data, 

Fu is the under-sampled FT, and x is the reconstructed data. The under-sampled data, 

y was normalized across the 2D spectra and λ = 0.005 was chosen to balance between 

measurement consistency and enforced sparsity.   

࢞′ ൌ argmin࢞‖۴࢛࢞ െ ࢟‖ଶ ൅ λ‖࢞‖ଵ Eq. 4.20

Eq. 4.21 parameterizes x with the simulated metabolite spectra e.g.Crsim so that 

the reconstruction of x via least squares fitting in Eq. 4.22 is equivalent to solving for 

the weights Cmetabolite of the individual spectra.  

࢞ ൌ Cே஺஺ܰܣܣ௦௜௠ ൅	C஼௥ݎܥ௦௜௠ ൅ C஼௛௢݋݄ܥ௦௜௠ ൅ Cீ௟௨ݑ݈ܩ௦௜௠ ൅ Cீ௟௡݈݊ܩ௦௜௠

൅	C௠ூ݉ܫ௦௜௠ ൅ C௅௔௖ܿܽܮ௦௜௠ 
Eq. 4.21
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࢞′ ൌ argmin࢞‖۴࢛࢞ െ ࢟‖ଶ Eq. 4.22

The mean for the posterior distribution of x, μ is taken as its best estimate in 

both ST and MT Bayesian CS. In ST Bayesian CS, the estimation of α is conditioned 

only on the under sampled spectra, while in MT Bayesian CS, the estimation of α is 

conditioned on both the under-sampled spectra and the fully sampled simulated 

spectra.  

4.4.1 Results 

Reconstructed data was compared with the fully-sampled noise-frees data, and 

root mean square error of the diagonal decoupled spectra (RMSE) was computed as an 

error metric. The under-sampled CT-PRESS experiment and subsequent reconstruction 

was repeated over 20 noise realizations and 5 random under-sampling masks for 100 

trials. Zero-filled spectral data is included as a comparison for the reconstruction 

methods.  

4.4.1.1 Simulated Data 

Figure 4-2 compares the diagonal decoupled spectrum from the noise-free fully-

sampled 2D CT-PRESS spectrum and the diagonal spectra from CT-PRESS spectra 

reconstructed with different methods. Figure 4-3 shows the associated RMSE taken 

from 1.25ppm-4.25ppm of the reconstructed diagonal spectra. The insufficient recovery 

of spectral peaks explains the high RMSE from the reconstruction via zero filling of 

spectral data. In all four other reconstruction methods, major peaks of NAA, Cr, Cho, 

mI and Glu were recovered. However the low-SNR peaks of Glu, NAA+Gln and 

Glu+Gln between 2.25ppm-2.35ppm, 2.35ppm-2.47ppm and 3.69ppm-3.80ppm were 

best recovered by least squares fitting and MT Bayesian CS, where some form of prior 

spectral information was incorporated. Reconstruction via least squares fitting has the 
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lowest RMSE because the same simulated set of metabolite spectra that constituted the 

under-sampled data were also used in the parameterization of x in Eq. 4.21.  

 

Figure 4-2: (a) Diagonal spectrum from noise-free fully sampled simulated 2D CT-PRESS 
spectrum (b)-(f) 1D diagonal spectra from reconstructed 2D CT-PRESS spectra. Glu, NAA 
and Gln peaks are only seen in (c) and (f) 

 

 

Figure 4-3: Mean RMSE of diagonal spectra from reconstructed 2D CT-PRESS spectra. 
Reconstructions by least squares fitting have the lowest mean RMSE. MT Bayesian CS 
reconstructions have the next lowest mean RMSE. 
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4.4.1.2 In-Vivo Data 

Figure 4-4a shows the diagonal decoupled spectrum from the fully-sampled 2D 

CT-PRESS spectrum ofs a 4.5cc gray matter voxel, and Figure 4-4b-f show the 

diagonal spectra from reconstructed 2D CT-PRESS spectra. The associated RMSE 

taken from 1.25ppm-4.25ppm of the diagonal spectra are displayed in Figure 4-5. 

Again, simple zero-filling cannot recover spectral peaks sufficiently. Major peaks of 

NAA, Cr, Cho were recovered by all four methods of solution, but the low-SNR peaks 

of Glu, NAA+Gln and Glu+Gln between 2.25ppm-2.35ppm, 2.35ppm-2.47ppm and 

3.69ppm-successfully recovered by MT Bayesian CS. Least squares fitting failed to 

recover the metabolite peaks and their relative amplitudes while reconstruction with 

MT Bayesian CS recovered the metabolites peaks and gave the lowest RMSE.  

 

Figure 4-4: (a) Diagonal spectrum from noise-free fully sampled invio 2D CT-PRESS 
spectrum (b)-(f) 1D diagonal spectra from reconstructed 2D CT-PRESS spectra. Glu, NAA 
and Gln peaks are best reconstructed in (f) 
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Figure 4-5: Mean RMSE of diagonal spectra from reconstructed 2D CT-PRESS spectra. 
Reconstructions by least squares fitting have the lowest mean RMSE. MT Bayesian CS 
reconstructions have the next lowest mean RMSE. 

4.4.2 Discussion 

Least squares fitting with the parameterization of x using simulated spectra did 

not sufficiently recover the low-SNR peaks of Glu, NAA+Glu and Glu+Gln because 

the simulated set of metabolite spectra does not accurately model the different relative 

amplitudes of spectral peaks from the same metabolites or their chemical shifts. Figure 

4-6 shows the simulated diagonal spectra from individual metabolites overlaid onto the 

diagonal spectra from the in-vivo trial. The relative amplitudes of the peaks arising 

from simulated NAA do not match the peaks from NAA in the in-vivo trial, resulting 

in unsatisfactory fitting of the under-sampled in-vivo data. For improved reconstruction 

with least-squares fitting, factors such as relative amplitude differences from resonances 

of the same metabolite, B0 and B1 inhomogeneities, line-width and chemical shift 

variations, and background macromolecular signal can be included in the 

parameterization of x, like in the 1D metabolite spectra fitting and quantification 

software LCModel.  
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Figure 4-6: Individual Metabolite Spectra superimposed on in-vivo spectra show insufficient 
modeling of the parametric model. Relative amplitudes of frequency peaks from NAA are 
different from that of the in-vivo spectra.  

MT Bayesian CS performed better because it is a hierarchical Bayesian model 

and does not impose strict correlation between the simulated spectral data and the in-

vivo under-sampled data. Instead, the common priors α are learned from both the 

under-sampled in-vivo spectral data and the fully sampled simulated data, from which 

the best estimate for the in-vivo data is determined. So inaccurate modeling in the 

simulated spectra that result in shifted frequency peaks locations or different relative 

amplitudes from resonances of the same metabolite do not adversely affect the 

reconstruction.  

4.5 Parameters for Noise Modeling in MT Bayesian CS 

In MT Bayesian CS, a Gamma prior is defined over the noise precision term α0 

(Eq. 4.12), so that an inverse Gamma prior is introduced on σ2  
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Eሺߪଶሻ ൌ
ܾ

ܽ െ 1
 Eq. 4.23

Varሺߪଶሻ ൌ
ܾ

ሺܽ െ 1ሻଶሺܽ െ 2ሻ
 Eq. 4.44

Previous reconstructions using MT Bayesian CS favor no a priori noise precision where 

a = b = 0, leading to the least informative prior. In this section, values for parameters 

a and b are explored for improved reconstruction of low SNR data.  

Seven brain metabolites of NAA, Cr, Cho, Glu, Gln, mI, Lac and water were again 

simulated with SPINEVOLUTION in a 17 step CT-PRESS experiment. The fully 

sampled simulated spectra of the brain metabolites were weighted equally and summed, 

and used for regularization in MT-Bayesian CS. The simulated spectra were also 

combined in the ratio of 10.3 mM NAA, 9.95 mM total Cr, 1.63 mM total Cho, 12 mM 

Glu, 3mM Gln, 6mM myo-Inositol, 0.4mM Lac to constitute a simulation of an in-vivo 

trial. This spectrum is under-sampled in the t1 dimension by a factor of R = 2 and 

R=4 as determined by a random draw from a uniform distribution. Gaussian noise of 

σ2 = 0.0025 was added such that peak SNRNAA = 20 in the 2D spectrum. Figure 4-7a 

and b show the diagonal spectra from the fully-sampled 2D CT-PRESS experiment 

before and after the addition of noise. Diagonal spectra are formed from summing the 

magnitude 2D CT-PRESS spectra along the diagonal, so that Figure 4-7b has a 

magnitude offset due to noise.  

Spectra were reconstructed for a = 1778, and b = 0.044 to 40, so that E[σ2] 

ranges from 2.5E-5 to 0.0225 and Var[σ2] is small and range from 7.9E-12 to 7.1E-9. 

Focusing on the low-SNR peaks of Glu, NAA+Gln, and Glx between 2.25ppm-

2.35ppm, 2.35ppm-2.47ppm and 3.69ppm-3.80ppm respectively, reconstructed spectra 

were compared to the fully-sampled baseline spectra and RMSE evaluated for 20 noise 
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realizations and 5 under-sampling realizations.  We attempt to determine empirically 

the value of b that gives the minimum RMSE for future inclusion of a priori noise 

precision in the MT Bayesian CS reconstruction.  

 
Figure 4-7: Diagonal spectra from (a) noise-free and (b) noisy simulated 2D CT-PRESS 
spectra. Gaussian noise was added to the 2D spectrum so that peak SNRNAA = 20 

Assuming ideally phased priors, Real(x) and Imag(x) were solved for with MT 

Bayesian CS using the real and imaginary parts of the simulated spectra. To 

approximate scanning conditions where phase priors are uncertain, Abs(mi) and 

Phase(mi) are solved for with MT Bayesian CS using the magnitude of the simulated 

spectra and ST Bayesian CS respectively.  

4.5.1 Results and Discussion 

Figure 4-8 shows mean RMSE of the reconstructed spectra taken over 100 

random trials assuming ideally phased priors. The minimum RMSE is at bopt = 4.443 

for both R=2 and R=4 under-sampling factors. bopt = 4.443 corresponds to E[σ 2] = 

0.0025, which  matched the noise of σ 2 = 0.0025 added to the simulated spectra. Small 

values of b resulted in small values for E[σ2], limiting the de-noising feature of MT 

Bayesian CS reconstructions. On the other hand, large values of b assume more noise 

than present in the under-sampled spectra which lead to dropouts of Glu and Gln 

peaks in the CS reconstructions.  Figure 4-9a shows the diagonal spectra formed from  
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Figure 4-8: RMSE evaluated for low-SNR peaks evaluated with different values of b for under-
sampling factor of R = 2 and R = 4 using MT Bayesian CS with perfectly phase priors.  

 

 

Figure 4-9: Diagonal spectra from reconstructed 2D CT-PRESS spectra with different values of 
a and b for under-sampling factors R = 2 and R = 4. 

the reconstructed 2D spectra for a = 0 and b = 0 without a priori noise precision, and 

Figure 4-9b demonstrates the successful reconstruction of Glu and Gln peaks in the 
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diagonal spectra formed with the suggested choice of a = 1778 and b = 4.443 that best 

models σ2 = 0.0025 added to the simulated spectra.  

Figure 4-10a and b show mean RMSE taken over 100 random trials assuming 

non-ideal scanning conditions where phase priors are uncertain. The minimum RMSE 

corresponds to E[σ 2] = 0.0049 for R = 2 and E[σ 2] = 0.010 for R = 4 which do not 

correspond to the noise of σ2 = 0.0025 added to the simulated spectra. We postulate 

that this discrepancy is due to insufficient modeling of Rayleigh noise with non-zero 

mean in the reconstruction of Abs(mi) with MT Bayesian CS. 

 

Figure 4-10: RMSE evaluated for low-SNR peaks evaluated with different values of b for under-
sampling factor of R = 2 and R = 4 using MT Bayesian CS with imperfect phase information. 

4.6 Conclusion 

The performance of MT Bayesian CS is compared with other methods for 

reconstruction of under-sampled CT PRESS. In the absence of information about 

phase, chemical shift or line width variations, MT Bayesian CS was most successful at 

reconstructing low-SNR peaks of Glu, NAA+Gln, and Glu+Gln. An extension of this 

work is to compare MT Bayesian CS with other methods based on algorithms such as 

Simultaneous Orthogonal Matching Pursuit [71] and M-FOCal Underdetermined 
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System Solver (FOCUSS) [72], which similarly exploit similarities in multiple 

measurements to improve reconstruction.  

Phase variations common in spectroscopy data complicate the assignment of 

values for hyper-parameters a and b based on estimated noise variance. Future work 

includes further exploration of noise modeling parameters for reconstruction of 

magnitude spectra with MT Bayesian CS where phase priors are uncertain.  
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Chapter 5   

 

Conclusions and Future Work 

 

5.1 Conclusions 

1D MRS spectra suffer from substantial spectral overlap between individual 

metabolite signals that hamper the detection and quantification of metabolites. 2D 

MRS methods such as the 17-step CT-PRESS spread J-coupling information in a 2D 

frequency space for increased spectral dispersion and the opportunity for effective 

homonuclear decoupling.  However, the additional dimension increases total minimum 

scan time which prohibits 2D MRS implementations for high-resolution spectroscopic 

imaging purposes.  

This dissertation presents the 17-step CT-PRESS method implemented with 

spiral encoding for a high resolution 1.11cc voxel size in-vivo human scan. The 

additional SNR presented by the 32-channel receive coil array in the cortical tissue near 

the skull is traded off for the small voxel size and the short total scan time of 3:32min 

with just one average. The lipid minimization algorithm presented in this thesis 
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successfully removes lipid contamination, so that decoupled peaks of Glu, NAA and 

Gln are detectable in these cortical regions with good sensitivity.  

Another contribution of this thesis is the exploration of reducing scan times in 2D 

MRS experiment via random under-sampling in the indirect time dimension and 

subsequent reconstruction with Multi-Task Bayesian Compressed Sensing (MT 

Bayesian CS). The reconstruction of under-sampled data was improved with the 

incorporation of simulated prior spectral information for regularization. In the case of 

inadequate simulated spectra, spectral quality obtained with reconstruction by MT 

Bayesian CS remained good because MT Bayesian CS did not impose strict correlation 

between simulated spectra and in-vivo under-sampled data. As spectroscopy data have 

intrinsically low SNR, hyper-parameters a and b n MT Bayesian CS were modified to 

match the expected noise characteristics in simulated trials. In the ideal case of 

perfectly phased prior spectral information, the hyper-parameters which matched the 

noise statistics gave the best reconstructions.  

5.2 Future Work 

5.2.1 2D MR Spectroscopic Imaging with Lipid Minimization  

The availability of multi-channel coils such as the 64-channel coil on the Siemens 

Skyra system (Siemens, Erlangen, Germany) and the corresponding increase in SNR 

allows for even greater trade-offs for scan-time and voxel size. SNR increases with B0 

field strength and the CT-PRESS experiment can potentially be done at field strengths 

of 7T and higher. Imaging at 7T however introduces challenges such as more severe B1 

and B0 inhomogeneities and restricted RF excitation due to specific absorption rate 

(SAR) constraints.  
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Other 2D MRS methods such as COSY and 2D JPRESS could also be 

implemented with spiral encoding and applied with the lipid minimization algorithm. 

The implementation of 2D JPRESS with spiral encoding for cortical metabolites 

detection opens up clinical applications due to the availability of fitting and 

quantification software ProFit [73] designed for spectral quantification of 2D JPRESS 

spectra.  

5.2.2 Compressed Sensing for 2D MRS 

MT Bayesian CS incorporates prior spectral information to regularize and 

improve the reconstruction of under-sampled 2D MRS data. It would be noteworthy to 

compare the performance of MT Bayesian CS with other algorithms that exploit 

similarities in multiple measurements, whether simulated or experimental, for improved 

reconstruction. When modifying hyper-parameters for noise modeling, in the presence 

of phase variations and imperfect phase information, the hyper-parameters that gave 

the best reconstructions did not match the noise statistics added to the under-sampled 

simulated spectra.  In this case, future work has to be done to explore the relationship 

between the hyper-parametes and the Rayleigh noise statistics of the magnitude 

spectrum reconstructed with MT Bayesian CS. 
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