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Abstract

This work considers some implications of viewing gravity as an emergent force. In such
a viewpoint, general relativity arises as the thermodynamic limit of some microscopic
theory. As such, one would expect the macroscopic variables such as the curvature
tensors to fluctuate about their mean. This thesis presents a method for analyzing
the effects of curvature fluctuations on spacetime thermodynamics. This is done by
examining the evolution equations for timelike and null congruences, and recasting
them as stochastic differential equations. The purpose of viewing the congruence
evolution equations as stochastic is in the spirit of nonequilibrium thermodynamics,
and may lead to an application of the fluctuation-dissipation theorem to spacetime.
It is expected that this reformulation of the congruence equations will lead to further
insights on the effects of fluctuations in general relativity.
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Chapter 1

An Overview of Spacetime

Thermodynamics

During the 1970's the study of spacetime singularities in general relativity led to

several intriguing results. It was well know that singularities arise generically in

physically realistic solutions to Einstein's equations, and that these singularities are

often accompanied by causal horizons that prevent events inside the horizon from

affecting events on the other side. In studying the properties of horizons and sin-

gularities, Hawking noticed that the area of a black hole event horizon can never

decrease, provided that the weak energy condition was satisfied [10]. Bekenstein later

noted that the fact that area is an extensive, non-decreasing property of the black

hole is reminiscent of entropy in thermodynamical systems, and proposed that the

area be identified as the entropy of the black hole [2]. Following this line of reasoning,

four laws of black hole mechanics were formulated as strong analogies with the laws

of thermodynamics, and identifying the area with entropy and the surface gravity ,

with the black hole's temperature [1]. This analogy was solidified by Hawking's dis-

covery that quantum fields in the presence of a black hole horizon radiate thermally

with a temperature given by hr/2ir [11].

Remarkably, it was soon discovered that the presence of thermal radiation in

spacetime is not confined to situations where a black hole is present. Unruh found that

in flat, Minkowski space, a uniformly accelerated observer would perceive a similar
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thermal radiation spectrum due to the presence of a causal horizon [22]. The thermal

radiation arises in this case not due to gravitational fields, since there are none in

Minkowski space, but instead due to the existence of a horizon in the spacetime. This

motivates the idea that there may be a fundamentally thermal description spacetime.

Further progress was made in this interpretation by Wald, who noted that black

hole entropy is not specific to gravitational theories satisfying the Einstein equations.

Instead, an expression for entropy can be derived for any stationary spacetime with a

Killing horizon, and it is simply the Noether charge associated with the Killing vector

on the horizon [24].

The relationship between entropy and horizons has motivated the development

of the "holographic principle," which in rough terms states that the true degrees

of freedom in a gravitational system lie on the boundary of the region in question

[5]. This allowed for a formulation of a bound on the number of degrees of freedom,

and hence the entropy, in a region of spacetime [4]. The entropy bound given by

the holographic principle is satisfied in spacetimes that are considered physically

interesting, but nevertheless general relativity does not require that this principle

hold. It is thought that any proposed quantum theory of gravity must imply the

holographic principle as one of its features.

An important step in interpreting black hole entropy and spacetime thermody-

namics came from Jacobson's paper on the Einstein equation of state [14]. In this

paper, Jacobson derived the Einstein equations by assuming that the entropy of a

Rindler horizon is proportional to its area. The result of this paper is encourag-

ing since black hole entropy no longer seems to be merely a happy coincidence of

the theory. Rather, entropy arises in spacetime thermodynamics as a result of an

underlying thermal structure. This analysis has been generalized to nonequilibrium

settings [9, 7], where it was noted that shearing effects on horizons tend to lead to

entropy production. As was noted in [7], since shearing effects in general relativity

are governed by the Weyl curvature tensor, it is likely that this tensor has an impor-

tant role in quantifying gravitational entropy. Indeed, the Weyl curvature conjecture,

attributed to Penrose [19], postulates that areas where Weyl curvature dominates the
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Ricci curvature correspond to regions of high spacetime entropy.

Taking the viewpoint advocated by Jacobson that spacetime is an emergent, rather

than fundamental, phenomenon, one would expect it to exhibit additional features

known to be generic in thermodynamical systems. In particular, macroscopic vari-

ables in thermodynamics tend to fluctuate around their mean values even when at

thermal equilibrium. These fluctuations give rise to dissipation of work into the inter-

nal degrees of freedom of the system, by virtue of the fluctuation-dissipation theorem

[15]. The link provided by this theorem between macroscopic fluctuations and the

microstructure of the system makes this a powerful probe of these microscopic inter-

actions.

There has been some work applying fluctuation theorems to various aspects of

spacetime thermodynamics. Sciama and Candelas applied the fluctuation-dissipation

theorem to shearing black hole horizons, and obtained an explanation for why black

hole horizons exhibit shear viscosity [6]. Pavon and Rubi have employed simple

thermodynamical models to estimate the equilibrium [17] and nonequilibrium [18]

fluctuations of macroscopic black hole variables. More recently, Iso and Okazawa

have applied new advances in nonequilibrium thermodynamics to explore the effects

of black hole horizon fluctuations [13].

Another line of inquiry has involved employing phenomenological stochastic mod-

els to spacetime. By assuming that fluctuations exist in the stress-energy tensor or

the spacetime curvature tensors, one can view the equations governing motions of

particles as Langevin equations, with a stochastic variable modeling the fluctuations.

Moffat applied this reasoning to congruences of timelike and null geodesics to provide

a means of avoiding singularities and event horizons in certain spacetimes [16]. In a

different application of this idea, Borgman and Ford [3] and Thompson and Ford [21]

estimated the effects of curvature fluctuations on the focusing and spectral broadening

of light rays.

This thesis seeks to examine spacetime fluctuations in a similar manner. The con-

gruence evolution equations have long been a powerful tool for examining properties

of a spacetime manifold; this thesis presents a program for applying these equations
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to fluctuations. Previous works have focused largely on the Raychaudhuri equation,

and have neglected all but the lowest order contributions in the evolution equations.

Since Chirco and Liberati showed that shearing terms in these equations result in en-

tropy production, neglecting these terms in the congruence equations may mask some

important effects in spacetime thermodynamics. This thesis will propose a method

for analyzing the congruence evolution equations in the presence of spacetime fluctu-

ations.

This work is organized as follows. In Chapter 2, we review the essential properties

of the Rindler spacetime. Rindler space plays a prominent role in local developments

of spacetime thermodynamics, so the overview in chapter 2 will be instructive. FRom

there, we develop the theory of timelike and null congruences in Chapter 3, and derive

the evolution equations. Then, in Chapter 4, Jacobson's thermodynamical derivation

of the Einstein equation of state is presented, as an application of the previous two

chapters and in order to further motivate the thermodynamic interpretation of space-

time. In Chapter 5, we present the main results of this thesis, and discuss the further

steps that must be taken to complete the analysis of the congruence equations as

stochastic equations. Chapter 6 is left for conclusions and discussion. An appendix

is included at the end summarizing the notation and conventions used in this work.

12



Chapter 2

Rindler Spacetime

The Rindler spacetime will play a crucial part in our analysis of the Einstein equation

of state in Chapter 4. Additionally, this spacetime bears many of the interesting causal

feature of black holes, and hence provides a useful arena in which to understand several

concepts arising in black hole thermodynamics. Because of its importance to the rest

of this work, we derive some of its central features in this chapter. Parts of this

chapter use material presented in Wald [23].

Rindler spacetime is flat, Minkowski space as viewed by a uniformly accelerated

observer. Despite the absence of curvature, a family of Rindler observers will perceive

a causal horizon, analogous to the horizons that arise in black hole spacetimes. As

will be demonstrated, the Rindler observers in fact follow orbits of a Killing vector,

and the horizon is a Killing horizon where the Killing vector becomes null. This

essential feature of the spacetime will be invoked in our later discussions.

2.1 Uniform acceleration in Minkowski space

We begin our discussion by analyzing the trajectory of a uniformly accelerated ob-

server in Minkowski space. By this, we mean that the observer feels a constant

acceleration ne in his frame with respect to his proper time r. Letting x (T) denote
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the coordinates of the observer's trajectory, and ua the unit tangent vector, we have

= d2X1 = d d

d-r2  dT dT "V) (2.1)

dx
where T is the time coordinate in the Minkowski lab frame, V - is the Minkowski

frame velocity in the direction of the acceleration, and -Y, (1 - v 2 )-(1/ 2) is the
dT 1

instantaneous boost factor associated with this velocity. Noting that -= -, we
dT -yv

find

81, = d -V (2.2)
dr

dv d v
= 7-Y- + v27 - (2.3)

from which it follows that

-v = -. (2.4)

The derivative of equation (2.2) is

d2r d-rdr2 (,v ) = di-v

= r,2 7v. (2.5)

With the choice of initial conditions that the observer be at rest at r = 0, the solution

to (2.5) is

7,v = sinh(r,-r). (2.6)

Since 7,~ = 1 -+ 0V2, the components of ua in the lab Minkowski frame are

U (y7-yv, 0, 0) * (cosh(Ir'i), sinh(n-r), 0, 0) (2.7)

where the symbol * denotes equality in a particular coordinate system. Integrating

with respect to r, and specifying the initial condition of x'(r = 0) * (0, 1/r, 0, 0)

gives

x'(r) * (z sinh(r/z), z cosh(r/z), 0, 0) (2.8)
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where z = 1/r is the initial coordinate distance to the origin in Minkowski space for

the observer. In fact, z represents the constant spacetime interval between the origin

and the accelerated observer:

As 2 = -(z sinh(T/z))2 + (z cosh(T/z)) 2 = z 2 . (2.9)

2.2 Rindler Metric

The trajectories of the uniformly accelerated observers can be used to define a new

coordinate system for Minkowski space. The original Minkowski coordinates will be

labeled (T, X, Y, Z). The coordinates Y and Z will remain the same throughout this

analysis, so they will be suppressed for the calculations below.

From the trajectory (2.8), it is apparent that the parameter z labels the trajec-

tories of different distances from the Minkowski origin, or equivalently trajectories of

different accelerations. This parameter and the time coordinate t = r/z, can be taken

as the new coordinates defining the Rindler metric. The coordinate transformation

is given by (2.8), and the transformation matrix for tensors is

* (T, X) z cosh(t) sinh(t)
A (t Z) z sinh(t) cosh(t) (.0

The Minkowski metric is

ds 2 = -dT 2 + dX 2 , (2.11)

and using the transformation (2.10), the new metric is

ds2 = -z 2 dt 2 + dz 2 . (2.12)

Since the metric is independent of the coordinate t, we see that xa = (1,0, 0,0) defines

a Killing vector field for this spacetime. In the original Minkowski coordinates, this
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vector takes the form

aI1
x * -(cosh(rT), sinh(sr), 0,0) = zu". (2.13)

Thus, up to an overall change in curve parameter, the uniformly accelerated observers

in section 2.1 follow orbits of the boost-generating Killing vector X'. Note that as

K -+ oo, which corresponds to z -+ 0, the magnitude of Xa goes to zero. However, in

Minkowski coordinates, X' is given by

X (X, T, 0,0), (2.14)

which is well-behaved everywhere. The limit z -+ 0 corresponds to the lines X = ±T,

which are the null rays originating at the origin of the Minkowski coordinates. These

lines define a Killing horizon, which also functions as a past causal horizon of the

origin.
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Chapter 3

Congruence Evolution Equations

This thesis will make extensive use of congruences in a spacetime manifold, so we

devote this chapter to developing the essential equations and notation. Our analysis

draws from the treatment in Poisson [20] and Hawking and Ellis [12].

A congruence is a family of non-intersecting curves defined in some subset of our

spacetime manifold. An intuitive way to conceptualize a congruence is as a bundle

of tightly packed wires. In general we will restrict our attention to curves which are

everywhere timelike or everywhere null. For timelike congruences, we will denote the

tangent vector to the curves by u", and for the null case we will denote it by k*.

3.1 Timelike Congruences

We begin by discussing timelike congruences. Without loss of generality, we can

require that u' is normalized to -1, so that the curves will be parameterized by

proper time t. We select a single curve y(t) in our congruence, and note that at each

point along the curve there are three independent spacelike directions orthogonal to

U.

At the point -y(to), we define a deviation vector field (* to lie tangent to a curve

((s) that cuts across several other curves in our congruence. This creates a one-

parameter family of curves in our congruence, labeled by the coordinates s and t.

Since s and t define a coordinate system in this one-parameter family, the tangent
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vectors to -y(t) and ((s) are Lie transported along each other,

Xen* = U pa; - ";pua = 0. (3.1)

In particular,
D
D a = ";u a= U";1 3(. (3.2)

Unfortunately, for non-geodesic motion, if (" was initially orthogonal to u', it

will not remain so as it is parallel transported along -y(t), nor will u' be a parallel

transported tangent vector. We would like to quantify the change in the orthogonal

components of (" with respect to the accelerated tangent vector u'. To do this, we

first define the projection tensor

hap = ga + UCng (3.3)

which kills any component of a vector parallel to u' since hfluO = 0. Next, we define

a linear operator called the Fermi derivative with the following two properties:
dt

DFAo = ha0 AO for all A'uC, = 0 (3.4)

DFU = 0 (3.5)
di

To determine an explicit expression for the Fermi derivative, we note that this op-

erator must be linear in its argument. Property (3.4) fixes the action of the Fermi

derivative on the space orthogonal to u', so the general expression for the Fermi

derivative will equal this expression up to the addition of some other operator Wo

whose row space is spanned by u3. The most general expression for such an operator

is W', = Vaup for some arbitrary Va. So for A' orthogonal to ua, the fact that
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Up AP., = -UP;,A0 yields

DFA = D A + uupA3.,u' +W' A3
dt di 'A

D
= D A" - Anpiu" + V'u A3, (3.6)

d A ±

where we have defined the acceleration vector for our curves n D U"= U "puP.

We can fix the value of V' using 3.5:

0 DF U - 9Uo6 u" + Vupu3

V" ia. (3.7)

Note that since uOuP = -1, we must have that 60 is orthogonal to uO. Our final

expression for the Fermi derivative for an arbitrary vector v' is thus,

DF Da
dt "= ± + - u" ) (3.8)

We can extend the action of the Fermi derivative to arbitrary tensors by demand-

ing that it commutes with contractions, that its action on tensor products obey the

Leibniz rule,
DF a p - DF a a DF (39)
dt di dt

and that its action on scalars be the usual derivative,

D Ffdf
df dt (3.10)dt dt

Finally, we note that inner products between Fermi propagated vectors are pre-

served as we move along the curve. To see this, take X' and Y' such that DX =
dt
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DFdi YO = 0. Thendt

d DDXaXGD
Wt(X"IYa )=Ya X" + X Y

=Ya (i u" - u'3sA)XO + X"(inOu , - = 0. (3.11)

Now from the properties of the Fermi derivative and Equation 3.2, we find that

DF 40D hi(h~pf3) =ho (h()

= h'O (h3yuY;6( + (-(u";,u6 u, + uOUny;u6))

= U";6 ((" + (h67 - g 7) Y)

= u". 6h6
5
7f (3.12)

From this expression, we may also derive the deviation equation for the second

Fermi derivative of (a. It is

D 2 D
F.(hap ) = ho -(u hAY )dt 2  'dt

=hop [uf;,,h'5,7u + u; (DF (h (7) + h"A(7(nIU5 - UA)

= ho [-R 3,,u"u'h6I7$ + u3.,,h6,y( tuP + (u 3;6 u5.V + n, )h(7

= (-Ra"OuVu& + hnit. ± i + niL,) h it . (3.13)

Equation 3.12 and Equation 3.13 take the same form for every deviation vector

field along our curve. Thus, we may define a tensor B' = h"7h457UI. that describes

the instantaneous change in the deviation vector fields along our curve. Then Equa-

tion 3.12 becomes

( )= (B(Ogh3Y( (3.14)

and we can use Equation 3.13 to find the dynamical equation for B :

DF (B _h() = (-Rg'U' + hjnab +Y(77t 8 - (R 6 ,8A 6 U ± 0ait + i~caif)hO~ (3.15)
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which gives

B + B oSB' + Raspyn" - han6i&;3 - 6iL6 hO Xj? = 0. (3.16)

Since this holds for the orthogonal components of all deviation vectors (7, the orthog-

onal components of the term in brackets must vanish identically. We then obtain

d 1 = -Ba"B63 - Raspu'uP + ht,, 6 h,iL3 + "i6i. (3.17)

To extract the geometrical properties of our congruence from this equation, we

decompose Bo into three parts: the expansion, given by the trace,

0 = h"OBa, (3.18)

the shear, coming from the symmetric, traceless part,

1
-ap = B(00 3IOha- (3.19)

and the vorticity, from the antisymmetric part,

Wap = B101 (3.20)

We can reconstruct the original tensor from the expansion, shear and vorticity,

1
Bao = oo + wap + I 0hO. (3.21)

These three quantities have an intuitive geometrical interpretation. The expansion

0 gives the rate that the volume of a unit ball of deviation vectors is increasing as the

curve's parameter increases. If 6V is the change in the volume of this unit ball, this

quantity is related to 0 by

0 = I . (3.22)
6V dt
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The shear measures the tendency for the unit ball to distort toward an ellipsoid.

This is most readily seen by going to a diagonal basis for o-ao and noting that since

o-., has vanishing trace, at least one of its eigenvalues must be negative and at least

one must be positive (assuming that o, does not vanish identically. Hence, the

eigenvectors of the shear will be elongated in the direction of positive eigenvalues,

and shrunk in the direction of negative eigenvalues.

Finally, the vorticity, as an anti-symmetric tensor, is a generator of rotation for

the deviation vectors.

The evolution equations for these quantities come directly from Equation 3.17.

Taking the trace, we obtain the well-known Raychaudhuri equation for the evolution

of the expansion,

d 0  0 - _ 2 + W2 - RouUO + Van"it (3.23)
dt 3

where a 2  a and w2  w w'a. To obtain the last term we have used Vn" =

i6t + (uiLO);au" = h60., + U2

The shear equation involves the Weyl curvature tensor, which in 4 dimensions is

given by,
C 1

Caoo _= Rc, + ga ± R]s + gbpRO6 a + Rgagg,3b (3.24)

The Weyl tensor has the same symmetries as the Riemann tensor, with the additional

property that the trace of any pair of its indices vanishes. Thus, the Weyl tensor is

associated with the gravitational degrees of freedom that are not fixed by the Ricci

tensor. In particular, it describes the effects of long-range gravitational forces due to

nonlocal sources, while the Ricci tensor and Einstein's equations give the effects of

local matter.

We first compute the term in Equation 3.17 proportional to the Riemann tensor.

It will simplify our analysis to note that each term in the equation is orthogonal to

Ua, and hence we may multiply by the projection tensor hcth without changing the
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expression. This gives

-Raju 6 u' = -Casplu u + h± hl g-i[R]. + gj6pR + !Rg pg, u u/

= Ect + h hh, P( -YR, - goAR,, + 1Rg,~g,5 U8 UA

=--E + ±--h o±Run+h,'thOR,- , Rha)

=-E + h R,,hl'5 + h-hp0PRYP) - haoR,I6 SuAn6 (3.25)

where E,, a AU u" is the electric part of the Weyl tensor.

Now we plug the definition of or (3.19) into Equation 3.17. Noting that the last
d

term in (3.25) will cancel with the corresponding term coming from -0, we have
dt

DF DFB 1 d
dt~ ~ r - h0 3 d

2 3 /31 \

- ghap (w2 _ .2 + Vn 7) + h,"hp (.;y) + nang. (3.26)

Finally, the equation for the vorticity also arises from Equation 3.17,

DF 2 6  - 2O h + h 6 h-
wdc - 2 w - h + h5[h3an5a]. (3.27)

Since Bag is transverse to u', it is effectively a spacelike 3-tensor. Thus, equations

(3.23), (3.26), and (3.27) can be formulated in terms of the components of these

tensors in the space orthogonal to u". We define a Fermi propagated orthonormal

basis e', a = 1, 2,3, for this subspace. Since inner products of Fermi propagated

vectors remain constant, this basis will remain orthonormal and orthogonal to u" at

all points along our curve. Then for an arbitrary transverse tensor M3, its projected

3-tensor is defined by

Mab M./ ,e. (3.28)

In the projected basis, hab is used to raise and lower Latin indices, and Fermi deriva-
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tives of a 4-tensor become ordinary derivatives with respect to t. Since Raychaudhuri's

equation only involved scalar quantities, it remains the same in terms of projected

tensors. The shear and vorticity evolution equations become

d 1 + 1 \ 2
ab = - Rab - hbRahd) - oncoc - wacwc

- hab(W2 _ ,2 ± V1ii) + ZL(a;b) + nanb, (3.29)

d = - 2 aaCWcb - 2wab + 6la . (3.30)

3.2 Null Congruences

Having derived the evolution equations for timelike congruences, our next goal will be

to repeat the analysis for null congruences. Although the end result will be qualita-

tively similar to the equations derived in the timelike case, there are two subtleties to

address in the null case. The first of these deals with the normalization of the tangent

vector k. Whereas in the timelike case there was a natural choice to parameterize

the curves by proper time so that Ou. = -1, the null case is different because the

length of the tangent vector does not depend on the curve's parameter;

Oka = 0 (3.31)

even after reparameterizing the curve. The reason this is a problem is that one could

rescale the parameter of neighboring curves arbitrarily, making it difficult to talk

about the change in the separation of nearby curves as a function of the curve's

parameter.

The second subtlety deals with the transverse space to our curves. In the timelike

case, this was simply the subspace of spacelike vectors orthogonal to the curve's

tangent vector. The null case is different because by virtue of (3.31), k is orthogonal

to itself. This means that the transverse space of deviation vectors of interest is

not simply the space of vectors orthogonal to our curve, since moving along a vector

parallel to k cannot be considered a deviation. The interesting part of the deviation
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comes from the part that is not expressible in terms of a translation along k.

Abstractly, these independent deviations are described as a quotient space. If H,

represents the orthogonal subspace at a point p along the curve, then S, = H,/{k"}

is the quotient vector space obtained by forming equivalence classes of vectors in H,

that differ by some multiple of k&.

In practice, we can represent the space S, by choosing a representative vector in

Hp from each equivalence class. This can be done systematically by introducing a

particular basis for the tangent space. One basis vector will be k*. A second null

vector N', called the auxiliary null vector, is chosen as the second basis element

normalized such that k'N, = -1. Note that N' is not uniquely determined by k;

however, our analysis will show that this ambiguity does not effect the evolution of

the quantities of interest. The last two spacelike basis vectors e', A = 2, 3, are chosen

to be orthonormal and orthogonal to k* and No.

In this basis, {N', e', e} span the subspace of vectors labeling purely transverse

deviations, while {k, e', eg} span the the orthogonal subspace Hp. Thus, the space of

vectors representing the transverse, orthogonal space S, is spanned by {e', e}. The

conclusion is that S, is 2-dimensional; our deviation vectors (* for a null congruence

will lie in a 2-dimensional vector space, as opposed to the 3-dimensional space for

timelike congruences. From the point onward, S, will refer to both the orthogonal

quotient space as well as the space spanned by {eo}.

Having identified the crucial difference for null congruences, we proceed as before

to consider the evolution of a transverse deviation vector (". At this point we restrict

our attention to congruences of null geodesics. This restriction does not detract much

from our discussion; in the timelike case an accelerated congruence could be inter-

preted as the worldlines of observers subjected to some non-gravitaional force, while

in the null case the congruence cannot represent a family of observers. Furthermore,

we will show that when considering hypersurface orthogonal congruences, which are

used in the remainder of this thesis, the null congruence is necessarily geodesic.

The derivation from the point onwards mirrors the procedure for the timelike
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congruence. Once again, (" will be Lie transported along the geodesic, so that

D
D = kOp, (3.32)

where A is an affine parameter along the geodesic. Next we define a projection tensor

for the transverse orthogonal subspace:

h± = gap + Nak + kaNp. (3.33)

In the following calculations, it will be useful to keep in mind several identities:

Np, NO = k = k = 0 and N,k, = -Nk, due to the normalization of

No and k' and the geodesic equation. Also, we set (?k, = 0, which remains constant

since k' is geodesic. The deviation of nearby geodesics can be quantified with a
DT

transverse derivative - defined in analogy with the Fermi derivative:
dA

DT
Aa = hop DA for all A' E Sp, (3.34)

Dr DT
-ka = DTN = 0. (3.35)

dA dA

Property (3.34) fixes the action of up to the addition of a linear operator Wo

whose null space is Sp. This operator can be expressed generally as W'= V ±o +

U'N. Then for A' E Sp,

DTA= D A +(Nak 3 + N k")Ak?+W"A

_D

= DA - No., k" kA" + (V"ko ± U" N13)A. (3.36 )

Property (3.35) determines the values of V' and Ua:

Dr
0 dAk = -N; k"kk 3 - U" U" = 0, (3.37)

DT
0 = N" k= N",kY - No;, K-YkN - -> V" = ". (3.38)
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Hence, the transverse derivative operator is given by

DTa DQ
v" = v +V "k, - k*N) (3.39)

The action of the transverse derivative extends to tensors by requiring that it commute

with contractions and obey the Leibniz rule, and to scalars by requiring that it reduce

to the ordinary derivative. It is also apparent from the similarity of this expression

to the Fermi derivative (3.8) that transverse transport of vectors preserves inner

products.

Noting the expression for the derivative of the projection tensor,

D
TAh, = k-1 N + N k (3.40)

we compute the transverse derivative of the projected deviation vector,

= h"O (hO~k .S + e9'(N0k, + 9,k3)

= h*^,k-;h 6g. (3.41)

The second transverse derivative is

(h0 ) = ho D(h yk; 6 hA,(X)

= h"l, k;Jkvh(5,,i + k ( DT (h 0 ) + h"tY(Vk5 A - N'k)

= h", [-R^',vgkPk6 ++ y6 vk6 ± k o;6k.ij] h"

=-ha ,R-,vhv" . (3.42)

The transverse tensor BO = hoyhSpkt., once again gives the instantaneous change

in the transverse deviation vector,

DT
-(, )= B OhOY -Y (3.43)
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and its evolution equation is found using Equation 3.42:

DT(BoghOy() = -h",Rt1PskPkhO.(1, (3.44)

implying

[T B + B",B". + h" A R'-PsJkPk hV3 X? = 0 (3.45)

which holds for all transverse deviation vectors. Thus, the transverse components for

the term in brackets vanish identically, giving

Dr
DT B = -B",BB, - h",hYR,,,kPVk (3.46)

As before, Bag can be separated into irreducible parts. The definitions for 9 and

are the same as in (3.18) and (3.20), and the definition of o,, requires only a slight

modification,

o = B ) 2 Oha (3.47)

since h = 2 in the null case, while h'. = 3 in the timelike case. This is a manifesta-

tion of the fact that the transverse space S, is two dimensional. B., is reconstructed

from these quantities via the relation

1
Bao = o p3+wap + 9h,. (3.48)

The interpretation of 9 is slightly different in the null case. Since the space of

transverse deviation vectors is 2-dimensional, 9 measure the fractional rate of change

in the unit circle of deviation vectors as the curve's affine parameter increases,

1ld
0 = -- 6A. (3.49)

6A dA

The action of o-, and wafp are the same as before, just operating on the 2 dimensional

space of deviation vectors.

To compute the evolution equation for 9, first note that h A hR',,,kPkJ =
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hAR 6,JkPk' = R, 6 k'k6 . Taking the trace of Equation 3.47 yields Raychaudhuri's

equation for null geodesics,

dO= - 02W2_12 - R kk".
dAc 2

(3.50)

For the shear equation, we again substitute the Weyl tensor (3.24) for the curvature

term, yielding

- 0-Y a - wa ,0 - Oo - hajh, (C,,,

2 haf(w2 _ .2 - Rjpk k)

=-0. -ao - ww -oo - hIh, C - (W2 _ O.2 (3.51)

Finally, the vorticity equation is

DT -2o-, 6 wo - Owa,6hg. (3.52)

Equations (3.51) and (3.52) can be re-written using their components in terms of the

basis vectors {e}}, using hAB to raise and lower indices, and noting e' = k,

dA'A = - 0 7AC 0 7 B - WACW B - O0-AB - CAOBO - 1 AB(

d C
TAWAB = -- 2 A WCB - OWAChCB.

(3.53)

(3.54)
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Chapter 4

The Einstein Equation of State

The mathematical framework developed in previous sections finds many applications

in gravitational physics. This chapter explores a particular application which is foun-

dational to the concept of spacetime thermodynamics. This application is the deriva-

tion of Einstein's equations as a thermodynamical equation of state.

The idea of the Einstein equation of state is due to Jacobson [14]. In this work,

Jacobson considers local causal horizons associated with an arbitrary point p in the

spacetime manifold. The equivalence principle allows one to approximate a local

neighborhood of p as a Rindler spacetime, with a causal horizon generated null

geodesics passing through p and extending to the past of p. This horizon has an

associated spacelike cross section, which, following the example of black hole ther-

modynamics, is associated with an entropy proportional to its area. Raychaudhuri's

equation is used to relate the change in horizon area, and hence entropy, to a heat

flux across the horizon coming from the stress-energy tensor. Einstein's equation thus

arises as an equation of state between the Ricci curvature Reg and the stress-energy

tensor Taj .

The formal derivation proceeds as follows. At any point p in spacetime, the

equivalence principle allows one to approximate the spacetime near p as being locally

Minkowski. In this local approximation, there exist causal horizons extending in the

direction of any null vector k* at p. These causal horizons simply correspond to

the past light cone of the point. The causal horizon 'H under consideration should
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actually be thought of as a tube-like null hypersurface generated by k" orthogonal to

a small 2-dimensional spacelike patch B that contains p. Since the entropy is to be

identified with an area element of this surface, we must impose a local equilibrium

condition on the generators k of the horizon. Since the expansion 0 gives the change

in area of the spacelike cross sections along the null congruence generating H, the

equilibrium condition is that 0 = 0 on B.

This space has a boost generating Killing vector Xa which is null on R and vanishes

at p. According to the Unruh effect [22], uniformly accelerated observers who perceive

1H as a causal horizon will assign the horizon a temperature T = hr/27r, where r. is

the magnitude of the observer's acceleration. Motivated by the examples from black

hole thermodynamics, we also postulate that the entropy S of the horizon should be

propotional to its cross-sectional area A:

S = 7 A. (4.1)

We saw before that this area is related to the expansion 9 of the generating congruence,

we have
1id

0 = -- d A (4.2)
JA dA

where A is an affine parameter along the curve. The Killing vector x' does not affinely

parameterize the generators of the horizon, but is related to the affinely parameterized

vector k' by

X = -Ak"a. (4.3)

Now we have identified a temperature and an entropy, so the Clausius relation

states that a change in entropy 6S can be related to a heat flux 6Q as follows,

SQ = T6S = -- .iA. (4.4)
27r

This heat flux can be taken to be the boost energy flowing across the horizon. Thus,
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it is given by

6Q = Tx d EOJ, (4.5)

where dE is the directed area element of the horizon cross section. The integral is

performed over the horizon for some affine parameter distance A. This equation can

be written in terms of affine quantities by

6Q = -rj To kadAkjdA. (4.6)

Using Equation (3.49), the right hand side of Equation (4.4) can be expressed using

equation (4.2) as

TSS = r% j OdA. (4.7)

Since we demanded 0(A = 0) = 0, the value of 0 can be approximated by its

Taylor expansion,

0 ~ 6(A = 0) + A- (4.8)
dA

Then employing Raychaudhuri's equation, and neglecting 02 and o.2 terms, we have

0 = -ARpkc'kO, (4.9)

so that equation (4.4) now reads

To kck AdAdA = Rakc'kOAdAdA. (4.10)

Since we can form local Rindler horizons in all null direction around a point p,

this leads to the equality
27r

TO = RO + Cgao (4.11)

for some scalar C. We can fix C by demanding local conservation of energy, T" = 0,

which by the contracted Bianchi identities gives

1
C =--R+A (4.12)

2
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for some constant A. The equation of state we arrive at is

27r413)
Rcap - 2Rg,,p + Ag90 = Top(.3

which is Einstein's equation with G = l and a cosmological constant A.
4h

Thus, given the basic thermodynamic assumptions arising from black hole ther-

modynamics and the Unruh effect, the Einstein equations arise as an equation of state

relating curvature to matter.

Eling and Jacobson [9] and Chirco and Liberati [7] have extended this analysis to

no longer assume that the o2 term in the Raychaudhuri equation is negligible. When

that assumption is made, the shear terms from the Raychaudhuri equation give rise to

entropy production, as would be expected in a nonequilibrium setting. This is highly

suggestive of a relationship between gravitational entropy and shearing in spacetime

curvature.
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Chapter 5

Stochastic Congruence Equations

Jacobson's derivation of the Einstein equations as thermodynamic equations of state

motivates the viewpoint that gravity may be an emergent phenomenon [14]. Although

we lack a detailed description of spacetime microstructure, we can still ask questions

about its macroscopic properties taken as a thermodynamic system. One property

common to all thermodynamic systems is that the values of macroscopic quantities

fluctuate around their mean. These fluctuations arise due to essentially random

changes in the microscopic degrees of freedom of the system, and as a result the

statistical properties of fluctuations are closely related to the system's microstructure.

A classic example of determining microscopic properties from macroscopic fluctu-

ations comes from Einstein's analysis of Brownian motion [8]. In this analysis, the

diffusion constant for particles in a gas was related to the linear response of particle

velocity to applied force. The relationship is drawn by considering the effects of fluc-

tuations due to stochastic forces applied to the particle, and is a well-known example

of the more general fluctuation-dissipation theorem [15].

Fluctuation theory allows a thermodynamic description of a system in a nonequi-

librium setting. In such a setting, one expects that the entropy of the system would

increase and energy would dissipate as the system approaches equilibrium. The pre-

cise description of exactly how much entropy increases in nonequilibrium processes is

in general difficult to formulate; however, a number of techniques exist for analyzing

near equilibrium processes and linear responses of the system.
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If we consider gravity as an emergent, thermodynamical effect, we would expect

to observe fluctuations in quantities associated with the gravitational field. The mean

values of the metric and curvature tensors would still be governed by Einstein's equa-

tions, but we would expect to observe nonzero correlations of the higher moments of

these quantities. In this chapter, we present a program for analyzing these fluctua-

tions in terms of congruences of curves in the spacetime. Starting with the congruence

evolution equations, which typically are viewed as geometrical identities, we consider

a different approach where these are dynamical equations subjected to fluctuations

in the spacetime curvature.

Below we write the linear response of the congruence equations to fluctuating

terms. From there, one could proceed by promoting the curvature perturbation terms

to stochastic variables, and analyze the equation as a Langevin equation. This would

hopefully lead to an application of the fluctuation-dissipation theorem to the system.

In addition, one would like to formulate the Onsager's relations for the variables, and

analyze the linear response of the system in terms of transport coefficients. For this,

it will be necessary to identify the appropriate macroscopic variables and associated

fluxes.

Chirco and Liberati [7] noted that shear terms in the congruence equations lead

to dissipative effects in the derivation of the Einstein equation of state. Below, we

keep this result in mind, and consider not only the Raychaudhuri equation, but also

the shear equation for the congruence under consideration. We expect that the shear

variables of the system would relate to nonequilibrium effects and entropy production.

The Weyl tensor plays a prominent role in these equations, and further analysis of

these stochastic equations may shed light on the Weyl curvature conjecture [19].

The setup for a congruence of timelike curves goes as follows. We let utt denote the

tangent vector for our congruence. For this analysis, we will consider our congruence

to be irrotational, and hence ua will be hypersurface orthogonal at all points. Doing

so simplifies our analysis by setting og = 0. It also allows us to formulate our

equations in terms of intrinsic properties of the hypersurfaces.

Recall that for a congruence we are interested in the separation of nearby curves
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as we advance the curve's parameter. Since our curves are hypersurface orthogonal,

we can characterize the congruence in terms of its expansion 0 and shear o-'". The

evolution of the expansion as we move along a curve is governed by the Raychaudhuri

equation,
dO 1

= -_02 ± ap _ RJUVU" +Vano (5.1)

where i' = upu" is the spacelike vector that describes the acceleration of the

curves in our congruence. For geodesics, this term vanishes. It will also be convenient

to define the scalar Q = R,,uPu". The equation for the shear is

DF112 1
dt ** E + (h,hjR- haOR,h?')-oo-' - 2 OoO+ ha3o.2 + 1 . (5.2)

Here, E.p = CaYO ugu6 is the electric part of the Weyl tensor which describes tidal

forces due to nonlocal gravitational sources, h.p = ga + uup is the projection

tensor onto our hypersurfaces, and nK.O= hath ny;) ± - ha Vn? describes

the contribution of acceleration to the shear.

We note that Equation 5.2 is tensorially valid; however, each term in the equation

is purely transverse, i.e. orthogonal to u. We may thus write this equation in terms

of intrinsic 3-tensors defined on our hypersurfaces orthogonal to the congruence. To

do this, we let e' denote three orthogonal basis vectors in our hypersurface. Then we

may define our induced metric

hab = ge aeo = h Oe"eO (5.3)a b a b

and extrinsic curvature

Kab = ege. (5.4)

We also define the intrinsic covariant derivative

Vab =Va.;,3 ee (5.5)

which corresponds with the covariant derivative with respect to the induced metric
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hab. The intrinsic curvature tensors of the hypersurface can be expressed in terms

of the projected Riemann curvature and the extrinsic curvature. We have for the

intrinsic Riemann tensor,

3Racd = Rap 6eseele ± KadKc - Kac K, (5.6)

and taking the trace of this gives the intrinsic Ricci tensor

3Rab = Rab + KacKcb - KKab, (5.7)

where K = K a and Rab is the projected Ricci 4-tensor. Finally, our expression for

intrinsic scalar curvature is

R= hbRab + KabK" - K 2 . (5.8)

Also, since o,3, E,, and seg are transverse tensors, their projections oab, Eab and

I'ab are well-defined.

From its definition (5.4), we see'that the extrinsic curvature Kab is exactly the

object that gives the evolution of a deviation vector along a curve in our congruence.

Hence, we can relate it to the expansion and shear as follows:

Kab = Cab + Ohab (5.9)
3

Using these definitions, we are ready to write our shear equation in terms of intrinsic

quantities.

d 1 / 1a \2 1
d = - Eab + 1Rab -(Ra + Q)hab) - -acae _ 2 b + hab2 ± ab

dta Ea 2 3aua33ab

=-Eab + 3Rab + KKab - KaKcb - (3R + Q + K2 - Ke Kd)hab)

2 1 2
aacacb - ab + habo2 + nab
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dab = -Ea +-- 3Rab - (3R + Q)ha) 3acce - a+-habo2 + ab (5.10)
dt 2 3 ) 2 2 2

This for of the shear equation, along with Equation 5.1, will be the starting point for

analyzing the effects of fluctuations on our geometry.

We now consider small fluctuations in our curvature, and write equations for their

effect on the expansion and shear. Denoting these curvature fluctuations by 6Ea,

63Rab, 63R and 6Q, the corresponding fluctuations 60 and 6ob obey the equations,

d jo=-Q-2 OJ 0ab&a ±iaji, ± halVRita (.1
dt 2

6-ab = -SEab + (6Rab ~ hab(6 R + 6Q)) + nab+

1 3 1 / (5.12)
3-(a 6 b)c - 2 a 6 9 - O6Oab + habacd

Here, we have assumed that fluctuations in the induced metric hab are small compared

to other fluctuating values. Since the curvature fluctuations come from the Riemann

tensor which is composed of second derivatives of the metric, it is consistent to have

large curvature fluctuations with comparatively small metric fluctuations. At this

point, however, this does represent a loss of generality.

Equations 5.11 and 5.12 compose a set of seven linear equations for the fluctuations

of the expansion and shear. Since the shear must be a trace free tensor, only six of

these equations will be independent. Thus, we may choose any six of the variables

{ 60, 60-ab}, a < b, and compose a vector V that satisfies the differential equation,

d
d= LO + y + a. (5.13)

dt

Here, L is a 6 x 6 matrix dependent on the values of 0, oab and hab. The vector

-y encapsulates the curvature fluctuations of our system, and depends only on 6 Eab,

63Rab, 63R, 6Q, and hab. Finally, a gives the contributions of acceleration fluctuations

to this equation, and is composed of the quantities ab, 6t , 66' and ha.b

From here, we would like to analyze equation (5.13) and relate the correlation

functions of V to the correlation functions of -y and a. Then, we would proceed as
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described at the beginning of this section, and look to derive any interesting relation-

ships among the fluctuating variables.

Since this description involves a timelike congruence, it bears large differences

with Jacobson's [14] and Chirco and Liberati's work [7] whose analysis involves null

generators of a horizon. Spacetime thermodynamics often require a horizon and null

rays, so it would be interesting to repeat this derivation for a congruence of null

geodesics. An attractive feature the null congruence equation for shear (3.53) is that

the only curvature contribution comes from the Weyl tensor, while the Ricci tensor

affects only the Raychaudhuri equation. This may lead to an interpretation of the

shear equation where the Weyl tensor leads to nonequilibrium entropy production,

and may shed light on the validity of the Weyl curvature conjecture. This analysis is

left to future work on this topic.
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Chapter 6

Conclusions

The results of black hole and spacetime thermodynamics suggest that the origin of

gravity and spacetime could be emergent in nature. If this is the case, the classical

variables such as curvature and energy in general relativity would be expected to

fluctuate. This work has explored a new way for analyzing thermodynamical fluctua-

tions in spacetime. After rigorously developing the equations for expansion and shear,

a paradigm for analyzing this equations stochastically was proposed. In summary,

this program will treat the stochastic equations similarly to a Langevin equation,

and look to derive several nonequilibrium properties. These include applying the

fluctuation-dissipation theorem to the system, formulating Onsager's relations for

relevant generalized forces and fluxes, and analyzing the linear response and trans-

port coefficients in this system. A complete analysis of this method has yet to be

performed, but it has shown some promising features.

By reinterpreting the geometrical properties of the expansion and shear of a con-

gruence of geodesics, this work represents a new perspective for probing fluctuation

phenomena in spacetime. Furthermore, it provides a possible way of examining the

separate contributions to the spacetime entropy of the Weyl and Ricci tensors, by

separating out the respective evolution equations for the shear and expansion. The

form of the stochastic equation (5.13) shows that the linear response to these geomet-

rical variables can be divided neatly into terms depending on the values of o-ab and

0 themselves, terms depending only on the curvature tensors, and terms depending
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only on the acceleration vector of the congruence. This separation is encouraging for

analyzing examples of fluctuating spacetimes in the future.

For our analysis, it was taken as an assumption that our congruence is hypersurface

orthogonal, and hence the vorticity can be neglected. However, it may make sense

to analyze the equation for wab as well. Note that the curvature tensors play no part

in the evolution of Wab, except through the indirect influence of oa, and 0. This may

make analyzing the fluctuation properties of the voriticity simpler than the expansion

and shear.

As mentioned at the end of Chapter 5, formulating the stochastic equations for a

null congruence would also be an interesting line of research. Null congruences are

better suited for probing the holographic nature of spacetime, since deviations for null

congruences are essentially two dimensional. Since the holographic principle bounds

the entropy content of a surface using light sheets [5], which are null congruences,

examining the fluctuation properties of these sheets may enhance our understanding

of how and why this principle manifests itself in general relativity.

If nothing else, this work provides a new, albeit incomplete, perspective on the

link between thermodynamics and the geometry of spacetime. One would hope that

such a perspective would help further illuminate the still developing field of spacetime

thermodynamics.
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Appendix A

Notation and Conventions

Throughout this work, the metric signature employed is (-, +, +, +). Greek indices

will take on values a = 0, 1,2,3, latin indices take on a = 1,2,3, and capital latin

indices will take on A = 2, 3. The Riemann tensor is defined such that -Ro-,5VO =

V - V'a,. The Ricci tensor is then R = R, so that Einstein's equations are
1'

R - Rga = 8rTag . This work employs units where c = G = 1.

M(ap = }(Ma+ M+ a )

M = (Mao - Moa)

*=

V2 = VVa
M2 = M0 M"#

U a

ka

V = VV4

64c = .u

D

dt V%0 u
DF DV" = DV" + VO(u s" -inua)
dt dt

Symmetrized tensor.

Antisymmetrized tensor.

Equality in a particular coordinate sys-

tem.

Norm squared of a vector.

Tensor scalar.

Timelike unit tangent vector.

Null tangent vector.

Covariant derivative of a vector.

Acceleration vector along a curve.

Derivative of V' along a curve.

Fermi derivative of V' along a curve.
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DT D
-- V" a= -V" + V'O(N"k. - k"N, )dt dt

hap = gap3 ± Uang

hao = gap + kaNo + Na kg

C 5= ±R, + 2g[a R5] + }Rga[gg,]

Eai = Ca,6,5u"u4U

Transverse derivative of V" along a null

curve.

Projection tensor, timelike curve.

Projection tensor, null curve.

Weyl tensor.

Electric part of the Weyl tensor.
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