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Abstract

Many government agencies have adopted the Technology Readiness Level (TRL) scale to help improve
technology development management under ever increasing cost, schedule, and complexity constraints.
Many TRL-based cost and schedule models have been developed to monitor technology maturation,
mitigate program risk, characterize TRL transition times, or model schedule and cost risk for individual
technologies as well technology systems and portfolios. In this thesis, we develop a 4-level classification
of TRL models based on the often-implicit assumptions they make. For each level, we clarify the
assumption, we list all supporting theoretical and empirical evidence, and then we use the same
assumption to propose alternative or improved models whenever possible. Our results include a
justification of the GAO's recommendations on TRL, two new methodologies for robust estimation of
transition variable medians and for forecasting TRL transition variables using historical data, and a set of
recommendations for TRL-based regression models.
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Chapter 1

Chapter 1. Introduction and Research Motivation

More than ever, innovation and technology are key elements to the competitive edge in today's world.

In order to sustain growth, companies - as well as state agencies - are forced to develop new

technologies faster, cheaper, with less tolerance for risk.

However, technology development is highly unpredictable: not only is a project manager faced with

"known unknowns" i.e. uncertainties that can be roughly estimated and controlled, he also has to deal

with "unknown unknowns" which are completely unforeseeable uncertainties due to the very nature of

developing a new technology (no historical data, analogous data, or reliable expert opinions). Industry

has adopted many technology management frameworks to address this challenge, such as technology

roadmapping, technology benchmarking, technology watches, and technology risk management (Foden

and Berends, 2010). The aim is to control key factors such as cost, schedule, technology maturity, and

manufacturability.

For US governmental agencies (DoD, DoE, NASA, Army), the challenges are bigger and the stakes are

higher. For instance, the Department of Defense (DoD) Acquisition Program (1) develops a very large
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portfolio of technologies, (2) develops a lot of high complexity system technologies (3) manages a

budget of a several hundred billion dollars (GAO, 2009) in a monopsonistic contracting environment

with little market competition, (4) suffers from frequent design changes due to modifications in

requirements, (5) and is under constant pressure to accelerate the development of technologies

required for pressing national security issues.

DoD has poorly addressed its challenges for many technologies. The above constraints often result in

cost overruns. DoD has endured a cost growth of $296 billion on its 96 major acquisition programs in

fiscal year (FY) 2008 (GAO, 2009). More than 2 out of 3 programs suffered a cost growth. In another

performance audit of 72 DoD programs, the Government Accounting Office (GAO) reported more than

25% cost growth for 44% of the programs in FY07 with an average schedule delay of 21 months (GAO,

2008). Other GAO reports (GAO, 1999, 2006, 2008) also noted failure to meet capability and

performance requirements. DoD also faces problems with increasing systems complexity and

integration. The F-35 is such an example: not only did it face serious cost problems (Pentagon officials

disclosed a cost overrun of more than 50 percent (Shalal-Esa, 2011)), a Pentagon study identified 13

areas of concern (some of which are critical) due to system complexity and concurrency (DoD, 2011).

As awareness of the problem increased and as defense budget continued to be cut, the defense

acquisition community was under greater political pressure to improve the management of new

technologies. In May 2009, President Obama signed the Weapon Systems Acquisition Reform Act

(WSARA) to end "waste and inefficiency". Some of the Act's key provisions included (WSAR Act, 2009):

* Appointment of a Director of Cost Assessment and Program Evaluation (CAPE), who will

communicate directly with the Secretary of Defense and Deputy Secretary of Defense, and issue
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policies and establish guidance on cost estimating and developing confidence levels for such

cost estimates; (section 101)

e Requirement that the Director of Defense Research and Engineering periodically assess the

technological maturity of Major Defense Acquisition Programs (MDAPs) and annually report

his/her findings to Congress; (section 104)

* Requirement that DoD revise guidelines and tighten regulations pertaining to conflicts of

interest of contractors working on MDAPs. (section 207)

The Government Accountability Office also weighed in on the issue. In a now famous report, GAO

concluded that "Maturing new technology before it is included on a product is perhaps the most

important determinant of the success of the eventual product-or weapon system", GAO went further

by encouraging the use of "a disciplined and knowledge-based approach of assessing technology

maturity, such as TRLs, DoD-wide" (GAO,1999). Technology Readiness Levels (TRLs) are a 1-to-9 scale

developed by NASA (and used only by NASA at the time) that describes the maturity of a technology

with respect to a particular use.

GAO mainly suggested the use of TRLs to make sure that technologies are mature enough before

integrating them in the acquisition cycle (GAO, 1999). DoD later required the use of TRLs as criteria to

pass Milestones B and C in the Acquisition cycle (DoD TRA Deskbook, 2009).

Although those practices advocated by WSARA and the GAO reports already have a positive effect on

managing technology maturation and on controlling cost growth and schedule delays, they make

minimal use of TRL measurements for cost and schedule modeling. TRLs are practically only used by

Science and Technology Organizations (STOs) to have an idea about the technology's riskiness by looking
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at its maturity (Graettinger et al, 2003), or they are used by the DoD acquisition in Technology Readiness

Assessments (TRAs) to make sure the technology has matured enough to pass certain milestone (DoD

TRA Deskbook, 2009). Furthermore, Azizian et al. (2009), Cornford and Sarsfield (2004), Nolte (2008),

and Fernandez (2010) point out that TRL is not well integrated into cost, schedule, and risk modeling

tools. The general aim of this research is to explore the total potential benefit of integrating TRLs, cost,

and schedule into a single technology management framework. In the spirit of the GAO and WSARA

recommendations of keeping tighter control of technology maturity and of improving cost/schedule

estimation and management, this thesis takes a more fundamental theoretical approach to study all

TRL-based cost and schedule models.

Many models have already been proposed to use TRLs for cost and schedule modeling for individual

technologies (e.g., GAO, 1999; Smoker and Smith, 2007; Dubos and Saleh, 2008; and Conrow, 2011) as

well as technology systems and portfolios (e,g., Dubos and Saleh, 2010; Lee and Thomas, 2003; and

Sauser at al., 2008). However, those models are based on different assumptions (which can lead to

different results). Some models are based on a theoretical foundation, while other ones make implicit

assumptions and don't justify the approach as long as it generates robust or useful results.

This research builds on an earlier paper by El-khoury and Kenley (2012), and goes into detail in

constructing a unifying framework for all TRL models based on the assumptions that they make. The

framework (seen below in figure 1.1) divides all TRL cost/schedule models into 4 categories based on

how strong the assumptions about TRL they make. For each level in the framework, we will (1) state the

assumption, (2) list the available literature relevant to that level of assumption, (3) look at theoretical

evidence supporting this assumption, (4) look at empirical evidence supporting this assumption, and
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finally we will (5) propose new methodologies that make better use of the assumptions whenever

possible.

Such a framework has many benefits: first it puts all TRL-based models in one clear theory. Second, it

makes explicit the assumption used by a model, which helps to tell what model has stronger theoretical

or empirical foundations. Third, once we know the assumptions being made, we can propose

modifications to improve the model, or alternative models that make full use of the assumptions.

Finally, the model goes beyond the statement and the clarification of the assumptions, to backing those

assumptions by theory, and more importantly by empirical data whenever possible. Similarly, we will

propose new methodologies at Levels 2,3, and 4 of the model, and the improvement brought by those

methodologies will be quantitatively tested.

Figure 1:1 The four-level framework for TRL-based cost and schedule models

In addition to the above benefits of the framework, the models developed at different levels will allow

us to answer practical research questions at each level of the framework.
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* With a level-1 model, we will answer the research question:

o Does available evidence support or contradict GAO's recommendation on pre-production

maturation?

* At level 2, we will answer the questions:

o Does it make statistical sense to look at the distribution of each TRL transition time

separately?

o If yes, is there a way to improve the accuracy and fidelity of the estimates and

confidence intervals?

* At level 3, we will develop a model that answers:

o If we use historical data of a technology's development, can we significantly improve the

accuracy of the technology schedule forecast over level-2 models?

" And at level 4, we will answer:

o Out of the available methodologies, what is the best one to use in performing regression

of cost/schedule against TRL?

Answering those questions would have direct practical implications for project managers. In general,

improving cost and schedule modeling can lead to (1) reduction in cost and schedule uncertainty, which

itself can lead to (2) reduction of overall project cost and duration or (3) reduction of cost and schedule

overruns. Other benefits include (4) a better view of integrated cost, schedule, and maturity instead of a

non-integrated view of cost and schedule separately, and (5) increased control over the project by

having a high number of intermediate reference points, which would allow a better cost/schedule

arbitrage within a single project, or across different projects.

In opposition to this approach, Cornford and Sarsfield (2004) claim that TRL cannot be integrated in

cost/risk models because of the high uncertainty in the TRL scale that could propagate into major errors
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in the cost estimations. Although the TRL scale has many inherent weaknesses (discussed in more detail

in section 3.3.3.2), this definitely should not prevent us from putting our full effort into looking for any

potential significant benefit of this approach, however minor it may be. After all, even a small

percentage of cost reduction will be multiplied by DoD's annual $300 billion in cost overruns. This is

especially true when "Every dollar spent on inefficiencies in acquiring one weapon system is less money

available for other opportunities" (GAO, 2006).

In Chapter 2, we scope the models by locating them within the risk management context, and then we

justify our choice of the adopted class of models. In chapter 3, we explore the relation between

technology maturity and TRL: we start by defining the multidimensional concept of technology maturity

and relate it to the maturity measures found in the literature. Then we focus on the TRL scale itself by

defining it, explaining how it is used in the acquisition lifecycle, and by looking at its most relevant

characteristics. In chapter 4, we introduce the two datasets used in the thesis and we evaluate their

quality. In chapter 5, we introduce the TRL models assumption-based framework and explain the logic

behind it. In chapters 6 to 9, we present each of the 4 levels by stating the assumptions and listing the

corresponding literature, then by looking for theoretical and empirical evidence supporting the

assumption, and then by proposing new methodologies (especially in chapters 7 and 8). Finally in

chapter 10, we conclude by summarizing our major results and by proposing directions for future

research.
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Chapter 2

Chapter 2. Research Scope

2.1 Placing this research in the larger context of risk management

While some project variables are beyond the control of the project managers such as budget cuts,

others are within their reach (for example, Browning and Eppinger (2002) model how the choice of

product development processes impacts project cost and schedule). Therefore, having better

information means that the project managers can make better decisions to address risks in technology

development. For instance, the manager can decide to drop a very high risk project in order to allocate

more resources to the highest identified risk in a Major Defense Acquisition Program (MDAP), he can

also engage in a risk reduction procedure, like rapid prototyping, or he can compare different system

requirements, configurations, or acquisition strategies and select a baseline set of requirements, system

configuration, and acquisition strategy that has an appropriate level of risk. More generally, proper risk

management requires the best risk analysis tools. A wrong identification/analysis of risk means that risk

management resources are not optimally allocated (Conrow, 2003).
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We have already mentioned that the aim of this thesis is to propose a classification and improvement of

TRL models. By doing so, we are improving the risk analysis part of the risk management process. The

following diagram locates this research within the risk management context.

steps citicasl Information

SW+ 1: Risk events and impacts

I Ste Drivers, probabiitlie,
Anal and total loss

Step 3" -+t@, Subset of risks to be managed

Ste 4kP -- + Types of action plans avoidance.
transfer, redundancy and mitigation
(prevention, contingency reserves)

Step 5: Assess status and closure of targeted
risks, identify new risks

Figure 2:1 Simplified 5-step process of risk management (Smith and Merrit, 2002)

The below diagram summarizes how this research contributes to better technology management.

Classifying and better
understanding TRL cost and

schedule models- --- -------- -

More informed risk

better allocation of sceueorun

00,ii11 resources

Figure 2:2 Contribution of the research to better technology management

2.2 The choice of TRL-based cost and schedule models

It should be noted that acquisition programs entail many types of risks (for example design/engineering,

manufacturing, support, technology, and threat, as defined in DoD5000.1 (2007)) and that there are
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multiple ways and approaches to model those risks. In our case however, we only look at cost and

schedule risk types and we model them by using only TRL as an input (figure 2.3). Combined cost-

schedule modeling (grey area in figure 2.3) is recommended for future research when data becomes

available.

Figure 2:3 Types of models considered in the thesis

2.2.1 Reasons for choosing only Cost and Schedule risk types

Many risk types can be considered in risk management. However, we limit those to only cost and

schedule for the following reasons:

- Cost and Schedule are traditionally the most important factors and have the highest weight

both practically and politically (this is why they are directly addressed in the GAO reports and in

WSARA).

-Those two are the most studied variables in the literature. We found that models in the

literature either deal with schedule-related variables such as total development time (Dubos

and Saleh, 2010), time to market (Kenley and Creque, 1999), schedule slippage (Dubos and
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Saleh, 2008), risk of schedule slippage (Dubos and Saleh, 2008), or with cost-related variables

such as total cost (Smoker and Smith, 2007), absolute cost growth (Lee & Thomas, 2003), and

relative cost growth (Lee and Thomas, 2003).

-The program management literature traditionally reduces the major program variables to a

Cost-Schedule-Performance (CSP) "trade space" (Defense Acquisition Guidebook, 2010),

meaning that the project manager has a space of feasible (C,S,P) triplet solutions, and he

manages the program by trading between those 3 variables to achieve the best possible (C,S,P)

combination. However, microeconomic theory stipulates that P will get fixed to a high value

early on, and that (C,S) will be the only variables to be traded throughout the project. The

contracting environment will lead to an initial high P value that will be met, and as a

consequence, C and S will tend to surpass the original estimates. In fact the Government is

interested in a low C, low S, and high P, while the contractor is interested in a high C, high S, and

high P. Since both parties only agree on a high Performance, and since there is little initial

knowledge about the technical potential of the technology, P will get set to an unrealistically

high value (Conrow, 2003). Now that the contractor is having cost and schedule overruns

because of the high P, he has little incentive to go cheap or fast because the government usually

assumes those risks. Conrow (1997) empirically confirmed this conclusion. Using data from 3

different studies (Perry 1971, Dews 1979, and Conrow 1995), he found that major military

development programs met their Performance targets on average, while Cost and Schedule

were often adjusted upwards to meet performance. Based on Conrow's conclusions, we can

eliminate the Performance variable and limit our study to Cost and Schedule.
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-Finally note that we decided to dismiss the bivariate Cost-Schedule models (i.e. models in the

grey area in figure 2.3) that model Cost and Schedule together at the same time. Those

represent a completely different class of models with a different set of assumptions. The

tendency in those models would be to extend classical one-variable models to some bivariate

normal (or lognormal) distribution of Cost and Schedule. However, Garvey (2000) warns that

those distributions are not appropriate in representing Cost and Schedule. Such a simple

distribution would reduce the interaction between cost and schedule to a simple linear

coefficient of correlation that only says "high costs correspond to delayed schedules", or the

opposite. It fails to capture the causation in cost-schedule decision making. It creates confusion

between two types of cost/schedule correlation: (1) a post-decision-making positive correlation

across projects (e.g. MDAPs and systems projects always consume more time and money than

smaller projects), and (2) a pre-decision-making negative correlation within a project (i.e. the

arbitrage done by the project manager between cost and schedule). On a more empirical level,

Conrow (2003) notes that there are no bivariate distributions in the literature due to the lack of

data. His own study shows that the bivariate lognormal distribution is a bad fit for Cost-

Schedule, and that Cost-Schedule correlations are low (which is expected, since although they

are related, the relation is NOT linear). For all the above reasons, we dropped joint cost-

schedule models from our framework. The reader can refer to El-Khoury and Kenley (2012) on a

method for bivariate cost-schedule modeling that takes the decision-making process into

consideration.

2.2.2 Reasons for choosing TRL-based models only

In addition to the reasons that led to the choice of cost and schedule models, many practical reasons led

to the choice of TRL-based models over other maturation measures:
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-The TRL measurements are often already available. For all major DoD acquisition projects, the

assessments have to be performed for the milestones (The undersecretary of defense, 2011), so

there is no extra cost to perform the measurement. Furthermore, some projects (especially

Major Defense Acquisition Programs) get more frequent Technology Readiness Assessments,

which means more available TRL measurements.

-TRL scales have a widespread use across many agencies (e.g. DoD, DoE, NASA, FAA, and the

Army) and countries (US, UK, Canada, EU), and the procedures of determining the scores are

already established.

-There are available tools to determine TRL scores (Technology Readiness Calculator, Nolte,

2005) that further streamline and encourage its use. Hence the cost of integrating it into

technology cost and schedule models will be minimal, while the benefit for the program

manager is potentially high.

-Finally, and as a consequence of the above, TRL is the only maturity variable that has available

data. As we mentioned earlier, it is important to note that this thesis is not only limited to the

theoretical framework, it also uses a data-based approach to empirically validate the proposed

models at each level in our framework. In fact, the literature points out a lot of weaknesses of

using TRL in technology management (refer to section 3.3.3.2), and proposes many more

developed alternative frameworks such as AD2, RD3, SRL, ITI (all discussed in detail in section

3.2.4), or combinations of those (Mankins, 1998; Nolte, 2008; Bilbro, 2008; and Sauser et al,

2008). However, there is no way of quantitatively evaluating those alternative approaches due

to absence of data, as they are still not used by any of the major agencies. As a result, we look at
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models that use TRL as the only input. Future research can look into augmenting our models

with those other measures once data becomes available.
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Chapter 3

Chapter 3. Technology Maturity and the TRL scale

Before going into TRL-based technology forecasting models, it is important to understand technology

maturity along with the different measures (especially TRL) of technology maturity.

The main purpose of this chapter is to define the "maturity" scope of this thesis by putting the TRL scale

in the right context. This section can be also considered a literature review on the TRL scale and the

measurements of technology maturity.

In subsection 3.1, we define the multidimensional concept of technology maturity, and then we locate

the technology development phase (phase captured by the TRL scale) within the larger technology

lifecycle.

In subsection 3.2, we introduce the concept of technology maturity measurement. We classify all the

maturity measurements found in the literature (based on their relation with the NASA TRL), and see

how those measures fit in the context of multidimensional maturity measurement.
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Finally in subsection 3.3, we focus on the TRL scale. First, we propose a (more intuitive) definition of the

TRL scale. Then, we describe how TRL is officially used in DoD's acquisition cycle, and we finish by

looking at the TRL scale's properties and characteristics that will be relevant for the models developed in

subsequent chapters.

3.1 Technology maturity

The purpose of this section is to locate TRL within the larger context of technology maturation. First, we

look at the technology lifecycle that defines the technology evolution process and delimit the section

captured by the TRL scale. Then we go deeper into the definition of technology maturity, its

measurement, and its determining factors.

3.1.1 TRL's location in the technology lifecycle

In his book, Nolte (2008) presents a technology's "whale chart" biological lifecycle from initial idea to

obsolescence.

Conception is when the initial thought or supposition appears. It is the sometimes long process of

incubating the idea while unsure if it might work or not.

Birth is when the inventor realizes that the idea might work. It is when all the earlier concepts are

developed enough so that an early application can be determined.

Childhood consists mainly of the extensive laboratory research whose main goal is to prove that the

technology can actually work (even if it is only in a controlled environment in a laboratory)
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Adolescence is when the developer is ready to release the first version of the technology product. This

marks the transition from an environment focused on the science and technology behind the product, to

an environment focused on the engineering challenges to make the product.

Adulthood is when the product has been successfully debugged and marketed, and that product

adoption reaches its peak.

Maturity is when the market for the new product is already saturated. Suppliers can now only offer

incremental innovations and product differentiations to keep market shares.

Old age is when the technology is old enough that it has no new adopters. A few suppliers keep serving

the diminishing demand, while looking for new opportunities.

Senility is when the technology is old enough that there is no more room for incremental innovation and

that it is starting to lose its utility. The market is reduced to a niche one as most suppliers have now

turned to other more promising technologies

Death is when the technology dies because it has reached full obsolescence. Suppliers, materials, and

know-how start to disappear. The technology can no longer compete with newer substitutes, so it either

disappears entirely or survives in a museum.

When we map the utility of the technology as it goes through all the above stages, we get Nolte's

Whale-shaped chart (figure 3.1) illustrating the slow increase of a technology's utility as it is developed,

and the steep decrease of its utility when it becomes obsolete.
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To put this cycle into perspective, Nolte superimposes his chart with Moore's technology adoption cycle.

Goeffry Moore (1991) describes how a technology is adopted from a market perspective. Moore

distinguishes 4 groups of technology adopters:

First, the Innovators are the technology enthusiasts who buy the technology just because it is new.

Second, Early Adopters are the ones who recognize the potential of the technology, and they help debug

the technology and make it more user-friendly.

Then, Pragmatists form the bulk of the technology adopters. They encompass those who use the

technology because they've seen it already work, and those who are forced to use it in order to keep up

with the competition.

Finally, traditionalists or laggards do not like high technology products, and will only adopt the

technology at a late stage when no alternatives are left and when newer substitutes are starting to

become available.

Moore (1991) stresses the importance of targeting each of those different segments in technology

marketing, especially when "crossing the chasm" between the early adopters and the pragmatists.

Of course, this cycle is from a customer's adoption perspective, and a customer cannot adopt a

technology unless it was developed enough to get to a usable level. This means that Moore's adoption

cycle comes after the technology development phase, which we place in superposition to the

technology lifecycle whale chart in figure 3.1.
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Figure 3:1 Nolte's technology life cycle superimposed with Moore's adoption cycle and the technology
development phase

Now that we have located the technology development phase within the technology lifecycle, we will

next define technology maturity and establish a framework for measuring it.

3.1.2 The multidimensional concept of maturity

In theory, technology maturity could be defined as "the quantity of information we know about the

technology and how good/efficient we are at applying it". In practice however, product managers need

a more operational definition of technology maturity. For them, a technology's maturity is measured on

different practical dimensions such as "How long until I can market a functioning product? How much

investment do I still need? What is the risk of not having the technology work as intended?" Viewed

from this perspective, we can see that there is no straight answer to the question "how mature is a

developing technology?" since maturity is defined on many levels. Furthermore, if we pick one of those

definitions, measuring maturity operationally means estimating uncertain future outcomes, and those

outcomes are causally related to numerous aspects of the technology development environment, and of
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the technology itself. For example, if we want to look at "time remaining until the technology is fully

operational" (or "Time-To-Maturity") as a measure of the maturity of the technology, then there are

several factors that affect the technology's maturity: What is the type of the technology (software,

hardware, satellite, military, space)? Is it a simple component or a complex system? Do we have a

working prototype? Do we know how to manufacture the final product? Do we have stable funding? Do

we have the resources to develop it?

We can classify and organize those contributing factors from an enterprise perspective by using the

Enterprise Architecture (EA) framework developed by Nightingale and Rhodes (2004). This holistic

approach looks at enterprises as systems interacting with stakeholders. The enterprise in this case is a

military contractor developing the new technology, and a technology itself is considered the product.

We will use the EA 8 views (Nightingale, 2009) to help us get an extensive and holistic view of the

system in charge of developing the technology, without having to decompose the problem. In the below

table, we classified the factors that affect time to maturity based on the EA 8 views: Strategy,

Policy/External, Organization, Process, Knowledge, Information, Physical Infrastructure, and Product.
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Product 1-Inherent technology properties
a- New thing vs. adaptation (or new use)

(i.e. the b- Type of technology (software vs. hardware vs. process)
tech nology c- Domain of technology (Space vs. weapons)
being d- Scale of technology (component vs. system)
developed) e-Possibility of being integrated into existing systems

f- Distance from a theoretical limit
g- Cost

2-Maturation stage
a- How much has been done? The more we progress, the less "unknown

unknowns" we have.
b- How much is still to be done? How difficult? What risks?

3-Manufacturing and ProducIWilty

Table 3.1 Factors affecting Time-To-Maturity, grouped using the 8 views of Enterprise Architecting

While all those factors ultimately determine how long a technology will take to mature, a lot of them are

beyond the control of the contractor. This is why we distinguished the controllable variables from the

uncontrollable ones by coloring them in red. Although the black and red variables all affect how long a

technology needs to mature, the contractor's risk management and decision making can only affect

"Time-To-Maturity" via the red variables.
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In summary, we saw that measures of maturity correspond to early stages in the technology lifecycle,

during Nolte's phases of conception, birth, childhood, and adolescence, and before the start of the

product adoption cycle. Furthermore, we saw that maturity is defined on multiple dimensions, and that

it is causally affected by a multitude of factors.

3.2 Measures of technology maturity

Since technology maturity (in the broad sense defined above) is a complex notion that depends on many

factors, it cannot be reduced to one dimension, and hence cannot be fully captured by only one

measure. This explains why several measures were created to try to capture different aspects of the

maturation progress. Although TRL is the most commonly used of those maturity scales, the aim of this

section is to briefly present the TRL scale, and then compare it to the other scales so that it can be put in

the context of the different measurements of technology maturity.

3.2.1 The NASA TRL scale

TRLs capture the maturity of the technology by looking at major milestones in the technology

development process. At low TRLs, those milestones are concept development and basic laboratory

tests. At high TRLs, they correspond to prototype validation and field testing. The TRL scale is a

systematic high-level measure of maturity that keeps track of important stages in the development of a

technology. Below is the formal definition of the scale as used by NASA (Mankins, 1995):
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1 Basic principles observed and reported
2 Technology concept and/or application formulated
3 Analytical and experimental critical function and/or characteristic proof of concept

4 Component and/or breadboard validation in laboratory environment

5 Component and/or breadboard validation in relevant environment
6 System/subsystem model or prototype demonstration in a relevant environment (ground or space)

7 System prototype demonstration in a space environment
8 Actual system completed and "flight qualified" through test and demonstration (ground or space)

9 Actual system "flight proven" through successful mission operations
Table 3.2 NASA TRL scale definitions

We can see that the TRL scale is intended to be consistent across technologies (Mankins, 1995), and that

it tries to encompass the major steps common to all technology development. As a result, it loses

specificity and fails to capture all the technology-specific factors mentioned in table 3.1. This is why a

plethora of alternative TRL scales and complementary maturity measures have emerged. Depending on

how they are a substitute for or a complement to the NASA TRL scale, those other maturity scales can be

classified into 2 main groups:

1. Alternative scales that substitute for TRL by adapting TRL to other organizations, domains, or

technologies, making it more tailored or suited to the specific attributes of those domains.

2. Supporting scales that complement TRL either by (1) measuring other factors of technology

maturity risk, or by (2) measuring the readiness of factors or processes that support product

development, but that are not directly related to the technology itself. Those scales are

intended to be used with TRL to get a complete picture of technology development risk.

Below is the detailed proposed classification of those scales, followed by a brief description of each:
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-TML
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-R&D3
-ITAM
-IRL

-SRL

-TPRI
-AD2
-Obsolescence risk
-TTRL

Figure 3:2 Classification of TRL-related technology maturity scales

3.2.2 TRL tailored to other agencies

9 DoD TRL: After the 1999 GAO report recommending the use of TRLs, the Deputy Under

Secretary of Defense for Science and Technology issued a memorandum recommending the use

of TRLs in all new major programs. The TRL was later included in the Technology Readiness

Assessment (TRA) Deskbook (DoD, 2009) with a 9-level definition very similar to that of NASA,

but with more emphasis on the supporting information that needs to be produced at each level

(For more information about the DoD Acuisition cycle and Technology Readiness Assessment,

please refer to section 3.3.2).
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* NATO TRL: Following the formal adoption of TRL by DoD, the Undersea Research Centre (NURC)

at the North Atlantic Treaty Organization (NATO) developed its own TRL scale. Although this 10-

level scale is based on the DoD TRL definitions, the NURC scale has more detailed descriptions in

an attempt to make it more compatible with NATO needs (NATO, 2010).

* DoE TRL: The Department of Energy (DoE) has also adopted a tailored 9-level version of the

NASA TRL scale for its own Technology Readiness Assessment process. For example, the level

descriptions go more into detail on the use of simulants, the scale of pilot projects, and the

transition from cold to hot commissioning. The DoE TRA guide (2009) also maps 3 dimensions of

testing recommendations relative to TRL: Scale of Testing (Going from Lab, to Engineering/Pilot,

to Full scale), Fidelity (Going from Paper, to Pieces, to Similar, to Identical), and Environment

(going from Simulated, to Relevant, to Operational). However, before that in the late nineties,

DoE's Nuclear Materials Stabilization Task Group (NMSTG) used another scale called

"Technology Maturity" (TM). Unlike TRL, the TM score was a continuous scale with values from

0 to 10 since it was computed as a weighted average between seven different maturity scales

(requirements, processes, equipment, facilities, schedule, personnel, and safety). Kenley and

Creque (1999) later used regression analysis to identify Hardware equipment, Facility,

Operational safety, Process Maturity as the four most relevant maturity parameters when

predicting schedule.

* ESA TRL: is a TRL scale used by the European Space Agency. Since it is geared towards space

technologies, it is very similar to the NASA TRL scale. The Technology Readiness Levels

Handbook for space applications (TEC-SHS, 2008), contains relatively detailed definitions of each

TRL level, with examples, key questions to ask for transitions, and appropriate evidence

required. (TEC-SHS, 2008)
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e TML: Technological Maturity Levels. It was developed for the Canadian Department of National

Defense (DND). It is based on the NATO TRL definition combined with an Interface Maturity

Level, a Design Maturity Level, a System Readiness Level (all defined by the UK MoD, 2006), and

the Manufacturing Readiness Level (MRL) scale. Although the intention is to capture the

multidimensional aspect of technology maturity, those S scales end up being merged into one

TML number. (Hobson, 2006)

3.2.3 TRL tailored to other technologies/domains

* Software TRL: While the original TRL scale was intended for hardware, this 9-level scale was

developed to track Software development. It was first developed by NASA in 1999 (Nolte, 2008),

and it now has different versions for different agencies (DoD, NASA, Army, Missile Defense

Agency, Air Force Research Laboratory). The levels go from scientific feasibility, to application of

software engineering principles, to final implementation/integration steps.

* ModSim TRL: It is a modified 9-level version of the NASA TRL by mainly adding the Predictive

Capability Maturity Model (PCMM) attributes. It is tailored for Modeling and Simulation

applications. The methodology consists of first giving maturity scores on 9 dimensions

(Capability Maturity, Verification, Validation, User Qualification, Code Readiness, Models,

Geometry, Quantification of Margins and Uncertainties, and System), and then assigning the

ModSim TRL score as the minimum of those scores. (Clay et al, 2007)

* Innovation TRL: The innovation readiness level is a 6-level scale intended to depict the

development of innovation. This is why the 6 levels of IRL correspond to 6 phases of technology

adoption. Each of those levels (phases) is measured along 5 dimensions: Technology, Market,

Organization, Partnership, and Risk. (Tao, 2008)
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* Biomedical TRL: was developed by the U.S. Army Medical Research and Materiel Command. It

consists of four 9-level TRL scales developed for four different categories: Pharmaceutical

(Drugs) TRL, Pharmaceutical (Biologics, Vaccines) TRL, Medical Devices TRL, and Medical IM/IT

and Medical Informatics TRL. While it is similar in the overall structure to the NASA TRL, most

descriptions of the TRL levels tend to have more specific category-related descriptions. The

levels also have detailed descriptions of the required supporting information to pass a certain

TRL (U.S. Army Medical Research and Materiel Command, 2003)

* PBTs TRL: Process-based Technologies TRL is a 9-level scale developed by Graettinger et al.

(2003). It is intended for practices, processes, methods, approaches, (and frameworks for

those), as opposed to technologies like hardware, software, embedded systems, or biomedical

devices. PBTs mature on two levels: the environment (which becomes more representative as

the community of users expands from initial risk takers to mainstream users), and the

completeness of the technology (as it goes from basic properties, to a defined core, to

implementation mechanisms, to best practices, to a body of knowledge).

* NDI Software TRIL: Smith (2005) proposes to address the weaknesses of software TRLs by

adopting a multi-criteria measure of maturity for Non-Developmental Item (NDI) Software. He

simultaneously measures 5 relevant attributes on 5 different scales: Requirements Satisfaction,

Environmental Fidelity, Criticality, Product Availability, and Product Maturity (Smith, 2005).

3.2.4 Extensions of TRL to better capture technology maturity risk

* R&D3 : The Research and Development Degree of Difficulty scale was proposed by Mankins

(1998) to address TRL's weak predictive power. R&D3 complements TRL as a measure of how

much difficulty is expected to be encountered in the maturation of a technology. It consists of 5

levels simply corresponding to the predicted probability of success in maturing the technology.
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Level I corresponds to 99% or almost certain success, while Level V corresponds to 10%-20% or

almost certain failure (Mankins 1998).

* ITAM: After introducing the R&D3 measure, Mankins (2002) proposed the Integrated

Technology Analysis Methodology (ITAM) as a framework to measure both technology

development progress as well as anticipated future research and technology uncertainties,

while taking into account the importance of critical subsystem technologies. The methodology is

based on calculating, then ranking the Integrated Technology Indexes (ITIs) of different

competing candidate technology systems. The ITIs are calculated using 3 numbers: ATRL (Delta

TRL, which is simply the difference between current and desired TRL), R&D3 (Research &

Development Degree of Difficulty, explained earlier), and Technology Need Value (TNV,

measures how critical a technology is: TNV=3 if the technology is "enabling", 2 if it is "very

significant", and 1 if it is just "enhancing"). The ITI for a candidate system is defined as:

ITI = Esubsystem technologies(ATRL X R&D 3 X TNV)
Total # of subsystem technoloogies

The ITI is a measure of the cumulative maturation that must be achieved for each technology,

amplified by the anticipated difficulty of its maturation, and the project importance of the

technology within the system, all normalized by the total number of technologies in the system.

The ITI number is intended to be later used in comparing different technology system solutions

as an indicator of required R&D risk (the lower the ITI, the better). Although the ITI was a first

step in developing a more integrated/complete predictive measure, Mankins does not explain

the logic behind the way he aggregated the factors: why multiplication and not addition? Are

the scales calibrated in the right way so that the multiplication of a 1-to-8 number by a 1-to-5

number by a 1-to-3 number makes sense? Or should those 3 factors somehow be weighted?
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Another weakness is that computing ATRL makes no practical sense because TRL is an ordinal

scale: the TRL numbers are simply placeholders and the values have no inherent meaning, hence

there is no reason to believe that the difference TRL3-TRL1= 2 is equal to the maturity difference

of TRL9-TRL7=2 (this ordinality problem is discussed in details in sections 3.3.3.2 and 9.4).

IRL: The Integration Readiness Level scale is the first step towards extending TRL from

component technologies to systems of technologies. An IRL measures how well two

technologies are integrated, and is defined only with respect to those two technologies. It is a 9-

level scale that goes from the identification of an interface between the two technologies, to

creating a common interaction language, to enhancing quality, then the control over the

interaction, to exchanging structured information for the communication, and finally to testing

and validating the integration (Sauser et al, 2010).

* SRL: The System Readiness Level scale uses IRL to measure the readiness of a system. It is an

improvement over the ITI in that it does consider the system structure of the technology

(through all the pairs of IRLs between components). If [TRL], 1 is the vector of TRLs of

technology components, and [IRL],., the symmetric matrix of Integration Levels of all pairs of

component technologies. Then Sauser et al.(2008) defines the SRL vector as [SRL],. =

[IRL]n.n . [TRL]n 1 , and then defines the System Readiness Level as the normalized sum of the

elements of [SRL]na. The obtained SRL is a number between 0 and 1 that is correlated to

phases in the DoD acquisition lifecycle: low values correspond to early phases in the acquisition

cycle, while higher values correspond to production and operations and support. In other words,

SRL is the (normalized) sum of products of each technology's TRL by the IRLs of all the

technologies it interfaces with. One weakness is that it reduces the maturity of the whole

system to only one number; another is the fact that SRL is just a linear sum such that it does not
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take into account the criticality of some components in the WBS. Tan et al.(2009) extend SRL to

the stochastic domain by allowing TRL and IRL to be variable (distributions generated by the

different expert opinions for TRL and IRL measures) , then repeating the above calculation in a

Monte-Carlo simulation to generate a distribution for SRL.

TPRI: the Technology Performance Risk Index is an extension to R&D3 with respect to a

particular performance measure. If A is the percentage of achieved performance (relative to a

predefined threshold), then the TPRI is defined as TPRI = 1 - A)*R&D3 (the formula
1+(l-AJ*R&D3 (hfoml

corresponds to a closed-loop feedback mechanism). The resulting TPRI is a number between 0

and 1 where low values correspond to low performance risk, and where high values correspond

to high chances of failing to meet performance goals. Mahafza (2005) does not provide evidence

in support of the closed-loop mechanism functional form.

* AD2: The Advancement Degree of Difficulty is similar to Mankins' R&D3 in that it also tries to

determine the remaining effort/risk in maturing the technology. The main addition is that it

provides a methodology and application framework for R&D3 (whereas R&D3 scale by itself is

just a list of risk levels with high-level definitions, with no accompanying methodology on how to

determine those risk levels). A team of experts determines the steps necessary for maturing the

technology; they then estimate the expected degree of difficulty to advance to the R&D goals,

and design tests that help determine those degrees of difficulty. They give R&D3 scores in 5

specific areas: Design and Analysis, Manufacturing, Software Development, Test, and Operations

(Bilbro, 2007). AD2 is intended to be completely complementary to TRL by measuring everything

we could know about the difficulty of advancement. Nolte (2008) says that AD2 is the best

predictive method for determining difficulty of advancement because of its comprehensiveness

and available procedure. As a result, it would be very useful in developing cost and schedule risk
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models since it actually is the best idea we have of what is left to be done to mature the

technology.

* Obsolescence/Leapfrogging risk: Valerdi and Kohl (2004) consider the risk of a technology

becoming obsolete or being leapfrogged by another one. They develop a 5-level scale of

obsolescence risk and integrate it via a cost multiplier under technology risk in the Constructive

Systems Engineering Cost Model (COSYSMO).

* TTRL: stands for Technology Transfer Readiness Level. This scale deals with the issue that the

TRL scale measures maturity only with respect to a certain application. For example, many

mature military technologies needed time and development before getting mature enough for

civilian use. The TTRL was developed by the European Space Agency to evaluate and monitor

the transfer of technologies from space application to commercial non-space applications (Holt,

2007).

3.2.5 Readiness of other factors of program development

" MRL: Manufacturing Readiness Level addresses the gap between developing the technology and

manufacturing the product. It is the only scale other than TRL used in DoD TRA assessments.

MRLs provide a common understanding of the relative maturity and risks associated with

manufacturing technologies, products, and processes being considered to meet DoD

requirements (Morgan, 2008). It is a 10-level scale that follows manufacturing from early stages

of proof of concept of manufacturability, to refining the manufacturing strategy with

demonstration of proper enabling/critical technologies, components, prototype materials,

tooling and test equipment, and personnel skills, to the full-rate reliable production with all

engineering, performance, quality, material, human, and cost requirements under control (OSD
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Manufacturing Technology Program, 2011). Figure 3.5 shows how MRLs correlate with TRLs

within the DoD Acquisition lifecycle.

* EMRL: stands for Engineering and Manufacturing Readiness Level. The Missile Defense Agency

uses this 5-level maturity scale to capture design and manufacturing knowledge for product

development, demonstration, production, and deployment (Fiorino, 2003).

" PRL: Programmatic Readiness Levels were developed by Nolte (2008) to measure the

programmatic dimension of technology maturity. PRLs mainly focus on measures of

Documentation (scientific articles/papers, progress reports, technical reports), Customer Focus

(to track the customer's changing expectations and requirements, until he settles finally by

putting money in the project), and Budget (to make sure the project has an appropriate budget

structure, for example through the use of Earned Value Management).

* LRL: The Logistics Readiness Level measures logistical support (e.g. logistics workload,

manpower requirements), especially for new technologies inserted into existing systems. The

scale goes from Lab test/R&D, to project definition, to fleet verification and use (Broadus, 2006).

An excel-based tool was developed to calculate a numeric LRL giving the percentage of required

tasks completed.

* HRL: stands for Human Readiness Level. The aim of HRL is to measure the human factors

affecting technology maturity and maturation risk. It is a 9-level scale tht records the evolution

of Human Systems Integration (HSI) considerations such as Human Factors Engineering, System

Safety, Health Hazards, Personnel Survivability, Manpower, Personnel, Training, and Habitability

(Phillips, 2010).

Other scales within that category that are mentioned in the literature, but for which we did not

find the definitions of the scales are Design Readiness Level, Operational Readiness Level, and

Capability Readiness Level (Bilbro, 2008).

47



3.2.6 Relating the maturity scales to the multidimensional measurement of

technology maturity

Now that we have laid out the different maturity measures, Table 3.3 shows how they relate to the

factors influencing Time-To-Maturity that were defined earlier:

ty and stability of Government Budget
isk Obsolescence
:ense risk, and risk of technology being leapfrogged risk measure

istable requirements iL

H RL
gstructure (dowe have enoughforeach step)
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Table 3.3 Correspondence between maturity measures and factors influencing "time to maturity"

Those multiple scales allow for a more tailored measurement for every case, which means a more

complete picture of technology maturity. Hence, for a good maturity assessment, one should start by

determining the appropriate scale from classes (a) and (b) in figure 3.2, and then complement it by as
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many scales from classes (c) and (d) in figure 3.2 as needed. For example, in a software development

program, the program manager should use software TRL, then add IRL and SRL if there is complexity in

the project, then add obsolescence risk if the software faces obsolescence, then add PRL to better track

documentation/customer/budget, and add AD2 and RD3 for more accurate assessment of risk due to

progression uncertainty. In the same spirit, GAO (2006) recommended that DoD expand its use of

metrics to cover aspects of technology maturity not explicitly attended to by the TRL.

Scales other than TRL have no historical data as they were developed only recently or were not adopted.

Hence, we limit our maturity measurements to TRL only. After all, TRL does capture a major part of

maturity, and a measurement does not have to be fully exact. Because of this data limitation, we adopt

a definition of "measurement" as used in information theory: a measurement simply means a reduction

of uncertainty in the quantity of interest (Hubbard, 2007). In this case, TRL data constitutes a

measurement of maturity as long as it significantly reduces the uncertainty of maturity variables (i.e.

cost and schedule).

In summary, maturity is a complex multidimensional concept. This led to the development of many

maturity scales other than the NASA TRL. While a lot of those scales are simple adaptations of the NASA

TRL to other fields/technologies, others were intended as an extension to TRL to provide a more

complete measure of technology risk. For now however, we can only do TRL-based maturity

measurements because it is the only maturity scale with historical data. Although TRL alone is not a

complete measure of maturity, it is still possible to build TRL-only-based models because TRL captures

essential information in technology maturation.

3.3 The TRL scale
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Now that we have defined the technology development and measurement context around TRL, this

section will focus on the TRL scale itself prior to presenting TRL-based models in later sections. This

section consists of 3 subsections. First, we will go further into the definition of the TRL scale, then we

will explain how TRL is used in the DoD Technology Readiness Assessment process, and finally we will

look in more details at the properties and characteristics of the TRL scale.

3.3.1 Definition

Technology Readiness Level (TRL) is a 1-to-9 discrete scale developed by NASA to systematically assess

the maturity of technologies (materials, components, devices, etc.) that are being developed for

incorporation into a system. A low TRL (1-2) indicates a technology that is still at a basic research level,

while a high TRL (8-9) indicates a technology that has been incorporated into a system that is in use. The

first three levels can be considered as pure scientific research, while the last three ones are pure

engineering development (Nolte, 2008). TRLs 4 to 6 form the transition phase from science to applied

technology.

To make the scale more intuitive and understandable, we developed a parallel "heuristic" scale that

helps understand the definitions of the TRL levels in simple terms. We also indicate the transitions

between those levels, to outline in simple terms the event that triggers the transition from one TRL to

another.
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application formulated (feasibility)
Analytical and experimental Lab proof that technology
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4 Component and/or breadboard I integrate my basic
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validation in relevant of key asects of the
environment environrent)

6 System/subsystem model or Testing prototype In high-
prototype demonstration in a fidelity lab or operational
relevant environment (ground environment
or space)

7 System prototype Fully operating prototype
demonstration In a space (used as a pre-production
environment model)

8 Actual system completed and Verify that the system
"flight qualified" through test meets design
and demonstration (ground or qualifications (DT&E
space) performed). End of

system development
9 Actual system "flight proven" Live Operational use, as

through successful mission intended.
operations

Science

Engineering

Figure 3:3 The TRL scale with simplified definitions of levels and transitions

3.3.2 TRL within DoD

This section will briefly explain how TRL is integrated in the DoD acquisition lifecycle.

The TRL scale in its current form was first outlined in 1995 paper by NASA scientist John C. Mankins who

described TRL as a "systematic metric/measurement system that supports assessments of the maturity

of a particular technology and the consistent comparison of maturity between different types of

technology." However the concept had been used by NASA since the 1970's (Nolte, 2008). A 1989 NASA

paper by Stanley Sadin outlines a seven-level readiness scale (which matches with the first 7 levels of

the later 9-level scale) without using the "Technology Readiness Level" terminology. The papers by
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Mankins and Sadin showed the advantages of a technology maturity measure that could eliminate

ambiguities between researchers, engineers, and managers, and that could assure that a program is

mature enough before entering production.

It was the influential 1999 GAO report that institutionalized the use of TRLs, as it led to a spread of TRL

use from a few Air Force programs in the 1990s to a DoD-wide requirement in 2001 to perform

Technology Readiness Assessments (TRAs) at both milestones B and C (Defense Acquisition Guidebook,

2010). Later in 2003, DoD detailed the use of TRLs in its Technology Readiness Assessment Deskbook

(2009).

3.3.2.1 The DoD Acquisition Cvcle

Before explaining the TRA process, we will quickly present the DoD acquisition lifecycle, which is the

process that all programs acquired by DoD go through. The cycle is a stage gate process formed of 5

phases: Material Solution Analysis (refine the technology concept and prepare a technology

development strategy), Technology Development (reduce risk by selecting best technology alternatives

and maturing them), Engineering and Manufacturing Development (system integration and system

demonstration), Production and Deployment (low-rate initial production, then full-rate production, then

deployment), and Operations and Support (sustainment and disposal). The first 4 phases are separated

by 3 Milestones (A, B, and C) where the Milestone Decision Authority (MDA) approves the entry of an

acquisition program into the next phase (DAG, 2010). The Pre-Systems acquisition period (pre-Milestone

B) is usually handled by Science and Technology (S&T) organizations, while post-Milestone B phases are

handled by DoD Acquisition programs.
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Figure 3:4 The DoD acquisition cycle.

3.3.2.2 The DoD Technolopv Readiness Assessment

Technology Readiness Assessments are required steps that prove a technology is mature enough before

passing acquisition milestones B and C (TRA Deskbook, 2009). The Defense Acquisition Guidebook

(2010) describes TRA as a "systematic, metrics-based process that assesses the maturity of Critical

Technology Elements (CTEs), including sustainment drivers". To avoid having to assess the maturity of all

components in the WBS, the TRA focuses only on the important technology elements of the system (i.e.

the CTEs). An element that is new or being used in a new way is considered "critical" if it is necessary to

achieve the successful development of a system, its acquisition, or its operational utility.

The TRA is conducted by an Independent Review Team (IRT) of experts who determine the system's

CTEs, and then measure their maturity. All CTEs need to be at least at TRL 6 prior to Milestone B, and at

least at TRL 7 prior to Milestone C (DAG, 2010). When the Critical Technology Elements do not all meet

the TRL requirement, the program can be delayed, its requirements can change, or it can be

restructured to use only the mature elements (Dion-Schwarz, 2008).
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While TRL is used to keep track of technical maturity, DoD encourages the use of a parallel

Manufacturing Readiness Level (MRL) scale that complements TRL by giving an indicator of the progress

and the risks associated with the technology's manufacturing and production processes. A 2010 GAO

report titled "DoD can achieve better outcomes by standardizing the way manufacturing risks are

managed" pushed for a standardized and early use of MRLs in the acquisition lifecycle (GAO, 2010). The

below graph ties all those cycles together by superposing TRL levels with the MRL scale, Nolte's

technology lifecycle, GAO transition risk, and major DoD acquisition cycle phases.

Early
Tedhnology
Le Cyde

Childhood
Birth

Ti me

identenied

Figure 3:5 Correspondence between Nolte's technology lifecycle, the GAO transition risk, the DoD Acquisition
cycle, the TRL scale, and the MRL scale. Sources: adapted from DoD TRA Deskbook (2009), Nolte (2008), Sharif

et al. (2012) , Azizian (2009), Morgan(2008), Graben (2009), Dion-Schwarz (2008), and GAO (1999)

This whole technology development phase can be put back in the larger contexts of technology lifecycle

and technology adoption lifecycle defined earlier in section 3.1.
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Figure 3:6 Localization of the correspondence table within the larger technology cycles.
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3.3.2.3 The use of TRL in the TRA

It is important to note that the TRA makes a minimal use of the TRL measurements. The TRA is only a

one-time measurement performed to give a Yes/No answer on whether the technology is ready to

proceed in the acquisition cycle. The TRL measurement is not used for any risk management or

cost/schedule modeling purposes.

However there is currently a tendency to extend the number/frequency of TRL measurements and their

uses. For example, although TRL measurements are only required for milestones B and C, DoD's Best

Practices encourages "early evaluation of project's maturity before Milestone A" (Guidance and Best

Practices for Assessing Technology Maturity, TRA deskbook, 2009). The document also notes that "CTE

identification should be a continuing element of every program. An initial determination of potential

CTEs should be completed during Milestone A" (Guidance and Best Practices for Identifying CTEs, TRA

Deskbook, 2009). Furthermore, the fact that DoD TRL definitions come with a list of "supporting

information" required for each transition (for both hardware and software) indicates a move towards

continuous monitoring of TRL scores. Finally, Dion-Scwarz (2008) lists several uses of TRL as follows:

-Provides a common understanding of technology status (maturity)

-Conveys what has been accomplished (demonstrated) with the technology

-Used as a factor in technical risk management

-Used to make decisions concerning technology funding

-Used to make decisions concerning transition of technology

-Used to scope acquisition programs and their requirements

-Used as a basis for certification under statute
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In this thesis we go beyond those uses. We are mainly interested in models that use TRL for risk

management. Instead of limiting the models to only measuring technical risk, we will use them for

cost/schedule modeling in order to integrate the key management variables - maturity, cost, schedule -

into a single technology management framework.

3.3.3 Properties/characteristics of the TRL scale

Now that we have a clear definition of TRL in the technology context, the measurement context, and the

DoD Aqcuisition context, we will look at properties of the scale itself. Such properties are important

because the models we will present in the framework will be built on those properties of the scale. We

will divide those properties into strengths and weaknesses:

3.3.3.1 Strengths of the TRL scale

The TRL scale is simple (has only 9 points, it is clear and can be easily understood), well-structured

(covers all relevant phases of technology maturation, and the defined stages do not overlap), stable (the

definition of the scale does not change in time or with a new technology), adaptable (can be adapted to

different domains as explained in section 3.2), and it can be used systematically and across technologies.

The TRL calculator Excel tools (Nolte, 2005) are a good example of how the above properties are used to

make TRL measurement standardized and streamlined.

On a more theoretical level, the "stable" and "well-structured" properties can be translated into

"complete" and "monotonic" meaning that every technology has to go through all 9 levels, and in order.

This property will be important for the level 1 assumption of our framework (section 6.2).
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3.3.3.2 Weaknesses of the TRL scale

Most of the TRL's weaknesses appear when managers try to use TRL beyond its context or original

intended use. They mostly shed light on what TRL does NOT measure (which we have already made

clear in table 3.3). Below is a list of those weaknesses:

* The scale's definitions leave room for confusion (the levels are not specific and accurate

enough). Cornford and Sarsfield (2004) and Minning et al. (2003) point out that some terms in

TRL definitions such as "relevant environment" can be open for interpretation. Furthermore,

although a TRL measurement should be consistent across different measurers, it is still a

subjective measure. Not only are the measurements based on personal judgment and belief

(Garvey, 2000), but they can also carry personal biases and interests. In a series of Army

technology readiness assessment reports, we found that Independent Review Teams (IRTs)

often give a lower TRL score than project managers in the assessments (a result of a conflict of

interest, because the project manager needs high TRL values to pass the milestones). However,

we found that different IRTs can also disagree among each other (not a result of a conflict of

interest in this case).

* The TRL scale is an ordinal scale: while we know that TRL 3 is more mature than TRL 1, we don't

know how much more mature it is. Is the difference between TRLs 1 and 3, the same as the

difference between TRLs 5 and 8? Is TRL 6 twice as mature as TRL 3? The answer is No, because

the values in an ordinal scale are mere placeholders to indicate an order, and have no numerical

meaning (they could be easily replaced by letters A, B, C, etc., without losing information). The

ordinality of the scale is especially problematic when mathematical operations are performed

on TRL scores in risk management applications. In those cases, extracting risk factors out of an
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ordinal scale can lead to large errors (Conrow, 2003). To address this issue, Conrow (2009)

proposed a calibration of the TRL scale using an Analytic Hierarchy Process (AHP).

* TRL combines many dimensions of technology readiness into one metric. We earlier saw that

there are many dimensions to technology maturity. TRL reduces those to one integer number,

which means that information is being lost in the measurement process. Smith (2005) expresses

this concern of "blurring contributions to readiness" for software TRLs. He also quotes Nolte on

that issue "The TRL scale measures maturity along a single axis, the axis of technology capability

demonstration. A full measure of technology maturity, or in the commercial-world product

maturity, would be a multi-dimensional metric. It's not uncommon to find references to 12 or

more dimensions of product or technology maturity. One writer speaks of 16 different

dimensions of maturity. The TRL measures only one of the 16."

* TRL Lacks granularity: it has only 9 steps to describe the whole technology development process.

This can be considered too few for using the scale in some applications.

e TRL does not account for the use of the technology. A system can be fully mature for one use,

but may still need development and maturation for another application (refer to TTRL in section

3.2.4 for more on this issue).

* As a result of the TRL scale's monotonicity, it does not take technology obsolescence into

account. Although TRL is mainly intended to be used for the technology development phase,

some technologies do have rapid aging; and obsolescence becomes a concern. Should a

technology remain at TRL 9 when it starts to lose utility? Nolte (2008) says that TRLs become

useless once the technology matures. For DoD, obsolescence corresponds to the period of

diminishing manufacturing sources when spare parts become no-longer available, while for

software, Smith (2005) describes the many ways how a software ages when it undergoes
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maintenance. Valerdi and Kohl (2004) address the problems of leapfrogging risk and technology

obsolescence by integrating measures of those in their technology risk factor.

* TRL is unsuitable to measure the maturity of a system: Suppose a technology necessitates two

components A and B. If A is at TRL 8 and B is at TRL2, what would the total Readiness level be?

Now imagine that both components A and B are at TRL level 8, but we're still far from

integrating them together and making a final product, what would the total Readiness level be

in this case? Finally, what if component A is very critical for the final product, while there is a

substitute for component B? We see that the definition of TRL does not allow taking complex

systems and integration issues into account (IRL, SRL, and ITI in section 3.2.4 were developed to

address this issue).

Finally, there are two weaknesses that show up often in the literature. While they are not weaknesses in

the scale itself, they emerge when the scale is used as a measure of technology risk.

* The first weakness is that TRL is a bad measure for risk since it measures achieved developments

only, without measuring the likelihood of a successful transition in the future. For instance, one

technology can be at TRL 6 and still have a costly and long development ahead of it, while

another technology can be at TRL 2 and have easy low-risk development ahead of it. Azizian et

al. (2009), Cornford and Sarsfield (2004), Nolte (2008), Mahafza (2005), Sharif et al. (2012), and

Fernandez (2010) all point out this problem in the TRL scale. In response to this issue, Mankins

(1998) and Bilbro (2007) respectively developed the AD 2 and the RD3 measures. Those measures

(already defined in section 3.2.4), aim to quantify the difficulty and risk of what is left to be

done, as opposed to what has already been done.
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* The second problem is that risk managers would like to use TRL as a measure of risk. However

TRL does not fully represent risk since it is only related to the probability of occurrence term

while it misses the other factor in risk, which is the consequence term. Hence, caution is

required as to how TRL should be integrated in risk analysis. However, even if we make sure to

use TRL to measure only the probability of occurrence, it is still a weak measure (especially

when compared with other measures like RD3 and AD2, for the reasons explained above). This is

why Conrow (2003) recommends never using TRL alone in risk assessments.

As a result of the above weaknesses, Cornford and Sarsfield (2004) claim that TRL cannot be integrated

in cost/risk models because uncertainty in the inputs of such a low resolution scale could lead to major

errors in cost estimations. Although those issues weaken the results generated from TRL-based models,

we believe that useful measurements can still be generated, especially if we carefully identify and

evaluate the assumptions we use in each model. The study of those assumptions will be the basis of our

TRL models framework in chapters 5-9.
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Chapter 4

Chapter 4. The Datasets

Since this thesis adopts a data-based approach in supporting the assumptions and in testing the models,

it is important to reserve a chapter describing and discussing the datasets that will be used. After all, the

quality of the models and of the results strongly depends on the quality of the data they are based on.

We used two datasets: the NASA dataset is a relatively high quality dataset, but it has only 19 data

points; and the Army dataset is larger (582 data points), but with lower quality.

4.1 The NASA Dataset

4.1.1 Presenting the dataset

The first dataset is from a case study done by the Systems Analysis Branch at NASA's Langley research

center looking at typical times that aeronautical technologies take to mature (Peisen and Schulz, 1999).

The data was collected through interviews with NASA personnel. The following table shows the full data

set:

62



eJ
i 

w
w

 
oJ

 
M

m
-n

 p
 r)

 .
c>

2 
a 

m

o
 

ii*
.

M
 

N
o
 

i 
II

ii 2

C
T

@
 

W
is

,

Z
o

0

.
T

-

:n
 

n 
n 

n 
n 

n

:I
 M

 3
 

M
Tr

an
sit

io
n

0)
 

0
 

a
 

0
1

 
"

1
 

, 
S 

W
 4

 
%

 
t 

&
 

! 
N

i-
I.

,
-n

 
m
 

o
 

W
w
>
 

0
 

%
J,

 
0

%
 C

m
 
w
 

N
 

_
_
_
_
_
_
_
_
_
_

_
_

_

o
 
o
 

0
 

N
 

I-
 

N

o
 
o
 

0
 

W
 

0 
oW

o
 
o
 

i-
 

w
 

-A
4

o
 

i-
 

i-
 

w
 

A
 
4

Q
- 

I-
A

 
0
- 

W
o
- 

I-
 

I-
 

O
~ 

-
N

o
 

i-
 

o 
w

J 
1
 

N

~'0
0 

N
 

0N

o
- 

I-
 

0
 

W
- 

A

0 
a

o
 
o
 

0 
0 

0
N

 
a 

C
ar

bo
n-

6 
Th

er
m

al
 B

ar
ri

er

S
D

ire
ct

 
T

o

m
 i, 

in 
in

, 
-

F
ib

er
 P

re
fo

rm
 S

ea
l

A
 

N
 

1
- 

I-
 

b
-

--
--

0

U
, 

0
U

, 
L

n

a 
0

M
 -

I-
' 

I-
 

U

o 
o 

o 
o

0 
U

 
0 

I-
A

 
L

n
 i

n
 

in
 

in

00
00

 
W

~
in

 
in

 
iA

 
in

 
L

- 
in

t,
 

t~
 

, t
_
 

!"
 

U
, 

U
,

V
1 

n 
L

n 
un

 4
W
 

W
L

0 
0
 

0
 

0

o
 

o 
n

 
w

 
U

, 
A

 
N

-P 
P U

 
P

0
 

o
0
 

0 
0 

0D
 %

%
0

-'
 

N
 

N
Q

 N
 

N
 

'-
j

0
1
-'

"-
 

rN
 

0

Lo
w

 E
m

is
si

on
s 

co
m

bu
st

or
s

N
on

de
st

ru
ct

iv
e 

E
va

lu
at

io
n

T
ai

le
ss

 F
ig

ht
er

5 
5 

5 
Th

ru
st

 V
ec

to
rin

g 
N

oz
zl

e

El
ec

tro
 E

xp
ul

si
ve

 D
el

ci
ng

En
gi

ne
 M

on
ito

rin
g 

S
ys

te
m

s

F
lo

w
 V

is
ua

liz
at

io
n

F
ly

-b
y-

L
lg

ht

G
A

 W
in

g

G
ra

ph
ite

 F
ib

er
 S

ta
to

r 
V

an
e

B
us

hi
ng

s 
(T

rib
ol

og
y)

P
ar

tic
ul

at
e 

Im
a
g
in

g
V

el
oc

im
et

ry

Pr
op

fa
n 

de
ve

lo
pm

en
t

R
un

w
ay

 G
ro

ov
es

0 0
0

U
, 

U
, 

W
 w

 
c 

Su
rfa

ce
 M

ov
em

en
t 

Ad
vi

so
r

1
-'

 
N 0 

C
O

 N
l i

-
I-

 
-

W

S
up

er
cr

iti
ca

l 
W

in
g

T
ilt

ro
to

r 
T

ec
hn

ol
og

y

(n
~

w
j

H (B z U
,

(B

" 
F

_
. 

" 
.. 

I.
,

t"



The columns constitute different NASA technologies that were selected for the study. The first eight

rows correspond to the TRL transitions (the values of the variables are the durations, in years, of the

technology TRL transition times). The last 6 rows are additional criteria characterizing the technology

being developed; they are explained just after the table in Peisen and Schulz (1999).

Except for the regression performed for demonstration purposes only in section 7.3.3, the Criteria

A,B,C,D,E, and F will not be used in the analysis. First, the report does not explain in enough detail the

meaning of those variables; second, the dataset is already too small to be segmented along those

criteria; and finally, we have the intention of generalizing our results to other agencies using similar

technology measures, and those agencies probably do not use the same criteria.

4.1.2 Sample quality

We consider this dataset our high quality sample since it had a technical report written just to present it,

it identifies the technologies used for the study, and it has (almost) all the transition times at a relatively

high resolution. However, the dataset does suffer some drawbacks:

1. The major problem for this thesis is the rather small number of technologies (only 19 data

points available). Furthermore, seven of those data points are incomplete (they have only the

first 5 transitions). As a result special precaution was taken throughout this thesis while handling

the dataset.

2. There is a lack of information about the collection of the data points or any additional

description of a technology's specific case (this is especially important for outlier analysis).

3. The sample suffers from selection bias since it only contains the technologies that made it to TRL

9 or 6. Many projects usually are abandoned at early TRLs. The negative effect of this

phenomenon is that it reduces the representativeness of our work so that it cannot forecast
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program termination risk, and is limited to programs that make it to TRL 9 or 6. Its positive effect

however, is that it eliminates one source of uncertainty, so that we will not have to worry about

modeling highly unpredictable external variables (such as budget cuts, program termination,

requirement changes, etc.) that can lead a program to stop.

4. The data comes from retrospective interviews based on descriptions of TRLs (as opposed to

rigorous TRL calculators), which means it could contain measurement errors. Furthermore, the

authors say that they had to do some smoothing when the interviewees did not remember the

exact transition time; and that "some" points were at a 1-year resolution level but did not

indicate which points were at this resolution.

5. Finally, although the authors did not directly address the issue of sample representativeness,

they did mention that the list of technologies was formed "with input from NASA Headquarters

and three NASA Research Centers" and that the data covered all major types of technologies.

Hence, we can assume than the sample is representative of the NASA technologies population.

4.1.3 Sample transformation

We started by performing a minor data transformation: there were three transitions that had a duration

of zero. We performed a simple smoothing by assuming that this transition happened so quickly

because of extra development effort in the precedent transition. So we changed the precedent step to

80% of its original value, and gave the remaining 20% to the "zero" step. We had two justifications for

this modification. A theoretical one: a phase cannot be finished instantaneously; and practical one: it is

necessary to eliminate zero for the log-transformation later performed on the data.

Below is a visualization of the data showing separately the evolution of each of the technologies:
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Figure 4:1 Transition times of the 19 NASA technologies
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In the above graph, each colored line represents one technology, and the graph shows the transition

time (in years) at each of the eight TRL transitions. One outlier is clearly visible: Titltrotor Technology

(which is the technology used in the V22 osprey) took 22 years to transition from TRL 5 to TRL 6, which is

significantly larger than the other transitions in the dataset.

Another visible property is the positive skewness of the data: while most values are very small, a few

transitions take relatively larger times, thus clustering the bulk of the data around zero. The log-

transformation was natural in such cases of positive data with clear positive skewness. It reduces the

larger values and separates the smaller ones, making the data more normal. It also increases the

randomness of residuals in regressions performed with the data set, and increases the correlation

between the different transition times (both of which are beneficial effects).

After performing the two above corrections (removing the outlier technology, and taking the log), we

get the new graph for technology log-transition times shown in figure 4.2. This transformed dataset will

be used in the rest of this thesis.
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Figure 4:2 Log-Transition Times of the NASA technologies (outliers removed)
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4.2 The Army Dataset

The Army dataset is a larger one, but of lesser quality and lesser importance to this thesis. It will be used

in only one application where its poor properties have little effect on the result (section 7.3.1). It

contains partial TRL transition times of 582 technologies/components that were commissioned between

FY 2005 and FY 2009. The data were extracted from Army Acquisition Technology Objectives (ATOs)

PowerPoint briefings. The briefings contained charts with the projected milestone and TRL dates for the

critical components. We manually extracted the TRL transition times from those charts and stored them

in a database.

As a result, the dataset has two major quality problems:

1. It is based on contracts/promises and projected schedules (as opposed to historical ones). And

we already know that the final cost/schedule in DoD acquisition programs is often different from

the initial estimates. Hence, instead of having a set of technology transition times, we only have

a set of initial estimates of transition times.

2. Since the data was recorded visually from low-resolution graphs (values rounded to quarters for

financial/accountability reasons), it also suffers from low resolution/precision. Given the manner

in which the TRL steps were placed on the graphs; we could not extract the time data with a

resolution below 0.25 years. This means that the error can be as high as 0.5 years.

The dataset also suffers from a minor issue. Although it contains transition information for a

high number of technologies/components, the dataset does not contain a large number of

transitions for a single technology. The dataset mostly contains one or two transition variables
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per technology (typically transitions from TRL 3 to TRL 6). This makes it harder to use the data to

look for trends in the development of a single technology. However, it definitely allows looking

at the distribution of a specific transition across technologies, which is how it will be used in

section 7.3.1.

In summary, although the NASA dataset does have some minor issues, it is the more reliable one, and all

the important results in this thesis will be based on it, or its modified version that dismisses an outlier

and uses the log of the original transition times.

70



Chapter 5

Chapter 5. Overview of the TRL framework

We propose the below framework to classify and study the TRL-based models. The framework classifies

TRL models into levels based on the assumptions they make. The pyramid depicts the increasingly strong

assumptions: while the level-1 assumption is as trivial as "TRL marks consecutive points of progression in

technology development", the level-4 assumption goes far in confirming that "TRL is a measure of

maturity and risk".

Figure 5:1 The TRL framework indicating the increasing strength of the assumptions at each level
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Lower levels use weak assumptions to build simple, but robust models. Higher levels require stronger

assumptions to build more advanced/useful models, but that are less robust due to the strong

assumptions.

Another way of classifying those four levels is by looking at the type of the uncertainty present in the

models. According to Alexander (1981), there are five classes of model uncertainty ranging from the

certain to the chaotic:

-Class I: Certainty

-Class II: Probability distributions of known form embedded in known models, covering known

possible states

-Class Ill: Probability distributions of unknown form embedded in known models

-Class IV: Uncertain models (strong uncertainties)

-Class V: Chaos

The below table shows where the framework models are located with respect to this classification:

Level 1 TIRLmodels 
II |-

Level 2 TRL models
Level 3 TRL models
Level 4 TRL models-

Table 5.1 Classification of the framework's models with respect to classes of uncertainty

Our study of the literature naturally led to the development of the framework. When we were earlier

trying to develop TRL-based cost and schedule models, we realized that there was a rich literature on

the approaches of using TRL to model cost and schedule risk. When we tried to improve a certain model,
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we discovered another model that had more useful results, but at the price of stronger (often unstated)

assumptions. We found that the models in the literature can be grouped into four levels of increasingly

strong assumptions. Hence the assumptions-based framework for models that use TRL emerged

naturally as a way to classify those models, and to compare, develop, and improve them using the most

relevant characteristic: the assumptions that they make.

The framework allows us to perform a more informed comparison or development of TRL-based

models. For example, take two models A and B such that A is more precise and more robust than B. If A

and B are models at the same level in our framework using the same assumptions, then the comparison

is on even terms, and A is indeed "better" than B. If A however is at a higher level in our framework

using a stronger assumption than B, we might want to reconsider this conclusion or we might want to

consider a more nuanced one. Similarly, assume we are developing an improved version of model A

called A' (A' has a lower bias, and smaller margins of error for example). A' is an improvement over A

only as long as it performs better using the same assumptions. Furthermore, since the framework states

the assumptions explicitly and clearly, we can use the assumption itself at each level as a guide to

develop A', thus making sure that the assumptions are used to their full potential.

In order to preserve the generality of this work, we define "transition variable" as a management-

relevant variable between two TRL levels for the remainder of this thesis. The presented models will

look at cost and schedule transition variables (although they could also be extended to other maturity

variables such as performance or technology risk). The schedule transition variables will be noted X-jand

the Cost transition variables C; (both are considered random variables). For example X34 corresponds to

the time the technology takes to transition from TRL3 to TRL4, and C3-8 is the cost incurred in

transitioning the technology from TRL3 to TRL8.
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Similarly, in order to preserve generality with respect to the maturity measure, the models are also

compatible with all the "TRL substitute measures" defined in section 3.2. Since those are simple

adaptations of TRL to specific domains/technologies, all the essential properties of the TRL scale are

preserved, and as a result, the developed models and results would still hold.

The framework is based on an earlier paper by El-Khoury and Kenley (2012), and we will adopt in this

thesis a more thorough and detailed approach with respect to the definitions, the literature review, and

the evidence supporting the assumptions at each level. Then we will explain in details the proposed TRL-

based methodologies that make better use of the assumptions. More precisely, for each level in the

framework, we will in order (1) state the assumption, (2) list the available literature relevant to that

level, (3) look at theoretical evidence supporting this assumption, (4) look at empirical evidence

supporting this assumption, and finally we will (5) propose new methodologies that make better use of

the assumptions whenever possible (mostly at levels 2 and 3).

Furthermore, at the end of each level, we will be able to answer a practical research question:

* With a level-1 model, we will answer the research question:

o Does available evidence support or contradict GAO's recommendation on pre-production

maturation?

* At level 2, we will answer the questions:

o Does it make statistical sense to look at the distribution of each TRL transition time

separately?

o If yes, is there a way to improve the accuracy and fidelity of the estimates and

confidence intervals?
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* At level 3, we will develop a model that answers:

o If we use historical data of a technology's development, can we significantly improve the

accuracy of the technology schedule forecast over level-2 models?

* And at level 4, we will answer:

o Out of the available methodologies, what is the best one to use in performing regression

of cost/schedule against TRL?

The next four chapters will be dedicated to the respective study of the assumptions that define the four

levels of the framework.
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Chapter 6

Chapter 6. Level-1 assumption

6.1 Definition and literature review

This first-level assumption is that "TRL marks consecutive points of progression in technology

development". While this assumption might sound very basic and trivial, it can already have important

managerial implications since it directly relates to GAO's recommendation on technology transition risk.

GAO's 1999 influential report advocating for the use of TRLs can be considered as the major example in

the literature using this assumption. GAO (1999) recommended maturing technologies to at least TRL7

to reduce risks and unknowns adequately before proceeding with engineering and manufacturing

development. Other sources that mention this basic reverse relation between TRL scores and

technology risk include LeGresley (2000) and Nolte (2008).
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Figure 6:1 The TRL framework, the first-level assumption

By the end of this chapter, we will have answered the following research question:

e Does available level-1 empirical evidence support or contradict GAO's recommendation on pre-

production maturation?

6.2 Theoretical evidence

The first-level assumption states that "TRL marks consecutive points of progression in technology

development". This assumption appears trivial and very hard to contest. It actually comes from two

basic properties of the TRL scale mentioned in 3.3.3.1: the TRL scale is "complete" and "monotonic".

The scale is "complete" in the sense that it covers the entire technology development space: every

technology has to be at a defined TRL at any point in time; and, throughout its development, it has to go
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through all of the 8 TRL transitions. The scale is "monotonic" because TRL always goes through those

transitions in the same increasing order.

As a direct result, TRL will always mark consecutive points of progression (in an increasing order) in

technology development.

One way this assumption could be violated is when technology obsolescence is considered. Considering

obsolescence could lead to the problem of decreasing TRLs (i.e. loss of monotonicity) due to the loss of

technology manufacturing capabilities and know-how. However, obsolescence is not an issue in this case

since we are only interested in the initial technology development phase of the technology life cycle

(refer to figure 3.1). Hence, all the framework models follow maturity variables until TRL reaches level 9

(or until the level at which the technology stops maturing, in case the development is halted prior to TRL

9).

6.3 Empirical evidence

The assumption is too basic to be supported by empirical evidence, it is obvious that all technologies are

at a certain TRL, and all technologies have historically progressed on the TRL scale in an increasing

manner. This is why we will look at empirical evidence supporting the GAO recommendations built on

the assumption.

In simple terms, the GAO risk levels come from the fact that the higher the TRLs, the smaller the

remaining overall uncertainty. A project at TRL2 is subject to risks (cost, schedule, technology) on

transitions from TRL2 to TRL9, while a project at TRL6 is only subject to risks on transitions from TRL6 to
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TRL9. This is a direct consequence of the fact that all technologies have to go through all TRL transitions

(completeness), and they have to go through them in order (monotonicity).

GAO illustrates this concept by showing how the risks (or unknowns) are reduced as the TRL increases

and as the product moves towards meeting the requirements. In particular, the report (GAO, 1999)

identifies the TRL 6-7 transition as the threshold for going from high risk to low risk (also refer to figure

3.5).

High risk for Low risk for
Product product launch product launch

Requirements

Risk or6 7

TR L
1 2 3

Figure 6:2 GAO technology transition risk

The above diagram illustrates the conceptual distance in maturity between the product's current state

and the requirements. However, it is possible to quantify this uncertainty. Instead of using the abstract

multi-dimensional concept of "maturity", we will choose a single managerial variable. In this case, we

will measure schedule risk by making use of the NASA dataset.

We will use the standard deviation of the "time to maturity" as a proxy for uncertainty, or the remaining

schedule risk. In the below graph, we plotted the standard deviation of the time to maturity (i.e. the
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remaining development time) for each TRL. For example the value indicated at TRL 3 is the standard

deviation of X3 -9 (the transition time from TRL 3 to TRL 9), while the value indicated at TRL 4 is the is the

standard deviation of X4 9 (the transition time from TRL 4 to TRL 9), etc.

Reduction in Time-to-Maturity risk as TRL
increases

14

12
E

10

E 8 -

.a 4

0
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M 1-9 2-9 3-9 4-9 s-9 6-9 7-9 8-9 9-9

Remaining TRL tranistions

Figure 6:3 Reduction in Time-to-Maturity risk as TRL increases

We can see that the time-to-maturity risk has very high values (Standard deviation larger than 10 years)

up until TRL 5. Once the project passes TRL 6, the project manager has higher control over the schedule

as the standard deviation drops sharply to 5.6 years. This risk continues dropping such that GAO defines

the threshold of low risk as that beyond TRL7. This graph confirms GAO's recommendations because the

transition to TRL 7 corresponds indeed to a significant drop in schedule risk when compared to earlier

stages (the transition from TRL 7 to TRL 8 does not correspond to a substantial drop in schedule risk,

hence it makes sense to set the risk reduction threshold at TRL 7).

This analysis allows us to answer the level-1 research question: while the theoretical evidence supports

the GAO recommendations in a general sense, the empirical evidence strongly supports those
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recommendations. Our quantitative analysis of schedule risk showed that TRL 7 in particular is well-

placed to be a cut-off value from high to low schedule risk, which is perfectly in accordance with the

GAO model.
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Chapter 7

Chapter 7. Level-2 assumption

7.1 Definition and literature review

Figure 7:1 The TRL framework, the second-level assumption

The level-2 assumption states "maturity variables are significantly differentiated for different TRL

transitions." This means that when we look at one technology transition, the maturity variables have a

probability distribution different enough from other TRL transitions and with a low enough variance. For
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instance, Peisen and Schulz (1999) noted that there is "considerable variability" in the time that

technologies take to mature. This level-2 assumption stipulates that this variability is low enough for

statistical forecasting to be applied on the technology maturation time.

Many papers in the literature fall within this category of models, starting with the NASA SAIC paper itself

(Peisen and Schulz, 1999). The authors characterize technology transition times analyzing their

distributions and by comparing averages and standard deviations of different subgroups of the sample.

Similarly Dubos and Saleh (2010) evaluated the distribution of every TRL transition time. They found that

TRL transition times have lognormal distributions and used that to propose average estimators and

confidence intervals. Finally, Lee and Thomas (2003) analyzed the distributions of absolute and relative

cost growth at each TRL, and fitted the Johnson's distributions to the data.

In this chapter, we will clarify and validate the assumptions that allow us to use those methodologies.

Then we will examine alternative methodologies that are more suitable to the typically small datasets of

transition variables.

By the end of this chapter, we will have answered the two following research questions:

e Does it make statistical sense to look at the distribution of each TRL transition time separately?

e If yes, is there a way to improve the accuracy and fidelity of the estimates and confidence

intervals?

7.2 Theoretical evidence

83



This second-level assumption is still a weak one. It is theoretically supported by the very design of the

TRL scale. Since each transition in the scale corresponds to a well-defined action common to any

technology development, we should expect each of those transitions to share common properties

across technologies, and thus we should expect them to be significantly differentiated from other

transitions.

For example, the TRL1-2 transition that happens when "an application of the basic principles is found" is

different from the TRL2-3 transition that corresponds to "going from paper to lab experiments", which

itself is different from the TRL6-7 transition that happens when "the prototype is tested in the real

environment". The descriptions of those transition processes are clear enough to expect their properties

to be different from each other while being coherent across projects.

On a practical level, this is equivalent to making an assertion of the type: "it generally costs less (in a

statistically significant sense) to go from theoretical papers to feasibility papers than to go from a

prototype in a lab environment to a prototype in the operational environment", or "TRL transitions 1-2

and 2-3 are characterized well enough (i.e. they have low enough variances) that we gain information

by studying the distributions of transition variables X12 and X2-3 as opposed to only looking at the

distribution of X1 3."

7.3 Empirical evidence

7.3.1 Analysis Of Variance

To validate this assumption empirically, we will look at the distribution of different technology transition

variables and test if the transition times are precise enough to be statistically distinguishable.
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First, taking the historical data to generate a representative empirical distribution is justified by two

facts:

1. The technologies are independent. Hence historical frequency does represent probability.

2. The sample is representative of the population. Hence we assume no discrepancies due to

sampling issues.

The way we make sure that each transition has a low enough variance so that it is distinguishable within

the scale is by using an Analysis Of Variance (ANOVA). We perform the ANOVA test on transition times

X1-2, X2 -3, and X1-3. Transitions X1-2 , X2-3 are "distinguishable" if their variances are small enough so that

they are both different from transition X1-3 (Otherwise, TRL2 would be an unnecessary step, because

introducing it would not add any statistically significant information over just using TRLs 1 and 3). In

statistical terms, we are testing if the means of X1-2 and X2-3 are equal to that of X1-3 at a 95% significance

level (Albright at al. 2006). If the equality hypothesis is rejected (i.e. the confidence interval of the

difference of means does not contain the value zero), then X1 -2, X2-3 are statistically distinguishable from

X1-3, hence TRL 2 does improve the scale's resolution in measuring transition times.

We performed this test for all couples of TRL transitions where data was available (all transitions

between TRL 2 and TRL7). We used the Army dataset because the NASA dataset was not large enough to

establish small 95% confidence intervals.

Before performing the ANOVA test, we were concerned about the two major weaknesses of the Army

dataset and their effect on the results. The fact that the dataset is low resolution (low precision) does

not fundamentally alter the results because the same imprecision in X1-2 and X2-3 get transferred to the

sum in X1-3.The imprecision gets cancelled out later when X1-2 and X2-3 are subtracted from X1-3 to
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compare the difference to zero in the test. The fact that the Army data consists mainly of promises as

opposed to historical values does weaken the test's result however. We know that promises are usually

biased downwards, and there is a high chance that actual contract transition times will have higher

variances than the ones agreed upon in the contract. Both of those conditions could falsely lead us to

the rejection of the mean equality hypothesis in the ANOVA test. To counter this problem, we added

random normal noise to the transition times (with a mean of 25% of the average transition time, and a

standard deviation of 50% of the average transition time, in line with historical observations).

Once those data quality issues were resolved, we performed a total of eight statistical comparisons. In

the results below, we see that all the equality hypotheses are rejected with very low p-values indicating

that the transition times are indeed significantly differentiated.
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ANOVA Summary

Total Sample Size

Grand Mean

Pooled Std Dev

Pooled Variance

NumberofSamples

Confidence Level

204
2.121
1.170
1.370

3
95.00%

23 34 24

ANOVA Sample Stats Transition Time Transition Time Transition Time

Sample Size

Sample Mean
Sample Std Dev

Sample Variance

PoolingWeight

35
2.142
1.268
1.608

0.1692

148
1.843
1.125
1.266

0.7313

21
4.044
1.313
1.724

0.0995

Sum of Degreesof Mean

OneWavANOVA Table Squares Freedom Squares

Between Variation

Within Variation
Total Variation

ConfidenceInterval Tests

89.114 2
275.292 201
364.406 203

Difference
ofMeans

44.557
1.370

No Correction

Lower Upper

F-Ratio p-Value

32.532 <U.0001

Bonferroni
Lower Upper

Tukey

Lower Upper

[23-340 .2992 -0.1%34405395 0.733077028 -0.210565 0.8303919-02 13930814885536-02324 084795571
123-24 -1.902 -2.53867635 -1L264732276 -2.681569761 -1.1218389651-2.658816494 -1.144592131 -2.698341166 -1.105067459
34-24 -2.201 -2.739152369 -1.662927889 -2.859868333 -1.542211925| -2.840646436 -1.561433823 -2.874036771 -1.528043488

ANOVA Summary

Total Sample Size 463
Grand Mean 1.950
Pooled Std Dev 1.199
Pooled Variance 1.438
NumberofSamples 3
Confidence Level * 95.00%

34 45 35

ANOVA Sample Stats Transition Time Transition Time Transition Time

Sample Size 148 241 74
Sample Mean 1.843 1.727 2.887
Sample Std Dev 1.125 1.222 1.266
Sanple Variance 1.266 1.493 1.602
PoolingWeight 0.3196 0.5217 0.1587

Sum of Degreesof Mean F-Ratio p-Value
OneWayANOVA Table Squares Freedom Squares

Between Variation 78.559 2 39.280 27.316 <0.0001
Within Variation 661.474 460 1.438
Total Variation 740.033 462

Difference NoCorrection Bonferroni Tukey Scheffe
ConfidenceInterval Tests ofMeans Lower Upper Lower Upper Lower Upper Lower Upper

34-45 0.116 -0.130403181 0.361789425 -0.185208604 0.416594848 1 -0.177817341 0.409203585 -0.191842206 0.423228451
34-35 -1.044 -1.379095953 -0.708085272 -1.453812687 -0.633368537 -1.443736111 -0.643445114 -1.462856338 -0.624324886
45-35 -1.159 -1.472468454 -0.846099015 -1.542214406 -0.776353063 -1.532808207 -0.785759261 -1.550656397 -0.767911071
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ANOVA Summary

Total Sample Size 568
Grand Mean 1.984

Pooled Std Dew 1.267
Pooled Variance 1.605
NumberofSamples 3
Confidence Level 95.00%

45 56 46

ANOVA SampleStats Transition Time Transition Time Transition Time

Sample Size
Sample Mean
Sample Std Dew
Sample Variance
Pooling Weight

241
1.727
1.222
1.493

0.4248

221
1.759
1.240
1.538

0.3894

106
3.037
1.414
2.001

0.1858

Sum of Degreesof Mean
OneWayANOVA Table Squares Freedom Squares

Between Variation
Within Variation
Total Variation

Confidence Interval Tests

144.489 2
906.779 565

1051.268 567

Difference
of'Means

72.245
1.605

No Correction
Lower Upper

F-Ratio p-Value

45.014 <0.0001

Bonferroni
Lower Upper

Tukey
Lower Upper Lower

4S-56 -0.032 -0.263847566 0.19965515 -0.315404046 0.25121163 1 -0.308633458 0.244441042 -0.321671657 0.257479242
45-46 -1.309 -1.599375922 -1.019360907 -1.663892335 -0.954844493 -1.655419801 -0.963317027 -1.671735458 -0.94700137
56-46 -1.277 -1.571260992 -0.93283421 -1.636663099 -0.9178813141 -1.62074252 -0.926470161 -1.644613893 0.9099305191

ANOVA Summary

Total Sample Size 263
Grand Mean 1.7725
Pooled Std Dew 1.2403
Pooled Variance 1.5384
Number ofSamples 3
Confidence Level 95.00%

56 67 57

ANOVA Sample Stats Transition Time Transition Time Transition Time

Sample Size 221 23 19
Sample Mean 1.759 1.2232 2.590
Sample Std Dev 1.240 0.7091 1.676
Sample Variance 1.538 0.5028 2.810
Pooling Weight 0.8462 0.0846 0.0692

Sum of Degreesof Mean F-Ratio p-Value
One WayANOVA Table Squares Freedom Squares

Between Variation 19.6781 2 9.8391 6.3956 0.0019
Within Variation 399.9877 260 1.5384
Total Variation 419.6658 262

Difference NoCorrection Bonferroni Tukey Schefle

Confidence Interval Tests ofMeans Lower Upper Lower Upper Lower Upper Lower Upper
56-67 0.5361 0.001017561 1.0724446 -0.118672594 1.190934615 -0.100785118 1.173047139 -0.132897706 1.205159727
56-57 -0.8307 -1.414646486 -0.246832458 -1.545250418 -0.116228S26 -1.525731898 -0.135747046 -1.560772628 -0.100706317
67-57 -1.3669 -2.124043162 -0.609697803 -2.293401856 -0.440339109 -2.268091508 -0.465649458 -2.313530049 -0.420210916

Figure 7:2 Results of the eight ANOVA analyses. The relevant confidence intervals and the p-values are
highlighted.
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Although the conditions for the ANOVA test were not perfectly respected (we had quasi-normality of a

couple of distributions, and the variances were almost equal), we believe the results still hold because

the confidence intervals were far from zero by comfortable margins (very low p-values) and the results

held for all three types of corrections of the confidence interval. The Box-whisker plots (Annex 1) visually

confirm this same conclusion.

As a result, we have gone beyond the ordinality property that we used in the level 1 assumption. We

have showed that the distance (in terms of maturation time) between the TRLs is statistically significant.

This justifies the TRL definitions with respect to the "resolution" of the scale: not only do the TRLs

convey information about order on the scale, their definitions divide the scale in a representative

manner such that we would lose information/precision if a TRL step was omitted from the scale.

7.3.2 Validity of the results across agencies

The above evidence supports that the TRL transition times are statistically distinguishable within the

Army dataset. This property seems to hold across technologies and agencies. In a study of a dataset

from DoE's Nuclear Materials Stabilization Task Group, Crepin, El-Khoury, and Kenley (2012) developed

an algorithm to transform Technology Maturity (TM) scores into TRLs. They used multiple statistical

tests to show that DoE TRL transition times were similar to NASA's TRL transition times (for example, X45

values for NASA are not statistically different from DoE's X4. values). This correspondence also holds

when we compare Army TRL transition times to NASA TRL transition times. This is a powerful result that

generalizes the level-2 assumption across technologies and agencies.

7.3.3 Variance reduction through sample segmentation
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For management purposes however, we have to reduce variance to generate better estimates. One such

way of reducing variance is by performing a relevant segmentation of the population. By creating more

homogenous samples, we should be able to have smaller variances for the transition times, and more

accurate estimates. We performed such an analysis on the NASA dataset by performing a regression of

the log-transition times against TRL and dummies of the A-F criteria accompanying the dataset. Below

are the results of the regression:

Summary

ANOVA Table

Explained

Unexplained

Regression Table

constant

from TRL to n

Criteria B

criteria D

Criteria E

Criteria F

criteria A =2

criteria A =3

Criteria A =4

crieriac=2

crieria c=3

Multiple

R

0.8827

Degrees of

Freedom

10
120

coefficient

-0.846003271
0.356000083
-0.108545754
0.143795292
0.134333456
0.41826962

0.505470867
-0.726645139
0.614766151
-0.7837544

-0.108627858

R-Square

0.7791

Sum of
Squares

135.6640508
38.46732711

Standard
Error

0.333742218
0.023274915
0.155601957
0.12935437

0.155281731
0.152488446
0.178055842
0.217494014
0.199451557
0.215587595
0.216617927

Adjusted

R-Square

0.7607

Mean of

Squares

13.56640508
0.320561059

t-Value

-2.5349
15.2954
-0.6976
1.1116
0.8651
2.7430
2.8388

-3.3410
3.0823

-3.6354
-0.5015

StErr of
Estimate

0.566181119

F-Ratio

42.3208

p-value

0.0125
<0.0001
0.4868
0.2685
0.3887
0.0070
0.0053
0.0011
0.0025
0.0004
0.6170

p-value

< 0.0001

confidence Interval 95%
Lower Upper

-1.506789635 -0.185216906
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-0.416626799 0.199535291
-0.112317359 0.399907943
-0.173113565 0.441780477
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-1.15726815 -0.296022128
0.219865948 1.009666354
-1.210602834 -0.356905965
-0.537516278 0.320260563

Figure 7:3 Regression of Log-transition times against TRL score (time taken from TRL I to reach that TRL score)
and NASA criteria A-F.

The overall regression is satisfying with an adjusted R-square value of 76% (meaning that more than 76%

of the variation in transition times is explained by the independent variables, after adjusting for the

number of those independent variables). Out of the input variables, TRL was, as expected, the most

explanatory variable: the higher TRL reached by the technology, the more time is needed. However, we

can notice that criteria A, C, and F are also explanatory, all remarkably having p-values inferior to 1%.

90



This means that, when compared to Airframe technologies, Flight systems take 40% more time on

average to reach the next TRL, Propulsion technologies take an extra 50% on average, while ground

systems finish 70% earlier on average. Similarly, a program whose main benefit is safety finished 80%

earlier than a program whose main benefit is cost reduction. Finally, a technology that requires NASA

testing takes 40% more time to mature than a technology that does not.

This segmentation of technologies along those important characteristics makes intuitive sense, and the

regression confirms this by showing rather large differences in maturation time across categories.

Although such a segmentation approach appears empirically promising and useful, we chose not to

continue in this direction because we are already handling a small dataset. An 18-point dataset is too

small to segment, and is already a small dataset in itself for typical parametric statistical analysis. Since

data scarcity is typical in technology development projects, we will focus on statistical estimation

techniques that are well-suited to small datasets. When larger datasets become available, program

managers will have interest in segmenting the data to reduce variance using the larger datasets. This

segmentation will eventually lead to small datasets, and once again to the need for small-sample

statistical estimation, further justifying the proposed methodology in the next section.

Section 7.3 can be summarized into 4 important results:

1. The TRL scale does not have an overly high number of steps.

2. The TRL levels are rather regularly placed on the maturity scale. With respect to schedule risk,

the TRLs are placed at points in the maturation process such as no two TRLs are overly close or

overly far.
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3. 1 and 2 provide a justification to study the empirical distributions of TRL transition times for

estimation purposes. Furthermore, those distributions seem to be coherent across different

agencies and domains.

4. Finally, while it is quantitatively attractive to segment the data into coherent subsamples, this

leads to the problem of very small datasets that can no longer be studied with classical

parametric statistics. Thus the need for non-parametric estimation emerges.

7.4 Proposed methodology

7.4.1 The need for non-parametric statistics

We saw that level-2 models consist mainly of building an empirical distribution of a transition variable,

and then using it to do estimations of important statistics.

Classical parametric estimation uses Student's T as the distribution of the population mean. This is true

when one of the below assumptions is verified (Garvey, 2000):

-The sample size is larger than 30 (by using the Central Limit Theorem)

or

-The population itself follows a normal distribution

or

-The sample size is between 15 and 30, and the variable's distribution has limited skewness
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For the NASA dataset, we are in neither of the above cases. The sample is less than 30 in size, and it is

skewed, which also means that the population does not follow a normal distribution. As a result, we

would have to make strong parametric assumptions about the distribution of the transition variable,

assigning it to a specific known distribution with fixed parameters (e.g. "TRL transition time X4.6follows a

lognormal distribution with mean p and standard deviation a).

In consequence, we are faced with the two following choices in building our estimates:

1. Still apply the classic analysis while acknowledging that the result will not be perfectly correct.

2. Apply other (non-parametric) techniques that recognize that we have little data, while trying to

extract the maximum of information out of the little data we have.

In other terms, the tradeoff is between a small yet maybe incorrect confidence interval, or a larger yet

correct one. We opted for the latter through the use of non-parametric estimators.

Since TRL data is typically scarce, and because of its high skewness, we substituted a more robust

measure such as the median for the average (the average is very sensitive to outliers and skewness,

especially in small datasets). However, it is harder to generate median estimators and confidence

intervals.

7.4.2 Different non-parametric techniques to generate median confidence intervals

There are multiple ways of non-parametrically generating median confidence intervals. One simple way

is to use the confidence interval quantile test that is based on the binomial distribution. The confidence

interval generation uses Z-values of the T-distribution (Salter, 2006). However, Conover (1980)
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recommends using a different approach for small datasets by ranking the values in the sample, then

using the below table to determine the confidence interval.

Ranks for non-parametric 95% confidence intervals*
Sample Size Rank Sample size rank

8 1 21 6

9 2 22 6

10 2 23 7

11 2 24 7

12 3 25 8

13 3 26 8

14 3 27 8

15 4 28 9

16 4 29 9

17 5 30 10

18 5 31 10

19 5 32 10

20 6 33 11
* Values takenfrom Siegel & Statistics andDataAnalvsis

Table 7.1 Table to generate 95% median confidence intervals for small datasets (Conover, 1980)

In our case, after ranking the values of our sample of size 19, the 95% median confidence interval would

simply be defined by the 5th value and the 15th one (or the 3rd and 10 th values for a 13 data-point

sample). While this method is accurate, robust to the data distribution, and easy to apply, it has a

relatively large interval size.

Another technique is proposed by Olive (2005) as a modification of large-sample confidence interval

formulation to improve the performance of the interval for small samples. It consists of two simple

calculations that generate the median confidence interval's upper and lower bounds as a function of

sample size and level of confidence.
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7.4.3 The bootstrap

One of the best non-parametric techniques however is the bootstrap. It is a simple yet computationally

intensive technique. It uses resampling with replacement to generate the best possible empirical

distribution of the statistic of interest (Efron and Tibshirani, 1993). The bootstrap is recommended by

Mooney and Duval (1993) especially in cases of asymmetrical data, even more so when the data is

truncated and skewed (which is the case for all maturity variables). The bootstrap is mostly useful when

we want to make inference on small-sized samples, to best characterize the little information contained

in the sample without resorting to parametric assumptions.

For example, if we wanted to calculate the 95% confidence interval for the median of a dataset of size

20, we would generate a subsample of 20 elements (with replacement) and determine its median. This

operation is repeated 1000 times so that we now have 1000 values for the median (500 is usually

considered the minimum number of bootstrap samples for reliable results). The resulting histogram of

the 1000 calculated medians is an empirical distribution of the median (Efron and Tibshirani, 1993) and

is used to generate confidence intervals. To get the 95% median confidence interval, the 1000 medians

are sorted in an increasing order, then the value of the 2 5 th median would be the lower confidence limit,

while the value of the 9 75 th median would constitute the upper confidence limit.

The below graph compares the 95% median confidence intervals generated with the techniques above:
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Comparison of different 95% confidence intervals

-4-5

TRL transition

-Binomial distribution CI

-Olive's modified CI

-Boosrap Cl

Figure 7:4 Comparison of 95% confidence intervals (of the median of log-transition time) generated using three
different techniques

We can see clearly that the bootstrap confidence intervals (area highlighted in green) are the narrowest

(except for the last transition where the Cl generated by Olive's method was unrealistically reduced to

the number zero because this value appears many times in the X8-9 sample). This reduced bootstrap

interval size is not at the expense of Cl accuracy. This performance is just a result of the method making

better use of the available information.

We now present the bootstrap-generated empirical distributions of the mean (figure 7.5) and median

(figure 7.6) that we obtained for the NASA log- transition times, along with some summary statistics:
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Sumasry Statistics Notes Su ry Statistics Notes
Ave 0.014 0.020
SD 0.2034 Sample size : 19 SD 0.2872 San size : 19
Max 0.798 MAax 1.150
Mm -0.6721 Min -1.136

Histogram of Mean(In(XI-2)) Histogram of Mean(in(Xs-))
(in In(years)) (in In(years))

-0.675 -0175 0.325 -1.15 -0.65 -0.15 0.35 0.85

Summary Statistics Notes Summary Statistics Notes
Ave -0.281 Ave 0.069
SD 0.2172 Sample size : 19 SD 03569 Sample size: 12
Max 0.571 Max 1.391
Min -1.129 Min -1.410

Histogram of Mean(In(X2-3)) Histogram of Mean(in(X&-7))
(in In(years)) (in In(years))

-1.15 -0.65 -0.15 0.35

Sum ary Statistics Notes
Aeae -. 139

SD 0.2293 Sample size : 19
-Max 0.926
Min -0.9521

Histogram of Mean(n(X-4))
(in In(years))

-1 -0.5 0 0.5

Sumary Statistics Notes
Averg 018

SD 0.1742 Sample size : 19
Max 0.843

Min -0.522

Histogram of Mean(in(X4-s))
(in In(years))

-0.525 -0.025 0.475

-145 -0.95 -045 0.05 0.55 1.05

Sum ary Statistics Notes
Averg 0.4891

SD 0.3029 Sanqe size : 12
Max 1.690
Ms 1-0.7511

Histogram of Mean(n(X-s))
(in In(years))

-0.8 -0.3 0.2 0.7 1.2 1.7

Sumary Statistics Notes
Averg 0.193

SD 0.3518 Samle size: 12
Mlax 1.517
Mi -1.150

Histogram of Mean(n(Xs-))
(in In(years))

-1.2 -0.7 -0.2 0.3 0.8 1.3

Figure 7:5 Bootstrap-generated histograms for the means of NASA log- transition times
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Sun ray Statistics Notes Sumnmruy Statistics Notes
Ave -0.034 Ave -0.051
SD .3932 Sanple size: 19 SD 93 Sanle sie: 19
Max 1.099 Max 1.386
Mm -0.916 Mi -1.609

Histogram of Median(in(X.2)) Histogram of Median(In(X5-s))
(in In(years)) (in In(years))

-0.95 -0A5 0.05 0.55 1.05 -1.65 -0.65 0.35 1.35

Sunry Statistics Notes Sumnry Statistics Notes
Ave -0 171 Ave 0.198
SD 03070 Sanple size: 19 SD 0.3323 Sanple siz: 12
Max 0642 Max 1.824
Min -, 204 Mm -2.134

Histogram of Median(n(X2-3)) Histogram of Median(In(X.7))
(in In(years)) (in In(years))

-1.25 -0.75 -0.25 0.25 -2.2 -1.2 -0.2 0.8 1.8

Sumnary Statistics Notes Sumuary Statistics Notes
Ave -0.067 Ave 0.446
SD 0.2565 Sanle size: 19 SD 03521 Sanle si: 12
Max 0.916 Max 2.485
Mm -1.204 1 M -0.693

Histogram of Median(n(X3.4))
(in In(years))

-1.25 -0.75 -0.25 0.25 0.75

Histogram of Median(in(X-s))
(in In(years))

-0.7 0.3 1.3 2.3

Sumn ryStatistics Notes Sunmu ryStatistics Notes
Ave 0.143 Ave 0.145
SD 02347 Sanle size: 19 SD 0.3307 Sample size: 12
Max 1.099 Max E2.398

Mi -0.693 Mi -2.303

Histogram of Median(in(X4.s)) Histogram of Median(In(Xs.9))
(in In(years)) (in In(years))

0 .
-0.7 -0.2 0.3 0.8 -24 1.4 ,-04 0.6 1.6

Figure 7:6 Bootstrap-generated histograms for the medians of NASA log- transition times
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The mean histograms were included (1) to show how they compare to median histograms, and (2) as a

test of the parametric normality assumption. Although the graphs approach a normal shape, they do

present some irregularities and skewness.

As for the median histograms, we can make two observations. First, we can see that the histograms are

very discontinuous and peak only at certain values (especially when compared to the average

histograms). This comes from the fact that the median itself is a discrete statistic (it can only take a

couple of predefined values that appear in the sample). Second, the last three transition variables

appear to have a smoother median distribution. This can be attributed to two factors: (1) the sample

size is smaller (12 data points), hence there are more chances of the bootstrap sample taking extreme

values, and (2) the size of the sample is even, meaning that averages were sometimes taken to generate

the median, which gives rise to new intermediary values.

Nevertheless, though they might look unnatural (for example, a 95% confidence interval could be

exactly the same as a 50% confidence interval), those distributions contain the most information that we

can get out of the dataset. One way of overcoming this discrepancy in shape is by using the smoothed

bootstrap (De Angelis and Young, 1992), which is a procedure that might also improve some second

order properties of the estimator. It consists of adding a random noise to each of the bootstrap samples.

This would eliminate the discreteness of the median leading to smoother distributions that a project

manager would be more familiar with.

Another modification of the bootstrap that we can use is the iterated bootstrap - or "bootstrap within

the bootstrap". To illustrate how it works using the earlier example, for each of the 1000 bootstrap

samples, we would take another 500 bootstrap resamples. Those second order samples are used to find
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the mean and variance of each of the 1000 medians generated at the first level in order to "Studentize"

them. This T-bootstrap technique would need much more computing resources, but leads to better and

less biased confidence intervals according to DiCiccio and Efron (1991).

Ideally, we would have preferred to use an iterated and smoothed version of the bootstrap. This was not

possible however, due to limited computing resources. As a result, the regular bootstrap (with 10,000

repetitions) was performed to generate empirical distributions for the mean and median of NASA

transition times.

7.4.4 Implementing the bootstrap in Excel User Defined Functions

We saved the mean distributions in two Excel User-Defined Functions (UDFs). The user inputs the

starting TRL and the ending TRL. If he is using the "TransTime" function, he would enter the percentile

rank and the function returns the corresponding percentile of the TRL transition time. If he is using the

"TransTimelnv" function, he would enter the time value and get the corresponding percentile rank. Thus

the functions can be used to get any information about the distribution of the particular NASA transition

time, including estimations and confidence intervals. Additionally, the functions are used in a fashion

similar to the operation of other Excel-defined distributions (Gaussian, T, F, Chi-squared, etc.), so the

manager would quickly get familiar to the way they are used.

TYPE i$ =TransTime(B4,C4,3)

1 Starting TRL Ending TRL Transition Time Std error
2 1 3 2. 15645 1.56741

3 4 9, 7.2546121 4.85642

4Z21 5I =TransTime(B4,C4,3)

6
7

Figure 7:7 Snapshot of the Transition Time user defined function in excel
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Finally, if the project manager has his own dataset and would like to determine percentile values or a

confidence interval for the median for his particular dataset (as opposed to using the NASA dataset), we

developed a "Bootstrap" Excel function. The user simply selects the data range, specifies the number of

iterations, and selects the percentile rank (or the percentile value when using the "Bootstraplnv"

function). The function performs the Bootstrap procedure and returns the percentile value (resp. the

percentile rank) from the empirical distribution of the median.

The VBA code of those four Excel functions can be found in Annex 2.

By now we have a clear answer to the second research question:

* If it makes statistical sense to look at TRL transition distributions separately, is there a way to

improve the accuracy and fidelity of the estimates and confidence intervals?

Not only did we answer this question by introducing and explaining the best non-parametrical approach

for small datasets (the bootstrap), we also implemented the solution in a practical Excel tool for

program managers.

In summary, the level-2 assumption is made whenever we want to study the statistics of maturity

variables on each of the TRL transitions.

The ANOVA test was in line with the theoretical evidence in supporting the assumption that the TRL

transition variables are significantly differentiated.
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While classical parametric estimators could be used, we recommend using the median bootstrap as a

robust and accurate estimator better suited to small and skewed datasets (the datasets are small either

from the start, or after undergoing segmentation for variance reduction).

Although the iterated and smoothed version of the bootstrap would have been most suitable in our

case, limited computational resources prevented us from implementing it. We then programmed the

bootstrap results in two static ("TransTime", and "TransTimelnv") and two dynamic ("Bootstrap", and

"Bootstrapinv") Excel User-Defined Functions.

As a final note, we recommend complementing those models with other techniques from the classical

statistical analysis toolbox, such as distribution fitting, or careful outlier analysis (especially for small

datasets).
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Chapter 8

Chapter 8. Level-3 assumption

8.1 Definition and Literature review

This level builds on the previous one: not only are maturity variables well-defined and differentiated,

they are also related in a consistent (predictable) manner. It is clearly a stronger assumption because it

means that if we pick any technology, we should expect some form of stable relation between separate

transitions in the same technology. For management purposes, this means that for any project, we can

use early transition information to make predictions on later transition variables (while level-2 models

do not use any past information).

This assumption is made whenever we make statements such as: (1) "if a technology is already maturing

quickly or cheaply relative to the average, then it is more likely to continue doing so for the remainder of

its development" or (2) "high research and development costs are related to high development and

engineering costs".
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Figure 8: 1The TRL framework, the third-level assumption

This level is absent in the literature. It is only briefly described in El-Khoury and Kenley (2012). However,

here we will explain the details of the methodology, and evaluate results from applying it to the NASA

dataset.

By the end of this chapter, we will have answered the question:

e If we use historical data of a technology's development, can we significantly improve the

accuracy of the technology schedule forecast over level-2 models?

8.2 Theoretical evidence

Many theoretical reasons partially support this assumption. We identified three lines of reasoning each

supporting a different kind of relation between transition variables:
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The first line of reasoning argues for a positive correlation between transition variables within a single

project. The argument is that some factors make technologies take longer or cost more than average,

irrespective of the TRL transition. Are the performance requirements set too high that the technology

will need more than average time or cost to develop? Do the contract terms encourage the contractor

to deliver early? Is the contractor more costly than average? Is there a relationship between system

complexity and the total time necessary for TRL transitions? We can see that in all those cases, a third

factor would impact schedule (or cost) in the same way throughout many transitions in the project.

The second line of reasoning argues for a negative correlation between transition variables. One

argument could be that a project that has spent an overly long period to achieve one transition might

have already done some work for the next transition making it shorter. Another argument could be that

if a project was having high cost or schedule problems, then this would alert officials in the agency to

put another more efficient manager in charge and make sure he compensates the earlier higher-than-

average time or cost with lower-than-average time or cost later.

The third class of arguments is that cost (or schedule) has similar evolution patterns, independently of

the technology. For example, Smoker and Smith (2007) present a model where cost grows exponentially

relative to the initial estimate. As a result, if a project is having cost overruns in early TRLs, we could

adjust our estimates for future overruns based on this assumed stable evolution pattern. Similarly, if we

know for example that, for technical reasons, TRL transition 7-8 always takes 50% more time than

transition 6-7, then this property can help use past data for more informed forecasts.
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Those three arguments might be partially true, and the reality might well be some mix of the 3 cases.

The question however is "how do all those effects and relations add up? Can we detect any trends in the

data?"

8.3 Empirical evidence

Ideally, we would empirically test each of the three above hypotheses by controlling all the variables

that were mentioned. But since we are far from having all the required data, we cannot look at the

causes, and we can only look at the consequences. So we will try to identify relevant relations in the

NASA dataset without looking for root causes.

"Relation" between random variables can be defined in many ways. We will first try to graphically

detect trends or relations, and then we will do so using the correlation matrix.

Although the NASA dataset might not look prone to forecasting, we can still detect some minor trends:
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Figure 8:2 Log-transition times of NASA technologies

By looking at each curve (i.e. each technology), we can identify some trends before TRL 6. There is only a

minor variation from transition 1-2 to 2-3, and almost all the technologies that have a decreasing

transition time decrease in their log-transition time to 0. Afterwards, all the technologies tend to

increase in transition time after 2-3 or 3-4, and then they mostly decrease again after 4-5. The

technologies become less predictable after transition 5-6 since some technologies evolve at a constant

pace while others show extreme oscillation. Finally, transition 8-9 appears to be more predictable as

most technologies converge towards a log-transition time near zero.

Correlation analysis (table 8.1) confirms our intuition of a well-behaving group before TRL6. In the below

correlation table, we highlighted correlation factors larger than 0.5. We can clearly see a cluster of

highly correlated transition times 1-2, 2-3, 3-4, and 4-5, as expected. The rest of the transitions do not

show any correlations except for a (minor) positive correlation between 6-7 and 8-9.
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In(12) In(231 In(34) In(45) In(56) In(67) In(78) In(89)
Cordation rable logdata logdata log data logdata logdata ilogdata Ilogdata log data

ln(121 0.312 1 0.149 -0.074 -0.135 -0.606
n2 0.385 0.043 -0.170 -0.350

5n(34) .75 0.351 0.113 -0.256 -0.265
in(45) 0.312 .51) 0.490 0.344 0.006 0.073
In(ss) 0.149 0.385 0.351 0.490 1.OW 0.325 0.331 0.307
In(67) -0.074 0.043 0.113 0.344 0.325 1.(O50 -0.092 11.II
in(78) -0.135 -0.170 -0.256 0.006 0.331 -0.092 &lOp 0.180
in(8a) -0.606 -0.350 -0.265 0.073 0.307 0.633 0.180 i 0

Table 8.1 Correlation table of the NASA log-transition times (modified dataset)

In simple terms, this initial cluster of positive correlation means that if a technology is maturing fast

(resp. slow) in early TRL stages, then it is likely to keep maturing fast (resp. slow) in later stages. This

phenomenon is true up to TRL 5.

For later TRLs however, we can see that transitions 6-7, 7-8, and 8-9 are very uncorrelated with all the

early TRL transition times, as if they were independent of them. This might be due to the fact that a

technology changes hands after TRL 6, going from NASA to industry (Peisen and Schulz, 1999).

In summary, both the visual inspection and the correlation table show that there is indeed a relation (of

positive correlation) between the TRL transition times. This correlation however, is limited to TRLs 1-to-

5. As for later TRLs, they do not have a linear correlation with earlier variables, and we doubt the

presence of other types of relations due to the fact that those transitions are handled separately by a

different organization.

We further test those relations in the next section. In it, we develop several models to try to detect any

kind of relation that would improve forecasts for transition times.
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8.4 Proposed methodology

We try to exploit the effects identified above by developing several forecasting methods, and then

comparing their performance. After a brief overview of the general forecasting approaches, we will

present the Excel-based comparison methodology that we used to comparatively evaluate the accuracy

of the forecasting techniques. Then, we will present the twelve forecasting techniques that were tested.

And finally, we will discuss the major results of the comparison and make recommendations.

8.3.1 Overview of the forecasting approaches

This section briefly introduces the proposed forecasting techniques. The below graph summarizes all

those forecasting approaches:
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Figure 8:3 The forecasting techniques proposed for level 3

Fixed estimates methods give the same forecast for all the technologies, they do not use past transitions

to forecast future ones, they constitute the reference measures. As a result, they are models that use
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the level-2 assumption, and they do not make use of the level-3 assumption. They will be used only as a

reference to evaluate the performance of the other "smarter" level-3 techniques.

On the other end of the spectrum, extrapolation techniques do not use training data; they are only

based on the past transitions of the forecasted technology itself.

Influence diagram methods use a probabilistic approach by assuming a multivariate normal distribution

of the variables, and mapping the relations between them.

Regression techniques are related to the influence diagram and extrapolation techniques. The

forecasted transition is regressed against the known steps (using the training data), and the results are

applied to the known past transitions in order to generate the forecast.

Finally, the closest neighbor technique tries to forecast the transitions by imitating the variations of the

technology in the training set that correlates the most with the technology being forecasted.

8.3.2 The comparison technique

Since a method's performance cannot be easily summarized by one number, we were faced with many

comparison issues:

1- We would like to measure the forecasting error at all stages of the technology development.

For example, at an early stage, when we only know the 1-2 transition, the method will have to

predict all 7 future transitions; while when we're at a later stage, we'll have to forecast only one

or two transitions. Classical error measures such as the Root Mean Squares Error (RMSE) and

the Mean Absolute Error (MAE) are normally used to compare different methods for the same
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forecasted span. Averaging on the number of forecasted values is not enough to make the MAEs

of predicting 7 future steps and 1 future step comparable. Hence the comparison of each

"forecasted span" (number of forecasted values) should be done independently.

2- Furthermore, the error on one technology is not comparable to another one. One technology

might be easy to forecast with many methods, while another one can be highly variable or

random, making it hard to predict.

3- It would be helpful to have an idea about the robustness of the method with respect to the

training and validation data, by having an idea of the sensitivity of the results with respect to the

different forecasted technologies, but also to the different training subsets.

4- If we wanted to create some "aggregated error score" for every method; we run into the

problem of considering the early forecasts (some methods cannot produce any forecast with

only one or two known transitions), the problem of the importance of far forecasts vs. closer

ones, and the problem of the inclusion or not of the outliers in the comparison.

We took the following measures to address those problems:

First of all, because the dataset size was a major issue, we took extra care by evaluating all methods 5

times with 5 different (random) 12-point training sets. Then we evaluated the forecasting errors (of each

of the 5 forecasts) on the full dataset.

Although it is somehow optimistic (in error terms) to include the training data in the validation set, (1) it

was necessary due to the small number of complete data points, (2) it was impossible to compare

forecasts between the complete and the incomplete data points, (3) it helped solve the problem of
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cross-technology comparison, and finally (4) it did not prevent us from achieving the main goal that is

more comparative than purely predictive.

For every method, we created an Excel sheet for a thorough evaluation of the technique (refer to figure

8.5). Every sheet contained 90 forecast evaluation tables (1 set of forecasts for each of the 18

technologies, repeated 5 times for each of the 5 training data samples).

The two tables in figure 8.4 show how a single forecast was performed. On top (in blue), we have the

name of the technology and the training subset, while the left column (in grey) shows the 8 variables

(TRL transitions). The upper table is the forecast table: the known values (i.e. past values) are in green,

and the forecasted ones are in yellow. The different columns correspond to different known transitions:

the first column makes forecasts for 7 transitions knowing only the 1" one, while the last column makes

forecasts for the last transition knowing all the previous ones.

The lower red table shows the absolute errors of every forecast. The errors are in years (we took the

difference of exponentials of the above forecasted and actual values). We aggregated those errors in 3

different ways: RMSE, MAE, and OFE (Objective Function of Error, which we will explain later).
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12 0 0 0 0 0 0
23 0.05102 0 0 0 0 0 0
34 0.42836 0.47588 0 0 0 0 0
45 0.3454 0.39797 0.26738 0 0 0 0
56 0.2956 0.35446 0.54311 0.45126 0 0 0
67 4.7764 4.81893 4.17579 1.66776 1.68155 0 0
78 1.44242 1.37866 0.15711 0.05521 0.05019 0.25146 0

89 3.60575 3.68157 3.02273 1.97874 1.29705 0.4819 0.4819
SSE 38.2888 39.1872 26.9652 6.90352 4.51247 0.29547 0.23223
MSE 5.46982 6.53121 5.39305 1.72588 1.50416 0.14773 0.23223
RMSE 2.33877 2.55562 2.32229 1.31373 1.22644 0.4819
MAE 1.56357 1.85124 1.63322 1.03824 1.0096 0.4819

0 0 0.92091 0.80909 1.16052 0.32828 0.4819
OFE

Figure 8:4 Excel table example, showing the series of forecasts generated for one technology (for one forecasting
method, for one of the training sets), and different measures of error of those forecasts

We can see that problem 1 is now addressed: the forecasts were classified by "forecasted span" (i.e. the

table columns), thus the numbers obtained in MAE, RMSE, and OFE are not to be compared with each

other, but should be compared across different training sets and different technologies, which means

that they can now be averaged across those so that we can compare their values between different

forecasting methods.

We addressed problem 2 by averaging those error measures across all technologies for every method

and for every training subset (see "average of errors across subset" figure 8.5).
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We addressed problem 3 by creating different horizontal and (more importantly) vertical comparisons.

On every "line" of forecast tables, we added a graph that compared the MAEs of different technologies

at every step. At the end of every column of tables, we added a table of the average of errors (across

technologies) and a table of standard deviations of errors. Then we added a table of total OFE per

transition per training set (which are summarized in the final comparison graph, at the bottom of figure

8.5). Finally, we included a grand Total OFE table with the best and median forecasts (with respect to the

5 training sets), along with the standard deviation of the grand total OFE.

This annotated picture shows the top and bottom of an excel sheet used to evaluate one method:

ZmninnnmZ!nimn

Figure 8:5 Annotated extract of one Excel sheet used to evaluate one forecasting method (only the top and bottom of
the Excel sheet are visible)
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As to how we addressed problem 4, it was mainly through a "customizable" Objective Function of Error

(OFE). The "raw" error data corresponds to the 28 error values that appear in the red tables of the

forecasts. The OFE's purpose is to aggregate this data in a way that reflects the user's needs. We added

a worksheet of "control parameters" (figure 8.6) where the user can input the relative weight of forecast

spans, he can choose whether to consider or not a particular column, and it also allows dropping a

technology (mainly the outliers) out of the final total OFE.

weights for the objective error function

Consider outliers in forecast summarv? I

Figure 8:6 The Objective Function of Error (OFE) control parameters Excel sheet

The final "comparison of total OFEs" graph (figure 8.5) measures how "wrong" the forecasted values are

at each step. Hence the value of the graph for point 23, means "now that we knew X2 3 (TRL 3 has just

started), how wrong were the method's forecasts for the rest of the steps? ". "Wrong" is defined in the

sense of the Objective Function of Error, i.e. the weighted sum of the errors (in years), by giving more

weight to the next (close) steps than the further ones.
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For example, in this case, we gave a weight of 1 for the forecast of the next transition, of 0.5 for the one

after, then 0.1 and 0.05, and 0 for forecasts further in the future. We also decided to drop the first two

forecasted columns because they did not have enough past data for a reliable forecast. And finally, we

considered the extreme outlier a very rare case, and we took it out of the OFE to prevent it from having

a disproportional weight in the final comparison results. The advantage of this approach is that all those

parameters can be changed dynamically to test the best methods for different user objectives.

Finally, for each method, the subset that had the median grand total OFE score was taken out to be

compared with the medians of other methods in the final graph of OFEs per step (see section 8.4.4 for

the analysis of the results).

8.3.3 Forecasting methods

In this section, we present in greater detail the twelve forecasting methods that were used. We also

present their summary performance measures (the best OFE, the median OFE, and the OFE standard

deviation)

Mean

We simply took the mean of each subset for each transition and used it as a (fixed) forecast. This is

equivalent to using the assumption at level 2 of our framework since we do not take past transitions into

account (i.e. the forecasts do not change as the technology matures). We got a median OFE of 13.2

years, and a very small standard deviation of 0.14 years.

Median
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It is the same as the previous method, but with medians instead of means. We got a median OFE of

12.91 years, and also a low standard deviation of 0.17

Influence diagram

For a set of correlated random variables, an influence diagram is defined by the vector of means m, the

vector of conditional variances v, and a triangular matrix B containing the arc coefficients that indicate

the influence a preceding variable has on the succeeding one(s) (Shachter and Kenley, 1989). Whenever

a value is realized (known transitions), the means get updated and propagated through the influence

diagram (through the arc coefficients) resulting in new means (and normal distributions), and thus new

forecasts of the remaining variables. This process is equivalent to Bayesian updating in Bayesian nets.

The Matlab algorithms that generate the B matrix (from the covariance matrix) and that update the

means are included in Annex 3.

The method tended to have some good results (better than the median method) for the first three

transitions. Then at transitions 56 and 67, those results either stayed reasonably good for most subsets,

or completely "exploded" by diverging to OFE's of more than 8000 years in one of the subsets.

In summary, the method produced a median score of 14.1 and a best score of 9.72. However it had a

very large standard deviation due to the explosive behavior of subset 1. This behavior came from wrong

forecasts for only 1 or 2 technologies, and was facilitated by the fact that the errors were differences of

exponentials.

In the other influence diagram methods, we tried to correct this behavior either by (1) cutting the data

in two parts (in methods ID(frag4-3) and ID (frag5-2)) thus making the influence diagram "forget" the
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past data at TRL 5 or TRL 6, and looking back only as far as those steps when forecasting for further

transitions, or by (2) simply bounding the full Influence diagram making sure it does not predict values

higher or lower than some pre-fixed limits (the code is in Annex 3).

None of those techniques was better than the fixed estimates in terms of the median subset.

ID (frag4-3) had a median of 13.99 and reduced the "explosion" of subset 1 to a few hundred (instead of

a few thousands).

ID (frag 5-2) had a median of 14.85 and did not reduce the "explosion".

ID (bounded) had the best forecast: it had a median of 13.86, the same best score as ID (full), and

significantly reduced the explosion. The standard deviation, however, was still 3.03 (because of the

subset 1 score that was still relatively high).

Note however that all those scores go down by more than 2.5 if we add the early forecasts (i.e the first

two columns) to the OFE, and become better than the fixed forecasts for the median subset (and much

better for the best subset).

Moving average

This method does not need a training set. We used it with a past span of two and included the

parameter alpha in the "control parameters" worksheet; it got scores of around 13.7 for typical values

of alpha. By using Excel's data table to vary the parameter, we were able to go down to 12.99 for the

optimal alpha value (0.125). Theoretically, we should have used training sets to produce an optimized
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alpha value for each set, and then test the scores of those subsets (but such a procedure was not

programmable in Excel, and it would not have improved the already bad OFE of 12.99 years)

Exponential smoothing

This method (Albright et al, 2006) also performed poorly since even the optimized alpha value (for the

full dataset), gave a score of 14.00.

Exponential smoothing with trend (Holt-Winters method)

This method (Albright et al, 2006) also did not perform very well, the best results were obtained for high

alpha and beta values (very reactive case) and achieved best scores of around 50, which indicated no

need for further testing. It probably did not perform very well because we had to use the cumulative

transition times (so that there is a trend to follow), which reduces the "visibility" of the variations.

Autoregression

This method consisted of regressing the variable that is being forecasted against all the already known

transitions in the training data, then generating the forecast by applying the resulting linear function to

the known transitions of the particular technology (Matlab code available in Annex 3).

For example, if we already know transitions 1-2, 2-3, and 3-4, and we want to forecast transition 7-8; we

would use the training set to regress 7-8 against 1-2, 2-3, and 3-4, then we would get the forecast by

multiplying the regression coefficients by the (known) values of 1-2, 2-3 and 3-4 transitions. Hence for
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each subset of the training data, we had to run 28 regressions, and apply them to all of the 18

technologies.

Note that there are very few data points to perform the regression (especially for training subset 4 that

had very few post-step-6 points). We still performed the regression with very few degrees of freedom,

because we were mainly interested in the result.

The regressions had good R2 values, but often very high coefficient p-values (we still ran the test to see

the results). Ideally, if enough data is available, a stepwise partial autoregression should be run

(meaning the regression should be made only against the significant past known variables with low p-

values).

As for the results, the method had a best score of 8.78, but a median score of 22.64 because two of the

subsets had an "explosive" behavior at transition 7-8 (One possible explanation can be the collinearity

introduced by the high correlation between the coefficients of the first 5 variables).

We addressed this issue by creating a boundedfull autoregression method. The result was the best of all

the forecasting techniques. It had the same best score as the unbounded full autoregression, and the

median score went down to 11.24, with a relatively small standard deviation of 2.70.

Closest neighbor

This method consisted of generating the forecasts progressively by assuming an evolution similar to the

technology in the subset that, so far, correlates the best with the technology being forecasted (code in

Annex 3).
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For example, if we already have transitions 1-2, 2-3, and 3-4 for technology ti and we want to forecast 4-

5, we would calculate the correlation between those 3 variables and the rest of technologies in the

subset. If technology tjwas the one with highest correlation, the forecast for technology tjwould be X4 .

,=X3-4* (X4-,/X 34 ,) (i.e. same growth rate), or X4.s,i=X3-4,1+ (X4 5,J-X34 ,) (i.e. same absolute growth) if X3-

4,j is equal to 0.

This method did not perform very well; it had a median of 21.53 and had a large OFE for transition 7-8

(where the different technologies oscillate the most).

8.3.4 Analysis of the results

Although the Excel file generates a rich set of graphs that allows to compare and evaluate the methods

thoroughly and under different settings of the OFE, we will limit the comparison to the general results.

Figure 8.7 compares the total OFE of all the methods using the median subsets (for the OFE settings

visible in figure 8.6). Each curve corresponds to one forecasting technique. The graph shows the total

OFE (weighted average of forecast error over a few next steps, averaged across technologies, and with

the median result taken with respect to the training datasets), at transitions 3-4 to 8-9.
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Total OFE (per step)
50

45
- Closest neighbour

40 - Autoregression

35 -- --- --- - Autoregression (bounded)

30 ----- - exp smoothing

25 - ------ moving avg

- ID fragS-2
20 - ID frag4-3

15 -- --- - - - - -ID (full)

10 - ID (bounded)

- Regression
- Median

0 - - ---- Mean
23 34 45 56 67 78 89

TRL transition

Figure 8:7 Total OFE for all the 12 forecasting methods (with the original OFE settings)

In figure 8.8, we removed the worst techniques ("closest neighbor", "autoregression", and "regression")

for a better visibility, and included the 2-3 and 3-4 transition forecasts in the OFE.

Total OFE (per step)
30

25

-- Autoregression (bounded)
20 - exp smoothing

-- moving avg

~IIw
a -

-ID frag4-3

- ID (full)

-ID (bounded)

- Median

- Mean

U -
23 34 45 56 67 78 89

TRL transition

Figure 8:8 Total OFE for the 9 best forecasting methods (with the 2-3 transition OFE included)

The bounded Autoregression (orange curve) method seems to be the best overall forecasting method.

As for the rest of the methods they perform better than fixed estimates in early stages and worse in the

later stages.
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This conclusion on the other methods holds if we add the "extreme" outlier to the comparison (figure

8.9), but not if we change the weighting function by giving equal importance to all future forecasts

making far forecasts weigh as much as closer ones (figure 8.10 and figure 8.11). Meanwhile, the

bounded Autoregression always has the smallest error for most transitions.

Total OFE (per step)
40,

35

30 - Autoregression (bounded)

- exp smoothing
25

- moving avg

20 -- ID frag5-2

- ID frag4-3
15

-ID (full)

10 - ID (bounded)

-Median

50Mean

0
23 34 45 56

TRL transition

67 78 89

Figure 8:9 Total OFE for the 9 best forecasting methods (with the extreme outlier included in the validation dataset)

Figure 8:10 OFE control parameters for figure 8.11
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Total OFE (per step)
25

Figure 8:11 Total

20 r

15

U

- Autoregression (bounded)

- exp smoothing

- moving avg

- ID frag5-2

- ID frag4-3

-- ID (full)

-ID (bounded)

5 -- Median

-Mean

0
23 34 45 56 67 78 89

TRL transition

OFE for the 9 best forecasting methods (with equal weight given to close and far forecast errors)

Overall, the autoregression method can be considered the best method. Not only does it consistently

outperform the other techniques for different OFE settings, its results also have a lower standard

deviation.

We can now answer the research question: yes, we can improve the accuracy of forecasting models by

using past data, in this case we went from an OFE of 13.2 for the best fixed estimate (the median) down

to 11.2 for the autoregression (a 15% reduction in median forecast error).

However, we can notice that most of the proposed techniques outperform the fixed estimates in the

well-behaved TRL1 to TRL5 area. Then, all methods experience an increase in forecast error for the last

transitions. While this poor performance can be attributed to the lack of data for those late transitions

(only 11 data points available, of which only subsamples were taken for training), it is also a result of the

high oscillation in transition times seen at those stages, or simply the higher variance of X6.7 , X7 .8, and

X8-9.
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The below standard deviations graph shows how the standard deviation increases after transition 4-5,

making it harder to do forecasting. This shape of the variance also supports the GAO recommendations

because getting to TRL 7 means getting past the 6-7 transition which is the transition with the highest

standard deviation (i.e. highest uncertainty). Hence it would make sense to wait for that uncertainty to

pass before committing agency money to the project.

Standard Deviations of NASA log-
Transition Times

"a II I I I I

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9

TRL Transition

Figure 8:12 Standard deviations of the log-transition times of the NASA TRL data.

We finish this chapter with word of caution on the robustness of those methods. Although extra care

was taken by resampling the dataset many times and looking only at median performances of the

techniques, it is still possible that the methods have overlearned the dataset or got "lucky" for this

specific sample. More data is needed to properly validate the approach to make sure that the

improvement remains as the dataset gets larger. As a result, it might be better to use the robust median

bootstrap technique of level 2 until level-3 forecasting techniques are validated for larger datasets.
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Chapter 9

Chapter 9. Level-4 assumption

9.1 Definition and Literature review

So far, we have not used what is measured by the TRL numbers; we have just used the fact that TRLs are

ordered placeholders, defining distinguishable intervals, and that those intervals can be related. The

fourth level in our framework gives meaning to the TRL numbers by stating that those numbers are a

measure of maturity and risk.

Figure 9:1 The TRL framework, the fourth-level assumption
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This assumption can be decomposed into two parts. The first part is that TRL measures maturity. This

part alone is of little use to managers since they are interested in the operational dimensions of maturity

(cost risk, schedule risk, performance risk). So the second part of the assumption extends the first part

to claim that the TRL numbers are also measures of those operational dimensions of maturity

More specifically, risk analysts would like to use a direct relation between TRL and risk in the form of

Risk = f(TRL). Many such models (for both cost and schedule) are available in the literature. Lee and

Thomas (2001) regressed cost growth measures against a system TRL (average of the components

weighted by their cost), while Dubos and Saleh (2008) regressed Relative Schedule Slippage against a

truncated value of the cost-weighted TRL. We found similar regressions against other maturity scales.

Kenley and Creque (1999) performed a regression of Time-To-Maturity against a maturity scale called

Technology Maturity (TM), while Hoy and Hudak (1994) regressed cost uncertainty against a cost-

weighted risk score.

In 2009, Boeing filed a patent on "systems, methods, and computer products for modeling a monetary

measure for a good based upon technology maturity levels". The patent has a broad scope, as it

concerns any association of a TRL level with a component cost uncertainty, that is used to create

component cost distributions, which are then added to generate the good's (i.e. the system's) cost

distribution (Mathews et al, 2009).

The below table summarizes the literature's regression models in greater detail.
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Paper Lee & Thomas (2001) Dubos & Saleh (2008) Hoy & Hudak (1994) Kenley & Creque (1999)
Data Used 28 NASA programs (SAIC) 28 NASA programs (SAIC) 45 programs of DOD Selected 20 Technology Maturity (TM)

Acquisition Reports. assessments for 14
Of which, only 20 were used stabilization technologies for

nuclear materials.
Dependent -Annual cost growth (ACG) -Relative Schedule Slippage: -Cost Uncertainty factor: Y -Years until operational
variables -Annual relative cost RSS= (total duration-initial (for both Development and technology (Y)

growth (RCG) estimation)/initial estimation Production, the Ymean, Ymin and Ymax (schedule estimation,
(cost estimation, and cost -RSS' upper bound were calculated) schedule risk, and
uncertainty) (schedule slippage, and (cost estimation, and cost programmatic risk)

schedule slippage uncertainty)
uncertainty)

Independent -WTRL (TRL weighted by -Floor(WRTL) -Cost-weighted risk score X. Which is -Technology maturity : TM
variables component costs) composed of 19 risk scales grouped (weighted average of 7

-Initial Cost Estimation (ICE) into Hardware, Software, and maturity parameters
Integration/Schedule Technical forms

Probability Johnson's four parameter Normal distribution. The output Y (cost uncertainty factor) Years until operational
modeland families (bounded, Because not enough points, it was modeled as a triangular random technology (Y) variable is
iustification unbounded, lognormal) at is just to illustrate the variable. assumed to be normal

each TRL. concept In order to avoid negative cost
Because of asymmetry and uncertainties with a normal
skewness. distribution.

Regression Linear Exponential Linear Linear
type and ACG=5.9%*lCE RSS=8.29*exp(-0.56*WTRL). Ymeandevelopment =1+0.057*X (R 2=0.99) Y= 0.3825*TM (R2=0.8893)
result (28 points, R 2=0.933) (6 data points only, R=0.94) Ymean,production=1+0.032*X (R2=0.94)

RCG=1.6%*WTRL (Ymean was considered
(28 points, R2=0.617) heteroscedastic)

Table 9.1 Summary of regressions against maturity scales found in the literature
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While those models cannot be more valid than the assumptions they make, there is still room for

improvement by correcting for the ordinality of the TRL scale, and by being more careful with the

relationship between TRL and risk. Those other considerations will be looked at in section 9.4, which will

allow us to answer the research question:

e Out of the available methodologies, what is the best one to use in performing regression of cost

or schedule against TRL?

For now, we will focus on the assumptions themselves and look for the supporting evidence in sections

9.2 and 9.3.

9.2 Theoretical evidence

We know that the first part of the assumption is true: TRL is indeed a major measure of uncertainty, and

it was developed to be so. However, it is obviously not a complete measure of maturity. We saw in

section 3.1 that maturity is influenced by multiple factors, and table 3.3 shows clearly that TRL is a

measure of only one of those factors. The question that naturally follows is "how much of maturity does

TRL measure?" This question will be addressed in the following empirical evidence section through

regression analysis.

As for the second part of the assumption, we already know from section 3.3.3.2 that TRL is a weak

measure of maturity risk. Many measures like RD3 and AD 2 were specifically developed to compensate

for TRL's failure to measure risk. They are intended to be complements to TRL in that they measure

what TRL misses: future maturation risk. As a result, this assumption does not have theoretical support.

Conrow (2009) notes that TRL is only weakly correlated with risk. This assumption is partially true
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however, in the weak sense defined by the assumption for level 1. The risk decreases as TRL increases

because the risk now is on a fewer number of remaining steps, and not because the TRL number itself is

a measure of risk.

9.3 Empirical evidence

We saw that the level-4 assumption is only partially true. The aim of this section is to empirically

quantify how much variability in maturity variables is captured by TRL. The literature already gives an

idea with mostly very high R2 values at around 90% or above, indicating that TRL surprisingly explains a

very large percentage of the variation in maturity variables. However, Conrow (2011) contests those

results by performing his own regression of Schedule Change on the data from Lee and Thomas (2001),

and getting a R2 of 0.26. Conrow (2009) also mentions that R2 should be adjusted for the degrees of

freedom; and he obtains adjusted R2 values of 0.52 and 0.02 when repeating the calculations of Dubos

and Saleh (2008).

We performed our own measurement by regressing the standard deviation of the Time-To-Maturity

against current TRL. As expected we got an inverse relation (the higher the current TRL, the less risk in

the time to maturity). The regression results in figure 9.2 show that TRL explained more than 83% of

variation of Time-To-Maturity risk (adjusted R2 ). The @ coefficient is equal to -1.46, which means that on

average, by maturing one extra TRL level, the schedule uncertainty (the standard deviation) is reduced

by 1.46 years.
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Multiple , R-Square Adjusted StErr of
Summary R R-Square Estimate

0.9244 0.8544 0.8336 1.762660903

Degrees of Sum of Mean of
ANOVA Table Freedom Squares Squares F-Ratio p-Value

Explained 1 127.6533459 127.6533459 41.0861 0.0004
Unexplained 7 21.74881422 3.10697346

Coefficient Standard t-Value p-Value Confidence Interval 95%
Regression Table Error Lower Upper
Constant 14.77461079 1.280543458 11.5378 < 0.0001 11.74660668 17.80261491
TRL n to 9 -1.458614331 0.227558544 -6.4098 0.0004 -1.996704783 -0.920523878

Figure 9:2 Regression of Time-to-Maturity standard deviation against current TRL

In summary, TRL is a partial measure of maturity risk. It is important to take the definition of the

regression's dependent variable into consideration (e.g. total cost vs. absolute cost growth vs. relative

cost growth vs. probability of cost growth). We do not have sufficient data to confirm a high correlation

in all those cases, but it appears there is already enough evidence in the literature to confirm a useful

correlation between the level of TRL and the maturity variable risk.

9.4 Some considerations on regressing risk against TRL

Although the above evidence provides partial justification for TRL-based regressions of maturity

variables, there are two important considerations that most of those models ignore. Those two

problems (already mentioned in section 3.3.3.2) are the fact that TRL only measures the probability of

occurrence term of risk, and the fact that TRL is an ordinal scale.

First, Conrow (2003, 2009, 2011) points out that TRL risk is decomposed into a probability of occurrence

term and a consequence of occurrence term. While we have already explained how TRL can be a partial

measure of the probability of occurrence, it provides little information on the consequence of

occurrence. If a technology has a low TRL when product development begins, we can say that there are

high chances of cost overruns, but it is harder to estimate by how much the overruns will be. So if we
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look at cost risk for example as our relevant maturity parameter, then there are many cost-related

variables we could look at. "Probability of cost growth" would be a variable that can be modeled well by

using TRL (because it is a probability of occurrence term). On the other hand "Absolute cost growth" is a

variable that would be poorly modeled by TRL (because it is a consequence of occurrence term).

"Relative cost growth" might have a chance of being well-modeled by TRL since it is a normalization of

the consequence of occurrence.

The second problem is also pointed out by Conrow (2003, 2009, 2011): it is the ordinality of the TRL

scale. The numbers in the TRL scale have no particular meaning, they are simple placeholders that just

indicate the order, and could well be replaced by letters A, B, C, D, etc. with no loss of information.

Mathematical operations (sums, averages, differences, multiplications) on TRL scores are not defined;

they have no mathematical meaning, and can lead to wrong results. Such operations are nevertheless

found in the literature.

Dubos and Saleh (2008), and Lee and Thomas (2001) both perform TRL averaging when creating the

cost-weighted TRL (WTRL). First, averaging ordinal numbers does not have a mathematical meaning.

Second, if the scale were cardinal, there would be no reason to weigh the average with component costs

(cost does not necessarily represent the component's criticality in the system). And third, if the scale

were cardinal, there would be no reason for averaging to be the appropriate operation to aggregate

TRLs in a system; the minimum might be a better operation, and more generally, the Work Breakdown

Structure (WBS) should be taken into account to detect parallelisms and critical paths.

This issue of operating on ordinal values can also be found in other TRL-based maturity measures. For

example, we presented in 3.2.4 the Integrated Technology Index (ITI):
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IT! = Zsubsystem technologies(ATRL x R&D 3 x TNV)
Total # of subsystem technoloogies

The ITI disregards the ordinality of TRL twice: first when performing differences of TRLs, and second

when performing a weighted average of those numbers.

Furthermore, regressions on the TRL scale are over-constrained by the fact that TRL is treated as

cardinal. A linear regression for example would be looking for a constant increment of the maturity

variable between any two consecutive TRLs. This constraint has no reason to be true.

We are not implying that all results involving operations on TRL are necessarily wrong and misleading.

The application might be small enough or defined on a small range of the TRL scale that the operation

would not lead to major mistakes. However, such uses if they were to exist, should be very cautious in

defining the range of TRL values, and then testing them extensively to show that the range of results

could carry useful information for the user.

As a solution to this problem, Conrow (2009) proposes a calibration of the TRL scale in an attempt to

give a maturity meaning to the TRL numbers. Conrow asked experts to compare the maturity of the 36

pairs of TRL values, and then aggregated and normalized the results using an Analytic Hierarchical

Process (AHP). He then scaled the results so that the calibrated TRL9 had a value of 9, and then fitted

the results to a 3rd degree polynomial. The final result was:

TRLadjusted = 0.346 + 0.012 * TRLI
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While this calibration provides a simple technique to get a better idea of the real maturity distances

between the TRL numbers and for averages to have more meaning, it still suffers a couple of drawbacks.

First, AHP is based on human assessments that are often imprecise and subjective, especially when using

not-so-well defined words such as "maturity". Second, there is a conceptual problem in calibrating the

scale with respect to "maturity". What does it mean for an expert to answer "TRL 9 is 2.5 times more

mature than TRL 6"? If we want to make an ordinal scale cardinal, then the calibration has to be done

with respect to an underlying cardinal space. We have already pointed out that the maturity concept is a

multidimensional concept, and we cannot say that A is more mature than B by using only one number.

For the comparison to make sense it should pick one of the operational dimensions of maturity. For

example "how much more chances of meeting schedule does TRL 9 have over TRL 6?" or "what is the

ratio of cost overrun risk between TRL5 and TRL4?" While Conrow's intention was to have one TRL scale

calibration for all risk models involving TRL, we recommend calibrating TRL separately for each of the

operational dimensions of maturity.

Nevertheless, the calibration still captures the general idea that the distance between maturity variables

becomes larger at higher TRLs. When we repeated our earlier regression using Conrow's calibration, the

regression quality improved as the adjusted R2 went from 83% up to 92%.

One alternative approach to avoid the problem of ordinality in regressions is to treat the TRLs as

categorical variables. Instead of embedding in advance a certain distance between the TRL levels in the

regression, we can simply consider each TRL a different category and let the regression compare them

by pairs.
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In summary, while the problem of probability vs. consequence of occurrence and the problem of

ordinality might be addressed by using specific methodologies, we still cannot solve the issue of TRL not

being a measure of maturity, or it not being a measure of risk (this would necessitate a multiple

regression against several maturity scales, which is not in the scope of this thesis). To answer our earlier

question on the best methodology in performing regression against TRL, this methodology should:

-Avoid using any kind of averaging of TRLs. A WBS-based approach or SRLs (refer to section 3.2.4) can be

used instead, if system TRLs need to be computed.

-Have a probability-of-occurrence-related dependent variable. The choice of variable is also important in

that it has to be one that is well explained by the regression (in terms of adjusted R2).

-Use a calibrated TRL scale (preferably calibrated to a relevant dimension of maturity).
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Chapter 10

Chapter 10. Conclusions and future research

10.1 Summary of results

In this thesis, we proposed a 4-level taxonomy of TRL-based models. When we were performing our

research on TRL cost and schedule models, we discovered that different models departed from different

assumptions, and that the only way of consistently evaluating and comparing those models was by

grouping them according to the increasing assumptions that they make. This natural grouping of TRL

models not only helped us group and compare existing TRL models, but the fact that the assumptions

were now clearly stated allowed a better understanding of the models. It also allowed us to make

recommendations and propose alternative methodologies that make better use of the assumptions.

Each level was analyzed theoretically (mainly by using properties of the TRL scale), and empirically

(mainly by using the NASA dataset). The NASA dataset was also used in introducing and evaluating the

new methodologies at levels 2 and 3, as a well as in making recommendations at levels 1 and 4. Data

scarcity was a major concern throughout the thesis, and we often had to use specific methodologies and

propose special recommendations to deal with this fact.
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The framework, although theoretical, allowed us to answer four practical research questions, one at

each assumption level:

At level 1, we found that the model strongly supported GAO maturation risk recommendations, both

theoretically and empirically.

At level 2, the data confirmed that TRL transition times were statistically differentiated enough for the

study of transition time distributions to make sense. Furthermore, we proposed the bootstrap method

as the most suitable technique to make estimations on those variables with small datasets.

At level 3, we found that there is significant positive correlation between early TRL transition times.

Furthermore, we were able to use this correlation to propose a method (the autoregression method)

that improved forecast accuracy by 15% over level-2 fixed estimate models.

At level 4, we found that although the assumption was only partially supported, regressions on TRL still

explained a significant percentage of variability in maturity variable risk. However, we proposed some

modifications to the methodologies found in the literature so that they avoid performing mathematical

operations on TRLs, that they correct for TRL's ordinality, and that they limit the model to probability-of-

occurrence terms only.

All those results allow us to say that TRL can indeed be used beyond simply the exit criteria of a Science

and Technology (S&T) program.

Table 10.1 summarizes the results of the 4-level model:
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Assumption Theoretical support Empirical support Practical usefulness Potential for

level improvement and
better use of
assumptions

Table 10. 1 Summary of the results for the support of the assumptions, and usefulness of the models

Ideally a method needs to have both high theoretical and empirical supporting evidence. As expected,

we note that there is an inverse relationship between the strength of the supporting evidence, and the

usefulness/potential usefulness of the models

All the models still have potential for improvement (although with varying degrees):

" Level 1: By improving the measurement of variance reduction.

e Level 2: By using better bias reduction bootstrapping algorithms, and by using regression

analysis to identify relevant factors in predicting maturity variables.

Level 3: By developing more complex, robust methodologies for larger latasets, and by better

isolating factors other than TRL that affect technology transition.

e Level 4: By developing more models, integrating measures of advancement degree of difficulty,

calibrating the scales, and reducing the models to probability-of-occurrence variables.

10.2 Future and related research

The presented models are in no case a silver bullet in solving the problems in DoD's acquisition process.

A lot of those problems can be mainly attributed to managerial issues, poor risk management practices,

external changes in funding or rements, or to wrong incentive structures (for example, the
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contracting structure). This research main contribution is to help future researchers understand and

develop more realistic cost and schedule models to improve the risk analysis part of risk management.

There are many directions of research that directly follow the work presented so far:

First, although special care was taken in choosing the methods and in making conclusions and

recommendations, the empirical part of this thesis is still based on a very small dataset. The results need

to be confirmed as soon as more data becomes available.

Second, although there are reasons to believe that the four assumptions can be extended to other types

of technologies and other agencies, let us note that our empirical evidence only supports the

assumptions for NASA technologies for now. The results in Crepin, El-Khoury, and Kenley (2012) are in

support of a generalization of results to the Department of Energy's TRL, but they are also based on a

small dataset and only on a few of the 8 TRL transitions. More statistical comparison work can be done

as other agencies adopting TRL start releasing data.

Third, a very important extension to this research is to augment the models by looking at other

complementary measures of maturity. As we mentioned in section 9.4, we can try to capture a larger

proportion of variability in maturity variables by performing multiple regression analysis. After all, we

know that TRL alone only partially captures the risk of transition variables.

Fourth, there is still work to be done to improve level-4 regression models. For a start, we can find what

exact versions of cost and schedule variables best correlate with TRL. Also, we can develop and test

calibrations of the TRL scale that are relevant on certain dimensions of maturity.
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Fifth, we proposed one way of decomposing maturity using the Enterprise Architecting framework in

table 3.1. This might not be an extensive decomposition, or the most relevant way of looking at maturity

dimensions. There is still conceptual work to be done on defining the relevant aspects of maturity, then

empirically testing their representativeness (for example, through multiple regression analysis).

Furthermore, table 3.2 shows that some of those dimensions of maturity are still not measured by any

specific scale. Hence more work needs to be done to make sure all the relevant maturity dimensions can

be measured with scales tailored to those dimensions.

Sixth, there are other completely different modeling approaches that can be used. For example El-

Khoury and Kenley (2012) propose a dynamic programming methodology to integrate decision-making

into Cost-Schedule bivariate modeling. One paper proposes a system dynamics approach to model the

acquisition system (Dixon, 2007), another paper proposes an epoch-based framework to model

program development time and program risk (Szajnfarber, 2011). Yet another paper applies real

options to technology portfolios (Shishko et al, 2004). While TRL-based models are the most commonly

used in risk management, those other models can be useful for managerial applications, even if they are

not as quantitative.

Seventh, there are other approaches that address DoD's acquisition problems more directly as opposed

to our approach, which was through the improvement of risk management. Dorey (2011) proposes a

risk-driven contracting structure that tries to address the incentive structure in government contracting

especially when the government is the party assuming the high cost risks. Other recommendations

address the internal political and organizational incentives inside DoD that lead to an early start of

production for immature projects. Nolte (2008) notes that Acquisition programs have much more

money than S&T programs, which forces much of the technology maturation process to take place
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within an acquisition program rather than within the S&T area. Furthermore, DoD often has to proceed

in early immature product development just to get needed funds and management support, simply to

keep the program going.

Finally, a new line of recommendations is to allow performance to be variable (Gansler, 2012), in

technically acceptable terms. This would add new feasible combinations in the CPS trade space, which

could lead to dramatic improvements in cost and schedule.
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Annex 1

Annex 1: Box-Whisker plots of Army TRL transition

times

This Annex presents Box-Whisker plots in support of the ANOVA analysis for the level-2 assumption. For

each triplet of transition times Xi/i1+, Xi+1/-i. 2 and Xi/-i+ 2 , the plots show that Xi/i 1+ , Xi+ 1/-i+ 2 are

differentiated from Xi/.i+2 (the top plot) in a statistically significant manner. In other terms, the means

are far from each other, while the variance is small enough so that the two samples can be considered

taken from different populations at a 95% significance level.

1st Quarile Mean
3rd Quarile Extreme Outlier

Median

Mild Outlier

Interquarlile Range (IQR)

Lower Whisker Upper Whisker

Whiskers extend to the furthest observatons that are no more than 1.5 IQRfrom
the edges of the box. Mild oulliers are observations between 1.5 IQR and 3 IQR
from the edges of the box. Extreme ouliers are greaterthan 3 IQR from the
edges of the box.
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Box-Whisker Plot Comparison of Transition Times 2 to 4
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Box-Whisker Plot Comparison of Transition Times 3 to 5
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Box-Whisker Plot Comparison of Transition Times 4 to 6
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Box-Whisker Plot Comparison of Transition Times 5 to 7
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Annex 2

Annex 2: VBA Excel functions

Regular bootstraD function VBA code

Function Bootstraplnv(Arr As Range, intiteration, p)

n = Arr.Rows.Count
ReDim Hold(n) As Single 'Bootstrapped array
ReDim Hold2(intiteration) As Single 'Array for bootstrapped medians

Randomize

For j = 1 To intiteration
'Read values into array
Fori= ITon

Hold(i) = Arr(lnt(Rnd * n) + 1)
Next i
'Store computed medians into array
Hold2(j) = Application.WorksheetFunction.Median(Hold)

Next j
Call Sort(Hold2)

'Compute the value relative to the percentile
Bootstraplnv = Application.WorksheetFunction.Percentile(Hold2, p)

End Function

'Sort Function
Sub Sort(Arr() As Single)
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Dim Temp As Single
Dim i As Long
Dim j As Long
For j = 2 To UBound(Arr)

Temp = Arr(j)
For i= j - 1To 1 Step-1

If (Arr(i) <= Temp) Then GoTo 10
Arr(i + 1) = Arr(i)

Next i
i = 0

10 Arr(i+ 1) = Temp
Next j

End Sub

Inverse bootstrap function VBA code

Function Bootstraplnv(Arr As Range, intiteration, k)

n = Arr.Rows.Count
ReDim Hold(n) As Single 'Bootstrapped array
ReDim Hold2(intlteration) As Single 'Array for bootstrapped medians

Randomize

For j = 1 To intiteration
'Read values into array
Fori= 1To n

Hold(i) = Arr(int(Rnd * n) + 1)
Next i
'Store computed medians into array
Hold2(j) = Application.WorksheetFunction.Median(Hold)

Next j
Call Sort(Hold2)
Bootstraplnv = Application.WorksheetFunction.PercentRankInc(Hold2, k)

End Function

'Sort Function
Sub Sort(Arr() As Single)

Dim Temp As Single
Dim i As Long
Dim j As Long
For j = 2 To UBound(Arr)

Temp = Arr(j)
For i= j - 1To 1 Step-1

If (Arr(i) <= Temp) Then GoTo 10
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Arr(i + 1) = Arr(i)
Next i
i=0

10 Arr(i + 1) = Temp
Next j

End Sub
TransTime function VBA code

Function TransTime(TRL1 As Byte, TRL2 As Byte, p As Double)
Dim Tbl1(1, 8) As Single 'Table of average transition times
Tbll(1, 1) = 1.46
Tbl1(1, 2) = 1.17
Tbl1(1, 3) = 1.41
Tbll(1, 4) = 1.5
Tbl1(1, 5) = 2.46
Tbl1(1, 6) = 2.06
Tbl1(1, 7) = 2.74
Tbll(1, 8) = 2.32

Dim Tbl2(8, 9) As Single 'Table of standard deviations
Tbl2(1, 2) = 1.271574058
Tbl2(1, 3) = 2.111095722
Tbl2(1, 4) = 3.669137923
Tbl2(1, 5) = 4.379652914
Tbl2(1, 6) = 6.789409538
TbI2(1, 7) = 9.561772848
Tbl2(1, 8) = 9.055569189
Tbl2(1, 9) = 11.43291368

Tbl2(2, 3) = 1.270630916
Tbl2(2, 4) = 2.867553922
Tbl2(2, 5) = 3.669665839
Tbl2(2, 6) = 6.0745659
Tbl2(2, 7) = 8.903365894
Tbl2(2, 8) = 8.457953044
Tbl2(2, 9) = 10.93730065

Tbl2(3, 4) = 1.6999656
Tbl2(3, 5) = 2.492089825
Tbl2(3, 6) = 5.433726172
Tbl2(3, 7) = 8.396301495
Tbl2(3, 8) = 8.044436248
Tbl2(3, 9) = 10.69209209

Tbl2(4, 5) = 1.029626913
Tbl2(4, 6) = 4.990792692
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Tb12(4, 7) = 8.131867727
Tb12(4, 8) = 7.944518789
Tbl2(4, 9) = 10.71078117

Tbl2(5, 6) = 4.948585066
Tbl2(5, 7) = 8.175391521
Tbl2(5, 8) = 8.019676323
Tbl2(5, 9) = 10.78195304

Tbl2(6, 7) = 2.457070811
Tbl2(6, 8) = 3.66010432
Tbl2(6, 9) = 5.627664352

Tbl2(7, 8) = 3.47313281
Tbl2(7, 9) = 3.959444023

Tb12(8, 9) = 3.19170326

If TRL1 = 0 Then
MsgBox ("Starting TRL is empty")
TransTime = "error"
Elself TRL2 = 0 Then
MsgBox ("Ending TRL is empty")
TransTime = "error"
Else

TransTime = 0
TransStdev = 0
Forn= TRL1ToTRL2-1
TransTime = TransTime + TbIl1(1, n)
Next n

End If
TransStdev = Tbl2(TRL1, TRL2 + 1)
X = Application.WorksheetFunction.T_Inv(p, 18)
TransTime = TransTime + X * TransStdev / Sqr(18)
End Function

ransTimelnv function VBA code

Function TransTimelnv(TRL1 As Byte, TRL2 As Byte, p As Double)
Dim Tbl1(1, 8) As Single 'Table of average transition times
Tbl1(1, 1) = 1.46
Tbl1(1, 2) = 1.17
Tbll(1, 3) = 1.41
Tbl1(1, 4) = 1.5
Tbl1(1, 5) = 2.46
Tbl1(1, 6) = 2.06
Tbl1(1, 7) = 2.74
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Tbl1(1, 8) = 2.32

Dim Tbl2(8, 9) As Single 'Table of standard deviations
Tbl2(1, 2) = 1.271574058
Tbl2(1, 3) = 2.111095722
Tbl2(1, 4) = 3.669137923
Tb12(1, 5) = 4.379652914
Tbl2(1, 6) = 6.789409538
Tbl2(1, 7) = 9.561772848
Tbl2(1, 8) = 9.055569189
Tbl2(1, 9) = 11.43291368

Tb12(2, 3) = 1.270630916
Tbl2(2, 4) = 2.867553922
Tbl2(2, 5) = 3.669665839
Tbl2(2, 6) = 6.0745659
TbI2(2, 7) = 8.903365894
Tbl2(2, 8) = 8.457953044
Tb12(2, 9) = 10.93730065

Tb12(3, 4) = 1.6999656
Tbl2(3, 5) = 2.492089825
Tbl2(3, 6) = 5.433726172
Tb12(3, 7) = 8.396301495
Tb12(3, 8) = 8.044436248
Tbl2(3, 9) = 10.69209209

Tbl2(4, 5) = 1.029626913
Tbl2(4, 6) = 4.990792692
Tb12(4, 7) = 8.131867727
Tbl2(4, 8) = 7.944518789
Tbl2(4, 9) = 10.71078117

Tbl2(5, 6) = 4.948585066
Tbl2(5, 7) = 8.175391521
Tbl2(5, 8) = 8.019676323
Tbl2(5, 9) = 10.78195304

Tbl2(6, 7) = 2.457070811
Tbl2(6, 8) = 3.66010432
Tbl2(6, 9) = 5.627664352

Tbl2(7, 8) = 3.47313281
Tbl2(7, 9) = 3.959444023

Tbl2(8, 9) = 3.19170326

If TRL1 = 0 Then
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MsgBox ("Starting TRL is empty")
TransTimelnv = "error"
Elself TRL2 = 0 Then
MsgBox ("Ending TRL is empty")
TransTimelnv = "error"
Else

TransTimelnv = 0
TransStdev = 0
Forn =TRL1ToTRL2- 1
TransTimelnv = TransTimelnv + Tbl1(1, n)
Next n

End If
TransStdev = Tbl2(TRL1, TRL2 + 1)
X = (p - TransTimelnv) / (TransStdev / Sqr(18))
TransTimelnv = Application.WorksheetFunction.T_Dist(X, 18, 1)
End Function
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Annex 3

Annex 3: Matlab codes for the forecasting algorithms

1-Code generating the influence diagram

%generates an influence diagram B from a covariance matrix C.

function B=IDgenerate(C)

P=inv (C);

n=length(C);

B=zeros (n, n);

v=zeros (1,n);

S=zeros(1,n);

t=1;

for i=1:n

B(i,i)=0;

for j=1:i-1

for 1=1:i-1

B(j,i)=B(ji)+P(j,1)*C(1,i);

end

B(i,j)=O;
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end

if C(ii)>1000000

v(i,i)=1000001;

else

for k=l:i-1

S(i)=S(i)+C(i,k)*B(k,i);

end

v(i)=max(C(i,i)-S(i),0);

end

if v(i)==01|v(i)>1000000

P(i,i)=0;

for j=1:i-1

P(i,j)=0;

P(j,i)=0;

end

else

P (i, i) =1/v (i);

for j=1:i-1

t=P (i, i) *B(j, i);

for k=1:j-1

P (j, k) =P (j, k) +t*B (k, i)

P(k,j)=P(j,k);

end

P(j,j)=P(j,j)+t*B(j,i);

end

for j=1:i-1

P (i, j) =-P (i, i) *B (j, i)

P (j, i) =P (i, j);

end

end

end
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2-Code updating the influence diagram

%updates the means in an ID by knowing the result of a the exact times of

%the first n transitions indicated in the entry vector v.

%v must be smaller in length than m and B, who should have the same length.

function M=updater(B,m,u)

M=m;

M(l:length(u))=u;

for i=length(u)+1:length(m)

end

3-Code generating the full bounded Influence Diagram forecast

% creates forecasting matrices using ID method of variables vector V, with 18 zeros in

% between. Bounds the forecasts by a 2.5 upper limit, ard -1.7 lower limit.

function megaforecaster (B,m,V)

A=zeros (2);

for i=l:length(V)

A((27* (i-1)+1):(27*(i-1)+8),1:8)=forecaster(B,m,V(:,i)');

end

%this second part is a verification for "explosion correction"

for i=1:length(A(:,1))

for j=l:length(A(1,:))-l

if A(i,j)>2.5

A(i, j)=2.5;

elseif A(i,j)<-1.7

A (i, j)=-1.7;

end

end
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end

A=circshift(A, [0,1]);

xlswrite('forecast ',A);

4- Code generating the autoregression forecast

%this function's aim is to perform all of the forecast in the forecasting

%table for a technology. For every coefficient of the table (matrix A, the output), the algorithm

%regresses the current variable against all the previous (available) ones

%in the selected subset(S), then performs the forecast,

function A=regression forecaster(S,u)

A=zeros(length(u));

A(:,end)=u';

for i=1:length(u)-1

A(1:i,i)=u(1:i)';

for j=i+1:length(u)

A(j,i)=[1,u(1:i)]*regress(S(:,j+1),S(:,1:i+1));

end

end

4.5 Code generating the closest neighbor forecast

%this algorithm picks the closest neighbor at each step, and then assumes

%that the growth factors will be similar between this technology and the

%"so-far-closest-one" (unless the last value was zero, then it will be the same additive growth)

function A=closestneighbour (V)
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A=zeros(2);

n=length(V);

h=length(V(:,1));

for i=2:h-1

VV=V(1:i,:);

C=Cov(VV)-2*eye(n);

u=max(C);

u=ones (n,1)*u;

U=(u==C);

%U is a matrix with zeros, and only one "1" on every column, the position

%of the "1" in the column indicating the variable that this column variable

%correlates with the best. This matrix has great chances of being

%symmetric.

a=zeros(1,12);

for j=1:n

for k=1:n

if U(k,j)==1

a(j)=k;

break

end

end

end

%the generated "a" is a (1,n) vector with u(i) being the variable that correlates the most

%with variable i (u(i) corresponds to the first maximum correlation this double loop finds

when it runs down every column).

%i's are the forecast tables' columns, j's are rows, and k's are technologies
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for j=i+l:h

for k=1:n

A(27*(k-1)+1:27*(k-1)+i,i)=V(1:i,k);

if V(j-1,a(k))==0

A(27* (k-1) +j,i)=A(27* (k-1) +j-1, i) +(V(j,a (k) ) -V(j-1,a(k))

else

A(27* (k-1) +j,i)=A(27* (k-1) +j-1, i) *V(j,a(k) ) /V(j-1,a (k)

end

A (27* (k-l) +1: 27* (k-1) +8,l1) =v(1, k) *ones (8, 1);

%Filling the first column with a constant forecast.

A(27*(k-1)+1:27*(k-1)+8,8)=V(:,k);

%adding a last column of the actual values, before rotating

%(just to make the format suitable for the excel)

end

end

end

A=circshift(A, [0,1]);

xlswrite('forecast',A);
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