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Abstract

Power amplifiers are the circuit blocks in wireless transceivers that require the largest power
budget because of their relatively low efficiencies. RF designers cannot depend solely on the
development better semiconductor devices in advanced deeply scaled process technologies to
obtain improved power amplifier performance. The development of new and better circuits,
architectures and design methodologies to maximally exploit the available semiconductor
devices is very important as well. This thesis investigates a number of techniques that can be
used to improve the efficiency of power amplifiers and break the power-frequency tradeoff in
power amplifier design. The first technique emphasizes the use of a class E tuned output
network as an efficiency enhancement tool for power amplifiers regardless of their bias
conditions. A Class E tuned CMOS power amplifier (PA) operating in the 60 GHz band was
designed. Design, layout, and parasitic modeling considerations to attain high-efficiency
millimeter-wave PA operation are discussed. Both single-ended and differential versions of the
single-stage PA were implemented in a 32 nm SOI CMOS process. Peak power added efficiency
of 27% (30%), power gain of 8.8 dB (10 dB), and saturated output power > 9 dBm (12.5 dBm)
were measured at 60 GHz from the single-ended (differential) PA with 0.9 V supply. The second
technique investigated the efficacy of resistance compression networks in an energy recycling
network operating at multi-gigahertz frequencies. The resistance compression network reduces
the variation in resonant rectifier input impedance seen at the isolation port of an isolating power
combiner. The system was operated at 2.14 GHz and was built around Schottky barrier diodes
custom fabricated in a 0.13 tm CMOS process. It is the first experimental demonstration that
resistance compression networks can be used for energy recycling in multi-gigahertz
applications.

Thesis Supervisor: Joel L. Dawson
Title: Associate Professor
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Chapter 1

Introduction

RF systems show the challenge of efficiently operating simultaneously at high frequency and

high power. The typical limitation observed is degradation in the ability to deliver high output

power as the RF systems' operating frequency is increased. Power amplifiers are a good

example of transceiver blocks that provide much evidence to support this power-frequency

tradeoff. The engineer has basically two approaches to improving this tradeoff. The first

approach is to simply fabricate and take advantage of better semiconductor devices. The

staggering success of this approach can be seen in the revolution ushered in by Moore's Law

scaling in CMOS: so much of the improvement in the last couple of decades can indeed be traced

to better, faster devices. Outside of silicon, the improvements are less dramatic but still

substantial. GaAs, GaN, and many other technologies get better and better as time goes on. The

other, often underappreciated, approach that the engineer has is to develop new and better

circuits, architectures, and design methodologies to maximally exploit the amazing properties of

new devices. The development of techniques which can break this power-frequency tradeoff is

very important because it will provide access to higher frequency bands which are currently

underutilized for wireless communication.
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1.1 Motivation

With the availability of 7 GHz of unlicensed bandwidth centered at 60GHz, this space has

emerged as an active area of research. A number of challenges are typically faced when

designing transceivers at millimeter wave frequencies. Strong atmospheric absorption at 60 GHz

lowers the signal-to-noise ratio (SNR) available at the receiver [29]. This limits the complexity

of the signal constellations that can be used and thus reduces the number of bits per symbol that

can be encoded with typical modulation strategies. For high data rates, this will require more

symbols per second forcing the use of extremely fast baseband modulators. The well understood

challenges of obtaining good linearity, high output power and high efficiency in power

amplifiers is further exacerbated at this carrier frequency complicating transceiver design.

Delivering significant power at 60 GHz requires very fast devices with high fmax and fT. This

technological hurdle has been lowered with recent advances in SiGe, III-V semiconductor

technology and deeply scaled CMOS with fmax > 250 GHz. The implementation of wireless

transceivers at millimeter wave frequencies is particularly attractive because of several useful

applications which include:

" Uncompressed high-definition video streaming

* Wireless Gigabit Ethernet

* Rapid transfer of large files

* Wireless Personal Area Networks (WPAN)

* Wireless docking station and desktop point to multipoint connections

Energy recovery, which has enjoyed sporadic attention over the last couple of decades, is

newly enabled by custom Schottky barrier diodes (SBDs) and resistance compression networks.

A particularly useful application of energy recovery is in further improving the efficiency of

18



outphasing power amplifier architectures. Over the last few years, there has been newfound

interest in outphasing because of recent results of the Asymmetric Multilevel Outphasing (AMO)

power amplifier architecture [28], [31], and [32]. This architecture (see Fig. 1-1) combines the

best properties of polar transmitters and outphasing (LINC) transmitters [30]. The power

amplifier's efficiency is improved without significantly degrading its linearity by using the

combination of drain voltage modulation and rapid outphasing. A key motivation of this project

will be the investigation of energy recovery as a means of further improving the AMO

transmitter's efficiency. The inclusion of a resistance compression network [23] as a means of

reducing the impedance variation of the energy recovery network is very important because the

PA outputs (PA1 and PA2 in Fig. 1-1) need to be isolated from each other if they are

implemented with high-efficiency switching topologies such as class E.

A1(t) Amplitude Multilevel Amplitude A 2(0)contro ower converter ontrol
...... ........ V, V V, V ....... ...

LC Filter LC Filter

PA Power
combiner A

Phase RectificationPhs
modulator and modulator

IEnergy-storage

$1(I 42(/)

Figure 1-1: System Diagram of Asymmetric Multilevel Outphasing PA. The rectification and
energy storage block can be implemented by means of an energy recovery network which uses a
resistance compression network to reduce the variation in impedance at the power combiner's
difference port.
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An important question to consider is the justification to use energy recovery rather than

lossless combining in an outphasing PAs. After all, it is inefficient to throw energy away (at the

isolating combiner's difference port) and then try to recover it. Typical lossless combiners such

as Chireix provide isolation between its ports at a very narrow range of outphasing angles (or

output power). Such restrictions are detrimental in modem wireless communication systems

which use modulation schemes such as Orthogonal Frequency Division Multiplexing (OFDM)

and 256-QAM (Quadrature Amplitude Modulation) that have high PAPRs. Significant power

backoff at large outphasing angles is necessary to produce the required signal constellations. But

good isolation between the PAs is essential for reliable operation of high-efficiency switching

PAs such as Class-E. Using classical PA topologies which are less sensitive to load modulation

(such as class A/AB) is undesirable because the benefit of an outphasing system can only be

harnessed if high-efficiency but nonlinear PAs are used. It is necessary to use the high efficiency

of the switching mode PAs to ameliorate or compensate for the losses in the power combiner.

Moreover, there is additional circuit complexity and DSP overhead in the signal component

separation operation necessary to generate the input signals for the PAs. Such additional

complexity can only be justified with the use of high-efficiency switching PAs in outphasing

systems.

1.2 Research Contributions

The initially proposed solution to the problems enumerated in the previous section was the

implementation of an outphasing PA system that employs millimeter wave class E tuned PAs

and a resistance compressed energy recovery network. Subsequent chapters in this thesis will

show that a high-efficiency millimeter wave PA was successfully designed but energy recovery

at millimeter wave frequencies was not feasible in the CMOS process available. Subsequently,

20



the project goal was modified to demonstrate the efficacy of resistance compression networks at

frequencies on the order of 2 GHz.

The first contribution of this work is employing the class E tuned output network as an

efficiency enhancement technique for classical PA topologies. The standard class E PA

presented in Fig. 1-2 employs a tuned output network to produce non-overlapping voltage and

current waveforms at the drain of the active device. Since voltage and current are not

simultaneously non-zero, there is no power dissipation in the active device and a 100%

theoretical efficiency is possible. A 60-GHz class E tuned power amplifier designed in 32 nm

CMOS SOI is presented which employs a transmission line class E tuned network to obtain 30%

peak PAE for the differential version. The PA was designed employing class E techniques but

the active device was biased in the sub-threshold or weak inversion region so that a larger output

power could be obtained. Even though the active device was not operated as an ideal switch as

required for a classical class E PA, its efficiency was still improved because of the output signal

shaping properties of the class E tuned network.

Active I .. . .....
iDevice L1 I |- -
Switch L2 C2 1 Load

IC

From M1 1R
Driver

- -Output Network - -

Figure 1-2: Class E power amplifier
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The second contribution is the use of a formalized iterative approach to the design of the

millimeter wave power amplifier. The PA design was compartmentalized into distinct sections

which were implemented separately but have a strong influence on each other. Employing the

iterative design approach made possible the convergence to a final solution in an efficient

manner. This approach also emphasizes the interaction between each major section of the PA

and the tradeoffs that need to be made for good performance.

The third contribution is the use of resistance compression networks (RCN) for energy

recovery at multi-gigahertz frequencies. The use of an outphasing PA topology with an isolating

power combiner becomes more attractive when the energy typically lost at the difference port of

the power combiner can be recycled back to the power supply. The inclusion of an RCN along

with the resonant rectifiers at the difference port of the power combiner helps to maintain good

isolation between the switching mode PAs. This enables high efficiency and good linearity to be

achievable in outphasing PA architectures such as AMO. Although Godoy et al. [22] has

presented a successful demonstration of the principle at a 48-MHz operating frequency, it was

not clear that a RCN will be effective when the operating frequency is increased. An energy

recycling network that operates at 2.14 GHz is presented to show that RCNs can be used at

multi-gigahertz frequencies.

1.3 Thesis Organization

Chapter 2 briefly reviews a number of classical PA architectures and justifies the use of the class

E topology for the purposes of this work. The theory of operation of the class E PA will be

discussed emphasizing the properties that give this architecture high theoretical efficiency. Next,
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the design and implementation of a 60-GHz class E tuned PA will be presented along with

simulation results and useful design insights.

Chapter 3 presents the measurement setup and results of the 60-GHz PA implemented in an

IBM 32pm CMOS SOI process. Comparison of the PA's performance to other state-of-the-art

millimeter PAs will also be included.

Chapter 4 delves into the theory of energy recovery at RF and multi-gigahertz frequencies.

Important considerations for the Schottky diode size selection and resonant rectifier design will

be discussed. The theory of operation of a resistance compression network will also be analyzed.

Chapter 5 discusses the design of an energy recovery network that operates at a frequency of

2.5 GHz. A prototype of the energy recovery network which uses Schottky barrier diodes

fabricated in a 0.13-tm CMOS process will be presented along with some measurement results.

Finally, Chapter 6 summarizes the contributions of this work and proposes future projects

that can improve upon the results presented in this thesis.
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Chapter 2

PA theory, design methodology and

simulation results

This chapter covers the theory and design of the 60-GHz Class E PA. A brief overview of a

number of alternative PA architectures will be discussed with reference to advantages and

disadvantages of their implementation at millimeter wave frequencies.

2.1 Common PA Architectures

There are several power amplifier topologies commonly used at millimeter wave frequencies. A

common feature is simplicity and the use of as few active devices as possible because of the loss

introduced by device parasitics. This section describes, in broad terms, the features and

characteristics of class A, B, C, D, E, and F PAs. Ultimately, for the millimeter wave PA work in

this thesis, the methods and theory of the class E proved to be the best choice.

The class A power amplifier exhibits a linear relationship between the input and output

signals. Typically, the transfer function shows a low pass characteristic with attenuation at

higher frequencies. Highly linear PAs are essential for complex modulation schemes and

constellations making the class A architecture good for 64 QAM and OFDM. The class A PA

represents the ultimate sacrifice of efficiency for the sake of linearity. That is because it achieves

its high linearity by using a 3600 conduction angle. This implies the active device conducts
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current continuously and dissipates static DC power regardless of the power being delivered to

the load. Thus, the efficiency of class A PAs are very poor at large power backoffs. Since

complex modulation schemes have high PAPR which can exceed 6.5 dB, class A PA

implementations lead to very poor system efficiencies. In practical PAs at millimeter wave

frequencies, the power gain is further reduced from the peak theoretical efficiency (50% for class

A) because of the limited power gain attainable from the active device. The effect of device

parasitics is more significant at millimeter wave frequencies making PA efficiencies significantly

below 50%.

VDD Signal Current

RF Choke
MatchingE
Network

Bias Current

Vin M1I R L

Time

Figure 2-1: Concept diagram and current waveforms of Class A PA [10]

Class B achieves higher efficiency than class A by setting the active device bias so that it

conducts for 180' of the cycle. The DC power dissipation in the device is reduced by a factor of

w/2 when compared to a class A PA designed to deliver the same output power to a given load.

Thus theoretical maximum efficiency of the class B PA increases to a value of 7/4 ~ 79%. An

example is the push-pull topology shown in Fig. 2-2. Note that technically, the class B PA is

actually one of the active device stages that conducts for 180" of the cycle. Since the two

devices are driven differentially, the supply current always flows through the load. A drawback

of this topology is the need for a low loss balun to combine the outputs of the two active devices.
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At millimeter wave frequencies, the non-idealities and parasitics of the balun will degrade

efficiency.

M1 VDD RL

M2

Figure 2-2: Concept diagram of Class B power amplifier [10]

The conduction angle in the class C PA topology is less than 180 and can be implemented by

biasing the gate in the class A topology in Fig. 2-1 with a negative voltage. This introduces

significant nonlinearity making it essential to use this PA in a system that employs envelope

elimination and restoration (EER) or outphasing (LINC). Because the load current is now a

section of a sinusoid, the class C topology dissipates less power in the transistor but also delivers

lower output power. When this drawback is combined with the dearth of power gain at

millimeter frequencies, the class C topology is not suitable for use.

The class D PA topology achieves high efficiency by operating the active devices as switches.

The voltage drop across the transistor is made as small as possible while there is a current

flowing through it. Similarly, the current through the transistor is small or zero while there is a

voltage across it. The other mechanism of power loss in a switching transistor is the unavoidable

power dissipation when there is a transition from the "on" state to the "off' state during which
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appreciable voltage and current are simultaneously present in the active device. Researchers

have sought to reduce this power loss by reducing the switching time. But the faster transistors

which are available in deeply scaled CMOS processes come with adverse properties such as

lower supply voltages, smaller breakdown voltages, increased sensitivity to transistor parasitics,

etc.

The class F PA topology shown in Fig. 2-3 achieves high efficiency by output load harmonic

tuning. The voltage is a square wave while the current is a half sine wave. The shaping of the

voltage at the active device's drain is obtained by setting the load network to provide high

impedance at twice or three times the fundamental frequency. The high impedance is created by

including parallel resonant L-C sections in the output load network leading to sharper transitions

in the drain voltage waveform. The major idea of the class F PA is to reduce power dissipation

in the device by reducing the length of the drain voltage transition time. When the voltage

waveform has a sharp transition similar to that in a square wave, the time during which the

current and voltage are simultaneously high is reduced thus improving PA efficiency. In theory,

better performance can be obtained by creating resonances at more harmonics of the

fundamental. But we encounter diminishing returns in practical circuits because of the increased

complexity and large number of components required. The difficulty in using this topology at

millimeter wave frequencies is the requirement for high Q passive components to construct the

harmonically tuned load. Such high Q components are difficult to obtain at high frequencies.

Another drawback of this topology is the relatively low output power available when the PA is

operating under optimum efficiency conditions.
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Figure 2-3: Concept diagram of Class F power amplifier [10]

The class E PA (introduced by Alan and Nathan Sokal [8]) achieves high efficiency by means of

zero voltage switching (ZVS) and zero voltage-derivative switching (ZVDS) conditions. When

the transistor or active device is turned on and carrying a current, the voltage across the active

device is zero or a very small value. Similarly, when the transistor is turned off, it develops

some voltage across the drain - source terminals while no current flows through it. In other

words, the non-overlapping characteristic of the voltage and current waveforms ensures that the

peak voltage across the device occurs when the magnitude of current flowing through it is

minimum and vice versa. As a result, there is very little power dissipation in the active device

and a theoretical efficiency of 100% is possible under ideal conditions. Class E operation

requires that the PA satisfies the following three properties:

(1) During the turn-off transient, the voltage remains zero until the current through the active

device drops to zero; then is rises.

(2) During the turn-on transient, the current remains at zero until the voltage drops to zero;

then it rises.
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(3) During the turn-on transient, the voltage drops to zero with zero slope. This ensures that

the region where there is simultaneous appreciable value of voltage across and current

through the active device is small ensuring high efficiency operation of the class E PA.

The class E PA is able to satisfy these conditions because of the transient response behavior of

the output network. At transistor turn-off when the current drops to zero, the output network

behaves like a critically damped 2 order system with initial conditions determined by the

current through L2 and the voltage across C1 and C2 in Fig. 2-4. Thus the operation of the circuit

is governed by the transistor when it is on, and by the transient response of the load (output)

network when the transistor is off.

A drawback of the Class-E PA is excessive voltage and current stress on the active device.

The peak voltage across the active device is 3.56 VDD where VDD is the supply voltage. The class

E topology was selected for this project because of its relative simplicity when compared to other

high efficiency topologies such as the class F. Although it requires the active device to operate

as a switch, the abruptness of the transitions in the current and voltage waveforms are not as

stark as those for other topologies, such as the class D, which is an important consideration

especially at very high frequencies. Almost as important, over the decades the class E PA has

earned a reputation for robustness and good behavior when implemented in the lab.

2.2 Theoretical Analysis of the Class E PA

A standard class E PA (presented in Fig. 2-4 and adapted from [8]) consists of a transistor

connected to an output network and bias inductor. The output network is designed to have a

transient response that enables the PA to achieve a theoretical 100% efficiency. This high

efficiency can still be obtained even though the transistor's switching time is a significant portion
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of the input signal's period. At millimeter wave frequencies, the operating frequency is typically

a significant fraction of the fMAX obtainable in the CMOS process leading to switching times

which are a significant fraction of the period of the PA's input. Thus, class E tuned designs can

be used at millimeter wave frequencies since they can still provide high efficiency. The output

network of a class E PA consists of a shunt capacitor, C1 , a series resonator, L2 - C2 and a load,

R. The DC supply voltage VDD is transformed by the on-off switching actions of the transistor

into an RF voltage which is composed of components at the switching frequency and several

harmonics. The unwanted harmonic frequencies are filtered out by the series resonator L2 - C2 -

The magnitude of the residual harmonics in the output voltage at the load will be small if the

quality factor of the series resonator is high. The output network of the class E PA is designed so

that its transient response leads to voltage and current waveforms that satisfy the three conditions

enumerated in section 1.1. It also transforms the load impedance at the drain of the active device

into the correct impedance required for class E operation.

Active i ,. . . . .
IDevice i I1i|- -

Swich iL2 C2 ,Load

From M1C1R
Driver

Output Network - -

Figure 2-4: Diagram of ideal class E power amplifier

The active device is modeled as a single-pole, single-throw switch that can have a small non-zero

resistance in the "on" position; a large non-infinite resistance in the "off' position, and turn on
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and turn off switching times that could be non-zero. As the switch is driven at the desired

operating frequency, DC energy from the power supply is converted to RF energy at the

operating frequency and several harmonics. A series resonant circuit is usually included in the

output network to suppress or filter out these harmonics from the signal going to the load. In

addition, the output network is used to transform the load impedance into a value which is

required for the zero voltage switching (ZVS) and zero voltage-derivative switching (ZVDS)

voltage waveforms that will be described later. In order to obtain maximum efficiency, the

switch is operated at approximately 50% duty cycle. This is called the "optimum" operating

mode of the class E PA. There is some incentive to employ non-50% duty cycle "sub-optimal"

operation as well, such as reduced maximum drain voltage stress and reduced maximum drain

current.
Current Voltage

3.52.9

ZVT& ZVDS

0 0.5 1
Time (normalized)

Figure 2-5: Non-overlapping voltage and current waveforms at the drain of the active device.

To minimize the dissipation in the active device, the class E PA is designed so that the voltage

and current waveforms which are shown in Fig. 2-5 satisfy a number of conditions.

* The voltage across the active device when current flows through it is minimized. A transistor

with a low on voltage (small channel resistance) can satisfy this requirement.
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" The current through the active device when a voltage exists across it is also minimized. The

minimization of leakage current in the transistor will satisfy this requirement.

* The active device's switching time should be minimized. This reduces the time during which

appreciable current and voltage exist simultaneously and power is lost. Fulfilling this

condition is achieved by appropriate driver design, transistor selection and the design of the

output network. The goal is to have the driver provide an input signal large enough to drive

the transistor into strong inversion within a small fraction of the driving input signal's period.

" A voltage delay should be introduced during switch turn off. During the turn off transition,

the voltage across the active device should remain close to zero until the current has reduced

to its minimum value (which should be close to zero). Then the voltage across the switch or

active device can increase. This condition ensures that the voltage across the switch does not

rise to a significant value while there is current flowing which will lead to substantial losses

and degrade the PA's efficiency.

" The voltage returns to zero before the start of the turn on transition. The transient response

of the output network ensures that during the period when the active device is turned off, the

voltage rises up to a maximum value which is designed not to exceed the maximum voltage

stress that can be tolerated by the active device. The voltage then falls back down to zero. It

is essential that the voltage reaches zero prior to the active device or switch turning on. This

will prevent substantial losses that would occur from a simultaneous occurrence of voltage

across and current flowing through the switch.

e The slope of the voltage transition at switch turn on should be zero. This makes it possible

for the PA efficiency to be robust to modest mistuning of the output network. A zero slope

of the voltage transition during turn on ensures that there is some leeway in the time interval
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during which the switch can turn on and still satisfy the requirement of zero voltage

switching (ZVS). Thus, the region where there is simultaneous appreciable value of voltage

across and current through the active device is small ensuring high efficiency operation of the

class E PA. This condition is called zero voltage-derivative switching (ZVDS). Another

positive effect of ZVDS is a slow switch turn on will not lead to substantial power losses

because the voltage is not changing rapidly during the turn on transition as long as the

voltage is already close to its minimum value.

2.2.1 Design Equations for Ideal Class E PA

A practical implementation of the class E PA is shown in Fig. 2-4 which is redrawn in Fig. 2-6

for convenience and adapted from [8]. The active device switch is implemented with a NMOS

transistor, M1 . The inductor, L1 is an RF choke which is used to bias M1 . The inductance of

L1 is large enough that it can be assumed it provides a relatively constant DC current. C1 is the

net capacitance at the drain of transistor M1. R is the load to which the PA will deliver power

and might also be the input port resistance of a bandpass or lowpass filter used to remove the

extra harmonic content from the output signal. Any load reactance is absorbed into L2 and/or C2.

When transistor M1 is turned off, the output network (composed of C1 , C2 , and L2) produces a

transient response similar to that of a damped second-order system with initial conditions

depending on the energies stored in the passive components. During the turn off transition, C1

keeps VDs, the voltage across M1, low until the current flowing through the transistor has

dropped to zero. This delays the voltage rise and ensures that there is little power dissipated in

the active device. The values of C1 , C2 , and L2 are selected to satisfy the conditions of ZVS and
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Figure 2-6: Diagram of ideal class E power amplifier

ZVDS enumerated in the previous section. With a 50% duty cycle and switching frequency, f,

the values these components are designed to satisfy the following three mathematical relations

simultaneously:

1. At the turn off transition, v, = 0 at t = T,/2 where T, is the period of the input driving

signal and v, is the voltage across the active device. For optimum operation, the duty

cycle = 50%. This is the ZVS condition.

2. At the turn off transition, dvs/dt = 0 at t = Ts/2. This is the ZVDS condition.

3. The loaded quality factor, QL of the output network can be chosen to be any practical

value. The selection of QL is a tradeoff between low harmonic content in the output

signal (high QL) and higher efficiency (low QL). In practical integrated systems, QL is

limited by the poor quality factors of integrated inductors.

Assuming the output network has a high quality factor, QL, the output current is essentially

sinusoidal and of the form

iout = a IDssin(wt + p) (2.1)
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Since the RF choke only allows a DC current to flow through it, the difference between the

output current and the RF choke DC current will flow through the switch-capacitor

combination. When the switch is open, the current will flow through and charge capacitor, C1 ,

producing a voltage across it given by [11]

vS(t) = } f IDs(1 - A sin(ot' + q5)) dt' (2.2)

If we assume that the ZVS condition occurs at t=0 (switch turn on), the integral above evaluates

to

v,(t) = 'Ds (ot + A(cos(ot + 5) - cos #)) (2.3)

Using the ZVS and ZVDS conditions at t = Ts/2 with (1.3), the values of a and #5 can be

uniquely determined:

a = 1 + ~1.862 (2.4)

-arctan -32.48 (2.5)
ir

Employing Fourier series expansions, the fundamental component of the load voltage at the

transistor's drain is determined as [11]:

vs1 = a1IDS sin((ot + #)1) (2.6)

where the constants aiand #p1 are given by

a, = 1 + (2.7)

(2ir

1 arctan ) (2.8)

The phasor of the impedance presented to the transistor's drain at the fundamental by the output

network can now be determined from load current in (1.1) and load voltage in (1.6)
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Znet- e 0.28015 e 49.05240 (2.9)
iout a W CS

This is the required phase angle that needs to be provided by the output network for the PA to

operate in class E mode. The drain voltage, VDs and the resistance, R presented by the output

network at the drain of the active device are constrained by the desired output power, P, to be

delivered to the load. Since the maximum value of VDs is also constrained by the breakdown

voltage of the process and the largest possible supply voltage VDD should be selected for highest

efficiency, the desired output power, P essentially specifies the load resistance at the active

device's drain. This resistance is given by [8]:

R = D2 = 0. 5 7 7 .2D (2.10)
P (4-+1)

The inductor L 2 is calculated using the selected value of the output network loaded quality

factor, QL,

L2 - QLR (2.11)
2rf

Where f is the frequency of the input driving signal. The value of QL is chosen as a tradeoff

between low output voltage harmonic content (high QL) and high efficiency (low QL).

To satisfy the ZVS and ZVDS conditions at the switch turn on transition in Fig. 2-5, C1 and C2

are calculated as [8],[12]

1
C1f= 2 (2.12)

2rfR IT+1

( 1 \ ( 1.42
C2 ~21 + (2.13)
Ct 2f)2hL2 QL- 2 pe

It should be noted that L2 is not necessarily resonant with C1 and C2 at the operating frequency, f
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2.3 Implementation of 60-GHz Class E tuned PA

The design of the 60-GHz class E tuned PA was carried out in the order of steps shown in Fig.

2-7. An iterative design methodology was necessary because of the feedback created by the gate

to drain capacitance, Cgd. Any changes made to a particular section affects the other sections

which will all need to be updated. The iteration continues until an acceptable level of

performance is obtained. Each section is first implemented with ideal passive components.

Then the ideal passive components are replaced by transmission line equivalents as successive

sections are implemented.

3: Drain
Load

2: Input
Matching
Network

1: Transistor

Size

Figure 2-7: Design methodology

A starting point for the PA design was to calculate the component values R, C1 , C2 , and L2

using the ideal class E PA design equations presented by Sokal et al. [8] and Raab [12]. The

load resistance, R was computed from Eq. 2.10 using a supply voltage VDD = 0-9V

R = 0.577 x 0.92 = 46.737 fl (2.14)10-2

Using the value of R, C1is calculated from Eq. 2.12

1
C1 -2 10.42 fF (2.15)

2wrx60x10 9 x46.737 +1) (7)
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The value computed for C1 is significantly smaller than the transistor's drain-source capacitance

and will be difficult to realize on chip. Thus, a smaller value of R = 10 fl was selected in order

to increase the size of the shunt resistance C1 calculated previously and hence make its

realization on chip easier. The calculated value of the RF power to be delivered to the load will

increase to 16.7 dBm as seen from Eq. 2.10 but practical constraints of the PA's implementation

ensures that the actual delivered power will be less. Moreover, we seek to deliver a much power

as possible to the load from a given supply so this increase in calculated output power is

advantageous.

Using Eqs. 1.11, 1.12 and 1.13, the other components in the output network as calculated as

C1 = 48.7 fF; C2 = 41.1 fF; L2 = 212 pH (2.16)

The peak current target for the PA was Ipk = 30 mA calculated using the 3V breakdown voltage

of the process, the equivalent DC resistance offered by the class E PA to the power supply and

equations in [8] and [12]. The load resistance, R, will eventually be transformed to 50 i by the

transmission line equivalent of the output network.

2.3.1 Transistor Size

It is necessary for the transistor to be large enough to rapidly discharge the shunt capacitance at

the transistor's drain at turn on in a small fraction (10%) of the input signal's period. At turn on,

a class E PA implemented using an ideal switch should have no voltage across the shunt

capacitor (C1 in Fig. 2-6) in accordance with the ZVS condition. But a practical implementation

of the class E will always have some drain-source voltage across C1 because of the non-ideal

transient response of the output network (due to losses and tolerance in the values of passive

components) and the switching speed of the active device. Hence, it is necessary for the designer
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to cater for the inevitability of discharging the residual charge on C1 to ground through the active

device, M1 in Fig 2-6. Note that for a linear PA, increase in transistor size increases the

transconductance, g,, of the device and available output power. In contrast, increasing the

transistor size for the class E PA is done so that the device is large enough to sink the current

required to discharge the drain shunt capacitance quickly. Output power delivered to the load is

increased by using a larger power supply voltage.

A family of IDS vs VGS (shown in Fig. 2-8) curves at VDS = 3 V with a range of transistor

width from 20 pm to 100 pm was plotted. The optimum transistor size was chosen that will

carry the maximum drain current (Ipk = 30 mA) as determined by the class E equations in [8]

and [12] for a reasonable change in input voltage of 175 mV while biased close to its threshold

voltage. This maximum drain current is limited by the 3V AC breakdown voltage of the 32 nm

CMOS SOI process technology and the fact that the voltage at the drain of a class E PA is

greater than the supply voltage by a factor of 3.56. The plots were done using VDs = 3 V so that

the worst case scenario at transistor turn on can be catered for in the design. This worst case

scenario is when the transient response of the output network is such that the voltage across the

shunt capacitor C1 is still at the peak value when the active device M1 is turned on. The

transistor was biased close to its threshold voltage of 360 mV so that an input signal with

relatively small amplitude from 100 mV-200 mV is sufficient to drive the transistor hard

enough to turn it on and carry a drain current IDS = 'pk- It is worth noting that the active device

operation would be closer to a switch if the gate is not biased and it is driven by a large sinusoid

or square wave signal. The drawback of this approach is lower PAE from excessive input drive

power and lower output power delivered to the load. Thus a compromise was reached to bias the

active device close to its threshold voltage so that the goal of enabling the active device to carry
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the peak drain current at the peak of the input signal can be achieved. In addition, increasing the

gate bias of the transistor increases the power gain of the PA. When the active device bias is

increased so that its starting operating point moves from the subthreshold region to the weak

inversion region, the power gain available will increase as well. This was demonstrated with a

10-GHz version of the class E PA realized with ideal passive components. Fig. 2-8b shows that

the peak power gain of the 10-GHz version of the class E PA increases from 13.3 dB to 17 dB

when the gate bias is increased from 170 mV to 300 mV. It is necessary for the PA to have

sufficient power gain so that excessive input RF energy is not needed to drive the active device

defeating the purpose of the PA in the first place. The plots in Fig 2-8b also show the expected

gain expansion as the input power increases when the active device is biased at 170 mV because

the active device is in the subthreshold region for a larger fraction of the driving signal period.

As the transistor width is increased, the drain current rises to its peak value more quickly until

the drain-source capacitance C.s gets large enough to slow the down the operation of the active

device. It is important optimize this switching speed - peak drain current tradeoff obtain a

transistor width large enough to fulfill two conditions; (1) support the peak current, Ipk, required

for class E operation with our target output power of 10 dBm and (2) reach the peak current in

10% of the input driving signal period [12]. If the width selected is too small, the transistor's

drain current will never reach the required peak current because with a worst case scenario at

transistor turn on of VDs = 3V and the active device in saturation,

IDS pox CO (VGS - Vt 2 <Ipk (2.17)

A transistor with a width of 49.5 pim and 60 fingers (875 pm finger width) was found to be

satisfy the previously enumerated conditions. Caution must be used in the selection of the finger
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width because excessively long fingers introduce more parasitic gate resistance and inductance

and degrades the fmax of the transistor. A transistor finger width value chosen to be less than

1mm is found to be a good compromise for the fmax - output power tradeoff [13]. Transient

simulations where carried out with this selected transistor size and ideal passive component

values calculated for the output network in Fig. 2-6 (see Eq. 2.16) to ensure the peak current is

reached in 10% of the input signal period. In the ensuing design steps, the ideal passives will be

replaced by transmission line equivalents.

DC Response (Ids vs Vgs for 11 transistor sizes)

-+T1:d (W-=2.00e-05) ++*T1:d (W=2.73e-05) IT1:d (W=3.45e-05) T1:d (W=4.18e-05) T1:d (W-=4.9le-05)
- T1:d (W-5.64e-05) T1:d (W-6.36e-05) T 1:d (W 7.09e-05) T1:d (W-7.82e-05) i T1:d (W-8.55e -05)
-1 T1:d (W=9.27e-05) - T1:d (W=1.00e-04)
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Figure 2-8: Family of IDS vs. VGS plots used for transistor size selection
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Figure 2-8b: Peak power gain variation with gate bias in 10O-GHz class E PA

2.3.2 Input Matching Network

The input matching network was designed as a low-pass network with peaking at 60 GHz. Thus,

limited input power can be transformed into a relatively large voltage amplitude for stronger

drive of the active device. It was first necessary to determine the input impedance of the

intrinsic active device. A 50 Q load was connected to the drain of the transistor which was

biased by two large ideal inductances serving as an RF chokes as shown in Fig. 2-9. The drain'

voltage was 0.9 V while the gate-source voltage, VGS was 360 mV. Then a 50 Q port was

connected to the gate of the transistor and the S11 parameter determined from simulation in

Cadence and plotted on a R + jX Smith Chart. The input matching network shown in Fig. 2-10

was used to transform impedance at the gate of the transistor to match the 50 Q source resistance

of the PA driver. The input matching network is composed of t-line2 (105 pm transmission

line), t-linelI (100 pm shunt stub) and the capacitance of the input pad.
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Figure 2-9: Concept diagram of design of input network

The 100 pm shunt stub is used to resonate out the input pad capacitance. The combination of

the t-line 2 and Cgs of the NFET provides the low-pass frequency response with peaking at 60

GHz. The capacitance C2 at the end of the shunt stub, t-linel, was implemented with two

vertical natural capacitors (vncap) with a self-resonant frequency of -70 GHz. The differential

PA (Fig. 2-18b) features a virtual ground at the center of t-line6 avoiding the use of a shunt

capacitance. This results into an input network with a higher quality factor and improved PA

power gain. When the drain load and output networks were replaced with their transmission line

equivalents, it became necessary to retune the input matching network. This was done with a

combination of large signal transient simulations and small signal AC simulation to verify that

the peaking in the frequency response of the input matching network remained at 60 GHz (see

Fig. 2-11).
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Figure 2-10: Input matching network with drain load for single ended PA.
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Figure 2-11: AC simulation from input pad to NFET gate showing peaking at 60 GHz

2.3.3 Drain Load

The voltage at turn-off across the transistor is determined by the net shunt capacitance, C1 in Fig.

2-6. The value of this shunt capacitance is 48.7 fF (see Eq. 2.16) and was computed using ideal

class E design equations in [8] and [12]. An initial estimate of transistor's drain capacitance was

obtained by means of Z-parameter simulations of a modified version of the setup in Fig. 2-9.

The input port was replaced by the transmission line version of the input matching network. The

50 Q load at the drain was replaced with a 50 Q port and the drain load remains as an ideal RF
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choke. The results of the Z-parameter simulations indicated that the drain-source capacitance

was larger than the required 48.7 fF. The RF choke used for the drain load was now replaced by

an ideal inductor of smaller value which introduces the inductance necessary to resonate out

enough of the device drain capacitance to obtain a net shunt capacitance equal to 48.7 f at the

drain of the active device. An inductance of 220 pH for the ideal inductor drain load was

obtained from more Z-parameter simulations.

Finally, the drain load inductor was replaced by a high characteristic impedance (85 Q)

transmission line. The required length of the transmission line was estimated by matching its

inductance when grounded on one end (essentially a shunt stub) to the drain load inductance of

220 pH determined previously. See Fig. 2-12 below:

Drain Load
50 E
Port

CBIG

Figure 2-12: Estimating transmission line drain load using Z-parameter simulation

The ideal output network was now reintroduced and the schematic in Fig. 2-13 was obtained.

At this point, the input matching network and drain load have been implemented with

transmission lines. Large signal transient simulations were then used to modify the length of the

drain load transmission line length until PAE > 35% with maximum saturated output power were

obtained for operating frequencies from 58 GHz - 62 GHz. A transmission line of length 490

pm and characteristic impedance 85 0 was obtained. The power supply end of the transmission

line was properly decoupled to provide a good AC ground so its impedance looks like that of a

46



shunt inductor. The supply bypass capacitors, C1 and C2 , were implemented using vertical

natural capacitors (vncap) with self-resonant frequencies of~70 GHz.

2.3.4 Output Network

Vdd C1

E
T-1ine3

L~ C~ Output
Network

500 T-line2 212pH 41fF
105pm lO~m 100

ET 49.5 pml
VN Tini---------------- -----VIN T-Iinel 32nm

VBIAS

Figure 2-13: Class E tuned PA with output network implemented using ideal passives

Periodic steady state (PSS) simulations of the schematic in Fig. 2-13 were used to optimize the

output network implemented with ideal passive components. PSS simulations were used instead

of transient simulations because of their shorter execution time. Comparison was made between

PSS and transient simulations at a single parametric point and it was confirmed that the results of

both methods were very similar. Note that the input matching network was not re-tuned until the

output network had been converted into its transmission line equivalent. In addition, the PSS

simulations in this section did not include bondpad capacitance. The final PA design in which

all networks are implemented with transmission lines will include the bondpad capacitance.

The load resistance, R, was swept from 10 Q to 100 D to find the optimum resistance which

results in the highest possible value of power gain and saturated output power while keeping the

PAE > 30% This is essentially an acceptable value for load resistance taking into consideration
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0 25.0 50.0 75.0 100.0
RLoad 0

Periodic SleactvSxale Response

125.0

250 50. RLoad 0 75.0 100,0 125.0

Figure 2-14: (a) PAE and (b) Output power from a PSS simulation of Fig. 2-13 with load R
swept form 10 0 to 100 Q

the tradeoff between efficiency and output power. A value of R = 20 f was selected with PAE

greater than 35% while output power = 6.1 dBm (see Fig. 2-14). The input power for these PSS

simulations was set to 0 dBm because the power gain of the starting point class E PA design at

this input power was a reasonable value of 4 dB.
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Periodic SteadySlate Response

100 200 300 400 500 600
series Resistance. Ls (F-12)

-§ Output Powr
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Periodic SteadyState Response
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-2.5 -

100 200 300 400 500 600
Series Resistance, Ls (E-12)

Figure 2-15: (a) PAE and (b) Output power from a PSS simulation of Fig. 2-13 with load R =20
Q and series inductance Ls swept from 100 pH to 550 pH.

The exercise was repeated by sweeping the series inductance Ls while keeping the other

components of the output network constant. A value of Ls = 242 pH was selected as a good

compromise for the tradeoff between PAE and output power. At this value of series inductance,

PAE is greater than 35% and output power = 6.5 dBm (see Fig. 2-15).
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The output network was then converted to a transmission line equivalent with a 50 Ohm load.

The conversion was done by matching the input reflection coefficient, S3 3 at the input port of the

transmission line version of the output network to the input reflection coefficient, S11 at the input

port (NFET drain end) of the ideal output network on a Smith Chart (see Fig. 2-16 and

Fig. 2-17).
S-Parameter Response (Comparison of S11 of 4 output n/w)

-S11 (Ideal n/w) -S33 (TL low pass n/w)
-S55 (PI n/w with lumped ele.) S77 (PI n/w with ideal TL)

rho = 1.0

2

4
5

10
20

0 .

- -20
- -10

-15

Figure 2-16: Smith Chart depicting the S parameters of alternative implementations of the
output network. S11: output network implemented ideal components; S33: final transmission
line output network; Ss and S77 : alternative network topologies that did not possess the desired
low-pass characteristics.

Ls Cs

183m |-0-H
CBONDPAD 242pH 41fF

S 5S 200

Figure 2-17: Conversion of ideal output network to transmission line equivalent. Their input
reflection coefficients are matched by setting S33 = S11-
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The schematic of the final class E PA is presented in Fig 2-18. The output network is

composed of a 183 pm transmission line, a 120 pm open stub and the bondpad capacitance. The

50 Q load along with the bondpad capacitance is transformed by the output network into

impedance required for class E operation. The parasitic via inductances L1, L2, resistance Rp,

and parasitic capacitances Cgs, Cgd at the gate and drain of the active device were included in the

PA design and are absorbed into the input matching and output networks.

Vdd C1
(a) E

E
T-Mne C0 T-line5

T-line4
183 m

Input Output
Pad T-line2 Pad

105pm C

Tli 49.5pm/ C L2

CL

C9

Input
(b) Pads

200pm

Vdd Vdd

Citn TCI

Figure 2-18: Schematic of 60-GHz class E PA (a) single-ended; (b) differential
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2.3.5 FET Layout Methodology

A field-effect transistor (FET) that must handle large signals at high frequencies faces the dual

challenges of electromigration compliance for high DC and AC currents, and attaining the

highest possible fT and fMAX. Thus, the FET layout must minimize the relevant capacitive and

resistive parasitics without compromising electromigration reliability. The FET layout uses a

metal-poly ring gate terminal contacted on both sides of the device, relaxed gate pitch, and a

staircase-like multiple level metallization for source and drain terminals [14]. The resulting

terminal (gate, source, drain) configuration enables an easy, non-overlapping connection of

transmission lines for high frequency input and output signals. Post-layout simulation results

with distributed R-C parasitic extraction indicate that this layout methodology offers -40% fMAX

improvement as compared to that achievable using a conventional layout.

/ __

Top gate
contact

M1 inter-gate
connection Decreasing

number of

D S D S parallel
metals

Polysilicon Drain
gates

Non-overlapping
drain and gate

Figure 2-19: FET Layout; (a) Gate ring contact with multiple metals; (b) Staircase-like
drain/source metallization [14]
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Figure 2-20: Measured fMAX on 6 dies across a wafer. FET test structure includes all metals.

2.4 Simulation Results

Figure 2-21 presents the S parameter plots of the 60-GHz class E PA. The S11 plot indicates

good input match to 50 Q. The utility of S parameter plots is limited because the operation of

the PA is essentially large signal. Fig. 2-22 presents the voltage and current waveforms at the

drain of the FET simulated at 60 GHz. The plots show that the maxima and minima of the

voltage and current waveforms coincide. The reduction in the overlap between the drain voltage

and drain current waveforms enables the PA to achieve higher efficiency.

The simulated drain voltage and drain current waveforms depart from the ideal waveforms

presented in Fig. 2-5. For instance, there is some overlap between the voltage and current

waveforms leading to power loss in the active device.
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Figure 2-21: S-parameter plots of the 60-GHz class E PA
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Figure 2-22: Voltage and Current waveforms at drain of active device simulated at 60 GHz.
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This observation is due to a number of reasons. The ft/fMAx of the FET is 270 GHz / 300 GHz.

This is just 6x the frequency of operation of the class E PA. As a result, the active device cannot

switch fast enough causing its operation to deviate from that of the ideal switch useful for class E

operation. The gate of the active device is biased at 360 mV which is close to its threshold. This

prevents the device from operating as a true switch as it is never completely turned off. Higher

efficiency could have been obtained if the gate was not biased but at it would have been at the

expense of lower output power. Thus, it was decided to trade-off efficiency for higher output

power. The gate bias also explains why the PA did not show the expected gain expansion as the

input power is increased. Fig. 2-22 indicates that the 60-GHz PA can be said to exhibit "sub-

optimal operation" [10]. The use of class E design techniques and minimization of the overlap

between voltage and current at the drain provides some efficiency enhancement benefit.

Fig. 2-23 presents the PAE, saturated output power and power gain of the 60-GHz class E

tuned PA. A peak PAE of 27% and power gain of 9 dB was obtained. The simulated saturated

output power has a strong dependence on gate bias voltage and is not believed to be accurate

because of simulator and model limitations.

Power Added Efficiency Output Power
30.0- 8.0- p(PORT6:r (,net78 /VSS)) h=1; pss dBmP I

2 0 .0 - ----- - -- ....... 0.. -- - ---- - ------- 17 0 -
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1.0 I
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Figure 2-23: Simulated PAE, saturated output power and power gain of the 60-GHz class E
tuned PA

2.5 Design Insights and Discussion

Section 2.4 describes a PA that falls outside the space of what is normally considered "class E"

in two important ways. First, we observe that the carrier frequency of 60 GHz far exceeds the

transistor's ability to function as a convincing switch, even in this extremely aggressive process.

Second, in order to achieve higher output power it was found that the transistors functioned

better with nonzero bias current, further undermining the claim to being a switching, class E

amplifier. In consideration of the high level of performance that the prototype ultimately

achieved, however, it is a major outcome of this work that for extremely high carrier frequencies,

the design methodologies foundational to traditional switching PAs can be used as efficiency

enhancement techniques regardless of the choice of bias current. In this section we detail this

observation, and also review the iterative design approach that made the achieved performance

possible.
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2.5.1 Class E Tuned Output Network as an efficiency enhancement
technique for classical power amplifiers

The work presented in this chapter has shown that in conditions which preclude ideal class E

operation, good efficiency can still be obtained. A useful insight that can be obtained from this

fact is that the class E output network itself can be viewed as an efficiency enhancement

technique for a more pedestrian but realizable power amplifier architectures such as class A/AB.

The signal shaping produced by the class E tuned output network is sufficient to reduce the

power dissipation in the active device by reducing the region of overlap of non-zero drain

voltage and current.

In order to demonstrate the PAB enhancement provided by the class E tuned output network,

a class A/AB amplifier was designed at 10 GHz driving a 50 0 load in the IBM CMOS8RF 0.13

pim process (see Fig. 2-24). This operating frequency is about 1/10 of the fMAX of the process.

The same schematic was modified by replacing the 50 n load with a class E tuned output

network designed for the same operating frequency and driving the same 50 Q load. The power

added efficiencies of both PAs were compared. The results presented in Fig. 2-25 show that by

just replacing the 50 Q load in the standard class A/AB PA with a class E tuned output network,

the peak PAE increased from 30% to 48%.

VBIAS=0.5V VDD=1.2V

2.3mH 500

200pF

) M1 (a) 10-GHz class A/AB PA

Input
Current 100
Source
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VBIAS=0-5V

2.3mH

200pF

=1-ZV Class E tuned
Output Network

40nH 5.6nH 61.5fF

47.7fF 500
'50

Input 0Current
Source

I ---------------- ---

(b) 1 O-GHz class A/AB PA with class E tuned output network

Figure 2-24: Schematic of a standard 10-GHz class A/AB PA compared to version with load

replaced by a class E tuned output network.

The phase introduced in the load by the class E tuned output network (as shown in Eq. 2.9)

and the output network's transient response produces enough output voltage waveform shaping

and phase shift between the voltage and current at the drain of the active device to produce

improvement in the PA's power added efficiency.

--- class A

-u-class A with class E
NW

60

50

40

30

20

10

n
I~ 1-

-6 -4 -2 0

Output power backoff (dB)

Figure 2-25: PAE of a standard 10-GHz class A/AB PA compared to version with load replaced
by a class E tuned output network

58



The formalized iterative design approach discussed in section 2.3 was also important in

achieving good PAE performance. The PA design was compartmentalized into distinct sections

which were implemented separately but have a strong influence on each other. Employing the

iterative design approach made possible the convergence to a final solution in an efficient

manner. This approach also emphasizes the interaction between each major section of the PA

and the tradeoffs that need to be made for good PA performance.

2.6 Summary

This chapter presented the design of a 60-GHz class E tuned PA. Although the operating

frequency was a factor of 1/6 of the fMAX of the 32 nm SOI process, good simulated peak PAE

of 27% was obtained for the single ended version of the PA. The efficiency enhancement was

still obtained despite the fact the active device could not operate as an ideal switch because the

region of overlap of high voltage across and high current through the FET was minimized. An

iterative design approach which helps to simplify the design of the class E tuned PA was

implemented. The use of an FET layout that minimizes the overlap between drain and gate

transmission lines at the active device increased the fMAX by as much as 40%. The availability of

higher fMAX provided the extra needed frequency headroom to design a class E PA that has good

efficiency at millimeter wave frequencies. The intuition here is the closer the active device can

operate as a switch, the higher the PA's efficiency will become.
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Chapter 3

PA Measurement and Characterization

This chapter presents the measurement setup and results of the 60-GHz class E tuned PA.

Important requirements needed for reliable millimeter wave measurements will be discussed.

Reconciling the measurement results with suboptimal class E operation at millimeter wave

frequencies will also be investigated.

3.1 Measurement Setup

Supply
Dadn Bypass

dCap.

anps Output

Lines Tas
Lines

Activ
Device

(a)
(b)

Figure 3-1: PA chip micrographs;(a) Single-ended (550 pm X 650 [tm)
(b) Differential (550 [tm X 1.1 mm)

The PA was fabricated in IBM 32 nm CMOS SOI technology. The chip micrographs are

shown in Fig. 3.1. Ground-signal-ground (GSG) bondpads were used to conduct the millimeter
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wave signal on to and off the chip. The area of the single-ended PA was 550 pim X 650 [Im while

that of the differential PA was 550 pim X 1.1 mm. Two different setups were required to

measure the single-ended (see Fig. 3-2) and differential (see Fig. 3-3) versions of the class E

tuned PA. In the single-ended PA measurement setup, the 60-GHz CW signal was generated by

an Anritsu MG3696A signal generator capable of producing signals up to 65 GHz. An SMA to

waveguide adapter was necessary to connect the SMA cable to the waveguide that drives the

probe station. A bias tee was used to bias the gate of the PA while also delivering the 60-GHz

millimeter wave input signal. Power was delivered to and taken from the die by means of probe

pins capable of handling signals > 70 GHz. The temperature of the probe station chuck was

controlled by a Temptronic thermal power sensor. The PA output power was measured by an

Anritsu ML243A power meter. The differential PA measurement setup was similar to that of the

single-ended PA. The SMA cable - waveguide section in Fig. 3-2 was replaced by the structure

in Fig. 3-3 so that the PA can be driven differentially. The 60-GHz CW signal from the Anritsu

MG3696A signal generator is first amplified by a Spacek Labs PA driver before is it split into

two signals which are 1800 out of phase. The 1800 phase shift is achieved by a hybrid coupler

realized in waveguide called a magic tee. It has very similar properties to a rat-race coupler

which in contrast is realized in microstrip. A phase shifter was included in each signal path after

the magic tee to compensate for any mismatch in total path length. Because of the small

wavelengths at millimeter wave frequencies, a small mismatch in the length of the differential

signals path will lead to phase mismatch at the input of the PA. Swept power gain, compression

and efficiency measurements were taken at room temperature (25 0C), 65 0C and 85 0C. The

calibration procedure was performed at each power level and frequency to remove any nonlinear
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and/or frequency dependent effects of the test equipment. The losses introduced by the SMA

cables and adapters, waveguides and bias tee were also carefully calibrated out.

SMA
Wavegulde

Wavegulde
SMA

Figure 3-2: Single-ended PA measurement setup.

Phase Shifter

Power
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Figure 3-3: Differential PA measurement setup.
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3.2 Measurement Results

As mentioned in the previous chapter 2, the gate of the active device was biased close to its

threshold in order to increase the output power. This reduced the PA efficiency because of the

increased static power dissipation owing to the active device not being operated as a true switch.

But the efficiency - output power tradeoff was thought to be acceptable. Fig. 3-4 shows the

transistor drain current versus bias voltage.

20-

E15-

S10
U

Ii 5

0

200 250 300 350 400 450 500

Gate Bias Voltage (mV)

Figure 3-4: Drain current vs. gate bias voltage.

Figure 3-5 presents the measured S-parameters of the 60-GHz class E tuned PA. The measured

S-parameters at 60 GHz are; S11 = -6.9 dB, S21 = 8.2 dB, S12 = -10.4 dB, and S22 =

-6.7 dB. Fig. 3-6 shows that the S11 and S21 show strong variation with gate bias voltage.

When the gate bias voltage of the active device is increased, it becomes easier to turn on with a

small input signal. This fact is reflected in the increase of S21 (forward transmission coefficient

or gain) with gate bias voltage. The variation of S1 with gate bias voltage is probably because
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of the change in FET parasitic capacitors. In addition, the threshold voltages of the taped out

FETs were different from what was used in the simulation models making it necessary to change

the gate bias of the active device. As a result, the S-parameter plots are different from

simulation.
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Figure 3-5: S-parameters of 60-GHz class E tuned PA.
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(b) Forward transmission reflection coefficient vs. gate bias voltage

Figure 3-6: S parameters variation with gate bias voltage at 60 GHz

All of the measurements were performed on-wafer. Swept power gain, compression and

efficiency measurements were taken with a thermal power sensor. Unless otherwise indicated,

all measurements presented in Fig. 3-7 to Fig. 3-12 were taken at 60 GHz with a temperature of

25 "C, a gate bias voltage of 0.4 V and a supply voltage of 0.9 V. The measured results for the

single-ended PA are presented in Figs. 3-7 to 3-11. Fig. 3-7 shows the measured PAE and power

gain vs. output power at 60 GHz. A peak PAE of 27% and power gain of 8.8 dB were obtained.

Fig. 3-8 presents the peak PAE, Psat and power gain at five frequencies between 56 GHz and 64

GHz. The peak PAE is greater than 21% for all frequencies. Fig. 3-9 illustrates the variation of

peak PAE and Psat with drain voltage. Fig. 3-10 shows the variation in the measured peak PAE,

Psat and power gain across 7 different locations on a 300 mm wafer. The peak PAE is

consistently greater than 23% in all dies. This measurement was performed at a constant gate

bias voltage (400 mV) and even better uniformity can be expected with constant-current biasing.
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Fig. 3-11 illustrates the measured dependence of the PA performance on temperature. The PAE

at 60 GHz remains above 20% up to 85 'C.
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Figure 3-7: Measured PAE and power gain vs. output power at 60 GHz for the single-ended
implementation of the PA
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Figure 3-9: Measured 60-GHz peak PAE and Psat vs. drain voltage.
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The measurement results for the differential version of the PA are presented in Fig. 3-12. This

PA delivers higher output power to a 100 Q load and, as expected from having lower losses in

the input network, features ~1.2 dB higher power gain with respect to the single-ended design.

3.3 Summary

In this chapter, the measurement results of the class-E tuned PA operating at 60 GHz which has

been successfully demonstrated in a CMOS SOI process was presented. The transmission line

based design assures non-overlapping current and voltage waveforms at the drain of the power

device while taking into account the device parasitics. Table 3.1 summarizes the measurement

results along with those from other recent millimeter wave PAs [1-7]. To the best of the author's

knowledge at the time of writing, this design attains the highest reported PAE for any silicon-

based 60-GHz PA. The use of a smaller 32 nm process node with its higher fMAX when

compared to the other reported millimeter wave PAs also helped in achieving the superior PAE.

There are a few reasons which can be used to explain or justify the fact that the measurement

results show good efficiency even though the active device does not operate as an ideal switch,

The use of the class E output network as an efficiency enhancement technique ensures that the

region of overlap of high voltage across and high current through the FET was minimized. What

this implies is the signal shaping and phase shift introduced in the drain voltage waveform by the

class E tuned output network is sufficient to reduce the power dissipation in the active device

regardless of whether is operates as a switch or current source. The use of an FET layout that

minimizes the overlap between drain and gate transmission lines at the active device increased

the fMAX by as much as 40%. The availability of higher fMAX provided the extra needed

frequency headroom to enable the active device to switch faster than it would ordinarily. It is
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expected that the PAE of the power amplifier will increase if the active device can operate as

close to a switch as possible.

Table 3.1: Summary of Current State of the Art in High-Efficiency Silicon-Based Millimeter
Wave PAs

Reference Frequency Supply[V] Psat Peak Remarks Technology
[GHz] [dBm] PAE [%]

91 27 Class-E, single-
This 60 0.9 ended CMOS 32num
work 151 3 Class-E, SoI

differential

[1] 60 1.2 10.5 20.3 Two-stage, CMOS 65 nm

1.8 14.5 25.7 Cascode SOI

[2] 60 1 18.6 15.1 Transformer CMOS 65nm
combiner

Differential,
[3] 60 1 14.85 16.2 transformer- CMOS 65nm

coupled

Differential,
[4] 60 1.8 20.5 19.4 transformer- SiGe 0.13 pm

coupled

[5] 45 4 18 23 Stacked FET CMOS 45nm

[6] 58 1.2 11.5 20.9 Class-E, single- SiGe 0.13pmended

42 2.4 19.4 14.4 Class-E, two
45 1.2 11.3 18 parallel stages

'Measured at a power gain of approximately 4 dB.
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Chapter 4

Theoretical Development of Energy

Recovery at RF and Multi-gigahertz

Frequencies

Transceivers used in modem communication systems typically have the power amplifier as the

dominant component of the power budget. Several PA architectures have been employed and

researched over the years including polar[16], Doherty[16], and outphasing (LINC)[17]. The

outphasing PA architecture has seen renewed research interest with the advent of good power

combining techniques and deeply scaled CMOS technologies that can be used to implement

efficient switching PAs and complicated DSP for signal component separation and

decomposition. Power amplifiers achieve best performance when their load resistance is

relatively constant. This is especially important for high-efficiency switching PAs such as Class-

E. The use of isolating combiners serves to satisfy the PA's constant load resistance

requirement. A significant problem with the use of isolating combiners is the energy wasted in

the isolation resistor when the PA is delivering low output power [18]. Outphasing PAs

employing Chireix non-isolating combiners have been proposed [16], [18], [19] but have the

disadvantage of being tuned for only a narrow range of outphasing angles. A power recycling

technique was proposed in [20] and [21] which replaces the isolation resistor in an isolating
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combiner with a rectifier so that some of the energy is recovered and returned to the PA power

supply as shown in Fig. 4-1.

Antenna
Mod PA > ReoatILoadI

Rectifiers

T Matching

Vr N-N o 00

Baseband
SCS0

Figure 4-1: Outphasing power amplifier with power recycling network.

A drawback of this technique is the significant variation in rectifier impedance with input power.

This variation will degrade the isolation between the PAs and increase the impedance variation at

their outputs leading to reduced efficiency. An isolator could be placed between the rectifier and

isolation port of the power combiner but this increases the cost and complexity of the final

system. Moreover, the isolator will introduce some insertion loss which reduces the efficiency of

the energy recycling network. Godoy et al. [22] proposed the use of resistance compression

networks [23] to significantly reduce the variation in the rectifier input impedance seen at the

isolation port of the power combiner. That demonstration was carried out at a 48-MHz center

frequency and 20.8 W peak power.

The challenge of employing the technique of energy recovery to increase the efficiency of RF

and multi-gigahertz power amplifiers will be investigated in this chapter. The use of Schottky

barrier diodes (SBD) for passive rectification of the signal whose energy would be ordinarily lost
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will be discussed. The limitations and necessary tradeoffs in Schottky barrier diode device size

selection will be analyzed. In addition, the use of resistance compression networks in energy

recovery networks at multi-gigahertz frequencies will be investigated.

4.1 Schottky Barrier Diode Design Considerations

Schottky Barrier Diodes (SBDs) are preferred for passive rectification when compared to

regular PN junction diodes because of their lower forward voltage drop. SBDs typically have

forward drop voltages in the range of 0.2V - O.4V compared to 0.6V for PN diodes. The lower

forward voltage drop ensures less power is lost in the diode and more can be delivered to the

load or voltage regulator. In addition, SBDs are primarily a majority carrier device with signal

being transmitted through majority electrons. This is in contrast to PN diodes which are minority

carrier devices that utilize both electrons and holes for signal transmission and can have large

diffusion capacitances in addition to the junction capacitance. As a result, SBDs can operate at

higher frequencies than PN diodes making them more useful for passive rectification at RF

frequencies. A drawback of SBDs is higher leakage current in reverse bias because of their

smaller barrier height (PBI) and smaller built in potential (q )BI when compared to PN diodes.

4.1.1 Schottky Barrier Diode Model

Fig. 4-2 shows the cross sectional schematic of a SBD fabricated in a p-type substrate. The

Schottky barrier junction is formed between a metal contact and the lightly doped semiconductor

body quasi-neutral region (QNR). A second contact is made to the QNR through a highly doped

n+ region and an ohmic metal contact.
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ohmic contact

Figure 4-2: Schematic cross section of an integrated SBD [15]

A simplified circuit model of the Schottky diode which is used for circuit analysis is shown in

Fig. 4-3. The general model shown in Fig. 4-3a includes an ideal diode, D1 in parallel with a

charge storage element which for a practical SBD is the junction capacitance, Cj. Both

components are connected to a series resistance Rs which models the overall series resistance of

the SBD. This resistance is composed of the ohmic contact resistance (between the metal contact

and n+ doped region) and the resistance of the quasi-neutral region (QNR).

(a)

ci

(b)

rd

Rs

ci

Figure 4-3: Circuit schematic model of SBD; (a) General model (b) Small signal model
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The ideal diode D1 has an exponential relationship between the current flowing -through it and

the bias voltage across it. If the voltage across the entire SBD is V, the actual voltage, V across

the Schottky junction in D, is reduced by the ohmic drop across the series resistance Rs which

leads to the expression for diode current given in Eq. 4.1.

I = Is exp q(V-iRs) - I= s [exp - -(4.1)

Where Is is the saturation current, T is the temperature and k is the Boltzmann's constant.

The small signal model of a SBD is presented in Fig 4-3b. The ideal diode, D1 in Fig. 4-3a is

replaced a dynamic resistance, rd which is modeled by linearizing the SBD I-V characteristics

about a given operating point such as 'a' or 'b' in Fig. 4-4. The expression for the dynamic

resistance shown in Eq. 4.2 indicates its inverse relationship with the diode current.

rd kT (4.2)
q(I+Is)

The capacitance C in parallel with rd is dependent on the Schottky junction voltage and area and

is given by the expression in Eq. 4.3

C = A cjO (4.3)
(Vi

where CjO is the junction capacitance at zero bias, VO is the junction built in potential, V is the

voltage applied to the junction and A is the area of the junction.
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Figure 4-4: I-V characteristics of Schottky diode with and without series resistance, Rs

The model shown in Fig. 4-3 is a small signal model, and accordingly for sufficiently small

excitations it can be regarded as a linear, time-invariant model useful for analysis. However,

rectification necessarily implies large-signal excitation. Under these circumstances, and for

purposes of analysis, it remains helpful to use the model of Fig. 4-3, but to see the parasitic

components as time varying instead of time-invariant. It is possible, as we shall show, to get

great deal of design insight from such a framework.

4.1.2 Schottky Barrier Diode size selection

In order to investigate the criteria necessary to determine the optimum diode size, a simulation

testbench was setup in Cadence SpectreRF using a halfwave rectifier driven by an ideal current

source with an ideal 2 V voltage source load as shown in Fig 4-5. The small lOOpQ resistance
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was included at the input of the halfwave rectifier so that it can provide a node to be probed in

the determination of the input power to the rectifier. Periodic steady state simulations of the test

bench in Fig. 4-5 were carried out with two diode sizes which differ in effective area by a factor

of 10. The dimension of the smallest diode was close to the minimum dimensions allowed in the

IBM CMOS8RF process. Plots of efficiency and input power versus frequency for the smaller

diode (henceforth called diode_4pm) are presented in Fig. 4-6 while that for the larger diode

(henceforth called diode_20pm) are presented in Fig. 4-7. The efficiency of the halfwave

rectifier in Fig. 4-5 is defined as DC power output /RF power input.

Rs=1 OOpQ

D2+

Vder=2V I4.
-3 D1 V9 1) S Isin(wst)

Figure 4-5: Simulation testbench for the halfwave rectifier

The efficiency plots (in both Fig 4-6 and 4-7) are parameterized for a number of input current

drives with the maximum current drive selected to be 110 mA for diode_4pm and 320 mA for

diode_320pm. These are the input current drives that ensure the maximum allowable current

density in the diodes are not exceeded. Looking at Fig. 4-6, it can be seen that the efficiency of

the halfwave rectifier decreases as the frequency is swept from 2.5 GHz to 60 GHz. But the high

frequency performance of the rectifier can be improved by increasing the input current drive.
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Figure 4-6: Efficiency and input power of halfwave rectifier using SBD with length = 4 Pm,
width = 5 pim and number of fingers = 2
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When the input current drive is increased from 25 mA to 50 mA, the efficiency at 32.5 GHz

increases from 0% to 25% while the efficiency at 2.5 GHz decreases from 44% to 37%. This

trend is more pronounced as we increase the input current drive up to 110 mA with improved

higher frequency operation being traded off with poorer efficiency at lower frequencies. The

halfwave rectifier implemented with the larger diodes (diode width = 20tm) exhibits the same

efficiency - high frequency operation tradeoff as shown in Fig. 4-7.

Using smaller diodes ensures that the parasitic juncition capacitance is small providing faster

operation with good efficiency at high frequencies. The draw-back is lower power handling

capabilities. When a diode size is selected so that the maximum expected power from the PA (or

input current drive) to the halfwave rectifier is close to the maximum power that can be handled

by the diode, the device will spend more time operating in the linear region of its I-V

characteristic (such as point 'b' in Fig. 4-4). There will be significant ohmic losses in the diode's

series resistance leading to lower efficiency. This fact can be seen in Fig. 4-6 where the

efficiency at 2.5 GHz decreases as the input current drive is increased. Conversely, if a large

diode size is selected, more power will be required to turn on the device the first place. A larger

current is needed to charge the larger junction capacitance to a voltage that brings the diode into

the beginning of the exponential region of it's I-V characteristic. If a situation is envisaged in

which the input drive current is large enough to turn on the diode such that it is in the

exponential region of its I-V curve, higher efficiency can be obtained. Such a scenario can be

investigated by comparing the efficiency and input power plots in Fig. 4-6 and 4-7 at 2.5 GHz

with a 110 mA input current drive. This approximates the case where the PAs in a hypothetical

outphsing system employing an isolationg power combiner has a fixed available output power.

For the halfwave rectifier implemented with the 4tm diode, the efficiency at 2.5 GHz is 27.5%
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but the output power delivered to the 2 V load is 0.27 * 250 mW (input power at 2.5 GHz).

Similarly, for the 20 pm diode, the efficiency is higher at 46.9% and the power delivered to the

output load is 0.469 * 122.5 mW. The output power in both cases is comparable. Thus, at the

low frequency of 2.5 GHz the larger diode is preferable because it can provide similar levels of

output power with higher efficiency.

When higher frequency operation is desired, the halfwave rectifier implemted with the 4u

diode significantly outperforms that implemented with the 20 pm diode. This result can be

explained by referring to the SBD model discussed in Section 4.1.1 and presented in Fig. 4-3.

When current is initially applied to the SBD, all the current is used to charge up the parasitic

junction capacitor. As the capacitor charges, its voltage increases until appreciable current can

start flowing through the diode, D1 . This siphons some of the current coming from the input

current source. The fraction of the current which flows through D1 depends on the Schottky

barrier junction dynamic resistance, rd at that instant in time. This implies that some part of the

current will still continue to flow through the capacitor and increase the voltage across both

capacitor and the Schottky junction. As a result of the Schottky diode exponential I-V

characteristic, its current will continue to rise rapidly making its effective resistance smaller. D1

will continue to siphon more of the current from the input current source. Note that we now

have a current divider between the Schottky barrier junction diode, D1 and the junciton capacitor,

Cj. The process of positive feedback which increases diode current continues until the sinusoidal

waveform of the current from the input source reaches its peak. Then as the current from the

current source decreases, the current through the combination of D1 and Cj decreases as well.

This changes the operating point and hence the dynamic resistance of the SBD. The junction
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capacitor starts to discharge reducing the voltage across the Schottky junction. The current

through the diode decreases exponentially which increases its effective dyanmic resistance.

When a larger diode is used, more power is wasted charging up the parasitic capacitor up to a

voltage that will set the SBD at an operating point which can carry appreciable current. Thus,

for a given input current at a particular frequency, a smaller diode will provide more rectified

output power than a larger one because it turns on faster and its parasitic capacitor can be

charged up to a higher voltage so that the diode is at an operating point on it's IV curve that

gives larger output current. The larger current for the smaller diode means that it has a smaller

dynamic resistance and thus presents a lower impedance path for the input current. It can siphon

more current from the parasitic capacitor in parallel leading to more rectified output.

At higher frequencies, the junction capacitor impedance reduces causing it to provide a lower

impedance path to the output node when compared to the resistance of the Schottky barrier

junction. With a smaller fraction of the input current flowing through the actual Schottky barrier

junction, a smaller rectified current will be obtained. This problem is exacerbated for the larger

diode which has a larger junction capacitance that creates an even smaller impedance in parallel

with the Schottky barrier junction. This leads to a significant decrease in efficiency because the

signal which should have been rectified is simply passed to the output through the junction

capacitance and filtered. Thus, large diodes perform poorly at higher frequencies. The problem

can only be mitigated by using larger input current or power source. The larger current ensures

that the parasitic capacitor will charge up to a larger voltage during the positive half of the input

signal cycle. The larger voltage across the SBD leads to a larger current through the Schottky

junction thus reducing its effective dynamic resistance ra (see Eq. 4.2) so that it can siphon more

of the input current from the junction capacitor, Cj. As a result, more power is routed through the
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Schottky barrier junction leading to the rectification of a larger precentage of the input signal and

improved efficiency. Note that this analysis depends on the approximation proposed in section

4.1.1. in which to first order, the large signal variation in dynamic resistance of the SBD can be

approximated by a series of small signal dynamic resistances whose values change in time during

each instant in the input signal period.

A few conclusions can be made from the preceding disucssion. When energy recovery is to

be implemented at relatively lower frequencies employing a large diode size is preferable. The

input power must be large enough to turn on the diode strongly enough so that it operates within

the exponential region of the I-V characteristic. The linear region of the I-V characteristic with

its resultant ohmic losses in the series resistance must be avoided. For higher frequency

operation, smaller diodes are preferable because a larger percentage of the input signal is routed

through the Schottky barrier junction since the smaller junction capacitance siphons a smaller

fraction of the input current. A method of implementing this diode size section optimization in

simulation is to setup the outphasing PA system using simplified models of the individual

switching PA. The rectifier is now connected to the difference port of the outphasing PA's

power combiner. A series of PSS simulations in which the diodes size is swept is performed so

that a plot of rectifier efficiency vs diodes size at the given operating frequency can be plotted.

An optimum point which gives the highest efficiency for sufficient rectified output power can be

determined.

In order for energy recovery to be worthwhile, the efficiency of the energy recovery network

which includes the rectifier should be high. The efficiency plots in Fig. 4-6 and Fig. 4-7 indicate

low efficiency of the halfwave rectifier at frequencies > 10 GHz regardless of diode size. Energy

recovery at millimieter wave frequencies is therefore not feasible using Scottky barrier diodes in
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the IBM CMOS8RF process. Thus, the rest of this chapter will discuss the design of an energy

recovery network operating at a lower frequency of 2.14 GHz.

4.2 Resonant rectifier design

The major impediment to efficient rectification at multi-gigahertz frequencies is diode

parasitic capacitance. Godoy et al. [22] analyzed the effect of parasitic diode capacitance on the

input impedance of a half wave rectifier. First we consider the input impedance of the halfwave

rectifier without parasitic capacitance which from [22] is given by:

Rrect - krectVdc (4.4)
2in

where krect is a constant determined from simulation, Pin is the input power to the rectifier and

Vdc is the voltage at the output of the rectifier. When diode parasitic capacitance is included in

the analysis (see Fig. 4-8), the fundamental component of the voltage is no longer in phase with

the current leading to an input impedance that is no longer purely resistive. This leads to poor

isolation between the PAs of an outphasing system if the half wave rectifier is connected to the

power combiner's isolation port.

D2 +

T DID VX(t) linsin(wst)

Figure 4-8: Halfwave rectifier with parasitic diode capacitance
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The analysis in [22] shows that the diode D2 turns on at time u = wot which is computed in

radians by the equation,

cos(u) = 1 - 0SCDVd = 1 - Vdc (4.5)
Iin Xcfin

where ws is the frequency of the input current source, Xc is the reactance of CD at Ws.

Furthermore, the rectifier impedance, Zrect is given by,

|Zrectl - a 1 + bX1 (4.6)
lin

L.(Zrect) = -tan- 1 - 2 (4.7)
axyi 2

where,

axi = VdC + U 1 )sin(u) - 1 sin(2u) (4.8)7r 2a a 4a

bx = Vc 4+ 1 1 cos(u) + 1cos(2u) (4.9)
R 4I a 4a

with a = Vdc/Xclin and axi and bx1 representing the real and imaginary components of the

Fourier transform of the half wave rectifier input voltage at the fundamental frequency, Vxi (see

Figure 4-8). The parameter, a, is similar to the "reactance factor" defined for low frequency

rectifiers [25]. When a is substituted into Eq. 4.5, we see that the diode stops conducting when

a > 2 and the rectifier impedance is purely capacitive. Thus, it can be concluded that a small

value of a is necessary to keep the half wave rectifier input impedance mostly resistive.

Examining the expression for a, we see that its value can be minimized by minimizing the

rectifier output voltage, Vdc, the operating frequency, w, and the diode parasitic capacitance, CD

and by increasing the input current ID- Three of the parameters, ID, Ws and Vdc are typically

fixed by the desired application. For instance, use of the halfwave rectifier at multi-gigahertz

frequencies ensures that w, will be large thus increasing the value of a.
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One way to mitigate the effect of diode capacitance is the use of resonant rectifiers [22], [23],

[24], [25], [26]. The diode D1 in Fig. 4-8 is replaced by an inductor which cuts the total parasitic

diode capacitance by a factor of 0.5. In addition, the inductor resonates out the parasitic

capacitance associated with diode D2 (making the rectifier impedance resistive) and provides a

DC path to ground. Another issue to consider is sizing of the diodes to improve their power

handing capacity. Larger diodes can handle more power but have larger parasitic capacitances

which will require even smaller inductors to tune out. Excessively large diodes will result in the

need for inductors whose small values are difficult to fabricate on chip or realize with high-Q

discrete components.

4.3 Resistance Compression Network

The energy recycling scheme shown in Fig. 4-1 exhibits the drawback of poor PA isolation

because of excessive variation in the input impedance of the rectifiers with input power. This

problem can be ameliorated by the introduction of a resistance compression network (RCN)

between the rectifier and the isolation port of the power combiner (see Fig. 4-9 and [22]). A

RCN can be combined with a pair of resonant rectifiers to form an RF to DC converter which

exhibits a relatively narrow range of impedance variation in response to the variation of the

rectifiers' impedance [23]. The resistance compression network (RCN) consists of a pair of

complex conjugate matched impedances in series with a pair of matched resistances, RL as

shown in Fig. 4-10. The matched resistances can be used to model the input resistance of

resonant rectifiers which vary with input power according to Eq. 4.4.
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Figure 4-9: Outphasing power amplifier with resistance compression network in energy
recovery network.

RL +iXZRCN

-AAA. linsin(wst)

Figure 4-10. Resistance compression network with matched load resistances.

The RCN consists of two complex conjugate reactances +/-jX whose magnitude at the

operating frequency is set to be the geometric mean of the minimum and maximum values of the

matched resistances, RL. This means that Rrect E [X/ t X Cct] where crect is the ratio of

the maximum to minimum resistance in the Rrect range. As shown in [22], the resistance RRCN

of the RCN is calculated to be,
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RRCN =2Rrect 2 (4.10)

where Rrect is the impedance of the rectifier. Thus the RCN provides compression of the

rectifier resistance, Rrect, about the value of reactance, X. The compressed range of RRCN can be

shown to be [22]

1+crect
CRCN -(4.11)

Fig. 4-11 shows a plot of the RCN resistance, RRCN against the corresponding rectifier resistance,

Rrect- We can see that a 10:1 variation in rectifier resistance (from 2M to 200) results in a

modest 1.74:1 change in RRCN. This reduction in rectifier resistance variation at the isolation or

difference port of the power combiner will result in better isolation and the maintenance of

higher efficiency in the switching PAs.
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Figure 4-11: Variation of the resistance of a resistance compression network with 10:1 change in
matched load resistance.
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4.4 Theoretical Efficiency of Outphasing PA employing energy
recovery

The energy recovery network which is shown in Fig. 4-9 is composed of a matching network, a

resistance compression network and a pair of resonant rectifiers. The signal at the difference

port of the power combiner is rectified by the energy recovery network with the DC energy fed

back into the power supply. The efficiency of the outphasing PA is given by the expression

derived in [22]

7ltotal P (4.12)

where Pout is the total output power of the outphasing PA, Pdc is the power drawn from the

supply by the individual PAs and Prec is the dc power obtained from the energy recovery

network by means of rectifying the signal at the difference port of the power combiner. The total

power available at the output of the outphasing PA is given by

Pavaii = PA7combPdc (4.13)

where 17PA is the PA efficiency and 7lcomb is the power combiner efficiency. The rectified power

which is fed back to the power supply, Prec is given by

rec = 77rec(Pavail - Pout) = 7rec(?IPA7combPdc - Pout) (4.14)

where 77rec is the efficiency of the energy recovery network. Substituting Eq. 4.14 back into Eq.

4.12, the expression for the efficiency of the outphasing PA with energy recovery is given by

1Jtota1 1 Pu (4.15p

Pdc -7rec(n7PAncombdc-Pout) flPAflcomb nrec(l-P) (4.15)

where p = Pout/Pavail is the normalized output power. Fig 4-12 presents a plot of 7total versus

output power backoff = dB(p) for an outphasing PA using practical values of 7JPA = 70%,

comb = 0.95 and a few values of energy recovery network (ERN) efficiency, 77rec
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Figure 4-12: Variation of the outphasing PA efficiency with energy recovery network efficiency.

The outphasing PA efficiency shows a strong dependence on the energy recovery network

efficiency. At 6 dB backoff, the outphasing PA efficiency increases from 16.7% for the LINC

implementation to 30.2% with an ERN efficiency = 90%. The plots in Fig. 4-12 leads to the

conclusion that an ERN efficiency which is greater than 40% is required for the use of an energy

recovery network to be worthwhile.

4.5 Summary

In this chapter, the theory of employing an energy recovery network to increase the efficiency of

an outphasing power amplifier was discussed. The tradeoffs which need to be addressed in the

Schottky diode size selection for the halfwave or resonant rectifier was investigated. The design

of a resonant rectifier for use in RF - DC conversion in the energy recovery network was also

discussed.
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Chapter 5

Practical System Implementation and

Measurement of the Energy Recovery

Network

In this chapter, an energy recovery network (ERN) operating at 2.5 GHz was designed

employing some of the theory developed in chapter 4. Simulation results will be analyzed to

determine the feasibility of energy recovery utilizing resistance compression networks at multi-

gigahertz frequencies. A prototype of the energy recovery network which operates at a

frequency of 2.14 GHz will be implemented and measurement results discussed.

5.1 Energy Recovery Network Design

The first step in the process is the selection of the Schottky diode size required for the resonant

rectifier. The goal of this implementation is to evaluate the feasibility of resistance compression

in an energy recovery network (ERN) operating at 2.5 GHz. Thus, a specific output power target

for the ERN was not required. Fig. 4-12 indicated that the ERN needs to have an efficiency

greater than 40% for energy recovery to be worthwhile. The strategy employed to satisfy this

condition was to first select a relatively large diode size for the rectifier. The dimensions used

were: diode length = 25ptm, diode width = 5tm, and number of fingers = 4. Employing the more

rigorous diode size selection process described in chapter 4 could be the subject of future work.
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But for the requirements of this stage of the project, selecting a relatively large diode was

sufficient. The use of a large size gives the assurance that appreciable rectified output power

can be obtained while the diodes still operate within the exponential region of their I-V

characteristics as discussed in section 4.1.2. A resonant rectifier topology (see Fig. 5-1) was

used instead of the halfwave rectifier because the use of a single diode reduces the net

capacitance of the rectifier by a factor of 0.5. The inductor which replaces one of the diodes in

the halfwave rectifier has a value that is chosen so that it resonates with the diode junction

capacitance at the frequency of operation. This makes the input impedance of the resonant

rectifier to be dominated by its real component. The resonant rectifier can be designed via

periodic steady state (PSS) and transient simulations in which the inductance value is swept until

the voltage and current waveforms at the resonant rectifier's input are in phase.

Resonant
Rectifiers

2V 8.7nHe

8.7nH:

Figure 5-1: Testbench to determine input current drive and resistance of the resonant rectifiers.

The next step was selecting the input power that will ensure the resonant rectifier's efficiency

is greater than 50%. This step was carried out using periodic steady state and transient

simulations of the schematic in Fig. 5-1. The input current drive was swept to obtain the current

range that keeps the efficiency greater than 60% and rectified output power greater 200 mW for a
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360 mW input power. These numbers were chosen as reasonable output power levels for PA

used in cellular and other wireless communication applications. With these power levels, the

diodes operate mostly in the exponential region of their I-V characteristics as exemplified by the

good efficiency performance of the resonant rectifier. Considering the outphasing PA depicted

in Fig. 4-1, the maximum power of 360 mW will be delivered to the resonant rectifiers at the

maximum outphasing angle of 1800. In addition, the testbench of Fig 5-1 was used to determine

the range of input resistance of the resonant rectifier as the input power is varied from 10 mW up

to the 360 mW. The results of the simulation are presented in Fig. 5-2.

Fig. 5-3 presents the classic inverse relationship between the resonant rectifier input resistance

and the power (input current drive). The range of input resistance to be compressed is from 71 Q

to 483 Q which corresponds to a 10:1 variation in input current drive. Employing the discussion

in section 4.3, the reactance of the conjugate matched passive components in the resistance

compression network is set to the geometric mean of this resistance range.

Efficiency of resonant rectifier
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Figure 5-2: Efficiency and Input and Output power of resonant rectifier testbench in Fig. 5-1.
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Figure 5-3: Resonant rectifier input resistance from testbench in Fig. 5-1.
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Thus, the inductor and capacitor of the resistance compression network should have an

impedance of 185 0 at 2.5 GHz.

The resistance compression network along with the resonant rectifiers form the energy

recovery network which is now included in the outphasing PA model presented in Fig. 5-4. The

PAs are modeled as ideal current sources with the output of the outphasing PA driving a 50 Q

load. A 7.42 resistor was put across the 2 V supply to mimic the steady current draw by the PA

from the supply. In practice, the energy recovery network "returns power to the supply" by

reducing the current draw by the PA from the supply. Some of the bias current required by the

PA for operation is provided by the energy recovery network. Thus, the current which the supply

needs to provide is reduced and a net increase in overall system efficiency is achieved. A lumped

element implementation of a Wilkinson combiner shown in Fig. 5-5 was used to combine the

signals from the two ideal current sources. Note that the isolation resistor of 100 0 which is

required for the Wilkinson combiner is replaced by the energy recovery network.

Resonant RRCR
Rectifiers I1nsin(wst)

r-------------r Matching
Network RERN

C 11.8nH .---..--.-....
II G BlG 5.87nH

2V 7.40 8.7nH
[8-XnH 2 H TO32pFWilkinson

0.32pF Combiner
0.34pF

1 I 500

8.7nH : Resistance
Compression .

Network
-.. ---........ iinsin(mst+$ )-- -

IT

Figure 5-4: Testbench for outphasing system with resistance compressed energy recovery
network.
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Figure 5-5: Lumped element Wilkinson power combiner designed for 2.5 GHz.

A matching network is placed between the energy recovery network and the Wilkinson combiner

so that the compressed resonant rectifier impedance (RRCR in Fig. 5-4) can be transformed to a

value close to 100 Q

The current drive of the ideal current sources (which serve as simple PA models) is selected

so that the same maximum input power of 360 mW as determined in Fig. 5-2 is delivered to the

energy recovery network when the outphasing angle is 1800. This ensures that the resonant

rectifier will have a similar input resistance range to that shown in Fig. 5-3 and the resistance

compression network will function properly. Fig. 5-6 shows that the variation in resonant

rectifier resistance is compressed when combined with a resistance compression network. The

compressed resistance is designed by RRCR. The ratio of maximum to minimum resistance of the

resistance compressed rectifier is 1.65 which is significantly less than the original ratio of 6.8.

Using Eq. 4.11 with crect = 6.8, the theoretical range of compressed rectifier resistance, CRCN =

1.5 which is close to the simulation results. The resultant smaller variation in the effective

resistance of the entire energy recovery network (designated by RERN in Fig. 5-4) will lead to
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Figure 5-6: Compressed resistance of the resistance compressed rectifier (i.e. resonant rectifier
combined with a resistance compression network)
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better isolation between the PAs. A plot of RERN versus outphasing angle is presented in Fig. 5-

7. It should be noted that RERN becomes large and RRCR exhibits a steep drop off for outphasing

angles less than 15". This fact does not lead to any significant degradation in performance

because the diodes are either turned off or weakly turned on. Most of the PA's output power is

being delivered to the load anyway making PA isolation less critical. Moreover there is very

little power to be rectified making energy recovery unnecessary for small outphasing angles.

Fig. 5-8 depicts the efficiency of the energy recovery network. It can be seen that the

efficiency is greater than 70% for outphasing angles between 200 and 80". This is because the

input power to the resonant rectifiers is small enough that the Schottky barrier diodes (SBD) are

operating well within the exponential region of their I-V characteristics. The ERN efficiency

remains above 65% until an outphasing angle of 1300 before it drops to about 62% for an

outphasing angle of 180".

-Efficiency of Energy Recovery Network
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Outphasing Angle (deg) ()

Figure 5-8: Efficiency of energy recovery network
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At this point the SBDs have begun to enter the linear region of their I-V characteristics hence

the lower efficiency. As discussed in chapter 4, the diodes can handle more power and cover a

larger range of resistance values but at the expense of larger ohmic losses. The following

equations were used to compute the quantities plotted in Fig. 5-9, Fig. 5-10 and Fig. 5-11 from

simulation results.

Total System Efficiency - Output Power _ Pout(wilkinson combiner) (5.1)
Net Input Power Pout(PA)-Pout(ERN)

Normalized Recovered Power = Pout(ERN) (5.2)
Pout(PA)

Normalized Total Available Power = Pout(wilkinson combiner)+P o u t(ERN) (5.3)
Pout(PA)

Fig. 5-9a presents the efficiency of the outphasing system. It can be seen that the use of energy

recovery significantly increases the efficiency of the outphasing PA. The efficiency

enhancement is most dramatic between outphasing angles of 50' and 130". This is because the

efficiency of the energy recovery network is highest within this range of outphasing angles as

can be seen in Fig. 5-8. The plot in Fig. 5.9a indicates that the system has a maximum efficiency

of 100% at a 0' outphasing angle because the PAs were modeled with ideal current sources. The

efficiency enhancement introduced by energy recovery as shown in Fig. 5.9a and Fig 5.9b is

somewhat exaggerated because of the unrealistic value of PA efficiency. Cellular and Wi-Fi

applications have power amplifiers with efficiencies typically less than 70%. Using a PA with

70% efficiency will show more modest but significant improvements in efficiency as seen in Fig.

4-12. It is useful to plot the outphasing system efficiency versus output power backoff. Typical

cellular modulation schemes have PAPR = 6.5 dB making improvement in PA efficiency at these

power back off levels important. Fig 5-9b shows that the efficiency increases from 22% to 45%
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when energy recovery is introduced into the standard LINC architecture. This is a significant

result in favor of employing energy recovery at frequencies greater than 2 GHz.

Fig. 5-10 presents the power recovered by the energy recovery network normalized by the

total available power from the PAs. The plot indicates that at the maximum outphasing angle of

1800, 62% of the power delivered to the energy recovery network can be returned to the power

supply. This is very significant because in a standard outphasing PA architecture such as LINC,

all this power would be lost or dissipated in the isolation resistor of the Wilkinson or similar

isolating combiner. This power loss is one of the major reasons the LINC architecture is very

inefficient at large outphasing angles or output power back offs.

Efficiency of Outphasing PA

* LINC

100-r-

U

a,

WI

-With ERN

0 25.0 50.0 75.0 100.0 125.0 150.0 175.0 200.C
Outphasing Angle (deg) 0

Figure 5-9a: Total outphasing system efficiency vs. outphasing angle for two systems one of
which employs a resistance compressed ERN. PAs modeled as ideal current sources
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Figure 5-11: Total available power from outphasing system normalized to available power from
the individual PAs.

With the use of energy recovery, the designer can take advantage of the high efficiency

available from nonlinear switching PAs such as Class E but still have the capability of linear

amplification. The use of the LINC architecture combined with energy recovery is a good

technique to break the high-efficiency - linearity trade off in multi-gigahertz power amplifier

design.

Fig. 5-11 is another way of viewing or analyzing the simulation results. Obviously with very

low outphasing angles most of the power is delivered to the load making the normalized total

available power = 1. What is useful to realize is that the normalized total available power is still

0.62 at the maximum outphasing angle of 1800 emphasizing that a significant percentage of the

power is not wasted but recycled.
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5.2 Prototype Implementation

A prototype was built to test the efficacy of resistance compression networks for a resonant

rectifier operating at 2.14 GHz. Note that the prototype to be tested was the energy recovery

network (excluding the PA) whose components are highlighted with red dotted rectangles in Fig.

5-13. The constituent sections of the energy recovery network are the matching network,

resistance compression network and the resonant rectifiers. Schottky barrier diodes (SBD) were

fabricated in a 0.13-tm CMOS process. A chip-on-board test structure in which the input and

output pads of the SBD structures were wirebonded to landpads on an FR4 PCB was employed.

Schottky Barrier
Diodes

Figure 5-12: Chip micrograph showing integrated Schottky barrier diodes.

The SBDs consist of a metal-silicide junction surrounded by a p+ guard ring. These guard

rings are included because the leakage current in reverse bias is especially high at the perimeter

of the Schottky diode. The p+ guard ring helps to reduce this leakage. A chip micrograph of the

SBD integrated on the silicon die is presented in Fig. 5-12. SBDs of several sizes were
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fabricated so that the diode area power handing - switching speed tradeoff could be studied with

measurements in the laboratory. It was found that the largest diodes fabricated (with a total of

2
400 pm anode area) provided the best compromise for power and switching speed. The diode

size used for the prototype implementation had a diode length = 20pm, diode width = 5pm and

number of fingers = 4. For reasons similar to those stated in section 5.1, these relatively large

diodes provide sufficient performance for our application. Future work could include using the

more rigorous diode size selection process discussed in chapter 4.

A schematic of the energy recovery network which is essentially a resistance compressed RF-

DC converter [23] is presented in Fig. 5-13. The system was designed to operate within an input

power range of 28 mW to 140 mW. This power range was selected because the SBDs will

operate within the exponential region of their I-V characteristics thus providing good efficiency.

The resonant rectifier was constructed from integrated on-chip Schottky barrier diodes and an

off- chip shunt 12 nH inductor. This inductance value was chosen with the aid of periodic steady

state and transient simulations so that the fundamental component of the input voltage and

current of the resonant rectifier are in phase. When this condition is satisfied, the input

impedance of the resonant rectifier appears resistive at the fundamental frequency. The

resistance compression network was fabricated on an FR4 substrate PCB with 0402 passive

components to reduce package parasitics. Using the same design process described in section

5.1, the geometric mean of the input resistance range of the resonant rectifier was found to be

269 Q. The 20nH inductor and 0.276 pF capacitor which were selected for the resistance

compression network have a reactance approximately equal to 269 Q at the operating frequency

of 2.14 GHz. The resistance of the resonant rectifiers will be compressed around this reactance

value. The output of the resonant rectifier was connected back to a 3.3 V power supply. It is
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important to select the power supply voltage as high as possible to increase the efficiency of the

resonant rectifier. The bigger the ratio of power supply voltage to Schottky diode forward

voltage, the higher the resonant rectifier efficiency.

Resistance
Resonant Compression
Rectifiers Network

Power Function
20nH Matching AmplifierGerao

7.40 1Network
3.3V Ir12nH

0.276pF

I I

Figure 5-13: Schematic of energy recovery network.

Stub Tuner

Power
Sensor

Energy
recovery
network

f%*,RF Power
from PA

Rectified
Output

(a) A section of the energy recovery network prototype measurement setup.
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Output Resistance

Compression
Network

RF Input

(b) Energy recovery network showing resistance compression network and silicon die with
integrated Schottky barrier diodes

Figure 5-14. Measurement setup for the energy recovery network prototype.

A 7.40 resistor was put across the 3.3 V supply to mimic the steady current draw by the PA

from the supply. In practice, the energy recovery network "returns power to the supply" by

reducing the current draw by the PA from the supply. Some of the bias current required by the

PA for operation is provided by the energy recovery network. Thus, the current which the supply

needs to provide is reduced and a net increase in overall system efficiency is achieved. A

mechanical stub tuner was used to match the input impedance of the energy recycling network

(composed of the resonant rectifiers and resistance compression network) to the 50 Q output

resistance of a bench top Amplifier Research power amplifier. A Rhode&Schwarz through

power meter which was placed between the bench top power amplifier and energy recovery

network was used to measure the input reflection coefficient, S11 , at the input of the energy

recycling network. Fig. 5-14 shows a picture of a section of the measurement setup.
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5.3 Measurements and Results

Two incident power ranges with at a 10:1 ratio of maximum to minimum power were used in

the testing of the energy recovery network (ERN) prototype presented in section 5.2. The ERN

was matched to the 500 output of the bench top power amplifier at 65 mW and 140 mW incident

power. In addition, the incident power range was selected such that the geometric mean of the

maximum and minimum power coincided with the incident power at which the ERN was

matched to the PA. The methodology for selection of the incident power level at which the ERN

is matched ensures we can take advantage of resistance compression around the ERN resistance

at that power level as indicated in Eq. 4.10 and Eq. 4.11. The inverse relationship between

rectifier input resistance and incident power was presented in Eq. 4-4 and Eq. 4.6. Thus

sweeping the incident power will change the match between the PA and energy recovery

network and be reflected in a variation in the S11 of the ERN. The maximum incident power for

all measurements was selected to be 400 mW. This value was chosen based on the simulation

results presented in Fig. 5-2 and Fig. 5-8 for the similarly sized Schottky diode of length =

25pim. It was desired to keep the Schottky diodes operating mostly in the exponential region of

their I-V characteristics so that the resonant rectifier and ERN efficiency remains relatively high

for good system performance. It is also important to note that the selection of the incident power

at which the ERN is matched depends on the modulation scheme used for the wireless

transceiver the outphasing PA is a part of. The ERN should be matched to the isolation port of

the power combiner at the most frequently occurring incident power levels. In addition, the

resonant rectifier should be designed so that its input impedance is mostly resistive at this

incident power. For instance, if a modulation scheme has a PAPR of 6 dB, the ERN should be

matched for an incident power level that is 75% of the maximum PA output power. Thus, the
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best average efficiency of the ERN will be obtained since the geometric mean of the energy

recovery network's input impedance range is located at the most frequently occurring incident

power.

The measurement results from testing the energy recovery prototype is presented in

Fig. 5-15 and Fig. 5-16. Both figures feature a comparison between the performance of the

energy recovery network (ERN) with and without the resistance compression network (RCN).

Fig. 5-15 and Fig. 5-16 show the S11 and efficiency of the energy recovery network respectively.

In Fig. 5-15a, the S11 values for incident powers less than 30 mW are not relevant because the

Schottky diodes are either very weakly turned on or turned off. It can be seen that for an input

power range of 30 mW to 240 mW, the S1 varies over a range of -23 dB to -8.5 dB for the

energy recovery network without a resistance compression network. On the other hand, the S1

varies from -22.2 dB to -12.9 dB for the ERN with a RCN. The variation in S1 and hence, input

resistance of the ERN is significantly compressed when a resistance compression network is

added to the energy recovery network. Similarly, in Fig 5-15b, S1 varies from -22.2 dB to -9.1

dB for the energy recovery network without a resistance compression network while the setup

which includes a RCN shows a S1 variation at the ERN's input of -25.2 dB to -15 dB. Although

the S1 value does not contain any phase information, we can employ its definition to obtain an

estimate of the range over which the ERN's resistance varies. Consider Eq. 5.4 below for an

ERN matched to 50 Q:

S -F = RERN-RPA (5.4)
RERN+RPA

where RERN is the ERN input resistance, RPA is the 50- resistance at the output of the power

sensor (see Fig. 14) and F is the reflection coefficient. From Eq. 5.4, the estimate of the ERN

resistance is given by
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RERN = 1 (5.5)

Table 5.1 below shows the computed values of RERN using Eq. 5.5 and the S1 values measured

in Fig. 5-15b:

Table 5.1: Range of RERN for the values of S11 measured in Fig. 5-15b

S11(dB) F RERN

With -25.2 0.003 50.3
RCN

-15 0.032 53.3

No -22.2 0.006 50.6
RCN

-9.1 0.123 64.0

The results in table 5.1 indicate that the ERN without the RCN has an input resistance range,

RERN of 50.6 Q to 64 Q. This resistance is compressed by the RCN to the smaller range of 50.3

Q to 53.3 Q. The smaller variation in RERN ensures there will be good isolation between the PAs

when the ERN is included in an outphasing PA architecture such as AMO [31]. Note that for the

calculation in table 5.1 to be accurate, we need to know the phase of the reflection coefficient,

F which is not available from the power sensor's reading.

Fig. 5-16a presents a plot of the efficiency of the ERN when it is matched to the PA at 63 mW

input power. The power range used is the same as in Fig. 5-15a. The peak efficiency of the

ERN without an RCN is 39.6% while including an RCN shows a peak efficiency of 40.7%. Both

numbers are comparable as expected because when the ERN is matched to the power source,

most of the input power gets delivered to the resonant rectifier regardless of the presence of the

RCN. The significant difference occurs when a change in input power causes the ERN to be no

longer matched due to a change in the resonant rectifier input resistance with incident power.
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The effect is exacerbated at lower incident power levels. For instance, at an incident power of 50

mW, the efficiency of the ERN without the RCN is just 20% while the version which contains an

RCN is 40%. The smaller value of S11 in the latter case ensures that more power is incident on

the resonant rectifier which will give the ERN that includes an RCN better efficiency.

Moreover, at these relatively low input power levels, the Schottky diodes are very weakly turned

on and operate within the exponential region of their I-V characteristics. Thus, the extra input

power which gets delivered to the resonant rectifiers when a RCN is included with the ERN will

exponentially increase the resonant rectifier's output current further increasing its efficiency. At

higher input power levels, this effect is less pronounced because the Schottky diodes are now

approaching the linear region of their I-V characteristics. But the ERN which includes a RCN

still outperforms the version without the RCN because of the lower S11 means less power is

wasted due to reflection. This fact can be seen at an incident power of 240 mW where the

efficiency increases from 33% for the ERN without RCN to 39.5% for the version which

includes a RCN. An important observation from the efficiency plot in Fig. 5-16a is the

efficiency remains above 35% for most of the input power range because the compressed input

resistance of the ERN keeps it closely matched to the input power source's (from the power

sensor) 50- resistance. A very similar state of affairs is observed in Fig 5-16b where the ERN

is initially matched to the input power source at 140 mW incident power. The efficiency remains

above 35% for the entire range of incident power for the energy recovery network which

employs a resistance compression network. On the other hand, the version of the ERN without a

RCN has an efficiency which drops to 20% when the incident power is 50 mW.
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Figure 5-15: S1 of energy recycling network vs. input power.
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The performance of the energy recovery network with a RCN must be compared to a system

with no RCN but with a circulator. When high-efficiency switching PAs such as class E are used

in the outphasing PA which employs an energy recovery network without resistance

compression, a circulator must be used. It is essential to ensure a fixed resistance is connected to

isolation port of the power combiner to preserve the isolation between the PAs. The circulator

approach has a few disadvantages. The use of a circulator will increase the complexity and cost

of an outphasing amplifier and is not practical for mobile wireless applications. Moreover, a

circulator or isolator can typically have as much as 1 dB of insertion loss which will decrease the

efficiency of energy recovery network. In addition, the use of ordinary, surface-mount

components makes the RCN a much more compact, much less expensive implementation of the

energy recycling concept than with a circulator.

The measurement results presented in Fig. 5-15 and Fig 5-16 above clearly indicate the

effectiveness of the resistance compression network at an operating frequency of 2.14 GHz.

Although Godoy et al. in [22] successfully demonstrated an energy recovery network (ERN)

which employs a resistance compression network linked with resonant rectifiers at 48 MHz, it

was not certain that this approach would be feasible at multi-gigahertz frequencies. One

difficulty with the use of an ERN is the interaction between the parasitic capacitance of the

Schottky barrier diodes and the passive components in the ERN. This interaction makes the

effective value of the reactance in each branch of the ERN to be no longer conjugate matched

(see section 4.3 and Fig. 4-10). Moreover, the input impedance of each branch of the resonant

rectifier - RCN cascade is also unequal. Thus, unequal power is delivered to each resonant

rectifier and the resistances of the two resonant rectifiers are no longer matched because of the

dependence of rectifier input resistance on incident power (see Eq. 4.4 and Eq. 4.6). As a result
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of these conditions, the ERN performance was expected to degrade at multi-gigahertz

frequencies where the adverse effects of the interaction between diode capacitance and the

passive components in the ERN are exacerbated. Tuning or modification of the RCN inductor

and capacitor calculated values are necessary to compensate for the diode capacitance - ERN

interaction.

5.4 Summary

In this chapter, an energy recycling network which employs a resistance compression network to

significantly reduce the variation in the input impedance of a resonant rectifier at 2.14 GHz has

been demonstrated. The prototype system achieves 41% conversion efficiency for 200 mW of

incident power, and maintains a reflected power of less than 3% for almost a 10:1 range of

incident power. This energy recycling network will find application in outphasing power

amplifier architectures that use isolating combiners and require a relatively constant resistance at

the isolation port for efficient operation. To the authors' knowledge, this is the first experimental

demonstration of resistance compression networks for energy recycling at multi-gigahertz

frequencies.
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Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

This work has provided contributions in two major categories. The first is conceptualizing and

employing the class E tuned output network itself as an efficiency enhancement technique. The

efficiency of classical power amplifier architecture (such as class A/AB) can be enhanced by

replacing its load with a class E tuned output network. The transient response of the class E

tuned output network reduces the region of overlap of non-zero drain voltage and drain current.

This is sufficient to reduce the power dissipation in the active device and improve the PA's

efficiency. The advantage of this approach is simpler classical PA architectures are more

feasible at multi-gigahertz frequencies. The use of the class E tuned output network can enable

the designer to take advantage of these PA architectures while minimizing the efficiency

degradation. A robust iterative design approach was conceived and implemented which

simplifies class E PA design. The matching of the input reflection coefficient, S11 of a lumped

element implementation of the class E tuned output network to its transmission line equivalent

was used to provide an efficient methodology for output network design.

The second area of contribution was the implementation of a resistance compression network

in an energy recovery network to improve the efficiency of outphasing power amplifiers at multi-

gigahertz frequencies. Previous work by Godoy et al. [22] had confirmed the feasibility of this

approach at 48 MHz but it was not clear that energy recovery was possible at multi-gigahertz
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frequencies. A resistance compression network which compresses the variation in the input

resistance of an energy recovery network was implemented at 2.14 GHz. The successful

implementation of this technique will find application in current wireless standards that can take

advantage of the high efficiency of switching amplifiers in outphasing PA topologies while

retaining the high linearity required for complex modulation schemes such as OFDM and 256-

QAM.

6.2 Future Work

The energy recovery network along with a class E power amplifier and isolating combiner can be

integrated on chip. The resultant removal of the bondwire inductance from the inputs of the

resonant rectifiers should reduce the mismatch between the two branches of the energy recovery

network and enhance the system's performance. The efficiency of the Asymmetric Multilevel

Outphasing power amplifier architecture [28] can be further improved by employing an energy

recovery network to recycle the energy from the difference port of the power combiner. The

entire AMO power amplifier along with a resistance compressed energy recovery network can be

implemented in a deeply scaled CMOS process for better overall system performance. This will

make the technique relevant for current wireless applications.
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