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Abstract

In the near term, efficiency improvements represent a key option for reducing the impacts
of climate change. The growing awareness of climate change has increased the attention
regarding the carbon emissions "embedded" in the products we consume. This increased
attention creates a need to measure and improve the carbon efficiency of the supply chains
that produce those goods. In this thesis we present a method for measuring the carbon
efficiency of a supply chain that recognizes the decentralized nature of supply chains.

First, drawing from concepts in supply chain performance measurement and eco-efficiency
we propose a definition of supply chain carbon efficiency that is consistent with the idea
of a product's carbon footprint. We present Life Cycle Assessment (LCA), a method for
quantifying the environmental impact of a product or service, as the appropriate method
of measuring a product's carbon footprint and demonstrate the use of LCA through a case
study involving the supply chain of bananas.

Next, we characterize the difficulty and uncertainty in performing an LCA of a supply
chain through an analysis of our case study of bananas. We present a framework to reduce the
uncertainty though the concept of a carbon label. The carbon label provides a system where
firms can measure the carbon footprint of their activities and share this information with
their supply chain partners. We identify the role of third parties in facilitating information
sharing and define the characteristics that describe the carbon label.

Finally, we demonstrate how the carbon label works in the context of the supply chain.
Through an analysis of the mode and carrier assignment steps in an integrated supply chain
we develop new metrics that show how sharing information can increase the accuracy of the
measured carbon footprint and improve decision-making. We provide incentive for firms to
share information through the development of a vertical differentiation model of product
carbon labels. Our model shows how consumer demand for lower carbon products drives re-
ductions in the carbon footprint throughout the supply chain and induces firms to voluntarily
disclose their carbon footprint.

Thesis Supervisor: Yossi Sheffi
Title: Elisha Gray II Professor of Engineering Systems and Civil and Environmental Engi-
neering
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Chapter 1

Introduction

The 2007/2008 Human Development Report for the United Nations Development Pro-

gramme (UNDP) called climate change the "greatest challenge facing humanity" (UNDP,

2007). Improving efficiency is a key issue for fighting climate change, as in the near term

improved efficiency and conservation are likely to have the greatest potential for reducing

carbon emissions (Pacala and Socolow, 2004). Much of the current focus on reducing car-

bon emissions has been focused on the producers of emissions. However, the most recent

UNDP Human Development Report (UNDP, 2011) highlighted that "runaway growth in con-

sumption among the best-off people in the world is placing unprecedented pressure on the

environment." The Carbon Trust, a U.K. organization dedicated to accelerating the move

to a low carbon economy, has stated that consumer purchasing decisions are the ultimate

driver of carbon emissions, and that all emissions can be attributed to delivery of products

and services to those consumers (Carbon Trust, 2006). This makes improving the carbon

efficiency of the supply chains that produce those goods and services a key aspect of reducing

the impact of climate change.

1.1 Current Mitigation Efforts

Current policies for fighting climate change have focused on producers of emissions. This

includes national level policies such as the Kyoto Protocol, as well as corporate level initia-

tives such as the Carbon Disclosure Project (CDP). This focus has resulted in standards of
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measuring carbon emissions that are based on national or corporate boundaries and absolute

levels of emissions rather than efficiency. Understanding these current approaches provides

help in seeing the role of supply chain carbon efficiency measures.

1.1.1 National Emissions Inventories and the Kyoto Protocol

The most important agreement intended to fight climate change was the Kyoto Protocol, a

1997 international treaty that set limits on greenhouse gas (GHG) emissions for certain coun-

tries. The Kyoto Protocol required certain industrialized countries to measure their GHG

emissions and reduce them to a level 5% below their 1990 levels over time (Oberthur and Ott,

1999). The Intergovernmental Panel on Climate Change (IPCC) Guidelines (2006) provide a

basis for developing an accounting of all greenhouse gases emitted to or removed from the at-

mosphere over a given time, referred to as a GHG inventory. The Kyoto Protocol covers the

six main greenhouse gases, sometimes referred to as the Kyoto gases: carbon dioxide (C0 2);

methane (CH 4 ), nitrous oxide (N20), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs),

and sulfur hexafluoride (SF 6 ). The guidelines provide a conversion mechanism that can be

used to provide a single standard measurement for how much warming would be caused by a

given amount and type of greenhouse gas. The standard measurement is in terms of carbon

dioxide equivalents (CO 2 e), representing the equivalent mass of CO 2 needed to produce the

same global warming effect. The conversion mechanism is based on global warming poten-

tial (GWP) figures developed by the IPCC that specify the amount of warming caused by

the gas relative to CO2 . As these gases remain in the atmosphere for different lengths of

time, they may produce a different amount of warming over various time horizons. The

IPCC specifies GWP factors for 20, 100, and 500 year time horizons. The IPCC Guidelines

provide for six categories of emissions generating activities that must be tracked: Energy;

Industrial Processes; Solvents and Other Product Use; Agriculture; Land Use Change and

Forestry; and Waste. Using these guidelines, countries would measure their emissions on an

annual basis and work to meet their targeted emissions cuts.

The Kyoto Protocol provided several flexible mechanisms to help countries meet their

obligations, including the ability to develop emissions trading programs. Under an emissions

trading scheme a member would be allowed to allocate a number of carbon permits, each
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representing the right to emit one metric tonne of CO 2 e, equal to their allowed carbon

emissions. The allowances thus set a cap on the total amount of emissions allowed by all

participants in the trading scheme. By making the permits tradable, one member could emit

more than the allowed quota of emissions by purchasing additional permits from members

that are below the allowable limit. In this way emissions can be reduced in a more efficient

manner, as members who find it expensive to reduce emissions can purchase the excess

permits from members who are more efficiently able to meet their targets (Oberthur and

Ott, 1999).

The trading program approach was one chosen for use by the European Union (EU).

Under the European Union Emissions Trading Scheme (EU ETS) each country was allowed

to allocate a certain number of permits. Each individual nation was then able to allocate

the permits to individual installations that produce the emissions, and those installations

would participate in the trading market. The focus in the scheme was on the large power

producers, and any installation producing more than twenty megawatts of thermal power

was to be included in the scheme (Ellerman, Buchner, and Carraro, 2007). This approach

created a method for countries to monitor and reduce the carbon emissions produced in their

borders while letting installations make decisions best suited for their situation.

While the Kyoto Protocol is not without its flaws, it has influenced the development of

further emissions reduction programs. Kyoto took what was a global problem of emissions

reduction and created a system where individual countries were given targets for their own

emissions reduction. The implementation of the EU ETS took this a step farther and changed

the problem from the level of a national emissions reduction to one focused on individual

installations. This general structure has been adopted and spread to a number of other

programs designed to work at the corporate level. These programs include voluntary carbon

exchanges that work similar to the EU ETS, such as the Chicago Climate Exchange (CCX),

as well as corporate emissions reduction efforts related to sponsored programs or internal

Corporate Social Responsibility (CSR) programs (Bayon, Hawn, and Hamilton, 2007). These

corporate programs require their own guidelines for developing emissions inventories similar

to those developed by the IPCC for national inventories.
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1.1.2 Corporate Emissions Inventories

The GHG Protocol Corporate Accounting and Reporting Standards (WRI and WBCSD,

2004) is an accounting framework developed by the World Resources Institute (WRI) and

the World Business Council for Sustainable Development (WBCSD). Its website describes it

as "the most widely used international accounting tool for government and business leaders

to understand, quantify, and manage greenhouse gas emissions" (Greenhouse Gas Protocol,

2011). The purpose of the framework is to provide a set of standards for corporations and

government entities to inventory and report their greenhouse gas emissions. The structure

and measurements are based on the guidelines established by the IPCC. The standards pro-

vide guidance for setting organizational boundaries, identifying and calculating emissions,

tracking emissions over time, and reporting emissions. Several programs have adopted the

GHG Protocol standards to require tracking at the corporate level, including the U.S. Envi-

ronmental Protection Agency's (EPA) Climate Leaders and the CCX. The protocol places

emissions in three different scopes, but does not provide guidance on which scopes should

be included in a specific program, instead leaving that decision up to the actual program

implementation. The different scopes defined in the GHG Protocol are shown in Figure 1-1.

Scope 1 emissions are defined as direct emissions from sources owned or controlled by

the company. This includes direct combustion of fuels to generate electricity, steam, or heat

in stationary sources; physical or chemical processes that release emissions; combustion of

fuels in company owned mobile sources for transportation; and direct release of gases such

as refrigerant leaks or methane venting. Scope 2 includes indirect emissions produced by the

generation of purchased electricity. Scope 3 consists of other indirect emissions, including,

but not limited to, those from employee travel, waste disposal, and production of purchased

materials.
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Figure 1-1: GHG Protocol Emissions Scopes (WRI and WBCSD, 2004)

1.2 Measuring Corporate Carbon Footprints: RetailCo

Case Study

In this section we provide an example of measuring a corporate carbon footprint through a

case study done in conjunction with RetailCol, a national retail chain. This study was the

first attempt by RetailCo to measure the carbon footprint of the corporation as a whole,

using the year 2007 as a baseline. The following section details the work we performed to

develop the carbon footprint boundary, collect the data, and the results of our analysis.

1.2.1 Carbon Footprint Boundary

Based on discussions with RetailCo, the boundary we set for the carbon footprint calculation

is shown in Figure 1-2. This boundary includes:

* Electricity and natural gas usage at RetailCo facilities, including stores, offices, and

distribution centers (DCs).

* Product shuttle deliveries between DCs and DC to store deliveries controlled by Re-

tailCo, whether performed by the RetailCo private fleet or dedicated third party car-

riers.

'The name has been changed to protect proprietary data
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" Emissions from employee travel in RetailCo vehicles, including the corporate car fleet

and corporate jets.

" Emissions from employee business travel due to air travel and rental car usage.

Sources of emissions that were included in the system boundary, but for which data was not

available were:

" Waste disposal at RetailCo facilities.

" Fugitive emissions from refrigerants at RetailCo facilities.

Together these emissions consist of all scope 1 and scope 2 emissions, as well as some scope

3 emissions. Sources of emissions that were excluded from the boundary include:

" Emissions related to the production of goods purchased and sold by RetailCo.

" Delivery of products to DCs or stores performed directly by suppliers.

" Employee commuting.

" Consumer transportation to and from RetailCo stores.

" Consumer use and disposal of products sold by RetailCo.

" Direct delivery of products to consumers, such as through online ordering, performed

by third party carriers.

The year 2007 was chosen as the base year for the analysis, and all information was collected

for that calendar year.

1.2.2 Methodology and Data Sources

The calculations for this analysis were done in accordance with the specifications of the

GHG Protocol published by the WRI/WBCSD. A number of tools were employed in this

analysis. Emissions from purchased electricity were calculated using the tool for "Indirect

CO 2 Emissions from Purchased Electricity" (WRI, 2007b). This tool requires data regarding
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the amount of electricity used in kilowatt-hours (kWh) and the location where the electricity

was purchased. The location is used to determine which emissions factor, in terms of CO 2 per

kWh, is appropriate based on the US sub-region where the electricity is purchased. Different

areas of the US produce electricity using different fuel mixes, which means that electricity

produced in certain areas may have higher or lower carbon emissions than average. The use

of regional emissions factors is intended to capture this difference in fuel mix.

Data for electricity consumption was obtained through an online system that keeps track

of utility usage at RetailCo facilities. Facilities were separated into three categories-stores,

offices, and distribution centers-based on a site numbering system used by RetailCo. The

system included records for 6,788 accounts that consumed electricity in 2007. This was

comprised of 32 office locations, 29 distribution centers, and 6,727 stores. Approximately

400 sites did not have complete location records, and have not been matched with the

appropriate US sub-region. For this reason the initial analysis used the national average

carbon emissions factor for all locations.

Some RetailCo facilities still have utilities paid by a landlord. For these facilities the

average annual payment to the landlord for electricity was calculated from billing data pro-

vided by RetailCo. Electricity consumption for these stores was estimated using the total

payments divided by the average cost paid per kWh for facilities where RetailCo managed

the utilities.

Natural gas consumption at each facility was obtained through the online system as

well. The records indicated 4,725 sites consumed natural gas in 2007. This represents 24

distribution centers, 19 office buildings, and 4,682 stores. Usage was reported in therms,

equivalent to 100,000 british thermal units (BTU). To calculate carbon emissions the tool

"GHG Emissions from Fuel Use in Facilities" (WRI, 2007a) was used. The total usage was

converted from therms to terajoules and the default GHG factor for the Higher Heating

Value (HHV) of natural gas was applied to determine the emissions.

Emissions from DC and store deliveries made by RetailCo and their dedicated carriers

were calculated using the tool "Mobile Combustion CO 2 Emissions Calculation Tool" (WRI,

2003). Data for store deliveries was provided by RetailCo and consisted of the total fuel use

and miles driven for all deliveries in 2007. This was further broken down between private and
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dedicated carriers as well as store and shuttle deliveries. Deliveries by the RetailCo private

fleet and dedicated third party carriers were assumed to use diesel fuel, and emissions were

calculated using the fuel-based methodology. This method specifies capturing the actual

fuel consumed and calculating the carbon emissions based on the carbon content of the fuel.

This method is preferred over the other possible methodology, which is distanced-based.

Emissions from RetailCo corporate jets and the RetailCo car fleet were calculated using

fuel-based methodologies specified in the GHG Protocol calculator "CO 2 Emissions from

Business Travel" (WRI, 2006). Data regarding fuel usage in the RetailCo car fleet was

provided and consisted of the number of gallons of each type of fuel purchased by employees.

This data was obtained from purchase records using company gas cards. Data for RetailCo

jet use consisted of total fuel purchases and mileages. Emissions were calculated using the

total fuel consumed by type and the appropriate emissions factor for that type of fuel. The

calculator provides two options for flight travel, jet kerosene and aviation gasoline. The fuel

used by RetailCo planes was assumed to be jet kerosene, as this is the primary fuel type for

executive jets and commercial aircraft (EPA, 2008a). Jet kerosene contains about 15% more

carbon than aviation gasoline, so this represents an upper bound on the amount of carbon

emissions from the RetailCo air fleet.

For the RetailCo car fleet the standard gasoline carbon factor was applied for purchases

of regular, mid-grade, and premium fuel. The standard diesel carbon factor was used for pur-

chases identified as diesel. Approximately 1,570 gallons of Compressed Natural Gas (CNG),

928 gallons of E85 ethanol, and 29,613 gallons of "other" were used. The GHG Protocol

does not specify an exact emissions factor for CNG. Instead emissions were calculated by

converting from the number of gge (gallons of gas equivalent) of CNG purchased to the total

number of therms those gges represent, and then calculating emissions based on the amount

of carbon per therm. No factor currently exists for E85, and emissions were calculated using

the normal gasoline emissions factor. This likely represents an overestimation of the emis-

sions, but due to the small amount of E85 used the error is very small relative to the overall

amount of carbon. For those purchases listed as "other" the standard gasoline emissions

factor was used.

Emissions for employee rental car use were calculated using a distanced-based methodol-
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ogy. This uses the actual distance traveled and then determines the approximate fuel usage

based on the average fuel efficiency of the vehicle. This method is considered less precise

than fuel-based methods, as it does not account for variables such as city vs. highway driving

or the driving behavior of the vehicle operator. Data for this calculation was provided to

RetailCo by the rental car companies and consisted of the total miles driven and average

fuel economy of each different vehicle class offered by the companies. The distance and fuel

economy were used to estimate the amount of fuel consumed, and carbon emissions were

then calculated based on the carbon content of the fuel.

Emissions from air travel were computed using the distance-based methodology from the

tool "CO 2 Emissions from Business Travel" (WRI, 2006). The tool specifies an emissions

factor in kg of CO2 per mile of air travel for flights of three different lengths: short (<500

km), medium (between 500 and 1600 km), and long (>1600 km). Using travel records

provided by RetailCo, the number of flights of each length were provided for 2007. For each

flight the distance was calculated and the appropriate emissions factor applied to determine

the total carbon emissions.

Emissions from waste disposal and refrigerants were intended to be included in this

analysis, but were omitted due to a lack of data. Emissions from refrigerants are calculated

based on the amount of each type of refrigerant that escapes into the atmosphere during

initial filling, regular maintenance fillings, and end of life service for cooling equipment. In

situations where no new equipment is installed or old equipment removed, the amount of

refrigerant released into the atmosphere can be measured by the total amount added to

the equipment to top off the tanks during the year. This needs to be done for each piece

of equipment. Since different equipment may use different types of refrigerant, the specific

refrigerant used must be recorded so that the appropriate emissions factor can be applied.

Currently RetailCo has supplied a list of the number of pieces of cooling equipment in-

stalled at DCs, the type of refrigerant used in the equipment, and the total cooling tonnage

of the equipment. Though this information is not detailed enough to calculate the actual

emissions it does provide useful information regarding the current refrigerants used at Re-

tailCo facilities. About 75% of total cooling tonnage uses R22 as the refrigerant. R22 is an

ozone depleting substance that is being phased out as part of the Montreal Protocol. As
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Figure 1-3: Share of RetailCo Emissions by Source

such it is not covered under the Kyoto Protocol and is not reported for the GHG Protocol.

It does have global warming potential, however, and RetailCo may wish to report this infor-

mation. The only other refrigerant used in this equipment was R134A, a substance that is

included in the GHG Protocol. Based on an initial screening analysis recommended by the

GHG Protocol, RetailCo should seek to gather data from refrigerant usage for inclusion in

the corporate footprint, as at the upper bound of equipment leakage rates total emissions

would meet the threshold for significance.

1.2.3 Results

Based on the defined boundary and the data collected, the initial carbon footprint calcula-

tion for RetailCo in the year 2007 was approximately 1.51 million metric tonnes of CO 2e.

The vast majority of this is produced by the consumption of electricity in RetailCo facilities,

accounting for nearly 90% of the total emissions. The remaining emissions are due to diesel

consumption used for product deliveries (5%), natural gas usage in facilities (3%), and busi-

ness travel (2%). This is summarized in Figure 1-3. These emissions can be broken down

between stores, DCs, and offices as shown in Table 1.1.
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Location Metric Tonnes CO2e

Stores 1,263,988
DCs 70,717

Offices 19,733

Table 1.1: Emissions by Location Type

1.3 Problems with National and Corporate Emissions

Inventories

One significant problem for emissions inventories with limited boundaries is energy intensive

processes shifting from within the boundary to outside. For national level programs such

as the Kyoto Protocol, the effect is that emissions reductions in one country are offset by

possibly greater increases in other countries. The percentage of reductions that are offset in

this manner is referred to as the carbon leakage. Most estimates put the expected carbon

leakage from Kyoto at 5-25%, but may actually be between 50-130% (Babiker, 2005). The

effects of carbon leakage are due to the limited scope of the Kyoto Protocol, which exempts

some countries from emissions targets. Even in countries without specific emissions targets,

the flaws of a national inventory system can give misleading impressions about environmental

performance. Analysis of the carbon emissions embodied in imports and exports shows that

while the United States produces approximately 22% of the world's greenhouse gas emissions,

the U.S. is responsible for 25-26% based on consumption (Weber and Matthews, 2007). By

drawing the system boundary at a national level the inventory procedures fail to account for

the flow of goods in and out of the boundary, producing misleading results.

A similar carbon leakage problem exists for corporate level inventories, where emissions

can be moved outside a corporate boundary by shifting them up or down the supply chain.

This view of emissions as being separated by corporate boundaries is shown below in Figure 1-

4. In this view, five companies together comprise a supply chain that flows from upstream at

the extraction of raw materials to downstream at delivery of a finished good to the consumer.

Each step in the supply chain is owned by a different firm and produces some GHG emissions.

Under a corporate view of emissions each company draws a boundary around their portion
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Company 1 Company 2 1 Company 3 Company 4 Company

Figure 1-4: Corporate View of Emissions

of the supply chain and accounts for emissions within this boundary. Each firm has incentive

to reduce emissions by shifting activities upstream or downstream in the supply chain. Since

the use and disposal of the product fall outside the ownership of the firms in the supply

chain, none of them have incentive to account for and reduce those emissions, ignoring a

potentially significant share of total emissions.

Further, this view makes comparisons between firms difficult, as firms operating in the

same industry may control different portions of their supply chain. In a competitive bench-

marking process a company compares their performance with that of major competitors to

determine what it takes to improve (Bagchi, 1996), but these comparisons are often difficult

due to the limited amount of information available and differences in calculation method-

ologies. Several other retailers do provide information regarding their carbon footprint that

can be compared to RetailCo. This data is based on information publicly available from

company websites or other publications. This comparison is shown in Table 1.2.

On the basis of CO 2 e per square foot, RetailCo compares favorably to other retailers

such as Tesco, Marks & Spencer, and Wal-Mart. The reported number is higher than that

of Target stores, but limited details published by Target make a comparison difficult. Given

the high level of emissions from electricity for RetailCo, the percentage of emissions from

electricity consumption is a key point of concern. The 90% figure for RetailCo is high com-

pared to Tesco and Wal-Mart, but not when compared to Limited Brands and Marks &

Spencer. It is unclear whether this is due to performance by RetailCo, differences in cal-
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Retailer CO 2e Stores CO 2e Sq. Ft. CO 2e Year % Electricity
(metric per Store per sq.
tonnes) ft

RetailCo 1,510,000 6,200 243.55 71,348,850 0.02 2007 90%
Tesco 4,130,000 3,262 1,266.09 68,100,000 0.06 2007 57%

Wal-Mart 20,388,574 7,022 2,903.53 1,313,114,000 0.02 2006 72%
REI 103,000 80 1,287.50 23%

Target 2,630,000 1,488 1,767.47 192,064,000 0.01 2006 "vast majority"
Marks & Spencer 515,000 500 1,030.00 12,500,000 0.04 2007 84%
Limited Brands 886,658 2,900 305.74 2006 98%

Table 1.2: Comparison of RetailCo to Other Retailers

culation methodologies, or differences in supply chain ownership. For example, refrigerants

accounted for 17% of the total for Tesco but were not included in the carbon footprint of

RetailCo. The variation in performance may be due to differences in activities within the

supply chain that each firm controls. Clift and Wright (2000) showed that industries in the

U.K. generally associated with the upstream portion of the supply chain tend to be higher in

emissions per dollar. Thus, it is difficult to identify whether one firm is more efficient than

another when they control different aspects of their supply chain. REI includes emissions

from its REI Adventures travel company, explaining the low percentage of total emissions

from electricity. Wal-Mart operates one of the largest private truck fleets in the country,

contributing to their non-electricity emissions. The lack of a consistent basis to compare

between firms makes judging overall performance difficult.

This corporate view of carbon emissions also creates incentive to optimize at only one

stage of the supply chain, a result that can actually decrease the performance of the supply

chain as a whole (Lee and Billington, 1992). Matthews, Hendrickson, and Weber (2008)

estimated that scope 1 and scope 2 emissions account for only 26% of total supply chain

emissions on average. The focus on the more easily measured scope 1 and scope 2 emissions

ignores potentially important indirect effects of changes that may occur upstream or down-

stream in the supply chain (Weber, Koomey, and Matthews, 2010). For example, RetailCo

could reduce their total carbon footprint by shifting more store deliveries to direct supplier

deliveries, moving those emissions from scope 1 to scope 3 and outside their system bound-

ary. However, it is unclear whether this would result in an actual reduction in the carbon

footprint of the supply chain, as the direct store deliveries could be less efficient than the
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Figure 1-5: Supply Chain View of Emissions

current system. Thus, a corporate view encourages a narrow view of emissions in comparison

to the supply chain as a whole.

The problems with boundaries and efficient emissions reduction strategies can be im-

proved by instead taking a supply chain view of carbon emissions, as shown in Figure 1-5.

The common boundary allows for effective benchmarking by comparing performance be-

tween supply chains and the products they produce rather than individual companies. In

this case the total carbon emissions for all stages of the supply chain are measured; therefore

no incentive exists to shift emissions from one stage to another. When this view is extended

to the entire product life cycle, the focus is placed on strategies that reduce the total carbon

footprint of the system as a whole, not any one company.

1.4 Research Questions and Approach

With this idea in mind we seek to answer the following research question in this thesis:

How do we measure the carbon efficiency of a supply chain?

To answer this we will approach the problem by answering the following three subquestions:

1. How do we define supply chain carbon efficiency?

2. What methods do we use to measure it?

3. How does it work in the context of a supply chain?
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To answer these questions this thesis proceeds in three main parts. First, we develop a

definition of supply chain carbon efficiency and propose an attributional approach to Life

Cycle Assessment (LCA) as the appropriate method for measuring it. We then demonstrate

the use of LCA to measure the carbon efficiency of a supply chain through a case study

on the supply chain for bananas. Second, we analyze the uncertainty in the measurement

from our case study and present a carbon label as a method for reducing this uncertainty by

facilitating information sharing between firms in a supply chain. We show how information

sharing can be used to provide more accurate carbon measurement through an analysis of the

transportation mode and carrier selection decision. Third, we develop a model of product

carbon labels to show why firms would be willing to voluntarily measure and report the

carbon emissions of their products. We demonstrate how consumers that value lower carbon

products can drive emissions reductions throughout the supply chain and use our model to

gain insight regarding the structure of the carbon label program.

1.4.1 Definition of Supply Chain Carbon Efficiency

Based on a review of the literature, we develop a definition of supply chain carbon efficiency.

This definition builds upon the existing body of work in supply chain performance measure-

ment and eco-efficiency to present a specific metric that encapsulates the relevant aspects of

environmental performance and supply chain management. We develop our definition in the

context of the extended supply chain. The extended supply chain concept is common in the

green supply chain management literature, but often neglected in traditional supply chain

definitions that end at the consumer. Our use of efficiency draws from aspects of both supply

chain performance measurement and the sustainability literature on eco-efficiency. The def-

inition we present is compatible across different organizations, making it suitable for use in

the supply chain, where data must be collected across different processes and organizations

in a way that can be combined to measure the performance as a whole.

Finally, our definition is also compatible with the concept of a product's life cycle used in

Life Cycle Assessment, and thus we identify LCA as the appropriate method for measuring

supply chain carbon efficiency. LCA is the accepted method for measuring the carbon

footprint of a product, defined as the total greenhouse gas emissions per unit of product.
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This measure is in fact the inverse of the carbon efficiency of the supply chain, and so

the process of measuring the carbon footprint of a product serves as a way of measuring

the carbon efficiency of the supply chain. We then demonstrate the application of LCA

to measure the carbon footprint of a product through a case study on the supply chain of

bananas.

1.4.2 Carbon Label ramework

Based on the results of the case study and a review of sources of uncertainty in the LCA

literature, we identify the lack of access to relevant data and variability in the supply chain

as significant obstacles to the use of LCA to measure the carbon efficiency of supply chains.

To overcome these obstacles we propose a system of information sharing between supply

chain partners to provide access to relevant data that is currently unavailable or too costly

for firms to acquire. However, due to the credence nature of many environmental attributes,

including the carbon footprint, we identify a lack of incentive to share the true carbon

footprint of products. Through the framework of a carbon label we show how a third party

can increase the trust in these claims by providing services such as standards setting and

certification. Using this framework we define a carbon label in terms of the three dimensions

of traceability-breadth, depth, and precision.

Though this framework is useful for solving issues of data availability in the Life Cycle

Assessment process, it magnifies issues related to supply chain variability. Through an anal-

ysis of transportation decision-making we show how the use of average performance measures

can distort carbon footprint information and lead to poor decisions. Drawing on the concepts

of management accounting we propose a system based on Activity Based Costing (ABC) to

enable firms to more accurately calculate the carbon footprint of individual customers and

products. We demonstrate this in the mode selection decision through the development of

the carbon market area concept in intermodal transportation and with an application to

truckload procurement auctions in the carrier selection step. These improved metrics make

use of information available to the carrier, but not to the shipper, to demonstrate how in-

formation sharing between supply chain partners can improve the accuracy and precision of

carbon footprint measurements.
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1.4.3 Model of Product Carbon Labels

To gain insight as to why firms will voluntarily measure and share their carbon footprint

we develop a vertical differentiation model of product carbon labels. Our model builds on

existing work in the area of eco-labels by considering a label that is both voluntary and

communicates a continuous value. Our model introduces two additional parameters, the

cost of the label and the consumer perception of unlabeled products, that have significant

impact on the final labeling decision. When consumers are willing to pay a premium for lower

carbon products, firms have incentive to make costly investments in reducing emissions and

communicating their carbon footprint through carbon labels.

In addition to this basic model of product carbon labels we consider two extensions.

We compare the results of the basic model against a label model that certifies low carbon

products, rather than communicating the exact carbon footprint. In the second model

extension we address the role of upstream suppliers in the supply chain in reducing product

carbon footprints. In this extended model the upstream supplier is able to contribute to the

final product carbon label in two ways. First, by investing in emissions reductions in its own

operations the supplier can help reduce the carbon footprint of the final product. Second,

by performing a portion of the LCA needed to measure the product carbon footprint the

supplier may be able to reduce the cost of the label to the downstream firm. Through the

use of these models we develop insight into the actions of the third party administrator of

the label and the optimal behavior of the firms in the supply chain.

1.5 Structure of this Thesis

The remainder of this thesis is structured as follows:

In Chapter 2 we review the definition of a supply chain and identify the concept of

an extended supply chain as an important aspect of green supply chain management. We

identify efficiency as a key measure of supply chain performance measurement and eco-

efficiency as a popular metric for sustainability. Drawing from concepts in both supply chain

efficiency and eco-efficiency we propose a definition of supply chain carbon efficiency as "the
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ratio of the supply chain output, measured by the total quantity of product produced, to

be the total greenhouse gas emissions attributable to the product produced by the entire

supply chain, from the source of supply through product end-of-life." The inverse of this

ratio, often referred to as the carbon footprint of a product, can serve as a measure of the

carbon efficiency of the supply chain.

In Chapter 3 we examine current programs designed to measure the carbon footprint of

supply chains and products. The two most popular programs both specify the use of Life

Cycle Assessment as the method for measuring the carbon footprint. We review the LCA

methodology and identify an attributional approach to LCA as the appropriate method for

measuring the carbon footprint of a product.

In Chapter 4 we present a case study illustrating the use of LCA to measure the carbon

footprint of a product through an examination of the supply chain for bananas. We discuss

the system boundary, the data collection process, and present the results of the study.

In Chapter 5 we identify sources of uncertainty in the measurement of carbon footprint

of bananas. We show that despite significant control over the supply chain, a single company

has difficulty in measuring the carbon footprint of a product. We discuss the limitations of

current approaches to overcoming these difficulties and propose a framework based on the

idea of a carbon label as a way of reducing these limitations. We identify the key role that

third parties can play in the carbon label through services designed to facilitate sharing of

carbon footprint information between firms in a supply chain.

In Chapter 6 we show how firms can measure the carbon footprint of their operations

in a way that allows greater accuracy and precision than currently available methods. We

propose the use of ABC to allocate emissions to products and customers in a way that

supports improved decision-making within the supply chain. We demonstrate this through

the development of new metrics for the mode and carrier selection steps of the transportation

decision-making process. We apply the market area concept to carbon emissions in road-rail

intermodal transportation to show how the use of average mode efficiencies may lead to poor

decisions. In the carrier selection step we present a method for developing lane-level carbon

footprint measurements for use in the carrier assignment step of a truckload procurement

auction.
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In Chapter 7 we provide motivation for why companies would voluntarily share their

carbon footprint information through a vertical differentiation model of product carbon

labels. Our model extends current labeling models by allowing for a voluntary label that

communicates the exact carbon footprint of the product. We extend this model in two

ways. First, we compare our model of carbon labels with a model of the more common

certification-style eco-labels and identify the key differences between the outcomes of these

models. Second, we extend our model of product carbon labels to a two-tier supply chain

to derive insight regarding how firms in a supply chain can collaborate to reduce emissions

and increase profits.

In Chapter 8 we summarize the contributions of this thesis and identify areas for future

work.
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Chapter 2

A Definition of Supply Chain Carbon

Efficiency

In the previous chapter we introduced the idea of measuring the carbon efficiency of a supply

chain as an alternative to current efforts aimed at measuring the carbon emissions of nations

or corporations. In order to develop a method for measuring the carbon efficiency of a

supply chain we must first develop a working definition of supply chain carbon efficiency. In

this chapter we review the literature on supply chain definitions, supply chain performance

metrics, and eco-efficiency to produce a definition of supply chain carbon efficiency that we

will use in the rest of this thesis.

2.1 Definition of the Supply Chain

Though the key concepts of supply chain management have existed since the 1960s the term

first came in use during the 1980s (Cooper, Lambert, and Pagh, 1997). In the 1990s many

academics attempted to provide some structure for the emerging field (Lambert, Cooper, and

Pagh, 1998), and Bechtel and Jayaram (1997) identified more than fifty existing definitions

of Supply Chain Management (SCM). Many of these definitions differ in what is considered

part of the supply chain. The scope of a supply chain can be defined in terms of the

number of firms involved and the activities and functions involved (Cooper et al., 1997).

Early definitions spanned from a firm's suppliers to its customers (Houlihan, 1985; Jones and
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Riley, 1985). Stevens (1989) extended this upstream to the source of supply and downstream

to the point of consumption. In their own summary of previous definitions, Lummus and

Vokurka (1999) include all activities from raw materials through to the customer. This

scope was considered as commonly accepted in the literature at the time (Cooper et al.,

1997). While the definition and scope of the supply chain and supply chain management has

evolved over time, it is still generally conceptualized as stretching from suppliers to end-users

(Frankel, Bolumole, Eltantawy, Paulraj, and Gundlach, 2008). In a more recent review of

166 definitions of SCM, Stock and Boyer (2009) develop an encompassing definition of SCM

with a scope from the original producer of raw materials to the final customer.

Because this definition of a supply chain is so broad it has been recognized that it is often

too complex to manage in its entirety. Rarely is a firm involved in only one supply chain,

but only parts of it need to be managed (Lambert and Cooper, 2000). Lambert et al. (1998)

distinguish between primary members of the supply chain, who perform operational and

managerial activities, and supporting members that provide resources, knowledge, utilities,

or assets to the primary members. Mentzer et al. (2001) consider three degrees of supply

chain complexity: the direct supply chain consists of a company, a supplier, and a customer;

an extended supply chain includes suppliers of the immediate supplier and customers of the

immediate customer; an ultimate supply chain includes all the organizations involved in all

the upstream and downstream flows from the ultimate suppliers to the ultimate customer.

A key dimension of the management of a supply chain is that it must coordinate flows

between separate firms within the product flow channel (Ballou, Gilbert, and Mukherjee,

2000). Mentzer, Stank, and Esper (2008) identify the coordination/collaboration with sup-

pliers and customers as one of three commonalities across several definitions of SCM. Thus,

given the complexity of a supply chain a firm may choose to only coordinate or collaborate

with a subset of the supply chain it identifies as primary members. The primary members

could even change as the firm considers different degrees of the supply chain ranging from its

direct supply chain to the ultimate supply chain. Despite this focus on a subset of the supply

chain we contend that the traditional definition of the supply chain itself has been accepted

as extending from the upstream suppliers of raw materials through the end consumer. One

area of research that has consistently used an expanded definition of the supply chain is that
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of green supply chain management.

2.2 Green Supply Chain Management

The focus on the environmental aspects of the supply chain often uses the term "green"

(Vachon and Klassen, 2006). This represents a subset of sustainable supply chain manage-

ment, which Carter and Rogers (2008) define as "the strategic, transparent integration and

achievement of an organization's social, environmental, and economic goals in the systemic

coordination of key inter-organizational business processes for improving the long-term eco-

nomic performance of the individual company and its supply chains." Carter and Rogers's

definition is based on the triple bottom line of sustainability developed by Elkington (1998)

that balances economic, environmental, and social goals. Thus, green supply chain man-

agement extends traditional supply chain management by including environmental issues,

which has been the leading focus of sustainable supply chain management research over the

past 20 years (Carter and Easton, 2011).

Linton, Klassen, and Jayaraman (2007) identify many interactions between sustainability

and supply chains that occur outside the traditional definition of the supply chain, including

product use, product life extension, and product end-of-life. Srivastava (2007) defines green

supply chain management as integrating environmental thinking into a supply chain that

includes end-of-life and reverse logistics. Zsidisin and Siferd (2001) propose a definition of

environmental supply chain management for an individual firm that includes their response

to concerns regarding the environment with regard to design, acquisition, production, dis-

tribution, use, reuse, and disposal. Svensson (2007) noted that a common denominator

identified across a number of isolated approaches to sustainable SCM was the need for an

extended approach that moves beyond point of origin and end boundaries in descriptions of

supply chains. The traditional supply chain definition and focus has been on the process

of delivering products to the customer, but this can be extended to include a semi-closed

loop process that also includes the recycling, re-use, and remanufacturing of products and

packaging (Beamon, 1999a).

Thus, while Beamon (1999a) argues that the first step in a move towards sustainability
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is to extend the structure of the current one-way supply chain to a closed loop that includes

end-of-life, this does not mean green supply chain management efforts should focus only on

end-of-life issues. Van Hoek (1999) argues that a focus on reverse logistics is not enough, as

green efforts can begin at the source of supply. Srivastava (2007) separates problems in green

supply chain management between those that focus on green design and those that focus

on green operations. The green operations problems can be further broken down into those

focused on green manufacturing and remanufacturing, reverse logistics and network design,

and waste management. Bowen, Cousins, Lamming, and Farukt (2001) identify two types of

management activities that attempt to improve the environmental performance of purchased

inputs. The first, "greening the supply process," incorporates environmental considerations

into the firm's supplier management activities. The second, "product-based green supply,"

involves changing the product supplied. With this in mind we propose that while extending

the definition of the supply chain through to end-of-life is an important issue in green supply

chain management the focus should be on the environmental performance of the supply chain

as a whole.

2.3 Measuring Supply Chain Performance

Gold, Seuring, and Beske (2010) argue that supply chain level capabilities are even more

essential when supply chains incorporate social and environmental goals, as sustainability

goals require even closer interactions between all firms involved. Seuring and Muller (2008)

echo this view and identify the need for greater cooperation among partner companies as a

major topic in the sustainable supply chain management literature. In making decisions for

the green supply chain, non-environmental performance requirements such as cost, quality,

time, and flexibility must be included so that alternatives that best support the green supply

chain also make business sense (Sarkis, 2003). A major element within green SCM is the inter-

organizational sharing of responsibility for various aspects of environmental performance

(Hervani, Helms, and Sarkis, 2005).

One of the requirements for cooperation between firms in the supply chain is new metrics

that capture inter-organizational data and express them in terms that facilitate benefits
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analysis (Ballou et al., 2000). Unfortunately, in a review of the literature, Lambert and

Pohlen (2001) note that performance measures that span the entire supply chain may not

exist, as most companies focus on individual logistics measures rather than supply chain

measures. Holmberg (2000) argues that this failure may be the result of not taking a systems

approach, both internally within different functions of an organization and externally with

many organizations operating as part of a single supply chain. Caplice and Sheffi (1994)

state that developing metrics that excel across all criteria is not practically possible, and

thus firms must make trade-offs in developing metrics. One of the primary trade-offs is

between integrative metrics that promote coordination across the supply chain, and useful

metrics that are easily understood and provide managers with direct guidance (Caplice and

Sheffi, 1994). The focus on individual logistics measures may be the result of reliance on

useful measures rather than integrative ones. When firms are unwilling to look beyond their

own borders this represents a type of external fragmentation, and stands as a barrier to

improving performance (Holmberg, 2000).

Neely, Gregory, and Platts (1995) define performance measurement as the process of

quantifying the efficiency and effectiveness of action. In this context efficiency is a measure

of how economically the firm's resources are utilized when providing a given level of customer

satisfaction. A performance measure can be defined as a metric used to quantify the efficiency

and/or effectiveness of an action. A performance measurement system can be defined as the

set of metrics used to quantify both the efficiency and effectiveness of actions. Caplice and

Sheffi (1995) hold a similar view, proposing that a system level measurement can be provided

through a performance management system that brings together individual performance

metrics. A performance measurement system plays an important role in managing business

as it provides information necessary for decision-making (Gunasekaran and Kobu, 2007).

Performance measurement can be analyzed at three different levels: individual performance

measures, the set of performance measures as an entity, and the relationship between the

performance measurement system and the environment within which it operates (Neely et al.,

1995).

Numerous previous works have examined supply chain performance metrics (Chan, 2003;

Gunasekaran and Kobu, 2007; Gunasekaran, Patel, and Tirtiroglu, 2001; Lambert and Pohlen,
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2001; Shepherd and Giinter, 2006). Traditional supply chain models have predominantly

utilized two different performance measures: cost and a combination of cost and customer

responsiveness. Such measurements are generally inadequate, as they are not inclusive, ig-

nore interactions among important supply chain characteristics, and ignore critical aspects

of organizational strategic goals (Beamon, 1999b). Beamon (1999b) and Lohman, Fortuin,

and Wouters (2004) both propose three types of performance measures: resource measures,

output measures, and flexibility measures. Efficiency is a composite resource metric that

measures the utilization of resources to meet the system's objective (Beamon, 1999b). Chan

and Qi (2003) also identify efficiency as a composite measure. They separate measures into

three areas: input measures, output measures, and composite measures. Composite mea-

sures involve both input and output measures, and include widely employed measures such as

productivity, efficiency, and utilization. Bagchi (1996) explicitly identified efficiency as one

of the four categories of supply chain metrics. The popularity of efficiency as a metric may

be because business activities are often modeled as transformational processes, and the three

primary forms of measurement to capture the performance of a transformational process are

utilization, productivity, and effectiveness. Though definitions are not consistent between

all authors and fields, productivity serves as a measure of transformational efficiency and

is reported as a ratio of actual outputs produced to actual inputs consumed (Caplice and

Sheffi, 1994). Thus, while performance measurement may be composed of many types of

individual metrics efficiency is seen as an important indicator of performance.

However, Beamon (1999a) argues that traditional supply chain performance measure-

ments are inadequate for the extended supply chain because they do not capture envi-

ronmental performance. Beamon (1999a) categorized three ways manufacturing operations

impact the environment: waste (all forms), energy use, and resource use (material consump-

tion). Within these three categories a number of individual metrics can be developed, and

Hervani et al. (2005) discuss a number of indicators that may be appropriate for green SCM.

Caplice and Sheffi (1994) identify eight criteria for evaluating metrics, and note that design-

ing metrics that excel in each category is not practically possible. Instead firms must choose

metrics that tradeoff between certain criteria. Clift (2003) distinguishes between formulating

indicators of supply chain sustainability for applications that describe the performance of a
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single sector or company and those that apply to the supply chain as a whole. In develop-

ing metrics for green supply chain management we face a challenge of identifying metrics

that describe the performance of the supply chain as a whole, but recognize the difficulty in

inter-firm performance measurement.

One approach to supply chain environmental metrics is the environmental common de-

nominators approach that identifies environmental themes that run across all processes and

operations. These common denominators identify specific information that can be gath-

ered across the supply chain to provide a measure of environmental performance comparable

across the supply chain and within distinct functional areas (McIntyre, Smith, Henham, and

Pretlove, 1998). This concept fits well with the use of productivity measures that are consid-

ered easy to obtain, readily understood, and very compatible across time and organizations

(Caplice and Sheffi, 1994). The use of simple metrics may help prevent internal fragmenta-

tion, which occurs within a single firm where the effects on overall performance may be hard

to understand given a number of different individual metrics that span both financial infor-

mation and engineering figures (Holmberg, 2000). Thus, efficiency represents a key metric

in measuring supply chain performance, but incorporating environmental considerations re-

quires finding environmental themes that run across all organizations. One proposed method

is to use the sustainability concept of eco-efficiency to compare the performance of extended

supply chains for both existing and new products (Michelsen, Fet, and Dahlsrud, 2006).

2.4 Eco-Efficiency

The concept of eco-efficiency was first widely publicized by the World Business Council for

Sustainable Development in 1992 (Schmidheiny, 1992). Since then it has become a key

theme in sustainable development (Ehrenfeld, 2005). Despite the increased attention to eco-

efficiency no consensus definition has emerged (Huppes and Ishikawa, 2005; Jollands and

Patterson, 2004). The WBCSD (2000) states that "eco-efficiency is achieved by the delivery

of competitively-priced goods and services that satisfy human needs and bring quality of

life, while progressively reducing ecological impacts and resource intensity throughout the

life-cycle to a level at least in line with the earth's estimated carrying capacity." It can be
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Figure 2-1: Sustainability (Sikdar, 2003)

represented by the ratio of product or service value to environmental influence (WBCSD,

2000). The concept of eco-efficiency combines performance along two of the axes of sustain-

ability, environmental and economic (Ehrenfeld, 2005). A comparison of eco-efficiency with

other aspects of sustainability is shown in Figure 2-1 (Sikdar, 2003).

The use of eco-efficiency as a measure of corporate sustainability has several shortcomings

(Figge and Hahn, 2004):

" Relative measures do not give any information about effectiveness.

" Advances in environmental performance due to improved eco-efficiency can be over-

compensated by other factors.

" Eco-efficiency does not cover sociological aspects.

Sustainable measures should consider both the efficiency and the effectiveness of all three

dimensions of sustainability (Figge and Hahn, 2004). However, the social aspect of sustain-

ability has generally not been well defined and has received little attention compared to the

environmental and economic aspects (Hutchins and Sutherland, 2008). The operations man-

agement literature has often focused on the ecological perspective of sustainability without

incorporation of the social aspects (Carter and Rogers, 2008). Thus, while eco-efficiency is
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not a perfect measure of sustainability it does fit within the idea of a performance mea-

surement system, capturing two dimensions of sustainability while measuring one of the key

aspects of performance.

There are a number of possible indicators that can be chosen to measure eco-efficiency,

drawing on concepts from ecology, economics, and thermodynamics (Jollands and Patterson,

2004). The Global Reporting Initiative (GRI) approach proceeds from broad categories

through definite aspects to specific indicators. Categories are broad areas or groupings of

economic, environmental, or social issues. Aspects are general types of information related to

a specific category (such as greenhouse gas emissions). Indicators are specific measurements

of an individual aspect that can be used to track and demonstrate performances (Clift,

2003). This concept is employed by the WBCSD, which provides a set of generally applicable

measures that can be used for all businesses to create indicators to measure eco-efficiency

(WBCSD, 2000).

2.5 Defining Supply Chain Carbon Efficiency

With the ideas of green supply chain management, supply chain performance measurement,

and eco-efficiency in mind we are ready to develop a definition for supply chain carbon

efficiency. Our concept is based on the idea of production of a physical product, but changes

could be made to support the concept of supply chains for services. First, based on the

discussion of supply chain scope found in the green supply chain management literature we

believe that the definition of supply chain must be extended beyond the traditional end

point of the consumer. Thus, for the purposes of supply chain carbon efficiency we define

the supply chain as consisting from upstream at the source of raw materials to downstream

through the product's end of life.

Second, based on the concept of generally applicable indicators from the WBCSD we de-

fine the environmental influence to be the greenhouse gas emissions produced over the entire

supply chain. This fits with the idea of choosing an "environmental common denominator"

developed by McIntyre et al. (1998). We believe greenhouse gas emissions are a familiar

concept to most firms, and thus compared to other possible environmental indicators should
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Figure 2-2: Carbon Efficiency

be easy to obtain, readily understood, and compatible across time and organizations-key

strengths of productivity measures (Caplice and Sheffi, 1994).

Finally, we combine the ideas of eco-efficiency and supply chain efficiency by defining

supply chain carbon efficiency as the ratio of the supply chain output, measured by the

total quantity of product produced, to the total greenhouse gas emissions attributable to

the product produced by the entire supply chain, from the source of raw materials through

product end-of-life. This definition is depicted in Figure 2-2. This definition captures the

extended scope common in green supply chain management work and recognizes that firms

may be involved in the supply chain for multiple products. Thus, firms need a method to

not only measure their greenhouse gas emissions, but also determine to which product those

emissions may be attributed.

2.6 Conclusions

In this chapter we provided a review of key concepts from supply chain management, sus-

tainability, and performance measurement. Using this discussion as a basis we have proposed

a definition of supply chain carbon efficiency. We believe that this definition captures the

relevant aspects of both green supply chain management and eco-efficiency. However, many
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firms may be more familiar with the inverse of this measurement, the amount of green-

house gas emissions per product unit, which is commonly referred to as the carbon footprint

of the product (Weidema, Thrane, Christensen, Schmidt, and Lokke, 2008). The inverse of

eco-efficiency can be considered eco-intensity (Ehrenfeld, 2005) and is often used as an equiv-

alent variant (Huppes and Ishikawa, 2005). Thus, the carbon footprint of a product is also

a measure of the carbon efficiency of a supply chain, as reductions in the carbon footprint

represent an increase in the carbon efficiency. In order to measure the carbon footprint of

a supply chain it is necessary to have a method for quantifying the emissions related to the

product, and in the next chapter we review current approaches for doing so and propose an

appropriate method.
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Chapter 3

Measuring Supply Chain Carbon

Efficiency

In the previous chapter we developed a definition of supply chain carbon efficiency and

introduced the idea of a product's carbon footprint serving as a measure of supply chain

carbon efficiency. In this chapter we discuss current methods for measuring the carbon

footprint of products and supply chains and propose the use of Life Cycle Assessment as the

appropriate method for measuring a product carbon footprint.

3.1 Carbon Footprints

Despite wide use, the term carbon footprint seems to have no clear definition (Wiedmann

and Minx, 2008). Based on a review of its use in literature Wiedmann and Minx (2008)

propose the following definition:

"The carbon footprint is a measure of the exclusive total amount of carbon

dioxide emissions that is directly and indirectly caused by an activity or is accu-

mulated over the life stages of a product."

This definition includes only the emissions from carbon dioxide, but is applied to the full life

cycle of a product. Wiedmann and Minx (2008) propose the use of "climate footprint" as a

term for measures that include all greenhouse gases. This is in contrast to most definitions,
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which include all greenhouse gas emissions (Baldo, Marino, Montani, and Ryding, 2009;

Iribarren, Hospido, Moreira, and Feijoo, 2010; Plassmann et al., 2010; Weidema et al., 2008;

Wiedmann, 2009). Wright, Kemp, and Williams (2011) identify confusion surrounding this

term, as the influence of a number of gases on global climate is still debated. They note that

stricter definitions simply specify the six Kyoto Protocol gases, but in their own definition

include only CO 2 and CH 4 . Carbon footprints have been established for a number of different

applications, including countries and sub-national regions, schools, products, and investment

funds (Wiedmann and Minx, 2008). They can be analyzed at many different levels, including

products, households, companies, cities and regions, and countries (Peters, 2010). Consistent

with our focus on the supply chain of products from Chapter 2, and to avoid confusion

regarding which gases are included, we define the carbon footprint of a product to include

the six Kyoto Protocol gases accumulated over all life stages of a product.

Wiedmann and Minx (2008) specify Life Cycle Assessment (LCA) as the appropriate

method for calculating a carbon footprint. Though recommending that the definition and

method of carbon footprint should be kept separate, Peters (2010) identifies LCA as the

appropriate approach for measuring the carbon footprint of consumer products. The Inter-

national Standards Organization (ISO) working group identified a number of core questions

regarding standardization of the quantification of carbon footprints, and even in the rela-

tively easy class of LCA needed for carbon footprints there is no easy solution to the identified

questions (Finkbeiner, 2009). The considerable flexibility allowed by the ISO standards for

LCA make comparisons difficult, necessitating the development of further principles and

techniques that address specific issues related to carbon footprints (Plassmann et al., 2010).

The demand for carbon footprint information and the need for further principles and tech-

niques have lead to a number of international, national, and sectoral initiatives (Finkbeiner,

2009). Plassmann et al. (2010) identified more than thirteen different methodologies for

product carbon footprinting under development in 2009. Carbon footprint measurement

methodologies can be classified into three different main groups (Baldo et al., 2009):

* General guidelines, such as ISO standards, that represent the normative standard

references for CO 2 calculation.
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" Specific guidelines, such as PAS 2050, that contain ad hoc indication on GHG calcu-

lation and monitoring.

" Calculation tools that are aimed at calculating CO 2 emissions of specific activities.

The British Standards Institute's (BSI) Publicly Available Specification (PAS) 2050 repre-

sented the first standards for measuring the carbon footprint of products when released in

2008 (Wiedmann, 2009). Two other ongoing standardization efforts are the WRI/WBSCD's

Greenhouse Gas Protocol Scope 3 standards and the ISO 14067 standards (Wiedmann, 2009).

As the ISO 14067 standards are still under development, in the next section we review the

currently available standards from the GHG Protocol and the revised version of PAS 2050

released by BSI in 2011.

3.2 GHG Protocol

The GHG Protocol Corporate Standard was first published in 2001, and its wide acceptance

is credited to the consensus-based process adopted in its original development, followed

by two years of multi-stakeholder dialogue to produce the revised edition in 2004 (Huang,

Weber, and Matthews, 2009). A similar approach was followed for the development of

two new standards aimed at measuring emissions across the supply chain. The Corporate

Value Chain (Scope 3) Accounting and Reporting Standard (WRI and WBCSD, 2011a)

(henceforth, the Scope 3 Standard) accounts for value chain emissions at the corporate

level, while the Product Life Cycle Accounting and Reporting Standard (WRI and WBCSD,

2011b) (henceforth, the Product Standard) accounts for life cycle emissions at the individual

product level. The Scope 3 Standard complements and builds on the Corporate Standard

(WRI and WBCSD, 2004), as the Corporate Standard requires inclusion of scope 1 and

scope 2 emissions, but leaves the inclusion of any scope 3 emissions as optional. The Scope 3

Standard provides guidance for calculating all scope 3 emissions, and together with the scope

1 and scope 2 emissions of the Corporate Standard all emissions in the value chain are covered.

As companies are involved in supply chains for multiple products, the life cycle emissions

of any one product represent only a share of the total value chain emissions. However, the
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Figure 3-1: Product, Corporate, and Value Chain Comparison (WRI and WBCSD, 2011a)

sum of the life cycle emissions of all the company's products, plus some additional scope 3

emissions like employee commuting, should equal the company's total value chain emissions.

This relationship is pictured in Figure 3-1.

3.2.1 GHG Protocol Product Life Cycle Standard

The GHG Protocol Product Standard (WRI and WBCSD, 2011b) provides requirements

and guidance for companies and other organizations to quantify and publicly report an

inventory of GHG emissions and removals associated with a specific product. The first draft

of the Product Standard was developed in 2009 by Technical Working Groups consisting of

112 members representing diverse industries, government agencies, academia, and nonprofit

organizations from around the world. In 2010, 38 companies from a variety of industry

sectors tested the first draft and provided feedback on its practicality and usability, which

informed a second draft. Members of a Stakeholder Advisory Group (consisting of more than

1,600 participants) provided feedback on both drafts of the standard.

The Product Standard is intended to support performance tracking of a product's GHG

inventory and emissions reductions over time, and serves as a complement to the Value

Chain Standard. While each standard can be implemented independently, both standards

are mutually supportive. Possible uses of the standards together include:
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Figure 3-2: Product Carbon Footprint Process (WRI and WBCSD, 2011b)

" Applying the Corporate Standard and Scope 3 Standard (to determine the company's

total scope 1, scope 2, and scope 3 emissions), using the results to identify products with

the most significant emissions, then using the Product Standard to identify mitigation

opportunities in the selected products' life cycles .

" Using product-level GHG data based on the Product Standard as a source of data to

calculate scope 3 emissions associated with selected product types.

" Applying the Corporate Standard, Scope 3 Standard, and the Product Standard, and

using the results to inform GHG-reduction strategies at both the product and corporate

levels.

Implementation of the standard involves a twelve step process shown in Figure 3-2.

The Product Standard calls for a process-based LCA using the attributional approach.

It builds on the requirements of the ISO standards as well as the PAS 2050 standard. Com-

panies must account for the six main greenhouse gases, but are recommended to account

for other greenhouse gases that have a 100-year GWP defined by the IPCC. The standard

identifies five stages for any product life cycle: material acquisition and pre-processing, pro-

duction, distribution and storage, use, and end-of-life. When processes are determined to be

non-attributable, the standard allows them to be excluded from the boundary and provides

guidelines on how this should be determined and reported. Examples of non-attributable

processes include capital goods, overhead operations, corporate activities and services, trans-

port of the user to the retail location, and employee transportation. For products identified
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as final products a cradle-to-grave boundary is specified, but for intermediate products a

cradle-to-gate approach may be used when the final product is unknown.

The standard requires primary data to be collected for all processes under the company

ownership or control. Companies must assess the data quality using five indicators for all

processes identified as significant. The final quantification and reporting of the results is

specified in CO 2 e per unit of analysis, where the 100-year GWP factor is used to calcu-

late total CO 2 e. The final inventory must then be assured, either by a first or third party.

First party assurance is performed by the same company reporting the results, and must

be done by person(s) independent of the development of the product inventory or report.

Third party assurance is provided by person(s) outside the company performing the prod-

uct inventory and is considered to have a higher degree of independence and objectivity.

For organizations wishing to make comparisons between products, a number of additional

specifications are recommended, including identical units of analysis, equivalent boundaries,

similar allocation methods, full reporting of data types, quality, and uncertainty, an as-

sessment of representativeness, and third party assurance. The Product Standard does not

support claims regarding the overall environmental superiority or equivalence of one product

versus a competing product, referred to in ISO 14044 as comparative assertions.

3.2.2 GHG Protocol Corporate Value Chain (Scope 3) Standard

The primary goal of the GHG Protocol Scope 3 Standard (WRI and WBCSD, 2011a) is to

provide a standardized approach to help companies understand their full value chain emis-

sions impact in order to focus company efforts on the greatest GHG reduction opportunities.

The Scope 3 Standard was developed with three objectives in mind:

" To help companies prepare a true and fair scope 3 GHG inventory in a cost-effective

manner, through the use of standardized approaches and principles.

" To help companies develop effective strategies for managing and reducing their scope 3

emissions through an understanding of value chain emissions and associated risks and

opportunities.
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* To support consistent and transparent public reporting of corporate value chain emis-

sions according to a standardized set of reporting requirements.

The standard is intended for companies of all sizes in all economic sectors, as well as gov-

ernments, non-profits, and universities. It covers the six main greenhouse gases identified

by the Kyoto Protocol, but does not address issues such as avoided emissions or actions

taken to compensate for or offset emissions. Further, it is intended to compare a company's

emissions over time, and is not intended to support comparisons between companies based

on their scope 3 emissions. The standard was developed over a three-year process guided

by a 25 member Steering Committee of experts. The first draft was developed in 2009 by

Technical Working Groups consisting of 96 members. In 2010, 34 companies from a variety of

industries tested the draft and provided feedback leading to a second draft. The Stakeholder

Advisory Group, consisting of more than 1,600 participants, provided feedback on each draft

of the standard. The process also allows for individual sectors to develop guidance through

an inclusive multi-stakeholder process.

In addition to the standard, the GHG Protocol provides a companion document, "Guid-

ance for Calculating Scope 3 Emissions", a list of data sources, and several calculation tools

to assist in conducting the GHG inventory. The standard identifies fifteen categories of scope

3 emissions, separated between those upstream and downstream in the value chain, and sets

minimum boundaries for each category. The categories, separated between upstream and

downstream activities, are shown in Figure 3-3 along with their relation to scope 1 and scope

2 emissions. Companies collect data in each category that is either primary, directly supplied

by suppliers and value chain partners, or secondary, which includes industry-average data,

financial data, proxy data, and other generic data. When data is collected from suppliers

or other partners the emissions may need to be allocated, and recommended approaches

are given. The final reporting must include the total GHG emissions for each category in

metric tonnes of CO 2 e, excluding any biogenic CO 2 emissions, along with a description of

the methodologies, allocation methods, and assumptions used to calculate the emissions. A

number of additional reporting types are optional, including partner/supplier engagement,

product performance, historic and potential future emissions, and uncertainty information.

61



Scope 2 Scope 1
INDIRECT DIRECT

Scope 3
INDIRECT

Scope 3
INDIRECT

company
vehicles

operations sold products

Upstream activites Reporting company Downstream activites

Figure 3-3: Categories of Scope 3 Emissions (WRI and WBCSD, 2011a)

3.3 British Standards Institute PAS 2050

This British Standards Institute Publicly Available Specification 2050 (BSI, 2011) is intended

to benefit organizations, businesses and other stakeholders by providing a clear and consistent

method for the assessment of the life cycle GHG emissions associated with goods and services.

The PAS provides the following benefits:

* For organizations that supply goods and services, the PAS:

- allows internal assessment of the existing life cycle GHG emissions of goods and

services;

- facilitates the evaluation of alternative product configurations, sourcing and man-

ufacturing methods, raw material choices, and supplier selection on the basis of

the life cycle GHG emissions associated with goods and services;

- provides a benchmark for ongoing programmes aimed at reducing GHG emissions;
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- allows for a comparison of goods or services using a common, recognized and

standardized approach to life cycle GHG emissions assessment; and

- supports reporting on corporate responsibility.

e For consumers of goods and services, the PAS:

- provides a common basis for reporting and communicating the results of life cycle

GHG emissions assessments that supports comparison and uniformity of under-

standing; and

- provides an opportunity for greater consumer understanding of life cycle GHG

emissions when making purchasing.

PAS 2050 is intended for both product comparisons and communication of this information,

but does not specify requirements for communication. PAS 2050 specifies that LCA shall

be used to assess the GHG emissions of products. The specification distinguishes between

business-to-consumer assessments, which employ a cradle-to-grave approach, and business-

to-business assessments that employ a cradle-to-gate approach. Additionally, it does not

include product category-specific rules, but is intended that these can be developed in ac-

cordance with ISO standards and will be adopted by the standard when available.

The Department of Energy and Climate Change, the Department for Environment, Food,

and Rural Affairs (Defra), and BSI also jointly published the Guide to PAS 2050 (BSI, De-

fra, and DECC, 2011), which provides assistance to organizations seeking to implement PAS

2050. Additionally, the Carbon Trust published additional guides to support the robust com-

munication of product carbon footprint information and experiences from leading companies

in implementing product carbon footprinting (Sinden, 2009).

3.3.1 The Carbon Trust Carbon Reduction Label

The PAS 2050 standard recognizes a wide range of potential uses for the information on the

carbon footprint of products, but does not provide requirements on the use of the assessments

that arise from implementation of the specification (Sinden, 2009). It does not explicitly

support comparative assertions, but recognizes that individual stakeholders may compare
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results that are placed in the public domain (Sinden, 2009). The Carbon Trust offers a

labeling service that allows firms to communicate the carbon footprint of their product,

which would allow for comparative assertions. The label was based on the original carbon

footprint methodology developed by the Carbon Trust (Carbon Trust, 2007), but now offers

certification against PAS 2050 or the GHG Protocol Product Standard. In order to achieve

the label, firms adhere to supplementary guidelines that appear in the Code of Good Practice

and Footprint Expert Guide (Carbon Trust Certification Limited, 2011).

In a 2009 review of product carbon footprint schemes the Carbon Trust Carbon Label

was by far the largest of the twelve operational programs for product carbon footprints,

with 2,000 certified products (Bolwig and Gibbon, 2009). The Carbon Trust claims more

than 5,000 products carry the label and that it is one of the largest eco-labels in the U.K.

(Carbon Trust, 2011). Thus, we distinguish between the standards that set requirements for

measuring the carbon footprint of a product, and communication schemes like the carbon

label that set guidelines for comparing the results of different products.

3.4 Comparison of PAS 2050 and GHG Product

Standard

Both standards provide similar guidance in general but differ in certain implementations.

In some cases the requirements are due to differences in the intended use. The Product

Standard is intended for public reporting, and therefore includes requirements regarding

specific data components that must be reported. PAS 2050 merely requires that information

be recorded so that it can later be verified for conformance to the standard if necessary

but does not require it to be disclosed. The Product Standard also requires a statement

regarding the uncertainty be included in the report but is only guidance for PAS 2050.

Additionally, a number of potential areas of discrepancy in the standards are identified,

including the choice of allocation methods, materiality and cutoff rules, handling of soil

and stored carbon, inclusion of specific sector guidance, choice of time horizon, and system

boundary selection. In many cases the discrepancies may be alleviated through the adoption
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of the same category specific guidelines and through reporting guidance by programs that

use the PAS 2050 specification as a basis, such as the Carbon Reduction Label. Creation of

the GHG Product standard involved collaboration with the PAS 2050 creators, and this in

turn influenced the revised version of PAS 2050 released in 2011 (BSI and GHG Protocol,

2011).

What is clear from both the GHG Product Standard and the PAS 2050 specification is

that LCA is the appropriate method for measuring the carbon footprint of a product. Both

standards specify the use of LCA and offer similar guidance on boundary selection, data

collection, and quantification. Based on the definition of supply chain carbon efficiency we

developed in Chapter 2, the use of LCA for carbon footprint measurement in the literature,

and the requirements for the use of LCA in the two most widespread product carbon foot-

print programs, we propose that LCA is the appropriate method for measuring the carbon

efficiency of a supply chain. In the rest of this chapter we provide a review of the LCA

methodology.

3.5 Life Cycle Assessment

Life Cycle Assessment is a quantitative process for evaluating the total environmental impact

of a product over its entire life cycle, referred to as a cradle-to-grave approach. LCA is

product focused, with emphasis on quantifying the environmental impacts (Heijungs, 1996).

LCA, as defined by the ISO, consist of four phases:

1. Goal Definition and Scope.

2. Inventory Analysis.

3. Impact Assessment.

4. Interpretation.

In some instances only phases two and four need to be performed, in which case this is

referred to as a Life Cycle Inventory (LCI) (ISO, 2006a).
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The goal definition and scope phase includes identifying the product or function being

studied, the reasons for carrying out the study, defining the system boundary, and identi-

fying the data requirements. Inventory analysis involves identifying the process involved in

the system, defining the inputs and outputs of each process, and collecting data to quantify

those inputs and outputs. Impact assessment defines impact categories and used the results

of the inventory analysis to calculate indicator results in those categories. Finally, in the

interpretation phase, the results of the inventory analysis and impact assessment are inter-

preted in terms of the goal and scope definition; the results are checked for completeness,

sensitivity, and consistency; and conclusions, limitations, and recommendations are reported

(ISO, 2006a).

LCAs generally fall into two categories based on their purpose. An attributional LCA

is focused on looking back on a product and determining what emissions can be attributed

to it. A consequential LCA is focused on the environmental effects of what will happen due

to a decrease or increase demands for goods and services (Ekvall and Weidema, 2004). The

two types of LCAs are suitable for different purposes and require different types of data.

An attributional LCA is appropriate for making specific environmental claims regarding

a product, and typically makes use of average data for the product. The consequential

category is more suited to performing scenario analysis. It often requires marginal data for

the product as it requires making assumptions about economic factors related to changes in

product consumption or production (Tillman, 2000).

In addition to the types of LCA there are two main LCA methodologies: a process-based

approach and an Economic Input-Output (EIO) approach. In a process-based methodology

all phases of a product are examined and their inputs and outputs are mapped. This is

typically considered the conventional method of LCA, and is sometimes referred to as the ISO

or SETAC method (Lenzen, 2001). The EIO-LCA approach uses broad economic categories

to provide environmental impacts, but generally only includes the production phase. The

two methods can also be combined to form a hybrid approach (Suh et al., 2004).
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3.6 Limitations of Life Cycle Assessment

Life Cycle Assessment provides a general framework for measuring the environmental burden

of a product or function. Its general structure allows application to a wide variety of items,

but also allows considerable freedom in implementation. This freedom makes for difficulty

in comparison between any two separate LCAs. Previous work has highlighted this lack

of standardization in some important areas of Life Cycle Assessment, including defining

system boundaries (Tillman, Ekvall, Baumann, and Rydberg, 1994)(Suh et al., 2004) and

allocation methods (Ekvall and Finnveden, 2001)(Ekvall and Weidema, 2004). This lack

of standardization means that while LCA provides a methodology for measuring a carbon

footprint, the results of two studies may not be comparable.

Process-based LCAs have also been criticized for reasons related to their data require-

ments (Hendrickson et al., 1997). The high cost and time of performing process-based LCAs

poses difficulties for products with complex supply chains spanning many organizations. A

survey of LCA practitioners identified data collection as the most time consuming and costly

aspect of performing an LCA (Cooper and Fava, 2006). Collecting data across organizational

boundaries presents issues with proprietary and confidential information, data accuracy, and

a lack of representative data (Chevalier and Teno, 1996)(Huijbregts et al., 2001).

EIO-LCA provides an approach that requires less detailed process data. This work builds

upon the original EIO work of Wassily Leontief (1986), who developed the method for

economic study. This method makes it possible to describe the output of one industry sector

in terms of the inputs required from other sectors to produce it. By assuming a linear

proportionality, any dollar value of output can then be expressed in the dollar values of

inputs from other sectors required to produce it. The EIO-LCA model expands on this by

adding the environmental burdens linked to industry sectors (Joshi, 2000). Together this

can be used to determine the total environmental burden of an industrial sector per dollar

of sector output.

An EIO approach has several advantages over a process-based LCA. By including all

upstream activity within the economy the data is more complete, and there is no need to draw

system boundaries. The data is generally compiled from publicly available sources, allowing
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for greater transparency than process-based LCAs that use proprietary data. Finally, the

EIO approach allows a much cheaper and faster method of providing results. In cases where

only an approximate result is needed an EIO LCA can provide a very rapid and inexpensive

answer (Hendrickson, Horvarth, Joshi, and Lave, 1998).

The assumptions and methods of EIO analysis do have drawbacks for determining the

environmental burdens of a specific product. Though EIO tables may contain hundreds of

sectors, this still requires significant aggregation of different products and processes. Some

sectors may be too heterogeneous to produce correct results (Hendrickson et al., 1998).

The information in the Input-Output tables only captures the effects of production and

therefore the use and disposal phases are not included (Joshi, 2000). Many countries lack

the sectoral environmental data needed for analysis, meaning that imports must be assumed

to be homogeneous with domestic products (Suh and Huppes, 2005). Finally, the nature

of Input-Output analysis assumes proportionality between monetary and production flows

(Lenzen, 2001). That is, if a product doubles in cost then the environmental burden doubles

as well. Though necessary for the computational results this may not reflect the reality of

the production process.

In an attempt to build on the strengths of process-based and EIO-LCAs a third method

has emerged, a hybrid of the two (Suh and Huppes, 2005). The hybrid method uses a

detailed processed based methodology for the important foreground processes and an EIO

model to fill in the background processes (de Haes, Heijungs, Suh, and Huppes, 2004). The

use of a hybrid method allows the EIO method to be used to inexpensively provide complete

data for the less important parts of the system, while using the more detailed and specific

process data for the most important parts. In order to perform a hybrid LCA it-is necessary

to determine the boundaries between the EIO and process-based systems. Poorly selecting

these system boundaries can introduce significant error (Suh and Huppes, 2005). Hybrid

LCAs may also involve some double counting, as portions of the process-based LCA may

have been included in the 10 data. However, this may still produce more accurate results

than a pure process-based LCA that draws system boundaries and ignores processes which

occur outside of the system (de Haes et al., 2004).
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3.7 Conclusions

Each of the three methods discussed for performing an LCA presents some issue for per-

forming the measurement of a product carbon footprint. Process-based LCAs lack stan-

dardization and require detailed data that can be difficult to obtain. EIO-LCAs aggregate

information at sector levels and do not provide measurements specific to a supply chain.

Hybrid LCAs, while they may provide better results in certain cases, suffer from a combi-

nation of the issues found in process-based and EIO LCAs. Despite the strengths identified

for both EIO and Hybrid LCA, the PAS 2050 standard adopted a process-based approach

(WRI and WBCSD, 2011b; BSI, 2011). The GHG Product Standard and the proposed ISO

14067 standards also stipulate the process method as the basic approach, but allow for use of

EIO data as secondary data (Wiedmann, 2009). After reviewing the current programs and

methods of LCA, we propose a process-based, attributional approach to LCA as the appro-

priate method for measuring the carbon footprint of a product. It underlies both the GHG

Protocol and PAS-2050 standards, as well as being the most widely accepted methodology

for measuring carbon footprints in environmental research (Wiedmann, 2009). In the next

chapter we provide an example of how LCA can be applied to measure the carbon footprint

of a product through a case study of the supply chain for bananas.
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Chapter 4

Case Study: The Banana Supply Chain

4.1 Introduction

In the previous chapters we proposed the carbon footprint of a product as a measure of the

carbon efficiency of its supply chain and identified Life Cycle Assessment as the appropriate

method for performing the measurement. In this chapter we demonstrate how LCA can be

used to measure the carbon footprint through a case study of the banana supply chain.

This study involves the cooperation of Chiquita Brands International (CBI), a leading

international distributor of fruits, and Shaw's, a New England-based grocery store chain, to

measure the carbon footprint of bananas using an LCA methodology. Bananas represent

a significant import in the United States, with nearly 10 billion pounds imported in 2010

(USDA, 2011), and a challenging supply chain that requires getting the products to market

from Central and South America in a timely manner under temperature control. Working

with the partner companies, we examined the activities associated with the supply chain for

any greenhouse gas emissions that might be produced. For each activity we collected data

regarding the processes responsible for producing emissions. Using this data we constructed

an LCA model to calculate the total carbon footprint for the product. This results of that

study are presented in this chapter.
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4.2 Goal and Scope Definition

The first step in an LCA is to determine the goal and scope of the study. In this section we

provide a list of the objectives for this study, the primary and secondary functional units,

background information on the supply chain for the product, define the system boundary,

and identify the method used for quantifying the environmental impact.

4.2.1 Objective

The objective of this study is to measure the carbon footprint of bananas sold by CBI.

The process involves collecting data regarding CBI's supply chain for bananas from the

acquisition of materials forward to delivery to customers. Since a carbon footprint should

measure the impact over the product's entire life cycle, the supply chain data was used

to construct a model using the SimaPro LCA software tool. This allows estimation of life

cycle impacts that occur outside CBI's supply chain, such as impacts related to upstream

production of materials and end-of-life waste disposal. An additional partner, Shaw's, was

able to provide data regarding supply chain activities for bananas once they have reached

retail chains. Together the two companies' supply chains capture the life cycle of the banana

from its production at the farm through to final sale to the end consumer.

The results of this study are by nature backwards looking, measuring the emissions

attributable to bananas for operations during the year 2009. The results are not intended to

evaluate the impact of specific decisions, but rather provide information about the average

impact of bananas that will be useful in three ways:

1. Provide an estimate of the carbon footprint of bananas over their life cycle. This

information could be used to develop a product carbon label and help influence future

consumer purchases to reduce environmental impact.

2. Develop a process useable by CBI on an ongoing basis to track information necessary

for developing performance metrics related to environmental impact.

3. Identify areas of high environmental impact and uncertainty in the CBI supply chain

for further exploration of strategies to reduce environmental impact.
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4.2.2 Functional Unit

The primary functional unit for this project is a single box of bananas delivered to a retail

outlet. A typical box of bananas delivered to a retail customer consists of a cardboard

container box, a plastic shroud wrapping the bananas, and approximately 18.14 kg (40 lbs)

of bananas. When packed at the farm a box of bananas will hold more than 19 kg of bananas,

but due to water loss during transit the weight is reduced before delivery to customers. Boxes

were chosen as the functional unit since it is a common measure for quantity throughout the

supply chain, avoids confusion regarding the difference in beginning and ending weight, and

represents the individual unit for transactions between CBI and their retail customers.

While bananas are sold in box units to retail customers they are usually sold to end

consumers by weight. For this reason 1 kg of bananas sold to the end consumer is considered

to be a secondary functional unit. This functional unit is based on the assumption of 18.14

kg of bananas per box. When presenting results to consumers this may be the preferred

functional unit as it represents the manner in which the product is purchased (BSI, 2011).

The functional unit is further separated between banana boxes sold in North America

and Europe. While the supply chains of the two are substantially similar they are managed

by different organizations and do include slightly different packaging, different methods of

handling, and a significant difference in average transportation distance due to the longer

ocean voyage to Europe and the larger geographic area of North America. The specific

differences will be discussed in the data inventory and results will be presented for each

market separately.

4.2.3 Description of Supply Chain

Bananas sold in North America and Europe by CBI are typically grown in Central and

South America. CBI works with a network of owned plantations, independent growers, and

wholesalers at more than 200 locations, primarily in Guatemala, Honduras, Panama, and

Costa Rica (referred to generally throughout this document as "the tropics"). Though prac-

tices may vary from farm to farm, banana cultivation typically involves the application of

fertilizers, pesticides, and fungicides via manual and aircraft spraying. Once the bananas
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approach ripeness they are picked, inspected, washed, and packaged for transportation pri-

marily through manual labor in packing stations located at the farms. The bananas are

shipped from the packing locations by truck to the outbound ocean port. In transit and at

port the bananas are kept cool in refrigerated containers (primarily for North America) or

bulk storage (primarily for Europe) until loading on a ship for ocean transportation.

The bananas continue to be refrigerated by container or in bulk refrigerated holds during

the ocean voyage. After arriving at the destination port the bananas are unloaded from the

ship and stored near the port until pickup. Customers may pick the bananas up at the ports

themselves, arrange for CBI to deliver them to their facility, or CBI may take them to their

own distribution centers. Upon reaching the DC the bananas undergo a chemical ripening

process in a temperature controlled environment that lasts three to four days. At the end of

this process the bananas are ready for sale and have a limited shelf life before over ripening.

From the DC, bananas are shipped either directly to retail outlets or first to a customer DC

and then to the retail outlets. At the retail outlets bananas require no special handling or

care such as refrigeration. They are a fast moving product, with most bananas typically

being sold within a day of arriving at the store.

In addition to the bananas themselves, a number of additional materials are used to

package the bananas for transport and sale. From the packing station to North American

DCs, bananas are normally shipped in container quantities. Each container holds twenty

pallets of forty-eight banana boxes, for a total of 960 boxes per container. For bulk shipping

bananas are typically palletized in forty-eight box lots, but the number of pallets per shipment

varies depending on the size of the vehicle. In addition to the primary packing of the

cardboard box and plastic shroud, secondary packing materials include cardboard corner

board pieces used to help secure boxes of bananas and reusable wooden pallets. Though CBI

supplies the cardboard and plastic shroud used as the primary packaging for the bananas,

the retailers who purchase bananas from CBI dispose of these materials.

In addition to packaging materials a number of different chemicals are required to produce

and ripen the bananas. Chemical fertilizers, fungicides, and pesticides are typically applied

at the farm to help with cultivation. These chemicals are usually applied by aerial spraying

or manually by farm workers. The bananas are picked before ripening and kept refrigerated
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during transportation. The refrigeration requires production and use of refrigerant gases,

many of which are powerful greenhouse gases. Just before sale the bananas are chemically

ripened in ripening rooms using ethylene gas, an organic compound that can be used to force

fruits to ripen. The ethylene is purchased in liquid form and then applied to the bananas

via air circulation within specially designed ripening rooms.

4.2.4 System Boundary

The system boundary chosen for this project is shown in Figure 4-1. The ideal system

boundary for an attributional LCA should include the entire life cycle of the functional

unit with every component traced back to its natural state. In practice such a boundary is

difficult, if not impossible, to actually achieve and the ISO standards allow for the exclusion

of certain stages, processes, inputs, and outputs provided it does not significantly change the

conclusions of the study (ISO, 2006b).

In keeping with this definition of the system boundary the following activities are in-

cluded:

" Upstream production processes for items consumed during production and distribution,

including fuel, energy, farm chemicals, ethylene gas, and packaging materials.

" Fuel and energy consumption at the farm used for harvesting, chemical spraying, and

packing processes.

" Fuel and energy consumed during transportation operations and in the operation of

distribution facilities such as DCs, ports, and retail outlets up to and including the

place of final sale to end consumers.

" End of life waste scenarios for packaging materials.

" Production and leakage of refrigerant gases.

" Production of nitrous oxide at the farm due to application of nitrogen-based fertilizer.

The following activities have been excluded from the system:
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" All activities related to the use phase of the end consumer, including transportation,

use, and disposal of any remaining organic matter.

- In general bananas require no special handling, storage, cooking, or processing,

so in use emissions should be minimal.

" Infrastructure, capital goods, and durable products such as pallets, roads, ports, build-

ings, and vehicles used during production and distribution.

" Organic waste from the bananas generated at the farm, including stalks and other

material separated from the bananas during the packing process.

- The biogenic emissions from the decay of the organic matter are excluded and

likewise no credit is provided for any greenhouse gases sequestered in the product

during growth.

" Rejected bananas that do not meet quality standards during the packing process are

considered a byproduct.

- All impacts from the cultivation of these rejected bananas have been allocated to

the bananas that do pass quality inspection.

- All impacts for further processing of the rejected bananas into products such as

purees or ingredients are excluded from this system.

" Office buildings and other support activities not involved in production and distribution

(estimated to attribute approximately 0.1% to the total carbon footprint).

" All activities related to employees, including commuting and food provided on site.

" Price tags, product stickers, and other small items estimated to have an impact of less

than 1% of the total.

Though a number of different configurations of the supply chain may exist, this analysis

focuses on the particular configuration where CBI transports the bananas from the port to

their DC, performs the ripening, ships the bananas to the customer DC, and the customer
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System

Figure 4-1: System Boundary

distributes them to the retail outlets. This configuration is generally the most complex and

should provide an upper bound on the carbon footprint of the product, as other configurations

generally omit at least one of the included distributions steps.

4.2.5 Impact Assessment

This project is intended to provide an estimate of the carbon footprint of the product, and

therefore only a single environmental impact assessment has been performed. All impacts

were assessed using the 2007 IPCC 100 year GWP method. This method provides a single

measure, the estimated contribution to climate change as represented by the amount of CO 2e

attributable to the system. All impacts were calculated using the IPCC 2007 GWP 100a

version 1.01 method in SimaPro with the "exclude infrastructure option" selected.
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4.3 Inventory Analysis and Data

The second step in an LCA is the inventory analysis. In this section we provide an assessment

of the data quality collected in this study, describe the data collection for each step in the

supply chain, and provide initial results from each stage of the supply chain.

4.3.1 Data Quality

Data for this project was collected from two primary sources, CBI and Shaw's. Where

primary data was not available secondary sources were used, including published reports,

specifications, studies, and the Ecoinvent LCA database. The quality of the data has been

assessed on three criteria:

" Source-primary or secondary.

" Temporal-when was the data collected and over what period was it aggregated.

* Representativeness-how closely the data collected represents the supply chain of the

system, including geographic and operational considerations.

4.3.1.1 Source

Primary data was collected for a significant portion of the supply chain through the involve-

ment of CBI and Shaw's. The primary data collected consisted of utility records, trans-

portation data, fuel purchase information, sales data, and specific tracked performance data

such as farm yields. For packaging materials purchased by CBI, specification regarding the

amount and types of materials were provided. For chemical usage CBI and Shaw's provided

information regarding ethylene consumption, and CBI's agricultural division provided rec-

ommended quantities per hectare of farm chemicals. CBI provided refrigerant information

based on data from maintenance records.

Secondary data sources were used for specification on secondary packaging such as card-

board corner board, plastic banana wrappers, and plastic ethylene bottles. All processes

were modeled using secondary data from the Ecoinvent database in SimaPro. The data
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Stage Data

Primary Primary data regarding specification, types of material, and
Packaging quantities.
Materials

Secondary Secondary data for upstream extraction and processing.
Packaging
Chemicals Secondary data from publicly available specification for similar

products.
Farm Operations Primary data on recommended types and quantities.

Origin Port Secondary data for modeling of upstream processing.
Ocean Primary data regarding energy consumption and product
Transportation output.
European Ports Primary data regarding transportation distance, product

quantities, and energy consumption at ports.
North American Primary data on distances, fuel consumption, and cargo
Ports quantity.
CBI DC Primary data on energy consumption and product quantities.
Customer DC Primary data on energy consumption and product quantities.
Retail Outlet Primary data on energy consumption and product quantities in

the USA and Europe.
Use Primary data on electricity consumption and product quantities

for one customer DC in the USA.
Disposal Primary data on sales information and energy consumption for

one store in the USA.
Secondary data for consumer transport distances.
Secondary data for disposal scenarios.

Table 4.1: Data Sources

sources are summarized in the table below, and more detail is given in the relevant sections

later in the report.

4.3.1.2 Time Period

The intended time period for data collection was the full calendar year for 2009. Specific

cases where the data was not collected for this time period include:

" Data related to customer transportation and energy consumption is based on the year

2007.

" Some ports and DCs in Europe reported data for partial periods of 2009.
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" Some transportation data from the CBI DC to customer DC in Europe was provided

for a subset of 2009 and was extrapolated to a full year.

" Ocean transportation cargo data is based on a set of voyages during 2009, approxi-

mately two to three weeks of data per service.

- Fuel information and travel distances were collected for the full year and were

found to be consistent with the subset of voyages for which cargo data was also

available.

There are no special circumstances or changes in the supply chain known that would indicate

the collected data was not representative of the intended full year 2009 timeframe.

4.3.1.3 Representativeness

Where possible, data has been collected for all of CBI's operations in order to provide a

representative picture of their specific supply chain. The data is intended to model operations

where CBI manages transportation and distribution from the port through to the customer

DC. Areas where the data collected may not be representative include farm operations,

port operations in the tropics, transportation to customers within Europe, and customer

operations.

" Data for farm operations was gathered for only one of six primary growing regions in

the tropics.

" Data regarding port operations was provided for only one port in the tropics region.

" Data regarding transportation to customers in Europe was provided for two of the four

countries where CBI handles transportation.

. Data was provided by only one customer in the U.S. and none in Europe.

A summary of the representativeness of data collected at different stages is shown in Ta-

ble 4.2. Several alternative scenarios were considered in a sensitivity analysis performed to

address issues of representativeness.
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Stage Data

Chemicals Average recommended usage across all six growing regions.

Farm Operations Average data for more than thirty farms, but only within one

growing region.

Origin Port Data for only one of six ports in the tropics.

Ocean Data for five of six ocean services, averaged across services due

Transportation to limited time horizon of data.

European Ports Data for all ports.

North American Data for four of five ports.

Ports
European All shipments from Port to DC.

Transportation Data for transportation to customer in two of four regional

markets.
Average statistical data for customer transportation.

North American All shipments from Port to DC and to customers.

Transportation Customer transportation for one retail customer.

CBI DC Data for six of nine DCs in the USA.
Data for ten of eleven European DCs.

Customer DC Data for only one customer in the USA, none in Europe.

Retail Outlet Data for only one store of one customer in the USA, none in

Europe.

Disposal Average disposal scenarios for USA and England.

Table 4.2: Data Representativeness

81



4.3.2 Loss Rates

Data has generally been collected and reported based on production quantities rather than

final sales numbers to customers. Since the functional unit chosen for this study was a box

of bananas delivered to the retail customers the results must be adjusted to account for loss

during operations. Based on an estimate reported by CBI the loss rate was assumed to be

4%. That is, for every 100 boxes produced by CBI only 96 will end up sold to customers, with

the other four lost, damaged, or rejected by the customer. This is reflected in the reported

emissions numbers by first calculating results per box based on production data and then

multiplying by 1.0417 (100/96) to account for allocation of the total emissions to only sold

bananas. Throughout this report all data is reported per box produced while results are

presented per box sold, reflecting the adjustment due to loss.

4.3.3 Transportation

Transportation in the banana supply chain can be separated between ground transport

performed by trucks in the tropics and destination markets and the ocean voyage that brings

the bananas to market from the tropics.

4.3.3.1 Ground Transportation

Ground transportation of the bananas includes shipping from the farm to the outbound port,

inbound from the destination port to the CBI DC, from the CBI DC to the customer DC,

and outbound from the customer DC to the retail store. Additional ground transportation in

the system includes delivery of chemicals and packaging materials to the farm and ethylene

ripening fluid to the CBI DC.

Data

Tropics Shipping distance from the farm to port can vary based on where the farm

is located and which shipping port was used. Transaction level data for each shipment

was not available; instead an average distance to port was calculated based on logistics
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Guatemala | Honduras | Nicaragua | Costa Rica [ Panama |_Colombia_| Ecuador
Total km traveled 29,554,975 4,411,562 3,829,143 10,710,321 3,669,115 - -

Equivalent Containers 54,244 26,003 3,528 41,949 16,142 21,572 18,412
Total boxes 28,043,772 11,425,631 1,661,320 24,256,076 15,265,841 17,737,773 17,675,316
To EU boxes 0 0 0 0 15,265,841 17,737,773 17,675,316
To NA boxes 28,043,772 11,425,631 1,661,320 24,256,076 0 0 0

Avg. km per container 545 170 1,085 255 227 - -

Avg. boxes per container 517 439 471 578 946 822 960

Table 4.3: Ground Transportation From Farm to Port

data provided by CBI's operations in the tropics for eight different countries (Guatemala,

Honduras, Nicaragua, Costa Rica, Panama, Colombia, and Ecuador). This data included

the total kilometers traveled for all shipments (except in Colombia and Ecuador where this

data was not provided), the number of equivalent containers moved, and the total number of

boxes shipped to North America and Europe for each country. From this data the average

distance per shipment for each country was calculated by dividing the total km by the number

of equivalent containers shipped, providing an average distance per equivalent container.

Average truck utilization was calculated by dividing the total number of boxes shipped by

the number of equivalent containers to determine the average number of boxes per shipment.

The average distance and boxes per shipment for North America bound shipments were

calculated by averaging the results from the four countries that supplied North America

(Guatemala, Honduras, Nicaragua, and Costa Rica). The data for Panama was used as

the average distance for Europe-bound shipments due to the lack of distance data for the

other sourcing countries, Colombia and Ecuador. Emissions from the shipment were then

allocated based on the average number of boxes per shipment.

North America Shipping distances at the destination side similarly can vary depend-

ing on the exact path traveled by the bananas. Data provided by the North American

logistics teams included the total number of shipments, the total number of boxes shipped,

the total distance traveled, and the average fuel consumption of the vehicles used. This was

further broken down between shipments from the port to DCs and from DCs to customers.

The shipping data is based on records from all five ports and nine DCs in North America

and includes shipments to more than 300 customer locations.

The average shipment distance was calculated by dividing the total distance by the
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Origin Destination Total # of Shipments Total Distance (km) Total Boxes

Port DC 9,991 4,255,568 10,586,392
DC Customer 6,374 2,806,902 4,036,569

Table 4.4: Ground rhansportation Data, NA Ports and DCs

number of shipments, producing an average distance traveled per shipment of 426 km from

the port to the DC and 440 km from the DC to the customer. The average number of boxes

per shipment was 1,060 from the port to the DC and 633 from the DC to the customer, and

was calculated in a similar manner. Emissions from the shipment were then allocated based

on the average number of boxes per shipment.

Data on transportation for customers from the DC to the retail outlet in North America

was provided by Shaw's. This data included the total distance driven for all shipments

in a year, the number of shipments, the total number of banana boxes delivered, and the

percentage of all shipments composed of bananas as measured by volume. Using this data

the average distance per shipment of 118 km was calculated by dividing the total distance

driven by the number of shipments. Emissions from the shipment were allocated based on

the average of eighteen boxes of bananas per shipment and 5.4% of the shipment volume

being made up of bananas. With eighteen boxes of bananas per shipment representing 5.4%

of each shipment volume, the average total shipment volume is equivalent to 333 boxes of

bananas.

While data from only a single grocery chain was available, previous work has noted that

distribution patterns are consistent across firms within regions. Typical distribution radiuses

for supermarket chains would be 50-100 miles in the eastern United States and 100-150 miles

in the west (Ellickson, 2007). The average distance to stores calculated for Shaw's was about

70 miles, consistent with the reported values for the eastern United States.

Europe The European logistics team provided data for shipments from ports to DCs

where CBI managed the transportation. This consisted of records for more than 6,000

shipments and seven million boxes of bananas. Data consisted of the origin port, destination

DC, total number of shipments, total number of banana boxes, and distance between the

origin and destination. A sample of the data is shown in Table 4.5. The average shipments
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Port DC # of Shipments Total Boxes Distance
Antwerp Gdynia 323 372,004 1,226
Antwerp Katowice 329 378,473 1,218
Antwerp Kalisz 359 414,056 1,170

Table 4.5: Ground Transportation Data, EU Port to DC, Sample

distance was calculated using the distance of each origin-destination pair weighted by the

total number of boxes shipped on that route. The emissions from the shipment were allocated

based on the average number of boxes per shipment.

CBI operates DCs in five European regions, but only manages transportation from those

DCs in four regions: the U.K., the Netherlands, Poland, and Belgium. CBI provided data

on shipments from the DC to customers for two of those regions, the U.K. and Poland. The

data for the U.K. was based on a sample of one week's shipments while the data for Poland

included six months of shipments. In each region the data included the total distance of

the shipments, the total number of boxes shipped, and the total number of shipments. The

average shipment distance was calculated using the total distance and the total number of

shipments. The average shipment size was calculated by dividing the total boxes shipped by

the number of shipments. The emissions for the shipment as a whole were allocated based

on the average number of boxes per shipment.

No data for shipments from the customer DC to the retail outlet was provided. Instead,

an average shipment distance was calculated based on information supplied by Eurostat,

the European statistical office, and sales data provided by CBI. The Eurostat database

contains information on the food supply chain for the EU-27 members. This data includes

the transport volume for "potatoes, other fresh or frozen fruits and vegetables" for the EU-

27 countries based on the distance shipped within ranges of 0-49 km, 50-149 km, 150-499

ki, or greater. Volumes were assumed to be uniformly distributed within a range, while

shipments greater than 499 km were assumed to average 700 km per shipment. Using

these assumptions and the percentage of shipments within each range, an average shipment

distance was calculated for each country. CBI provided sales data that included the volume

of banana boxes sold within each European country. Using the sales volume for each country

along with the calculated shipping distance for that country a weighted average distance of
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193 km was calculated across the EU-27 countries. Vehicle utilization was assumed to be

equal to North America, 333 boxes per shipment, and emissions from the shipment were

allocated to the functional unit based on this assumption.

Refrigeration Equipment In addition to fuel consumption required for vehicle operation,

ground transportation of bananas requires refrigerated containers to prevent ripening during

transit. The operation of the generators (referred to as gensets) that supply electricity for

the refrigeration equipment in the containers consumes approximately one gallon of diesel

fuel per hour of operation based on estimates provided by Shaw's and CBI. Speed estimates

from Shaw's indicate an average speed of about 36 mph including loading, unloading, and

transportation times. Using these estimates, fuel consumption due to refrigeration for all

ground transportation stages was calculated based on the distance traveled, average speed,

and fuel consumption per hour. Emissions from the refrigeration were allocated based on

the average number of boxes per shipment.

Packaging and Material Shipments Additional ground transportation emissions were

calculated for shipment of the ethylene fluid from the distributor to the DC, packaging

materials delivered to the farm, and for chemicals from a distributor to the banana farm.

The ethylene fluid shipment travel distance was estimated using Google maps functionality

to calculate the driving distance from the distributor's city to each DC. The average distance

was then calculated by weighting the distance by the number of boxes processed at each DC

as reported by CBI sales figures. Packaging materials are delivered to the farms on the

backhaul leg of journeys from the farm to the port, so the average distance calculated for the

farm to port banana shipment was used as the shipping distance of the packing materials as

well. Chemical shipments to the banana farms vary depending on the location of the farm

and the source of the chemicals. This distance was assumed to be 100 km for the purpose

of this study, as no data has yet been collected on actual shipping distances.

Results The results from all ground transportation operations are shown in the table

below. The largest contributor to emissions for both the North American and European

case was the trip from the DC to the customer. The higher vehicle utilization achieved
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Stage North America Europe
Farm to Port (Truck) 0.6 0.3
Farm to Port (Genset) 0.2 0.1

Port to DC (Truck) 0.5 0.7
Port to DC (Genset) 0.1 0.1

DC to Customer (Truck) 0.8 0.6
DC to Customer (Genset) 0.2 0.1
Customer to Store (Truck) 0.4 0.6

Customer to Store (Genset) 0.1 0.1
Packaging Shipment 0.1 0.1
Fertilizer Shipment 0.0 0.0
Ethylene Shipment 0.0 0.0

Total 2.8 3.0

Table 4.6: Emissions from Ground Transportation (kg CO 2e/box)

during full truckload shipments from the port to the CBI DC reduces the overall impact on

a per box basis despite similar trip lengths in North America and longer trips in Europe.

As distances between ports, DCs, and customers can vary significantly, a comparison of the

average distance to the minimum and maximum shipment distance were included in the

sensitivity analysis.

4.3.3.2 Ocean Transportation

Bananas are shipped between the tropics and destination ports in North America and Europe

on a series of ocean shipping rotations. Each shipping rotation visits a regular series of ports

on a defined schedule. The primary purpose of the shipments is the delivery of bananas to

the destination market, but some cargo is also shipped back to the tropics during the return

(backhaul) portion of the voyage.

Data CBI provided shipment data for one complete shipping rotation for each of the three

European services and two full rotations for two of the three North American services. This

data included the shipping distance, cargo weight, and fuel consumption during each leg

of the voyage. The total tonne-km (tkm) of cargo shipped was calculated by multiplying

the distance in kilometers by the cargo in tonnes for each leg of the rotation, including the

backhaul. The ocean data provided for the Gothenburg-Bremerhaven service is shown in the
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From To Cargo Distance Fuel, Fuel, Tonne-km Total Fuel
(Tonnes) (Nautical Propulsion Auxiliaries (Tonnes)

Miles) (Tonnes) (Tonnes)
Almirante Moin 6223 65 7.0 1.3 749,125 8.3

Moin Gothenburg 8301 5410 663.5 46.4 83,170,375 709.9
Gothenburg Bremerhaven 6211 349 41.8 3.8 4,014,467 45.6

Bremerhaven Almirante 1850 5149 561.3 41.0 17,641,504 602.3

Table 4.7: Sample Ocean Data

Cargo Fuel Efficiency
Service Fuel (tonnes) (tonne-km) (g/tkm)

Wilmington-Gulfport-
Freeport 1,054 100,521,756 10.5

Port Everglades 360 35,390,431 10.2
Gothenburg-Bremerhaven 1,366 105,575,471 12.9

Sheerness-Antwerp 1,214 89,041,451 13.6
Southern 1,443 89,586,805 16.1
Average 1,087 84,023,183 12.9

Table 4.8: Fuel Efficiency by Service

table below as a sample.

Using this data the fuel consumption (propulsion and auxiliaries) from the operation of

the vessel was calculated per tonne-km of goods shipped by adding the results from each leg

to calculate the total fuel consumption and tonne-km for the rotation, including backhaul.

This process was repeated for each service, and total average fuel consumption per tonne-km

was calculated for all services together.

Shipping distance for each destination port was calculated from the first port on the

rotation through to the destination port using the data provided by CBI. For ports that were

not included on the rotations provided in the data, distances were calculated using sailing

schedules provided by CBI and distances between ports calculated using www.dataloy.com.

Using the data from Gothenburg-Bremerhaven as an example, shipments were assumed to

originate in Almirante and distances were calculated as 5,475 nautical miles to Gothenburg

and 5,824 to Bremerhaven. This distance was calculated for every destination port and

a weighted average for North America and Europe was calculated based on the volumes

shipped to each destination port.

Fuel consumption for boxes sent to each destination port was calculated by multiplying
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Destination Port [Distance (kim) [Share ofVolume

Antwerp 9,443 29%
Bremerhaven 10,786 25%
Gothenburg 10,140 13%

Aegion 13,451 7%
Vado 11,958 8%

Civitavecchia 12,342 11%
Setubal 9,666 3%

Sheerness 9,354 4%
Average 10,651

Table 4.9: European Ocean Shipping Distances

Destination Port Distance (km) Share of Volume

Hueneme 3,880 22%
Everglades 1,671 12%
Gulfport 1,882 23%
Freeport 2,909 6%

Wilmington 5,593 37%
Average 3,737

Table 4.10: North American Ocean Shipping Distances

the distance to the port by the weight of the boxes in tonnes to find the total tonne-km.

This figure was multiplied by the average efficiency of 12.9 g/tonne-km to calculate total fuel

consumption per box. Average weight per box was provided by CBI as 20.2 kg for North

America and 20.9 kg for Europe. This figure is based on the total weight of bananas, their

packaging, and pallets divided by the number of boxes.

Packaging Estimates In addition to shipment of bananas to the destination ports, the

ocean vessels are also used to deliver packaging materials to the tropics. Based on information

from CBI the materials are produced in the United States shipped out of Gulfport on the

return voyage of the banana vessels for delivery to the farms in the tropics. The distance

for the shipment and the weight of the packaging and pallets are assumed to be identical

to the shipments of bananas to Gulfport. The calculation of the average fuel consumption

per tonne-km in the previous section was based on the overall average performance of the

shipping rotation, which included the backhaul utilization, and so the same average fuel

consumption factor was applied to shipment of the packaging. Emissions are allocated to
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Stage North America Europe

Banana Shipment 3.6 10.6
Packaging Shipment 0.0 0.0

Total 3.6 10.6

Table 4.11: Emissions from Ocean Transportation (kg CO 2 e/box)

the bananas based on the assumption of one box and shroud per banana box, one set of

corner board per pallet, and one pallet for every forty-eight banana boxes.

Results The emissions from the ocean shipping of the bananas represent a significant

source of emissions in the supply chain, particularly in the case of Europe. The average

distance for shipments destined for Europe is three times as great as for the average shipment

to North America, producing the much higher emissions value.

4.3.4 Facilities

Four types of facilities are involved with producing and distributing bananas:

" Farms where the bananas are grown and packaged.

" Ports where they are loaded and unloaded from ships and may be stored temporarily.

" Distribution centers that store and ripen the bananas. May be operated by CBI or the

retail customer.

" Retail outlets where the bananas are sold to end consumers.

4.3.4.1 Distribution Centers

Distribution centers are used to store the bananas and provide chemical ripening before

shipping to the customer DC or the retail outlet. Operations at the DC requiring energy

may include: heating, cooling, and lighting of the facility; electricity and propane to power

cargo handling equipment; diesel burned in trucks moving containers; and electricity to power

the banana ripening rooms. CBI DCs primarily handle bananas, with other products such

as plantains and pineapples making up less than 1% of volume. The Shaw's DC, however,
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Natural

Electricity Propane Diesel Fuel Oil Gas (100
DC Boxes (kWh) (lbs) (gallons) (gallons) ft3)

Boston 1,032,947 597,289 2,345 0 0 1,243
Mid Atlantic 2,439,871 1,215,600 0 23,158 10,000 0

Atlanta 1,179,638 432,766 0 0 0 5,669
Miami 4,806,068 3,508,320 4,824 70,856 0 0

Gulfport 978,686 1,117,080 0 0 0 0
Los Angeles 2,922,417 511,280 0 66,040 0 0

Total 13,359,627 7,382,335 7,169 160,054 10,000 6,912

Table 4.12: North American CBI DC Data

Location Boxes Electricity (kWh) Allocation % kWh/Box

New England DC 1,161,600 6,045,000 5.4% 0.28

Table 4.13: North American Customer DC Data

handles all perishable goods sold at their stores. Bananas are high volume products and have

a separate room for storage and ripening within the facility. This room is kept chilled, but at

a higher temperature than other parts of the facilities which handle frozen and refrigerated

products.

Data

North America CBI operates nine DCs within the United States. Energy consump-

tion was calculated for six of those DCs based on their utility bills and purchase records for a

one year period. The total number of banana boxes processed in each facility was calculated

based on sales data. An average consumption of each energy source per box was calculated

for each DC separately and for the total of all five reporting DCs together.

Shaw's provided utility data for electricity consumption and banana sales data for their

perishable DC over a one year period. Energy consumption in the DC was allocated to

bananas based on the percentage of square footage of the facility occupied by the banana

room. The emissions from this share of the facility energy consumption were then allocated

based on the total boxes of bananas sold by Shaw's in the year.
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Facility Electricity Consumption Boxes Electricity per box
(kWh) (kWh / box)

Dewsbury 718,306 1,196,530 1.67
Sheerness 584,333 440,363 0.75

Puurs 1,011,781 1,687,074 1.67
Gorinchen 499,153 764,305 1.53

Meppel 226,993 325,400 1.43
Helsingborg 512,367 674,795 1.32
Enkoeping 371,820 545,967 1.47
Katowice 426,312 456,000 1.07
Gdynia 370,303 533,000 1.44
Kalisz 364,197 473,000 1.30

Table 4.14: European CBI DC Data

Distribution Center North America Europe

CBI DC 0.5 0.8
Customer DC 0.2 0.1

Total 1.2 0.9

Table 4.15: Emissions from Distribution Centers (kg CO 2 e/box)

Europe CBI operates eleven DCs in five different European countries, the U.K., Swe-

den, Poland, the Netherlands, and Belgium. Electricity and banana sales data were reported

for a six month period for ten of the eleven DCs. Average electricity consumption per box

was calculated for each DC as well as an overall average using the total kWh consumption

and sales data for the ten reporting facilities. No data was provided for customer DCs in

Europe. Electricity consumption was assumed to be the same as the North American data

on a per box basis.

Results The results for the DCs are shown below. Emissions at the CBI DC are signifi-

cantly higher on a per box basis than at the customer DC due to higher utilization of the

Shaw's DC. While both Shaw's and individual CBI DCs handle similar volumes of bananas,

this represents only a small fraction of the total material handled by the perishable DC, and

this higher utilization more than offsets the higher total energy consumption of the facility.
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Electricity
(kWh)

2,536,490

Natural Gas Allocation % Boxes kWh/box Cubic ft/box

(cubic ft)
39,867 0.65% 5,760 2.86 0.04

Table 4.16: North American Retail Outlet Data

4.3.4.2 Retail Outlets

Bananas typically require no special handling at the retail outlets, but electricity and natural

gas are consumed at the store for heating, lighting, office equipment, checkout registers, and

other activities required to run the store. At Shaw's bananas may be delivered to the store

on a nearly daily basis. Once they arrive they are usually placed in a storage room with

other produce and used to restock the banana display on the sales floor several times per

day.

Data

North America Utility and sales data were collected from one of Shaw's retail store

that was considered to be representative of an average store. The energy data included

total electricity and natural gas consumption for one year. Sale# data included the total

store sales volume in dollars, banana sales in dollars, and banana sales in boxes for the

year. For this phase an allocation based on the economic value of products sold was used.

A retail grocery store sells thousands of different products, and allocating based on other

means requires significant amounts of information that are typically not available. Sales

information is readily available, however, and energy was allocated based on the percentage

of total store sales represented by bananas. The energy consumption was then allocated to

individual banana box level by dividing the allocated energy by the total boxes of bananas

sold at the store during the year.

Europe No data from a European retailer has been collected yet. Instead it was as-

sumed that per box consumption of electricity and natural gas was the same as in the case

of North America.
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Store North America Europe

Retail Store (Electricity) 2.3 1.5
Retail Store (Natural Gas) 0.0 0.0

Total 2.3 1.5

Table 4.17: Emissions from Retail Outlet (kg CO 2e/box)

Results Emissions from energy use at the retail store are shown in the table below. Nearly

all emissions are the result of electricity usage, as the small amount of natural gas used does

not produce significant emissions. Emissions from the store are higher than at the DCs due

to the greater efficiency of DCs. A single distribution center may process the same number

of bananas as are sold at hundreds of stores, and while energy consumption in total is higher

at the DC it is lower on a per box basis. Emissions in Europe are again lower due to the

lower emissions intensity of the average European electricity production process.

4.3.4.3 Port Operations

Facilities at the port can include a refrigerated storage building, offices, and a container yard

used for storing and powering the reefer containers. Activities that generate emissions may

include powering facilitiesldrayage operations involving trucks moving containers within the

yard, and operation of heavy equipment cargo equipment. The exact usage depends on the

infrastructure and operations at the ports involved.

Data

North America The North American logistics team provided electricity and diesel

consumption data for one year for all ports except Freeport. Data on the number of boxes

handled at each port were based on reported shipments via ocean to each port. Electricity

and diesel consumption were calculated per box at each port and then an average for all

ports was calculated based on total consumption and boxes handled.

Europe The European logistics team provided data for ten destination ports in Europe.

This data included the total electricity, natural gas, and diesel fuel consumed as well as

the total boxes handled during a given time period. Average energy consumption per box
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Port Boxes Electricity Diesel kWh/box Gallons/box

_ _ _ (kWh) (gallons) I I
Wilmington 23,319,318 8,927,829 31,450 0.383 0.001

Gulfport 14,449,053 8,345,262 1,548 0.578 0.000
Port 7,352,312 6,981,832 41,226 0.950 0.006

Everglades I I

Hueneme 14,087,360 2,620,020 0 0.186 0.000
Total 63,166,010 26,874,943 74,974 0.425 0.001

Table 4.18: North American Port Data

Port Weeks Boxes Share Electricity Natural Diesel Electricity Natural Diesel
of (kWh) Gas (liters) (liters) (kWh/box) Gas (liters/box)

Data (liters/box)

Sheerness 20 2,189,338 3% 757,175 0 0 0.35 0.00 0.00
Bremerhaven 25 7,003,378 25% 1,636,000 450,000 0 0.23 0.06 0.00

Antwerp 52 12,938,755 24% 2,239,696 0 83,523 0.17 0.00 0.01
Vado 34 3,571,894 9% 129,500 0 0 0.04 0.00 0.00

Civitavechia 52 4,571,458 11% 945,392 0 0 0.21 0.00 0.00
Setubal - 2,496,000 3% 210,525 0 7,800 0.08 0.00 0.00
Aegion 34 3,122,265 7% 351,393 0 0 0.11 0.00 0.00

Gothenburg 52 6,240,000 16% 1,594,360 0 84,340 0.26 0.00 0.01

Table 4.19: European Port Data

was calculated for each port during the given timeframe, and then an overall average was

calculated based on the share of boxes handled by each port during the full year as reported

by ocean shipping data.

Tropics Energy consumption data was collected for one origin port in the tropics,

Puerto Limon in Costa Rica, based on fuel and electricity purchase records for the year.

This was separated into fuel consumed for truck operation at the port, operating heavy

equipment, powering generators, and electricity used in the container yard. Emissions were

allocated per box using the total number of boxes shipped from the port during this time

period. Data for other ports was not yet available and was assumed to be the same as for

Costa Rica.

Results Results for port operations from all three regions are shown below. Emissions

from Europe are lower primarily due to the reported low energy consumption per box.

North American and Costa Rica showed similar electricity consumption per box, but the

electricity generation in Costa Rica is significantly lower in emissions intensity than in the

95



Category Energy Source Total Consumption Total Boxes Per Box

Heavy Equipment Diesel (liters) 307,047 12,121,430 0.03
Container Yard Electricity (kWh) 11,643,348 12,121,430 0.96

Generators Diesel (liters) 364,412 12,121,430 0.03
Truck Operation Diesel (liters) 123,766 12,121,430 0.01

Table 4.20: Costa Rica Port Data

Source North America Europe Costa Rica

Electricity 0.4 0.1 0.1
Heavy Equipment 0.1 0.1 0.1
Truck Operation 0.0 0.0 0.0

Generators 0.0 0.0 0.1
Natural Gas 0.0 0.0 0.0

Total 0.5 0.2 0.3

Table 4.21: Emissions from Port Operations (kg CO 2 e/box)

United States.

4.3.4.4 Farms

In addition to the energy consumption at the distribution facilities, farms consume energy

during the cultivation and packing of bananas. Though banana farming still relies heavily

on manual labor, energy is needed to power farm equipment, spray chemicals, and power

packing stations.

Data Practices vary between farms, and at this time data regarding the energy consump-

tion at each farm was not available. Instead total data was provided for all farms in one

growing region in Costa Rica. This region contains more than thirty farms and produced

more than twelve million boxes in 2009. This data includes fuel records for diesel used to

run generators and farm equipment, electricity purchased from the grid for powering packing

stations and offices, gasoline and diesel used in vehicles, and estimates of fuel consumption

by airplanes used to spray chemicals. Total fuel and electricity consumption were allocated

per box by dividing the total consumption by the number of boxes produced by the region

during the year.

The company that operates the agricultural spraying service provided estimates for the
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Activity Fuel Consumption [ Boxes Produced Consumption per box

Building Power Electricity (kWh) 5,536,529 12,121,430 0.46

Vehicle Operation Diesel (liters) 15,910 12,121,430 0.00

Vehicle Operation Gasoline (liters) 12,091 12,121,430 0.00

Aircraft Spraying Diesel (liters) 847,454 12,121,430 0.07

Generators Diesel (liters) 63,266 12,121,430 0.01

Generators Gasoline (liters) 10,415 12,121,430 0.00

Table 4.22: Data from Farm Operations

Source J CO2e
Electricity 0.0

Vehicles (gas) 0.0
Vehicles (diesel) 0.0

Generators 0.1
Aircraft 0.2
Total 0.3

Table 4.23: Emissions from Farm Operations (kg CO 2e/box)

fuel consumption of the airplanes used during the spraying process.. This approximation was

based on an estimate of the amount of fuel required to spray one hectare of farmland. Total

consumption was then calculated by the farm operations team based on total number of

hectares sprayed during all spraying operations for the year. Emissions from spraying were

allocated per box based on the total production for the year.

Results Emissions from farm operations are shown in the table below. The fuel consump-

tion due to aerial spraying is the primary source of emissions due to operations at the farm.

The low emissions intensity of electricity generation in Costa Rica keeps emissions from the

packing station low. A comparison of electricity emissions intensities of other growing regions

were included in the sensitivity analysis.

4.3.5 Materials

Emissions related to the production of materials used in the supply chain can be placed

in to two categories: packaging materials and chemicals. The primary packaging materials

included in the analysis were the cardboard banana box, the plastic shroud used to wrap

bananas inside the banana box, and the cardboard corner board used to help stabilize the
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boxes of bananas for transport. In addition to the primary packaging, the plastic banana

wrapper used to protect the banana bunches during cultivation is included, as well as the

plastic bottle used to hold the ethylene fluid used for ripening. The chemicals used in the

supply chain include the pesticides, fertilizers, and fungicides used at the banana farms along

with the ethylene fluid used to ripen the bananas at the DC.

4.3.5.1 Packaging

The primary packaging for the bananas consists of a plastic shroud used to enclose the ba-

nanas and a cardboard box that the shroud and bananas are placed within. Boxes of bananas

may then be stacked on pallets, typically with forty-eight boxes per pallet. Cardboard corner

board may be placed on the edges of the stacked banana boxes to provide stability during

transit. The wooden pallets used during shipping are durable goods that are collected and

reused, and their production and disposal is excluded from this study.

Data Data for the box and shroud is based on specifications provided by CBI to the

companies that produce the packaging. This data includes the type of material for the

packaging as well as the weight of the product. The banana box has three different models:

one for North American container shipment, one for North American bulk shipping, and

one for European boxes. Each box is constructed of the same corrugated cardboard but

differ in dimensions and final weight. The plastic shrouds likewise differ between the North

American and European markets, with the North American shroud produced from high-

density polyethylene (HDPE) plastic and the European one from low-density polyethylene

(LDPE) plastic. No data was provided regarding the cardboard used in the corner board.

Instead, an assumption of 0.61 kg of recycled cardboard was used based on published numbers

for a similar product (Alliance Plastics).

Results The results from each of the three packaging scenarios are shown in Table 4.25.

The plastic shroud is identical between the two North American scenarios, while the corner

board is the same across all scenarios. In all cases the production of the banana box is the

most significant source of emissions in the primary packaging.
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Object Weight (kg) Material Data Source

Box (NA - underdeck) 1.41 Cardboard Chiquita specifications
Box (NA - container) 1.28 Cardboard Chiquita specifications

Box (EU) 1.26 Cardboard Chiquita specifications
Shroud (EU) 0.03 LDPE Plastic Chiquita specifications
Shroud (NA) 0.03 HDPE Plastic Chiquita specifications
Corner board 0.61 Cardboard 4 ft * 4 * .336 lbs/ft =

1.344 lbs per pallet load

Table 4.24: Packaging Data

Material NA - Underdeck NA - Container EU

Banana Box 1.1 1.0 1.0
Plastic Shroud 0.1 0.1 0.1
Corner board 0.0 0.0 0.0

Total 1.2 1.1 1.1

Table 4.25: Emissions from Packaging Materials

4.3.5.2 Farm Chemicals

A number of agricultural chemicals are applied during banana cultivation, including fertil-

izers, pesticides, and fungicides. Exact chemical requirements vary by growing region and

based on the specific qualities of the farms in question. Emissions related to the application

of the chemicals were covered in the section on farm operations, while emissions of nitrous

oxide due to application of nitrogen-based fertilizers are covered later in the section on other

emissions sources.

Data Data regarding the chemicals used to help cultivate the bananas at the farm is based

on recommended doses provided by CBI. Actual usage varies from farm to farm based on

specific conditions and management. For fertilizers CBI's agricultural management group

provided a list of recommended applications for eight chemicals in six divisions operating in

different growing regions. The average value of the recommended dosage across all regions

was used as the base scenario. The active ingredients recommended for use as fertilizers by

CBI are nitrogen (N), phosphorus pentoxide (P 2 0 5 ), potassium oxide (K 2 0), magnesium

oxide (MgO), boron (B), zinc (Zn), sulfur (S), and calcium oxide (CaO). In addition a

recommended range of application quantities was provided for three more elements: iron
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Division

Chemical Cobigua TRRCo COBAL COBAL BOFCo Average
Sarapiqui Matina

Limon

N 399 386 385 392 384 389.2
P2 0 5  88 85 92 92 83 88.0
K2 0 763 677 628 710 642 684.0
MgO 0 66 69 0 39 34.8

S 62 82 82 56 47 65.8
CaO 0 0 28 36 58 24.4

B 3.2 2.2 6.7 6.7 4.7 4.7
Zn 1.2 0.6 6.7 6.9 7 4.5
Fe 0-3 0-3 0-3 0-3 0-3 1.5
Cu 0-1 0-1 0-1 0-1 0-1 0.5
Mn 0-2 0-2 0-2 0-2 0-2 1.0

Table 4.26: Recommended Fertilizer Applications by Division (kg/ha/yr)

(Fe), copper (Cu), and manganese (Mn). The recommended application by division for each

fertilizer is shown in Table 4.26.

In addition to fertilizers CBI provides a similar recommendation for the use of pesticides

and fungicides. Recommendations are provided in the form of a range of the number of

applications per year and the amount of active ingredient per application. The base scenario

for analysis is based on using the midpoint of the recommended applications and amounts

of active ingredients. The commercial name, active ingredients, and recommended annual

applications are shown in Table 4.27.

All chemical usage is based on recommended doses per hectare per year. The amount

of chemical usage per box was then calculated using farm yield data per hectare provided

by CBI. Yield information is a key performance indicator for farm productivity, and CBI

provided data on total average yield in boxes per hectare from different growing regions as

shown in Table 4.28. Application of the chemicals is performed manually or by aerial spray-

ing. It is assumed that no additional emissions arise from manual spraying, while emissions

from aerial spraying are covered in the section on energy use at the farms. Emissions related

to the delivery of chemicals to the farm are covered in the section on transportation.
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Commercial Name Active Ingredient Amount (kg/ha/yr)

Opal 7.5 E.C Epoxiconazole 0.2 - 0.3
Sico 25 EC Difeconazole 0.3 - 0.4

Folicur 25 EW Tebuconazole 0.3 - 0.4
Silvacur 30 EC Tebuconazole y Tridiamenol 0.12 - 0.24

Tega 30C Trifloxytrobin 0.1
Regnum 25 EC Pyraclostrobin 0.1

Calxin 860L Tridemorph 2.15 - 4.30
Siganex 60 SC Pyrimethanil 0.6 - 1.2
Impulse 80 EC Spyroxamine 0.96
Dithane 60 SC Mancozeb 57

Spraytex o Banole 27 - 432

Table 4.27: Recommended Pesticide Application (kg/ha/yr)

Honduras and Guatemala Costa Rica Panama Total
Hectares 5,000 6,400 5,000 16,400

Yield (boxes per ha) 2,550 2,400 2,400 2,446
Production (boxes) 12,750,000 15,360,000 12,000,000 40,110,000

Table 4.28: Farm Yield Data

Results The impact of chemical production under the baseline assumption for usage and

average yield per hectare is shown in Table 4.29. Emissions from the application of nitrogen-

based fertilizers are high due to the relatively high amounts applied as well as the intensity

of the production process.

4.3.5.3 Other Materials

Data In addition to the primary packaging and chemical use at the farms, a limited number

of other materials are used throughout the supply chain. This includes the ethylene used

to chemically ripen the bananas at the ripening center, the plastic bottle the ethylene is

packaged in, and a plastic banana bunch wrapper used to protect the banana bunches on

the tree as they mature. Specifications for the plastic ethylene bottle and plastic banana

wrap were not provided, instead estimates were created based on publicly available data for

similar products:

* Banana Bunch Wrapper - 0.04 kg of LDPE plastic.
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Chemical Emissions

N 1.4
P 20 5  0.0
K 20 0.1
MgO 0.0

S 0.0
CaO 0.0

B 0.0
Zn 0.0
Fe 0.0
Cu 0.0
Mn 0.0

Pesticides 1.1
Total 2.6

Table 4.29: Emissions from Farm Chemical Production (kg CO 2e/box)

- Source: http: //www. agnet . org/library/pt/2001036/

9 Ethylene Bottle - 0.06 kg of HDPE plastic.

- Source: http://www.thecompliancecenter. com/store/us/PK-P3200 .html

In addition to chemicals used to grow the bananas a small amount of ethylene fluid is used

to chemically ripen the bananas just before sale. One 32 ounce bottle of ethylene fluid is

composed almost entirely of ethanol and is capable of ripening a full container (960 boxes)

of bananas. The fluid is used in specially designed banana ripening rooms that catalyze

the ethanol and release the ethylene as a gas to circulate it among the banana boxes. This

process causes the bananas to ripen over a period of three to four days, at which point they

are ready to sell.

Results As shown in Table 4.30 none of these materials produce significant emissions

relative to the overall supply chain. The effect of allocating emissions from the ethylene over

an entire container load of bananas reduces the overall impact of producing both the ethanol

and the plastic bottle.
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Material Emissions

Ethylene Bottle 0.0

Ethylene Fluid 0.0
Banana Wrapper 0.1

Total 0.1

Table 4.30: Emissions from Other Materials (kg CO 2e/box)

4.3.6 Other Emissions

Two other sources of emissions included in this study are the release of certain refrigerant

gases to the atmosphere and the release of nitrous oxide due to the application of nitrogen-

based fertilizers to soil. Land use changes can also contribute to climate change; however,

they are excluded from this study as the farms that produce bananas are generally pre-

existing and not the result of recent changes in land use.

Nitrous oxide is produced naturally in soil, and one of the main factors in its production

is the amount of nitrogen in the soil. When nitrogen is added to the soil through the

application of fertilizers the amount of available nitrogen increases, resulting in increased

production of N20. N2 0 is a greenhouse gas with a GWP of 298, meaning each kg of N2 0 in

the atmosphere produces a warming effect equivalent to 298 kg of CO 2 . Given its high global

warming potential and the use of nitrogen-based fertilizers at the banana farm an estimate

of the impact from nitrous oxide production is included in this study.

Many of the chemicals used in the refrigeration process are also powerful greenhouse

gases. Over the course of time some of these gases escape from the refrigeration equipment

into the air and contribute to climate change. Since bananas are generally kept in a cooled

environment from the time they are packed at the farm until they arrive at the retail store,

the loss of refrigerant gases to the atmosphere can produce significant emissions.

4.3.6.1 Nitrous Oxide

Data The amount of N2 0 produced is calculated based on IPCC recommendations of 1% of

nitrogen applied as fertilizer being converted to N2 0 (IPCC, 2006). The ratio of mass of N20

to N is 44:28, thus for every 100 kg of N applied as fertilizer 1 kg will be converted to N20

producing about 1.57 kg N20. The amount of N 2 0 produced is therefore tied to the amount
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I Amountj

Nitrogen (kg/ha) 389
N2 0 Emissions (kg/ha) 6.1

GWP 298
Yield (boxes/ha) 2446

CO2 e (kg/box) 0.8

Table 4.31: Emissions from Nitrous Oxide (kg CO 2 e/box)

of nitrogen fertilizer applied, and all emissions are derived from the data for application of

fertilizers at the farms. Emissions from the N20 production are then allocated based on the

average yield per hectare provided by CBI in Table 4.28.

Results The production of nitrous oxide in soil due to application of nitrogen fertilizers

leads to 0.8 kg of CO 2e per box. When combined with the emissions due to production of

the fertilizer, this makes the use of nitrogen fertilizers a significant source of emissions in the

context of the total carbon footprint.

4.3.6.2 Refrigerant Emissions

Data Data regarding loss of refrigerant gases is based on purchases of gases used to recharge

refrigeration equipment during maintenance. It is assumed that the level of gases contained

in the tanks is maintained at a consistent level, and therefore any added gases are to replace

gases that have escaped to the atmosphere. This 100% fugitive rate assumes that none of

the refrigerants are captured during the recharging process and represents an upper range

of possible emissions.

North America Data for consumption of refrigerants was supplied for all five ports

and two DCs. This data consisted of the total kilograms of each type of refrigerant added to

the cooling system during maintenance for the year. For some locations sealed refrigerating

equipment is used, and so no data on refrigerant recharges was available. Instead the total

refrigerant charge capacity was supplied and an annual leakage rate of 2% was assumed

based on guidelines supplied by the Green Building Council (Rubenstein, Didion, and Dozier,

2004). Refrigerant quantities based on estimated leakage rates are noted with an asterisk in

104



Location Boxes R-134A R-12 R-409A R-22 R-123

Wilmington 23,319,318 694 125 411 0 0
Gulfport 14,449,053 240 120 210 0 0

Port Everglades 7,352,312 67 6 22 0 0
Hueneme 14,087,360 0 0 0 0 60*
Freeport 3,957,968 29 38 17 0 0

Total 63,166,010 1,030 289 660 0 60

Table 4.32: Refrigerant Usage in North American Ports (kg)

Location Boxes R-134A R-12 R-409A R-22 R-123

Mid Atlantic 2,439,871 0 0 0 300* 0
Los Angeles 2,922,417 0 0 0 250 0

Total 5,362,288 0 0 0 550 0

Table 4.33: Refrigerant Usage in North American DCs (kg)

Table 4.32 and Table 4.33. Average refrigerant leakage per box was calculated separately for

ports and DCs based on total refrigerant usage and boxes processed at each stage.

Europe No data was provided regarding refrigerant use in Europe. Consumption has

been assumed to be identical to that of North America for this report.

Tropics The provided data for the tropics shows the total amounts, in tonnes, of four

refrigerant gases: R-134a, R-12, R-409a, and foam froth. Based on the quantities and GWP

of the gases, R-134a and R-12 combine to produce more than 95% of the greenhouse gas

emissions. Data regarding the refrigerant usage was provided in total for one growing region,

and the emissions were allocated on a per box basis to the total number of boxes produced

in that growing region during the time period. This data is summarized in Table 4.34. The

total refrigerant usage per box, including both origin and destination operations, is shown

in Table 4.35.

Refrigerant Amount GWP CO 2e Production Amount Per CO 2e Per Box Share of CO 2e
(tonnes) (tonnes) (Boxes) Box (g/box) (kg CO 2e/box)

R-134a 1.66 1430 2155.10 12,121,430 0.14 0.2 24%
R-12 0.66 10900 4654.12 12,121,430 0.05 0.6 72%

R-409a 0.29 1548.75 376.78 12,121,430 0.02 0.0 5%
Foam Froth 0.02 286 4.81 12,121,430 0.00 0.0 0%

Table 4.34: Refrigerant Data, Tropics
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I R-134a I R-12 R-409a I Foam Froth R-22 R-123

GWP 1430 10900 1584.75 286 1700 76
Tropics (g/box) 0.137 0.054 0.024 0.002 0.000 0.000

Destination Port (g/box) 0.016 0.005 0.010 0.000 0.000 0.001
Destination DC (g/box) 0.000 0.000 0.000 0.000 0.103 0.000

Total (g/box) 0.153 0.059 0.034 0.002 0.103 0.001

CO 2 e (kg/box) 0.219 0.639 0.054 0.000 0.174 0.000

Table 4.35: Refrigerant Data Per Box

Process Emissions

Refrigerant Production 0.0
Refrigerant Leakage 1.1

Total 1.2

Table 4.36: Emissions from Refrigerants (kg CO 2e/box)

Results The emissions from the production and leakage of refrigerants are shown in Ta-

ble 4.36. The emissions from the production of the refrigerant are low relative to the effects

of its release to air due to the high global warming potential of the refrigerants.

4.3.6.3 End of Life

Disposal of all packaging materials used are considered within the system boundary for the

banana carbon footprint. This includes the ethylene bottle, plastic shroud, cardboard corner

board, and the banana box.

Data According to interviews with Shaw's, the typical practice at their stores is for all

cardboard materials to be collected and sent to a recycler. Plastics are generally thrown out

and disposed of by the waste collection service. As this practice may not be representative

of all customers, an average waste disposal scenario was applied and a sensitivity analysis

was performed to estimate the impact of disposal practices. Emissions for the disposal of

packaging materials are allocated to the bananas in the same manner as emissions from the

production of the materials.

Results Emissions from the disposal of packaging materials are shown in Table 4.37. Sim-

ilar to production of the packaging, emissions from disposal are driven almost entirely by
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Material NA - Underdeck NA - Container Europe
Banana Box 1.0 0.9 0.5

Plastic Shroud 0.0 0.0 0.0
Banana Wrapper 0.0 0.0 0.0

Corner Board 0.0 0.0 0.0
Ethylene Bottle 0.0 0.0 0.0

Total 1.0 0.9 0.5

Table 4.37: Emissions from Packaging Disposal (kg CO 2e/box)

the cardboard banana box.

4.4 Results

The end result of this project was an estimated carbon footprint of approximately 17 kg

of CO 2 e per banana box in North America and 23 kg of CO 2e per banana box in Europe.

When calculated for the secondary functional unit this results in approximately 1.0 kg of

CO 2 e per kg of sold bananas in North America and 1.3 kg of CO 2 e in Europe. All numbers

are based on an average scenario for each market consisting of:

* Standard EU packaging for Europe and the NA container packaging for North America.

" Identical farming scenarios consisting of average chemical usage and yield per hectare.

" Average transportation distance from the farm to the port calculated separately for

bananas destined for North America and Europe.

" Identical operations at the origin port in the tropics.

" Average ocean distances based on shipping distances of each service to the destination

ports.

" Average ground shipping distances at the destination market.

" Average facility energy consumption for all ports, DCs, and stores within the destina-

tion market.
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Figure 4-2: Carbon Footprint Breakdown (North America)

e US packaging waste scenario for North America and the England packaging waste

scenario for Europe.

A breakdown of the carbon footprint for North America is shown in Figure 4-2 and for Europe

in Figure 4-3. In a comparison between the two markets the increased ocean shipping

distance tends to dominate the comparison, producing more than three times as much CO 2e

in the European scenario than in the North American case. This is only slightly offset by

the generally lower emissions from transportation and facility operation due to shorter travel

distances, lower energy consumption, and lower emissions intensity of electricity in Europe.

4.4.1 By Activity

Rather than view the emissions by where they occur in the supply chain, it is also useful to

see the types of activities that generate the most emissions. In this breakdown the emissions

are separated into the following categories:
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Figure 4-3: Carbon Footprint Breakdown (Europe)

e Transportation-includes all ground and ocean transportation from the time the ba-

nanas leave the farm until they arrive at the store.

- Also included are emissions from running the refrigeration equipment needed to

keep the bananas cool during transit.

* Distribution Facilities-All emissions from facilities operated in the distribution chan-

nel; including ports, distribution centers, and retail outlets.

* Production-All emissions related to growing and packing the bananas; including emis-

sions due to chemical production, chemical spraying, and nitrous oxide.

* Packaging-All emissions from the production and disposal of packaging materials.

* Refrigerants--All emissions from producing refrigerants and the fugitive emissions from

their release during operation.
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Stage North America Europe

Farm to Port 0.8 0.3
Port to DC 0.5 0.9

DC to Customer 0.9 0.7
Customer DC to Store 0.5 0.7

Ocean 3.6 10.6
Total 6.3 13.2

Table 4.38: Emissions from Transportation (kg CO 2 e/box)

Figure 4-4 shows the respective distribution of emissions for both the North American and

European markets for these categories.

4.4.1.1 Transportation

Transportation as a whole represents the largest share of supply chain emissions, and the

single largest source in each case is due to ocean shipping. For Europe the ocean voyage

is responsible for 46% of the total carbon footprint, while it is 21% of emissions for North

America. If changes in ocean shipping operations could produce efficiencies similar to the

standard Ecoinvent assumptions for transoceanic freight this would produce a large reduction

in emissions, reducing the total carbon footprint to about 15 kg per box in Europe and 14

kg in North America. The higher emissions of CBI's ocean operations is attributable to a

number of factors, including smaller vessels, lower utilization on the backhaul, and higher

sailing speeds. According to data supplied by CBI, cargo on the backhaul portion of the

voyage represents only 22% of total tonnes shipped, and can be as low as 7% for certain

rotations. The need to get bananas to market as quickly as possible in order to maintain

quality and freshness results in higher emissions due to the relationship between vessel speed

and fuel consumption. Cariou (2011) estimates that larger container ships sailing 30% slower

can reduce fuel consumption by 55%. Thus, if possible, a combination of reducing sailing

speed and increased backhaul utilization could significantly reduce the impact of the ocean

shipment.
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Source North America Europe

Fertilizer, N 1.4 1.4
Fertilizers, Other 0.2 0.2

N2 0 0.8 0.8
Pesticides 1.1 1.1
Packing 0.1 0.1

Fertilizer Spraying 0.2 0.2

Total 3.8 3.8

Table 4.39: Emissions from Production (kg CO 2e/box)

4.4.1.2 Production

Emissions related to producing bananas are primarily driven by the use of fertilizers, and

in particular nitrogen-based fertilizers. The emissions from operating the packing stations

and powering the farms represent only 5% of the total emissions related to production. The

remaining 95% are due to production of fertilizers, N2 0 emissions, and aerial spraying of

the chemicals. Production of nitrogen fertilizer accounts for 2.2 kg of the total 3.8 kg when

emissions from its production and related N2 0 are accounted for.

4.4.1.3 Packaging

Emissions from production and disposal of packaging materials accounts for 8% of the total

carbon footprint in Europe and 12% in North America. This is driven almost entirely by

the production and disposal of the cardboard box, which represents more than 90% of the

total emissions from all packaging materials. The higher rates of recycling in the European

scenario result in lower emissions from disposal than in North America.

4.4.1.4 Distribution Facilities

The single largest source of emissions among distribution facilities is the retail store. Though

total emissions from the store are generally lower than in the various distribution centers,

the lower level of efficiency per unit of product leads to higher emissions.
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Material Stage North America Europe

Banana Box Production 1.0 1.0
Banana Box Disposal 0.9 0.5

Plastic Shroud Production 0.1 0.1
Plastic Shroud Disposal 0.0 0.0

Banana Wrapper Production 0.1 0.1
Banana Wrapper Disposal 0.0 0.0

Corner Board Production 0.0 0.0
Corner Board Disposal 0.0 0.0

Ethylene Bottle Production 0.0 0.0
Ethylene Bottle Disposal 0.0 0.0

Total 2.2 1.8

Table 4.40: Emissions from Packaging Materials (kg CO 2e/box)

Facility North America Europe

Port, Tropics 0.3 0.3
Port, Destination 0.5 0.2

CBI DC 0.5 0.8
Customer DC 0.2 0.1
Retail Store 2.3 1.5

Total 3.8 2.9

Table 4.41: Emissions from Distribution Facilities (kg CO 2e/box)
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4.4.1.5 Refrigerants

The production and escape of refrigerant gases combine to produce 5% of the total emissions

in Europe and 7% in North America. The results may be surprising given the small amounts

of refrigerants involved-less than one gram per box-but the high GWP of some of the gases

produces large amounts of CO 2 e.

4.5 Conclusions

In this chapter we presented an LCA of the banana supply chain used to measure the carbon

footprint. Our results show the carbon footprint of a box of bananas to be approximately 17

kg of CO 2 e for bananas sold in North America and 23 kg of CO 2 e for boxes sold in Europe.

We identified 1 kg of sold bananas as a secondary functional unit, with a carbon footprint of

about 1.0 kg of CO 2 e in North America and 1.3 kg of CO2 e in Europe. The primary source

of emissions in the supply was found to be transportation, with the ocean voyage having the

single largest impact. The second largest impact was from production of the bananas at the

farm, and this was primarily related to the use of chemicals during cultivation.

Despite the visibility to a significant portion of the supply chain allowed by the partici-

pation of both CBI and Shaw's, a significant amount of uncertainty exists in the results of

this study. In the next chapter we examine some of the specific sources of uncertainty and

quantify their impact on the measured carbon footprint. We then propose a solution for

improving the results of supply chain carbon footprint measurements.
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Chapter 5

The Carbon Label Framework

In the previous chapter we presented the use of Life Cycle Assessment as a method of

measuring the carbon footprint of a supply chain through a case study of banana production.

While the end result of the study is a measure of the carbon footprint of a case of bananas,

the measurement contains a great deal of uncertainty due to the complexities of performing

an LCA across an entire supply chain. In this chapter we discuss the sources of uncertainty in

an LCA, demonstrate their applicability to our case through a sensitivity analysis, and finally

present a framework based on the idea of a carbon label as a way to facilitate cooperation

in the supply chain to reduce uncertainty in the carbon footprint measurement.

5.1 Uncertainty in LCA Results

Issues with data quality and uncertainty in LCA are well known, and several authors have

provided reviews of the issues (Reap, Roman, Duncan, and Bras, 2008; Bjorklund, 2002;

Ross, Evans, and Webber, 2002; Huijbregts et al., 2001; Heijungs and Huijbregts, 2004;

Coulon, Camobreco, Teulon, and Besnainou, 1997; Bretz, 1998). LCA results are usually

presented as point estimates, which strongly overestimates their reliability (Bjorklund, 2002).

In a review of approaches to improve the reliability of LCA, Bjorklund (2002) distinguished

between uncertainty and variability. Uncertainty occurs due to lack of knowledge about the

true value of a quantity, while variability is due to natural heterogeneity of values. Within

these categories a number of specific types and sources of uncertainty can be identified,
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Figure 5-1: Sources of Uncertainty (Bjorklund, 2002)

shown in Figure 5-1.

Sensitivity analysis is one of two main classes of techniques used in LCA to evaluate

uncertainty. It involves studying the effects of changes to inputs on the LCA results, and

it is useful to identify the most influential inputs when their uncertainty has not or cannot

be quantified (Reap et al., 2008). We conducted a number of sensitivity analysis scenarios

to identify areas with considerable uncertainty or variability in the banana supply chain.

Individual factors were varied one at a time between their minimum and maximum values

and the resulting changes in the carbon footprint were calculated. Table 5.1 contains a

summary of the impact of these scenarios. In each case the carbon footprint value was

compared to the base scenario of 17.2 kg CO 2e for North America and 23.2 kg for Europe.

Several areas of high uncertainty were identified through scenario analysis and the initial data

reliability assessment. The uncertainty is primarily related to the production of bananas,

transportation distances, customer operations, and final disposal of packaging.

The largest single cause of uncertainty in Europe is the ocean voyage. Differences in

efficiency and shipping distances on the shipping rotations lead to variability within the

results. Given the large overall impact of the ocean voyage this variability creates the

greatest uncertainty in the overall results. In North America, with longer road distances and

shorter ocean voyages, the greatest source of uncertainty is the road transportation distance.

This is primarily a result of the significant extra distance required to reach DCs located in

the central regions of the United States when compared to DCs located on the coast, or in

Europe where the greater number of inbound ports and smaller geographic region leads to
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North America I Europe

Min Max Min Max
Sensitivity Parameter kg CO 2e % Decrease kg CO 2e % Increase kg CO 2e % Decrease kg CO 2 e % Increase

Chemical Quantity 16.3 5% 19.9 16% 22.2 4% 25.8 12%
Fertilizer Emissions Factor 16.2 6% 18.4 7% 22.2 4% 24.4 5%
Pesticide Emissions Factor 16.4 5% 19.2 12% 22.3 3% 25.1 9%

Packing Operations 17.2 0% 17.4 1% 23.1 0% 23.3 1%
Ocean Factor 14.4 16% 17.2 0% 14.6 37% 23.1 0%

Ocean Distance 15.3 11% 19.0 10% 21.8 6% 25.9 12%
Port to DC Distance 16.4 5% 22.0 28% 23.0 0% 23.3 1%

DC to Customer Distance 16.8 2% 17.7 3% 22.4 3% 24.0 4%
Customer DC to Store Distance 16.7 3% 18.2 6% 22.7 2% 24.7 7%

Origin Port Operations -17.2 0% 17.7 3% 23.1 0% 23.6 2%
Destination Port Operations 17.0 1% 17.6 3% 22.1 4% 24.8 7%

Chiquita DC Operations 17.0 1% 17.5 2% 22.5 3% 24.9 8%
Waste Scenario 16.3 5% 18.6 8% 22.6 2% 24.9 8%

Table 5.1: Sensitivity Analysis Results



shorter road shipping distances.

The production of bananas represents another source of uncertainty within CBI's supply

chain. Production is uncertain due to the wide range of types and quantities of chemicals

that may be applied during cultivation and differences in farming practices. Bananas are

sourced from hundreds of farms located in several different regions, making full data collection

difficult in practice. In the future more data on actual chemical usage and farming practices

in the different growing regions will be necessary to help reduce this uncertainty.

The other areas of uncertainty are related primarily to the lack of knowledge regarding

the exact processes used by upstream and downstream portions of the supply chain. The

packaging poses a special challenge to CBI, as all of its emissions occur either upstream during

production or downstream in disposal. This makes evaluating changes to the packaging

process difficult, as in the case of one current customer that uses returnable plastic containers

instead of cardboard boxes for storage. A similar problem with evaluating downstream

emissions occurs with customer operations at the retail level. Through the cooperation of

Shaw's, an estimate of the impact of the retail stage was included, but the uncertainty

surrounding customer operations is high due to the large impact of the retail store and the

lack of representative data for many retail customers.

In addition to the sensitivity analysis based on the amount of chemicals applied, a second

analysis was performed in SimaPro based on the types of chemicals used. The production

of pesticides, fungicides, and nitrogen based fertilizers represent 90% of the total emissions

from chemical production. No other fertilizer or chemical contributes more than 5% to the

total. To test the sensitivity to the assumptions regarding these chemicals the emissions

from the base scenario were compared with a range of other available chemical choices.

While the recommended quantity of nitrogen fertilizer is known, the exact choice of

fertilizer is not. In the base scenario amrnonium nitrate was assumed, but in order to

test the sensitivity of the results to that assumption the emissions from this choice were

compared to the other available nitrogen-based fertilizers. The emissions from production

of ammonium nitrate are 1.4 kg of CO2 e per box and are represented by the horizontal line

in Figure 5-2. Only one other fertilizer, potassium nitrate, produces significantly higher

emissions than ammonium nitrate. The use of potassium nitrate would increase the total
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Figure 5-2: Comparison of Ecoinvent Nitrogen Fertilizer Production Processes

carbon footprint by 7% in the North American case and 5% in the European case. The use

of the mean value of nitrogen fertilizer production would result in a 2% reduction in the total

carbon footprint for both North America and Europe, while the median would decrease the

carbon footprint by 4% in North America and 3% in Europe.

Not all chemicals have LCA data available in the Ecoinvent database, and in the case

of those used in banana cultivation none of the specific pesticides or fungicides have data

available. The base scenario used the Ecoinvent process for an unspecified pesticide, which

produced 1.06 kg of CO 2 e per box. To estimate the range of possible values for the emissions

from pesticide production, the emissions per kg for all thirty-seven chemicals available in the

Ecoinvent pesticide database were calculated. Figure 5-3 shows the results when these values

are used in place of the value for unspecified pesticides on a per box basis. Each vertical bar

represents the emissions related to production of a specific chemical, while the horizontal bar

provides a comparison with the level of emissions for the base scenario. In the case of the

mean and median values from the sample of thirty-seven chemicals the effect on the total
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Figure 5-3: Comparison of Ecoinvent Pesticide Production Processes

carbon footprint for both the North American and European scenarios is a reduction of less

than 1%. Using the minimum and maximum values from the sample produces a decrease

of 5% and an increase of 11%, respectively, for North America. This corresponds to a 4%

reduction and an 8% increase for the European case.

We consider both uncertainty and variability to be important issues related to this study.

In order to explore this further we analyzed their role in the context of this study in two ways.

First, in Section 5.1.1 we consider uncertainty by analyzing the upstream and downstream

sources of emissions within the context of scopes identified by the GHG Protocol. Second,

in Section 5.1.2 we consider the variability aspect through an analysis of differences in the

distribution of bananas to various customers, and the role that transportation plays in the

calculated carbon footprint.
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Figure 5-4: Share of Emissions by Scope

5.1.1 GHG Protocol Scopes

Two previous studies have attempted to estimate which life cycle emissions fall under various

GHG Protocol scopes. Using an input-output analysis for all 491 sectors of the U.S. economy,

Matthews et al. (2008) found that for the average sector only 14% of emissions are scope

1 and 12% are scope 2. Huang et al. (2009) also apply the EIO-LCA method to estimate

the upstream scope 3 emissions for a variety of industry sectors as a percentage of total

emissions. Their results show that the share of upstream scope 3 emissions usually falls in

the 70-80% range, but can be as little as about 5% in industries such as power generation.

Applying a similar concept to the results of this study, but also including the downstream

portion of the supply chain, we classify the share of emissions of each scope for CBI as shown

in Figure 5-4.

We consider scope 1 emissions to be all those that occur due to fuel combustion, refrig-

erant leakage, and N2 0 emissions at CBI facilities or in CBI controlled transportation. The

facilities include farms, packing stations, port facilities, and ripening centers. CBI controlled
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transportation consists of the farm to port, ocean transport, port to DC, and DC to cus-

tomer DC legs. Scope 2 emissions account for all electricity usage at farms, packing stations,

ports, and DCs. Scope 3 emissions include chemical production, packaging production and

disposal, fuel consumption during aerial spraying, upstream production of fuels for scope 1

and scope 2 activities, and all downstream activities associated with the retailer beginning

with product arrival at the customer DC. This represents a broad definition of scope 1 emis-

sions, as in practice some transportation legs may be handled by third party carriers which

would be considered scope 3. However, since the actual ownership will vary by shipment we

choose to account for them as scope 1 in this analysis.

From this data we can see that more than half of the emissions occur as scope 3 emissions.

The remaining scope 1 and scope 2 emissions, which would be those considered within CBI's

corporate carbon footprint, account for 43% and 5%, respectively. The results highlight

the difficulties in performing a full carbon footprint for a supply chain. Despite high levels

of visibility and control of the supply chain a large portion of the emissions occur outside

of CBI's control, both upstream and downstream in the supply chain. As discussed in

Chapter 3, neither of the generally used approaches to fill in data gaps-either the use of

EIO-LCA data or LCI process databases-are without issues. The accessibility of data is

considered a serious issue in LCA (Bretz, 1998), and the lack of representative data may

result in unreliable results (Huijbregts et al., 2001). One possible method for improving the

data quality in carbon footprinting is to collect specific process-based data directly from

suppliers.

Both the GHG Protocol and Carbon Trust have proposed using a business-to-business

(B2B) sharing arrangement to provide information to supply chain partners. The Carbon

Trust carbon label program certified more than £2 billion in consumer products and £1 in

business-to-business products (Carbon Trust Certification Limited, 2011). On a B2B labeled

product the carbon footprint boundary stops when the product arrives at the customer's

door, and downstream emissions are excluded. In LCA this is referred to as a cradle-to-gate

analysis, as it does not cover the full cradle-to-grave life cycle of the product. This is intended

to facilitate the sharing of information in the supply chain. By providing the cradle-to-gate

carbon footprint to downstream customers, incremental additions to the carbon footprint
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can be added at each stage of the supply chain until sale to the end consumer (BSI, 2011).

If the producer of the final product to the end consumer then accounts for the use and end-

of-life phases this approach can cover the entire life cycle of the product. The GHG Protocol

Scope 3 standard explicitly allows for use of supplier data in both the value chain and product

standards (WRI and WBCSD, 2011b,a). The use of actual supplier data has several benefits,

including increased transparency, better reflection of changes in emissions due to efforts to

reduce emissions, and more effective tracking and reporting of GHG reduction goals (WRI

and WBCSD, 2011b). In their analysis of upstream emissions Huang et al. (2009) showed

that firms can capture a significant portion of their upstream emissions by collecting data

from only a limited number of direct suppliers. While sharing carbon footprint information

with downstream supply chain customers has the possibility to improve the results of a

supply chain carbon footprint measurement, it poses a challenge related to variability within

the supply chain.

5.1.2 Supply Chain Variability

If carbon footprint data is to be shared between supply chain partners it is important to

understand how variability in the supply chain affects the carbon footprint. Sundarakani,

De Souza, Goh, Wagner, and Manikandan (2010) noted this need to study carbon footprint

measurement across supply chains for a better understanding of the impact in the context of

global supply chains. The importance of variability within the system has been identified in

both the supply chain and LCA literature on carbon footprinting. McKinnon (2010) identifies

variability within the supply chain as one of the problems with trying to calculate product

level carbon footprints. Bjorklund (2002) identifies several types of variability within LCA,

including variability between sources, which may arise due to differences in processes. The

aggregation of emissions in the inventory analysis of an LCA can cause the loss of certain

variability characteristics (Huijbregts, 1998). Including these uncertainties in the results of

an LCA have been recognized as an important factor in improving the use of LCA as a

decision making tool (Heijungs and Huijbregts, 2004). If customers plan to use the carbon

footprint information shared by suppliers in their sourcing decisions then this variability

must be accounted for in the measurement. Roos, Sundberg, and Hansson (2010) noted that
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the spatial and temporal uncertainties, including differences in distribution, make measuring

the carbon footprint of a food product particularly complex.

To address this issue we consider the variability within the banana supply chain through

an analysis of the role of transportation required to deliver the product to specific customers

in the United States. Previous work has shown that a focus on food delivery miles is generally

less important in reducing emissions than food choice (Weber and Matthews, 2008). Thus,

a focus solely on the emissions from transportation is shortsighted. However, given the high

impact of transportation in the supply chain for bananas, delivery distance can represent a

key area of variability in the carbon footprint. The variability is introduced in two ways.

First, the bananas are brought to the U.S. on one of three ocean services: dedicated service to

the West Coast, dedicated service to Port Everglades, and a combined service that alternates

between Wilmington and the Gulf Coast. Each service achieves different levels of efficiency

due to differences in average shipment size, backhaul utilization, and distance traveled. Once

bananas reach port in the United States the second level of variability is introduced, as the

bananas must be distributed to customers located throughout the country. To do so the

bananas move through a distribution network that includes the five destination ports, ten

ripening centers, and finally on to more than 250 retail customer locations. A map showing

the locations of the various facilities is shown in Figure 5-5.

Each of the three ocean rotations operated by Chiquita provides a different level of

efficiency. The Wilmington-Gulfport-Freeport service works on a rotation that visits Wilm-

ington, returns to the tropics, visits Gulfport and Freeport, and then returns to the tropics

before beginning again. The West Coast and Port Everglades services each call on only

one port in the U.S. before returning to the tropics to complete the rotation. As the ocean

voyage represents the single largest aspect of the carbon footprint, the variability between

the different shipping rotations, due to both distance and relative efficiency, has a significant

impact on the calculated carbon footprint. A summary of data related to the different ser-

vices is shown in Table 5.2. The differences in service efficiency and distances create a range

of emissions required to serve each port ranging from 2.2 kg of CO 2 e per box at Gulfport to

6.7 kg for service to the West Coast. This represents a considerable variation from the 3.6

kg of CO 2 e per box average.
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Figure 5-5: Map of Facility Locations

Fuel Fuel
Consumption Efficiency

Service (tonnes) Cargo (tkm) (g/tkm) % Backhaul

Wilmington-Gulfport-
Freeport 1,054 100,521,756 10.5 34%

Port Everglades 360 35,390,431 10.2 15%

West Coast 1,443 89,586,805 16.1 7%

All 2,857 225,498,992 12.7 28%

Table 5.2: Fuel Efficiency by Service
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Figure 5-6: Carbon Footprint Breakdown (North America)

Though emissions from distribution within the United States are on average lower than

the ocean voyage they involve a considerably higher amount of variability. Some customers,

such as those located near the inbound ports and DCs, require a negligible amount of truck-

ing, while others requires thousands of miles of travel to receive delivery. When combined

with the variability required to reach the port, this results in a range of values for the car-

bon footprint of a box of bananas delivered to different customers, variability that is not

captured through the use of average carbon footprint values. To illustrate this variability we

have calculated the carbon footprint for each customer location that CBI delivers products

to. The carbon footprint consists of all emissions up to delivery at the customer's DC, as

well as the estimated emissions from the disposal of packaging material. We refer to this as

the B2B carbon footprint, as calculated in this manner the retail customer would be able to

calculate the emissions of their own operations and add them to the value supplied by CBI

to get a total carbon footprint. This ability to do incremental additions is at the core of the

business-to-business label idea used by the Carbon Trust.

The average B2B carbon footprint calculated in this manner is 14 kg CO2 e per box
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Count 254 Coefficient of Variation 0.10
Mean 13.8 Mean Deviation 1.09

Standard Deviation 1.38 Median 13.3
Minimum 11.5 Percentile 25% (Q1) 13.1
Maximum 18.0 Percentile 75% (Q2) 14.7

Table 5.3: Summary of B2B Carbon Footprint Results

delivered to the customer. This B2B carbon footprint value includes all of the activities

shown in Figure 5-6, except the activities of the retailer, consisting of the Customer DC,

Transport to Store, and Store stages. Though the average B2B carbon footprint is 14 kg

CO 2 e, the actual value when accounting for the variability in retail customer location ranges

from 11 to 18 kg of CO2 e based on the actual path required to reach a specific retail customer

location. When the 3 kg CO 2 e contributed by the retailer's operations is added to the B2B

carbon footprint this produces a range of 14 to 18 kg CO 2 e per box for the full supply

chain carbon footprint. This includes variation due to the efficiencies of each ocean shipping

service, transportation distances from ports to DCs and DCs to customers, and relative

efficiencies of the different ports and DCs. A summary of the results is shown in Table 5.3

and a histogram showing the distribution of B2B carbon footprints is shown in Figure 5-7.

A visual representation of the B2B carbon footprint serves to highlight the role of location

and distance in the calculation. Figure 5-8 shows the B2B carbon footprint as calculated

for any point in the country. The results were generated by first calculating the cradle-to-

gate carbon footprint for a box of bananas at each DC. The final B2B carbon footprint for

any location was then calculated by first finding the distance from the specific location to

the closest DC. The emissions generated by ground transportation for that distance were

calculated and added to the cradle-to-gate carbon footprint at the DC. The B2B carbon

footprint was calculated in this manner for a grid of destination points throughout the

United States and imported to ESRI's arcGIS software. Interpolation was then used to

estimate the B2B carbon footprint for all points throughout the country and display the

results.

The map clearly shows the effects of differences in trucking distance and the efficiencies of

the various ocean services. The port of Gulfport, Mississippi requires the lowest emissions to
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Figure 5-7: Distribution of B2B Carbon Footprint

be reached from the tropics, and combined with the proximity of a DC in New Orleans results

in the lowest carbon footprint for products sold in the Southeast. In contrast, the lower

efficiency of the West Coast ocean service and the significant trucking distance required to

reach the Pacific Northwest results in the highest carbon footprint for customers in this area.

Customers on the East Coast have close access to a number of DCs resulting in relatively

low carbon footprints, while customers in the Midwest often have significant distance to the

closest DC, or require a lengthy haul from the port to the DC near Denver. Thus, the B2B

carbon footprint for any particular customer is highly dependent on the specific structure of

the supply chain.

5.1.3 Discussion

In this section we have analyzed the sources of uncertainty and variability in the carbon

footprint of bananas. Sharing information with downstream customers was one proposed

method for improving the quality and reliability of the results. The decision to share this

128



Legend

0 Customer Locations

SDCs

A Ports

kg of CO2e per box

Figure 5-8: B2B Carbon Footprint by Location
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information with customers raises questions related to how variability within the supply chain

should be handled, as our results show that the carbon footprint of bananas sold to different

customer locations can have significant variability. In Section 5.2 we review the literature on

information sharing within the supply chain to gain insight on how it works in the context

of a supply chain. We identify the characteristics necessary for a good information sharing

scheme and relate these characteristics to the prospective sharing of carbon footprint data.

5.2 Information Sharing in the Supply Chain

An important aspect of supply chains is that they consist of multiple firms (Mentzer et al.,

2001). Private information held by each of the firms is inherent in the supply chain (Simatu-

pang and Sridharan, 2002). Sharing information between firms is one method of improving

coordination (Simatupang, Wright, and Sridharan, 2002), and it has been cited as a funda-

mental need for supply chains to improve performance (Barratt, 2004).

Several reviews of the literature have classified the work on information sharing based

on the information shared and its uses. Huang, Lau, and Mak (2003) provide a review of

work related to the impact of sharing production information in the supply chain through

a reference framework of seven key elements. Lee and Whang (2000) identify a number

of examples of information sharing in supply chains, including inventory levels, sales data,

order status, forecasts, production/delivery schedules, capacity, and performance metrics.

Sahin and Robinson (2002) divided the literature in to three categories based on the degree

of information sharing and flow coordination: no sharing and no coordination, partial or full

sharing with no coordination, and full information sharing and coordination.

A number of previous papers have focused on the role of information sharing in solving

specific problems. One of the most well known uses for information sharing is in reducing

the bullwhip effect. By sharing customer demand data the information distortion normally

propagated up the supply chain can be reduced (Lee, Padmanabhan, and Whang, 1997;

Chen, Drezner, Ryan, and Simchi-Levi, 2000). Other work has focused primarily on inventory

systems. The work is often directed towards finding the best inventory strategy under a

number of different information sharing arrangements and quantifying the benefit (Yu, Yan,
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and Cheng, 2001; Cachon and Fisher, 2000; Lee, So, and Tang, 2000). Additional work has

focused on issues such as the role of information technology in enabling information sharing

(Rai, Patnayakuni, and Seth, 2006) or empirical studies related to its role and effect within

the supply chain (Zhou and Benton Jr, 2007; Spekman, Kamauff Jr, and Myhr, 1998).

Many studies assume that information sharing partnerships will result in a win-win out-

come without rigorous analysis (Yu et al., 2001). Cachon and Fisher (2000) noted the wide

range of estimates for the value of information sharing, and that the actual benefits may

be related to factors other than the additional information. Li (2002) showed that with

strategic behavior information sharing does not always result in an overall benefit.

Given the perceived importance of information sharing in the supply chain, the range

of possible applications for the information, and the divergent results on the value of the

information this raises the question of what makes for an effective use of information sharing.

Lee and Whang (1999) propose that there are three criteria for a "good" information sharing

scheme in the context of a decentralized inventory management process:

1. Cost Conservation

2. Incentive Compatibility

3. Information Decentralizability

Cost conservation means that all costs must be accounted to individual sites. Incentive

compatibility requires that each manager finds it in his or her interest to make the optimal

decision for the system as a whole. Information decentralizability means that the scheme

can be implemented with only the information available at the site.

A key aspect of supply chain management is the shift in focal point from business units

to supply chains (Lee and Whang, 2000). This shift in focus is similar to the change in

perspective required when moving from an organizational perspective of carbon accounting

to a life cycle approach. With this in mind we consider the application of Lee and Whang's

(1999) three criteria to the issue of suppliers sharing the carbon footprint of their products

with customers.

In order to meet the criteria for cost conservation it is necessary that the firm fully

account for the emissions of its scope 1 and scope 2 activities, as well as all the upstream
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scope 3 activities of its suppliers. With these emissions accounted for the firm must pass

this full accounting of emissions on to its customers to fulfill the cost conservation criteria.

This is similar to the approach for product, value chain, and corporate carbon accounting

by the GHG Protocol discussed in Chapter 3.

With scope 3 emissions data provided by its suppliers any firm should be able to calculate

the carbon footprint simply by accounting for its scope 1 and scope 2 emissions and adding

them to the scope 3 emissions supplied by their upstream partners. The 2011 Carbon

Disclosure Project (CDP) (CDP, 2011) reported that 306 of the S&P 500 firms responded

to their survey by disclosing their GHG emissions. This high rate of GHG disclosure (91%

of respondents) indicates that at least large firms should have the information necessary to

account for their own scope 1 and scope 2 emissions. When combined with the scope 3

emissions provided by their suppliers the firms should then have the information necessary

to fulfill the requirement of information decentralizability.

Where the proposed sharing of carbon footprint information fails is in the context of

incentive compatibility. In order for a system to be incentive compatible each manager must

find it in his or her best interest to make the optimal decision for the system as a whole,

but managers may have incentive to falsely report information on their carbon footprint.

Without a method to verify the true level of emissions firms can underreport emissions

and be perceived as better performing. The lack of trust represents the biggest obstacle to

information sharing in supply chains (Li, 2002). Lee and Whang (2000) caution that firms

would be naive to assume information sharing will automatically produce better results, as

firms incentives are not always aligned and firms are reluctant to disclose sensitive data.

Thus, without verification of carbon footprint information managers may not have incentive

to truthfully report emissions, potentially leading to decisions that are not optimal for the

supply chain.

This lack of trust has been specifically noted in the literature on environmental monitoring

in supply chains. Thomas and Griffin (1996) considered environmentally conscious supply

chain management as an emerging research area in supply chain coordination. Vachon

and Klassen (2006) identify the use of environmental monitoring as one of two possible

approaches to environmental management. Environmental monitoring involves gathering
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and processing supplier information through public data, company specific questionnaires,

or the use of audits (Min and Galle, 2001) The lack of standards and third party verification

related to environmental reporting represent a barrier to adoption of CSR practices across

the supply chain (Faisal, 2010) (Jenkins and Yakovleva, 2006). In order to remove the barrier

to information sharing represented by the lack of trust we propose the use of a carbon label

program as a method to increase confidence. In the next section we present a framework for

how carbon labels can be used to share data with supply chain partners.

5.3 Carbon Label Framework

A label is a way to provide information about a specific product to consumers. This is

necessary in the case of a product's carbon footprint where there is no way to identify this

attribute from the product itself. In economic terms the carbon footprint of a product is a

credence attribute-an attribute that can't be evaluated even after purchase and use (Darby

and Karni, 1973). This is in contrast to the other classes of attributes that can be identified

either before or after use. A search attribute is one that consumers can evaluate prior to

purchase, such as color, size, or weight. An experience attribute is one that can be evaluated

only after purchase and use, such as the taste (Nelson, 1970). The existence of credence

attributes creates asymmetrical information between the consumer and producer. In his

famous study of the market for used cars, Akerlof (1970) examined how this asymmetry

can create inefficiencies in the market. One way producers can lessen the asymmetry is by

providing useful information to the consumer through a label.

Carbon labels represent an opportunity for suppliers to provide information about the

carbon footprint of their products to buyers downstream in the supply chain. This label

would reduce the data quality problems currently associated with LCA by providing relevant

data that is specific to the particular supply chain. However, due to the nature of credence

attributes such self reported labels are susceptible to "greenwashing," where companies claim

lower carbon footprints than reality. One way greenwashing can be reduced or prevented is

through third party labeling services (Kirchhoff, 2000).

The primary third party services used to increase confidence in labels are standards
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setting, testing, certification, and enforcement. A standard creates a common terminology for

products that presents information in a uniform manner so that consumers may more easily

understand the label and compare products. Certification provides an objective evaluation of

the labeled attributes and provides credibility for the label claim; enforcement increases the

incentive for firms to provide truthful claims; and testing can provide an objective measure

of the claim (Golan, Kuchler, Mitchell, Greene, and Jessup, 2001). The Carbon Trust is an

example of a current third party certification program for carbon labels. Companies wishing

to obtain the Carbon Trust label may measure their carbon footprint in accordance with

the standards set forth by the British Standards Institute PAS 2050 standard. The Carbon

Trust then provides auditing and certification services that are required to use their label.

Self reported labels with additional third party services are common in the food industry

as well, where nutrition labels are produced by the food manufacturers but subject to third

party regulation by the FDA (Caswell and Padberg, 1992).

While third party programs and regulations provide standards and certification, enforce-

ment is often carried out through de-certification and legal methods (Golan et al., 2001).

In the case of credence attributes testing may not be possible, and instead an identity-

preservation system is required to trace the attribute through the supply chain (Golan et al.,

2001). No single approach to traceability is adequate for every system, and the characteristics

of a good traceability system cannot be defined without considering the system's objectives.

However, the traceability system itself can be described by three dimensions: breadth, depth,

and precision. Breadth refers to the information recorded by the system. Depth is how far

backwards or forwards the system tracks. Precision is the degree of assurance the system can

track a particular characteristic. In traceability systems the characteristics of the attribute

determine the minimum breadth, depth, and precision required to preserve a record of the

attribute throughout the supply chain (Golan et al., 2004). Any carbon label can therefore

be characterized in terms of these three dimensions, and the appropriate choice of each is

dependent on the goal of the label.
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5.3.1 Breadth

The first characteristic of the label is its breadth-what is included in the measurement. At

the most basic level this covers which gases should be included in the measurement. Given

the confusion sometimes surrounding the term "carbon footprint," the label must specify

what emissions are included and what units they will be measured in. Beyond the technical

details like which gases need to be measured, the breadth determines which activities should

be included. Corporate carbon measurement standards such as the GHG Protocol have

placed the focus on whether emissions are emitted directly by the firm or indirectly by other

firms. This distinction is less relevant in the case of a supply chain. Emissions that are

indirect for one firm are direct emissions for a different firm in the supply chain. Instead the

focus is on which activities and materials fall within the scope of the product's supply chain.

These decisions impact the banana carbon footprint in a number of ways. A number

of gases besides carbon dioxide are produced during the course of the banana's life cycle.

Refrigerants released from refrigeration equipment and nitrous oxide released from soil both

represent significant non-CO 2 sources of emissions in the carbon footprint. If only carbon

dioxide is included in the breadth of the banana carbon footprint measurement then the

total carbon footprint is reduced by nearly 25%.

Clearly, emissions from activities and materials directly involved in the production and

distribution of the product should be included, but inclusion of other activities and materials

is less clear. Capital goods that are not directly used in the product's supply chain represent

one such decision. Though part of the system they have not always been included in LCAs,

and their relevance to the system can vary by the type of product (Frischknecht et al.,

2007). Capital goods and infrastructure are required to transport, store, and ripen bananas.

This includes trucks, ocean vessels, ports, roads, buildings, refrigerated containers, pallets,

forklifts, and a number of other items used throughout the supply chain. Recalculating the

carbon footprint with impacts from infrastructure in the Ecoinvent database included raises

the carbon footprint by 4%.

Other activities contribute indirectly to the production and sale of bananas. These can

include energy use at office buildings, business travel, and production of advertising for the
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product. Inclusion of any of these activities expands the scope of the system boundary

and presents questions on the appropriate method of accounting for these emissions. Many

emissions produced by a firm will be the result of activities that are common or joint across

several different products, and how those emissions should be allocated to the different

products must be determined. We consider that question to fall under the dimension of

precision. The idea of breadth determines what is included in the measurement at any given

stage of the supply chain. Activities, materials, and emissions that are within the breadth

of the measurement are considered part of the supply chain and their emissions should be

included, but the question of how to allocate emissions from activities that fall within the

breadth of multiple products is related to precision. Breadth provides one dimension of

the system boundary. The second dimension of the system boundary is the depth, which

determines which stages of the life cycle should be included.

5.3.2 Depth

The standard for LCA is a cradle-to-grave approach, where all inputs are traced back to

their origin as raw materials and then followed until end of life. In practice such a standard

is difficult to follow, and certain rules have been adopted to handle the high cost of tracing

every material back to its raw material state. A number of cut-off rules have been identified

in LCA studies, often based on quantities such as mass, economic value, or environmental

relevance. These cut-off rules provide arbitrary standards for when tracing a material further

up the supply chain can be excluded. For example, a mass based cut-off rule might specify

that if the mass of the material is less than 1% of the total product it does not need to

be traced back to its raw state (Raynolds, Fraser, and Checkel, 2000). The use of different

cut-off rules represents a methodological choice that prevents comparability between LCA

studies and must be addressed in a carbon label.

Of special interest is the decision to include the supply chain for the production of en-

ergy sources. Calculators such as those made available by the GHG Protocol estimate the

emissions from electricity generation and fuel combustion based solely on the emissions re-

leased during fuel consumption. This ignores the other steps in the supply chain required to

prepare fuel for use, such as extraction, refining, and transportation. LCA normally takes
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these considerations into account, such that burning a gallon of gasoline involves emissions

not just from the carbon content of the gallon of fuel, but also from its production. This is

the "well-to-wheel" scenario, as opposed to the "pump-to-wheel" analysis used by the GHG

Protocol. Estimates of the efficiency of gasoline production are around 82%, meaning that

18% of the total energy is used up simply in producing the gasoline for combustion (Hekkert,

Hendriks, Faaij, and Neelis, 2005).

Depth plays an important role not just in determining how far back in the supply chain

products should be traced, but how far forward as well. Tracing life cycle impacts forward in

the supply chain is a difficult problem because at some point the product typically passes into

the hands of an end consumer. At this point differences in how consumers use and dispose

of the product affect the life cycle impacts. Deciding whether to include these impacts and

how to account for them is a difficult challenge. For products that consume energy in the

use phase this is an especially important decision, as the impact of the use phase of those

products can dominate the production and disposal phases.

The banana is a simple product-once purchased by the consumer it is typically consumed

without any additional refrigeration or processing such as cooking. Despite this simplicity

there are still several actions consumers can take that could add to the life cycle emissions

of the product. The banana is typically purchased at the store and transported home, which

could involve emissions from travel. Consumers may place the bananas in paper or plastic

bags to carry home from the store. In some cases the bananas may be used as ingredients

in a dish that requires energy for cooking. The peel of the banana is likely to be disposed

of, and this may produce emissions from composting or decay at the landfill. Including any

of these activities requires making assumptions about a number of scenarios that may occur

and what the impact of those scenarios will be.

These activities may produce significant emissions, as estimates from our sensitivity anal-

ysis show that the addition of consumer travel to the store could add 20% to the carbon

footprint of purchased bananas. We assumed the consumer transportation consisted of a

round trip distance of 6.41 miles, the mean distance of trips reported as shopping/errands

by the 2009 National Household Travel Survey (Santos, McGuckin, Nakamoto, Gray, and

Liss, 2011). Vehicle operation was modeled in SimaPro using an Ecoinvent process for a
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gasoline passenger vehicle. This process is based on an assumed fuel consumption of 25.7

miles per gallon. The total trip emissions were allocated to bananas based on data provided

by Shaw's that showed bananas represented 6.7% of the average total purchase price for

consumer purchases that included bananas. This results in an estimated 0.2 kg of CO 2e

per trip allocated to bananas. Assuming a purchase of 1 kg of bananas (the approximate

size of one bunch), this represents a significant contribution to the total life cycle emissions,

as this would result in a 20% increase in the estimated impact of 1 kg of CO 2 e per kg of

bananas. The results are obviously sensitive to assumptions regarding the trip distance, the

number of other stops made during the trip, average fuel economy, and total purchase size,

but demonstrate that even for products with limited use phase emissions consumer behavior

can play a significant role in the total life cycle emissions.

Determining how to handle the use phase is a controversial issue, especially between

carbon footprints designed for B2B reporting and those designed for reporting to consumers

(Finkbeiner, 2009). The GHG Protocol Product Standard and the PAS 2050 specification

both allow for the inclusion of the use phase through the creation of specific use profiles that

describe the activities that make up the use phase (BSI, 2011; WRI and WBCSD, 2011b).

By combining the use profile with specific emissions factors, the use phase can be quantified

and reported to provide a full life cycle perspective. The process for developing the use

profile calls for development of specific product category rules (PCR) that specify the use

profile for a specific products within that category. Where such PCRs are available firms

are expected to comply with guidelines. However, when no PCRs or guidelines are available,

firms are able to define their own use profiles (BSI, 2011).

Changes in the depth of the standard can have clear effects on the measured carbon

footprint, but it also creates challenges in information collection, calculation, and reporting.

The depth of a carbon label must specify which stages of the supply chain should be included

in the system boundary. For activities that occur in the future, such as use and disposal,

the label must provide guidance on how the activities should be quantified and reported.
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5.3.3 Precision

The final dimension that defines a standard is the precision at which the measurement is

performed. This includes determining when to draw a distinction between two products of the

same supply chain, how to separate emissions between products of different supply chains,

and the appropriate use of secondary data. Two products produced by the same supply

chain may vary in a number of factors such as the distance shipped to final destination, the

source of components, and the manufacturing location. Our analysis of the banana supply

chain calculated the carbon footprint separately for North America and Europe due to the

differences in the supply chain for products sold in each market. However, our variability

analysis showed that even within a single market the results can vary significantly for different

customers. Further, the carbon footprint of a product represents a snapshot of the supply

chain at a certain point in time. How long that snapshot is valid and over what period of

time data can be averaged contribute to the precision of the label.

Precision must also specify how emissions from joint activities are separated between dif-

ferent products. In LCA three primary techniques are used to handle process that produce

multiple outputs: subdivision, system expansion, and allocation (Ekvall and Finnveden,

2001). In subdivision a more precise functional unit is defined, or more precise data is

gathered, that allows separation of the production of the products. When subdivision is

not possible either system expansion or allocation must be used. In system expansion the

boundary of the system is expanded to include the full life cycle of all products produced in

the multi-product system. The impact of the product of interest would then be calculated

by removing the impacts of the other products from the total impact of the multi-product

system. This approach requires collection of extra data from the life cycle for the other prod-

ucts, as well as the ability to calculate the impacts of those products through an alternative

production process in order to credit the expanded product system with their removal. Fi-

nally, allocation involves using a method to partition the impact of the multi-product process

between the products produced (Ekvall and Finnveden, 2001).

The precision must also specify the appropriate use of secondary data. The determination

of appropriate secondary data sources is an important one given the difficulty in directly
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monitoring emissions. When direct emissions monitoring is not available, measurable data

such as kWh of electricity and gallons of diesel fuel consumed must be converted into carbon

emissions through the use of emissions factors. The choice of factors affects the precision

of the carbon footprint. For example, emissions factors of electricity are available through

the EPA at the level of specific power plants, averages by energy provider, averages from

electricity generated in specific states, averages at the regional grid level, and at the average

national level. The choice of factor can produce significantly different results, as the average

emissions rate for electricity generated in Vermont was only 6 lbs/MWh compared with 2,386

lbs/MWh for electricity generated in the state of North Dakota (EPA, 2007). The use of

more precise emissions factors is not necessarily better, as due to the distributed nature of

the electricity grid the use of regional grid factors may be more applicable than state-level

factors. Any standard must specify what the appropriate sources of secondary information

are and how they can be used.

Though each banana follows similar steps in the supply chain, the actual path can be

quite different. Bananas imported by a single company may be grown at hundreds of different

farms, each of which may use different amounts and types of chemicals in the growing process.

Our sensitivity analysis showed that the amount of chemicals used at the farm is one of the

largest sources of uncertainty in the carbon footprint. Even within the same farm different

amounts of chemicals may be used during different time periods due to changes in growing

conditions. The work required to measure the carbon footprint at a high level of precision

may be very difficult given the complexity of supply chains and LCA. The precision of the

carbon label must determine which of these factors are relevant for making a distinction

between two products and which differences can be averaged into a single number.

5.4 Conclusion

In this chapter we have reviewed sources of uncertainty and variability in our use of Life

Cycle Assessment to measure the carbon footprint of bananas. Much of the uncertainty in

the measurement comes from the lack of visibility upstream and downstream in the supply

chain. More than 50% of the carbon footprint for bananas occurs as part of the scope 3
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emissions for CBI despite their significant control and visibility to the supply chain. Having

suppliers share information with their downstream customers regarding the carbon footprint

of their products has been proposed as a method for reducing this uncertainty. However, the

significant variability that can exist in the supply chain represents a difficult issue for firms

in deciding how best to provide information to their customers.

We have reviewed the literature on information sharing in the supply chain, and identi-

fied how the three properties of a "good" information sharing scheme proposed by Lee and

Whang (1999) apply to sharing of carbon footprint information. While the proposed carbon

information sharing scheme appears to be able to meet the cost conservation and informa-

tion decentralizability properties, it lacks true incentive compatibility. Because the carbon

footprint is a credence attribute it can be impossible for customers to verify the results, and

thus firms may have incentive to report lower emissions. We have proposed the use of a

carbon labeling scheme as a method for resolving this issue.

We developed a framework for measuring the carbon footprint using the idea of a carbon

label. A label reduces the information and data issues within LCA by allowing communi-

cation of claims about the product's attributes between firms in the supply chain. Due to

the nature of carbon footprints such claims are likely to be considered untrustworthy, but

third party services such as standards setting and certification can improve the confidence

in these labels. The three dimensions of breadth, depth, and precision define the attributes

of the measurement needed for a carbon label.

While breadth and depth together define the system boundary for a carbon footprint

measurement, the precision determines the usefulness for making specific decisions based

on the label. Achieving a high level of precision can be costly, and thus determining the

right level of precision is not easy. In the next chapter we explore the necessary level of

precision required to make decisions in the supply chain based on the role of carbon in the

transportation decision.
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Chapter 6

Incorporating Carbon Emissions in the

Transportation Decision Process

In the previous chapter we proposed a system where upstream suppliers would share in-

formation with their downstream customers through a carbon label. Under such a system

with the depth and breadth of the label set, a company would simply need to measure its

own emissions. When combined with emissions from purchased goods and services, the total

emission for the company and its upstream supply chain would be a fixed quantity. In order

to provide information regarding the carbon footprint of its products to its own customers

the firm would need to allocate these emissions to its products and customers. In order to

support improved performance in the supply chain it is necessary that the level of precision

in the measurement be sufficient to support the decision-making process of the customer. In

this chapter we review the role of allocation in measuring the carbon footprint of a supply

chain, propose the use of an Activity Based Costing (ABC) scheme for allocating emissions

to products and customers, and analyze the appropriate precision through an examination

of the transportation decision process.

6.1 Allocation

Returning to the case study of the banana supply chain we can see how the allocation

process might work. The PAS 2050 (2011) standard specifies that a label is valid for all

143



products sold within a country. With the functional unit set as one box of product sold in

the United States, we set the system boundary to include all activities used to produce and

deliver bananas to these customers. This process involves a first stage of allocation, as the

emissions related to bananas sold in the United States must be separated from those sold

in Europe, as well as from other products such as pineapples and plantains that may share

some of the supply chain activities with bananas. Once total emissions have been calculated,

the emissions are allocated to the final product by dividing the total emissions by the total

number of boxes sold in the United States. The result is the average carbon footprint for

all boxes sold in the United States, and this value of 17 kg CO 2e is the quantity that would

appear on a carbon label.

From the retail customer's perspective the use of the average carbon footprint for CBI

may not be sufficient to make reliable decisions. That is, the average value provides a

measure that can be used to track the performance of CBI over time-are they improving

carbon efficiency on a yearly basis? This reflects one of the primary uses of programs such

as the GHG Protocol Product Standard-tracking year-on-year emissions performance. The

Carbon Trust Carbon Label requires a pledge to reduce the carbon footprint of the product

by a set amount over a two year time period, and failure to do so results in the loss of the

right to use the label. This helps create the incentive for firms to reduce their product carbon

footprint. However, this does not provide enough precision for a specific retail customer to

determine whether CBI has improved the carbon efficiency of the service provided to that

customer. CBI's average carbon efficiency could improve on a yearly basis solely through

an increase in sales in regions that require less emissions to serve, such as the Gulf Coast

region. This provides little help to customers in the Pacific Northwest interested in CBI's

performance with respect to the products sold to them.

From a decision-making perspective, however, the use of the average value for the label

can result in poor decisions. Given the possible variation in the actual carbon footprint

of a product sold to a specific customer any decision based off this value could introduce

significant errors. Under a B2B carbon label program, where the total carbon footprint

is calculated incrementally at each stage of the supply chain, the error in these average

values could compound over time. Our results from Chapter 5 showed that the B2B carbon
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footprint of bananas sold to specific customers in the U. S. could range from 11 to 18 kg

CO 2e, a significant difference. In order to improve the decision making of the supply chain,

the label requires a level of precision that reflects the decision being made by the customer. In

the rest of this section we review the methods of allocation used in LCA and cost accounting

before presenting ABC as a method that can be used to allocate emissions at a level of

precision needed to improve decision making in the supply chain.

6.1.1 Allocation in LCA

Ekvall and Finnveden (2001) identify two types of allocation problems in LCA: allocation

of the environmental burden in multi-process systems and in open loop recycling scenar-

ios. Within multi-process systems Frischknecht (2000) identifies three distinctive features of

processes that may affect the type of allocation used:

" Joint or combined production of goods.

" Simultaneous or successive production of goods.

" One or several decision-maker(s) involved.

Differences in the production process may lead to a number of different allocation procedures,

with multiple studies of similar systems taking different approaches (Frischknecht, 2000).

The choice of allocation can be an important decision, as in some cases the choice of approach

may have more influence on the final results than any other parameter (Kim and Dale, 2002).

The ISO 14044 standards developed for Life Cycle Assessment describe a three step

process for allocation (ISO, 2006b):

* Step 1: Wherever possible, allocation should be avoided by

- dividing the unit process to be allocated into two or more sub-processes and

collecting the input and output data related to these sub-processes, or

- expanding the product system to include the additional functions related to the

co-products, taking into account the requirements of 4.2.3.3.
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" Step 2: Where allocation cannot be avoided, the inputs and outputs of the system

should be partitioned between its different products or functions in a way that reflects

the underlying physical relationships between them; i.e., they should reflect the way

in which the inputs and outputs are changed by quantitative changes in the products

or functions delivered by the system.

" Step 3: Where physical relationships alone cannot be established or used as the basis

for allocation, the inputs should be allocated between the products and functions in

a way that reflects other relationships between them. For example, input and output

data might be allocated between co-products in proportion to the economic value of

the products.

The subdivision of a process into sub-processes only avoids the allocation problem when

the process is composed of single-function sub-processes for which environmental data can

be obtained separately (Ekvall and Finnveden, 2001). While a process may be physically

separable in to sub-processes it is unlikely that changes in one will not affect the other unless

they are economically separate as well. Thus, the sub-division process will be accurate only

if the sub-processes are physically and economically separate (Ekvall and Finnveden, 2001).

Despite the guidance supplied by the ISO standards and the use of sub-division and system

expansion, avoiding allocation in all cases is generally seen as impossible (Weidema, 2000).

However, the ISO standards call for sub-division to be used when it can reduce the allocation

problem, even if it cannot completely eliminate it (Ekvall and Finnveden, 2001; ISO, 2006b).

The use of allocation despite the guidance to use system expansion may be partially

explained by differences in study types, as Tillman (2000) states that the choice of allocation

method should depend on the type of study. In attributional studies an allocation procedure

is appropriate, while for consequential studies a system expansion method is appropriate.

For attributional studies system expansion is often not possible because they describe the

status quo and no change in production volume occurs (Weidema, 2000). System expansion

is appropriate for use when comparing alternative scenarios for the same product, though

some studies have used it to compare different products (Ekvall and Finnveden, 2001). Even

attributional studies can use system expansion by employing market data to describe what
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could have happened under hypothetical system expansion (Weidema, 2000).

Most approaches to allocation have employed either an allocation based on physical units

or economic value (Azapagica and Clift, 1999). The physical causality allocation basis means

that burdens should be partitioned between different functions of the system to reflect the

underlying physical relationships between them and not in proportion to a simple mea-

sure. Physical causality requires some quantitative method that describes the behavior of

the production system, usually a mathematical model (Azapagica and Clift, 1999). Alloca-

tion in joint processes is often carried out for competitive reasons rather than discovery of

an absolute truth, and thus should be performed by the party responsible for the process

(Frischknecht, 2000). A basic principle of the ISO standards is that the sum of the allocated

burdens should equal the total of the unallocated burden (ISO, 2006a).

6.1.2 Cost Accounting

The internal accounting function of a company fulfills two purposes: decision-making and

control. The control purpose is served by including accounting information as part of perfor-

mance measurement, while the decision-making purpose is designed to provide the knowledge

necessary for informed decisions (Zimmerman, 2006).

A cost object is a product, department, program, or process for which we wish to de-

termine the cost for. The cost for a cost object is the sum of its direct costs and allocated

share of indirect costs. Direct costs are those that can easily be traced directly to a prod-

uct. Indirect costs, also called common costs or overhead costs, arise from a resource that is

shared by several products. Allocation is the process of dividing the common costs between

the cost objects. The process of allocation is comprised of three steps:

1. Defining the cost objects

2. Accumulating the costs to be assigned to the cost objects

3. Choosing a method for allocating the costs to the cost objects

In order to perform step three an allocation base must be chosen. This is the measure of

activity associated with the common cost that can be used to distribute the common costs
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to the cost objects (Zimmerman, 2006).

In traditional cost accounting, allocation using a base that does not reflect the actual

cost drivers, along with the classification of many discretionary costs as fixed, can lead to

distorted ideas of product cost (Cooper and Kaplan, 1988a). Traditional cost accounting was

mainly concerned with providing information for external reporting (Bakke and Hellberg,

1991). The focus on external reporting and the distorted idea of product cost has led to the

creation of new management accounting approaches, such as Activity Based Costing.

Unlike traditional cost accounting, ABC is more concerned with identifying the actual

costs of products and activities to improve management decisions (Bakke and Hellberg, 1991).

In an Activity Based Costing system costs are first traced to specific activities, and then from

activities to specific customers. In this manner it provides more accurate information to

managers that can be used to help make decisions (Cooper and Kaplan, 1988b). Traditional

cost systems tend to view an organization as a series of functional blocks, while activity

based systems view it as a series of linked activities that deliver value to the customer. The

focus in activity-based management is on understanding the activities, costs, and how they

link together in the value chain (Morrow and Ashworth, 1994). This focus is key when

taking a supply chain view, as activity-based information can provide relevant information

about activities across the entire chain in order to improve competitive advantage (Berry

et al., 1997). ABC is seen as well suited for the measuring performance and costs of logistics

systems (Pohlen and La Londe, 1994), and a number of sources have proposed forms of ABC

as appropriate for supply chain management (Pirttila and Hautaniemi, 1995; Liberatore and

Miller, 1998; van Damme and van der Zon, 1999; Dekker and Van Goor, 2000; Goldsby and

Closs, 2000; Manunen, 2000; Stapleton, Pati, Beach, and Julmanichoti, 2004).

6.1.3 Applying ABC to the Carbon Footprint of a Supply Chain

There are several similarities between the discussion of allocation in LCA and the application

of management accounting to supply chains. In theory every decision should be based on

opportunity costs, however, this requires a special study for every decision. In practice, this

can be a difficult and time-consuming practice, for which accounting costs are often used

as a shortcut (Zimmerman, 2006). This is true in LCA as well, where it is still common
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to see attributional studies applied for consequential purposes (Weidema, 2000). LaLonde

and Pohlen (1996) propose a system called supply chain costing that employs the techniques

of ABC, but applies them across organization boundaries. However, this process involves

gathering activity data for all firms in the supply chain, many of which may not be willing

or capable of providing this data. Similar issues of data access occur in LCA, and can be

exacerbated by the use of system expansion, which can expand the system boundary to

include the life cycle of additional products (Kim and Dale, 2002). The need to collect data

from additional product systems is justified only if the information results in significant value

for a decision based on the results. This generally requires that the indirect effects of the

change are significant and the uncertainties are not large (Ekvall and Finnveden, 2001).

We contend that in the typical management activities of a supply chain, the use of

accounting data for most decisions would indicate that the effort required to collect additional

information on the system is not justified, otherwise most decisions would involve a full

analysis of the opportunity costs. It may be that decisions made at the strategic level or by

customers that have the ability to significantly change a supplier's operations are worthy of

this level of analysis. For these decisions the indirect effects are large and the importance

of the decision justifies the extra cost of collecting marginal data and analyzing opportunity

costs. In such cases it may be more appropriate to make use of a consequential approach to

LCA and employ system expansion to consider the indirect effects of the action. For tactical

or operational level decisions where the decision is unlikely to cause significant indirect

impacts this effort is unlikely to be feasible, and an attributional LCA using an allocation

approach should be sufficient for most applications involving carbon footprint data. The

carbon footprint data provided by suppliers can thus serve as a shortcut to performing full

consequential LCAs in the same way that accounting costs are used in place of opportunity

costs.

The use of accounting principles has previously been applied to environmental issues

in two ways. Ratnatunga and Balachandran (2009), for example, identified management

accounting as a useful tool in the new-carbon economy, where costs associated with carbon

emissions over the whole life of a product must be considered. In this case it is the financial

costs of the carbon emissions, such as through carbon taxes or regulatory compliance, that
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must be allocated to products. Mamouni-Limnios, Ghadouani, Schilizzi, and Mazzarol (2009)

employ a different approach, using ABC to calculate the ecological footprint of products.

Our method is similar to the latter approach, as we propose using ABC to allocate the actual

environmental impacts to the products and customers and not simply the costs associated

with them.

We propose this because ABC is not just well suited to use in the supply chain, but

also specifically to our approach to measuring the carbon footprint of the supply chain.

Morrow and Ashworth (1994) describe ABC as a tool for calculating how the input costs

from suppliers and the production processes of the firm relate to its outputs. This echoes

our approach to calculating the carbon footprint where firms take information regarding

the carbon footprint of their inputs from suppliers and add the carbon emitted from their

own processes to calculate the carbon footprint of their outputs. Further, the process of

performing Activity Based Costing closely resembles the allocation process defined for LCA.

Consider the seven step method used by Lin, Collins, and Su (2001) for implementing

ABC for supply chain management:

1. Selecting the team.

2. Analyzing the supply chain functions.

3. Breaking process down into activities.

4. Identifying the resources consumed in performing the activities.

5. Determining the costs of the activities.

6. Tracing the costs to the cost objects.

7. Analyzing the final cost information from a total cost perspective.

We propose that this same seven step process could be performed for calculating the total

carbon footprint instead of the total cost. Steps three to five closely resemble the first step

of the process proposed by the ISO standards. Step three is similar to the idea of sub-

division, as the process is broken down into individual activities. In steps four and five the

resources consumed and costs of those activities are determined, similar to the collection of
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input and output data of the individual sub-processes. In step five, rather than identify the

financial cost of activities, we instead propose to determine their carbon footprint. Thus,

instead of using financial information to calculate the cost of activities, we instead use LCA

information to calculate the total carbon footprint of each activity and trace the carbon

emissions to specific cost objects. Finally, in step six the costs (or carbon footprint) are

traced to cost objects based on their use of various activities. Thus, the allocation is based

on a method that reflects the relationship between the activities and the emissions generated,

consistent with the principles outlined in step two of the ISO process. This process solves the

issue identified by Schmidt (2009), where allocating emissions by value or production volume

no longer reflects the technical-causal or ecological conditions in the production process.

6.1.4 Discussion

In this section we identified the role of allocation in the process of sharing carbon footprint

information with customers. We have proposed an Activity Based Costing approach to

allocation as being appropriate for use by firms due to the similarity to the process of

allocation within LCA and its relationship to supply chain management. The ABC approach

is useful for both the measurement of performance as well as supporting improved decision

making internally or with key external interfaces.

In the remainder of this chapter we illustrate this concept through an analysis of a

transportation decision. Though a number of current carbon measurement programs and

standards exist, we show that current programs are analogous to traditional cost accounting

approaches, relying on allocation by total volume rather than identifying the activities that

drive emissions. We propose new approaches for the mode and carrier selection process that

separates transportation to its component activities and allocates the emissions to customers

based on how these activities are used. In the first example we employ subdivision to

separate intermodal movements to the component processes of drayage and rail haul. In

the second example we separate truckload movements into direct costs, represented by the

direct emissions produced in moving from the origin to the destination, and the joint costs

of vehicle repositioning.
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6.2 Transportation Decision Framework

The transportation sector is a significant contributor to global greenhouse gas emissions

and energy usage. Transportation as a whole accounts for 19% of global energy use (IEA,

2009). In the U.S., with the largest transportation footprint, the sector represents 28% of

total greenhouse gas emissions. The International Energy Agency (IEA) predicts emissions

from transportation to grow by 50% by 2030 and by 100% by 2050 from 2007 levels (IEA,

2009). The Energy Information Administration (EIA) predicts similar high growth in energy

consumption, rising by 39% by 2030 and 92% by 2050 from 2006 levels (EIA, 2011).

Within the transportation sector, freight is expected to experience the fastest growth.

Freight accounted for 27% of transportation energy use globally in 2006 (IEA, 2009). In

the United States it represented 28% of transportation energy use, or 8% of overall energy

use. Freight is expected to grow by 30% by 2050, compared with 20% for the sector as a

whole. This growth is not a new development, as emissions from transportation have been

increasing for the past 30 years. From 1973 to 1992 emissions and energy use from freight

transport grew faster than any other sector in an analysis of 10 industrialized countries

(Schipper, Scholl, and Price, 1997). This growth has continued despite pledges by many

nations to reduce emissions under the Kyoto Protocol. Canada committed to a 6% reduction

of emissions below 1990 levels by 2012, but total emissions rose by 17% by 2009. This includes

a 35% increase in the transportation sector, and a 91% increase in emissions from Heavy

Duty Diesel road vehicles (Environment Canada, 2011) The struggle to meet this target led

Canada to announce it's withdrawal from Kyoto, citing an estimated $14 billion in penalty

costs (Austen, 2011). Emissions from transportation have risen even for countries on track to

meet their Kyoto targets. Sweden committed to a reduction of emissions to 8% below 1990

levels, and planned to stabilize transportation emissions at the 1990 level by 2010 (Floden,

2007). Despite achieving an 11% reduction in total emissions from 1990 levels, Sweden did

not meet the transportation goal, as emissions rose by 9% from 1990 levels by 2010 (EEA,

2011).

In addition to the high emissions associated with freight transportation it represents

a key role within the supply chain. Stank and Goldsby (2000) present a framework for
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transportation decision making in an integrated supply chain where transportation serves

as the connection to suppliers and customers, and successful performance is necessary for

the success of the supply chain as a whole. In their framework, shown in Figure 6-1, the

types of transportation decisions are characterized by the decision flow, from Strategic to

Operational, and the scope of the decision, from Micro to Macro (Stank and Goldsby, 2000).

Using this framework we propose that the information needed by managers to make

decisions at each level of this framework differ in their precision, and current carbon mea-

surement programs do not support this integrated framework. In order to demonstrate this

we focus on the level of mode/carrier assignment and present analysis that compares current

programs available at both the mode and carrier selection level with more precise metrics

suitable for use in an integrated supply chain. Specifically, we show that current programs

operate at a level of precision suitable for the traditional method of mode/carrier selection
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defined by Stank and Goldsby (2000) shown in Figure 6-2.

In the traditional mode selection the transportation manager selects a carrier by making

three separate distinct steps. First, the basic mode is chosen, such as road, rail, ocean, air,

or intermodal. Second, the specific type of carrier within that mode is chosen, distinguishing

between different types of transportation that fall within the same mode, such as LTL,

truckload, or parcel service for road transport. Finally, the transportation manager selects

between the available carriers of the appropriate type (Stank and Goldsby, 2000).

In our analysis we focus on steps one and three of this process. In Section 6.3 we examine

the choice of mode in the context of a road-rail intermodal shipment. We review the key

concepts from the mode selection literature, identify the role of current carbon measurement

programs in making mode selection decisions, and compare those programs with the results

of an analysis of the carbon performance of an intermodal operator.

In Section 6.4 we consider the choice of individual carrier selection in the context of

truckload carriers. We discuss the carrier selection process with a focus on the use of combi-

natorial auctions for truckload transportation procurement. We compare the EPA's Smart-

Way program for measuring carrier carbon performance and show its limitations for use in a

combinatorial auction. Finally, using an analysis of the operations of a large truckload car-

rier, we propose a method for developing lane level metrics suitable for use in a procurement

auction.

6.3 Mode Selection

The high rate of growth in freight transport emissions is caused primarily by road transport.

Truck transportation is responsible for 90% of freight transportation energy use globally

(IEA, 2009). It accounts for more than 60% of the total freight transportation emissions

in the United States, moving 40% of all goods by weight and more than 80% by value

(Greene and Plotkin, 2011). Since 1991 road transportation has grown at an annual rate

of 3.3% in the EU-15, outpacing all other modes of transport (Blauwens, Vandaele, Van de

Voorde, Vernimmen, and Witlox, 2006). As countries grow and become more industrialized

the increasing shipment of intermediate and final goods results in more use of trucks due to
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the increased flexibility they offer (Schipper et al., 1997). The growth of freight and share

of trucking are coupled with GDP growth, driven by growth in international trade, "just in

time" business practices, e-commerce, and handling of intermediate goods (Kamakate and

Schipper, 2009). This coupling of economic growth with increased road transportation has

significant implications for emissions growth in developing markets, with the vast majority

of emissions increases by 2050 coming from non-OECD countries (IEA, 2009).

Given the projected growth in demand for freight transportation, a number of strategies

for reducing emissions must be considered. Possible approaches can be grouped into three

categories: improved technological efficiency, improved operational efficiency, and shifting

to more efficient modes (Vanek and Morlok, 2000). Much of the work in the technological

and operational efficiency has been devoted to the trucking industry, as trucking represents

the largest share of emissions as well as having a relatively high intensity of emissions per

ton-mile (Vanek and Morlok, 2000). However, the increase in demand for trucking has

overshadowed any improvements in transport intensity. Over a 20 year period from 1973-

1992 road transport energy intensity remained relatively level, increasing by only 2% in the

U.S. and EU-8, while the intensity of rail declined by 41% in the U.S. and 23% in the EU-8

during that timespan (Schipper et al., 1997). Given the high levels of emissions associated

with trucking even small improvements in efficiency are likely to have a significant impact

compared with modal shift due to the difficulty in shifting significant amounts of freight

from road to rail (McKinnon, 1999). Other projections are more optimistic regarding the

role of modal shift in emissions reductions. The Pew Center on Global Climate Change

identified modal shift as having the greatest potential for reducing emissions in the United

States, with 5% of the possible 7-10% reduction in emissions achievable by 2030 being the

result of improved logistics. This is in comparison to a reduction of only 2% possible through

improvements in vehicle technology (Greene and Plotkin, 2011). The IEA's BLUE scenario,

designed to achieve the maximum CO 2 reduction in transport by 2050 using measures that

cost up to $200 per tonne, projects a 15% reduction in GHG emissions from the baseline

scenario due to modal shift from road to rail. When combined with improvements in efficiency

(25% reduction) and the use of advanced fuels (15% reduction) this achieves a 50% reduction

in emissions from the baseline scenario by 2050 (IEA, 2009).
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Reducing emissions through modal shift is achieved mainly through the shift from road

transportation to rail. The relative energy efficiency of rail is estimated at two to five times

that of trucking, with even the largest trucks being only half as efficient as rail (Schipper

et al., 1997). GHG emissions intensities have a similar relationship with trucking, producing

twice the amount of emissions that rail does over the full life cycle (Horvath, 2006). Despite

the efficiency benefits of rail, a number of factors prevent a significant shift from road to rail,

including the high level of service required by modern supply chain practices (Kamakate and

Schipper, 2009), access to rail terminals (McKinnon, 1999), and capacity constraints on the

railroads (Vanek and Morlok, 2000).

Road-rail intermodal is one popular method for shifting transportation from road to

rail, offering shippers the convenience of point-to-point service like trucking combined with

the efficiency gains from rail. Despite worries about capacity constraints, intermodal rail

units increased by 63% between 1993 and 2005 (Association of American Railroads, 2006).

Bitzan and Keeler (2011) estimate that a shift of only 1% of current intercity truck freight

to intermodal could generate savings of .92-2.18 Tg of CO 2 per year, an amount equal to

24-56% of the total possible savings available by urban public transit. Thus, while a modal

shift to intermodal freight may replace only a small amount of current truckload freight

traffic, it is increasingly popular with shippers and can provide benefits on par with other

popular policy measures.

Despite the popularity of intermodal as an alternative to trucking, there is relatively

little information regarding the actual efficiency of intermodal in comparison to other modes

(Bitzan and Keeler, 2011). In this section we attempt to fill this gap in the literature with

an analysis of a large data set of intermodal shipments in North America. We compare the

results of this analysis with estimates obtained using a publicly available carbon calculator

targeted towards shippers and assess the relative efficiency of intermodal in comparison to

truckload. In the second part of this section we apply the market area concept to the carbon

efficiency of intermodal shipping to explain the difficulty in assessing an overall efficiency for

it as a mode. From these results we identify opportunities for intermodal operators to work

with shippers to reduce emissions.

157



6.3.1 Literature Review

In addition to increased popularity with shippers, intermodal transportation has increased

as a topic of research (Bontekoning, Macharis, and Trip, 2004). In a review of the literature

on intermodal research, Bontekoning et al. (2004) identified eight areas of research. Five of

the eight categories focus on issues related to the characteristics of an intermodal shipment,

including work on drayage, rail hauls, transshipment, standardization, and multi-actor chain

and control. Two other areas of research, mode choice and pricing strategies and inter-

modal transportation planning and policy, have generated interest in the role of intermodal

transportation in reducing greenhouse gas emissions.

At the policy level much of the analysis for the potential of modal shift has been focused

on a macro approach suitable for estimating the potential in a given region, but not at a

specific company level (Tsamboulas, Vrenken, and Lekka, 2007). In order to provide useful

information for shippers and operators at the micro level it would be useful if more relevant

data were provided by the actors involved (Bergqvist, 2008). Bitzan and Keeler (2011) noted

this lack of available information on the overall efficiency of intermodal when attempting to

estimate the potential for a modal shift in US. When attempts have been made to model

emissions from intermodal transportation they have generally considered the rail and road

segments separately, rather than as a single intermodal movement. Bauer, Bektas, and

Crainic (2009) formulate a service network design problem with a goal of minimizing total

greenhouse gas emissions and allowing the use of truck or rail in the network. Janic (2007)

considers a simplified intermodal network in comparison to a road network in a model that

includes both internal costs and external costs related to air pollution, noise, congestion,

and traffic accidents. Patterson, Ewing, and Haider (2008) estimated emissions savings from

premium intermodal service in the Quebec City-Windsor corridor by calculating truck and

rail distances using geocoded locations and then applying emissions factors specific to each

mode to estimate emissions. Winebrake et al. (2008) use a Geographic Information System

(GIS) approach to model a network using road, rail and water based on geographic data.

Their model introduces "artificial" intermodal nodes that connect different network segments,

with each network segment having attributes for time, distance, cost, energy, and emissions.
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Kim, Janic, and Van Wee (2009) use a multi-modal hub and spoke network that incorporates

CO 2 emissions for different modes and at transshipment points. They solve a multi-objective

optimization under different constraints on CO 2 emissions to find the pareto optimal solution

to the tradeoff between cost and CO 2 under a variety of scenarios in a simplified network.

In each of these cases the emissions from the intermodal shipment were calculated by

breaking the shipment into its individual road and rail components. This approach is in

contrast to the general perception reported by shippers in surveys that intermodal is its own

distinct mode, providing better service than rail, but worse than truckload (Bontekoning

et al., 2004). Considering the road and rail segments of intermodal separately has the

advantage of more accurately accounting for the rail network during evaluation, but comes

at an increased level of complexity required to account for all the possible nodes and links in

the network (Macharis, Caris, Jourquin, and Pekin, 2011). In some cases the two approaches

may be combined, by first using a detailed network representation to create a set of virtual

links that connect the origin and destination, each by a different combination of modes,

routes, and equipment (Beuthe, Jourquin, Geerts, and Koul a Ndjang'Ha, 2001). Such

a network could have direct links between origin and destination nodes that represent an

intermodal shipment (Macharis et al., 2011). Blauwens et al. (2006) use a total logistics

cost model that includes transportation costs and inventory costs to explore potential shifts

between modes under different policy options. They compare road transport with rail/road

and barge/road intermodal. Each option is considered a distinct mode with an associated

cost and lead time. While this approach may more closely resemble the decision made by the

shipper, it first required a case study to determine the cost and lead times of the different

modes. Given the lack of publicly available information regarding the carbon efficiency of

intermodal as a distinct mode, such approaches may be difficult to implement.

6.3.1.1 Carbon Measurement Programs

A number of programs exist that provide standards for estimating the greenhouse gas emis-

sion from freight transportation (Hoen, Tan, Fransoo, and van Houtum, 2010). Two of the

most popular are the GHG Protocol corporate accounting standard and the Network for

Transport and Environment (NTM) calculator. NTM is a non-profit organization located in
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Sweden with a goal of establishing a base of values for calculating the environmental perfor-

mance of transportation, and offers a calculation method among its services (NTM, 2012).

These programs generally provide emissions factors for freight transportation that account

for the fuel consumption of different vehicle types as well as their load size and utilization.

This allows for calculation of the carbon footprint of a shipment based on the weight and

distance of the shipment using the appropriate emissions factor.

The GHG Protocol (WRI, 2011) provides two sources for the emissions factors, one from

Defra for the U.K. and one from the EPA for use in the United States. The EPA factors

were created for the EPA's ClimateLeaders program, and employ a top down methodology to

calculate emissions factors by mode (EPA, 2008b). Total emissions by mode are estimated

from data provided by the EPA's national greenhouse gas inventory (EPA, 2007). The

total emissions are then divided by the estimated ton-miles carried by the mode using data

from the Federal Highway Administration statistics that uses a survey approach to estimate

distances and load factors by mode type (FHWA, 2005). This produces an emissions factor

in terms of kg of CO 2 per ton-mile for each of the major freight modes: road, rail, water,

and air.

The emissions factors provided by Defra (2010) are similar, but more comprehensive

than those supplied by the EPA. Emissions factors for road are supplied for a number of

different equipment types within the mode. The methodology makes use of survey data to

estimate fuel efficiency and average loading factors by equipment type. These two pieces

of data are then combined to calculate an emissions factor in kg of CO 2 per tonne-km for

each equipment type. For rail service Defra relies on statistics collected by the Office of

Rail Regulation on total consumption of diesel and electricity by freight trains and the total

freight moved for trains operating in the UK. The total CO 2 is calculated from the diesel

and electricity consumption, and this is divided by the total tonne-km of freight to produce

the final emissions factor.

The NTM methodology takes a different approach than those used by the EPA and De-

fra, relying instead on a bottom up simulation approach. For road NTM makes use of the

ARTEMIS emissions modeling software to estimate the fuel consumption of a variety of ve-

hicle types under different load factors and scenarios (NTM, 2010). For rail transport NTM
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Mode GHG Protocol (Defra) GHG Protocol (EPA) lTM
Road (light truck) 863 269 368

Road (medium truck) 490 269 258
Road (tractor + trailer) 126 269 92

Rail 31 23 29

Table 6.1: Carbon Intensity by Mode (g C0 2/ton-mile)

uses data based off the EcoTransit model that estimates electricity and fuel consumption

for trains under different weight and terrain types (NTM, 2008). The model accounts for

transmission and conversion losses in electricity, generation technology mix, and the envi-

ronmental performance of the different generation technologies. By combining the energy

consumption model with assumptions regarding terrain, environmental performance, overall

train weight, and the percentage of cargo weight, the model produces an estimated emissions

factor, again in kg CO 2 per tonne-km. A free calculator is available for use at the NTM

website http://www.ntmcalc.org.

Despite the difference in methodology the end result available for use in calculating

emissions is similar across all methods. Users may enter the weight and distance of shipments,

and a standard emissions factor per ton-mile is used to estimate total emissions. Some of the

relevant emissions factors from the different methodologies are shown in Table 6.1. While

each of the methods provides emissions factors for use with either road or rail transport none

of the programs provide factors for intermodal. The distance methods available in both the

GHG Protocol and NTM require knowledge of the specific routing of the shipment that the

shipper may not possess, as the carbon from the road and rail segments must be calculated

separately.

The lack of methods available for calculating emissions from intermodal transportation

represents a challenge to shippers when deciding whether to shift from truckload to in-

termodal. The standard multi-modal models used for most mode choice problems require

knowledge of the routing, cost, and emissions within the intermodal network. In their sur-

vey, Harper and Evers (1993) reported that a high percentage of intermodal shipments were

arranged through a third party, and so shippers may have limited information about how

exactly the intermodal shipment was transported.
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Macharis and Bontekoning (2004) identify four types of operators that may be involved

in an intermodal shipment: drayage, terminal, network, and intermodal. Bontekoning et al.

(2004) noted that the majority of mode choice models used in intermodal research have been

focused at the level of these operators. Even models identified as being targeted towards

decision support for shippers, such as those of Barnhart and Ratliff (1993), Bookbinder and

Fox (1998), and Min (1991), make use of models based on single mode routing along a

multi-modal network.

The intermodal operator is responsible for buying services from the drayage, terminal,

and rail network operators (Macharis and Bontekoning, 2004). They coordinate the shipment

and have visibility to each leg of the journey. Thus, current carbon calculation methods are

sufficient for intermodal operators to include emissions in the mode choice decision. This is

not the case for the shipper, where intermodal offers a distinct mode of shipment, different

from either road or rail. The details and routing of the shipment are often handled by a

third party, and the shipper has only limited information regarding the actual routing. To

include greenhouse gas emissions in their mode choice decision, shippers require the ability

to calculate the emissions from intermodal with only limited information, but relatively

little data on the overall efficiency of intermodal as a mode is available. Vanek and Morlok

(2000) used a simulation model to calculate the likely energy efficiency of intermodal to

be in the range of 1200-2320 BTU/ton-mile. This would correspond to a carbon intensity

of approximately 88-170 g C0 2 /ton-mile. The International Road Transport Union (IRU)

studied nineteen routes in Europe, and calculated the total energy and GHG emissions

required to service those lanes by intermodal and truckload transportation. Their results

estimated the total energy consumption required to service all nineteen routes to be 20-50%

less for intermodal than trucking, with emissions savings slightly greater than energy savings

(IFEU and SGKV, 2002).

6.3.2 Methodology

A number of different definitions of intermodal transportation have been used in the liter-

ature, with no clear consensus having emerged (Bontekoning et al., 2004). Jones, Cassady,

and Bowden Jr (2000) identify the use of multiple modes of transportation to provide a
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single, seamless journey as a primary concept in their definition. These concepts capture the

relevant factors for our research. To the shipper, who has the goods requiring movement,

an intermodal shipment provides a single movement from origin to destination. The exact

modes and intermediate routings are not important, as mode is judged on overall qualities

such as speed, service, and cost. In this analysis we limit our focus to the movement of

freight through a combination of rail and trucking, which is a common use of the term in-

termodal (Taylor and Jackson, 2000; Spasovic and Morlok, 1993; Nierat, 1997; Harper and

Evers, 1993; Evers, 1994; Nozick and Morlok, 1997).

We define an intermodal shipment to consist of an origin drayage movement performed

by truck that takes the shipment from the origin location to the origin ramp. At the ramp

the shipment is transferred to rail and a linehaul between the origin and destination ramps

occurs. At the destination ramp the shipment is transferred back to a truck and a destination

drayage movement delivers the shipment to the consignee at the final destination. This is

depicted in Figure 6-3.

We calculate the carbon footprint of an intermodal shipment by disaggregating the ship-

ment in to separate drayage and rail movements using (6.1).

Cim = dod x cd+ d x cr+ddd X Cd (6.1)
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where:
dM =distance of origin drayage

dd d=distance of destination drayage

d, =distance of rail haul

Cd =carbon efficiency of drayage

cr =carbon efficiency of rail

We applied this method to a data set supplied by J.B. Hunt Transportation, the largest

intermodal operator in North America. The data consisted of records for more 400,000

individual intermodal shipments covering more than 40,000 origin-destination lanes (grouped

by zip code) in North America. Each record contained the zip code locations of the origin,

origin ramp, destination ramp, and destination; the length of the origin and destination

drayage; and the length of the rail haul. Additionally, the operator supplied a carbon

efficiency parameter for drayage based on their own fuel efficiency, empty miles, and out

of route miles. The length of the rail haul portion of each movement was provided by the

contracted rail companies to the intermodal operator. When this data was not available

the rail distance was calculated with the RailMILER commercial software program. The

rail carbon efficiency parameter was calculated using efficiency numbers supplied by the

rail companies per ton-mile. This value was then multiplied by the average weight of the

intermodal shipments, including equipment, to get an efficiency parameter in terms of CO 2

per mile.

The calculation of the carbon footprint of an intermodal shipment in this manner is

straightforward, but may be difficult for shippers to calculate in practice. Without knowledge

of actual routing the relative distances of the drayage and rail haul movements are unknown.

The respective carbon efficiency parameters, expressed in terms of CO 2 per unit of distance,

can be estimated from sources such as the GHG Protocol. However, drayage movements

tend to be less efficient than standard trucking due to age of equipment (Ang-Olson and

Facanha, 2008) and higher empty miles (Spasovic and Morlok, 1993). The use of standard

road emissions factors for both trucking and drayage will tend to overestimate the actual

efficiency of intermodal shipments compared to trucking. Rail carbon efficiency numbers
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are generally given in units of CO 2 per ton-mile. These can be converted to distance based

factors through a straightforward multiplication of the factor by the shipment weight, but

the weight must be adjusted based on the type of equipment used.

These difficulties can be illustrated through a comparison of the calculation of the carbon

footprint using actual operator data to a publicly available tool that makes use of limited

information. The EPA's SmartWay program provided a method for calculating the carbon

footprint of intermodal shipments as part of their original FLEET calculator. The tool

is designed to help shippers estimate the potential savings of switching shipments from

truck to intermodal. The calculator takes as parameters the distance between the origin

and destination and the mix of rail service used (average, mixed freight, double stack, or

trailer on flat car). Optionally users can provide specific information on drayage distance,

shipment weight, and the percentage of empty drayage miles. The calculator provides an

estimate of the carbon footprint of the shipment if moved by intermodal transport, as well

as by truckload. This allows the shipper to compare the results and calculate the savings

achieved by switching from truckload to intermodal shipments.

The carbon footprint from the calculator was obtained by using the default values for

drayage distance, drayage efficiency, and assuming average rail service. Distance was cal-

culated between the origin and destination by first geocoding the zip codes to latitude and

longitude values using ESRI's ArcGIS software. Next, the distance between the latitude and

longitude points was calculated using the haversine great circle distance formula given by:

D = r x 2 arcsin sin2 + cos # cos #dsin2  (6.2)

where #0, Ar, #d, and Ad are the latitude and longitude of the origin and destination locations

and r is the radius of the Earth. The results from the calculations for both the operator

data and the SmartWay calculator are shown in Table 6.2.

From these results we can see that the SmartWay calculator underestimates the total

CO 2 by 30% compared to actual data. The large difference in emissions from drayage is

mainly due to the SmartWay calculator significantly underestimating the number of drayage

miles driven in practice. The SmartWay tool calculates total drayage miles using (6.3) where
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Operator Data SmartWay Calculator Difference

Drayage CO 2  173,694 75,041 -57%
Rail CO 2  761,922 582,038 -24%

Total Intermodal CO 2  935,656 657,078 -30%

Table 6.2: Comparison of Intermodal CO 2 Calculations (tonnes C0 2 )

D is the distance between the origin and destination locations.

drayage = 40 + ( D)2 (6.3)
400

This produces an average drayage distance of only 57 miles, with a maximum of 86 miles for

a shipment with a great circle distance of 2,718 miles. In contrast the operator data shows

the average total drayage distance to be 146 miles. The difference in rail CO 2 is driven by a

lower estimated rail distance and higher estimated fuel efficiency (15 MPG to 13.8) for the

SmartWay calculator.

In order to provide a comparison to other modes of transport, we calculate the carbon

intensity of the intermodal shipments by dividing the total CO2 emissions by the total number

of net ton-miles worth of goods moved. Total net ton-miles were calculated by multiplying

the shipment weight (excluding equipment) by the great circle distance between the origin

and destination for each individual shipment, then summing the total for all shipments. By

using the great circle distance between the origin and destination rather than the actual

traveled distance we provide a consistent basis for comparing shipments across modes which

have different amounts of circuity. Circuity represents the additional distance traveled to

reach the destination. For truck shipments this accounts for the need to travel over the

road network, which does not run in a straight line between each origin and destination.

For intermodal shipments this accounts for the additional road network distance during the

drayage movements, the additional rail network distance, and the need to travel to and

from the intermodal terminals rather than direct between the origin and destination. Each

truck shipment needed to travel an additional 16% farther than the great circle distance,

while intermodal shipments traveled 37% farther. Since each mode performs the same work,

moving the goods from the origin to the destination, using actual distance traveled rather
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than great circle distance would fail to account for the increased efficiency of truckload

shipping due to the more direct route used.

In addition to the calculated intermodal CO 2 we also include for comparison the estimated

CO 2 for serving those same lanes by truckload service. The truckload calculations are again

performed using both operator supplied data and the original SmartWay FLEET calculator.

Calculations for the operator's truckload emissions are based on data collected from their

longhaul trucking business and are calculated using the following equation:

CFTL = (dotr + dae) x ca (6.4)

where:

dotr =over the road distance

dae =average empty distance per shipment

ctl =carbon efficiency of truckload transportation

The distance between the origin and destination zip codes is calculated using software that

determines the actual over the road travel distance, eliminating the need to adjust the great

circle distance using a circuity factor. The average empty miles is a fixed quantity based

on dividing the total empty miles traveled by the number of shipments. Finally, the carbon

efficiency factor is based on the actual fuel efficiency of the operator's vehicles, an adjustment

for out of route mileage variance, and the carbon content of diesel fuel.

The SmartWay calculator uses a slightly different method for estimating truckload emis-

sions, given by:

CFSWTL = dod x de x 1+ 1 x cwa (6.5)
1 - de)

where:

dod =straight line distance from origin to destination

de =circuity factor adjustment

de =percentage of empty miles

cotl =carbon efficiency of truckload transportation

The SmartWay calculator provide default values for the circuity factor of 1.15, the empty
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Operator SmartWay Difference

Intermodal CO 2 (tonnes) 935,656 657,078 -30%
Truck CO 2 (tonnes) 1,696,527 1,750,054 3%

Intermodal Intensity (g C0 2/ton-mile) 69 48 -30%
Truckload Intensity (g C0 2/ton-mile) 125 128 3%

Table 6.3: Calculated CO 2 Intensity

miles as 20%, and the carbon efficiency calculated by using a factor of 74.5 g C0 2 /ton-mile

and an assumed weight of 22 tons. The calculated emissions from intermodal shipping,

truckload shipping, and the resulting efficiencies are shown in Table 6.3.

From this we can see that while the SmartWay and operator intermodal calculations lead

to significantly different results, the estimates for truckload shipping are fairly consistent.

When compared with data for other modes available from sources shown in Table 6.1 we

can see that the calculated intensity of intermodal shipping fits in the expected range, with

both calculation approaches showing a higher intensity than rail but lower than trucking.

The estimated emissions from truckload shipping are consistent with estimates from other

sources. Our calculated intensity falls below the range estimated from Vanek and Morlok

(2000), but the estimated savings when compared to trucking are consistent with the average

range found by the IRU (2002).

Recall that the emissions from intermodal shipping can be broken up into three parts-the

origin drayage, the rail linehaul, and the destination drayage movement. The drayage move-

ments are generally considered to be less efficient than truckload shipping, while the rail haul

is more efficient. For the overall shipment to be more efficient than truckload the linehaul

must be long enough to make up for the lower efficiency of drayage and the increased circu-

ity of the rail network compared to the lower circuity provided by the direct point-to-point

truckload shipping. Thus, on a specific shipment the actual efficiency of using intermodal

transportation can vary depending on the actual distances involved for each of the three

parts.

To show this variation we calculate the intensity of the intermodal movements on a lane-

by-lane basis. Each lane is defined as a distinct origin-destination zip code pair, more than

40,000 of which are represented in the data set. For each lane the intensity was calculated
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Operator SmartWay

Minimum 29 47
Mean 72 49

Maximum 308 67
Std. Dev 15 1.8

Table 6.4: Summary of Calculated Intermodal CO 2 Intensity by Lane
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Figure 6-4: Distribution of Intermodal Carbon Intensity by Lane

by dividing the total CO 2 for the lane, as calculated using (6.1), by the total net ton-miles of

cargo shipped. As a comparison a similar analysis was done using the SmartWay calculator.

A summary of the results from this analysis is shown in Table 6.4. The distribution of the

operator's lane-by-lane intensities is shown in Figure 6-4, with a vertical shown representing

the 125 g C0 2/ton-mile average intensity of truckload shipping. Due to the assumptions in

the SmartWay calculator the calculated intensity shows a limited variation from the average

value, with more than 99% of the lanes falling within the range of 45-55 g C0 2 /ton-mile.

From the results we can see that the actual intensity for a given lane can vary significantly,

and in some cases the carbon intensity may actually higher than if truckload shipping had
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been used. This is not true for the results from the SmartWay calculator, where no lane

shows a greater intensity than if served by truckload and the calculated intensity always

falls within a narrow range. This creates difficulty for shippers considering switching from

truckload to intermodal, as there is considerable uncertainty about how much carbon savings

can be obtained by switching individual lanes. In the next section we further examine

the competitiveness of intermodal versus truckload shipping through the concept of the

intermodal market area, and show how this concept can be used by intermodal operators to

help shippers identify the lanes best suited for intermodal shipping.

6.3.3 Carbon Market Area

The reason for the lane-by-lane variance can be explained through the application of market

area theory to intermodal transport. Nierat (1997) describes the market area of intermodal

transportation as the region of space around a rail terminal in which intermodal transporta-

tion is the most competitive mode. The space is defined around a rail terminal because an

intermodal shipment requires a fixed threshold cost to first be moved to the terminal via

the origin drayage and rail line haul. The total cost to reach the destination is then this

fixed cost plus the cost of the drayage move from the terminal to the final destination. This

cost increases as the destination moves away from the terminal due to the longer drayage

move at the destination. If the destination is too far from the terminal it may no longer be

competitive to use intermodal transportation, instead a direct truckload shipment between

origin and destination would be used.

A depiction of the choice faced between intermodal and rail is shown in Figure 6-5. The

shipment begins at point A and is destined for point M. If the shipment is sent via intermodal

it is first sent to the origin terminal by drayage truck and then to the destination terminal,

point B, by rail. This represents the fixed cost portion of the shipment, as regardless of

where M is located the shipment must first be taken to point B. From B to M the final

movement is again made by drayage truck. If the shipment is instead sent by truck it travels

directly from A to M. The intermodal market area for terminal B defines the range of space

around B where M can be located and served more competitively by intermodal service than

direct truckload shipment given the origin location of A.
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Figure 6-5: Intermodal vs. Road Choice

Formally Nierat (1997) defines this service area by calculating the costs for each shipment

in the following manner. The cost to reach point M by road, defined as C, (M), is a combi-

nation of a fixed cost, C, (A), and a variable cost per unit of distance, W,. The intermodal

cost, Ci (M), likewise consists of the fixed cost required to reach B, Ci (B), plus a variable

cost per unit of distance from B to M, w2 . The boundary of the market area can be found

by setting the two costs equal to one another.

C, (M) = Ci (M) <=> C,. (A) + w,.AM = Ci (B) + wiBM (6.6)

Rearranging the terms and substituting w = wi and k = Ci(B)-C(A) gives the equation as:
Wr WrAB

AM -wBM = kAB (6.7)

The parameter w represents the relative cost of drayage operations to standard road trucking.

When w > 1 the market area will have an oval shape oriented along the direction of travel

from A to B. We note the similarity between the method used to calculate the cost of road

and intermodal transportation by Nierat (1997) and our previous method for calculating the

carbon footprint of shipments sent by those methods. With this in mind we extend this idea

by defining the carbon market area of an intermodal terminal as the region of space around

an intermodal terminal that can be served from a given origin with lower carbon emissions
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than by truckload transportation.

Recall that the carbon footprint of a truckload shipment is calculated using the following

equation:

CFTL = (dotr + dae) x Cti (6.8)

In this equation ct, and dae are fixed quantities based on the operator's actual efficiencies. If

we define Cr (A) = dae X CV, wr = cti, and dot, = AM this equation becomes identical to the

form used by Nierat (1997) to calculate the cost of truckload shipping.

Similarly, the carbon footprint of an intermodal shipment is calculated by:

CIM = dod X Cd + dr x C. + ddd X Cd (6.9)

By defining Ci (B) = dod x cd + dr x c,, BM = ddd, and wi = cd this expression also

becomes identical to the one used by Nierat for the cost of intermodal shipping. With those

substitutions in place we can then rewrite the equation in the following form to describe the

carbon market area for terminal B:

dotr - Cd ddd = dod X C d, x cr - daeXCtl (6.10)
Ca Ca

By simplifying the calculation of the over the road distances as dot, dgc x c, where d9 c

is the great circle distance between the origin and destination and c is the average road

circuity factor, this produces an oval region oriented along the line from the origin to the

destination terminal. The carbon market area then provides an explanation for why the

carbon efficiency of intermodal shipments varies on a lane-by-lane basis. For any given origin

location only destinations that fall within the carbon market area of a terminal will produce

lower emissions than truckload transportation. The use of an overall average fails to capture

the location dynamics that affect the actual efficiency. Given the difficulty in accurately

estimating emissions from intermodal shipping, even when an overall average efficiency is

known, this represents an opportunity for operators to provide a service to shippers through

their knowledge of the network. By applying the carbon market area theory, intermodal

operators can help shippers identify which lanes should be switched to intermodal.
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The operator can then calculate not just the candidate locations, but the magnitude

of the potential savings as well. The magnitude of the savings is necessary in order for

shippers to properly balance the carbon footprint of the shipment with the other criteria of

the decision, such as the cost, transit time, and service level. At any point within the market

area the reduction in the carbon footprint is given by:

CFTL - CFIM = ((dotr + de) X CtI) - (dod X cd + dr x c, + ddd X Cd) (6.11)

Viewing the potential savings from overhead as contour lines surrounding the destination

terminal we get a shape like that shown in Figure 6-6. The origin and destination terminal

are shown in the x-y plane with the East-West position plotted on the x-axis and the North-

South position on the y-axis. The oval surrounding the terminal represents the carbon market

area where emissions from intermodal are lower than those of trucking. The potential savings

from intermodal increase as we move closer to the terminal, and the contour lines mark the

regions with savings corresponding to 200, 400, and 600 kg CO 2 .

Plotted in the x-y plane with the magnitude of the savings along the z-axis this produces

the shape shown in Figure 6-7 for the carbon market area. The savings peak at the location

of the destination terminal, and decrease as the destination moves away from the terminal.

The savings decrease at a higher rate as the destination moves closer to the origin location.

The shape is the result of the intersection of two cones. The first, giving the carbon

footprint associated with a truckload shipment, takes on a minimum value of C, (A) = dae x ctl

at A, the shipment origin, and increases with a slope of as ca the destination moves away from

the origin. The second cone, giving the carbon footprint of the intermodal shipment, takes

on a minimum of Ci (B) = dod X Cd+dr x c, at B, the destination terminal, and increases with

slope cd as the final destination moves away from the terminal. Viewed in cross section along

the line between A and B, the difference between the two cones represents the savings from

an intermodal switch, and is shown in Figure 6-8. Thus, the market area approach accounts

for not just the distance of the shipment, but also the direction of travel in relation to the

shipment origin and the intermodal ramps. This differs from other attempts to gauge the

competitiveness of intermodal, such as the break-even approach used by Morlok and Spasovic
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Figure 6-8: Cross Sectional View of Carbon Savings

(1995), which assumes there is some break-even distance above which all shipments sent by

intermodal will be lower in cost than truckload. Some destinations may be impractical to

serve by intermodal, even if the shipment distance is above the break-even distance, if there

is no intermodal terminal nearby. The market area approach allows for the structure of the

rail and intermodal network to be considered when evaluating shipping decisions.

Limbourg and Jourquin (2010) applied the intermodal market area concept to a hub and

spoke network design problem, noting that a single terminal may have several overlapping

market areas for shipments originating from different locations. Applying a similar idea, we

examine the case of a single origin having multiple market areas around various destination

terminals. Consider a shipper needing to move goods from an origin facility to a network

of distribution locations. With the origin fixed the intermodal operator can determine the

carbon market area for all of the possible destination terminal locations. Each destination

terminal will have a carbon market area of different size and orientation, or possibly no

market area at all. By identifying destinations that fall within the carbon market area

of a terminal, the operator can identify candidate locations for a switch from trucking to

intermodal.
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Evaluated across the entire intermodal network the operator is able to identify the poten-

tial savings for any destination by selecting the mode and terminal that produce the lowest

emissions. An example is shown in Figure 6-9. In this figure we show the potential savings

for a shipment originating at a terminal location in Los Angeles by evaluating a network of

destination terminals. The threshold level of emissions required to reach each destination

terminal from the origin is first calculated. Then the emissions required to reach a grid of

destination points is calculated for intermodal shipments routed through each destination

terminal, as well as a truckload shipment from the origin. The potential intermodal sav-

ings are calculated by finding the destination terminal that produces the lowest emissions to

reach the final destination using an intermodal shipment, and this result is compared with

the estimated truckload emissions. Finally, the map is created using ESRI's ArcMap GIS

software and applying interpolation to estimate the savings for all areas of the map.

The figure demonstrates many of the results from the carbon market area concept. In

general the savings tend to increase for destinations further from the origin, as the efficiency

of the long rail haul increases the potential of intermodal. However, the savings are also

dependent on the distance from the terminals and the direction of travel, giving rise to

several distinct oval shaped regions of higher potential savings surrounding a terminal and

oriented along the direction of travel. As the destination moves aways from the terminal the

savings are reduced, even as the length of the journey may increase. A significant area in

the Western portion of the United States does not fall within any carbon market area, due

to the relatively short distance of the rail haul and the lack of nearby terminals.

This concept can be applied to multiple shipment origins, and in Figure 6-10 we see

how the savings look for a shipment originating in Texas. The potential savings at any

destination can be significantly different from that shown in Figure 6-9 due to the difference

in origin location and length of rail haul. The areas of greatest potential savings now occur

on both the West and East coast, while the region outside of any market area occurs in areas

around Texas. Due to the shorter length of rail haul from an origin in Texas the magnitude

of possible savings are also reduced, as no destination provides as much savings as can be

obtained by using intermodal to ship from Los Angeles to the East coast.

Based on the idea of the carbon market area, we can see that the use of average efficiency

176



Legend

Intermodal Savings (tonnes C02)

,Zb e. N.
N

N. ~V
b'N N

rv eV
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Figure 6-10: Potential Intermodal Carbon Savings from Texas
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values can be misleading when choosing between modes of transport. The actual efficiencies

are dependent on a number of factors, including the origin and destination locations, the

relative efficiencies of different modes of travel, and the design of the intermodal network.

6.3.4 Discussion

In this section we presented a method for calculating the overall efficiency of intermodal in

comparison to standard truckload transportation. Our results confirm the assumption that,

on average, intermodal transport provides a service that can improve on the efficiency of

truck transportation. The average carbon intensity of intermodal transport is estimated to

be 70 g CO 2 per ton-mile, 44% lower than truckload. This estimate is lower than the range

of 88-170 g C0 2 /ton-mile based on the work of Vanek and Morlok (2000), but consistent

with results from the IRU (2002) that show potential energy reductions of 20-50% compared

to trucking. This methodology can have significant benefit to shippers looking to estimate

their carbon footprint with limited information, as current standards provide little in the

way of published data on intermodal efficiency. Our results show that a current publicly

available calculator significantly underestimates the emissions from intermodal shipping in

comparison to the actual efficiency achieved by an operator.

We further expand the analysis on the competitiveness of intermodal shipping through

the carbon market area concept. We show that intermodal shipping is more efficient than

truckload only in a specific area surrounding an intermodal terminal, called the carbon

market area. This result has implications for intermodal operators in a number of ways.

First, calculating the actual emissions from intermodal shipping is difficult without direct

knowledge of the underlying rail and road network. Our results show that actual carbon

intensity of intermodal shipping varies from 29 to 308 g C0 2/ton-mile depending on the

lane under consideration. This represents an opportunity for intermodal operators to use

their knowledge of the system to assist shippers in identifying lanes for a potential shift from

truckload to intermodal. Providing detailed information regarding the potential savings can

serve as a value added service, and may be useful in growing their intermodal business.

Second, by including the benefits of reduced greenhouse gas emissions the overall attrac-

tiveness of intermodal as a shipping mode can be increased. Fuller, Robinson, Fraire, and
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Vadali (2011) provide an example of this when looking at the viability of a new intermodal

terminal located in West Texas. Their results show the addition of the terminal has not just a

financial benefit, but also an environmental benefit through reduced GHG emissions. When

the positive benefits of the emissions reductions are included the overall attractiveness of in-

termodal as a mode is increased. This has a number of possible implications for other work

on intermodal transportation, particularly in the area of terminal locations. Limbourg and

Jourquin (2010) previously applied the market area concept to a terminal location problem,

noting that traditional methods have failed to account for the actual shape of the market area

by assuming a simple circular area. As seen in Figure 6-10 and Figure 6-9 the same principle

applies to emissions, as the carbon savings vary not just based on distance from terminals,

but also the direction of travel. Thus, the carbon market area concept helps identify regions

where additional terminals have the greatest possibility of reducing emissions.

The use of the carbon market area concept illustrates the deficiencies in current esti-

mates of mode carbon intensities. The average intensities provide a simple guideline that

are sufficient for the traditional mode selection decision, but not the decision within the in-

tegrated supply chain. In order to correctly evaluate which lanes are suitable for a switch to

intermodal the shipper needs to know the actual savings, and balance these characteristics

with other considerations. The market area concept was originally developed for cost con-

siderations, and we have extended it to consider CO 2 emissions. By providing both the cost

and the CO 2 together the operator can provide the shipper with the information necessary

to make the necessary tradeoff, given the shipper's willingness to pay for CO 2 reductions.

In the next section we show that a similar lack of precision exists at the level of the carrier

selection decision, and we show how shippers can explicitly consider the tradeoff between

cost and CO 2 in their procurement decision.

6.4 Carrier Selection

A number of proposals for reducing the impacts of transportation have been suggested,

focusing on changing logistical structures (Aronsson and Brodin, 2006). While some aspects,

such as consolidation, packaging reduction, and product redesign are typically proposed, the
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subject of carrier selection has received less attention. In a review of the literature, Aronsson

and Brodin (2006) identify only Wu and Dunn (1995) as a source that proposed carrier

selection as a method of reducing environmental impact. Meixell and Norbis (2008) found

that while companies and consumers cited the environment as an issue it was not discussed in

their review of the literature on mode and carrier selection. Wu and Dunn (1995) cite quality

certification, such as the example of the Chemicals Manufacturers Association certifying a

carrier for using safe and environmentally responsible measures when transporting chemicals,

as a system that will grow in popularity. Despite the lack of attention in the carrier selection

literature, the use of carrier certification has become popular in practice through the work

of the EPA's SmartWay partnership.

6.4.1 EPA SmartWay Program

The EPA's SmartWay transport program is a public-private partnership started in 2004

designed to improve the environmental performance of freight operations (EPA, 2012a).

The program has undergone rapid growth since its inception. In a span of five years it

grew to more than 1,400 partners (Tan and Blanco, 2009) and currently boasts nearly 3,000

partners (EPA, 2012b). SmartWay transport partners commit to reducing the environmental

impact of their operations. Partners are allowed to use the SmartWay logo in marketing and

communications materials, and the program offers a certification program that allows the

use of a certified SmartWay logo for display on tractors and trucks. In addition, the EPA

provides technology assistance, financing, and performance measurement tools (EPA, 2012a).

The EPA provides truckload carriers with a tool designed to capture fleet activity, bench-

mark performance, and track annual changes in performance. After completing the tool and

having their submission approved by the EPA, the carrier is listed as a transport partner

and appears in the database of SmartWay carriers used by shippers. Carriers that meet the

highest standards of environmental performance and fuel efficiency are eligible for the Smart-

Way Excellence Award (EPA, 2012e). Each carrier is scored based on their performance on

C0 2, NOR, PMio, and PM2 .5 per mile and per ton-mile. The carriers are placed in one of

five bins with carriers of similar performance, and each carrier in the bin is assigned a score

based on the midpoint performance of the bin. In this way the exact company data is not
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shared with competitors or customers, but performance can be determined to be somewhere

within the range for the bin (EPA, 2012d).

A tool is provided for SmartWay shipper partners as well. The shipper tool captures

performance based on the list of carriers used by the shipper. Data on the amount and type

of transportation service provided by each carrier is entered. The tool imports the scores

for the carriers, and overall performance is calculated based on a weighted average of the

carrier scores. In addition the percentage of SmartWay carriers used is calculated and used

to determine eligibility for use of the SmartWay logo (EPA, 2012c).

The program is designed in a way that encourages shippers to make use of high scoring

SmartWay carriers. This creates incentive for the carriers to participate in the program,

measure their greenhouse gas emissions, share the results with the shippers, and work to

lower their emissions in order to win business from participating shippers. As shippers place

more value on reducing emissions, the incentive for carriers to participate and lower emissions

is increased. The pressure from shippers is one of the main contributing factors to the growth

of the program (Tan and Blanco, 2009).

The current program focuses on calculating an average score for each carrier on a per

mile basis. The carriers are separated into ten different groups based on performance, and

shippers are allowed to see which performance group each carrier belongs to, along with the

average CO2 per mile for that performance group. This average score is useful for shippers

to compare between different carriers, corresponding to the third step in the traditional

transportation procurement process. However, using only an average score does not properly

account for variations within each carrier's operations, variations that are taken advantage

of in more sophisticated procurement strategies, such as combinatorial auctions.

6.4.2 Truckload Procurement Auctions

One of the first instances of an optimization based truckload auction process was imple-

mented by Reynolds Metals Company in 1988 (Moore Jr, Warmke, and Gorban, 1991).

Their implementation of a centralized dispatch system produced annual freight cost saving

of $7 million, improved service quality, and established longterm relationships with top qual-

ity carriers. Sears Logistics Services implemented the first combined value auction in 1992
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and reduced costs by 13%. The auction replaced the previous practice of bilateral negoti-

ations with carriers for service on individual lanes (Ledyard, Olson, Porter, Swanson, and

Torma, 2002). Elmaghraby and Keskinocak (2004) describe the use of a combinatorial auc-

tion run by Home Depot. The system allowed carriers to submit bids for packages of lanes,

rather than the previous practice of accepting only bids for individual lanes. The process

resulted in reduced rates for Home Depot and improved satisfaction by carriers. De Vries

and Vohra (2003) report that by 2000 Logistics.com had contracted more than $5 billion in

transportation through its software by Ford, Wal-Mart, and K-Mart.

Combinatorial auctions deliver benefits over traditional bid processes by allowing carriers

to take advantage of economies of scope. Economies of scope exist when it is cheaper for

one carrier to serve a set of lanes than if multiple carriers served those same lanes (Caplice,

1996). The main obstacle for shippers to achieve efficient allocation of lanes is hedging by

the carriers. This hedging is due to two primary factors: information quality and network

imbalance (Caplice and Sheffi, 2003). By balancing the loads in their networks, carriers can

reduce costs by improving utilization of their fleets and maintaining their fleets at regular

location, enabling drivers to return home regularly and predictably (Sheffi, 2004).

In a lane-by-lane procurement system, a carrier must bid for a lane while making as-

sumptions regarding whether it will win business on other lanes. Since they are not assured

of winning business on other lanes they can not guarantee economies of scope, and so they

must hedge the price they are willing to bid to account for the possibility of not winning

complementary lanes. Combinatorial auctions reduce the incentive for carriers to hedge their

bids by allowing bidding on packages of lanes, thus carriers can bid for a complementary set

of lanes together without the need to hedge against the possibility of winning only a portion

of the lanes (Caplice and Sheffi, 2003).

6.4.3 Shipper Perspective

Caplice and Sheffi (2003) describe the auction process as being composed of three steps:

1. Bid Preparation - where the shipper determines what is to be bid out, what carriers

to invite, how to present or package the business to be bid, and what opportunities
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exist for different types of shipper-carrier relationships.

2. Bid Execution - where the shipper communicates the bid information to the carrier(s)

and the carriers respond back with quotes. This exchange can differ in terms of bid

visibility, number of rounds, and other more standard auction rules.

3. Bid Analysis and Assignment - where the shipper analyzes the carriers' responses,

considers the business needs, and assigns the business to specific carriers.

The choices regarding these steps can produce a number of different formats for the auction.

De Vries and Vohra (2003) and Abrache, Crainic, Gendreau, and Rekik (2007) provide several

examples of structures for combinatorial auctions. Caplice (1996), Caplice and Sheffi (2003),

Guo, Lim, Rodrigues, and Zhu (2005), and Chen, AhmadBeygi, Cohn, Beil, and Sinha (2009)

provide specific instances for use with truckload transportation auctions. We are primarily

considered with the Bid Analysis and Assignment process, and how carbon emissions can

be incorporated into this decision. Caplice and Sheffi (2006) provide a review of a number

of formulations of the carrier assignment problem that allow for different constraints and

package types. We consider the most basic formation provided that allows for simple bids

with no side constraints. The formulation is provided as follows:

mi Z S cc kcz (6.12)
c k i,j

subject to:

cx k j xi, Vij
C k

cXzk >0 Vi, j, c, k

where:

Indices

i Shipping origin region

j Shipping destination region

k Bid package identification
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c Carrier identification

Decision Variables

eX k number of loads per time unit on lane i to j,
assigned to carrier cunder package k

Data

xijy Volume of loads from shipper s, on lane i to j,
that are being bid out

k Bid price per load on lane i to j, for carrier c

as part of conditional bid k

This formulation minimizes total cost to the shipper while assuring that each lane is covered.

While only simple bids are allowed, the carriers may submit multiple bids on a lane at

different price levels to reflect differences in service levels, equipment, or other characteristics

(Caplice and Sheffi, 2006). Other formulations allow for more complex bid packages and

constraints, but for the purpose of incorporating the carbon footprint of carriers into the

decision the simple formulation allows for sufficient detail.

Carriers may have a number of additional non-price qualities that shippers take into

account when making the assignment decision. Examples of these attributes include on-time

performance, familiarity, availability of equipment, accessorial services, pick-up performance,

and ease of doing business (Sheffi, 2004). Carriers may set a required level of service and

limit the choice of carriers to only those that meet the minimum service level (Sheffi, 2004), a

practice consistent with the traditional method of carrier assignment portrayed in Figure 6-

2a. This does not properly allow the continuous trade off between cost and level of service,

so in practice shippers can allow all carriers to bid and apply a modifier to the bid, then

solve the resulting minimization problem using the modified bids (Sheffi, 2004). Buer and

Pankratz (2010) propose a third method to explicitly include quality in the model through

a bi-objective optimization problem. Their approach produces a range of possible solutions,

which the shipper must then evaluate to find their ideal balance of cost and quality.

The methods described by Sheffi (2004) and by Buer and Pankratz (2010) can incorporate
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carbon footprint considerations in a straightforward manner. In Buer and Pankratz (2010)

the quality level at which the carrier fulfills the contract could simply be the total greenhouse

gas emissions, and the second objective functions is changed to minimize emissions rather

than maximize quality. The modifier approach, which we present here, can be represented

by the following extension to the carrier assignment problem. Assume that cz consists of

the modified bid price for bid package k from carrier c on the lane from i to j. The modified

bid price incorporates the actual price of the bid along with all other qualities except the

carbon footprint. Let el, be the carbon footprint for bid package k from carrier c on lane i

to j in units of CO 2 . Finally, let 6 be the modifier applied to the carbon footprint based on

the shipper's valuation of carbon given in terms of $ per unit of CO 2 - With these factors in

place we can rewrite (6.12) as follows:

min E E E (c + C ee 3 ) c (6.13)
c k i,j

subject to:

5 C~tj =xj Vi~j
c k

ck >0 Vi, j,c,k

where:

Indices

i Shipping origin region

j Shipping destination region

k Bid package identification

c Carrier identification

Decision Variables

ckJ number of loads per time unit on lane i to j,

assigned to carrier c, under package k

Data
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xiJ Volume of loads from shipper s, on lane i to j,

that are being bid out

ck Bid price per load on lane i to j, for carrier c,

as part of conditional bid k

k
ceij Carbon footprint per load on lane i to j, for carrier c,

as part of conditional bid k

In this formulation the shipper minimized total cost given their preference regarding the

valuation on carbon emissions. If the shipper places no value on carbon then the problem

simply reduces to the original formulation shown in (6.12). As the shipper's value on car-

bon increases carriers with a lower carbon footprint are rewarded with a smaller penalty

modification to their bid than carriers with a higher carbon footprint. This allows for the

continuous tradeoff between carbon performance and price, consistent with model of carrier

assignment in an integrated supply chain shown in Figure 6-2b.

Inherent in this formulation is the idea that carriers provide the carbon footprint of their

bid on a lane-by-lane basis, a level of precision not found in the current SmartWay program.

While the SmartWay program does allow for the carbon footprint of each shipment to vary

on a carrier-by-carrier basis, we noted previously that one advantage of the combinatorial

auction process was the ability to leverage economies of scope to reduce the network imbal-

ance issue. Since a major factor in reducing the network imbalance issues is reducing empty

miles, this process should also help reduce the carbon footprint of the transportation service.

Thus the factors that drive differences in prices between carriers and lanes should also drive

differences in the carbon footprint, and this should be reflected in the bid process. This

variation by lane due to network imbalance is common for other attributes as well (Sheffi,

2004). In the next section we discuss the problem of generating bids from the carrier's

perspective, discuss the similarities between calculating cost and the carbon footprint, and

provide a method for measuring the carbon footprint on a lane-by-lane basis.
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6.4.4 Carrier Perspective

A number of strategies have been proposed for how carriers should develop bids for a com-

binatorial auction. Song and Regan (2003) provide the first method for generating carrier

bids, constructing optimal tours given the carrier's current lane commitments and the lanes

available for bid. The objective function minimizes either total cost or total empty cost and

the output is the set of lanes the carrier should bid on and the total price for the bundled

bid. While this process can provide the optimal set of bids, the exponential number of po-

tential bids make it infeasible to implement in practice. Song and Regan (2005) provide an

algorithm that provides bids that are manageable in size and competitive in quality through

an optimization process designed to minimize empty miles. Lee, Kwon, and Ma (2007) at-

tempt to create optimal tours that maximize profit given the ask price available on lanes

and a cost per unit of distance. Chen et al. (2009) represent the cost of service on a lane

as a combination of direct movement costs and repositioning costs. Direct movement costs

are well understood by the carrier and typically based on distance. Repositioning costs are

based on the movements required to obtain the next load, and are typically not known at

the time of the auction.

Using this concept of direct costs and repositioning costs, we define the carbon footprint

of any shipment to be composed of the emissions produced during the direct movement of the

goods from origin to destination plus the emissions resulting from the empty repositioning

movement required to secure the next load. The direct emissions are a known quantity based

on, dij, the distance between the origin and destination, and cl, the carbon intensity of the

vehicle when loaded. Let the direct emissions, deij, associated with the lane from i to j be:

deij ~ dij x cl (6-14)

Similarly, let the emissions related to the repositioning cost required to move an empty

vehicle from j to k, rejk, be given by (6.15), where djk is the distance from j to k and ce is

the carbon intensity of the vehicle when empty.

,eik = djk x Ce (6.15)
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(a) Empty Return (b) Loaded Return

Figure 6-11: Empty vs. Loaded Return

The outcome of most carrier models are a bundle of bids that consist of the lanes to bid

on and the total cost of the bundle, based on sets of vehicle tours. The vehicle tours may

consist of the carrier's current lane commitments as well as the lanes being bid on, while the

cost represents the additional cost of servicing the new lanes. If we use (6.14) and (6.15)

to calculate the carbon footprint of the bundle, we will get the emissions required to serve

the lanes being bid on. This may have an undesirable result in practice. Consider the

scenario provided by Ozener and Ergun (2008) shown in Figure 6-11a. A carrier currently is

committed to two trips from A to B, and incurs two empty return trips. Assuming a distance

of one between A and B, the current emissions produced serving the lanes is 2c, + 2ce. If a

single trip from B to A is available for bid the optimal tour will be constructed by replacing

an empty trip from B to A with the loaded trip shown in Figure 6-11b. The new system

carbon footprint will be 3c, + ce and the appropriate emissions cost for the bid will be the

increase required for serving the new lane, cl - ce. The net result is the calculated carbon

footprint to be bid on the new lane is less than the actual emissions produced by the vehicle

driving from B to A.
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If we impose a rule that the emissions must be at least equal to the direct emissions

cost required to serve the new lanes the problem becomes one of simply allocating emissions

from the empty movements to the lanes served by the carrier. Unfortunately, enforcing

this constraint, known as the minimum liability constraint, on the direct emissions it is

not possible to guarantee all emissions can be allocated in a manner that is both budget

balancing, assuring that all emissions are allocated, and acceptable to all parties (Ozener

and Ergun, 2008). Thus, even under deterministic conditions there is not an ideal method to

calculate the carbon footprint of a given lane. However, our goal in calculating emissions at

the lane level is not simply to provide an accounting method of assigning carbon emissions to

the shippers, but also to estimate the future emissions for use in the procurement decision.

In practice the calculation of the direct emissions is straightforward, but calculating the

emissions from repositioning is not. The exact repositioning movement is not likely to be

known with certainty at the time of the auction (Chen et al., 2009). Because the act of moving

a load from A to B removes a vehicle from A and adds one to B, there is an opportunity

cost associated with the move. Figliozzi, Mahmassani, and Jaillet (2006) refer to methods

that attempt to estimate the opportunity cost associated with the change in position of the

vehicle from A to B as one step look ahead methods, and use a simulation method to estimate

the costs given a distribution of load arrivals. Powell, Sheffi, Nickerson, Butterbaugh, and

Atherton (1988) use a post-optimality method to calculate the opportunity costs of one more

or less vehicle at a given node at a given time. Caplice and Sheffi (2006) use a simple method

based on historical revenues in and out of nodes to calculate the costs, referred to as node

potentials. Chen et al. (2009) represent the repositioning cost as a tiered step function based

on current lane commitments, partial connections to other nodes with lane commitments,

spot market opportunities, and finally empty movements back to the origin.

We propose a straightforward method, similar to Caplice and Sheffi (2006), to estimate

the emissions associated with vehicle repositioning based on historical data. Consider the

scenario for a specific movement from i to j shown in Figure 6-12. The load is first moved

from the origin to destination, incurring the direct cost. After arriving at j the vehicle will

be dispatched to some location k to pick up the next load, incurring the repositioning cost.

However, at the time of the procurement of the shipment from i to j the actual routing of
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Repositioning Cost =

ODirect Cost= clxdij

Figure 6-12: Direct and Repositioning Costs

the vehicle after arriving at j is likely to be unknown. Since the actual routing can not be

used, we instead propose to use the expected repositioning cost.

6.4.5 Expected Repositioning Cost Approach

The expected repositioning cost for a given node is simply the average repositioning cost

incurred for all shipments with that node as the destination. Consider the situation shown

in Figure 6-13. In addition to the original shipment from i to j we have two other shipments

arriving at j in the same time period. After arriving at j the vehicles will be dispatched

to three different locations, each incurring a different repositioning cost due to differences

in distance to the respective destinations. From a system perspective the actual routing is

arbitrary, as total system costs are fixed. By allocating costs from a specific repositioning

movement to a lane, the cost for that lane becomes dependent on the routing chosen, even

though actual system costs are independent of that choice. If we instead use the average

repositioning distance the actual choice of dispatch is irrelevant, and only the total routing

distance is considered.

We define the expected repositioning cost, ,eij, for any shipment from i to j by:

reij = dj x ce (6.16)

where dj is the expected repositioning distance for a shipment terminating at j and ce is the

carbon intensity of an empty truck. The expected repositioning distance can be calculated
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Figure 6-13: Expected Repositioning Costs

as:

SSkdiJ
d = . (6.17)

where:

kdij =repositioning distance of the kth shipment from i to j

Iji =total number of shipments with destination j
We can now define the estimated carbon footprint for any given lane from i to j as follows:

egy =deij +r eij = dj x ci + d. x ce (6.18a)

=dg x c, + d. x ce (6.18b)
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where:

dij =distance from i to j

dj =expected repositioning distance for node j

c =carbon efficiency of a loaded vehicle

ce =carbon efficiency of an empty vehicle

In order to understand how this works in practice we collected data from a national truck-

load carrier for all truckload movements made during a six month time period. This data

included the origin, destination, and repositioning distance for more than 100,000 longhaul

(greater than 500 miles) truckload shipments. In addition the carrier supplied their esti-

mated values of cl and ce based on their operating data. Using this data set we computed

the carrier's SmartWay score, e,,, using the following method:

EEE(diy x c1 + kdij X Ce)

es E E E di1 (6.19)

i j k

where:

dij =distance from i to j

kdij =empty repositioning distance for the kth shipment from i to j
cl =carbon efficiency of a loaded vehicle

ce =carbon efficiency of an empty vehicle

This value is expressed in grams of CO 2 per mile. The coefficient represents the total carbon

emitted during all movements, both loaded and empty, while the denominator represents

the total loaded miles of travel. This value was compared to the carrier's actual reported

SmartWay score, calculated using fuel purchase receipts rather than estimated efficiencies,

and was found to be within 1% of that value. Using this value the carbon footprint for any

shipment on a given lane can be calculated by multiplying esw by dij. This represents a

baseline estimated CO 2 that a shipper would associate with a given carrier on that lane if it

were to use the carrier's SmartWay score.
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Count 13118 Coefficient of Variation 0.04
Mean 1.85 Median 1.84

Standard Deviation 0.08 Percentile 25% (Q1) 1.80
Minimum 1.72 Percentile 75% (Q2) 1.90
Maximum 2.45 MAD 0.05

Table 6.5: Lane Statistics

We then calculated the carbon footprint using (6.18a) on a lane-by-lane basis. To lessen

the effect of any outlier shipments all lanes were aggregated at the three digit zip code level,

and any lane with less than five shipments was eliminated from the analysis. The remaining

data set consisted of over 97,000 shipments across more than 13,000 lanes. The relative

carbon intensity on each lane was calculated by dividing the carbon footprint of the lane by

its distance to get a measure that could be compared with the SmartWay value of 1.83 kg

of CO 2 per mile. A summary of the results is shown in Table 6.5.

When viewed on a lane-by-lane basis the mean and median lane efficiencies are close

to the overall SmartWay score. However, nearly 15% of the lanes show more than a 10%

difference above or below this value, with values at the high end showing up to a 35% error

in estimated carbon emissions. A histogram showing the distribution of the carbon intensity

parameter is shown in Figure 6-14. The dashed vertical line shows the average performance

level of the carrier using the SmartWay score.

While the average deviation on any lane is nearly 5%, the possible error could be greater

when the range of carriers is included. Consider two carriers, A and B, that each submits

a bid on a lane that is equal in financial cost and carbon footprint using their SmartWay

score. In this case the shipper would be indifferent between the carriers, and either bid

could be accepted. However, given the possible deviation in the lane-level carbon footprint

calculations, the bids could be considerably different in practice. If the lane is one where

Carrier A emits below average levels of CO 2 and Carrier B emits above average, the error

can be compounded.

Further, while the error in carbon estimated may not be significant from the shipper's

perspective, the range of values within one carrier's performance by lane is similar to per-

formance between different carriers. If the difference in performance between carriers is
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2S%

Figure 6-14: Distribution of Carbon Intensity by Lane

Count 64 Coefficient of Variation 0.098
Mean 1.97 Median 1.92

Standard Deviation 0.192 Percentile 25% (Q1) 1.84
Minimum 1.71 Percentile 75% (Q2) 2.07
Maximum 2.54 MAD 0.114

Table 6.6: Carrier Statistics

significant enough to account for in the procurement process then the lane-level variations

within carrier's performance should also be accounted for. Using data obtained from the

results of a shipper's truckload auction we can see the reported SmartWay score of the 64

carriers that participated in the auction. A summary of statistics for these carriers is shown

in Table 6.6.

When viewing the distribution of carriers we can see that a SmartWay score of 1.83

would place the carrier near the top 25% of participating carriers. However, when taking

into account the distribution at the lane level we can see that on nearly 20% of its lanes the

carrier would be similar to or better than the highest rated carrier's average score. Likewise,
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Figure 6-15: Distribution of Average Carbon Intensity by Carrier

on about 5% of lanes the carrier would rank in the bottom quartile.

6.4.6 Discussion

In this section we have presented a method for carriers to develop lane-level carbon metrics

that shippers can incorporate in combinatorial auctions. This work contributes to the ability

of shippers to improve the carbon efficiency of the supply chain in several ways. First, the use

of carrier selection as a method for improving environmental performance has received little

attention in research, despite the popularity within industry. We show how the combinatorial

auction process provides an opportunity for carriers to take advantage of economies of scope,

which can create a benefit by reducing empty miles and lowering greenhouse gas emissions.

We have presented a method for shippers to extend the auction mechanism to account for

carbon emissions in a way that allows them to trade off the value of carbon reductions

against other service considerations. Finally, we present a method for carriers to estimate

their carbon emissions on a lane-by-lane basis suitable for use in procurement auctions.
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This is an important consideration, as the network imbalances that lead to differences

in the cost to service lanes directly affect the emissions produced on those lanes. When the

procurement decision is being made at the lane-level the carbon should be accounted for at

a similar level of precision. Not taking the variation between lanes into account can lead not

only to incorrect decisions in the outcome of the auction process, but also forgoes savings that

could have been obtained. Our results show that the variation within a single carrier's lane-

by-lane performance is similar to that found in comparisons of average performance between

carriers. Taking these variations into account has the potential to improve performance at

the expense of only slightly more complicated carbon accounting.

6.5 Conclusions

In this chapter we have proposed the use of an Activity Based Costing system as a method

for firms to calculate the carbon footprint of their products in a way that supports improved

decisions within the supply chain. Through an analysis of the transportation decision we

have shown that current programs designed to calculate carbon emissions lack the necessary

precision to support decisions within an integrated supply chain. We have proposed meth-

ods for both intermodal and truckload transportation that improve on current programs and

support the types of decisions shippers face. Inherent in our discussion is the idea that ship-

pers care about carbon emissions and that carriers will be willing to share this information

truthfully. Though organizations such as the EPA and GHG Protocol provide standards

for measuring carbon emissions there is no guarantee that carriers will report these num-

bers truthfully. Without verification of these numbers shippers may be unwilling to pay a

premium for carriers that report low carbon scores. In the next chapter we justify these as-

sumptions through an analysis of the use of voluntary carbon labels in a model of vertically

differentiated products. Our model explicitly accounts for additional costs required to verify

and communicate carbon footprint data with customers.
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Chapter 7

A Vertical Differentiation Model of

Product Carbon Labels

In the previous chapter we showed how firms can share carbon footprint information with

their customers in a way that allows for improved decision-making within the supply chain.

The discussion assumes that firms are willing to do this because customers value reductions

in carbon emissions. In this chapter we provide justification for this assumption by showing

how voluntary disclosure of carbon footprint information can result in increased profits when

consumers care about the environment.

7.1 Introduction

Product labels that disclose the carbon footprint of the product are emerging as a popular

type of eco-label. The Carbon Trust's carbon label currently certifies more than $3 billion

worth of products annually. This is primarily due to backing from major British retailer

Tesco, which planned to put carbon labels on all 70,000 of its products (Economist, 2011).

Despite this emergence there has been little work to understand the characteristics of carbon

labels that differ from standard eco-labels. According to ISO standards there are three types

of environmental labels (Fet and Skaar, 2006):

* Type I, which involve third party programs awarding labels claiming environmental

preferability.
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* Type II, which are based on self-labeled declarations.

* Type III, which make a claim about the product based on a Life Cycle Assessment

with third party verification.

Under these criteria a carbon label is considered a Type III label, of which little research has

been done. Much of the work instead focusing Type I labels, which are generally referred to

as eco-labels (Gallastegui, 2002).

Previous work on the role of labels in improving environmental quality has shown that

firms will overcomply with environmental regulations in order to attract environmentally

aware consumers (Konishi, 2011). This is due to the evidence suggesting that at least some

consumers are willing to pay a premium in order to "protect the environment" (Mason, 2011).

This willingness to pay has been attributed to the idea of "warm glow" benefits introduced

by Andreoni (1989). In the context of greenhouse gas emissions, when a firm reduces its

level of emissions all consumers benefit from the public good, regardless of whether they

buy products from that firm or not. However, some consumers may perceive a benefit when

purchasing from that firm. This additional utility gained from the feeling of contributing to

the public good is defined as the warm glow benefit (Andreoni, 1989).

In order to receive this benefit the consumer must know they are purchasing a product

produced with lower emissions. However, the carbon footprint of a product is a credence at-

tribute and not observable by consumers. When consumers are aware of the carbon footprint

of products, firms can benefit from the warm glow effect by differentiating their products

from competitors through a lower carbon footprint. This represents a type of vertical differ-

entiation. Vertical differentiation occurs when products have different levels of some quality

and all consumers prefer more of the quality to less of it. This is quality in the sense of

some attribute of the product that consumers prefer. For example, the processing speed of a

computer is a quality and, ignoring cost considerations, consumers prefer higher processing

speed (more of the quality). This is in contrast to horizontal differentiation, where consumers

may disagree about the best level of quality. To help understand why firms would be will-

ing to reduce their carbon emissions and communicate this information to their customers,

we examine the idea of a carbon label through a model of vertical product differentiation.
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In Section 7.2 we provide a review of the literature on vertical differentiation models. In

Section 7.3 we present a basic model of vertical differentiation in a duopoly setting. In Sec-

tion 7.4 we extend the basic model to consider the use of a carbon label to inform consumers

about the product's carbon footprint. In Section 7.5 we consider a different type of carbon

label, based on a Type I, certification-style eco-label, which we refer to as a discrete label.

In Section 7.6 we extend our basic carbon label in the context of a two-stage supply chain

where the upstream supplier can also contribute to reductions in the carbon footprint. In

Section 7.7 we conclude with a discussion of the results of our model in the context of some

reason developments related to carbon labels.

7.2 Background

The concept of vertical differentiation was primarily developed through the work of Gab-

szewicz and Thisse (1979, 1980) and Shaked and Sutton (1982, 1983). Shaked and Sutton

first introduced the two stage vertical differentiation model where quality was the decision

variable.

In the basic model of vertical differentiation, as characterized by Tirole (1988), consumers

are defined by a preference parameter 0 distributed uniformly between a minimum and

maximum value, 0 E [9, ]. The consumer preference is described by utility U = Os - p if

a good of quality s is purchased at price p by a consumer that is willing to pay 0 per unit

of quality, and 0 otherwise. Production occurs at a constant marginal cost, which can be

assumed to be 0 without loss of generality (Motta, 1993). Each consumer either purchases

one unit of the good or none at all, and the total market size is assumed to be 1. There are

two firms, and Firm i produces a good of quality si, with s2 > si. The firms compete in a

two-stage game where they compete first in quality and then in price.

Tirole assumes a "covered" market, one in which all consumers purchase one of the two

goods, and that quality is costless. These assumptions produce the maximum differentiation

possible, with Firm 2 setting its quality to the highest available and Firm 1 to the lowest

available. This is due to the fact that increasing the differentiation between the products

relaxes the price competition in the second stage and allows the firms to earn higher profits.
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Since quality is costless, Firm 2 increases quality to the highest possible level to maximize

the differentiation between the products.

A number of variations of this basic game have appeared in the literature. The variations

differ primarily in their assumptions regarding the market, covered or uncovered, as well as

the cost of quality. Choi and Shin (1992) used an identical model to Tirole, but assumed an

uncovered market, producing a different quality choice for the low quality firm. Thus, the

choice of covered or uncovered market can impact the results of the model. Wauthy (1996)

showed that while many models assume a covered or uncovered market, the choice is in fact

endogenous to the choices of the game and dependent on the range of consumer preferences.

With fixed costs of quality Liao (2008) proved that the covered market with an interior

solution is not an equilibrium, and that depending on consumer heterogeneity the outcome

is either an uncovered market or a covered market with a corner solution. Therefore the

choice of a covered or uncovered market is not an explicit decision, but rather an outcome

of the choice of consumer heterogeneity.

The assumptions regarding the nature of the cost of improving quality can also affect

the results of the model. Moorthy (1988) used a quadratic marginal cost of quality in order

to have a tractable problem where the cost of quality increases faster than any consumer's

willingness to pay. His results show a Nash equilibrium different from the maximum differ-

entiation found in the case with no quality costs. The quadratic marginal cost assumption

has been used in other work, including Rhee (1996); Villas-Boas (1998); and Desai (2001).

Chambers, Kouvelis, and Semple (2006) consider a less restrictive requirement that the

marginal cost be increasing and convex. Wang (2003) uses a cubic marginal cost to show

that the higher quality firm does not always earn the higher profit when there is a variable

cost to quality. Motta (1993) extended the use of variable quadratic costs to both Bertrand

and Cournot competition.

A fixed cost of quality was used by Ronnen (1991) to show the existence of a unique Nash

equilibrium under the assumption that the cost of quality is strictly convex. Though Ronnen

also considered a variable cost when examining the effect of a minimum quality standard,

those costs were assumed to be linear or concave and did not change the results from the

fixed cost case. Motta (1993), Lehmann-Grube (1997), and Liao (2008) all assume a fixed
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cost of quality of quadratic form.

Using either a fixed or variable cost of quality produces similar results, and arguments

exist for both forms. Crampes and Hollander (1995) chose a variable cost of quality, arguing

that this is the more relevant case as quality standards in manufacturing pertain to materials

and ingredients which impact variable costs more than fixed. Lehmann-Grube (1997) argues

instead for the use of fixed costs. Since quality is assumed to be fixed in the first stage of

the game it would be difficult for firms not to change quality when they incur variable costs

in the second stage.

7.3 Basic Model

The game is played as a standard, non-cooperative two-stage game. In the first stage the firms

simultaneously choose their level of quality. In the second stage the firms simultaneously

set prices after observing both quality levels. Without loss of generality we set each firms'

marginal cost to zero and designate Firm 1 the low quality firm and Firm 2 the high quality

producer. Recognizing that some consumers may place little or no value on reductions in

carbon emissions we set the market such that 0 E [0, ]. This means that the market will

be uncovered, as at any positive price there will be some consumers that choose not to buy.

In keeping with the bulk of existing literature we measure quality such that higher is

better. As a lower carbon footprint is actually preferred our measure of quality, s, can be

thought of as the reduction in emissions of the product's carbon footprint. This is similar

to the model used by Arora and Gangopadhyay (1995). See Moraga-Gonzalez and Padron-

Fumero (2002) for an example of a vertical differentiation model based on the actual emissions

produced. In our model at quality level s = 0 the product's carbon footprint is some amount

of emissions e. By investing in new technology the firm reduces the carbon footprint from e

to e - s at a cost of C(s). The individual consumer preferences can be thought of as their

marginal willingness to pay for emissions reductions in terms of dollars per unit of carbon.

A consumer of type 0 would then be willing to pay up to Os additional dollars for a product

with a carbon footprint of e - s compared to the original product with a carbon footprint

of e. We assume a quadratic fixed cost of quality improvement for each firm of the form
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C (s) = as2 with a > 0.

Now that the rules of our game our specified, we can solve for the choices of quality and

price by the firms. Our game is similar to that of Motta (1993), and our results follow from

those shown in that work. We first note that there are two specific customers of interest, the

one indifferent between the products of Firm 1 and Firm 2, and the one indifferent between

the product of Firm 1 and no product at all. At given levels of quality, si and S2, and

prices, p1 and P2, the consumer that is indifferent between the two products, noted by $12,

is determined by setting the utility from purchasing each product equal to one another.

012S1 - Pi = 01282 - P2 (7.1)

Solving 7.1 for 012 gives the consumer indifferent between the products as the one where:

012 = P2 - Pi (7.2)
S2 - S1

The consumer indifferent between the low quality product and no product at all is noted by

0oi and is determined by setting the utility of purchasing the low quality product equal to 0.

Sisi - Pi = 0 (7.3)

Solving 7.3 for $01 gives the indifferent consumer as the one where:

$01 = (7.4)
Si

With these consumers identified we can determine the market share for each of the

firms. All consumers with 0 > 012 choose the higher quality product, while those with

001 < 0 < 012 choose the lower quality product. Consumers with 0 < 0oi choose no product

at all. Normalizing the total size of the market to 1 the quantities sold by each firm, qi and

q2 , are given by:
012 -0$0i 1 P2 - P1 Pi
qi = _ =. - (7.5)

0 0 (S2 -S Si s
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0 -012 1 - P2- P1
q2 =- = = 2 - S (7.6)

With these prices and qualities we can write the profit function for each firm as follows:

i1 (Pi, P2, si S1S2)= piq - as, = P2-P _ Pi (7.7)
0 S2 -S 1  Si

U12 (P1i, P2, si S 12) =P2g2 - as2 =P2# P2 - Pi s 78
S S2 - s(7.8)

We begin by solving the second stage of the game assuming the qualities have been fixed

in the first stage to the values si and s2. To do this we maximize each firm's profit function

with respect to its price, producing the following first order conditions:

ali I (P2- P1 P1 P1 + 1) 0(79
= 0 => =- - -- =+ - =0(79

aP1 0 S2 -S Si si 6 S2 - si si

a112 1 -6_ P2-Pi) P2(>-0 (7.10)
Op2 6 S2 -S1 } S2 -S1

Solving the first order conditions produces the following optimal prices in response to the

other firm's choice of quality and price:

Pi = S2P2 (7.11)
2S2

P1 + 0(s2 - si)
P2 2 (7.12)

To find each firm's best response function purely in terms of the quality choices we substitute

7.12 in to 7.11 and solve for pi. This produces the following best response prices for both

firms:
Usi (s2 - si)

Pi= 4S2 -S (7.13)

26s2 (32 - si)
4S2 -S 1 (7.14)
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Using these prices we can now write each firm's profit as a function of the quality choices:

HI (si, S2) = 882 (82 - Sj) as2 (7.15)
(4S2 - si)2 1

45s-(s2 - s )
H 2 (Si, s 2 ) = (4S2  S) 2 

- as 2  (7.16)

We can now solve for the quality choice of each firm in the first stage, anticipating the

price competition in the second stage. Maximizing each profit function with respect to the

firm's quality choice gives the following first order conditions:

OH 1  6s2 - 29sis2 2#sis2 (S 2 - Si)Os= 0 => 2 + 3 2asi = 0 (7.17)
asi (4S2 - Si) (4S2 - S1)

OH2  12#s2 - 86sis 2  32#sj (s2 - si)
= 0 => 2 _ SJ2 + 3 - 2as2 = 0 (7.18)

Os2  (4s 2 - si) (4s 2 - si)

By moving the terms to the right hand side and simplifying the results we get the following

expressions for si and S2:
= sj (4s2 - 7 81)

si = 3(S 7l (7-19)
2a(4s2 - si) 

(

46s2 (4s2 - 3sis2 + 2s()
S2 = 3 (7-20)

2a(4s2 - si)

There does not appear to be an easy analytical solution to these first order conditions.

However, Motta (1993) showed that if we define a value p such that S2 = psi with p > 1

there is exactly one possible real value for i, yL = 5.2512. Writing si and S2 in terms of P we

have:

Up2 (4p - 7) (7.21)
2a(4p - 1)

49p (4p2 - 3p + 2)
S2 = 3 (7.22)

2a(4p -

Finally, with the quality choices known we can now determine each firm's quality, quan-

tity, price, and profit. Those results are summarized in Table 7.1. As shown in Lehmann-

Grube (1997), this result is a Nash equilibrium where the higher quality firm earns the

higher profit, and this high quality advantage holds for any sufficiently convex cost function.
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Parameter Firm 1 Firm 2

Price (p) $2a(4 y - 1)2(i 1_2-3_+4_-

Quality (s) .- 2(4a- 4a(4 -1)3
____________ 2a(4pt-1) 2a(4p-1)

Quantity (q) A &I_

Profits (II) 2
p3(4,-7)(4123,4+2) 1602A(442-3/+2)(4A-7)

__ 4a(4p,-1)" 4a(4p-1)6

Table 7.1: Basic Vertical Differentiation Model

Though the high quality firm earns the larger profits, the low quality firm still earns profits

above the undifferentiated case, where profits would be zero.

This demonstrates the basic intuition behind the vertical differentiation concept. A key

requirement of such models is that consumers know the quality levels of both products,

a requirement that is not met for credence attributes, like the carbon footprint, without

some mechanism to inform consumers. In the next section we review various approaches to

handling this issue and formulate an extension to our basic model that accounts for the need

to communicate product quality through a labeling mechanism.

7.4 Carbon Label Model

A number of different models have been used to study labeling of credence attributes. Roe

and Sheldon (2007) consider the issue of credence good labels under a variety of different

labeling policies in a vertically differentiated scenario. Their labeling policy allows labels

that can be either continuous or discrete values, allows voluntary or mandatory labeling,

and includes a fixed cost of labeling. Ibanez and Grolleau (2008) suggest three criteria for

deciphering an eco-label based on who defines the standard, how the claim is verified, and

how it is signaled to customers. Baksi and Bose (2007) distinguish between claims that can

be either self-labelled (Type II labels) or involve third party labeling (Type I).

Much of the work in the area of eco-labels have been focused on Type I or Type II labels

that consider two discrete levels of quality, and examine different issues based on the structure

of the label model. Baksi and Bose (2007) consider a model with binary levels for high and

low quality products and consider the incentives of low quality firms to cheat by claiming
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high quality status. Bonroy and Constantatos (2008) consider the case of credence labels

with two firms producing at different levels of quality where the high quality firm incurs a

higher constant marginal cost per unit of production. The equilibrium results are analyzed

under both mandatory and voluntary labeling. Ibanez and Grolleau (2008) consider a model

where products can only be produced at two discrete levels of quality, but that even firms

producing the lower quality good can obtain an eco-label. Amacher, Koskela, and Ollikainen

(2004) use a model with two discrete levels of quality, but the cost to achieve quality is

dependent on both a fixed and variable component. Konishi (2011) considers a model with

discrete quality levels that allows entry and exit from the market. Rodriguez-Ibeas (2007)

uses a model where consumers are separated between green and brown types, and green

types perceive the environmentally friendly product to be of higher quality. Ben Youssef

and Lahmandi-Ayed (2008) develop a model where labeled products are assumed to have

the minimum quality needed to meet a standard set by a labeling authority, and the focus

is on the choice of minimum quality set by the labeling standard.

In models where the label is voluntary, the issue of how consumers perceive an unlabeled

product is an important issue. In Bonroy and Constantatos (2008) each consumer has a

subjective probability regarding which firm they believe produces the higher quality good.

Ibanez and Grolleau (2008) model consumers that know the available quality levels, but

form beliefs based on the labeling choices of the firms. Labeled products are believed to

be high quality with greater probability than unlabeled products, and consumers can not

distinguish in quality between two products with labels. Ben Youssef and Lahmandi-Ayed

(2008) assume unlabeled products to be of a fixed, minimum level of quality.

Finally, models may differ in how the certification is obtained. In most models the

certification process required to use a label perfectly informs consumers about the product's

quality. In some cases there may be no process to prevent low quality firms from using the

eco-label (Ibanez and Grolleau, 2008). Kirchhoff (2000) allows for companies to falsely claim

high environmental quality, but are subject to monitoring that can detect false claims. Mason

(2011) considers a system with a fixed fee for certification, but an imperfect certification test.

The price consumers are willing to pay for unlabeled products are based on rational beliefs

given the probability of passing or failing the test.
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Our model of a carbon label is one with a continuous label value; a voluntary, third party,

fixed cost of certification that perfectly informs consumers of the product quality; and falls

under the category of a Type III label. The characteristics of a voluntary, continuous label

appears to be a novel approach. Roe and Sheldon (2007) consider labels that are voluntary

or continuous, but do not study both in combination. We consider the impact of a carbon

label in the context of an extended version of the standard two-stage game of vertical product

differentiation. In the first stage the firms simultaneously decide whether or not to pursue

a labeling strategy. As before, firms simultaneously choose quality in the second stage,

incurring a fixed cost to achieve the chosen quality level, after observing their competitors

strategy on labeling. Finally, in the third stage the companies again simultaneously choose

price given the quality and labeling choices made in the first two stages. Firms choosing

to label incur a fixed cost L and consumers are then perfectly informed about the level of

quality of the product. The cost of the label is assumed to include the cost of both measuring

the carbon footprint through an LCA as well as the cost paid to the third party to certify

the results. If only one firm chooses to label its product consumers will assume the unlabeled

product has a quality, s., that is some linear combination of the labeled product's quality

and a product of quality zero. All consumers have the same perception of the unlabeled

product's quality, and this perception is exogenously given by A E [0, 1), such that s' = As1,

where s, is the quality of the labeled product. This mechanism is similar in some ways to

the one used by Jinji (2004), but our perceived quality falls between the minimum quality

and the quality of a labeled product, rather than between the actual quality and an average

quality level. By studying the choices over a range of consumer perceptions we gain insight

to how changes in consumer perception of the label influence outcomes.

Given this structure, there are four possible outcomes to this game, again assuming that

if the firms differ in quality Firm 2 is the higher quality firm:

1. Neither firm labels.

2. Both firms label.

3. Firm 2 labels, Firm 1 does not.

4. Firm 1 labels, Firm 2 does not.
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Table 7.2: Summary of Scenario 2

We first consider each of the cases individually, and then consider the resulting equilibriums

given various parameter values.

7.4.1 Case 1-Neither Firm Labels

If neither firm labels then the products will be undifferentiated in the market. In this

situation both firms will price at marginal cost. Profits for both firms will thus be decreasing

in the level of quality investment, and both firms will choose a quality level of si = S2 = 0

and earn zero profits.

7.4.2 Case 2-Both Firms Label

When both firms choose to label consumers will be perfectly informed regarding the quality

of each product. Since the choice of quality and price are independent of the fixed cost

required for labeling, the outcome of the quality and price game is the same as in the basic

model of vertical differentiation discussed in Section 7.3. The only difference is that now

both firms incur the cost of obtaining the label, and their profits are reduced by L. The

results are shown again in Table 7.2, with the reduced profits for each firm.

7.4.3 Case 3-Only the High Quality Firm Labels

When Firm 2 chooses to label and Firm 1 does not, the perceived quality of Firm l's product

in the market is independent of its choice of quality. By substituting si = As2 in the profit
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functions for each firm we get the following expressions:

I (pi, P2, si, 82) = pi, - as = Pi P2 Pi
6 s2 - As 2

Pi2
A 2 ) - asi (7.23)

(7.24)1 2 (P1, P2 , si, s 2 ) = P2q 2 - 2 = _ P2-P1 - 2 - Las 6 s 02 - As 2

Differentiating each profit function with respect to the firm's price gives the following first

order conditions:

api

aH 2

aP2

0
6 ( P2 - Pi82-AS 2

- 0 : A ( -

Solving for pi and P2 produces:

As2)

P2 - P
S2 - AS2

+ 6 - 1
6 (S2 - As2

P 2 - 1 = 0
6 ks 2 -As 2 I

Pi =

Pi + #(s2 - As2 )
2

Substituting one in to the other allows us to solve for pi and P2 in terms of each firm's best

response given the quality chosen by Firm 2:

Os2A(1 - A)
Pi =

26s2(1 - A)
P2 =

(7.29)

(7.30)

Rewriting the profits functions in terms of si and s 2 :

P1
Il1 (si, s2) = :-

6

H2 (si, S2) = -2
0

( P2 - P1S2- As 2

P2 - P-

S2 - As 2 /

Pi)

As2)

2 #s2A(1- A)
- asi 4- 2

as2 - L = 46S2(I - A) 2 - L
(4 - A)2 - 2
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(7.28)

2as, (7.31)

(7.32)

-A2 = 0
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Parameter Firm 1 Firm 2

Price (P) 42A(-A) 82(1-A)Z
2a(4-A\)3 2a(4-A\)3

Quality (s) 0 21-
____________2a(4-A\)

Quantity (q) 4A 4_2_A

Profit (II) 402 A (1-A)2  8 - L2a(4-A) 2a(4-A)

Table 7.3: Summary of Scenario 3

Maximizing profits for both firms with respect to quality choices produces the following first

order conditions:
-9-l -= 0 -> -2asi = 0 (7.33)
Osi

a 2 = 0 -> 46( 2 - 2as2 = 0 (7.34)
0s 2  (4 - A)2

Solving for si and S2, with the restriction that quality level can not be negative, we get the

following result:

s= 0 (7.35)

S2 = 4(1-A) (7-36)
2a(4 - A)2

With the choices of quality now known we can determine the price, quality, quantity sold,

and profit for each firm. The results are shown in Table 7.3 As we can see from Table 7.3, the

choices of price, the quality level chosen by Firm 2, the quantity sold be each firm, and the

profits for each firm are dependent on A. Examining the behavior of each of these quantities

with respect to A allows us to understand the role of the consumer perception of the label.

First, we look at the role of A on the profits of the two firms as shown in Figure 7-1.

From Figure 7-1 we can see that Firm 2's profit is maximized at A = 0, where it acts as

a monopolist and sets quality and price without regard to competition from Firm 1. As A

increases, the profit for Firm 2 decreases, finally reaching a point where Firm 2 is no longer

able to make a profit. We denote the value of A where profit is zero by AO, and it can be

obtained by setting the profit of Firm 2 to zero and solving for A. For any value A of such

that A > AO, Firm 2 will choose not to label as it can not make a profit doing so, and thus

price, quality, and profits for both Firm 1 and Firm 2 will be zero. Firm 1 earns zero profit
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Profit (H)
Firm I

- - - - - Firm 2

Perceived Quality (A)

Figure 7-1: Total Profits

when A = 0, as the product is correctly perceived as a zero quality product by consumers

at this point. As A increases, consumers begin to perceive Firm l's product has having a

positive level of quality, allowing Firm 1 to charge a small price premium and earn a positive

profit. At some point profits begin to decline for Firm 1, as higher values of A result in a

decline in the quality chosen by Firm 2 and less opportunity for Firm 1 to capture value at

the low end of the market. The decline in the level of quality chosen by Firm 2 is shown in

Figure 7-2.

The quality choice of Firm 2 is decreasing in A over the range of A E [0, 1]. However,

Firm 2 cannot earn a profit by labeling for any value above AO, and will thus choose a quality

level of zero and no label beyond that point. As A increases the value obtained by Firm 2 for

an increase in quality is reduced due to Firm 1 also being credited by consumers for some

perceived quality increase. Due to the increasing marginal cost of quality improvements the

effect is to reduce the optimal level of quality chosen by Firm 2.

Figure 7-3 shows the prices chosen by Firm 1 and Firm 2 across the values of A. At A = 0

Firm 2 acts as a monopolist and faces no competition from Firm 1. As A increases Firm 1 is

able to charge a slight premium due to it's perceived quality. Facing this competition, Firm

213



Quality (s)

- - - - - Firm 2

-~ AO
Perceived Quality (A)

Figure 7-2: Quality Level

Price (p)

- IPerceived Quality (A)
A0  1

Figure 7-3: Prices
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Market Share (q)

0.6.

-- Firm I

- - - - - Firn 2

0.4-

0.3

0.2-

0.1

Perceived Quality (A)

Figure 7-4: Quantity Sold

2 reduces quality, and must then reduce price in order to maintain market share.

In Figure 7-4 we see the quantities sold by each firm. At A = 0 Firm 2 sells to exactly

half the market while acting as a monopolist. The remaining half of the market is indifferent

between Firm l's product and no product at all. As A increases, Firm l's sales increase from

a quarter of the market, while Firm 2's sales increase to always be double that of Firm 1.

The increased sales for Firm 1 are driven by its perceived quality being greater than 0, and

increasing as A increases. Firm 2's sales are driven by its lowering of price in response to

competition from Firm 1, offsetting a drop in quality level from that chosen in the monopolist

scenario.

7.4.4 Case 4-Only the Low Quality Firm Labels

There is no situation where Firm 2 would choose higher quality than Firm 1 in a market

where Firm 1 labels and Firm 2 does not. If Firm 2 chooses not to label then its sales

quantity and price are independent of its choice of quality level. In this case choosing a

quality level of zero and incurring no fixed costs for quality improvements maximizes its

profit. For Firm 1 to earn a positive profit it must choose a quality level and price greater
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than zero, but this contradicts the assumption that s2 > si. If Firm 1 chooses a quality level

equal to zero it must also choose a price of zero in order to compete with Firm 2, and earn

a total profit of -L. Thus, either Firm 1 is the high quality firm, and should be designated

Firm 2 with analysis proceeding from Case 3, or it earns a negative profit and would be

better off not labeling its product.

7.4.5 Equilibrium Conditions

We begin with the conditions under which Firm 1 will never choose to label. Examining the

profit functions for the case when both firms label we can see that Firm 1 earns the lower

profit, and there exists some value of L at which this profit is zero. Substituting the numeric

value of p = 5.2512 and simplifying the expression gives that value as:

62
L = .00076- (7.37)

When L is greater than this value Firm 1 will never choose to label, as it cannot earn a

positive profit when Firm 2 also chooses to label.

With this restriction in place we can now examine the conditions where Firm 2 chooses

to label given that Firm 1 will not. From Firm 2's profit function shown in Table 7.3 we can

see that Firm 2's profits are decreasing in A, and thus maximized at A = 0. When A = 0

Firm 2 acts as a monopolist and earns the following profit:

-22
II2 = - L (7.38)

64a

For Firm 2 to earn a positive profit, we must have L < -, otherwise Firm 2 will choose not

to label regardless of the value of A. For any value of L, .000762 < L < -A-i, there existsa CA4a

a critical value of A, designated A0, for which Firm 2 earns zero profit when it chooses to

label. If A < AO then profits are positive with labeling and Firm 2 will invest in the label.

For values of A > Ao profits would be negative with a label, and so neither firm invests in a

label.

Examples of Firm 2's profit as a function of A are shown in Figure 7-5 with both high and
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Profit (H)

- - - - - Low Label Cost

High Label Cost

Perceived Quality (A)

Figure 7-5: Firm 2 Profits

low label costs. Increasing the cost of the label shifts the profit function for Firm 2 down.

With higher labeling costs the value of A where labeling is no longer profitable, shown by

A', is less than in the case with a low labeling cost, shown by A0 . Thus, an increase in the

cost of the label limits the range of values of A for which labeling is profitable.

When L < .00076S both Firm 1 and Firm 2 are able to earn a profit by labeling.

However, for certain values of A and L, Firm 1 is able to earn a higher profit by not labeling.

Figure 7-6 shows the profit for Firm 1 under both labeling decisions as a function of A.

Since profits are independent of A in the case where both firms label the profit for Firm 1

is constant across all values of A. When Firm 1 chooses not to label, profits are zero when

A = 0 and increase to a maximum value before declining to zero again when A = 1.

Intuitively, at A = 0 the product is perceived by customers as a zero quality product and

they are unwilling to pay a premium, and p = 0. As A increases the perceived quality of the

product increases, and Firm l's profit increases as it raises price and sells a higher quantity.

This continues until A reaches a critical value where profits are maximized for Firm 1. As A

increases beyond this value the perceived quality of Firm l's product is too close to that of

Firm 2 and the firms engage in price competition, which lowers the selling price for Firm 1
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Profit (H)

A1' A2 Perceived Quality (A)

Figure 7-6: Firm 1 Profits

and reduces profits. At A = 1 the products are perceived as identical in quality and the firms

engage in straight price competition, driving the selling price and profits to zero. As seen

from Figure 7-6 there will be exactly two values of A between zero and one for which profits

for Firm 1 are equivalent whether it labels or not. These values can be found by solving the

following equality for A :

2 2A(1 - A) 2 
_ 2/3(4p - 7)(4/2 - 3p + 2) - L (7.39)

a(4 - A)4 4a(4p - 1)6

Let A, and A2 be the solutions to this equation, with A, < A2 . Important to the consid-

eration of Firm l's decision to label is the fact that an increase in the cost of labeling does

not affect the profits of the firm when it chooses not to label, but reduces profit if it does

label. In Figure 7-7 we can see the impact of the increase in labeling cost. The profits from

the labeling case are shifted down, while the profits from the non-labeling case remain the

same. This results in a shift in the values of A, and A2 to new points, shown by A' and A'2.

This shift decreases the range of values of A for which Firm 1 would choose to label.

Given these definitions we are now ready to characterize the full range of pure strategy
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- .- -- -- - With Label, High Label Cost

I APerceived Quality (A)
0 2,;,A

Figure 7-7: Firm 1 Profits Under High and Low Labeling Costs

equilibria for Firm 1 and Firm 2 given the possible values of L, 0, a, and A. These results

are summarized in Table 7.4. From these results we can see that there are two key factors

regarding the label that drive the labeling decision: the relative cost of the label and the

consumer perception of unlabeled products. When the label is relatively cheap both firms

are able to earn a profit by investing in a label, but the lower quality firm only wants to

invest in a label if consumer perception of unlabeled products is either very high or very low.

As the cost of providing a label increases, it is no longer possible for the low quality firm to

earn a profit by labeling. The high quality firm will be the only one to label, and then only

when consumer perception of unlabeled products is sufficiently low to allow the high quality

firm to differentiate its product in a cost effective manner. Finally, as the cost of the label

grows too high no firm will be able to earn a profit with labeling, and both firms will sell an

undifferentiated product of zero quality.

These three distinct regions can be seen in Figure 7-8. The light shaded regions shows

the values of L and A for which only Firm 2 labels, while the darker shaded regions shows

the values for which both firms label. Above the critical value of 2 neither firm will choose

to label. As L decreases from this critical value the range of scenarios where firms choose
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Label Cost (L) Perceived Quality (A) Firm 1 Decision Firm 1 Profit Firm 2 Decision Firm 2 Profit

o < L < .00076L A < A, or A > A2  Label 4a(4-74 -3+2)- L Label 1623(4a2 39+2)(49-) L

0 < L < .00076 A, < A < A No Label 26 2A(1-A) Label ~ - L
a 2a(4- \)

4  
________ __a(-2 )

.00076L < L < 2 A < A0  No Label 2C,(-\) Label - L

.000760 <L < A > A0  No Label 0 No Label 0
a 64a ____________ _________

L > _ _ any No Label 0 No Label 0

Table 7.4: Equilibrium Results

C:)
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Label Cost (L)

-L ---------------------------------------------------
64a

Both Firms Label

Only Finn 2 Labels

No Finns Label

Perceived Quality (A)

Figure 7-8: Equilibrium Labeling Choices
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to label increases. For certain values of A Firm 2 will never choose to label regardless of the

cost of the label, but that range shrinks as the labeling cost is reduced. This is important

when viewing the label as a means of reducing emissions. Each firm sells a quantity, q, of

product, and each product's carbon footprint has been reduced by s units of emissions. The

total emissions reduced, E, is thus equal to the quantity sold by each firm multiplied by the

firm's quality level.

Under Scenario 2, where both firms label, the total emissions reduction is given by:

E =qisi + q2 s 2  (7.40a)

p p2 (4p - 7) 2p 40p(4M2 - 3[p + 2) (7.40b)
(4pt - 1) 2a(4pt - 1)3 (41 - 1) 2a(4pt - 1)3

-p 2 (36p 2 - 31p + 16) (7.40c)
2a(4t - 1)4

=.07282- (7.40d)

Under Scenario 3, where only Firm 2 labels and Firm 1 contributes no emissions reduction,

the total emissions reduction is:

E =qisi + q2 s 2  (7.41a)

1 2 20(1 -A)
= x 0 + x (7.41b)

4 - A 4 - A a(4 - A)2

40(1 - A)
(7.41c)a(4 - A)3

Figure 7-9 shows the total emissions reduced, as measured by (7.40a) and (7.41a). When

both firms choose to label the total emissions reduced are constant regardless of A, as the

perceived quality of unlabeled products is irrelevant when both products are labeled. When

only Firm 2 chooses to label total emissions reduced are decreasing in A.

Proposition 7.1. Total emissions reduced are always greater in the scenario where both

firms label than when only the high quality firm labels.

Proof. Total emissions are declining in A over the range of possible values, and are thus
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Total Emissions Reduced
L --------------------------------------------------------------

Perceived Quality (A)

Figure 7-9: Total Emissions Reduced

maximized at A = 0. Since .07282! > - the total emissions reduced are always greater

in the scenario where both firms label than when only Firm 2 does, regardless of the value

of A. 0

Thus, reducing the cost of the labeling process can help reduce total carbon emissions,

since the range of scenarios where both firms label increases as the cost of labeling is reduced.

Finally, we consider the total social welfare impact of the label, as measured by the sum

of the consumer surplus, producer surplus, and societal benefit of the emissions reduction.

Because an individual consumer can not affect the overall emissions reduction the benefits

are not considered in their personal decision choice, but the overall public benefit from the

emissions reduction is important in the contest of total social welfare. This is similar to the

measures of social welfare used by Amacher et al. (2004) and Moraga-Gonzalez and Padron-

Fumero (2002). The consumer surplus is given by the difference between what consumers

would be willing to pay for the product and what they did pay. Under scenario 2 the
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consumer surplus for consumers that purchase from Firm 1 is given by:

CS1 =qi( 2 8 - P1)

p2(4/t - 7)

2a(4pL - 1)3
(p~-1)(4p-1) + (p-1)(28p2-171+16)(4p-1)(12p2_5,48)

2

- - 7)

2a(4i - 1)3

(7.42a)

-2
0 ,2 (4[t - 7)(-11)1

2a(4pi - 1)4

(7.42b)

Op 3(p _ 1) (4p _ 7) (4 /2 - 3p, + 2)
a(4p - 1)5(12p2 - 5p + 8)

-2

And that of the consumers that purchase from Firm 2 is:

012 +05
CS2 =q 2 ( 02 2- P2)2

_2pM
(4pt - 1)

/ (p-1)(28p12-17M+16) +
(4p-1)(12p 2 -5pi+8) x

2
40/t(412 - 3u + 2)

2a(4pt - 1)3

(7.43a)

802 p(4p12 - 3u + 2)(p - 1)

2a(4pu - 1)4

(7.43b)

29 2 p2(4 p2 - 3p + 2)(28 p3 - 9pL2 + 181p + 8)

a(4p - 1)5(12p2 - 5p + 8)

-2
Y.02078-

(7.43c)

(7.43d)

The producer surplus is simply the total profit for each firm. If we define a non-negative

value, p, to be the societal benefit in dollars per unit of emissions reduction then the total

social welfare when both firms label is:

SW =CS 1 + CS2 +111 +11 2 + pE

22 2 2

=.00083- + .02078- + .00076- L + .01222- - L + .07282-
a a a a a

=- (.034596 + .07282p) - 2L

(7.44a)

(7.44b)

(7.44c)

Applying the same approach to Scenario 3 where only Firm 2 labels we can define the
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consumer surplus for consumers that buy from Firm 1 as:

CS1 =qi( 012 AS2 - Pi) (7.45a)

1 _+ 2A) 2A(1 - A) 202A( - 2

4 - A 2 a (4 - A)2  a(4 - A)3 (7.45b)

= 4AA)4  (7.45c)a(4 - A)4

And those that buy from Firm 2 as:

$12 + $
CS2 =q2 ( 1 s2 - p 2 ) (7.46a)2

2__ _ + 20(1 - A) 492(-A) 2

4-A )2  )3  (7.46b)4 - A 2 a(4 - A) a(4- A)

402(1 A2) 
(7.46c)

a(4 - A)4

Of note is that the consumer surplus for those who buy from Firm 1 is based on the perceived

quality of the product, not the actual quality. This is because the utility of the consumer

is based on the feeling of having done something good, and thus the consumer surplus is

measured based on the consumer's perception of the quality of the product.

Combining the consumer surplus with the firm profit functions gives the following ex-

pression for social welfare:

SW =CS1 + CS2 +H1 +11 2 + pE (7.47a)

2 A(1-A) 402( A2) 252A(1 _ ) 2  8 2(1 A)2  40(1-A)
=-4 4± +± - L+ p(74b

a(4 - A) a(4 - A)4  a(4 - A) 4  2a(4 - A)4  a(4 - A)3

62 (2A3 - 5A2 - 5A + 8) + 4pO (A2 - 5A + 4) _ L (7.47c)
a (4 - A)4

Figure 7-10 shows the social welfare under these two labeling results. From this we can

see that ignoring any costs of labeling the total social welfare is greater under the scenario

where both firms label for all values of A. The cost of the label acts on a drag on the total

social welfare, as the costs incurred by the firms to obtain the label reduce profits without
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Social Welfare

N Perceived Quality (A)

Figure 7-10: Social Welfare

increasing the consumer surplus or the amount of emissions reduced. When we consider

the cost of the label the total social welfare is higher when both firms label provided the

following inequality is true:

- (.034596+ .07282p) - 2L > 0(2V5A 5A+8)+4p#(A 5A+4) _ L (7.48)
a a (4 A)4

Proposition 7.2. Under the scenario where both firms choose to label total social welfare

will be greater than when only the high quality firm labels.

Proof. Solving (7.48) for L give the total social welfare as being greater when both firms

label provided:

P2 2A3 - 5A2 - 5A + 8 Up4A 2 - 20A + 16
L < 0-.3459- _ +A) -- # (.07282 - 4 (7.49)

a (4-A a (4 -A)

The expression on the right hand side reaches a minimum of .00334f + .010322 at A = 0.

Recall that our criteria for both firms labeling requires L < .000762. Thus under any

scenario where both firms choose to label, the social welfare will always be greater than
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when only the high quality firm labels, regardless of the value of A.

Proposition 7.3. Reducing the cost of the label increases total social welfare.

Proof. Under any outcome of the labeling game the consumer surplus and societal benefit

are independent of the cost of the label, while the producer surplus is decreasing. Thus,

with no change in the labeling decision, social welfare will increase as the cost of the label

decreases. Further, a decrease in the cost of the label can only induce more firms to label,

and at a given value of A an increase in the number of firms labeling results in an increase

in social welfare. If neither firm chooses to label, even at a lower cost of the label, then

total social welfare is unchanged. Thus, social welfare is either increased or unchanged by

lowering the cost of the label.

7.4.6 Discussion

An analysis of the social welfare shows that the scenario where both firms choose to label

produces the most benefit. This suggests that the authority that administers the label should

focus on reducing the cost required to obtain the label in order to encourage more labeling.

In most cases social welfare can also be improved by informing consumers regarding the

benefits of labeled products, and thus reducing the perceived quality of unlabeled products.

However, in one specific situation this may have a negative result. Referring to Figure 7-8,

a reduction in A is associated with a shift to the left on the figure. If both firms currently

label, and the value of A is greater than A2 , a shift to the left could induce Firm 1 to stop

labeling, which would result in a decrease in social welfare. In all other cases the decrease

in A would result in higher social welfare, either by inducing more labeling or by increasing

social welfare in the situation where only Firm 2 labels.

The issues we identify as key to the success of the label are supported by the real world

experience of initial carbon labeling programs. Despite the initial strong support offered by

Tesco the company recently announced a decision to suspend its carbon labeling program,

citing the failure of other retailers to follow suit in adding labels and the months of work

required to calculate the carbon footprint of a product (Vaughan, 2012). Several other large

companies have estimated the cost of measuring the carbon footprint for a single SKU at
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£25,000 to £30,000 (McKinnon, 2010). While the costs of obtaining an eco-label are often

substantial (Ibanez and Grolleau, 2008) this seems to be particularly true for carbon labels,

where the measurement required to get the label is complex and costly (Brenton, Edwards-

Jones, and Jensen, 2009).

In addition to the high cost of measuring and obtaining the label, a number of sources

have cited consumer understanding as a key issue. Crespi and Marette (2003) identify

the consumer's ability to understand the label to be a key point regarding the success of

any label. After the introduction of the carbon label a number of questions were raised

regarding its effectiveness in communicating to consumers (Boardman, 2008). Others have

questioned whether the accuracy of current measurement programs is high enough to support

comparing alternative products (de Koning, Schowanek, Dewaele, Weisbrod, and Guin6e,

2010). Gadema and Oglethorpe (2011) found consumers to have a high preference motivation

for carbon labelled products, but many were confused by the the labels. Upham, Dendler, and

Bleda (2010) found that simply providing the emissions value for a product was not enough to

significantly influence product selection. If consumer understanding and acceptance of labels

does not improve, changes to the information on the label may be necessary. Some proposals

call for better metrics than simply communicating the carbon footprint of the product (Zhao,

Deutz, Neighbour, and McGuire, 2012). Experiments with color coded carbon labels that

correspond to below average, near average, and above average levels of carbon emissions

have shown high interest from consumers and media, but the increase in sales for the lower

carbon product failed to reach statistical significance (Vanclay et al., 2011). In the next

section we explore the possible change by considering the use of the more common Type I

certification eco-label. Under this style of label the labeling authority defines some standard

of quality, and firms that meet this standard are awarded the right to use the label on

their product. Thus, rather than communicating an actual value of a specific attribute, the

label instead certifies that the company has met the quality requirements of the label. We

refer to this type of label as a discrete label, because the labeling communicates a binary

attribute-the product either is or is not certified. We distinguish this from our standard

carbon label model, which we refer to as a continuous label, since it communicates an exact

level of quality that can take on a continuous range of values.
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7.5 Discrete Label

We again consider the case of two firms operating in a duopoly with the same parameters as

before regarding consumer types and the cost of carbon reduction. Rather than a continuous

labeling mechanism we instead consider a discrete label. To achieve the label a firm must

meet a minimum quality threshold of smin. A firm that meets this threshold may again pay

L to have the quality certified by a third party and earn the right to use the certification

label on their product. Any product with a label will be perceived by consumers to have a

quality of Sh. Any product without a label is assumed to be of quality sj.

Unlike our previous labeling model only one firm will possibly choose to label under

this scheme. If both firms were to label their products, they would be perceived to be of

identical quality, and price would fall to marginal cost (again assumed to be zero) resulting

in a loss of L for both firms. We designate the firm that chooses to label as Firm 2 and find

the consumer indifferent between the two products by setting the utility of purchasing from

Firm 1 and Firm 2 equal:

$12sh - P2 = $12SI - Pi (7.50)

Solving 7.50 for $12 gives the consumer indifferent between the products as the one where:

012 = p2 - 1 (7.51)

The consumer indifferent between the low quality product and no product at all is noted by

0oi and is determined by setting the utility of purchasing the low quality product equal to 0.

01sI -pi = 0 (7.52)

Solving 7.52 for Soi gives the indifferent consumer as the one where:

siWh te 1 (7.53)

With these consumers identified we can determine the market share for each of the
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firms. All consumers with 6 > $12 choose the higher quality product, while those with

001 < 0 < 012 choose the lower quality product. Consumers with 9 < 001 choose no product

at all. Normalizing the total size of the market to 1 the quantities sold by each firm, qi and

q2 , are given by:
012 -01 1(P2 -P1 P1) 74
qi- -- (7.54)0 0 sh - s1 S1

- 012 1 P2 - P1
q2 -- P -(7.55)

6 0 sh - Si!

With these prices and qualities we can write the profit function for each firm as follows:

H1 (p1, P2, Si, s 2 ) = p1 qi - as = -P2P -P1 a s 2 (7.56)
1 Sh - St Sl)

II2 (P1, P2, Si, S2) =P 2 2 - as = P -P2-P1 - as2 - L (7.57)I ~ ~~ P~2 2-0 sh ~~ Sl

We begin by solving the second stage of the game and note that the prices are independent

of the actual quality choices of the firms, based instead on the consumer perceptions of labeled

and unlabeled products. To do this we maximize each firm's profit function with respect to

its price, producing the following first order conditions:

all1 (P2-P1 Pi) P 1 1= h= - - (1 - =0 (7.58)ap1 sh - si s1 0 sh - S1 si)

a12 1 2 - P1 P2 =0
OP2 6 sh - 0 0 sh St

Solving the first order conditions produces the following optimal prices in response to the

other firm's price and the perceived quality of their product:

P1 = s1p2 (7.60)2sh

P2 = P1 +0(Sh -Si) (7.61)
2

To find each firm's best response function purely in terms of the perceived qualities we

substitute 7.61 in to 7.60 and solve for p1. This produces the following best response prices
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Parameter Firm 1 Firm 2

Price (p) OS*(sh-sl) 2ShSh-31)
_A sh-sI 

4sh--si
Quality (s) 0 smin

Quantity (q) Sh _ _ _

Profit (H) 6L'"(Sh-s) 406s(sh-sa) s - L
(4 sh-sl) (4sh- I)' min

Table 7.5: Summary of Discrete Labeling Results

for both firms:

OsI (sh - si)
Pi = (7.62)

A - si

2 0sh (Sh - Si)
P2 = (7.63)

4As, - s

Using these prices we can now write each firm's profit as a function of the quality choices:

I (si, S2) = 2SISh (Sh - sj) a sa (7.64)
(4sh - si)2

AOsi (sh - si)
H2 (si, S2) = 2Sh _ -_ _ as - L (7.65)

(4sh - sJ)

From the profit functions we can see that each firm will choose the minimum quality level

possible in order to maximize profits. Since Firm 2 must achieve a quality level of at least

smin to receive the label this will be its level of quality, while Firm 1 will make no investment

in quality and produce a product of quality 0. Table 7.5 summarizes the price, quality,

quantity, and profits for each firm.

Since Firm 2 must be able to make a positive profit to choose to label this places a

restriction on the possible cost of the label.

112 > 0 (7.66a)

4s2 (Sh - sI) 2

2 -_as2min - L > 0 (7.66b)

4Ns2 (sh - si )
2 ( - as2 > L (7.66c)

(4sh - si) min

Assuming that this inequality is satisfied and Firm 2 chooses to label we can now calculate
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the social welfare achieved by the label. As before the social welfare is equal to the sum

of the total consumer surplus, producer surplus, and the societal benefit of the emissions

reduction. Total emission reduction, E, is given by the following expression:

E =qisi + q2 s2 (7.67a)

= sh X 0+ 42s x min (7.67b)

= 2Shsmin (7.67c)
Ash - si

The consumer surplus is given by the difference between what consumers would be willing

to pay for the product and what they did pay. The consumer surplus for consumers that

purchase from Firm 1 is given by:

CS1 qi( 01 2 - Pi) (7.68a)
2

Sh O(Sh-S- + s(2Sh 1s
h 4

Sh-SL 
4
Sh-SL _ OS 01(Sh - Si) I(7.68b)

Ash - s1 2 Ash -S1
28 Shi

-SI)2 (7.68c)
2(4sh -

- s hSI (7.68d)
2(4sh - si)2

And that of the consumers that purchase from Firm 2 is:

$12 + 5
CS 2 =q2 ( Sh - P2) (7.69a)

2
2 

4
Sh-3_~ + X 2hs- s_ - si)

SSh-SsO - 20Sh(Sh - Si) (7.69b)
Ash - S1 2 Ash - Si

25s2{ (s + si )2- sh +S) (7.69c)
(4sh -

With the producer surplus given by the profits from each firm shown in Table 7.5, we

can write the total social welfare as:
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SW =CS1 + CS2 + M1 + 112 + pE (7.70a)

9s2si + 29s2(sh + Si) OSiSh (Sh - Si) 4Os2 (Sh - si) 2 2 ShSmin

2(4sh - si)2 (4sh - Si) 2 + (4sh - Si)2+ ( _ S1)2 As 4 Sh - Si

(7.70b)

6 sh (12s2 - shs1 - 2s,2) 2Shsmin
2 - asmi - L + p (7.70c)2(4sh - S,)2 m 4 Sh - S1

Given this expression for the total social welfare we now consider the actions of the labeling

authority. Unlike the case of a continuous label, where the firms choose their level of quality

over any possible value, in the case of a discrete label the authority that creates the label

has the ability to choose the standards needed to receive the label. Like Ben Youssef and

Lahmandi-Ayed (2008), we assume the goal of the label creator is to increase social welfare

by choosing a quality level, smin, such that social welfare is maximized. The optimal choice

of minimum label quality is given by:

&SW 2psh0 i= 0 =>=-2as*i + Ph 0 (7.71a)
9smin m in+4Sh - S1

- -* cin = S: (7.71b)

This puts the following requirement on the cost of the label so that Firm 2 will still earn a

positive profit and choose to label:

s 2 (46a (sh - si) - p2)sh (4S(_h )2 _)> L (7.72)
a(4sh -s)

If the firm is not able to earn a profit with this level of quality, then the labeling authority

should choose the maximum level of quality possible that still results in positive profit, as

a9SW > 0 for values below the optimal level. Provided the optimal quality choice is feasible,t
9
smin
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we get the following expression for the total social welfare:

SW =CS 1 + CS 2 + I11 + T12 + pE (7.73a)

OSh (128 - ShSI - 2s) PSh 2 2sh Psh
-S-2a - L + p

2(4sh - si)2 a (4sh - SI)- S1 ( a (4sh - si)

(7.73b)

9 Sh (12s2 - ShSl - 2sf) p 2s - L

2(4sh - si) 2  (s - )2 (7.73c)

OaSh (12sh - Shsi - 2s1) + 2p 2s! - L (7.73d)
2a(4sh - Si) 2

This assumes that the quality perceived by consumer is exogenous, and not influenced by

the labeling authority. If we instead assume that the choice of quality level by the labeling

authority affects the quality perceived by the consumer, then we obtain a different result. In

order to provide a method of comparison with the continuous label we make the following

assumptions. First, the labeling authority again sets the minimum quality level needed to

obtain the certification label, but now we assume the quality perceived by the consumer is

equal to the minimum quality chosen by the labeling authority, sh = smin. Second, we again

set the perceived quality of the unlabeled product to a factor A times that of the labeled

product, such that sl = Ash. With these assumptions in place we can obtain the following

expression for the social welfare:

SW =5h (12si - shsi - 2s2) -L + p2h (7.74a)
2(4sh - s1)2 h 4sh - S1

9s3 (12 - A - 2 2) 2s2
-h 4 - A)2  as - L + p ( (7.74b)
2S2(4 - A)2h,(4 _1

0(12 - A -_2A2) + 4p (4 - A) a 2 L
2(4 - A)2  (

Solving for the optimal level of Sh gives the following expression:

* 0(12 - A - 2A2 ) + 4p(4 - A) (775)
h 4(4 - A)2

The labeling authority should then set smin = s* and achieve a level of social welfare given
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Parameter Firm 1 Firm 2

Price (p) (1-\)A [j(12-A-2) +4p(4-A)| 26(1-A) 6(12-A-2
2 )+4p(4-A)]

Pric4a(4-e) (p) 4 a

Quality (s) 0 9(12A2 +4p(4-A)

Quantity (q) A

4a(4-A) 16a(4-A)

Table 7.6: Summary of Discrete Labeling Results with Endogenous Quality Perception

by:

QTA*~ F(12 - A - 2A2) + 4p(4 - A)]2
- T. (7 76

16a(4 - A)4

This is subject to the condition that Firm 2 must choose to label, so its profit must be

greater than zero:

II2

45s3 (1 - A)
1- - as2 - L

s 2(4 - A)2 h

16# (1 - A) [O (12 - A - 2A2 + 4p(4 - A)] - [O (12 - A - 2A2 + 4p(4 - A)]2

> 0 (7.77a)

> 0 (7.77b)

> L (7.77c)

The results are summarized in Table 7.6.

7.5.1 Label Comparison

With the outcome of each labeling scheme solved we can now compare the performance

achieved by both labels.

Proposition 7.4. The social welfare achieved by the discrete label is always higher than that

of the continuous label when the optimal choice of the minimum quality standard is feasible.

Proof. Let SWc2 denote the level of social welfare achieved using the continuous label when

both firms choose to label

SWc2 = - (.03459U + .07282p) - 2L (7.78)
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And let SWd be that of the discrete label:

SWd = [(12 - A - 2A2) + 4 p( 4 - A)] 2 -L (7.79)
16a(4 - A)4

The continuous label with both firms labeling will provide a higher social welfare provided

the following expression is true:

SWc2 >SW (7.80a)

0 or. [O(12 - A - 2A2 ) + 4 p(4 - A)]2
.03459+ .07282p) -j L>- L(.8b

a k 16a(4 - A)4

Rearranging the terms this expression is true provided:

_2_12_____2___ g (12- A- 22- p2

.03459 - + - 07282 - 2 2 >L (7.80c)
16 (4 - A)4  a . 2 (4 - A)3 a (4 - A)2

Over the range of possible values for A all three terms on the left hand side will be negative,

and thus no possible value of L will result in a higher social welfare for the continuous label.

Since social welfare is always higher in the case where both firms label than when only one

firm chooses to label, the social welfare provided by the discrete label is always higher than

that of the continuous label. E

In this case the actions of the labeling authority generally come at the expense of the

profits of the high quality firm. By setting the minimum quality standard higher than the

firm would otherwise choose, the firm's profits are reduced but total social welfare is increased

due to the higher level of emissions reductions. Let U1 ic and H 2c represent the profits for the

high quality firm under the continuous label when it is the only firm to label and when both

firms label, respectively. The high quality firm earns higher profits under the continuous

label provided:

11c2 > Hd (7.81a)
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1652p3(4p2 - 3p + 2)(4p - 7) L >
4a(4p - 1)6

[ (2A 2 - 15A + 4) - p (16 - 4A)] [ (12 - A - 2A2 ) + 4p(4 - A)] -L (7.81b)
16a(4 - A)4

Rearranging terms produces the following condition that must be true for the firm to earn

higher profits under the continuous label:

P#2007 (12 - A - 2A2)2 - 16 (1 - A) (12 - A - 2A2)~

16(4- A)4  ]
+p[ 8(12-A2A2)2 - 64 (1 - A) p ( 2> 0  (7.81c)

a 16 (4 - A)' a (4 - A)2

The expression on the left hand side is negative only for the case where A is very low and

6>> p. In those situations the existence of the discrete label actually helps protect the high

quality firm, as in the continuous label scenario the low quality firm would normally choose

to also label its product, resulting in increased price competition. In all other cases the

cost of complying with the high minimum quality standard eats into the profits of the high

quality firm. Further, the high quality firm will earn higher profits under the continuous

label when it is the only firm to label provided:

lei > Ha (7.82a)

4#2(1 _ A) 2

166 (1 - A) [F (12 - A - 2A2) + 4p(4 - A)] - [F (12 - A - 2A2) + 4p(4 - A)] 2L

16a(4 - A)4

(7.82b)
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Rearranging the terms this is true provided:

52 ~4 (1 _ A)2 (12 - A - 2A2 22 (1 - A) (12 - A - 2A 2)'

a [(4 - A)4 + 16 (4 - A)4  (4 - A)4

p6 8 (12 - A - 2A2) 2 - 64 (1 - A) p2+ [-64-) J+a( A2 > 0 (7.82c)
a 116 (4 - A)3 a (4 - A)

Each term on the left hand side is positive for all values of A, and thus the high quality firm

always earns greater profits under the continuous labeling scheme than the discrete scheme

if it is the only firm that labels. Under our model the price competition between the firms

is identical in this scenario, but under the discrete label Firm 2 is forced to choose a higher

level of quality than it prefers, reducing profits.

7.5.2 Discussion

In this section we provided an example of a standard Type I certification style eco-label that

could be used to certify low carbon products. Our results show that, provided the labeling

authority is able to choose an optimal minimum level of quality that still induces the high

quality firm to label, the discrete label will produce a higher level of social welfare than the

continuous label. This is due to strategic behavior on the part of the labeling authority that

allows them to choose a minimum level of quality that maximizes social welfare, unlike the

continuous label where the firms choose the level of quality in order to maximize profits.

This increase in social welfare generally comes at the expense of firm profits, as the high

quality firm usually earns higher profits under the continuous labeling scheme. From the

firm perspective the use of a discrete label may be less preferable than the continuous label.

However, if consumers show a better understanding of the simpler discrete labels then this

could provide motivation for a switch from ineffective continuous labels.

7.6 Two-tier Supply Chain Model

While the decision to label a product with a carbon label for sale to the end consumer may

ultimately rest with one firm, the actual carbon footprint of the product is dependent on
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all the firms in the supply chain. To consider the implications of this fact, and the role of

carbon labels in reducing emissions throughout the supply chain, we now extend our basic

carbon label model to a two-tier supply chain through the inclusion an upstream supplier.

We recognize that in practice the basic model and the two-tier supply chain model are

reflections of the same supply chain structure. That is, though we refer to the basic model

as the single firm scenario, that firm still operates as a member of a supply chain. We refer

to it as the single firm scenario because in the decision to reduce the carbon footprint and

label the product the firm acts alone. This is similar to the current state of affairs where a

single firm conducts an LCA of the supply chain, labels its product, incurs the associated

costs, and reaps the potential benefits. By acting alone the firm forgoes two possible benefits

from collaboration with its supply chain partners.

First, by conducting the LCA of the supply chain on its own the firm incurs all the

associated costs. We previously identified the cost of labeling to be composed of two factors,

the cost to actually perform the measurement and the cost paid to a third party to certify

the label. In both the single firm case and the two-stage supply chain the work required

to measure the carbon footprint is the same-that of performing an LCA for the entire

supply chain. In the single firm case all of the costs are born by one firm, while in the

two-stage supply chain the costs are split between the firms. If the upstream supplier were

to provide the carbon footprint information of its product to the downstream firm through a

B2B carbon label, this would reduce the work required by the downstream firm and possibly

reduce its cost to label.

Second, if the downstream firm measures the carbon footprint of its product on its own

without input from the upstream supplier it misses the opportunity to have the upstream

supplier also contribute to reductions in the carbon footprint. By providing the actual

carbon footprint of the component it supplies to the downstream firm through the use of

a B2B label, the upstream firm can work to reduce that carbon footprint, resulting in a

decrease in the carbon footprint of the final product sold by the downstream firm. If the

downstream firm does not use actual data from the upstream supplier, and instead relies

on standard LCA techniques to estimate the impact of upstream production, then efficiency

improvements made by the supplier will not impact the calculated carbon footprint.
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As in the basic, single-tier model we consider the amount of emissions reduced to be a

measure of product quality, but now we define the quality of product i to be si = si" + Sid

where si, is the emissions reduced by the upstream supplier and Sid is the emissions reduced

by the downstream firm. We normalize the production process such that each unit of output

sold to the end consumer requires one unit of input from the upstream supplier.

As before the downstream firm is able to invest in processes to reduce emissions with

a fixed cost of as d per unit of emissions reduction. Similarly, the upstream supplier also

faces a quadratic fixed cost of 3s? to reduce emissions. The downstream firm purchases

the upstream input at a wholesale price of wi per unit and then sets the final price, p

for sale to the end consumer. Consumers base the purchasing decision on the end price of

the product and the total product quality. With these assumptions in place the respective

profit functions, without accounting for the cost of the label, for the upstream supplier and

downstream firm are given below.

ld =(P1 - -_ p 1 w ( P - ~Pi as2d (7.83)
0 (s2d + s2u) - (sld + Slu) Sld + Slu

Hiu = wiqi - s = + P - +)- 3s2 (7.84)1U- ( s2d + s2u) - {Sld + slu) sld + Slu / u

2=(P2 - W2)q2- as 2 =P2-w2 2 - as2 (7.85)
112d 2d - & (s2d + s2u) - (Sid +---U sid

U 2=- #3s (7.86)
6(s2d + s2u) - (sld + s1u);

If the upstream supplier chooses to produce at a quality level greater than zero it must

invest in a label to certify the quality level. Let Lu be the fixed cost for the upstream firm

to label. An unlabeled product produced by the upstream supplier is assumed to be of zero

quality. If the downstream firm wishes to communicate the quality of the product to the

end consumer it must also invest in a label. Let Ld be the fixed cost for the downstream

firm to label. The label value will communicate the sum of the downstream firm quality

and the upstream supplier quality, provided the supplier invested in a label. An unlabeled

product sold to end consumers again has quality equal to As2 . Once again there are four

possible scenarios for the final product. First, we analyze Scenario 2, where both products
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are labeled, and next Scenario 3, where only the high quality product is labeled.

As we are interested in the effect of including the upstream supplier in the labeling

decision we consider the two-tier model in the case of a vertically integrated channel with

one decision maker. In this manner we can determine what should be the optimal decision

for the supply chain as a whole, and contrast this with the outcome when a single firm

acts alone. We refer to this as the supply chain scenario, because the costs, benefits, and

outcomes can be influenced by both the upstream supplier and the downstream firm.

7.6.1 Both End Products are Labeled

The profits of the supply chain as a whole, assuming both the upstream supplier and down-

stream firm choose to label, are given by:

H1 = piqi - as - #Os 2 = --P1 aP --#s - Lu - Ld (7.87)6 S2 - Si s) ld

H2 =p 2q 2 - = 5 -2 P - as 2 - -3s - Lu - L (7.88)2d ~ ssu 2 -si

We note that the second stage price game is unchanged from the single firm case, and thus

the optimal prices as a function of the total supply chain quality are:

Osi (s2 - Si)
Pi = -S1 (7.89)

25s2 (s2 - si)
P2 = 2 -S (7.90)

4S2 - Si

These give the following profits as a function of total supply chain quality:

Hi1 (sid, Slu, S2d, S2u) = S1 s 2 (2 - s) asid - #s - L- Ld (7.91)
(4S2 - si)

H2 (iS, s2u, 2d) (82 -S) asi 2 #S2 - Lu - Ld (7.92)
(4S2 -Sl si) 2
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Differentiating each profit function with respect to the upstream and downstream quality

choices gives the following expressions:

= s2 - 2s82
40 2-

r (4S2 - s132

29sis (s 2 - Si)
+ (482 -

(4S2 -s)

2s - 2si82 26sis2 (S2 - Si)

(4S2 - Si) (4S2 - si)3

aH2
0 8d= 0 =

Os2d

(91U2 0
= 0 *

126s - 881s2

(4S2 - S12

126sj - 86sis2
42 - S2

(4S2 - 3)2

326s2 (S2 - Si)

(4S2 - s1)3

326s (S2 - Si)

(4S2 - si)

- 2 as1d = 0

- 2#siu = 0

- 2 as2d = 0

- 2#S2u = 0

Rearranging the terms gives the following expressions for the optimal quality choices of the

upstream supplier and downstream firm in each supply chain:

#S2 (4s2 - 7si)
Sid - 232a(4s2 - Si)

8 s- (4s2 - 7s1)
liu - 2#(4S2 - si)

S2d =

S2u =

40s2 (4s2 - 3s1s2 + 2s2)

2a(4s2 - si)

40s2 (4s2 - 3sis2 + 2s2)

2#(4S2 - si)

(7.97)

(7.98)

(7.99)

(7.100)

Again defining S2 = psi and adding the respective upstream and downstream qualities, we

get the same result as before, with one solution of p ~ 5.2512. The resulting quality levels

are then:
#[12 (4p - 7)

Sid - 2a(4p - 1)

#p2 (4A - 7)
- 2#(4p - 1)

4#p (4p2 - 3p + 2)
S2d = 3

2a!(4p - 1

(7.101)

(7.102)

(7.103)
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Parameter Supply Chain 1 Supply Chain 2

Price (p) a_+p V2(4p-7)(9-1) a+4 (4i2-3A+2)(9-1)
a _2(4p&-1) a#l (4p-1)'

ct+0 Op
2 

(
4

p-
7

) a+f6 20M(4.p
2-3p+2)

Total Quality (s) 0i3 2(4u-1)7 a't6 (41-1)
3 +

4A#2(4p-1) 20# (4-1j+)
Upstream Quality (sU) 20(44-7 26(4 2-3+2)

Downstream Quality (sd) I2(4p-7) 26M(4jA - 3p+
2)

2a(4pA-1)3 a(4j!-1)'
Quantity (q) (4,1_ _ _ _ _ _ _

Profit (II) a+,6F/A3(49-7)(4p
2 -3+ 2 ) - L, - Ld c+, 4f -3(492-3-+2)(49-7) -L - Ld

I_ 
4 (4 p-1) a#8 (4p-1)

Table 7.7: Summary of Supply Chain Scenario 2

46p (4pA2 - 3p + 2) (7.104)
s2, =3(714

2#(4p - 1)

And the total quality for each supply chain is given by:

si = a+ 00p 2 (4, 7) (7.105)
a# 2(4p. - 1)3

- a+# 45 (4 Ap2 - 3p + 2) (7.106)
a# 2(4pt - 1)

We can now determine the resulting profit, quality, quantity, and prices for each supply

chain. Both supply chains choose positive quality for both the upstream supplier and down-

stream firm, and thus incur charges of Lu and Ld in order to obtain certified labels. The

results are shown in Table 7.7.

7.6.2 Only One End Product is Labeled

In this scenario the unlabeled product once again is assumed to be of quality As 2 by the

consumer. This produces the following expressions for the profit of each supply chain:

U 1 = p1qi - sid #si = P1 (P2 -Pi 1 s - asid - (7.107)
S s2 - As2  As 2 /0S2

U12 = P2q2 - asd - # S 2 - P12 aes d - 2si - L - Ld (7.108)
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Following the same process as in section 7.4.3, we obtain the following expressions for the

prices:

I s2A(1 - A)
pi 4-A (7.109)4 - A

P2= 20S2(1- A) (7.110)4 - A

These give the following profits as a function of total supply chain quality:

Pi P2 -Pi P1 2 2 Us 2 A(1 - A) 2 2
1= P- S2 -s 2 ) - asid - (4 - A) 2  

- asid - #siU (7.111)

P2 - P2-P1i 2 2 4s 2(1 - A) 2 2
2 6 - - as2d - (s2 4 - ) 2  - as2ad- #s2 -Lu - Ld (7.112)o ( S2 - A82) (4 - A)

Differentiating each profit function with respect to the upstream and downstream quality

choices gives the following expressions:

=Sld - 0 -> - 2cs1d = 0 (7.113)

= 0 = -2#siu = 0 (7.114)

12 4= (1 - A) - 2 as2d = 0 (7.115)
aS2d (4 - A)2

0112 = 0 4(1 - A),- 2#s2u = 0 (7.116)
8s2u (4 - A)2

Solving these equations for the quality values we are now able to solve for the price, quality,

quantity, and profit for each supply chain. Only the high quality supply chain labels, and by

choosing positive quality levels both upstream and downstream it incurs charges of Lu and

Ld to obtain the labels. As the low quality supply chain does not label or invest in quality

improvements, the downstream firm will choose to purchase an undifferentiated product of

quality zero at price zero from its upstream supplier. Thus, the upstream supplier in the low

quality supply chain will earn zero profit, and any profit for the supply chain is captured by

the downstream firm. The results are shown in Table 7.8.
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Parameter Supply Chain 1 Supply Chain 2
2__ 2#Al-a040 

2(1-A)2 zPrice (p) 2 a3 4(-A)a#6 (4-A) C,# (4-A)3

Total Quality (s) 0 0 (-A)
a#3 (4-A)2

Downstream Quality (Sd) 0 ~
a(4-A2

Upstream Quality (sU) 0 0-
1'

Quantity (q) 4-A 4-A
Profit (H) a3 2 2 (1 a+2A 402(1-A) 2

0# (4-A) a# (4-A)4  
d

Table 7.8: Summary of Supply Chain Scenario 3

7.6.3 Comparison to the Single Firm Scenario

In comparing the single firm model and the supply chain model we note that the quality

chosen by the downstream firm is identical under the same labeling outcome. That is, the

level of quality chosen by the downstream firm is unaffected by the presence of the upstream

supplier given identical labeling outcomes for the two products. However, total product

quality is increased through the additional quality provided by the upstream firm. The

increased quality of the final product is reflected in the higher price premium charged by

the downstream firm to the end consumer. In all cases the price and total quality of the

final product for the two-tier supply chain is equal to +3 times that of the single-tier case

where the downstream firm acts alone. Because the quantity sold is dependent on the ratio

of price to quality, the proportional increases result in the sales quantity for each product

being identical to the single-tier case. This results in profits, exclusive of the cost to label,

again being 2 times the profits of the single-tier case. Of special interest is that both the

upstream supplier and the downstream firm choose a quality level such that the marginal cost

of quality is identical. This is a reflection of Coase's Equimarginal Principle, which states

that the most efficient method for reducing pollution is for every firm to reduce emissions to

the level where all marginal costs of reduction are equal.

Next, we examine the conditions for the label that result in greater profit for the supply

chain as a whole compared to the single firm case. In order for the supply chain to achieve

higher profits than the single firm case any additional labeling costs must be offset by the

increase in profits from the higher price premium and quality level. Beginning with the
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scenario where both products are labeled we have the following condition for the channel

profits to be greater than the single firm case for the low quality supply chain:

a + # 52[,3(4p _ 7) (4 p2 - 3p + 2) 52p3 (4p _ 7) (4 /_2 - 3p + 2)
aoI6(4/ -1 , L3 - LL > - - 6 - L (7.117)

a#4(4pu - 1)6 4a(4p,- 1)6

And for the high quality supply chain:

a + # 40 2!L3(4 2 - 3pL + 2)(4p - 7) - L2M- L(4> 4M2 3(2 - 3p + 2) (4p - 7) - L (7.118)
a3 (4p - 1)6  a(4p - 1)6

Rearranging terms gives the following condition regarding the cost of the label for the supply

chain to earn greater profits than the single firm case for the low quality supply chain:

1 52 i3 (4/ - 7)(4 p2 - 3p + 2) (L + Ld)- L (7.119)
3 4(4pL - 1)6

And for the high quality supply chain:

1 49 p3(4 112 - 3pi + 2) (4/t - 7) > (Lu + Ld) - L (7.120)
13 (4p - 1)6

The requirement for the supply chain scenario to result in greater profit is simply that

the increase in profits from the inclusion of the upstream firm must offset any addition in

cost due to the requirement of two labels. Looking at the profits for the case where only the

high quality product is labeled we have the following expression for the low quality supply

chain to earn greater profits than in the single firm case:

a + # 25 2 A(1 _ A)2  26 2A(1 - A)2

a (4 - A)4  > (4 - A)4

And for the high quality supply chain:

a + # 452(1A) 2 LL> 42(1 A)2  L (7.122)
a (4- A) 4 a(4 - A)
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Which gives the following condition for the low quality supply chain:

1262A( - A) 2 >
~ 4A 4  > 0 (7.123)0(4 - A)4

And for the high quality supply chain:

1462(1 _ A) 2 > (Lu + Ld) - L (7.124)
# (4 - A)4

We can see that the high quality firm again faces the same requirement that the value

added by the upstream firm must outweigh the additional labeling costs. As # is a positive

value, the expression on the left hand side of (7.123) is always greater than or equal to zero,

and the profits of the low quality supply chain will always be at least as well off. This is

because when it chooses not to label the final product the low quality firm faces no increase

in labeling costs, continues to purchase the zero cost product from its upstream supplier,

and is able to charge a higher price due to the increase in price and quality for the product

of the high quality supply chain.

Our work so far has assumed that the cost of the label was such that both the upstream

and downstream firms would choose to invest in a label. Next, we consider scenarios where

this may not be the case by examining the constraints on the cost of the label. To put these

constraints in context we consider a range of possible values for the labeling costs of the

supply chain. We consider the cost of the label to be composed of two factors, the cost to

actually perform the measurement and the cost paid to a third party to certify the label.

In both the single firm case and the two-stage supply chain case we consider the total cost

to measure the carbon footprint to be identical. The work required in both cases is the

same-that of performing an LCA for the entire supply chain. In the single firm case all of

the measurement costs are born by one firm, while in the two-stage supply chain the costs

are split between the firms. However, if both the upstream and downstream firm choose to

label the certification costs to the supply chain will be increased, as the upstream supplier

must invest to certify a B2B label and the downstream firm must certify a B2C label. Thus,

the total change in labeling costs is dependent on the relationship between the measurement

cost and the certification cost.
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7.6.3.1 Low Certification Costs

If the certification costs are minimal compared to the cost of performing the measurement

then the total combined cost for the supply chain to label is the same as for the single firm,

and L, + Ld = L. The conditions for the supply chain scenario to produce greater profits

for the low quality supply chain when both products are labeled can then be written as:

1 52[3(4y - 7)(4 p2 - 3p + 2) > 0 (7.125)
# 4(4p - 1)'

And for the high quality supply chain as:

1 4O2I3(4 t2 - 3 p + 2)(4p - 7) > 0 (7.126)
# (4p - 1)6

When only one product is labeled the condition for higher profits for the low quality supply

chain is:
1 > 0 (7.127)
# (4 - A) 4

And for the high quality supply chain:

1 4- (1 - > 0 (7.128)
3 (4 -A) 4

In this case the supply chain scenario is more efficient than the single firm scenario, as profits

will always be greater provided at least one firm labels and equal when no firm labels. A

summary of the labeling results under this scenario are shown in Table 7.9. As in the single

firm case the labeling outcome is dependent on several special values of A, designated by A',

A',, and A'; which can be solved in a similar manner to the single firm case.

Proposition 7.5. If the certification cost is low then the inclusion of the upstream supplier

increases social welfare.

Proof. We first note that when the same number of products are labeled the quantity of

each product sold is identical between the supply chain and single firm case, and thus the

product choice of any individual consumer will be unchanged. Since the quality and price of
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Label Cost (L) Perceived Quality (A) Supply Supply Chain 1 Profit Supply Supply Chain 2 Profit
Chain 1 Chain 2
Decision Decision

0 < L < .00076526 A < A or A > A'2  Label + "(4/4-4-3t4-2) - L Label a+0 1662t32 - L
AL<0'1 or A'a 4(4NLe)l Label f- L

00 < L < .000762 A' < A'2  No Label a+22\- Label a+ \- L

.000762 a/ < L <2 a± A < A0 No Label a 4i2 A1A Label a+/i "2 114,~
a/i 64a/8 a/0 (4-) 4 ai (-)

.00076#2c+ < L < a A > A' No Label 0 No Label 0
064 ct/i 0_ _ _ _ _ _ _ _

L > L# any No Label 0 No Label 0

Table 7.9: Equilibrium Results with Low Certification Costs



each product is increased by a proportional amount the consumer surplus for each consumer,

given by Os - p, also increases by that proportional amount. Further, given that product

quantities are unchanged, but product quality is increased, the societal benefit from the

emissions reduction is increased. Finally, the profits of the supply chain are increased.

Together these show that given the same number of labeled products between the single

firm and supply chain scenario the supply chain scenario will produce a higher total social

welfare.

Next, we consider the social welfare between the case where both products are labeled

and only one product is labeled. Following the same logic as in Proposition 72 we can see

that the case with both products labeled has higher social welfare if:

a +#2 (03459_ 2A3 - 5A 2 - 5A + 8> + a + 0p (.07282 - 4A 2 - 20A +16
a# (4 - A)4  a# (4 - A)4

(7.129)

The right hand side reaches a minimum of .0 0 3 3 4 0+9 52 + .01032,95p at A = 0. For both

products to be labeled we must have L < .0007602+8, and thus the social welfare will be

higher when both products are labeled as opposed to only the high quality product.

We have now shown that social welfare is higher in the supply chain scenario than the

single firm scenario provided that an equal or greater number of products are labeled, and

thus total social welfare will be higher provided the inclusion of the upstream firm does not

result in less products being labeled. First, by inspection the range of values of L for which

products will be labeled is greater in the supply chain scenario than the single firm scenario.

Next, at any given value of L and A for which one or both products are labeled in the single

firm scenario at least that many products are labeled in the supply chain scenario. Consider

that if at a given value of L and A only the high quality firm labels in the single firm scenario,

then we know that the high quality firm's profit must be positive. Therefore, the following

condition is true:
142(l A)' - L > 0 (7.130)
a (4 - A)4

And if that is true for a given value of L and A, then clearly the following condition must be
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true as well:
a + 3462-(1 _ A) 2  L > 0 (7.131)
a0 (4- A)4

Thus, if the high quality product would be labeled in the single firm scenario it would also

be labeled in the supply chain scenario.

Next, consider the condition necessary for the low quality firm to label in the single firm

case:
1 2 g3(4p - 7)(4 2 - 3pL + 2) - L 1 25 2A(1 - A)2  (7.132)
a 4(4p - 1)' a (4 - A)4

Rewriting in terms of L we can see that:

1 ( 23(4p _ 7)(4L2 - 3p + 2) 252A(IA)2) >L (7.133)
ae 4(4p1 - 1)' (4-A)

If that condition is true, then it must also be true that:

a + / (2p3(41 - 7)(4/2 - 3pi + 2) 26 2A(1 _ A)2  > L (7.134)
a# 4(4t - 1)' (4 - A)4

And thus for any value of A and L for which the low quality product is labeled in the single

firm scenario it will also be labeled in the supply chain scenario. Taken together we have

shown that given an equal or greater number of labeled products, the supply chain scenario

produces higher social welfare, and that for any values of L and A the supply chain scenario

will result in at least as many products being labeled. Therefore, the supply chain scenario

produces a higher social welfare than the single firm scenario.

7.6.3.2 High Certification Costs

If the certification costs are instead very high compared to the cost of performing the mea-

surement, then both the upstream supplier and downstream firm incur a labeling cost equal

to the single firm case, and L, + Ld = 2L. The conditions for the supply chain scenario to

produce greater profits for the low quality supply chain when both products are labeled can

then be written as:
1 92p3(4/ - 7)(4,2 - 3p- + 2) > L (7.135)

# 4(4pt - 1)'

251



And for the high quality supply chain as:

14 42IL3 (4 /_2 _ 3p + 2) (4p- - 7)>L(716> L (7.136)
0~ (4p - 1)6

For the scenario where only one product is labeled profits will be higher for the low quality

supply chain provided:

1-9A1 ) > 0 (7.137)
# (4 - A)4

And for the high quality supply chain provided:

1 462(1 _ A) 2
- 4 A)T > L (7.138)
# (4 -A) 4

If the abatement costs are higher at the upstream firm, that is # > a, then the upstream

firm will only choose to label if the cost of the label is sufficiently low that the cost of

obtaining the label is offset by the increase in profits. If this is not true, then either the

downstream firm alone will label or the product will be unlabeled. If abatement costs are

lower at the upstream firm then the upstream firm will always choose to label provided the

downstream firm also chooses to label. Further, even if the downstream firm would not

choose to label when acting alone it may now be profitable for both firms to label if the

abatement costs are low enough at the upstream firm to enable the supply chain as a whole

to generate a profit. The low quality firm always earns higher profits when it chooses not to

label than in the single tier case, as the increased quality level of the labeling firm creates

more differentiation and allows for a higher price. Assuming the conditions for the upstream

firm to label are met then the resulting equilibrium results for the supply chain are shown

in Table 7.10.

Proposition 7.6. If the certification cost is high the inclusion of the upstream supplier

increases social welfare provided abatement costs are not higher at the upstream supplier.

Proof. Our proof here follows from Proposition 7.5, as the price, quality, and quantity results

are identical to the case with low certification costs. Thus, the consumer surplus and societal

benefit from emissions reductions will be higher in the supply chain scenario than the single

firm scenario for an equal number of labeled products. Further, the producer surplus will
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Label Cost (L) Perceived Quality (A) Supply Supply Chain 1 Profit supply Supply Chain 2 Profit
Chain 1 Chain 2
Decision Decision

0 < L < .00 0 76 62'+0 A < A' or A > A' Label a+0 ?,(4-47) (4-3+2) - 2L Label a+# 166
2

1,3(4 
2 -y3A+2)(4p-7) - 2L

a,8 1 2 a 4(4p-1) a 4(4u-1)0

o < L < .0007662a+P A' <A < A'2  No Label 2± 2
2

A(1-A) Label 2+p 4( -- 2L
0/ 1 2a,8 (4-A) 

4  
_ _______a/ (4-\)4

.00076#2 2±2 < L < L a+# A < A' No Label 20(i \) Label a± 4-\_4 - 2L
0/ 64 a,8 0 a/i (4-)a/(4)

.000762a+ < L < L A > A' No Label 0 No Label 0aL 64 0 0 a N
L > Ea+ any No Label 0 No Label 0

64 a/i__________________________________________________________

Table 7.10: Equilibrium Results with High Certification Costs
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also be higher, as when # < a the inclusion of the upstream firm always increases the profit

of the supply chain.

Next, we consider the social welfare between the case where both products are labeled

and where only one product is labeled. Following the same logic as in Proposition 7.2 we

can see that the case with both products labeled has higher social welfare if:

/ + 2A3 - 5A2 - 5A +8 a+ 0 7 2 8 2  4A2 - 20A +16

2 L<a 03459 (4 - A)4 a# (4 - A)4

(7.139)

The right hand side reaches a minimum of .00334a82 + .0 10 3 2 cfl8p at A = 0. For both

products to be labeled we must have L < .0007662'+16, and thus the social welfare will be

higher when both products are labeled as opposed to when only one product is labeled.

We have now shown that social welfare is higher in the supply chain scenario than the

single firm scenario provided that an equal or greater number of products are labeled, and

thus total social welfare will be higher provided the inclusion of the upstream supplier does

not result in less products being labeled. First, by inspection the range of values of L for

which products will be labeled is greater in the supply chain scenario than the single firm

scenario. Next, at any given value of L and A for which one or both products are labeled in

the single firm scenario at least that many products are labeled in the supply chain scenario.

Consider that if at a given value of L and A only the one product is labeled in the single

firm scenario, then we know that the high quality firm's profit must be positive. Therefore,

the following condition is true:

1462(l -A)2 - L > 0 (7.140)
a (4 - A)4

In order for the high quality supply chain to label at these values of L and A then the

following condition must be true:

a +,34P(1 -A)2 -2L > 0 (7.141a)
a# (4 - A)4
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Rewriting this expression we have:

a+0 142(1A) 2

(a (4 - A) 4 /

From (7.140) we know that 14j2(1_\2 > L, which allows us to say:

(1 462( _ A)2)

a (4 - A)4 )

- 2L > 1 492(1 _ A)2(1 (4 - A)4 J
1 4g2(l - A)2

a (4 - A)4

And given that the right hand side of this expression is greater than 0 when # < a we can

see that for given values of L and A the supply chain scenario will always result in the high

quality product being labeled provided the single firm scenario did.

Next, consider the condition necessary for the low quality product to be labeled in the

single firm case:

1 523 (4p _ 7)(4p2 - 3p + 2 )
L > 2 2A(1 - A)2

a (4 - A)4

Rewriting in terms of L we can see that:

1 (2M3(4p - 7)(4 12 - 3p + 2)
- 4
a4(p-1

292A(1-A)2)> 
L

(4 - A)4
(7.143b)

And the condition that the low quality product is labeled in the supply chain scenario

requires:

a + 52 3(4 _ 7)(4 2 - 3p + 2) - 2L >
a# 4(4p- - 1)'

a +,3 252A(1 - A)2

a3 (4 - A)4

Which can be rewritten as:

a + (2I(4p _ 7)(4p2 - 3p + 2)

a# 4(4pi - 1)6

262 A( - A)2

(4 - A)4

Finally, if (7.143b) is true, then (7.144b) is true for the case where # < a, and thus for
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any value of A and L for which the low quality product is labeled in the single firm scenario

it will also be labeled in the supply chain scenario. Taken together we have shown that given

an equal or greater number of labeled products the supply chain scenario produces higher

social welfare, and that for any values of L and A the supply chain scenario will result in

at least as many products being labeled. Therefore, the supply chain scenario produces a

higher social welfare than the single firm scenario even when certification costs are high,

provided abatement costs are lower at the upstream firm.

Proposition 7.7. Inclusion of the upstream firm may reduce social welfare when the certi-

fcation costs are high and abatement costs are higher at the upstream firm.

Proof. For social welfare to decrease with the inclusion of the upstream firm it must be

true that the number of labeled products decreases due to the upstream firm. We have

already shown that this does not occur when abatement costs are lower at the upstream

firm. However, when abatement costs are high this may be possible. First, consider the

case where only the high quality product is labeled in the single firm case. Inclusion of the

upstream firm in the supply chain scenario clearly can not cause the downstream firm to

stop labeling, as if it was profitable to label without the upstream firm then it can continue

to be profitable simply by purchasing an unlabeled zero quality product from the upstream

supplier. Thus, it must be that inclusion of the upstream supplier may cause the low quality

firm to decide not to label its product. For this to be the case the following conditions must

be true:

" The profit for the low quality supply chain must be higher without labeling than the

profit with labeling, either with or without inclusion of the upstream supplier.

" Abatement costs must be higher at the upstream firm.

" The cost of the label must be low enough that the low quality product is labeled in

the single firm scenario, but not in the supply chain scenario.

The profit condition requires that:

a + # 25 2A(1 - A) 2  1 -2 (4 _ 7)(4fL2 - 3p + 2) _ L (7.145)

a# (4 - A)4 a 4(4pL - 1)'
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and: -

a + # 25 2A(1 _ A)2  a + ,30 p3 (4y - 7)(4, 2 - 3p + 2) 2L (7.146)

a3 (4- A)4  a3 4(4g - 1)6

The condition that the low quality firm would be willing to label in the single firm scenario

requires:

1 5 2
p3(4y - 7)(4[ 2 

- 3t + 2) - L > 0 (7.147)
a 4 (4 p - 1)6

If these conditions are met then the total social welfare without inclusion of the upstream

firm is equal to the case where both firms choose to label, and is given by;

- (.034596+ .07282p) - 2L (7.148)

And inclusion of the upstream firm results in only the high quality product being labeled,

giving a social welfare of:

a + 3 2 (23 - 52 - 5A + 8) + 4p6 (A2 -5A+4) - 2L (7.149)
a# (4 - A)4

A decrease in social welfare requires that:

a +52 (2A3 - 5A2 - 5A +8)+ 4p#(A2 - 5A +4) -a 1 3 ( A)4 - 2L < - (.03459J + .07282p) - 2L
a# (4 - A)4a

(7.150a)

Rewriting gives this expression:

(2 45 ac + # (2A3 - 5A2 - 5A + 8) p a + #4p# (A2 - 5A + 4)> 0
a# (4 - A)4 aJ (4 - A)4

(7.150b)

If values exist such that (7.145), (7.146), (7.147), and (7.150b) are all true this will show

the existence of a scenario where inclusion of the upstream supplier resulted in a decrease in

social welfare.

If we set A = 0.5, a = 0.5, 3 = 0.75, p = 0.5, 0 = 1, and L = 0.001, the conditions

for a decrease in social welfare are met. The low quality product is labeled in the single

firm scenario; the high quality product is labeled in both the single firm and supply chain

scenarios; the low quality product is not labeled in the supply chain scenario; and social
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welfare is lower under the supply chain scenario than the single firm scenario. Thus, it is

possible that social welfare can be decreased when including the upstream firm, but only

under certain conditions when certification costs are high and abatement costs are higher at

the upstream firm.

7.6.4 Discussion

In this section we presented an extension of the carbon label model that allows for the

upstream supplier in the supply chain to contribute to reductions in the carbon footprint.

Consistent with our carbon label framework from Chapter 5 we require the upstream firm

to also invest in a label in order to communicate quality to the downstream firm. By

including the efforts of the upstream supplier in the final product carbon label, the profits

of the supply chain, the benefit to consumers, and the overall reduction in emissions can

be increased. Our results show that the benefits are dependent on the relative costs of the

label and the abatement cost structure at the upstream and downstream firms. Under a

scenario where the cost of label certification is low, and cooperation between the upstream

and downstream firms results in no net increase in labeling costs, social welfare is always

improved. The firms choose higher levels of quality and price, which benefits both the firms

and consumers. When certification costs are high, and the addition of a second label results

in double the labeling costs, social welfare is improved provided abatement costs are lower

at the upstream firm. When this is not the case it may result in a decrease in social welfare

under certain conditions, as the low quality firm stands to gain more by forgoing a label.

7.7 Conclusions

In this chapter we developed a vertical differentiation model for a product carbon label.

Our model departs from previous work by introducing a label that is both costly to obtain,

voluntary, and capable of communicating a continuous level of product quality. In addition

to the standard results showing the importance of consumer willingness to pay and the cost

of implementing quality improvements, our model introduces two other key parameters, the

cost of obtaining the label and the perceived quality of unlabeled products by the consumer.
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Our results show that when the cost of the label is sufficiently low, both firms are able to

earn profits above the undifferentiated case by investing in emissions reductions and obtaining

a label for their products. The firm producing the good of lower quality may choose to forgo

the label and earn greater profits if consumers perceive the quality of unlabeled products to

be neither too poor nor too close in quality to a labeled product. As the cost of obtaining

the label increases it may no longer be possible for one or both of the firms to profitably

label their product. When firms choose not to label their product they also choose not to

invest in reducing carbon emissions.

Our analysis of social welfare shows that the scenario where both products are labeled

produces the most benefit to society. This suggests that the authority in charge of the

label should focus on reducing the cost required to obtain the label in order to encourage

more labeling. Under most conditions social welfare can also be improved by informing

consumers regarding the benefits of labeled products, and thus reducing the perceived quality

of unlabeled products. However, the best outcome involves both products being labeled, and

this can only occur if the cost of the label is low enough, as under high label costs the firm

producing the lower quality product will never be able to profitably label. The reduction

in perceived quality of unlabeled products can either encourage the non-labeling firm to

adopt a label, or else encourage the labeling firm to increase the quality of their product.

The result of either outcome is an increase in social welfare. In one specific case, reducing

the perceived quality of unlabeled products may reduce social welfare. This occurs if both

products are currently labeled and the perceived quality of unlabeled products is very high.

In this situation a reduction in the perceived quality of the unlabeled product could allow the

producer of the lower quality product to stop labeling the product and earn higher profits.

In response to recent research showing that consumers may be confused by current car-

bon labels we also consider the case of a standard Type I certification style eco-label where

a labeling authority establishes a minimum quality standard required to earn a carbon re-

duction label. Rather than communicate the exact carbon footprint of the product these

labels provide a certification that the product meets some carbon reduction target. Our

results show that the labeling authority can create greater social welfare with this style of

label as long as their choice of minimum quality is not too costly to achieve. This is due to
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the ability of the labeling authority to consider the overall social welfare when designing the

minimum quality standard. In labels that communicate the exact carbon footprint of the

product, the firms decide their preferred quality level and make the choice based solely on

their own profit maximization.

Finally, as the carbon footprint of a product is the result of the actions of the entire

supply chain, we extend our label model to consider the inclusion of an upstream supplier in

the carbon labeling process. The upstream firm also has the ability to impact the product's

quality level through its own abatement efforts. The upstream firm must certify their re-

sults through a business-to-business style carbon label, and providing this carbon footprint

information can potentially reduce the costs of obtaining a label to the downstream firm.

When the cost of label certification is low in comparison to the cost of performing the label

measurement this results in an increase in profits for the supply chain and an increase in

overall social welfare. When the cost of certification is high the upstream firm will only

choose to label if the increased profits can offset the cost of obtaining the label. If the cost

of abatement is lower at the upstream firm this results in an increase in labeled products in

some situations, but if costs are higher the low quality firm may forgo a label under certain

conditions.

Our supply chain model focused on the vertically integrated supply chain in order to gain

insight regarding optimal behavior of the supply chain as a whole. Inherent in our model

is the assumption that reducing and reporting the carbon footprint of a product is a costly

endeavor. In practice there may be many instances where reducing the carbon footprint of

a product results in cost savings, such as through reduced fuel or electricity consumption.

However, we choose to focus on the situation where improving quality is costly, as any

carbon footprint reduction effort that also reduces cost should be implemented even with no

consideration of the potential reductions in the carbon footprint. The question of interest

here is whether firms will go to the effort to reduce and report their carbon footprint even

when it is costly to do so, and in our model the incentive to do so comes from consumer

willingness to pay a premium for lower carbon products.

Our results provide justification for why firms would voluntarily choose to disclose carbon

footprint information to consumers and downstream partners in the supply chain. Consumers
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that are willing to pay for lower carbon products represent a source of increased revenue, but

only when firms can communicate the carbon footprint of their products through a labeling

mechanism. As the carbon footprint of the product is dependent on actions upstream in

the supply chain, we show that even firms without direct sales to consumers can benefit

the supply chain through their efforts at emissions reductions. However, consideration must

be given as to how this will work in practice before drawing too strong of conclusions. If

upstream suppliers embark on costly efforts to reduce and measure the carbon footprint of

their product they will seek to recoup this costs through higher prices. Our results show

that this can be optimal for the supply chain as a whole, but not to how the downstream

firm balances paying higher prices to its suppliers with charging higher prices to consumers.

261



262



Chapter 8

Conclusions

In this thesis we set out to answer the question, "How do we measure the carbon efficiency

of a supply chain?" We further broke this question down into three subquestions related to

defining supply chain carbon efficiency, the methods used to measure it, and how it works

in the context of a supply chain. In this chapter we identify the contributions made in this

thesis by answering those questions and identify areas of future work.

8.1 Contributions

This thesis makes three primary contributions to the field. First, we created a definition

of supply chain carbon efficiency and proposed an attributional approach to Life Cycle

Assessment as the appropriate method for measuring it. Second, we presented a carbon

label framework as a method for overcoming issues related to performing an LCA of an

entire supply chain, and we showed how information sharing can be used in the supply chain

to provide more accurate carbon footprint measurements. Third, we developed a model of

product carbon labels to show why firms would be willing to voluntarily measure and share

the carbon footprint of their products. These contributions are covered in more detail in the

following sections.
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8.1.1 Definition of Supply Chain Carbon Efficiency

In Chapter 2 we defined supply chain carbon efficiency as "the ratio of the supply chain

output, measured by the total quantity of product produced, to the total greenhouse gas

emissions attributable to the product produced by the entire supply chain, from the source

of raw materials through product end-of-life". This definition builds upon the existing body

of work in supply chain performance measurement and eco-efficiency to present a definition

of a specific metric that encapsulates the relevant aspects of environmental performance and

supply chain management.

The first key aspect of this definition is its application to the idea of the extended supply

chain. The extended supply chain concept is common in the green supply chain management

literature but neglected in traditional supply chain definitions that end at the consumer.

Given the importance of product use and end-of-life issues in Life Cycle Assessment and the

focus on closed and semi-closed loop supply chains in green supply chain management, the

extended definition of the supply chain is necessary to fully capture the performance of the

supply chain as a whole.

The second key aspect of our definition is defining efficiency in terms of the ratio between

total output and greenhouse gas emissions. This draws from aspects of both supply chain

performance measurement and the sustainability literature on eco-efficiency. Efficiency, along

with effectiveness, is one of two aspects of performance measurement. It has been routinely

identified as a key metric in the supply chain literature, though different definitions have been

used. In viewing the supply chain as a transformative process that takes raw materials and

turns them in to useful products, we draw upon the definition of transformational efficiency

to define supply chain efficiency and combine this with the definition of eco-efficiency to

develop our definition of supply chain carbon efficiency. Our definition is compatible across

different organizations, as defined by the GRI's generally applicable indicators as well as

the concept of environmental common denominators. This makes it suitable for use in the

supply chain, where data must be collected across different processes and organizations in a

way that can be combined to measure the performance as a whole.

Finally, our definition is also compatible with the concept of a product's life cycle used
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in LCA, and thus we identify LCA as the appropriate method for measuring supply chain

carbon efficiency. LCA is the accepted method for measuring the carbon footprint of a

product, defined as the total greenhouse gas emissions per unit of product. This measure is

in fact the inverse of the carbon efficiency of the supply chain, and so the process of measuring

the carbon footprint of a product serves as a way of measuring the carbon efficiency of the

supply chain.

8.1.2 Carbon Label Framework

In Chapter 4 we demonstrated an example of using LCA to measure the carbon footprint of a

product through a case study of the banana supply chain. In partnership with Chiquita and

Shaw's we were able to collect primary data for a significant portion of the supply chain and

develop an LCA model to estimate the carbon footprint of bananas sold in North America

and Europe. Based on the results of this study and a review of sources of uncertainty in the

LCA literature, we identified the lack of access to relevant data and variability in the supply

chain as significant obstacles to the use of LCA to measure the carbon footprint of supply

chains.

To overcome these obstacles we proposed a system of information sharing between supply

chain partners to provide access to relevant data that is currently unavailable or too costly

for firms to acquire. This builds on the history of information sharing in supply chains

traditionally applied to demand and inventory problems. However, due to the credence na-

ture of many environmental attributes, including the carbon footprint, we identify a possible

violation of the incentive compatibility principle of good supply chain information sharing

systems. With no method of verifying carbon footprint claims, firms may be reluctant to

make decisions based on possibly untrustworthy claims. Through the framework of a carbon

label we show how a third party can increase the trust in these claims by providing services

such as standards setting and certification. Using this framework we define a carbon label

in terms of the three dimensions of traceability: breadth, depth, and precision.

Though this framework is useful for solving issues of data availability in the Life Cycle

Assessment process, it magnifies issues related to supply chain variability. If carbon footprint

information supplied to customers is to be used in the procurement process, then accurately
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measuring the carbon footprint at an appropriate level of precision to support the decision

becomes necessary. Through an analysis of the mode and carrier choice decision in trans-

portation we show how the use of average performance measures can distort carbon footprint

information and lead to poor decisions. Drawing on the concepts of management accounting

we propose a system based on Activity Based Costing to enable firms to more accurately

calculate the carbon footprint of individual customers and products. We demonstrate this

in the mode selection decision through the use of the carbon market area concept in in-

termodal transportation and with an application to truckload procurement auctions in the

carrier selection step. These improved metrics make use of information readily available to

the carrier, but not to the shipper, to demonstrate how information sharing between supply

chain partners can improve the carbon efficiency of the supply chain.

8.1.3 Vertical Differentiation Model of Product Carbon Labels

In Chapter 7 we presented a vertical differentiation model of product carbon labels. Our

model builds on existing work in the area of eco-labels in a number of ways. First, our

model considers a label that is both voluntary and continuous. Despite significant attention

to Type I certification-style eco-labels, there has been relatively little research on Type III

labels that communicate an exact level of quality. Our work also introduces two additional

parameters, the cost of the label and the consumer perception of unlabeled products, that

have significant impact on the final labeling decision. Our results show that reducing the

cost of the label encourages more firms to label and creates an increase in social welfare. We

also show that in most cases working to increase the effectiveness of labels by reducing public

perception of the quality of unlabeled products also leads to an increase in social welfare, as

the labeling firm produces at a higher quality level when it reaps the most benefit from its

investment in quality.

In addition to this basic model of product carbon labels we consider two extensions.

Owing to reports of consumer confusion by exact carbon footprint labels we model a product

carbon label as a Type I certification-style label. Our results indicate that this type of label

achieves a higher level of social welfare, as the labeling authority is able to set the minimum

quality standard in a way that benefits society as a whole. This increase in social welfare
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comes at the expense of the labeling firm, which usually achieves lower profits than under

a Type III label. In the second model extension we address the role of upstream firms in

the supply chain in reducing product carbon footprints. We show that when certification

costs are low the inclusion of the upstream firms leads to more labeling, higher profits for

the supply chain, and an increase in social welfare. When certification costs are high the

results depend on the relative cost of reducing emissions. If the upstream firm can reduce

emissions at a lower cost than the downstream firm, the benefits to the supply chain hold.

8.1.4 Discussion

In summarizing these contributions we emphasize the need for collaboration in the supply

chain to effectively measure and reduce carbon footprints, and highlight the role of third

parties in effectively enabling this collaboration. The decentralized nature of supply chains

means that individual firms often lack the resources or information to effectively measure the

carbon footprint over the whole supply chain. In traditional supply chain management the

profit motive can induce sharing and collaboration without the need for outside intervention.

However, the credence nature of carbon emissions makes such an arrangement unlikely to

occur in this case, as unverified environmental claims tend to be viewed as untrustworthy.

We believe third parties have an important role to play by providing services such as standard

setting and certification that establish the common language and trust necessary to effectively

share carbon footprint information in the supply chain.

8.2 Limitations and Future Work

For each of the major contributions to this thesis we have identified limitations and areas

for future work. First, our focus on carbon efficiency is limited in scope compared to the full

range of supply chain and sustainability performance measurement. Second, our carbon label

framework may not be appropriate for extension to all other environmental impacts. Third,

our carbon label model focuses on the optimal actions of the supply chain as a whole, but

does not address the dynamics between the upstream and downstream firm in the supply
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chain. In the following sections we discuss these limitations and identify areas for future

work.

8.2.1 Moving Beyond Carbon Efficiency

In Chapter 2 we reviewed the literature on supply chain performance measurement and

noted the existence of many different kinds of metrics, of which carbon efficiency is only

one. We note that a focus on carbon efficiency presents only a limited picture regarding the

performance of the supply chain as a whole. Efficiency represents one goal, but a performance

measurement system must consider effectiveness as well. To fully capture the performance

of the supply chain with respect to greenhouse gas emissions, some measure of effectiveness,

such as total emissions, should be included to balance the relative performance measured

by efficiency. The literature on eco-efficiency has pointed out the limitations of efficiency as

a single metric in sustainability, and this discussion should be considered in implementing

sustainability metrics for the supply chain.

Carbon efficiency represents a limited metric not just due to the focus on efficiency, but

also due to the focus on only environmental and economic factors. The field of supply chain

management has developed a number of other categories of metrics and measures, including

time, flexibility, and cost. Integrating metrics of all different types into a single performance

measurement system remains a challenge, and carbon efficiency only illustrates one par-

ticular dimension of performance. In addition to other types of measures of supply chain

performance, our definition of carbon efficiency is limited from a sustainability perspective

as well. Eco-efficiency measures only capture two of the three dimensions of sustainability.

This neglects the social dimensions of sustainability, such as ethical treatment of employees

and benefits to communities surrounding the company's operations.

We identify at least three areas where future work can build on our contribution of carbon

efficiency as a supply chain metric to construct an overall performance measurement system:

1. By developing a metric that captures carbon effectiveness, the other relevant dimen-

sions to greenhouse gas emissions performance in the supply chain.

2. By developing a framework for integrating carbon efficiency with other types of per-
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formance metrics to capture the overall performance of a supply chain.

3. By developing complete sustainability metrics that include the social dimension of

sustainability neglected by eco-efficiency metrics.

8.2.2 Application to Other Environmental Impacts

Our focus on carbon efficiency was driven primarily by the recognition of climate change

as one of the most pressing environmental issues we are currently facing. However, it is

not the only environmental issue, and in particular cases it may not be the most important.

Much of the work in our proposed framework for sharing information in the supply chain and

modeling the role of carbon labels in driving emissions reductions assumes an additive nature

of the the carbon footprint. That is, at each stage in the supply chain, the carbon emissions

from upstream can be added to the emissions at the current stage to incrementally measure

the total supply chain carbon footprint. This additive nature was explicitly captured in our

extended version of the two-stage product carbon label. This feature holds for greenhouse gas

emissions where the environmental damage is usually considered independent of where the

emissions occur, but may not hold for other environmental impacts. Consider the case of air

pollution, another common environmental issue associated with transportation. The damage

from pollution can be significantly different if the emissions occur in a densely populated area,

and thus similar amounts of total pollution could produce significantly different amounts of

damage. This scenario implies that the additive nature of the carbon footprint would not

necessarily hold for a measure of air pollution.

With this in mind we propose that a second area of future work is identifying other

important areas of environmental impact where a similar relationship to greenhouse gas

emissions exists. These areas of environmental impact would be possible candidates for

developing metrics that operate in a similar way to our proposed carbon efficiency metric.

For environmental impacts that do not behave in this manner it will be necessary to identify

the characteristics that differ in order to modify the current framework or even introduce an

entirely new framework. Though a number of eco-labels exist in practice for a wide variety

of environmental impacts, the labeling framework may not be applicable to the supply chain
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for all of them.

8.2.3 Extensions to the Carbon Label Model

In Chapter 7 we introduced a vertical differentiation model of product carbon labels and

considered two extensions to the basic model. Though there are any number of different

choices that could be made regarding the structure of the model, we want to highlight a

particular issue of relevance to supply chain management. In extending the model to a

two-tier supply chain we showed the effects of the upstream firm on the resulting product

quality, firm profits, and social welfare. However, we did not cover in detail the many

different relationships between the upstream and downstream firms in the supply chain and

the resulting effects of changes in those structure. In particular we did not consider scenarios

where the firms are decentralized and make their decisions based on maximizing their own

profits rather than the supply chain as a whole. There is a rich history of studying the

contractual arrangements between firms in supply chain management in an effort to identify

how those arrangements affect individual and supply chain performance. We identify three

areas where the relationships between the firms could be handled in an extended version of

our supply chain model.

First, there is the issue of which firm acts first. In our model both firms are assumed

to begin with a zero quality product and must invest in technology to improve quality. In

the vertically integrated scenario the firms' choices of quality are solved simultaneously to

find the supply chain optimal quality levels. In practice, however, one of the firms must

act first. Either the upstream firm invests in a level of quality and offers a contract to

the downstream firm at a given price and specified level of quality, or the downstream firm

proposes a contract to the upstream firm specifying the price and level of quality. In either

case the firm acting first seeks to choose the price and quality that maximize its own profits

subject to the constraint that the other firm is willing to accept the contract.

Second, there is the issue of the level of information each firm has about the other. If the

firm offering the contract does not know the cost function of the other firm this represents

an area of asymmetric information. The firm offering the contract may be at a disadvantage

due to this lack of information. This may have special relevance for the situation where the

270



upstream firm offers the contract, as the downstream firm also has the ability to set the final

price in the market place. The decision on how to handle public and private information

could therefore have a significant impact on the final contract structure and outcome.

Finally, the structure of the contract itself can have an impact on the firm profits and the

ability of the supply chain to achieve optimal price and quality levels. Even in simple models

such as the newsvendor problem there is a rich base of literature regarding the structure of

the contract between the upstream and downstream firms. By choosing different contracts

the firms may induce the channel coordinating behavior and alter the distribution of profits

between the firms. Given that our simple two-stage model shows the optimal supply chain

choices and profits, finding a contract that can induce that channel coordinating behavior is

a natural extension.
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