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ABSTRACT

We provide a first principles analysis of the physics and thermodynamics of interstitial hydrogen

in metal. By utilizing recent advances in Density Functional Theory (DFT) to get state energies

of the metal-hydrogen system, we are able to model the absorption process fairly accurately. A

connection to experiment is made via Pressure-Composition-Temperature (PCT) isotherms, and

thermodynamic molar quantities.

In the model, we understand the excess entropy of absorbed hydrogen in terms of the change in

its accessible microstates. A connection is also made between the entropy and electronic states of

interstitial hydrogen. However, our model indicates that this connection is too small to account

for experimental results. Therefore, a conclusion is made that the entropy of absorbed hydrogen

is mostly (non-ideal) configurational in nature.

To model the latter in a manner consistent with experiment, we have explored a new model that

posits a weak binding between clusters of hydrogen atoms at neighboring sites. We have

developed a formulation and fitted the results to experimental data. We find a least squares

fitting of the model to the entropy and enthalpy results in model parameters which seem

physically reasonable. The resulting model appears to provide a natural physical explanation for

the dependence of the excess entropy on loading.

Prof. Peter L. Hagelstein, Associate Professor of Electrical Engineering and Computer Science

Prof. Cardinal Warde, Professor of Electrical Engineering and Computer Science
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II - Preface / How to Read This Thesis

This work is organized approximately in the chronological order of research. We have included
the main results at each point, even if those results are improved upon subsequently. As a
consequence, the flow of ideas is not generally linear because some investigative paths were not
found to be fruitful. A consistent theme through the work is to keep the model grounded firmly
on first principles. Thus, wherever possible, foundational results are derived rather than stated,
and the thesis is organized in such a way as to make its results easily reproducible.

In Chapter 1, we give a brief overview of the main topics of investigation, beginning with a very
broad statement of the problem. This is followed by a summary of DFT theory and a preliminary
analysis of a related problem of a water dipole. Finally we present some preliminary results from
first principles DFT calculations.

Chapter 2 presents the basic statistical mechanics formulation to derive the chemical potential of
interstitial hydrogen. The basic model is extended to include tetrahedral occupation using a basic
excitation type model (which we derive and solve for ab initio). A connection to DFT is made
within the grand partition function formalism, leading to (PCT) isotherms that we compare to
experiment via a metal/gas boundary condition match. This chapter also introduces an interaction
energy solution that was successfully used to validate initial versions of the PCT model.

Chapter 3 presents a preliminary Phase Diagram calculation for the PdH system using the Rule
of Equal Areas.

Chapters 4, 5, 6 and 8 detail probative investigations that we used to determine whether results of
DFT would be good enough for use as state energies within our basic model. We do this by using
DFI to solve for well known problems. We also presented a summary of the underlying theory
of DFT with a view to interpreting contracted quantities.

In Chapters 7 we present a first principles analytical model for enthalpy and entropy based on a
connection to the basic model from Chapter 2. We use the results to model enthalpy changes
during the absorption process, and attempt to understand the entropy in terms of the excess
accessible microstates of the absorbed hydrogen. Each time, a comparison is made to
experiment.

In Chapter 9, we present a new model of interstitial hydrogen in terms of a simple binding
energy model. The result is a clumping type isotherm that we connect to thermodynamic molar
quantities from experiment.

In Chapter 10, we attempt another model refinement by adding a nearest neighbor exclusion
component, whereby the absorption process is modeled to occur in isolated clumps. The results
are compared to prior models. Additionally, we make an attempt at understanding the electronic
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states of the absorbed hydrogen, distinct from those of the protium. We explore two such
electronic approximations and compare their contributions to the protons'.

Finally in Chapter 11, we derive the phase diagram from the improved models of Chapters 9 and
10. Additionally, we add temperature dependence as a key part of the model.

A chronological reading of the above chapters will deliver the best understanding of the work
presented. However, for those already familiar with the material, the beginning of the thesis
(Chapters 1-6, 8) may be skimmed followed by a poring over the latter chapters (7, 9-11).

10



III - Contents
Dedication....................................................................................................................................................3

Acknowledgem ents ..................................................................................................................................... 5

Abstract........................................................................................................................................................7

II - Preface / H ow to Read This Thesis................................................................................................ 9

III - Contents.............................................................................................................................................11

IV - Figures ............................................................................................................................................... 19

Chapter 1 - Introduction & Preliminary Analysis............................................................................ 25

Introduction.............................................................................................................................................25

Volm er Process ................................................................................................................................... 25

Tafel Process.......................................................................................................................................25

Heyrovsky Process..............................................................................................................................26

Adsorbed-Absorption Exchange .................................................................................................... 26

G as Pressure Loading ......................................................................................................................... 26

A First Principles Look at Volmer, Tafel & Heyrovsky ..................................................................... 27

Introduction.........................................................................................................................................27

Quantum Physics Form ulation............................................................................................................27

The Born-Oppenheimer Approxim ation........................................................................................ 28

Density Functional Theory..................................................................................................................29

SPrelim inary Analysis........................................................................................................................... 32

W ater Adsorption on a M etallic Surface........................................................................................ 32

The M icroscopic W ater M olecule................................................................................................ 32

Local Field Experienced by a W ater M olecule....................................................................... 33

Preferred Orientation and Preferred Surface Sites for Adsorption of Water Molecule on Metal
Surface ............................................................................................................................................ 36

Predicting Dissociative Adsorption of W ater on Pd .................................................................. 38

Preparatory Results ................................................................................................................................. 40

Overview of the M ethodology ......................................................................................................... 40

Calculation of Equilibrium Lattice Constant of PdH ...................................................................... 40

Energy Cut-off and k-Points Convergence ................................................................................ 41

Octahedral vs. Tetrahedral Site Occupation............................................................................... 43

Volm er - The Physical M odel.................................................................................................... 44

1-D PES .......................................................................................................................................... 45

11



Bilayer H -Up Configuration ...................................................................................................... 46

Bilayer H -D ow n Configuration .................................................................................................. 46

Prelim inary Results: H -Up vs. H -Down ...................................................................................... 47

Sum m ary.................................................................................................................................................47

Chapter 2 - The Chemical Potential of Hydrogen in Palladium.......................................................49

Introduction.............................................................................................................................................49

The Chemical Potential of Hydrogen in Palladium: A Basic Analysis................................................50

Introduction.........................................................................................................................................50

Chem ical Potential Expression ...................................................................................................... 52

Single H -Particle Partition Function................................................................................................ 55

Including Tetrahedral Site Occupation ........................................................................................... 56

Tetrahedral Site O ccupation: O -to-T Excitation M odel................................................................. 58

Connecting O-to-T Excitation Formulation To DFT: A Computational Model............................ 62

A Sim ple O -to-T Excitation M odel ............................................................................................... 65

Hydrogen in M etal Lattice: State Energies ........................................................................................ 68

Connecting Total Interaction Energy to Enthalpy Change ............................................................. 68

Energy Corrections ................................................................................................................................. 70

Zero-Point, Therm al Excitation Energies ...................................................................................... 70

Energy Pressure Correction ........................................................................................................... 71

Configurational Correction ................................................................................................................. 72

Entropy Correction..............................................................................................................................74

DFT Energy Correction ...................................................................................................................... 75

Constant Correction ........................................................................................................................ 75

Polynom ial Correction....................................................................................................................76

The Equivalent G as Pressure .................................................................................................................. 77

Chem ical Potential for H ydrogen G as ........................................................................................... 77

Translational Chem ical Potential................................................................................................ 78

Vibrational Chem ical Potential.................................................................................................. 79

Rotational Chem ical Potential .................................................................................................... 80

Electronic Chem ical Potential..................................................................................................... 81

Total Chem ical Potential for Hydrogen Gas.................................................................................... 82

Chem ical Potential Continuity Condition ........................................................................................... 83

Total Chemical Potential Continuity Condition Including Tetrahedral Occupation.......................84

12



M odel of Non-Ideal H Gas: Fugacity ..................................................................................................... 85

Connecting Fugacity to Pressure: M odel of Tkacz.......................................................................... 86

Connecting Fugacity to Pressure: The Bockris M odel.................................................................. 88

Putting the Entire M odel Together: First Try ......................................................................................... 89

Putting the Entire M odel Together: Discussion and Second Try........................................................ 93

Correct Unity Loading Treatment................................................93

M ethodology ........... ....................................................................................................... 96

Results..... ........................................................................................................................................... 98

Interaction Energy vs. Loadings................................................ ................ ................ ................ 98

Chemical Potential vs. Loading..........................................................................................................90

Equivalent Pressure vs. Loading ....................................................................................................... 101

Interaction Energy From Experiment: Integrated Energy Form ulation................................................ 102

M odel Equation (Octahedral Occupation)........................................................................................102

M odel Equation: Initial Conditions From Experiment ..................................................................... 104

M odel Equation Including Tetrahedral Occupation..........................................................................105

Model Equation Including Tetrahedral Occupation, Non-Ideal Gas Correction and Full Entropy
Calculation........................................................................................................................................107

High Pressure, High Loading Results...................................................................................................108

Sum mary...............................................................................................................................................110

Chapter 3 - Palladium Hydride (PdH): Modeling the Miscibility Gap & Phase.............111

Introduction...........................................................................................................................................111

W hat is M iscibility Gap? ...................................................................................................................... 111

Can we M odel M iscibility Gap Theoretically ..................................................................................... 111

Rule of Equal Areas..........................................................................................................................112

Interaction Energy From Experiment: M iscibility Gap Correction ...................................................... 115

Applying Rule of Equal Areas..........................................................................................................117

Interaction Energy W ith M iscibility Gap Correction........................................................................119

M odel P-C-T Isotherm Corrected for M iscibility Gap ......................................................................... 121

M odel Phase gr .............................----- ....-......................................................................... 124

Sum mary...............................................................................................................................................130

Chapter 4 - Models of Basic Properties of Palladium Hydride .......................................................... 131

Introduction........................................-----... ----... -----..................................................................... 131

Calculated Lattice Constant..................................................................................................................131

13



Comparison to Experiment and Other Ab Initio M ethods ................................................................ 135

Electron Charge Density ....................................................................................................................... 136

Electron Charge Density: Isolated Pd Atom ..................................................................................... 136

Electron Charge Density: Bulk Pd [111] Atom ................................................................................ 137

k-M esh Size Convergence ................................................................................................................ 139

PdH Ground State Potential Energy Curve........................................................................................... 140

Lattice Expansion/Elastic Energy ......................................................................................................... 142

Sum mary ............................................................................................................................................... 143

Chapter 5 - Understanding the Energies Calculated by DFT.............................................................145

Introduction........................................................................................................................................... 145

Fundamental M any-Body Problem ....................................................................................................... 145

Hohenberg-Kohn Theorems.................................................................................................................. 146

Theorem I:......................................................................................................................................... 146

Theorem II: ....................................................................................................................................... 146

Sum m ary of Basic DFT Formulation.................................................................................................... 147

Kohn-Sham Ansatz For the Ground State......................................................................................... 148

Auxiliary System Formulation.......................................................................................................... 149

Kohn-Sham Equations ...................................................................................................................... 151

Extracting Physical Observables........................................................................................................... 154

Output of Quantum Espresso ............................................................................................................ 154

One-Electron Contribution............................................................................................................ 154

Hartree Contribution ..................................................................................................................... 155

Exchange Correlation Energy ....................................................................................................... 155

Sum m ary...............................................................................................................................................155

Chapter 6 - SuperCell Configurational Considerations......................................................................157

Introduction........................................................................................................................................... 157

Current Understanding of PdH Bonding States .................................................................................... 158

Ab Initio Calculation.............................................................................................................................158

2 H Configuration. ............................................................................................................................ 158

Sum m ary...............................................................................................................................................161

Chapter 7 - Understanding Enthalpy and Entropy ............................................................................. 163

Introduction...........................................................................................................................................163

Enthalpy-Pressure Connection..............................................................................................................165

14



Entropy Pressure Connection................................................................................................................167

Fugacity ................................................................................................................................................ 168

M odel Enthalpy Calculation: Differential Fugacity Formulation......................................................... 169

Excess M olar Enthalpy and Entropy ..................................................................................................... 175

Excess M olar Enthalpy ..................................................................................................................... 175

Excess Molar Entropy..................................................179

Correction to M odel M olar Entropy ................................................................................................. 181

Can W e Understand Entropy Using Our M odel? ................................................................................. 184

Accessible Excess M icrostates.......................................................................................................... 185

Interpretation of Fractional Accessible Excess M icrostates Result .................................................. 187

M ixed Phase "Clumping" M odel .................................................................................................. 187

Mixed Phase "Clumping" Model - Corrected Gibbs Energy ......................... 196
What Does This.ll..ean................................................208.

W hat Does This All M ean? ................................................................................................................... 20

Beta Phase.........................................................................................................................................210

Thinking About SHO Approximation to the Vibrational States of Hydrogen in Pd ............................ 216

Sum m ary ............................................................................................................................................... 218

Chapter 8 -Understanding DFT Energy Shift.................................................... ..... 219

Introduction...........................................................................................................................................219

Potential Energy Curves: Pd-H and H-H. M odel vs. Experiment.........................................................219

Excess Enthalpy Comparison to M odel................................................................................................222

Energy Offset Comparison................................................................................................................222

Constant Regression Fit to Experiment ............................................................................................ 223

Linear vs. Quadratic Regression Fit to Experiment .......................................................................... 224

Sum m ary ............................................................................................................................................... 225

Chapter 9 - A New Model of Interstitial Hydrogen in Palladium ...................................................... 227

Introduction...........................................................................................................................................227

An Improved Statistical M odel.............................................................................................................228

H Particle Count................................................................................................................................229

An Example .................................................................................................................................. 231

Protium Particle Partition Function...................................................................................................234

Clumped Binding Energy Contribution............................................................................................234

Electronic Contribution to the Partition Function.............................................................................236

M odel "Free" Parameters..................................................................................................................236

15



O verall M odel...................................................................................................................................237

Clum ped Chem ical Potential ........................................................................................................ 239

Non-Clum ped Chem ical Potential ................................................................................................ 245

Tetrahedral Chem ical Potential.....................................................................................................247

Constraints on Binding Energy Param eter: "Orondo Isotherm".......................................................249

Continuity Condition, Full M odel.....................................................................................................252

Excess M olar Enthalpy ..................................................................................................................... 254

Excess M olar Entropy ....................................................................................................................... 257

Sum m ary of M odel Equations of State ............................................................................................. 258

Special Case Solutions: Clum ping Factor y = 2..............................................................................259

Expansion Term s .......................................................................................................................... 263

Zeroth Order Approxim ation ....................................................................................................... 265

First Order Approxim ation............................................................................................................ 267

Results...................................................................................................................................................269

Sum m ary & D iscussion ........................................................................................................................ 272

Chapter 10 - Interstitial Hydrogen Clumped Model with Nearest Neighbors Exclusion................273

Introduction........................................................................................................................................... 273

N earest N eighbor Exclusion ................................................................................................................. 273

Form ulation.......................................................................................................................................273

Clum ped Species Chem ical Potential ............................................................................................... 275

N on-Clum ped Species Chem ical Potential.......................................................................................279

Constraints on Binding Energy Param eter: "O rondo Isotherm".......................................................281

Continuity Condition, Full M odel W ith Exclusion...........................................................................283

Excess M olar Enthalpy W ith Nearest N eighbor Exclusion .............................................................. 285

Excess M olar Entropy W ith Nearest Neighbor Exclusion................................................................287

O ctahedral Occupation Approxim ation ............................................................................................ 287

Results...................................................................................................................................................289

D iscussion.............................................................................................................................................292

A n Im proved Electronic M odel ............................................................................................................ 293

Taking a Second Look at the Electronic Partition Function ............................................................. 293

Clum ped vs. Non-Clum ped Chem ical Potentials..............................................................................295

Clum ped Species...........................................................................................................................295

N on-Clum ped Species...................................................................................................................299

16



A n Estim ate ....................................................................................................................................... 300

Chem ical Potential Dependence on Tem perature ......................................................................... 301

Ferm i Energy vs. Loading.............................................................................................................303

Total correction.............................................................................................................................305

A Second Look at the Electronic Contribution to Enthalpy/Entropy ................................................... 306

Introduction.......................................................................................................................................306

Empirical Correction to Clumped Results with No NN Exclusion................................................... 307

Separating Electronic Contribution................................................................................................... 307

Basic Form ulation......................................................................................................................... 307

Com putational Details................................................................................................................... 3 11

D ensity of States (DO S) ............................................................................................................ 3 12

Ferm i Level............................................................................................................................... 3 13

Band Energy .............................................................................................................................. 314

Temperature Dependence: Fermi Dirac Distribution...........................314
Results.............................................................316

Results ............................................................................................................................................... 316

A Re-Exam ination of Configurational Entropy .................................................................................... 317

Clumped Model Without Exclusion and Non-Ideal Configuration Entropy .................................... 317

A llow ing Clum ping at H igh Loading ........................................................................................... 317

Chapter 11 - Phase Diagram of the Clumped Model and Analysis of Temperature Dependence ..319

Sum m ary ............................................................................................................................................... 319

Phase Diagram M odel I ........................................................................................................................ 319

Phase Diagram M odel II....................................................................................................................... 322

Phase Diagram M odel III...................................................................................................................... 326

O verall Phase Diagram (Based on Clum ped M odel)............................................................................ 329

Free Param eters.................................................................................................................................333

Connecting Enthalpy & Entropy Fitting Parameters to P-C-T..........................334

Tem perature D ependent Binding Energy M odel.................................................................................. 337

Form ulation....................................................................................................................................... 337

M ethodology and Results.................................................................................................................. 342

Tem perature D ependent Interaction Energy ......................................................................................... 344

A nalysis and M otivation................................................................................................................... 3 44

Results...............................................................................................................................................349

D iscussion of the Results .................................................................................................................. 353

17



Is Clumping Essential to te M odel? ............................................................................................... 355

Am alysis and M otivation................................................................................................................... 355

M odel w it No Clumps..................................................................................................................... 355

Clumps with Nearest Neighbor Exclusion........................................................................................357

Results ............................................................................................................................................... 359

M odel with no Binding ................................................................................................................. 359

M odel w ith Binding ...................................................................................................................... 361

M odel with Binding and Nearest Neighbor Exclusion ................................................................. 364

Does Temperature Correction Contain Any Physics? ...................................................................... 367

Sum m ary ................................................................................................... 368

Chapter 11 - Sum m ary and Conclusions..............................................................................................369

Bibliography............................................................371

18



IV - Figures
Figure 1:Water Molecule Dipole Moment............................................................................................. 33
Figure 2: On-Top Site Occupation (from (Michaelides, Alavi, & King, 2003)) ................................... 37
Figure 3: Two-fold bridge site (From (Thiel & Madey, 1987))............................................................. 37
Figure 4: Three-fold bridge site (From (Thiel & Madey, 1987))........................................................... 37
Figure 5: Four-fold bridge site (From (Thiel & Madey, 1987)) ................................ 38
Figure 6: PdH Lattice Constant vs. Energy.............................................................................................41
Figure 7: Energy Cut-Off Relaxation.................................................................................................... 42
Figure 8: M esh Size Convergence ........................................................................................................ 43
Figure 9: Potential Energy Surface (PdH Octahedral-to-Tetrahedral)....................................................44
Figure 10: The Physical V olm er ................................................................................................................. 45
Figure 11: Bilayer, Parrallel Adsorption with H-Up overlayer (Blue=Pd, White=H, Red=O).............. 46
Figure 12: Bilayer, Parallel Adsorption with H-Down overlayer ........................................................... 47
Figure 13: H Reservoir in contact with 0-sites..................................................................................... 50
Figure 14: Low Loading Octahedral to Tetrahedral Site Excitation Energy .......................................... 56
Figure 15: Octahedral to Tetrahedral site Excitation Energy as a function of loading .......................... 57
Figure 16: Model loading dependent O-to-T Excitatin Energy ............................................................. 66
Figure 17: Interstitial Site Configurational Correction ......................................................................... 73
Figure 18: Entropy Corrections Model................................................................................................. 75
Figure 19: Model Fugacity vs. Pressure (Based on fugacity model by (Tkacz & Litwiniuk, 2002)).........87
Figure 20: Comparison of fugacity models based on (Bockris, Chien, Hodko, & Minevski, 1992) and
(Tkacz & Litwiniuk, 2002). Model fit done for computational purposes...............................................88
Figure 21: Chemical Potential vs. Loading (Based on Model+Offset).................................................. 91
Figure 22: Pressure Composition Isotherm at room temperature: Model vs. Experiment (Pressure is on log
scale). See above section on how pressure plotted here was derived from fugacity model of (Tkacz &
L itw iniuk, 2002). ........................................................................................................................................ 92
Figure 23: Interaction Energy vs. Loading (2x2x2 Super Cell) - with +.15 eV Offset vs. (Christensen,
Stoltze, Jacobsen, & Norskov, 1990)...................................................................................................... 93
Figure 24: Lattice constant relaxation (Pd): ab initio model results compared to various experimental data.
.................................................................................... .............................................................................. 9 6

Figure 25: Hydrogen Molecule in a Box: energy vs. box size - based on loading (shown for Pd)........97
Figure 26: Interaction Energy vs. Loading (2x2x2 Super Cell). Raw, uncorrected model results. ........ 98
Figure 27: Interaction Energy vs. Loading (2x2x2 Super Cell) - with +. 16 eV Offset vs. (Fukai, 2005).
Note that Fukai's data is actually enthalpy. ........................................................................................... 99
Figure 28: Chemical Potential vs. Loading (Based on Model+Offset)............................................... 100
Figure 29: Pressure Composition Isotherm at room temperature: Model vs. Experiment (pressure is on log
scale). See above section on how pressure plotted here was derived from fugacity model from (Tkacz &
L itw iniuk, 2002) ....................................................................................................................................... 10 1
Figure 30: PdH: Pressure Composition Temperature isotherm (from (Wicke & Brodowsky, 1978)).....103
Figure 31: Initial Interaction Energy Curve Based on O-Site Occupation only. ...................................... 105
Figure 32: High Loading Data (From (McKubre & Tanzella, 2006)) ...................................................... 108

19



Figure 33: Room Temperature Pressure Composition Temperature Isotherm Extended to High Loading
(Based on (Wicke & Brodowsky, 1978), (Baranowski, Filipek, Szustakowski, & Woryna, 1990),
(Tripodi, 2000) and (McKubre & Tanzella, 2006)).................................................................................. 109
Figure 34: Interaction energy derived from using our model on Experimental P-C-T isotherms from

(Wicke & Brodowsky, 1978) extended to higher loading by data from (McKubre & Tanzella, 2006). For

consistency, model has a +0.16 eV offset................................................................................................. 109
Figure 35: Rule of Equal Areas Illustration.............................................................................................. 113
Figure 36: Chemical Potential Based on Experimental Pressure Isotherm (below) ................................. 116
Figure 37: Experimental Pressure Isotherm (from (Wicke & Brodowsky, 1978) and (McKubre &
T anzella, 2006))........................................................................................................................................ 116
Figure 38: Estimated Experimental Chemical Potential Slope at Loading of 0.65................................... 118
Figure 39: Miscibility Gap Correction (blue) vs. Experiment (red). Correction applies only to mixed

phase region. ............................................................................................................................................. 119
Figure 40: Interaction Energy, from top (a) model based on Experiment (b) model (c) Experiment (Fukai,

2005).........................................................................................................................................................120
Figure 41: Pressure Composition Isotherm at room temperature: Model vs. Experiment (Pressure is on log

scale). See above section on how pressure plotted here was derived from fugacity model from (Tkacz &
L itw iniuk, 2002) ....................................................................................................................................... 12 1
Figure 42: Loading extrema: the first extremum is determined arbitrarily using first data point and while

the second is determined by a horizontal tangent as shown...................................................................... 122

Figure 43: P-C-T Isotherm with Miscibility Gap. The cycles show correction to phase boundaries

suggested by Miscibility gap correction ................................................................................................... 123
Figure 44: Final Miscibility Gap Results for Room Temperature............................................................ 123
Figure 45: Miscibility Gap Correction, T=293......................................................................................... 125
Figure 46: Miscibility Gap Correction, T=343 ......................................................................................... 125
Figure 47: Miscibility Gap Correction, T=393 ......................................................................................... 126
Figure 48: Miscibility Gap Correction, T=433......................................................................................... 126
Figure 49: Miscibility Gap Correction, T=473......................................................................................... 127
Figure 50: Miscibility Gap Correction, T=516 ......................................................................................... 127
Figure 51: Miscibility Gap Correction, T=571 ......................................................................................... 128
Figure 52: Miscibility Gap Correction, T=773......................................................................................... 128
Figure 53: Model P-C-T corrected for Miscibility Gap vs. Experimental data at T=293 (dotted, blue) and

T=571 (dotted, black) are also shown....................................................................................................... 129
Figure 54: Model vs. Experimental Phase Diagram (After (Wicke & Brodowsky, 1978)). Model Phase

diagram is derived graphically based on alpha/beta phase boundary, and is therefore approximate........ 130
Figure 55: Model Lattice Constant vs. Loading Compared to Experiment .............................................. 132
Figure 56: Model Lattice Constant - Bulk Pd ........................................................................................... 132
Figure 57: Model Lattice Constant - Loading=0.25 ................................................................................. 133
Figure 58: Model Lattice Constant - Loading=0.5 ................................................................................... 133
Figure 59: Model Lattice Constant - Loading=0.75 ................................................................................. 134

Figure 60: Model Lattice Constant - Loading=1.0 ................................................................................... 134
Figure 61: Electron Density Around an Isolated Pd Atom....................................................................... 137
Figure 62: Electron Density in Bulk Pd [111] .......................................................................................... 138
Figure 63: k-Mesh size convergence ........................................................................................................ 139

20



Figure 64: From (Balasubramanian, Feng, & Liao, 1987)........................................................................140
Figure 65: PdH Potential Energy Curve From DFT ................................................................................. 141
Figure 66: Elastic Potential Energy of bulk Pd: Model vs. Experiment ................................................... 143
Figure 67: Number of different configurations for Loading a 2x2x2 super cell.......................................157
Figure 68: Energy as a percentage above the minimum for three configurations with two Hydrogen atoms.
.................................................................................................................................................................. 15 9

Figure 69: Electron density along the line of site of two H atoms in Pd 0 sites. See visual model below.
.................................................................................................................................................................. 160
Figure 70: Lowest Energy configuration. Fully loaded Supercell shown. Pd atoms are in Blue, H atoms
white and the 2 H configuration is shown in Red. Orange are H atoms that are not part of the supercell.
.................................................................................................................................................................. 16 0

Figure 71: Example 2H Higher Energy Configurations (Blue) ................................................................ 161
Figure 72: Example 2H Higher Energy Configurations (Green)..............................................................161
Figure 73: Enthalpy Change: Raw Model and Model relative to Zero Loading vs. Experiment ............. 174
Figure 74: Total Enthalpy Change vs. Experiment...................................................................................174
Figure 75: Change of Enthalpy at Infinite Dilution .................................................................................. 178
Figure 76: Excess Enthalpy Change - Model vs. Experiment. ................................................................. 178
Figure 77: Infinite Dilution Entropy - after (Kuji, Oates, Bowerman, & Flanagan, 1983) ...................... 180
Figure 78: Entropy Change (T*dS): Experiment vs. Model.....................................................................180
Figure 79: Excess Molar Entropy*T at room temperature. We show different experimental data, (Kuji,
Oates, Bowerman, & Flanagan, 1983) for r < 0.68 and (Sakamoto, Imoto, Takai, Yanaru, & Ohshima,
1996) for r> 0.68 (purple solid line). Model result is shown in red..........................................................181
Figure 80: Same as Figure 79 but showing the results of our model entropy calculation after a simple
correction based on experiment (Blue solid line). Details of correction above, based on [Kujil983].....183
Figure 81: Configurational Entropy (H in Pd 2x2x2 Cell) ....................................................................... 184
Figure 82: Fraction of Available Microstates, model vs. experiment. Experiment from (Kuji, Oates,
Bowerman, & Flanagan, 1983) r <0.68 and (Sakamoto, Imoto, Takai, Yanaru, & Ohshima, 1996) (r>0.68)
.................................................................................................................................................................. 186

Figure 83: Same as Figure 82 but showing the results based on (Kuji, Oates, Bowerman, & Flanagan,
1983) only................................................................... ......................................................................... 186
Figure 84: Fractional Microstates in the miscibility gap within the clumped Model ............................... 195
Figure 85: Clumped vs. Random Loading (clumped in 3-tuples example shown)...................................196
Figure 86: Excess Chemical Potential vs. Temperature, after (Kuji, Oates, Bowerman, & Flanagan, 1983)
.................................................................................................................................................................. 19 8

Figure 87: Excess Chemical Potential at 573K: Experiment vs. Model...................................................199
Figure 88: Excess Chemical Potential at 603K: Experiment vs. Model................................................... 199
Figure 89: Excess Chemical Potential at 653K: Experiment vs. Model...................................................200
Figure 90: Excess Chemical Potential - Experiment................................................................................201
Figure 91: Regression Fit of Model to Experimental Chemical Potential (Constant Fit).........................202
Figure 92: Regression Fit of Model to Experimental Chemical Potential (Linear Fit).............................202
Figure 93: Regression Fit of Model to Experimental Chemical Potential (Quadratic Fit) ....................... 203
Figure 94: Regression Details (T=573).....................................................................................................203
Figure 95: Regression Fit of Model to Experimental Chemical Potential (Constant Fit).........................204
Figure 96: Regression Fit of Model to Experimental Chemical Potential (Linear Fit)............................. 204

21



Figure 97: Regression Fit of Model to Experimental Chemical Potential (Quadratic Fit) ....................... 205
Figure 98: Regression Details (T=603).....................................................................................................205
Figure 99: Regression Fit of Model to Experimental Chemical Potential (Constant Fit).........................206

Figure 100: Regression Fit of Model to Experimental Chemical Potential (Linear Fit)...........................206
Figure 101: Regression Fit of Model to Experimental Chemical Potential (Quadratic Fit) ..................... 207

Figure 102: Regression Details (T=653)...................................................................................................207
Figure 103: Beta Phase Fractional Microstates with Electronic Correction ............................................. 215

Figure 104: For the partition function of hydrogen in Pd, a comparison of SHO approximation with an

anharmonic approximation using two first excited states.........................................................................218
Figure 105: Potential Energy Curve, PdH: Model vs. Experiment...........................................................220
Figure 106: Potential Energy Curve, H-H: Model vs. Experiment...........................................................220
Figure 107: Excess Enthalpy: Model vs. Experiment (Kuji, Oates, Bowerman, & Flanagan, 1983).......222

Figure 108: The result of a Constant fit to Model to Experimental Excess Enthalpy Data......................223
Figure 109: Polynomial Fit of DFT error vs. Loading..............................................................................225
Figure 110: Excess Enthalpy: Linear Fit (red) and Quadratic Fit (purple) to Experiment ....................... 225

Figure 111: Example of coupled loading of clumped vs. non-clumped 0-sites. c=clumped sites, nc=non-

clumped and grey sites are clumped. Clumping factor=2 is shown. "ASN" means all arrangements having

the same number of hydrogen atoms, preserving the clumps...................................................................232
Figure 112: Number of microstates for a clumped vs. non-clumped configuration, as a function of loading

.................................................................................................................................................................. 23 3
Figure 113: Depiction of Conjectured H-H Binding for Clumped Configuration....................................235
Figure 114: Clumped and non-Clumped Occupation vs. Loading............................................................269
Figure 115: Binding Energy vs. Loading..................................................................................................269
Figure 116: Fractional clumped and non-clumped populations................................................................270
Figure 117: Available Microstates upon absorption.................................................................................270
Figure 118: Enthalpy vs. Experiment. Experiment is from (Kuji, Oates, Bowerman, & Flanagan, 1983)
.................................................................................................................................................................. 27 1

Figure 119: Model Entropy vs. Experiment. Experimentis from (Kuji, Oates, Bowerman, & Flanagan,

19 83).........................................................................................................................................................27 1
Figure 120: Pictorial depiction of the model. Clumped sites are shown in green and nearest neighbors in

grey . .......................................................................................................................................................... 274

Figure 121: Clumped vs. non-clumped populations ................................................................................. 289
Figure 122: Binding Energy Model..........................................................................................................289
Figure 123: Clumped and non-clumped Fractional Occupation...............................................................290
Figure 124: Available Excess Microstates................................................................................................290
Figure 125: Entropy: Model vs. Experiment ............................................................................................ 291
Figure 126: Enthalpy vs. Experiment ....................................................................................................... 291
Figure 127: Relative Fermi Level vs Temperature ................................................................................... 302
Figure 128: Fermi Energy vs. Loading (Model DFT)............................................................................... 304

Figure 129: Fermi Level vs. Loading ((Klein & Pickett, 1984) Model)................................................... 305
Figure 130: Total Electronic Correction to Entropy ................................................................................. 305
Figure 131: PdH Density of States vs. Loading (First Principles Calculations).......................................313
Figure 132: Fermi Level vs. Loading (First Principles Calculation) ........................................................ 313

22



Figure 133: Band energy per atom (relative to zero level at loading). We show two results from two cell
sizes...........................................................................................................................................................3 14
Figure 134: Model Fermi Dirac in "Loading" Space (Equation 685).......................................................315
Figure 135: Model Electronic Entropy at 571K........................................................................................316
Figure 136: Model vs. Experimental Phase Diagram (After (Wicke & Brodowsky, 1978)). Model Phase
diagram is derived graphically based on alpha/beta phase boundary, and is approximate.......................321
Figure 137: Fractional clumped and non-clumped populations................................................................324
Figure 138: Enthalpy vs. Experiment. Experiment is from [Kujil983]....................................................324
Figure 139: Model Entropy vs. Experiment. Experimentis from [Kuji1983]..........................................325
Figure 140: Clumped and non-clumped Fractional Occupation ............................................................... 327
Figure 141: Entropy: Model vs. Experiment ............................................................................................ 327
Figure 142: Enthalpy vs. Experiment ....................................................................................................... 328
Figure 143: Model PCT vs Experiment based on Enthalpy and Entropy least squares fit to [Kujil983] 329
Figure 144: Fractional Clumping (top left), Entropy (top right), enthalpy (bottom left), and model binding
energy (bottom right) T=293K..................................................................................................................330
Figure 145: Fractional Clumping (top left), Entropy (top right), enthalpy (bottom left), and model binding
energy (bottom right) T=433K..................................................................................................................331
Figure 146: Fractional Clumping (top left), Entropy (top right), enthalpy (bottom left), and model binding
energy (bottom right) T=571K..................................................................................................................332
Figure 147: Phase Diagram for the Clumped Model................................................................................336
Figure 148: Estimated Phase Model (Temperature dependent binding energy).......................................342
Figure 149: Excess Molar Quantities (Temperature dependent binding).................................................343
Figure 150: Binding Energy (at T=Tc) and Clumping Population as a function of loading.....................343
Figure 151: Interaction Energy Correction terms vs. Loading. The figure is arrived at by evaluating the
model Interaction Energy Corrections along the loading scale. ............................................................... 344
Figure 152: Interaction Energy Correction at constant loading ................................................................ 345
Figure 153: Interaction Correction Based on a global fit to enthalpy, entropy and three pressure isotherms
.................................................................................................................................................................. 349

Figure 154: Same as Figure 153 but at constant loading .......................................................................... 349
Figure 155: Chemical Potential and Estimated Phase Diagram for the Global Fit..................................350
Figure 156: Binding Energy Based on Global Fit.....................................................................................351
Figure 157: Clumped Population..............................................................................................................351
Figure 158: Excess Enthalpy Based on Global Fit ................................................................................... 352
Figure 159: Excess Entropy Based on Global Fit.....................................................................................352
Figure 160: No Binding Model: Pressure Isotherms and Phase Envelope ............................................... 359
Figure 161: No Binding Model - Excess Enthalpy ................................................................................... 360
Figure 162: No Binding Model: Excess Entropy......................................................................................360
Figure 163: Model with Binding: Pressure Isotherms and Phase ............................................................. 361
Figure 164: Model with Binding: Excess Enthalpy .................................................................................. 361
Figure 165: Model with Binding: Excess Entropy....................................................................................362
Figure 166: Model with Binding: Clumped vs. Non-Clumped Population .............................................. 362
Figure 167: Model with Binding: Binding Energy ................................................................................... 363
Figure 168: Model with NN Exclusion: Pressure Isotherm and Phase ............................................... 364
Figure 169: Model with NN Exclusion: Excess Enthalpy ........................................................................ 364

23



Figure 170: Model with NN Exclusion: Excess Entropy.......................................................................... 365
Figure 171: Model with NN Exclusion: Clumped Population.................................................................. 365
Figure 172: Model with NN Exclusion: Binding Energy ......................................................................... 366
Figure 173: Temperature corrections vs. Loading (No Clumping)........................................................... 367
Figure 174: Temperature corrections vs. Loading (Clumping with NN Exclusion)................................. 367

24



Chapter 1 - Introduction & Preliminary Analysis

Introduction

Electrochemical loading of metals in base has been known for a long time. Palladium hydride,
for example, is metallic palladium with a large number of hydrogen atoms within its crystalline
lattice. Such metallic hydrides have many applications, including hydrogen storage, energy
conversion, and even catalytic conversion, such that a fundamental understanding of the process
is of significant interest.

Hydrogen loading of metals is thought to occur primarily through the following three processes
(Green & Britz, 1996):

Volmer Process

Volmer is the primary process whereby hydrogen loads palladium. During a Volmer reaction,
one hydrogen atom gets adsorbed on the surface of palladium to begin the loading process.

For each adsorbed hydrogen atom, a single electrochemical charge exchange takes place
according to the following:

H20+e-+M - MHads +0H
1

It is thought that the adsorbed hydrogen, Hads, then diffuses into the metal lattice and occupies
either an octahedral site (energetically preferred - see preliminary results below) or a tetrahedral
site under the influence of electrochemical potential.

Tafel Process

Tafel is another process to consider in metallic loading by hydrogen in base. Tafel process is
believed to be the primary process by which adsorbed hydrogen leaves the surface:

MHads + MHas M+ H2 (gaS)
2
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Again, there is a corresponding electrochemical charge for each hydrogen atom that leaves the
adsorbed state.

Heyrovsky Process

In the high loading regime, adsorbed hydrogen is lost through the Heyrovsky Process:

H20+MHads # M+H 2 +0H~
3

Heyrovsky leads to loss of hydrogen from the lattice at high loading.

Adsorbed-Absorption Exchange

We will also consider one last reaction, namely the exchange between adsorbed and diffused
hydrogen according to the following

Hads " Habs
4

This process is electrochemically neutral since there is no charge exchange.

Gas Pressure Loading

Even though we have formulated the loading process in electrochemical terms, loading may also
be achieved under gas pressure as described in following chapters. Regardless of the loading
method, the thermodynamics and solid state physics of the absorbed hydrogen are the same.
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A First Principles Look at Volmer, Tafel & Heyrovsky

Introduction

Our aim in this work is to conduct a systematic study of the three processes above from first
principles.

Quantum Physics Formulation

At a fundamental level, the problem of electrochemical interface may be modeled quantum
mechanically. This involves solving the Schrodinger Equation whereby constituent particles of
the system are described by a wave function (r) which describes the probability of finding the
particle at a given position r. In our case the particles are electrons & protons of the metallic
electrode and ionic electrolyte. In its time independent form (when discussing bound states), the
Schrodinger Equation is:

R(r)W(r) = EVJ(r)
5

where R(r) is the Hamiltonian operator and E is the total N-particle system energy.

The Hamiltonian operator is generally decomposed into its potential and kinetic energy
components, thus

R(r) = T + 9 + 1

N2

i - V2
2m=1

6

7

for kinetic energy and
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N

9 = V(ri)
1=1-

8

for potential energy, representing the potential energy experienced by the electrons due to the
positively charged nuclei, and

N N

I (r) = 2 e2
t=1 iJ I - rJ|

9

is the electron-electron interaction term.

For the system of interest here (a number of electrons and protons - details of which we will
discuss later), Equation 5 is generally very difficult to solve exactly or even approximately. We
therefore need some simplifying assumptions to make the problem slightly less difficult.

The Born-Oppenheimer Approximation

In the system we model (electrons and protons) the mass of the electron is much lighter than that
of the proton. This makes it possible to separate electronic and nuclear dynamics, to a good
approximation. Essentially, the Born-Oppenheimer approximation posits that we can compute
electronic wave function while assuming a fixed nuclear geometry:

T(r, R) = 0(R)o (r; R)
10

where R denotes a particular nuclear geometry, and 0(r; R) is the resulting electronic orbital
assuming R. As is customary, we will make R dependence implicit and write ip(r; R) simply as
0(r).

Using this approximation, we can calculate the electronic energy of the system, to which we can
add the classical nuclear energy (since wave-component of the nuclear energy can be neglected
to a very good approximation) to obtain the total system energy. We can imagine repeating this
for a large number of nuclear geometry configurations. Obviously such configurations would be
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connected to our hypothesis of the physical system, but nonetheless, we would then obtain a
Potential Energy Surface (PES). The PES then forms the basis for solving the nuclear dynamics.

Density Functional Theory

To calculate electronic energies, we have chosen the Density Functional Theory (DFT) as an ab
initio method. DFT was introduced in 1964 by Kohn and Sham (Hohenberg & Kohn, 1964),
(Kohn & Sham, 1965), and supplants the related but older Hartree-Slater theory which was found
to be very computationally expensive and inaccurate at predicting physical solid state properties.

The basic idea behind DFT is that, based solely on fundamental properties of constituent atoms
(their atomic number), we should be able to determine physical properties using quantum
mechanics. Specifically, DFT provides a theoretical framework whereby physical features of an
ensemble system may be determined from the ground state electronic density only (Kohn &

*Sham, 1965), (Fall, 1999). We shall outline the key elements of DFT here (and also in Chapter
5), following the treatment and formulation of Martin and Baer (Martin, 2004), (Baer, 2009),
while referring the reader to the cited texts for the intricate details of the theory.

From an experimental point of view, it turns out that we can extract physically meaningful
quantities using contracted quantities, thereby averting the need to solve Equation 5 exactly.
DFT uses the electron density, n(r) as a contracted quantity. In DFT, a rigorous theorem by
Kohn and Sham (Kohn & Sham, 1965), which we will not present here in full detail, proves that
the knowledge of the ground state electronic density is sufficient to determine all the physical
properties of the system. In particular, we may write the electronic density n(r), as the
expectation value of the density operator,

N

fi(r) =6(r - r )
1=1

11

(r)= ((r)) =N f dar2 f dar3 ... f darN 3 (r, r2 'r3 ' rN)P(r, r2. r3, . N)

(1PI4I) f d3 rI f d 3r2 ... f d3 rNP*(r 2,r3, ''rN)', (r 2,r 3 ' -,rN)

12
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We may invert Equation 12 if we knew the ground state electronic density function, no(r), to get
the ground state wave function Wo(r 2 , --- , rN

WO(r2,-- -rN) [no()
13

Equation 13 expresses the wave function as a functional of electron density, and from it we can
get the ground state expectation value of any observable according to

O[no] = (Wo[ne]|0[no]|'Po[no])

Similarly, one may also obtain the ground state energy, thus:

E[no] = (WIo[no]I + U + 9|Wo[n0])

14

15

Equation 15 may be minimized to obtain ground state electron density no(r), i.e. Equation 15 is
a minimum when n(r) = no(r). More generally, we may express the total system energy as a
functional of the electron density:

E[n(r)] = F[n] + f vext(r)n(r)d r

16

where

F[n] =()+ (0)
17

and we have expressed the potential energy due to nuclear interaction as a simple integral over
electron density function. We have also labeled this potential "external" since it is considered
external to the electronic interaction. Furthermore, as is traditionally done in DFT, we note that
the functional F [n] is universal in the sense that it does not change from one molecule to
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A Preliminary Analysis

In this section, we will present some preliminary analysis that we have done in the course of our
investigation. These analyses start at what we believe is the natural starting point, namely the
surface chemistry of a metal.

Water Adsorption on a Metallic Surface

We will first look at the adsorption of water on Pd(1 11) surface. While this is a reasonably well
studied problem (Cao & Chen, 2006), (Michaelides, Alavi, & King, 2003), (Michaelides, Alavi,
& King, 2004), (Meng, Wang, & Gao, 2004), and others, it is a problem that closely relates to
our original goals since it is a precursor of the Volmer Process.

Water is known to adsorb weakly on a clean Pd(l 11) surface (Cao & Chen, 2006). This has been
confirmed by both theoretical calculations e.g. (Cao & Chen, 2006), but also experimentally
(Mitsui, Rose, Fomin, Ogletree, & Salmeron, 2002). The theoretical studies using DFT have also
revealed that H20 adsorption is aided by other co-adsorbates, for example OH (Cao & Chen,
2006), (Michaelides, Alavi, & King, 2003).

What remains less well understood are the precise processes leading to the H20 adsorption. For
example, it is not clear which sites are favored for the adsorption and what orientation of the
water molecule is favored. Previous works have clearly made an attempt at this e.g.
(Michaelides, Alavi, & King, 2003), but there is still no consistent picture of where H20 adsorbs
on the Pd(1 11) surface and with what orientation.

To gain better insight into this problem, we will begin by addressing a much simpler problem:
the interaction of the H20 dipole with a uniform electric field.

The Microscopic Water Molecule

Macroscopically, water dipole tends to align with an external electric field since the external
field creates an orienting torque given by

r = p x E0
20

where p is the water molecule's dipole moment and E0 is the applied electric field.
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another. As Baer puts it, "the identity of system is captured by the external potential vext(r)"
(Baer, 2009).

The basic problem of DFr, and also its major theoretical breakthrough, is contained in
minimizing Equation 17 for a given number of particles. A theorem of DFT due to Kohn (Kohn
& Sham, 1965) states that the electron density that minimizes the energy of Equation 17 must be
the exact ground state electronic energy. For a system of N-particles, we have

f dr n(r) = N

18

therefore, the constrained Langragian of Equation 17 becomes

£I[n] = E[n] -AIf d 3r n(r) - N
19

where X is a variational parameter.

We note that the DFT theory does not prescribe any methods for calculating F[n] as would be of
interest to us in any ab initio effort. The approximations in DFT mainly deal with choosing the
functionals F[n] that lead to the solution of the minimization in Equation 19, and the path to
achieving that minimum.
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Figure 1:Water Molecule Dipole Moment

We are however dealing with water at a microscopic level, so while the classical picture of
Equation 20 is still valid, we have to re-evaluate the actual field that the water molecule
experiences.

Local Field Experienced by a Water Molecule

In the following analysis, we will closely follow the arguments and approximations laid out in
(Haus & Melcher, 1989), (Kittel, Introduction to Solid State Physics, 7th Edition, 1996) and
(Purcell, 1985). Our starting point is the total dipole moment in a unit cell, which is given simply
as

N

p I qnrn
n=1

21

where r, is the position vector for charge qn, and we understand N to be the total number of
water molecules in the unit cell.

We would like to understand the electric field local to water molecule. Thus, the localized
electric field at a general position r due to a dipole moment p is then given by

e(r) = 3(p. r). r - r 2 p

41r2rs
22

33



To get the total microscopic field, we simply add individual vector contributions represented by
Equation 22. We would then arrive at the total dipole field. To get the total field, we need to add
the externally applied field:

1 '3(p.r).r-rfPE = E + eg(r) = EO+ - . - rTjpt
47re 0 , r5

23

Equation 23 is an exact relationship, but it is not immediately clear how to proceed towards a
solution other than through an approximation. The most accessible approximation, and the one
given below, has been developed by (Purcell, 1985), and is summarized as follows.

We will consider the induced dipole moment, and alignment of the polar water molecules
independently in this approximate treatment.

First, we look at the induced dipole moment in water molecules when an external electric field
EO is applied. We let N be the number of molecules per unit volume and a be the molecular
polarizability of water. The induced dipole moment for each water molecule is given simply by
(magnitude)

p = aE
24

where E is the effective field experienced by
will be, on average, a distance of about

the water molecule. Now, the neighboring molecule

1
N -

25

According to Equation 23 therefore, the field at this neighboring molecule from the induced
dipole moment will have a magnitude of approximately
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26

We next get an approximate value of the electric field due to the permanent dipole moment of
the water molecule. We denote the permanent dipole moment of water molecule as po, such that
in a unit volume with N molecules, the total polarization density is potentially

P = Npo
27

if we assume perfect alignment (and thus ignore thermal agitations). For water molecules,
Equation 27 leads to a very large microscopic electric field. However, at a particular nonzero
temperature T, we expect that each water molecule will have a mean rotational or translational
energy that is in the order of kBT. We therefore expect that only a fraction of the polarization
density in Equation 26 is realized at any finite temperature:

Npo - > Npo kyT E

28

where pOE is the rotational potential energy of the single dipole moment (and E is the total field),
and the quantity in brackets is the "fractional occupation" of aligned dipoles at the dipole energy
level pE.

From Equation 28, we get the approximate polarization density as

P Np 2 E

29

We may also calculate the approximate fractional alignment at room temperature when a unit
electric field per cm (1 unit is equivalent to about 300V/cm) is applied

(pOEO = 1.8x10- 8 esu. cm x 1 statvolt/cm
kg T 4x10-14 erg

= 0.45x10- 4

30

35



where we have used CGS units (1 erg=6.24x10A1 1 eV). In SI units, we can easily see that
Equation 30 has the correct dimensions, vis. a vis.:

C. M X V. M-1  CX V C.V C.J. C1

J.K-1xK J J i
31

Equation 30 indicates that at an electric field of 300 V/cm, only one half in 10,000 water dipoles
will be aligned with the electric field.

From the above analysis, we conclude that water molecule orientation will not be affected
appreciably by the applied electric field. Thus in our model, the best orientation of water in the
bulk will be nearly random and independent of the applied electric field. However, near the
metal interface, we expect them to prefer some orientation and surface sites. We tackle this issue
next before presenting some initial results.

Preferred Orientation and Preferred Surface Sites for Adsorption of Water Molecule on Metal Surface

The surface science of water adsorption is extensive and complicated. A review of existing
literature however reveals several well established factors that characterize chemisorption of
water on metallic surfaces.

Water monomer (molecule) is weakly adsorption on metallic surfaces, with theoretical
adsorption energies in the 0.1-0.4 eV range (Michaelides, Alavi, & King, 2003), (Thiel &
Madey, 1987). These adsorption energies are so low that they are competitive with inter-
molecular forces acting between individual monomers, making it rather difficult to model and
experiment on water monomers since water molecules tend to exist in cluster formations (Thiel
& Madey, 1987).

Water is traditionally thought to bond to surfaces through the oxygen atom (Thiel & Madey,
1987). This may be explained simply from basic electronic bonding considerations, namely that
the oxygen atom contains unpaired electronic states that result in a charge transfer to the metal
surface.

Our next consideration is to determine the most energetically favorable site on the metallic
surface. There are several possibilities for the water monomer to adsorb on palladium surface.
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These include the on-top site whereby the water monomer sits atop a metal atom as shown
clearly below:

Figure 2: On-Top Site Occupation (from (Michaelides, Alavi, & King, 2003))

Water monomer may also adsorb via a bridge site (two-fold shown below from (Thiel & Madey,
1987))

Figure 3: Two-fold bridge site (From (Thiel & Madey, 1987))

Lastly, we may also have a three- and four-fold bridge sites as shown below.

Figure 4: Three-fold bridge site (From (Thiel & Madey, 1987))
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Figure 5: Four-fold bridge site (From (Thiel & Madey, 1987))

The simplest model to explain the most preferred adsorption site that we can find in the literature
is that of a simple acid-base reaction whereby the oxygen atom donates an electron to the metal,
whereas the metal acts as an electron acceptor. According to this model, when analyzing a
smooth metal surface, the most electronically deficient site, and hence the most energetically
favorable electron acceptor site is the on-top site (Starr, 1982). Indeed recent ab initio DFT
calculations have also shown the on-top site to be the most preferred adsorption site for a variety
of metals and metallic surfaces (Michaelides, Alavi, & King, 2003).

The other consideration is the orientation of the water molecule at any given site. Unfortunately,
the picture here is a little bit murky. Several investigators have predicted an upright orientation
(perpendicular to the metal surface) [(Michaelides, Alavi, & King, 2003), (Michaelides, Alavi, &
King, 2004) and references therein] while others have predicted a parallel orientation
(Michaelides, Alavi, & King, 2003), (Michaelides, Alavi, & King, 2004) and references therein.

Predicting Dissociative Adsorption of Water on Pd

Dissociation is another model factor that we have to account for. In general, water may adsorb
molecularly on the metal surface or it may dissociate into its constituent parts, hydroxyl or
hydrogen. In the following analysis, we follow (Benzinger, 1980) to approximately predict
thermodynamically whether or not water will dissociatively adsorb on Pd. Since what follows is
a well known result, we will simply outline the simple model from literature and state qualitative
assumptions made therein, so we can compare our first principles calculation with theory.

In his 1980 paper (Benzinger, 1980), Benzinger was interested in modeling whether diatomic
molecules dissociatively adsorbed on metallic surfaces or not, based on thermodynamic
considerations only. The basic result is stated below, without the ensuing analysis.

The model proceeds by comparing the relative enthalpies of dissociative adsorption, AlHd vs. that
of molecular adsorption, AHm. A more positive AHd than AHm suggests non-dissociative
adsorption while a more negative AHd than AHm suggests dissociation (Benzinger, 1980), (Thiel
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& Madey, 1987) - (secondary ref). For H2 0 on Pd (100), (Thiel & Madey, 1987) reports the
following:

AHd (Complete Dissociation) AHd (Partial Dissociation) AHm
+58 kJ/Mol -5 kJ/Mol -50 kJ/Mol

Table 1: Pd(100) - Enthalpy Changes for Dissociation (From (Thiel & Madey, 1987))

From the above table, the predicted pathway is non-dissociative adsorption. This is a somewhat
surprising result since we would expect dissociative adsorption for H20 on Pd (100) based on
experiment (we would not have any loading without dissociative adsorption).

We however note the following:

" Increasing temperature shifts the prediction above away from molecular to dissociative
adsorption (Benzinger, 1980). In fact, the break point temperature for this to occur is in
the range of 250-325K, which is very close to room temperature.

* The above model ignores kinetic effects, as well as coverage effects.

* The above model ignores morphological effects. In fact, it is known that surface effects
are enough to shift the balance from molecular to dissociative adsorption (Thiel &
Madey, 1987).

We expect to shed some more light on this prediction in our ab initio simulation.
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Preparatory Results

We now briefly present some preliminary results that we have used to prove that simple DFT
calculations of well known problems match those from experiment. These results also show that
we have made the necessary progress to set up and understand the computational environment
where analysis of more complex systems may be performed in later chapters.

Overview of the Methodology

All calculations below are done in the context of Density Functional Theory (DFT) using the
electron exchange correlation functional introduced by Perdew, Zunger (PZ). We use ultrasoft
pseudopotential, with a wavefunction cut-off of 40 Ry and charge density expansion cut off of
400 Ry. All the calculations utilized the Quantum Espresso's (QE) DFT PWscf package
(Giannozzi, 2010), while the geometrical and physical modeling of surfaces and molecules was
done using various software tools including Xcrysden and Material Studio.

Calculation of Equilibrium Lattice Constant of PdH

Palladium exists in FCC lattice with an experimentally reported lattice constant of 3.89
Angstroms (7.351 a.u.). With an incorporated Hydrogen atom in its lattice, we expect the lattice
constant for PdH to increase slightly from the additional stress (Hagelstein P. , Private
Conversation, 2009), but we need to verify this numerically using DFT. Because this is a
sufficiently simple calculation, it will also offer us the opportunity to gain confidence in the
future, more complicated calculated performed by QE.

To calculate the equilibrium lattice constant for PdH in the ground state, we will manually relax
the geometry around the reported value, each time calculating the ground state Self Consistent
Field (SCF) total energy. We expect that the equilibrium lattice constant value will have
minimum energy, and we should be able to verify this numerically.

We carry out such a relaxation, and get the following results for an octahedral site H occupation:
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Figure 6: PdH Lattice Constant vs. Energy

From these results, we see that the calculated ab initio equilibrium lattice constant for PdH is
about 7.6 a.u.

Energy Cut-off and k-Points Convergence

In DFT, a crystal structure is modeled as an infinite system via the periodic boundary condition
(PBC) formalism. We can therefore use Bloch Theorem to solve Schrodinger's Equation, thus:

lJn,k (f) = e'k.u U(f)
32

where WPnT (f) is the wave function we are solving for, unk (f) captures the periodicity of the
crystal and is given-by an infinite Fourier expansion in reciprocal lattice space:

u mk(f)= IcGe

33
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G are reciprocal lattice vectors and CG are expansion coefficients. In theory, we would expand
Equation 33 to infinity, but in practice, we have to stop somewhere. In DFT, this cut-off is often
specified in energy terms corresponding to the kinetic energy of the highest G included in
Equation 33.

Analogously, to get the total self consistent crystal energy, we need to integrate the resultant
wave function over the Brillouin Zone. This integral is approximated by a finite number of k-
values (k-mesh actually since we are in 3 dimensions). It is therefore critical that any energy
calculation we do is based on converged k-space i.e., the k-mesh should be dense enough for the
problem at hand.

We first test the energy cut-off of PdH by starting with a reasonable value of 10 Ry and manually
testing convergence. The results are shown below.
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Figure 7: Energy Cut-Off Relaxation

We see that convergence is achieved at a plane-wave cut-off corresponding to about 30 Ry. It
remains to be answered if this cut-off energy depends on other systematic parameters, and what
the nature of such dependence is.

Note: Determining E-cut-off is useful numerically due to computational savings.
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Using the above cut-off, we will next investigate the k-point convergence, starting with a lx1x1
grid:
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Figure 8: Mesh Size Convergence

A k-point mesh size of 4x4x4, therefore, seems appropriate for the PdH calculations we will be
performing.

Octahedral vs. Tetrahedral Site Occupation

We are also interested in calculating SCF energies for both tetrahedral and octahedral H-Site
occupation. From literature, we expect the octahedral site to be preferred energetically.

In the following calculation, we have used the converged values of lattice parameter, plane wave
energy cut-off, and k-point mesh size to calculate the total ground state energy of the PdH
molecule as the H atom moves from a tetrahedral site ( ) to an octahedral site ( W /2)

along a straight line. As expected, the octahedral site is the more energetically stable occupation
site, and we should thus expect it to be preferred as long as it is statistically available in the sense
of section Tetrahedral Site Occupation: 0-to-T Excitation Model of Chapter 2.
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Volmer - The Physical Model

It may be useful to create a physical model before embarking on a detailed calculation. As you
may recall, during a Volmer reaction water dissociatively adsorbs on the Pd surface according to
the following (Equation 1)

H20 +e-+ M # MHas +0H

34

We may visualize a water molecule approaching the Pd surface. At some point, it dissociates
according to the following physical model:
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Figure 10: The Physical Volmer

The process is mediated by an electrochemical charge exchange (according to Equation 34)
which completes the external electrical current. Undoubtedly, this is a rather simplistic picture,
but we can imagine two systems, one consisting of a H2 0 double layer representing the pre-
Volmer state and the other consisting of H2 0-OH-H overlayer system, very similar to that
considered by Michaelides and his coworkers (Michaelides, Alavi, & King, 2003). We can then
determine the energetics of the two systems and hopefully shed some light into whether Volmer
process can be predicted from first principles.

J-D PES

Initially, we may just be interested in determining the PES for simple cases, say 1 -D PES for
specific configurations that we know are of interest. In the following, we use some parameter
results from literature while varying others as shown in the following table:

Orientation Layering Preferred H-up vs. H-down Bond Distances
Adsorption (for overlayer)
surface_

Lower Layer Two layers (11 1)[Several] Unresolved in Experimental
parallel to (Thiel & Madey, literature. (Water). Other
surface 1987) Investigate (see bond distances
(Michaelides, below) chosen arbitrarily
Alavi, & King, (must be relaxed ab
2004) initio)
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We can then consider several simple scenarios. In each case, we calculate the ground state
energies to determine the most likely configuration. Also, in all cases, we use a 4 atom layer
Pd{ 1111 surface atop which is a vacuum equivalent to about 5 atom layers.

Bilayer H-Up Configuration

This is depicted below. The water molecule is chosen to be nearly parallel to the surface of the
Pd, and the overlayer is in the H-up position as shown below. Traditionally (Thiel & Madey,
1987), this is the assumed adsorption geometry:

Figure 11: Bilayer, Parrallel Adsorption with H-Up overlayer (Blue=Pd, White=H, Red=O)

Bilayer H-Down Configuration

Recently however, some workers (Ogasawara, et al., 2002) have determined, using Pt{ 111} that
the H-down configuration is more favored. This configuration is shown below:
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Figure 12: Bilayer, Parallel Adsorption with H-Down overlayer

Preliminary Results: H-Up vs. H-Down

Based on our first principles calculations for Pd{ 1111, we conclude that the H-Up configuration
is slightly energetically favored over H-Down. All figures are given in eV per atom.

H-Down H-Up Difference
-213.133 -214.297 1.163767

We therefore confirm the long standing H-up adsorption configuration and use it in the following
adsorption model.

Summary

In this chapter, we introduced the problem and provided some preliminary analysis of a water
dipole. We also tested the DFTl on some simple problems.
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Chapter 2 - The Chemical Potential of Hydrogen in

Palladium

Introduction

A natural beginning of our investigation is the determination of the chemical potential of H
within the Pd lattice. Doing so will tell us the extent to which Hydrogen loading of Palladium
occurs.

From first principles, chemical potential is one of the four fundamental thermodynamic
quantities. It is a measure of the ease with which particles may be exchanged between systems
whose contact allows for a particle exchange (Kittel, Thermal Physics, 1980). Chemical potential
is indeed a form of potential energy - it is the energy needed to bring two systems into diffusive
equilibrium while holding total volume and temperature constant [ibid].

Mathematically, chemical potential is defined as follows:

p (T, V, n) =- -!In,,
35

In Equation 35, F is the Helmholtz Free Energy, defined as an energy balance between minimum
energy and maximum entropy:

F(rV,n)=- U - r
36

where U is the total system energy, o- is the system entropy and r = KBT. In classical
thermodynamics, it can be shown that F(r, V, n) obtains a minimum with respect to all
fundamental thermodynamic variables (r, V, n).

Even with this brief subject matter introduction, we are almost ready with the basic formulation.
Before that, we need to introduce one more basic concept, namely the Grand Partition Function,
Z :
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Z(r,p)= e
ASN

37

In Equation 37, the summation is carried out over all states of the system for all numbers of
particles, and es = e(n) are (micro)state energies for the given number of particles, n.
Intuitively, the partition function captures the configuration of the system by encoding the
individual state probabilities based on their energies.

The Chemical Potential of Hydrogen in Palladium: A Basic Analysis

Introduction

We would like apply the foregoing simple classical thermodynamic analysis to the case of
hydrogen atoms in a Pd lattice. Initially, we will consider octahedral sites only. We will
generalize the analysis to tetrahedral occupations later in this chapter. For octahedral occupation
only, then, we imagine them being in contact with a reservoir of H:

Figure 13: H Reservoir in contact with O-sites

Following (Fowler, 1936), (Lacher, 1937), (Christensen, Stoltze, Jacobsen, & Norskov, 1990)
and others, we write the grand canonical partition function for the H atoms in the O-sites as
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follows:

ny4-shn

ZH(T,1L) e

n ASN

38

In Equation 38,

n is the number of H atoms, distributed among N available O-sites, and the second sum has the
same meaning as in Equation 37,

z is the isolated H-atom partition function within the O-sites, unspecified as of now, and

Eh = Eh(n) is the total interaction energy of the configuration with n H atoms, distributed among

N available O-sites.

Equation 38 has well known approximations that we will utilize here. In particular, we use the
approximation adopted by (Lacher, 1937), who used previous work by Bragg and Williams
(Bragg & Williams, 1934) to write it as:

N! -!m
ZH(, n!(N -n)!e r z

39

This approximation is also called Mean Field Approximation (Christensen, Stoltze, Jacobsen, &
Norskov, 1990) or Self Consistent Field approximation. We will adopt the Bragg and Williams
Approximation terminology in this work. While a full treatment of the Bragg Williams
Approximation is not considered here, we note in passing that it essentially approximates the
many-body interactions implicit in Equation 38 with an average effective interaction, essentially
reducing the problem to one-body interaction with an effective field. (Buckley, Dobson, &
Poyser, 1995) has performed Monte Carlo simulations that support the use of this approximation
in the same context as ours, so we believe the approach we are taking is on solid theoretical
foundation.
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Chemical Potential Expression

We get the chemical potential by minimizing the free energy with respect to the number of
particles:

OF O In ZH
OnH On

4C

Equation 40 is typically used in conjunction with an uncorrelated partition function, but we think
that as long as the energy Eh in Equation 39 is the total interaction energy of H within Pd lattice,
Equation 40 will be valid for the case of H in Pd.

We determine an expression for Equation 40 below, noting that the algebra that follows may be
dispensed with, but we have included it here for reference purposes:

From Equation 39, using Equation 40, we get

0 N! nehl T
p1H ~~ n! (N - n)! +lnn z" =--Tl1+ T2 +T3)

41

Using the Stirling Approximation

N! = (21rN)2N N-N -e- -
42

we can write the first term as
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T1 = In = nN! - In(N -n)! - Inn!

inV2 + (N + InN -N

- (inNr + (n + inn-n)

- (inii5 + (N -n + in (N -n) -(N - n)

= (N + InN - In (N - n))

43

After the following algebra, we get

T1=-- n + Inn + (N- n+ i n(N -n)

=-(n+ n+Inn+ (N -n n + n)(-1)+(-1)n(N -n)

=-n+ n+Inn+ (N-n+ (-1) +(-1) 1n(N - n)l

=- 1 +++ Inn - (1N- - In(N -n)} =

44

We get the other terms as

a
T2= Inz

45

and

a = / (e(n)\ naeh(n) eh(n)
O T3 -- - -n -

46
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In Equation 46, we have emphasized that the total interaction energy will depend on the number
of occupied O-sites, as previous workers have already noted, for example, (Lacher, 1937).

If we define the degree of loading as the ratio of the number of Hydrogen atoms to those of
Palladium, i.e., 6 = ", we can re-write Equation 44 as:

a 1(1 1 0
S 2N' \61-0

47

In Equation 47, we note that with N very large, the second term will always dominate the first,
even near 6 = 0, such that the final result, to a good approximation, is

a 6
5T1 = -lny-In

48

Lastly,

a T a etC()
T TT3 = (

49

Putting Equation 41 together with Equations 45, 47 & 49, we arrive at an expression for the
chemical potential of H in Pd for the case of single interstitial site occupation as follows:

0 aPH (TI 0)= n7 l +0T hO h

50

This result has been derived by Christensen (Christensen, Stoltze, Jacobsen, & Norskov, 1990)
and several others, who generally based their work on the earlier work by Lacher (Lacher, 1937)
and Fowler (Fowler, 1936). It is considered accurate to within the approximations made in its
derivation, namely the statistical mechanical description via the grand partition function
formalism, and the Stirling approximation. We interpret Equation 50 as expressing the chemical
potential of H within the Pd lattice to consist of its value without any lattice interaction, yo, plus
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correction terms that depend on loading:

0 a
pH09) =-rInz+'ln---+0 Ehf(6) + Eh (0)

= 10 + p1(6) + p2(0)+ Y3(0)
51

Single H-Particle Partition Function

It still remains to determine the partition function of the H atom in the absence of interaction, z.

For this, we use a 1D harmonic oscillator model, which, for simplicity, is modeled as an Einstein

atom with vibrational energy co, = ho. This model has been used by others, for example

(Christensen, Stoltze, Jacobsen, & Norskov, 1990) & (Buckley, Dobson, & Poyser, 1995), to

treat the same problem as ours. Basically, the isolated protium is assumed to vibrate at a

frequency much higher than the lattice phonons, making their independence possible and

resulting in a reasonably good approximation using a harmonic oscillator (Flanagan & Oates,

1991).

For a 1D harmonic oscillator, z is particularly simple since

En = 60v n

52

where co, is the ground state vibrational quantum. We obviously expect so, to be loading

dependent (see, for example, (Rush, Rowe, & Richter, 1984)), but to a first approximation, we

will assume that it has a constant value independent of loading.

Therefore, for all three normal modes, we have

Z e e e~ = (2sinh '

53
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Equation 53, together with Equation 51, provide a reasonable model for the chemical potential of
H within the Pd Lattice whereby only one species of sites (octahedral) has been considered. The
interaction energy as a function of loading, c (6), may be calculated directly from first
principles, while co, may be obtained from literature (Wicke & Brodowsky, 1978).

Including Tetrahedral Site Occupation

It is generally accepted that there will be tetrahedral site occupation, especially at high loading
(Lacher, 1937). In this section, we start with the following potential energy diagram from our
DFT results that shows that there is about a 276 meV excitation between the two energy levels.
This is a very large energy barrier as we can easily show. Other workers have also found this
energy difference to be very close to our calculation using other methods, for example, 295 meV
using Molecular Dynamics methodology (Salomons, 1990).
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Figure 14: Low Loading Octahedral to Tetrahedral Site Excitation Energy

Our expectation is that, using statistical mechanics concepts that we started formulating above,
we can determine what percentage of site occupations, n, will consist of O-site occupations and
which ones will be T-site occupations.

Figure 14 is accurate only at low loading levels (and in fact the excitation energy from
(Salomons, 1990) is from near zero loading). A question arises as to whether the O-to-T
excitation energy is constant with loading or not.
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To this question, we seek an answer from our first principles computational (DFT) framework.
We performed some ab initio calculations whereby, for a specific loading and configuration, we
randomly promoted one hydrogen atom from an 0-site to a T-site. The results indicate a general
increase in excitation energy with loading for both a single cell calculation and a 2x2x2 super
cell calculation:

Oct-Tet Excitation Energy vs. Loading
0.9
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0.7

0.6

0.5_ _ -4-- Excitation Energy (single cell)
.. 0.5

a 0.4 Excitation Energy (2x2x2
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- Linear (Excitation Energy (2x2x2
0.2 supercell))
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0.00 0.20 0.40 0.60 0.80 1.00 1.20

Loading

Figure 15: Octahedral to Tetrahedral site Excitation Energy as a function of loading

The first thing we note is that there is strong configurational dependence, which means that the
energy is most likely to be strongly dependent on the particular configuration chosen. We also
notice a big increase in excitation energy with loading. We speculate that this is due to a stronger
H-H interaction (repulsion) when the tetrahedral sites are occupied.

Based on (Salomons, 1990)'s near zero loading results which closely match our low loading ab
initio calculations, we believe that it is a good approximation to use the low loading results since
our higher loading results will simply preclude tetrahedral sites even more severely. The
formulation of the model follows below.
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Tetrahedral Site Occupation: O-to-T Excitation Model

Once again, we begin with the partition function of the full configurational system:

Z H (I, $(no+nt)IA-eh ~o~t

no nt ASN
54

In Equation 54,

no is the number of H atoms, distributed among No available O-sites, nt is the number of H
atoms, distributed among Nt available T-sites, and the last sum means all system configurations
with {no, nt} H atoms,

z is the isolated H-atom partition function, already specified in Equation 53 above,

Eh = Eh(no, nt) is the total loading-dependent interaction energy of the configuration, with
n = no + nt H atoms, distributed among N = No + Nt available interstitial sites of both types,
and,

y is the chemical potential for the H atom, which must be the same for either O-site or T-site
occupation.

We write Equation 54 using the previous approximation (Equation 39) and following (Hagelstein
P. , Private Conversation, 2009)'s extension of (Lacher, 1937)'s treatment of Octahedral to
Tetrahedral occupations:

No! Nt! ("o+nt~eh(no~nt) on
ZH T, ont)=_no! (No - no)! nt! (Nt - nt)!

55

We are aware of at least a couple of workers who have looked at this problem and come up with
appropriate models, for example (Salomons, 1990), (Geerken & Griessen, 1983). Salomon's
model considers the chemical potentials for each site separately, and using the fact that they must
be equal, determines the relative 0 vs. T site occupations:

po (T, no, nt)= lt(T, no, nt)
56
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Using a previous (Geerken & Griessen, 1983) Mean Field Approximation to account for the
hydrogen-hydrogen interaction, (Salomons, 1990) arrives at an expression very similar to our
Equation 50 above:

gj = Tln -+ f(j) + 6, i = (o, t}

57

In Equation 57, f (6) represents the interaction term, and ei are site energies which we do not

define here more precisely since we are only interested in their difference (below), and

60 =

Ot ="-

58

59

are, respectively, the partial octahedral and tetrahedral contributions to the overall loading.

Combining Equation 56 and 57 yields (Salomons, 1990):

00 et
+0 +1

60

We may use Equation 60 to determine the relative fractional site occupations. (Salomons, 1990)
has calculated the activation energy Ae = et - co = 295 meV at near zero loading, such that at
room temperature, Equation 60 predicts a very small tetrahedral fractional occupation:

= 8.54 * 10-4 (6 = .99)
18.63 * 10-6 (00 = 0.5)
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While Equations 60 & 61 give us some indication regarding the relative fractional occupations of
octahedral and tetrahedral sites, we are still not any closer to a complete tetrahedral+octahedral
model in the ab-initio framework (where the interaction energy of the system now includes both
occupations).

In this work, we take a slightly different view. From the full configuration (octahedral and
tetrahedral) partition function, Equation 55, we calculate the chemical potential two ways:

go = (T, n -TnZH(Tnont)
@n6

62

, InZH(T, no, nt)
pt (r,nnt) = -n

63

where

6 No! Ne! (no + nt)eh (no,nt) + (no + n) n(z)"* none)= r no no! (No - no)! + nt! (Nt - nt)! T t nz

Once again, we use the Stirling Approximation

in(x ) = In(2n-) + (X + 1nx - x

for x a large integer, and organize the terms according to (using previous results):

p10 (Tfno, n) =Ttin no- In(z) (no + nt)+Eh(no, nt) +a(no,nt)
fNo - nor no 

64
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Similarly:

{ ( nn (no +nt)Oeh(no,nt) +h(no,nt))
*,ont)TtIn N In(z)+ T ant T

67

Furthermore, using the ratio of Octahedral to Tetrahedral sites, which for an FCC lattice is equal
to '/2:

No 1

Nt 2
68

and

1
00 =- anoNo

69

etc, we write

e(Tr,no, n) -> 4a(T,60,6O)

70

and

p0 (r,00, O) = r In - T l n(z) + (60 + 26t) o6 +ih(00,6o)

71

Pt(T,00,6c)=Tn --- Tln(z)+(t+ 16 0 ) ae(00,ot) +eh(00,6O)l - t 2 co

This completes our expression for the chemical potential where both interstitial sites may be

occupied.
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Connecting O-to-T Excitation Formulation To DFT: A Computational Model

We would like to connect the above formulation to our DFT model.

First, we need to assign a meaning to eh(60, 6e). According to the Grand Partition Function
(Equation 54), Eh(0,6 ) is the total interaction energy in the configuration whereby both
interstitial site types may be occupied, and can be calculated from first principles directly using
DFT7.

Second, we need to relate 60 and 9 t to the loading level that we have used previously, 0, defined
as the number of hydrogen atoms per palladium atom. From their definitions above, we can
make a simple connection:

f no +nt 1 2
No + Nt 3 6 +3Ot

73

We note that for an FCC unit cell, there are a total of 12 interstitial sites, i.e., No + Nt = 12/
cell, therefore, Equation 73 does not define the ratio of hydrogen to palladium atoms. We can
connect the two using:

36' = 6 = 60 + 20t
74

From Equation 74, we can simplify the model further using

1eh(60,6c) 0eh( 06 Oeh(O)
a60 ~I6 06 06

75

and

OEh(0o,Ot) Oeh(G) 06 Oeh (0)
66 0 6 ot=2

76

such that Equations 71 and 72 become
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Go Oeft(6)
pgo(r, 00, 6) = in - Tin(z) +0 0 6 + Eh(00, 6O)

7

____ 8eh(0 )
pt(T,0,Ot) =r in1 -r n(z)+ 0 00 + -h(00,6O)

7

Finally, we have to find a way to calculate the relative distribution of 0 vs. T-sites as a function
of loading. We cannot use (Salomons, 1990)'s result described above, Equation 60, because it is
independent of loading.

As a first attempt at a model, we may imagine a state of the system with n? 0-sites filled, and
whose total energy is ef. The approximate relative probability of the system being in this state
may be approximated by the Gibbs factor:

ni s-e1
P,,Te(n*, T)oce

7

Similarly, for T-Site occupation whose energy is j

Pr, (nj,T) oc e t

80

Therefore, the relative occupation of 0- to T-sites is expected to be

P,*,, (no,T) (9-"j)-(*9~*j

Pr,,(n t, T)
81

It is not immediately apparent how to proceed from Equation 81 within our computational
framework. We may however use an alternative model formulation which may be readily
connected to our computational model, and which we believe lends itself to a statistical
mechanics interpretation. We tackle that next.
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We compare two systems, both with n interstitial sites of both types that may be filled. In the
first system, only Octahedral sites are filled. As before, the relative probability of the system
being in this state is

Pl (n, T) oc eT
82

The second system is exactly the same as the first except one of the interstitials is now a T-site.
The relative probability of this state, with some energy e2 * E1 , is

P,ei(n, T) c e
83

62- 6 1 is available from the computational model, and from it we can get the relative occupation
as

P,4e(n, T) e2-ei

P'e(n, T) e T

84

Equation 84 is most certainly an approximation, but agrees with the intuition that as the loading
increases, an increasingly higher number of T-sites will be occupied. However, it does not
depend on loading so it is difficult to interpret it (and it is rather doubtful if it captures the full
physics of the problem). Furthermore, it lacks any connection to entropy, so its efficacy is very
much in doubt.

Even though Equation 84 does not depend on loading as it should, it may be used as a boundary
condition (near loading of zero). Using the experimental, near zero loading value of O-to-T-site
excitation energy of 295 meV (Salomons, 1990), at room temperature, it predicts a very high 0-
site occupation relative to that of T-site:

Proe I(flT) -. 93

P,.*,L (n, T)
85
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This means that if we are using a 2x2x2 supercell to represent our PdH system, there will be
configurational T-site occupation only after unity loading. But this is not a limitation on the
model, however, since we can use statistical interpolation at any loading level once we have an
overall model.

A Simple O-to-T Excitation Model

We may refine the above estimates, which are primarily for computational purposes, from the
results of (Salomons, 1990), Equation 60, which includes entropy terms with the hope of
capturing more physics of the problem. We write it as:

et-e0ot G(1 - 0)'e 
00 =6(1 - 6t)

86

We may put Equation 86 on a firmer footing within our framework using Equations 77 & 78 as a
starting point, repeated below for convenience:

80 Oeh(Oo,68)
/to(T,00,) = T 1n - T 1 n(z) + ( + 20t)0 ) + eh(00,Ot)

87

1 Oeh (0 80)
pit(T ,60 ,6t) = r in I - Ot T 1 n(z) + (Ot + G0o) 0 + eh(o, t

8 )

88

We define the O-to-T excitation energy via a matching of the Octahedral and Tetrahedral site
chemical potentials, equating Equations 87 & 88,

1 OEh(Bo,Bt) Oeh(OoOt)
AEO-T() (Ot + 00) - (00 + 20t)

89

which, for the FCC lattice we are dealing with, and using Equation 74, becomes
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1 6Eh (00,) (Oo,t)
AeO--r(G)=--6 -6

2 0 6 t 060
90

It is the zeroth order of this quantity that (Salomons, 1990) estimates to be 295 meV. We may
actually estimate its full loading dependence, Equation 90, using our ab initio model. The result
is shown below:

O-to-T Excitation Model
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Figure 16: Model loading dependent O-to-T Excitatin Energy

Via a linear interpolation of the graphed data, we get the following simple but reasonable, linear
Octahedral-to-Excitation model

AEOT(O) = 0.15266 + 0.1135 (eV per H atom)
91

From this, we rewrite Equation 86 as

tS...T(O) 
6
t(1 - 0o)

e 0 0 = ( 1 6

92

66



Equations 91 and 92 together with Equations 56, 77 and 78 fully characterize the computational

model, and may be used after state energies Eh(00, Ot), and the Excitation Energy, AEo-T(0)

have been calculated ab-initio, and connected to experiment as detailed below.

In terms of computation, the final result means that Equations 62 and 63, now written as a
function of fractional occupations using Equations 77 & 78, become:

PH (T 0o t o ( O t) = At (T) 19o,
93
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Hydrogen in Metal Lattice: State Energies

We would like to determine the interaction energy when a number of Hydrogen atoms, n, are
introduced in the metal lattice and occupy n of available N Pd interstitial sites of both 0- and T-
species. We take the view that the interaction energy is equivalent to the energy difference
between an isolated H2 molecule in its gas phase compared to the energy of the same molecule
within the lattice. The energy difference provides us with a measure of the chemical potential
energy required to bring an isolated H atom (proton) into the potential energy holes within the Pd
Lattice.

Computationally, we use one particular definition of this interaction (Hagelstein P. , Private
Communication, 2010) & (Fukai, 2005) as follows:

Eh(n) = Efn+1)H - H + 2VHc

94

In Equation 94,
Pd

E(n+m)H is the ground state energy of a Pd Lattice with (n + m) of its N interstices filled with H-
atoms, and

-'Hc is the ground state energy of an isolated H2 molecule in its gas phase.

As defined, Equation 94 will give us the interaction energy of one H atom, which is precisely
what we need for the determination of chemical potential in Equation 40. In the following
sections, we will provide some results based on ab initio calculation on a 2x2x2 Pd supercell.

Connecting Total Interaction Energy to Enthalpy Change

To be able to compare our results to experiment, it is crucial that we make a correct translation of
our calculated state energy as defined by Equation 94, to what is normally done in the literature
by physical chemists. The interaction energy as defined in Equation 94 makes it clear that it is
the energy change of a Hydrogen atom entering into the Pd lattice. Consequently, since it is a
total energy change, it must consist of enthalpy AND entropy contributions, in line with the
fundamental thermodynamic relationship in terms of total internal energy vs. entropy balance
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(Equation 36):

F(r, V,n) = U - a
95

In other words, the interaction energy as defined does not equal enthalpy change. It is in fact
more closely related to the change in the total Internal Energy in a thermodynamic sense. See
Chapter 9 for a more detailed discussion of this connection. At this stage in the model, all we can
say is that enthalpy and entropy changes are related to the interaction energy in some way:

AH(n) = f [-h(n)]
96

AS(n) = g[e (n)]
97

where, in physical chemistry terms, AH(n) is the enthalpy (heat) of solution, and AS(n) is the
entropy of solution, see (Fukai, 2005), for example. Equations 96 & 97 may be expressed in
terms of U per mole of H2 gas, but we adopt an equivalent measure of eV per H atom here.

The other consequence of Equations 96 & 97 is that our model will only capture configurational
entropy. The other entropy terms (optical, acoustic and image interaction) need to be added as
correction terms (Kuji, Oates, Bowerman, & Flanagan, 1983) - see next section for a full
discussion with parameters.
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Energy Corrections

Zero-Point, Thermal Excitation Energies

The results from experiment include both zero point and thermal excitation energies of the free
H2 molecule as well as the absorbed H. Our ab initio results do not include these energy terms,
such that it is important to correct for them. These correction terms are well known from
literature, (Christensen, Stoltze, Jacobsen, & Norskov, 1990) for example, so we only summarize
them here.

For the gas phase, we need to include the translational thermal energy, rotational thermal energy,
and vibrational zero point energy as, respectively (Christensen, Stoltze, Jacobsen, & Norskov,
1990):

Efrans :kB2

98

H2 kB T

99

EZ2 r 
H-

zero-= 'ihWH-

100

The thermal energy of the absorbed Hydrogen atom is given by

H Pd
EThermira = 3kq T

101

For the zero point energy, we ignore thermal contributions and take into account only the
vibrational part (including all 3 modes) to arrive at

eH/Pd

102

Lastly, we add the work needed to compress Hydrogen into the Palladium bulk:
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H/Pd 1EComp ":: kBT

103

On a per Hydrogen atom basis, therefore, we need to add the following correction term, from
Equations 98-102:

AE = 3kBT +i 3&+ 1kT - .2(k'T + kBT + hW'CH)

104

Using the following figures: T = 300, hOH-H = 540 meV (Christensen, Stoltze, Jacobsen, &
Norskov, 1990), and h) 0 = 68.5 meV (Wicke & Brodowsky, 1978), we get the energy
correction for the Hydrogen atom at T=300K:

AE = 3kBT + hwo+ kBT - kT + kBT + hCHH) = -77 meV

105

or about AE = -77 meV.

The correction term is thus very small and is will only be a small corrective factor in our results

below.

Energy Pressure Correction

Finally, we consider the energy correction that is due to the isothermal change in pressure. As
the volume changes isothermally from V to V + AV as a result of change in pressure from P to

P + AP, we would expect a free energy change given by:

dE = -- dT + pdV
106

where a here denotes entropy and p is pressure. In Equation 106, dV is understood to be positive

(the usual formulation, dE = rd-r - pdV, assumes a decrease in volume as pressure is applied).

For an isothermal change (assuming the volumetric change is slow enough), Equation 106
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becomes nearly approximately

dE = p()dV
107

This represents the work done on the PdH system at a particular loading-dependent pressure.
We take the view that Equation 107 corrects our interaction energy calculation (Equation 94) in
the following manner:

EPd+1H nP c + (dE(n+1)H - dEEh (nl- - 2 2zH (~f~

108

where

dE.H = p(6 = n/N)dV
109

and dV is the volumetric increase of the lattice per additional hydrogen atom.

It is a challenge to gain the value of p(G = n/N) theoretically, so it has to be included here from
experiment in a self consistent manner.

Configurational Correction

The calculated state energies are based on a simple model where there is no tetrahedral
occupation below unity loading (and full octahedral occupation at or above unity loading). Based
on our O-to-T model above, Equations 91 & 92, it is evident there will be occupation of both
sites at all loading levels and temperatures (above model equations are repeated here):

aeo-7() ot(' - 0 0)
e -r =

60 (1 - 6)
110
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where

AEO-T (6) = 0.15266 + 0.1135 (eV per H atom)
111

Based on this model, we attempted to correct the calculated state energies using the fractional
occupations predicted by Equations 110 and 111. The idea is to assume that, below unity loading,
we can assign fractional energies based on the fractional 0-occupation (as opposed to the full
loading based on supercell configuration). The two figures are close but not identical due to
Equations 110 and 111. We then assign the fractional T-occupation the higher state energy
predicted by Equation 111. The real dependence is obviously more complex, but ours may be
considered to be a first order linear approximation.

The results, shown below, indicate that the differences are negligible.

Interaction Energy with Configurational Correction
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- Interaction Energy

- Interaction Energy (Corrected)

Figure 17: Interstitial Site Configurational Correction
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Entropy Correction

From the discussion in section Connecting Total Interaction Energy to Enthalpy Change above, it is
apparent that the calculated interaction energy for dissolved H in Pd, Equation 94, will contain
electronic and configurational entropy terms, but not acoustical, option and image interaction
terms. These need to be added as correction terms. We attempt to capture the corrections here
following the treatment of (Kuji, Oates, Bowerman, & Flanagan, 1983).

For dissolved Hydrogen, we identify the following excess entropy terms (relative to zero
loading):

AScorr = ASopt + ASac + ASel + ASim + ASnc
112

for optical, acoustic, electronic, image interaction, and non-ideal configurational entropy,
respectively.

We ignore magnetic and translational contributions since we expect these to be small [ibid].
Next, we attempt to estimate each term as in [ibid]:

ASopt is estimated to increase from 4.15E-05*T to 6.15E-05*T eV per H atom as the loading 6
increases from 0 = 0 to 6 = 1. (Rush, 1982) in (Kuji, Oates, Bowerman, & Flanagan, 1983).

ASac is estimated to be zero (ASac~0) [ibid]

ASeLec may be estimated to rise from zero at zero loading to about ASel = 4.15E - 05 * T eV per
H atom

ASim may be estimated to be ASim = -3.01E - 05 * 6 * T eV per H atom

Of course ASc is already included in our model.

From these results, we estimate the total entropy correction to be

AScorr = 7.26 * 10-5 * T e)
1Atom
113
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Figure 18: Entropy Corrections Model

DFT Energy Correction

Constant Correction

We expect the energy calculations from DFT to contain a constant shift by formulation. From the
first Hohenberg-Kohn theorem, the electron density no (r) uniquely determines the external
potential Vext(r) to a constant. This implies the Hamiltonian, and hence the energy, is then also
determined up to a constant. Based on this, we may attempt first to correct Equation 94 by a
constant energy shift:

Eh((n) = e(fn+l)H - (eH +E2V c) + A 0

114

where Aeo is a constant correction term independent of loading. It may be determined by
comparison to experimental data.
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Polynomial Correction

However, we also know that DFT contains other errors and approximations that we need to
account for. These include exchange/correlation errors and the errors due to the pseudo potential
approximation.

There is no reason to believe these errors are constant with loading. Therefore, as a first
approximation, if we assume the errors are small, we may use a linear expansion around a
particular loading, i.e.

AO = 61 + 60
115

where El and E6 are determined based on an experimental fit.

We made an attempt to correct the interaction energy according to Equation 115. However, it
does not appear as if there are any El or e,6 that would make this scheme yield any reasonable
results. We therefore discard this idea, and instead revisit a more robust model of DFTl errors in
Chapter 9.
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The Equivalent Gas Pressure

We would eventually like to connect any results we get with experimental observables. The most
accessible quantities in the types of loading experiments that we would like to connect to are
Temperature (T) and Pressure (P), and especially the latter.

Previously in Equation 51, we found a connection between the chemical potential and loading.
We would now like to make the connection between pressure (which we can readily measure
experimentally) and loading, using the chemical potential as the bridge. To do so, we will
assume the system is in equilibrium. If this is the case, then the chemical potential of hydrogen in
the gas phase has to equal that of absorbed hydrogen:

IH(absorbed) = I pH2 (gas)
116

In Equation 116, we have used the factor to account for dissociation of the hydrogen molecule
2

upon absorption. Equation 51 provides an expression for p1H (absorbed). It remains to determine

11,H(gas).

Chemical Potential for Hydrogen Gas

As a first step, we shall model the hydrogen molecule as an ideal gas. For an ideal gas, we can
use the ideal gas law:

PV = NT

117

This assumption treats individual molecules as independent point particles (i.e. that occupy zero
volume). We will further assume that the gas molecules have the following types of energy:
translational, rotational, vibrational and electronic (we have thus ignored any energy of a nuclear
nature). Lastly, we will assume that the different energy types are independent of each other.
Using these assumptions, we can get the molecular partition function as

ZHz = Zt Zv Zr Ze
118
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where Zt, Zy, Zr, Ze are, respectively, the translational, vibrational, rotational and electronic
partition functions of the molecule. The gas phase chemical potential is then

PH,. = -T ln(ZH2 ) Mt + 1v + Mr + Me
119

In the following sections, we will derive the expressions for the terms in Equation 119 in terms of
thermodynamic observables using basic statistical mechanics formulation in (Kittel, Thermal
Physics, 1980) and (Silbey, Alberty, & Bawendi, 2004).

Translational Chemical Potential

For the translational component of the chemical potential, we use basic particle-in-a-box model
with energy quanta (indexed by a positive integer n):

h2n2

en = i
8mVi

120

From basic thermodynamics, counting all degrees of freedom, we can build the single partition
function as

(h2n2\lzt = 2)exP
8mVI = 2

121

after turning the sum into an integral and evaluating. Because all molecules are taken to be
identical, the total partition function representing N non-interacting particles is then

1
Ze = 1zN

122
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Helmholtz free energy is then given by

Ft = -r n(Zt)
123

and the chemical potential follows as

yt - [(27rMnrTI\ONJ) T, [k h
124

after using the ideal gas law and the Stirling approximation.

Vibrational Chemical Potential

At or near the ground state, the hydrogen molecule may be modeled as a simple harmonic
oscillator per Equation 53 above:

COco Io(n4 coge~n e 2T
Z= e T =e 2 e T~ C=

n=0 n-e T

125

where we have picked a single mode, and explicitly included the zero point energy. For N non-
interacting molecules,

Zy=zyN
126

from which

F, = -T ln(Z,) = -NT 1n (z,)
127
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and

OF, e~r
, = I = - in

-N ,1 - e T

128

Rotational Chemical Potential

The rotational energy for a diatomic molecule may be expressed in terms of its moment of inertia
I and rotational quantum number J as follows

J(J+1)h2

129

We can arrive at the particle partition function by summing over all degeneracies of J (there are
(2j + 1) of them for each energy level)

00 L/(+1) 8-1r2jr

Zr = 1( 2j + 1)e 1 i4 = h2
j=0

130

after turning the summation into an integral (valid for the range of r that we are interested in).

We note that we need to add a "symmetry factor", a, to Equation 130, to account for the fact that
the properties of the hydrogen molecule are unchanged upon a 180 degree rotation:

81r 21yT
Zr = Gh2

131

For N non-interacting molecules,

Zr = ZrN

132
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from which

Ft = -T n(Zr) = -NT In (Zr)
133

and

( Fr 8r 2 IT
yr 1 ah2

134

Electronic Chemical Potential

We state here the chemical potential contribution from electronic states of a diatomic molecule
without elaboration but in reference to (Silbey, Alberty, & Bawendi, 2004), (Christensen,
Stoltze, Jacobsen, & Norskov, 1990):

P,= -T In[goe
135

where go(= 1) (singlet) is the ground state degeneracy and -eD is normally chosen as the
spectroscopic dissociation energy of the hydrogen molecule, (Silbey, Alberty, & Bawendi, 2004)

y, = -eD
136

Note: According to our definition of the interaction energy, Equation 94, we are interested in the
chemical potential of the hydrogen atom, and since our reference is the un-dissociated hydrogen
gas, the electronic contribution to the chemical potential must be zero:

p, = -eD = 0
137

Contrast this to other investigators that reference the interaction energy against two dissociated
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hydrogen atoms (e.g. (Fukai, 2005)). In that case, Equation 136 applies.

Total Chemical Potential for Hydrogen Gas

Putting together Equations 124, 128, 134 and 136, we get the gas phase chemical potential as

[t21nmTN e 2,2r

P, - -Tin 2 -Tin _F T in-- ED
1-e T

138
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Chemical Potential Continuity Condition

We may compare Equation 138 to Equation 51:

9 0
p1H(O) -TlnZ+rln 61 0 +F6h(O) + EhO)

and make the connection between Equation 138 and Equation 139 via Equation 116:

PH (absorbed) = 11H 2 (gas)

Thus our initial model is:

em6 r2nmr 1 87r 2 r D
-nl +Tin Yf +6_ h(6)+ (6)=- In+ln +lh2+

1-e TU2L ' 1-e ~ jh2  n

Simplifying, we get

_29 37 j D'r e 2r 6 0 I Ii2rm-r rl 8nr2I D
-- In + n+ 6-eh(6)+ EhO) -- [in I p+ In +

2 _e i ~i-B06 21 [h 2 /P u 2  
Tj

In terms of thermodynamic parameters, Equation 142 is a function of temperature and pressure
only. We can therefore simply connect gas pressure to loading with temperature as a parameter.

[39
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Total Chemical Potential Continuity Condition Including Tetrahedral Occupation

From our analysis above, we may include tetrahedral occupation to the results of Equation 142

using Equations 77 & 78. The results are the following two relationships based on equality of

chemical potentials for 0- and T-sites:

r 1n 1-_" -t ln(z) + 6 CI + eh(0,6t)
T [ 2rmr ] +

= - 1n h2 +
e 2r

1-e -

87r 2 IT ED
1n o 2

+T

143

and

in -t r ln(z) +6 06 + Eh(O0, 6
t) - 1n +2

e 2r
in _ _ +

1-e A

87r2 1T ED]1n ;-h2 +T

Given pressure from experiment, either Equation 143 or 144 may be solved consistently with

Equation 74:

6 = o + 26 t
145

and Equations 91 & 92:

AEO-T(O) = 0.15266 + 0.1135 (eV per H atom)

146

AeO-T(0) 6t( 1 - 60)
e 8 =6o(1 -t)

147
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Model of Non-Ideal H Gas: Fugacity

The gas phase chemical potential (Equation 138) is based on an ideal gas model (Equation 117).
Unfortunately, the behavior of the gas phase will deviate significantly from its ideal
characteristics especially at high pressures. Therefore, we cannot reliably use a model based on
ideal gas law and expect it to match experiment. This is a well studied subject, and we will not
rehash it here. Instead, we will work with a few key results.

To model a non-ideal gas, we may use the van de Waals Equation in place of the ideal gas
equation:

(P + (V - Nb) = Nr
148

where

a is a constant characteristic of the gas in question,

b is the exclusion volume (i.e., volume actually occupied by the gas molecules), and

N is the number of moles of the gas in volume V.

From this simple equation, we note that the "real pressure" orfugacity (Bockris, Chien, Hodko,

& Minevski, 1992) is given by P + . It is therefore appropriate to correct our total chemical

potential for the gas phase (Equation 138), by replacing the pressure by fugacity,f:

[(2nrm r ] e 8__ _ _ n 2I
pHz = 2 --9i r - eyh2 -D

1-e -
149

The chemical potential continuity condition (Equation 141) then becomes

ef= 2 oO 6(6 __ 2 87r 2 Ipr E,
e 2T 0 r 12nrT e 8n2T

-Tin + T 1 n_ + 6 Eh()+eft()= in[h2)7 +fInn+ n h2

150
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We interpret Equation 150 to connect fugacity to temperature and loading in a first principles
manner. To connect experimentally measured pressure to temperature and loading, we need to
first solve Equation 150 for fugacity then connect the resulting fugacity to the experimental
pressure in the manner described below.

Note:

A question naturally arises as to whether the other terms making up the gas phase
chemical potential should remain the same or be similarly corrected. Intuitively, only the
kinetic (translational) contribution to the chemical potential is dependent on pressure, and
the rotational, vibrational, and electronic contributions should remain independent of
pressure. In fact this is exactly the conclusion that another worker (Hemmes, Driessen, &
Griessen, 1986) came to.

Connecting Fugacity to Pressure: Model of Tkacz

It still remains to get a relationship between pressure and fugacity. There is an elementary
analytical relationship between the two that we may use, namely

f P To4=- -j(lV)dP

151

The analytical expression must then be connected to experiment. Several such parameterizations
are available, including (Hemmes, Driessen, & Griessen, 1986) and (Tkacz & Litwiniuk, 2002).
The latter in particular, covers the high pressure region we are interested in (up to 100GPa), and
has a simple dependence on temperature:

- {1.5 * A * P2 /3 + 3 * B * P 1/ 3 + (D + E * T) * ln(P) - 3 * C * P- 1 3J
- R*T

152

where, for hydrogen in gas phase,

A=176.330,

B=-633.675,

C=-304.574,
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D=731.393,

E=8.59805,

and pressure and fugacity are in units of MPa. We plot the model below:

Pd H0: Model Fugacity vs. Pressure (Tkacz2002)
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Figure 19: Model Fugacity vs. Pressure (Based on fugacity model by (Tkacz & Litwiniuk, 2002))
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Connecting Fugacity to Pressure: The Bockris Model

We also looked at alternative fugacity models. In particular, (Bockris, Chien, Hodko, &
Minevski, 1992) has a model around room temperature (300K). The results are shown below,
and may be seen to be slightly different from those of (Tkacz & Litwiniuk, 2002).

PdH,: Model Fugacity vs. Pressure [Tkacz2002], [Bockrilsl991]
80 _
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- Bockris1992
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Figure 20: Comparison of fugacity models based on (Bockris, Chien, Hodko, & Minevski, 1992) and (Tkacz & Litwiniuk,
2002). Model fit done for computational purposes.
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Putting the Entire Model Together: First Try

Here we put together the full model which contains all energy corrections, both tetrahedral and
octahedral occupations, and correction for non-ideal gas.

The gas phase chemical potential is given by Equation 149:

12r2n T e r 8jr21T
1Hz = -- n2 - ED

153

As a first try, we may assume what is readily accessible from our computational model, namely
that there is no tetrahedral occupation below a loading of unity and vice versa. In other words,
we may use the following estimate of the bulk hydrogen chemical potential:

NH(I~" (To 0t _ No1000,'H(T, e, p) (, 60, e ),
0 < I
6 > 1

154

where

60 -e+ h(6)
yo~,606, = - -Tlfln(z) +8 66+e(B,

155

and

pt(T,60, 6) = r In - rln(z) + 0 8 + Eh(o, Ot)

156

The continuity condition is given by Equation 140:

pH(absorbed) = }y 2 (gas)
157
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Therefore, for, 6 < 1,

60 e (6) 1[[ '? 2m T
In 0-TIn(z)+6 +eh(00,O)= 7TnIh2-

e r 87r

7nh2 +-
ED

158

For, 6 > 1, incorporating entropy expression from (Powell, 1976) into Equation 158, we have

6 Oeft(6)
TIn3-6 Tln(z)+6 06 +S,(0)

1 2nm\ e 8n 21r
=- Tin h2 + in =+TInah +

1-e T h2 ED

159

Equations 158 and 159 complete the model. From them, we can calculate fugacity as:

f(6) = Ae
160

where

A(T) = r 2T1mT)2

161

____ Oeh(8)
2Tin _ -2r in(z)+26 8( +2Eh(6)

B() 1-00 00

B(6) = I 6 Oet(6)
2rIn3 -2T n(z)+26 06 +2eh(6)

e 2T 81r21T
+Tiln -+TIn nh 2 +ED

e 2T 8n 2Ir
+TIn +Tiln - + ED

1-e-V
9 >1

162

are both known.
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Out of curiosity, we can actually verify that A(T) has the units of pressure, thus

5 3 3 3
J7Kg7 Kg7 sKgY Kg
J3s3  

1 1
]zS3 Kgzms 3 ms

163

which is the unit of a Pascal.

The results are shown below:

Figure 21: Chemical Potential vs. Loading (Based on Model+Offset)
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Figure 22: Pressure Composition Isotherm at room temperature: Model vs. Experiment (Pressure is on log scale). See
above section on how pressure plotted here was derived from fugacity model of (Tkacz & Litwiniuk, 2002).
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Putting the Entire Model Together: Discussion and Second Try

It turns out that the approximations leading to Equations 158 & 159 yield results which, while
reasonably match experiments, fail to predict correct behavior around unity loading, which is a
key concern of ours.

The chemical potential from these approximations is shown above whereby we note that there is
a discontinuity around loading of unity, a clearly unphysical result. We attribute this to the
incorrect treatment of the step in energy going from octahedral to tetrahedral site occupations.

We see a similar unphysical result in pressure around unity loading in the Figure 22 above.

Correct Unity Loading Treatment

To correct the unity loading values, we need the account for both octahedral and tetrahedral
entropies at all loading levels, and especially around loading of unity. To do this, we use the
above approximations to arrive at the interaction/state energy model as a function of loading. An
example of such a model is given in Figure 23 below. This result is based on fractional loading
approximations made leading to Equations 158 & 159.

Figure 23: Interaction Energy vs. Loading (2x2x2 Super Cell) - with +.15 eV Offset vs. (Christensen, Stoltze, Jacobsen, &
Norskov, 1990)
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Once we arrive at the interaction/state energy model, we match the chemical potentials according
to the analysis leading to Equation 147:

AeO-Te0) et (1 - 60)
e 

6T (1-0

164

Unlike the approximations leading to Equations 158 & 159, Equation 164 predicts both
octahedral and tetrahedral occupations at all loading levels. This means the full model used to
derive the equivalent gas pressure and chemical potential may be re-written as follows (we have
repeated previous equations for convenience):

The gas phase chemical potential is unchanged (Equation 153):

- (2rryr1 Tin____ 81r 2IT

pH -Tn 2 _1 e -Tn 2 
- ED

1-e T

165

The bulk hydrogen chemical is given by Equation 93:

IH (T o ) = A0 (T,00# 19t) = Ut (To 0 6 t )
166

where

it(T,60 ,6, ) = Tin - T in(z) + 6 Do + Eh( 60,O0)

167

pt (T, 6o,6) = Tin 1 - T in(z) + 6 06 + Eh(00 1 t0

168

The continuity condition is given by Equation 116:
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pH(absorbed) #Hz (gas)
169

Therefore, for all, 0

0 OEh(O)
i n -00 in(z)+6 66 +Eh(00:0t

2 \2 /f()

_t O Eh (0)
Tn t - T1 n(z) +6 + Eh(0ot

1e 2T 81r IT CD
'n +in h2 +

1-e 2

170

and Equation 164 determines 0 vs. T site occupation. This completes our model.

As before, we calculate fugacity as

B(O)
f(6) =A(r)e r

171

where

A(r) = (2t
172

60 0eh(O) e 26
B(6) =2Tin_ -2Tin(z)+26 +2eh(0O,6O)+TIn e +T

ar1- 06

are both known from the model or experiment.

8ir 21T
in- ,;h- + 6D

173
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Methodology

For the test results, we used a 2x2x2 supercell, and placed H atoms at O-sites at random. For the
2x2x2 supercell, there is an enormous number of configurations for the PdH system. However,
we found out that, empirically, the difference in energy between adjacent loading levels (A6 =
1
-) is on the order of 13.6 eV per atom, which is larger than most configurational differences.

We then carried out SCF ab-initio calculations using a plane wave basis. The exchange
correlation function used in all cases was Generalized Gradient Approximation (GGA) utilizing
the Perdew-Burke-Ernzehof exchange correlation which includes a nonlinear core correction.

To calculate the lattice constant, we used a single PdH cell. The cell was manually relaxed at
several loading levels by minimizing the SCF energies at different values of the lattice constant
around the expected value for the cell. These values were then fitted to a sixth order polynomial
to arrive at a fairly accurate lattice constant that minimizes the ground state energy. We can see
that the Pd lattice expands about 4% from its bulk unloaded to fully loaded, which is about
12.5% volumetric expansion (vs. 10% experimental).

PdH: Lattice Constant vs. Loading
8 .0 i 1 1 1 1 1 1 1 T
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0 Experiment (Wicke et al, Schirber et al)
- Poly. (ab Initio Lattice Constant vs. Loading)

Figure 24: Lattice constant relaxation (Pd): ab initio model results compared to various experimental data.
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We also used the same plane wave basis to calculate the SCF ground state energy of a hydrogen
molecule. This is accomplished by placing the molecule inside a vacuum whose size is the same
as the cell size used in the metallic bulk and loaded calculation. Additionally, the same energy
and charge density cut-offs and mesh sizes were used in both cases. The H-H bond length was
obtained from literature (74pm):

Ground State H2 vs Loading

'U

-2.2663

-2.2664

-2.2665

-2.2666

-2.2667

-2.2668

-2.2669

0 0.2

* Ground State H2 vs Loading

0.4 0.6

Loading

Figure 25: Hydrogen Molecule in a Box: energy vs. box

0.8

size - based on loading (shown for Pd)

As can be seen from the above figure, there was no appreciable ground state energy difference as
the box size was varied to coincide with the corresponding lattice constant (the energy difference
is only around 0.01 eV).
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Results

We use the following parameters:

EOv 68.5 meV (Christensen, Stoltze, Jacobsen, &
Norskov, 1990)

Ch 2.65079 eV (Silbey, Alberty, & Bawendi, 2004)
m 2 * 1.00794 * mu kg - Use twice the mass of H

MU 1.661e-27 kg - Atomic mass constant
_ _ 2 -
1 4.605 * 10-4 8 kg m 2  (Silbey, Alberty, & Bawendi, 2004)

PO 101.325 * 103 Pa - Standard Pressure

ED 0 eV Applies to H atom

Interaction Energy vs. Loading

We first present the results for Palladium. The interaction energy (Equation 94) is plotted below
on a per hydrogen atom basis as a function of loading. In the literature, this energy is related
(but not equivalent) to the absorption energy or heat of solution, and is a measure of the
probability of hydrogen to occupying an interstitial site within Pd. We will go into further details
about the connection in later chapters.

Interaction Energy vs. Loading

T

-0100
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-0.240

-0260

-0280
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-0340
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-0.380
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0.0 0.2 0.4 0.6

Loading

y= 1.0723x
4

- 1.9856x + 1.2567x
2

- 0.3936x -0.2891

0.8 1.0 1.2

* Raw Model

- Poly. (Raw Model)

Figure 26: Interaction Energy vs. Loading (2x2x2 Super Cell). Raw, uncorrected model results.
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Interaction Energy vs. Loading

0.1

0.05

0

zm
S-0.05

-0.1 -

Ce

-0.15 0 .=

-0.2

-0.25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Loading * Fukai2004

* Model(with +0.18eV Offset)

* Fukai2004 (Extrapolated)

Figure 27: Interaction Energy vs. Loading (2x2x2 Super Cell) - with +.16 eV Offset vs. (Fukai, 2005). Note that Fukai's
data is actually enthalpy.

We note that, if we make a constant 0.16 eV/atom correction, this result matches favorably other
author's results (Fukai, 2005) as well as experiment (Mueller, Freeman, Dimmock, & Furdyna,
1970) in the loading range of 0.8-1.2. In particular, we note that the slope changes after a loading
of around 6 = 0.8 in our results vs. 6 = 0.6 in the works cited. Since (Fukai, 2005)'s
experimental data did not go beyond a loading of 0.8, we have extrapolated them beyond
6 = 0.8 by matching the slope from the data.

The correction is necessary to account for in-built computational error inherent in DFT (as
distinct from relativity inherent in all pseudo-potential based calculations)
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Chemical Potential vs. Loading

The chemical potential is also expected to increase with increasing absorption energy, and is
shown below. We get this curve directly from Equations 94 and 96:

Figure 28: Chemical Potential vs. Loading (Based on Model+Offset)
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Equivalent Pressure vs. Loading

The following result matches (Wicke & Brodowsky, 1978) data quite favorably after a +0.16
constant energy correction. Beyond unity loading, we see somewhat of a wider variance between
model and data.

PdHe: Pressure Composition Temperature Isotherm [Wickel978] [McKubre2006]
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Loading (0)

Model(T=293) * Wicke1978 + McKubre2006 . Exp(Extrapol)

Figure 29: Pressure Composition Isotherm at room temperature: Model vs. Experiment (pressure is on log scale). See
above section on how pressure plotted here was derived from fugacity model from (Tkacz & Litwiniuk, 2002)

Experimental reference: (Wicke & Brodowsky, 1978), (Tripodi, 2000) & (Baranowski, Filipek,
Szustakowski, & Woryna, 1990) as analyzed by (McKubre & Tanzella, 2006).
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Interaction Energy From Experiment: Integrated Energy Formulation

In this section, we will use experimental Pressure-Composition-Temperature (PCT) isotherms
from experiment and, using our model, calculate the interaction energy that experiments suggest.
This exercise will validate our model results by, in effect, running it backwards.

Model Equation (Octahedral Occupation)

We start with the chemical potential continuity condition, Equation 116

tH(absorbed) =p pH(9gas)
174

From which (see above for complete derivation) we get Equation 142:

e 2 T r 2nmrT e 8 21r ED I
-rin 1+Tn-(+E()= In + 12 + _ n h2 +

1-e 1 -kr- 1 I] i-.E uh T

We recast Equation 175 into the following simpler partial ordinary differential equation form

h'() + eft(6)F(0) = g (0)

175

176

where

6
e (9) = To Eh(0)

177

1F(0) =I

178
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r 87r2ITT T 6 t 2=TmT2T r71 e, Ch
g(6) =ln(z) -- n I _ O 2 n h2pg) +n 77-r.+ a-h2 + T1-e h

In Equation 179, we explicitly note that the pressure is a function of loading, and extract the

following pressure isotherm from (Wicke & Brodowsky, 1978):
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Figure 30: PdH: Pressure Composition Temperature isotherm (from (Wicke & Brodowsky, 1978))
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Model Equation: Initial Conditions From Experiment

We assume that, given that it is an explicit function of loading only, Equation 176 may be solved
numerically using ODE methods. In particular, we use a stiff ODE Matlab solver (ode23s)
(Matlab, 2011), which is an implementation of the Rosenbrock formula, order 2, for solving stiff
ODEs.

The solution will need some initial conditions, and for this we look to experimental data.
Specifically, we need to find experimental data for Equation 176,

init= = init)

180

There exists experimental data for the absorption energy per hydrogen atom from (Mueller,
Freeman, Dimmock, & Furdyna, 1970). The data corresponds to 6 = 0.037 and the absorption
energy was found to be -0.18 eV. It only remains to find the corresponding gas pressure at that
loading level from (Wicke & Brodowsky, 1978) data. The full initial condition applicable to
Equation 176 is thus

einit = -0.18 eV per H atom = EhO = 0.037)
181

and

P(6tWt) = 10-2.4ss atm (Wicke & Brodowsky, 1978)
182

The result is shown below, compared to our model:
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Figure 31: Initial Interaction Energy Curve Based on O-Site Occupation only.

Model Equation Including Tetrahedral Occupation

Once again, following the analysis of section Connecting O-to-T Excitation Formulation To DFT: A

Computational Model we note that because the absorption energy for a tetrahedral occupation is

much higher than that of an octahedral site, for occupations below unity, we have Equations 158

and 154:

T 2TT 2n1 T e 2 R 87rI2 C
po(T,6 ,6t) - 111+ in I + 1 h2+

1-e h
183

Beyond unity loading, we use Equations 159 and 154, repeated below for convenience:

6 Oeh(6) 1 2 m r ie 8T2
1r

ln 3 -Tr ln(z) + 0 0 + Eh(O) =-Tlf - n + Tln +0 Ir 1n h2---+D
2 1-e T

184

The individual terms are already defined above. Based on this approximation, very similar to
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Equations 176-179, we have:

e '(TO680,6 + e (T, 6, 6)F(T,0,6t) = g(r,G,6t)
185

where

Elt(T, 00,6 )= aE(T,60, 6t)

186

o02eF (00, Ot) = Go+2 6

187

and

g(To 0 ) Od)= 2T 2T 6
go 6+20t ln(z) - + -

0 2 mr 2

j0+ 260 h2 plng)
e 2r

+ -n +
1 -eA

8r 2 IT ED]
ln -2 +T

188
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Model Equation Including Tetrahedral Occupation, Non-Ideal Gas Correction and Full Entropy
Calculation

We utilize the full model (Equation 170) to write the continuity condition as

81 0 -____ t + 0 ( E)tiln _18 -trin(z)+8 0 +eh(BO,6t) =inT rin(z)+B 08 + Eh(BO,8t)

= - T 1ri 12 [n
e 8n2

+ T 1 e 2T87r hr
+" _+ T1n -h 2 +ED

1-e ]
189

Once again, we write Equation 189 as

E(r,, 0 , 6t) + Eh(T, 00, 6t)F (r, 00, 6t) = g(r, 00, 6t)
190

where now

e(r,0) = Eah(T,)

191

F(6) = 1
8

192

g(r, ) -1 n(z)0-nz
T 60 t 1
- In -.
o~ 1 8 ~ 28 [0

327( M 2t 'rn h ( )1
e 2T

+,r n +
S-Ix

87r21 1
Tin - 2+ EDJ

193
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High Pressure, High Loading Results

In this section, we extend our results above to high loading regime (8 > 1). Several authors have
done experiments in the high pressure, high loading region using the resistance ratio method to
determine loading levels of H/D in Pd [(Baranowski, Filipek, Szustakowski, & Woryna, 1990),
(Zhang, Zhang, & Zhang, 2004), (Tripodi, 2000)]. Recently, (McKubre & Tanzella, 2006)
brought together the results of these authors in one monograph (see Figure 32 ) below:

2-0 -R (PdDx) - R/R0 (PdDx) -+- R/R0 (PdHx) -PH2 (Atm) -PD2 (Atm)
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Figure 32: High Loading Data (From (McKubre & Tanzella, 2006))
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The first thing we do is extend the (Wicke & Brodowsky, 1978) data (Figure 30 above) to
loading beyond unity using the (McKubre & Tanzella, 2006) data. The result is shown below:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 O. 0.9 1.0 1.1 1.2

.Wicke197fl McKubre2006

Figure 33: Room Temperature Pressure Composition Temperature Isotherm Extended to High Loading (Based on
(Wicke & Brodowsky, 1978), (Baranowski, Filipek, Szustakowski, & Woryna, 1990), (Tripodi, 2000) and (McKubre &
Tanzella, 2006))

Using the above P-C-T data, we use our model to predict the interaction energy as follows
[Equations (189-193)]. The resulting interaction energy is given below, compared to experimental
data (Fukai, 2005). We also include what our model would predict given the experimental
loading level:

Interaction Energy Based on Experiment
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Figure 34: Interaction energy derived from using our model on Experimental P-C-T isotherms from (Wicke &
Brodowsky, 1978) extended to higher loading by data from (McKubre & Tanzella, 2006). For consistency, model has a
+0.16 eV offset.
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Summary

In this foundational chapter, we have used the basic statistical model in the tradition of (Lacher,
1937) to derive the chemical potential of absorbed hydrogen. We provide the basic analysis and
other important considerations (like the O-to-T model) that are used throughout the subsequent
chapters.
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Chapter 3 - Palladium Hydride (PdH): Modeling the
Miscibility Gap & Phase

Introduction

This chapter deals with the modeling of the mixed phase region. We would specifically want to
understand how our model framework may be used to correct or otherwise modify the observed
experimental data. Lastly, we will also attempt to calculate the phase diagram of the PdH system
using our ab initio model.

What is Miscibility Gap?

In physical chemistry, miscibility gap is defined as the region whereby two distinct phases of a
compound exist simultaneously. In the case of PdH, the mixed phase region is defined as the
region below {570K, 19atm, 0 =0.257} (Flanagan & Oates, 1991), whereby the pressure is flat
and independent of the loading level (Lacher, 1937), (Lewis, 1967). This region contains two
distinct hydride phases (called the a and fl phases, respectively) of varying hydrogen content.

In the mixed phase region the a-phase solid gradually decreases relative to #-phase solid while
pressure stays constant until, at a loading level designated as P#mn, only the #-phase solid exists
and pressure starts to rise sharply with loading, and loading is related to pressure (again
empirically) as (Wicke & Brodowsky, 1978):

0 = a + b log (p)
194

Can we Model Miscibility Gap Theoretically?

A natural question arises as to whether our model framework can predict the presence of the
miscibility gap in PdH. In particular, how can we conceivably come up with a theoretical model
that matches the flat pressure isotherm in the miscibility gap phase region?
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Rule of Equal Areas

To answer the previous question, we follow closely the theoretical analysis of (Lacher, 1937),
which we believe applies to our problem. According to (Lacher, 1937), the theoretical chemical
potential curve should obey the rule of equal areas. Under this scheme, in the mixed phase
region, the area above and below the chemical potential curve should be equal. (Lacher, 1937)

actually uses the log () in his analysis, but the same applies to our case, up to a multiplicative
constant, i.e.,

1
1 ' Xo Xd + XO' (rF2 ) 1/2

-n p2 = 1n r n v(Tr)
195

In Equation 195, in terms of the variables and terminology we have been using,

o' = 0/.59,

Xo is the loading dependent interaction energy of H in Pd,

Xd is the dissociation energy of the hydrogen molecule,

X is a proportionality constant,

F2' is the vibrational and rotational contributions to the chemical potential of hydrogen molecule
in its gas phase, and,

v(r) = z is the partition function of hydrogen in Pd.

Following the analysis of (Lacher, 1937), we rewrite Equation 195 as follows, after disregarding
constant terms that merely shift the origin of the chemical potential coordinates:

2 2
1n pf f (0') = hn. T e !

196

According to a proof given by (Fowler, 1936) and applied by (Lacher, 1937) to the same
problem as ours, pairs of numerically equal roots of Equation 196 in 6' occur for values of 6'
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11and 6)that satisfy 61 + 6)= 1. Because Equation 196 is symmetric around 6' = ~, it follows

that the area above log (p!) axis is equal to that below. This is the rule of equal areas.

Furthermore, (Lacher, 1937) has shown that in the miscibility gap, the equal areas rule must
apply. We illustrate the rule below:

Rule of Equal Areas Illustration

6.E-01

E

6.E-02

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Loadingl)

-Chemical Potential -M odel with Miscibility Gap Correction

Figure 35: Rule of Equal Areas Illustration

The Rule of Equal Areas has a simple interpretation (Lacher, 1937), namely that, in 6-space, the
smallest root corresponds to the alpha phase loading, 6,, while the largest root corresponds to the
beta phase, 6 loading. We use this interpretation below to derive the model phase boundary.

113



We compare Equation 195 to our continuity condition for the chemical potential (Equation 170,
Chapter 2):

Go OEft(0) Gt Oefh(6)T 1n- 0 ln(z) +6 + Eh (Oo, t) = n - n(Z)+ + Eh(0o 01-0060 1 - O 00

T [[ 2nnT T ]e 8Tr21T D]

2()] 12n + 1n h2 +

197

where we have used fugacity instead of pressure following arguments given in Chapter 2. If we
apply the Rule of Equal Areas, it follows that our statistical mechanics based model may not be
compared to flat chemical potential in the mixed phase region. Following (Lacher, 1937), we
write Equation 197 as

1 6) 1 Be(0) 1
n90 =+n ++-eh(0)+C(T)1-90 9 T

where

1 e 2T 1 B7r 2IT 1 [ 2mT i
C(T)=-ln(z)+-ln +-1n oh2 +ED++ in T 21 -e suh 2in

is independent of loading and thus does not affect the nature of the solutions in theta.

198

199

Instead, we need to take experimental chemical potential and, in the mixed phase region, make it
conform to the Equal Areas Rule before matching it to the gas phase chemical potential as in
Equation 197, in the manner formulated below.
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Interaction Energy From Experiment: Miscibility Gap Correction

We write Equation 197 as

eh (r, 6o, 6t) + 6ft(T, 00, 6t)F(r, 0., 6t) = g(r, 60 , 6t)
200

where

a
Eh' (T, 6) = Ett(T, 0)

201

1

202

T
XTr,O) =a-1n(z)

T 6
0,t 1 27M12 -

-1gn 1 -t 2 1 h )
e

1 _l - +

87r2 IT
1n -7h- + EDJ

As before, we seek to calculate the interaction energy given the experimental P-C-T data. The
pressure data appears in Equation 203 in terms of fugacity, as discussed in Chapter 2.

We take the view that in order to apply the Rule of Equal Areas, we need to examine the gas
phase chemical potential term (Equation 204 below) since that it is the term that contains the
measured pressure isotherm:

1 T r r/2mTn\
y, (TG) = In o)T

e 2r 87 2r ED

+ _ _ + In 2 +

204

We plot Equation 204, together with the P-C-T that is it based on below (room temperature
data):
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Experimental Gas Potential ([Based on This Model])
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Figure 36: Chemical Potential Based on Experimental Pressure Isotherm (below)
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Figure 37: Experimental Pressure Isotherm (from (Wicke & Brodowsky, 1978) and (McKubre & Tanzella, 2006))
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Applying Rule of Equal Areas

Starting from above Figure 36, we assume that the chemical potential is not flat, but rather obeys

the Rule of Equal Areas according to the theory of (Lacher, 1937). To that end, we assume the
chemical potential will take the following general shape in the miscibility gap region:

y(6) = a + b * sin(c * (6 - 60))
205

where a, b, c and 0 are as yet undetermined constants, and, based on experimental data,

0.12 < 8 < 0.65
206

We set the first zero of Equation 205 to match the alpha phase boundary. For the experimental
data we are using, this boundary is at (0 = 0.12) (Wicke & Brodowsky, 1978) even though other
workers like (Flanagan & Oates, 1991) have found it around 0 = 0.01. Thus:

y(6 = 0.12) = a = -0.17477 eV/H atom
207

0 = -0.12
208

The constant c is chosen to put the second zero at 0 = 0.65:

y(6 = 0.65) = -0.17477 eV/H atom
209

2,r
c (6 - 00)1 9=0.6 5 = 2 -r c = 0 5r

210
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At the third zero, we also want to match the slope from experiment, thereby determining the
constant b, i.e.,

dy(6)
dO 6=0.65

= b * c * cos(c * (0-0)) = 0.5616 eV/ H atom/unit loading

b * c * cos(c * (0.65 - 60))|1 065 = .5616
.5616

c * cos(c * (0.65 - 00))

Experimental Gas Potential: Slope @0=0.65 ([This Model])
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Figure 38: Estimated Experimental Chemical Potential Slope at Loading of 0.65
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The result of the match is shown below:

Figure 39: Miscibility Gap Correction (blue) vs. Experiment (red). Correction applies only to mixed phase region.

Interaction Energy With Miscibility Gap Correction

Using the above results, we can calculate the Interaction Energy from experiment. As before, we
use Equation 203, where now the right hand side is corrected for miscibility gap as described in
the prior section.

In the following figure, we also compare our results with experiment (Fukai, 2005):
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Interaction Energy Based on Experiment
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Figure 40: Interaction Energy, from top (a) model based on Experiment (b) model (c) Experiment (Fukai, 2005)

The agreement is reasonable, especially in the mixed phase region. Above the mixed phase
region, there is less of an agreement.
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Model P-C-T Isotherm Corrected for Miscibility Gap

We would like to correct our model P-C-T isotherm for miscibility gap. An example model
isotherm without the miscibility gap correction is shown below:

PdHe: Pressure Composition Temperature Isotherm [Wickel978], [McKubre2006]

1.E+06

1.E+05

21E+04

1.E+03

1.E+02

1.E+02 

1.1+00

I.E-01

1.E-02 _

1.E-03

1.E-04

I.E-05

I.E-06

0.0 0.2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 2.0 1.1

LoadIng(8)
- Model(T=293) * Wickel978 + McKubre2006 + Exp (Extrapol)

Figure 41: Pressure Composition Isotherm at room temperature: Model vs. Experiment (Pressure is on log scale). See
above section on how pressure plotted here was derived from fugacity model from (Tkacz & Litwiniuk, 2002)

The first thing we notice is that we cannot readily apply the Rule of Equal Areas simply using a
sinusoidal function since the model result is somewhat more complicated.

One way to apply the Rule of Equal Areas to our results is to pick 0a, 0af, Op in such a way that

fo -ao=O'
ln(P(B')) dO' = In(P(6')) dO'

213
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PdHg: Pressure Isotherm [Wickel978], [McKubre2006]: Miscibility Gap Correction

3.E-03 - - -

3.E-04 - .........

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Loading(e)

- Model T=293 -Model with Miscibility Gap Correction

Figure 42: Loading extrema: the first extremum is determined arbitrarily using first data point and while the second is
determined by a horizontal tangent as shown.

As shown in Figure 42, Oa should be chosen as amax, which equals 0.12 from experiment (Wicke
& Brodowsky, 1978). However our model finds it closer to amax = 0.16 as the figure shows.

This is the value we used in the Rule of Equal Areas calculation.

Op is chosen in such a way as to match the tangent of the local maximum of the (log of) pressure

in the mixed phase region. 0ap may then be determined by numerically integrating Equations

213. Also note that when we work in log(p) space since that is the regime where the Rule of
Equal Areas applies.

The results are shown below (Figure 43).
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Figure 43: P-C-T Isotherm with Miscibility Gap. The cycles show correction to phase boundaries suggested by Miscibility
gap correction

Based on the results of the Miscibility Gap correction, the suggested phase boundaries are
changed slightly. The maximum alpha phase amax loading increases while the fmin decreases
slightly. The final results are shown below (room temperature results) vs. experiment.
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Figure 44: Final Miscibility Gap Results for Room Temperature.

* Exp (Extrapol)

123



Model Phase Diagram

We can repeat the above exercise for other temperatures. For T=473, for example, we have

0 = 0.27

214

02 = 0.71
215

In fact, in this regime, we may now use a simple averaging of logarithms technique that works
fairly well, and provides results very close to the more exact integral technique above, i.e.,

1 O=P
log(p()) =- log (P(6'))dG'

n Je=a
216

where n is the number of discrete points taken in the sum.

The results are shown below for various temperatures. We have kept the pressure scale identical
in order to show that our model correctly predicts the miscibility gap decreasing as we move up
along a temperature scale (1.5 decades).
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PdHq: Pressure Isotherm[Wicke1978], [McKubre20O6): MiscibilityGapCorrection
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Figure 45: Miscibility Gap Correction, T=293

PdH6 Pressure lsotherm[Wickel978], [McKubre2C6]: MisdbilityGapCorrection
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Figure 46: Miscibility Gap Correction, T=343
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PdH: Pressure Isotherm [Wickel978], [McKubre2006]: MisibilityGap Correction
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Figure 47: Miscibility Gap Correction, T=393

PdHg: Pressure Isotherm[Wickel978], [McKubre2006]: Miscibility GapCorrection

Figure 48: Miscibility Gap Correction, T=433
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PdHe Pressure Isotherm [Wicke1978], [McKubre2006]: MisciblityGapCorrection
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Figure 49: Miscibility Gap Correction, T=473

PdH, Pressure Isotherm[Wicke1978]. [McKubre2006): MiscibilityGap Correction
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Figure 50: Miscibility Gap Correction, T=516
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PdH8 Pressure Isotherm [Wicke1978], [Mcubre2006]: Miscibility Gap Correction
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Figure 51: Miscibility Gap Correction, T=571
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Figure 52: Miscibility Gap Correction, T=773

128

PdH :Pressure Isotherm[WIcke1978j, [Mdcubre2006]: Miscibility Gap Correction

I- ji T4 TI U Fl



The full results are shown below. We have also included a couple of experimental P-C-T
isotherms (at T=293 and T=571) . The match is quite reasonable.

PdH,: Pressure isotherm/ Miscibility Gap
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Figure 53: Model P-C-T corrected for Miscibility Gap vs. Experimental data at T=293 (dotted, blue) and T=571 (dotted,
black) are also shown.
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We calculate the phase diagram and compare to experimental phase diagram below as a function
of temperature vs. loading (Wicke & Brodowsky, 1978). The low temperature phase diagram
was estimated based on the highest temperature model results, in comparison with other workers'
results (Wicke & Brodowsky, 1978), (Christensen, Stoltze, Jacobsen, & Norskov, 1990), for
example.

PdH9: Model Pressure Isotherm& Phase Diagram
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Figure 54: Model vs. Experimental Phase Diagram (After (Wicke & Brodowsky, 1978)). Model Phase diagram is derived
graphically based on alpha/beta phase boundary, and is therefore approximate.

Summary

In this chapter, we have provided the analytical basis for the treatment of the miscibility gap
within our model. We do this by applying the Rule of Equal Areas. Finally, we apply the analysis
to derive P-C-T and phase diagram for the basic model of Chapter 2.
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Chapter 4 - Models of Basic Properties of Palladium
Hydride

Introduction

In this chapter, we will provide results of basic properties of Pd that we are able to model ab
initio. This is intended to help us gain a basic and first principles understanding of the particular
physics and chemistry of Pd phenomena. In all cases, a comparison is made to experiment or
alternate model results from other workers.

Calculated Lattice Constant

One of the first tasks we have to do is determine the lattice constant for Pd within the DFT
framework. We are interested specifically in how the lattice constant changes with loading since
Pd is known to expand as it is loaded with hydrogen [several]. We cannot use experimentally
determined values, except for comparison, since the DFT values are known to be slightly
different, so the experimental values would not represent minimum energy configurations.

Initially, we have chosen a simple methodology whereby we slowly vary the lattice constant,
first over a one (1) Angstrom range and calculating the total electronic energies. We then zero
down the search further around the computed minimum with the range down to about 0.2
Angstrom.

The results of these calculations are shown below as a function of loading (using a single cell
model):

Alat (a.u) 7.52 7.62 7.70 7.76 7.83
Alat (A) 3.98 4.03 4.07 4.11 4.14
Loading 0 0.25 0.5 0.75 1

We then fit the above data to a polynomial to be able to calculate the lattice dependence on
loading for a 2x2x2 supercell:
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PdH: Lattice Constant vs. Loading

- -- 0--- -- - ------ 6
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-Poly. (ab Initio Lattice Constant vs. Loading)

Figure 55: Model Lattice Constant vs. Loading Compared to Experiment

The lattice constant relaxations were done by minimizing the ground state energies around some
reasonable starting points based on values reported in literature. We performed a wide scan
followed by a narrow scan once the approximate value was calculated (hence the reason why the
region around the minima in the following curves is sampled more frequently):
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Figure 56: Model Lattice Constant - Bulk Pd
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Figure 57: Model Lattice Constant - Loading=0.25
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Figure 58: Model Lattice Constant - Loading=0.5
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Figure 59: Model Lattice Constant - Loading=0.75
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Figure 60: Model Lattice Constant - Loading=1.0
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A simple minimization of the resulting quadratic gives an accurate global minimum lattice
constant. For example, we can do the minimization as follows in Matlab:

>> sym('x')

ans =

X

>> yO = 0.384*xA2 - 5.7784*x - 282.54

yO =

(48*xA2)/125 - (7223*x)/1250 - 14127/50

>> subs(solve(diff(yO)))

ans =

7.5240

Comparison to Experiment and Other Ab Initio Methods

In Figure 55, we have included experimental results for comparison, (Schirber & Morosin, 1975),
(Wicke & Brodowsky, 1978). The experimental data was conducted using x-ray diffraction
techniques, at 77K (Schirber & Morosin, 1975).

In general, we see that our calculations overestimate the lattice constant at all loading levels, but
the match is fairly close (about 1.7% higher). Christensen has suggested that the ab initio model
overestimates the lattice constant since it overestimates the Pd-H repulsion (Christensen, Stoltze,
Jacobsen, & Norskov, 1990).

We have also compared our results with those obtained using other similar ab initio techniques,
specifically the Effective Medium Theory (EMT) (Christensen, Stoltze, Jacobsen, & Norskov,
1990). The match is again fairly consistent even though EMT predicts more expansion at higher
loading and less expansion at lower loading levels.
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Electron Charge Density

We may expect electronic charge density to play a key role in any DFT calculation since the
theory contemplates the total energy to be a unique functional of the electron charge density,
p(f).

It is therefore critical that we are able to accurately calculate the charge density for various
configurations of interest for Pd, H & PdH.

Electron Charge Density: Isolated Pd Atom

The first case we will consider is the electron charge density for an isolated Pd atom. In
particular, we are interested in the knowing the charge density around at the Pd-H bonding
length, 1.67 Angstroms (Hagelstein P. , Private Communication, 2010). To make the calculation,
we need to isolate a Pd atom, perform an SCF total energy calculation, and then use the resulting
output files to calculate electronic charge densities.

From a computational perspective, the Pd atom is put in a large enough vacuum box to obviate
any interaction due to periodic boundary conditions imposed by our DFT framework. Initially,
we used a vacuum that was 5x the Pd lattice constant. However, we found out that the results did
not change appreciably when the size of the box was reduced to 2x the lattice constant. The
following results were thus done at 2x the lattice constant.

We show the results using both LDA and GGA functionals. For comparison, we also plot the
results from a numerical HF calculation [ibid], Figure 61.

The results for LDA and GGA are fairly consistent. However, the numerical Hartree Fock (HF)
result is significantly lower. We think this difference is most likely due to the 5S wave function
that is present in the LDA and GGA pseudopotentials, but absent in the HF calculation.
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Figure 61: Electron Density Around an Isolated Pd Atom

Electron Charge Density: Bulk Pd [1111 Atom

We are also interested in finding out the bulk charge density that the hydrogen atom will
experience. We choose the [111] direction and perform several calculations that should yield
equivalent results:

* We perform different calculations using LDA and GGA pseudopotentials.

* We perform the same calculation using different cell sizes (single cell versus 2x2x2
supercell)

For comparison, we have used two sets of results: one was done using DFT, but by another team
(Hagelstein & deChiaro, 2009), while the other was done using an all electron numerical Hatree
Fock (HF) method (Hagelstein & deChiaro, 2009).

Once again, there is a deviation from our results with those from (Hagelstein & deChiaro, 2009),
but again this is explained by the different orbital descriptions used, while the other set of results
are in excellent agreement:
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e There is generally excellent agreement with (Hagelstein & deChiaro, 2009)'s DFT
results, with the deviations at the PBC edges perhaps due to different DFT framework
parameters employed (energy or charge density cut-offs are most likely)

" There is excellent agreement between results based on LDA and GGA approximations.

e There is also excellent agreement going from a single cell to the2x2x2 supercell.

The last point is especially important since it shows us that our description of the supercell
(which we apply for more sophisticated calculations), is correct.

In terms of the calculation details, the single cell and bulk results were obtained using a simple
QE representation of bulk Pd, with the experimental lattice constant of 7.3535 a.u. The resulting
SCF calculation was used as a basis (input) for calculating the charge density using the QE post-
processing programs (pp & plotrho), (Giannozzi, 2010).

Bulk Pd Electron Density[111]
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- PLH - DFT(LFD) - 1x1x1(GGA) -2x2x2(GGA)

Figure 62: Electron Density in Bulk Pd [111]
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k-Mesh Size Convergence

An important consideration when calculation the charge densities (and indeed while doing any
DFT calculation) is that of convergence. In particular, we tested the wave function energy cut-off
used in the k-vector Fourier expansion and we found that 40 Ry was sufficient for convergence.
We did this by varying (increasing) this energy until there was no significant change to the total
SCF, all other parameters being held constant. The charge density cut-off was then set at lOx the
k-vector cut off (i.e. 400 Ry) to be consistent with the ultrasoft pseudopotentials we are
employing (Giannozzi, 2010).

We were also interested in finding out what k-mesh size was sufficient. After optimizing the
wave vector energy cut-off, we used charge density to optimize the mesh size. The results are
shown below, and indicate that a uniform mesh size of 4x4x4 is sufficient.

Pd Bulk Charge Density: Mesh Size Convergence)
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-- 2x2x2Mesh - 4x4x4Mesh - 6x6x6Mesh

3

-88x8 Mesh - 3x3x3 Mesh

Figure 63: k-Mesh size convergence
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PdH Ground State Potential Energy Curve

The potential energy curve for PdH has been investigated by many authors. Balasubra
(Balasubramanian, Feng, & Liao, 1987), for example, have used FOCI calculations that closely
matched experimental data for low lying ground states:
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-0.08

-0.I
200 4.00 6.00 8.00

R -*Ibohrl
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Figure 64: From (Balasubramanian, Feng, & Liao, 1987).

We investigated whether our DFT framework could predict the above results. Specifically, we
are interested in replicating the equilibrium bonding length of 1.53 Angstroms. The experimental
value was referenced from (Malmberg, Scullman, & Nylen, 1969).

(Computationally, we simply put PdH in a large enough vacuum box and calculate the total SCF
energy as the Pd-H distance is varied)
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Figure 65: PdH Potential Energy Curve From DFT

Our results (2.9 Bohr) agree very well with experiment.
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Lattice Expansion/Elastic Energy

The interaction energy of palladium is believed to be mostly due to the lattice expansion. In this
section, we will compare the calculated vs. the experimental lattice elastic energy.

Experimentally, the volumetric change on expansion may be expressed as

V' - V
v EXX +EYY+ezz

217

For uniform dilation, we have

Exx = Eyy = Ezz = E
218

or

6

219

The elastic energy density for a general crystal system is given by the tensor

6 6

U = CA, eAe,
A= 10=1

where Cj, are elastic constants.

For a cubic crystal like palladium, the energy density is given by

1
U = (C11 + 2C1 2 ) 82

6
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where the elastic constants are measured experimentally.

The results below show a reasonable agreement with experiment, at low lattice constants, but we
note that un-modeled thermal expansion effects in experiment but not model account for
deviation at higher lattice expansion.

Elastic Potential Energy (Pd)
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Figure 66: Elastic Potential Energy of bulk Pd: Model vs. Experiment

Summary

This is a 'stick model' chapter. We prove the suitability of DFT by applying it to well known
problems. Deviations from experiment are discussed.
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Chapter 5 - Understanding the Energies Calculated by
DFT

Introduction

In this brief chapter, we will attempt to understand the output energies as reported by our
Quantum Espresso (QE)(Giannozzi, 2010) DFT framework. We will start by reviewing the
theoretical foundations of DFT for reference purposes, followed by an interpretation of
calculated DFT output.

Fundamental Many-Body Problem

The starting point of the Density Functional Theory (DFT) is obviously the difficult many-body
problem. Briefly, the fundamental problem is that of the many-body electrons and nuclei ,
represented by the Hamiltonian:

R 1 =v riz- R1\ |r r| 2 +

222

We follow the notation and formulation presented in (Martin, 2004) to write Equation 222 thus:

R = T + 9,ex+ 9int + E11 + Ec
223

In Equation 223, the operator terms are

h2= - e V? is the kinetic energy operator for the electrons,2
me

9ext = e - + const is the potential acting on the electrons due to the nuclei,

9 int = e is the electron-electron interaction,

r = r iL is the classical nuclei-nuclei interaction, and,
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Ec = 2: il,- l is the kinetic energy of the nuclei.

Using the Born Oppenheimer approximation, the nuclear kinetic energy may be ignored, such
that Equation 223 becomes

R =I'+ V + 9n + El
224

To describe electronic structure, we may replace the external coulomb potential due to the nuclei,
ext, with a fixed pseudo-potential external to the electrons. The pseudo potential also captures

the effects of core electrons.

The problem thus defined reduces the complexity of Equation 222 somewhat, but we still have
electron-electron interaction to grapple with.

Hohenberg-Kohn Theorems

Hohenberg-Kohn Theorem is at the center of Density Functional Theory and applies to a system
of interacting particles, as in Equation 222, namely (Martin, 2004):

Theorem I:

For any system of interacting particles in an external potential Vext (r), the potential Vext (r) is
determined uniquely, except for a constant, by the ground state particle density no(r).

The implication of Theorem I is that the Hamiltonian is fully determined by the ground state
electron density, no(r). But it also means any energy calculations we make may have a constant
shift, all factors being the same.

Theorem II:

A universal functional of energy E [n] in terms of the density n(r) can be defined, valid for any
external potential Vext(r). For any particular Vext(r), the exact ground state energy of the
system is the global minimum value of this functional, and the density n(r) that minimizes the
functional is the exact ground state density, no (r).
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Summary of Basic DFT Formulation

We want to solve the stationary Schrodinger Equation subject to the Hamiltonian of Equation
222:

[ 2 2 Zee2 h2 Z i
Ir" LrrR +M. I /Vj=Ej~i

Let LIriI Iqb k-j M.c.JR, -R 1 1 ~r)= 1 ( 1
225

or

RO(r) = E1$(r)
226

where 4p(r) is the many body wave function that we want to solve for.

The total energy is the expectation value of the Hamiltonian:

E =(R) = () + (9in) + f d3 r "xt(r)n(r) + E1

227

In Equation 227, we have expressed the expectation value of the external potential as a simple
integral over the charge density, n(r).

n(r) = (0R(1)0 = N f d3r2 ...d arN 1(r r2, .rN) 12

(0|0) f d 3r2 ... d3rN 10r 2, "-. Np)|2

228

In Equation 228, we have utilized the Pauli Exclusion principle, namely that all electrons are
identical, to replace electron r by electron r1 .

Furthermore,

o denotes spin,
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R(r) is the electron density operator,

1(r) = IN6(r - rj)

229

and

f d~rn(r) = N
230

According to the HK Theorems, therefore, we can in principle start with the ground state
electron density, n,(r). From there, we can determine the external potential Vext(r), from which
we can build the Hamiltonian and whence the wavefunction of any state may be determined. On
the other hand, the ground state electronic density function may be obtained by minimizing
Equation 228 with respect to all parameters. Of course this is a circular definition, but as we shall
see below, it suggests an iterative, self consistent solution approach.

The minimization outlined above, however, is a daunting task. Furthermore, it would yield far
more information that we are interested in (basically it will tell us pretty much the spatial
location of all nucleus and electron at any given time).

Kohn-Sham Ansatz For the Ground State

Kohn and Sham realized that the many body problem, Equation 225, is extremely difficult to
solve, and the HK Theorems do not offer any practical guidelines for solving the electronic states
except in very simple systems (N=1 for example). The Kohn-Sham ansatz, (Martin, 2004),
(Hohenberg & Kohn, 1964), (Kohn & Sham, 1965), starts by assuming that the ground state
electronic density of the system of real interacting system (the real world one whose solution we
seek) is equivalent to that of some chosen non-interacting system.

The non-interacting system is an easier problem to solve. However, the interaction in the original
system does not magically disappear; it is instead replaced by an exchange-correlation functional
of electron density, which captures the interaction inherent in the original interacting system.
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In practice, the exchange-correlation functional is an approximation (several of which exist
today, including the Local Density Approximation, LDA, and various flavors of Generalized
Gradient Approximations, GGA to which we have referred in previous chapters).

Auxiliary System Formulation

According to HK Theorem II, we should be able to express the total ground energy as a
functional of the electronic density, i.e. Equation 227 may be recast in its density functional form
as:

EHK[n] = T [n] + E1 et[n] + J d3r Vext(r)n(r) + Enl

231

where we have expressed the expectation of the external potential as an integral over the
electronic density. We may also treat the second term (electron-electron interaction) as a self
interacting classical charge density:

EHar.ee[f =-f d 31 r d3r' nr) n(r')
2 |r-r|I

232

The Kohn Sham ansatz (guess, but turns out to be a spark of genius) is to realize the following:

(1) The exact ground state density can be represented by the ground state density of an
auxiliary system of non-interacting particles.

(2) The auxiliary Hamiltonian is chosen to have the usual kinetic energy operator and an
effective local potential Ve (r) acting on an electron of spin a at position r. A key
simplification usually used in the formulation is that the potential is localized.

The auxiliary system Hamiltonian is then (in Hartree atomic units):

= -gV 2 +v,(r)

233
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where Vffr (r) is as yet unspecified.

For (the auxiliary) system of N = N' + N' electrons, Equation 233 suggests that the ground state
will have one electron in each of the N" orbitals 00f(r) with the lowest eigenvalues (rof the
Hamiltonian.

Still for the auxiliary system, we can calculate the particle density and kinetic energy as,
respectively:

Na

n(r) = 1$f(r)|2

234

N

T, = (1pt(r)IV210t(r))
a 1=1

235

The Kohn-Sham ansatz then is to realize that we can recast the ground state energy of the full
interacting many-body problem Equations 231, 232, as follows:

EKs (n] = T [n] + EHartree In] + f d3 rext (r)n(r) + E1l + Exe (n]

236

We note the following about Equation 236:

* It is an educated guess (but based on its success since it was proposed, it is a very good
one),

" It is essentially an independent particle equation except that all the many-body effects
have been lumped into the last term, the exchange-correlation energy, Exc [n].

But Equation 236 also begs the question: What is Exchange-Correlation Energy, Exc[n], anyway?
We provide an algebraic answer that we hope sheds some light. Comparing Equation 231 and
Equation 236 reveals that (noting that EKs In] = EHK[n] by formulation),
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E., [n] = T [n] + Ein [n] - T,[n] - EHartree In]
237

We note from Equation 227 that the functionals are actually expectation values that evaluate to

an energy component of the fully interacting many body system, i.e.,

Exe [n] = ((?) - T[n]) + ((ine) - EHartree fn)
238

In other words, the Exchange Correlation Energy is the difference between the kinetic and self
interaction energy of the true system, and those of the auxiliary one.

Kohn-Sham Equations

To arrive at the ground state of the real interacting system, we need to minimize the Kohn-Sham
energy functional of Equation 236. To minimize the KS energy, we can vary either n(r) or the
wave function.

One way to perform the minimization is via the Lagrangian of the functional, subject to the
constraint of wave function orthonormality:

(ii(r)|pj(r)) = 8
239

i.e.

L[n] = EKs[n] - (r)Ij(r)) - j
240

In Equation 240, we have fortuitously chosen the Lagrange multipliers in anticipation of the
results below. Varying the Lagrangian leads to
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6L[n] 6EKsin] EilJ() = 0

S1p,(r) Spi1*T)._CA =0
241

The variation of the KS energy * ** , may be done straightforwardly by applying chain rule on

terms that don't explicitly depend on the wave function, i.e.:

6EKs[n] 6T [n]
6*(r) ,*(r)

SEHartree[n] &n(r)
Sn(r) 60j*(r)

+ Enxrn] 6n(r)
5n(r) S$*4(r)

+Exc n] Sn(r)
+6n(r) 60$* (r)

To evaluate the first term on the right hand side of Equation 242, we note that we can write the
Kinetic Energy (Equation 235) as:

N

1 =r (r)V2 (r)TS =1f

Equation 243 is a linear functional of */,*(r), therefore,

-. j(r) 2

Similarly,

6n(r)
P(r) (r)

5E,e, n]
Sn(r)

243

244

245

6[f d 3r Vex(r) n(r)] = Vext (r)

Sn(r) *er
246
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Using these in Equation 241, we get the stationary points of Lagrangian thus:

[ V2lt(r) + EHa n] Vext W + 6n(r) - E 1 (r) =0

247

Equations 247 are the well known Kohn-Sham Equations.

We can put the KS Equations in the familiar form of independent particle Schrodinger equations,
thus,

HKS (r) 01 W = E1 t r)
248

with

HKs 1 2 2 (r)+ a [n] + Vext(rH~~) -2*1 r &n(r) +&Ex, 
n]

+ 6nfr)
249

Because the KS potential,

6 EHartree [n] +Exe [n]
VSr) nr +V (r)+ nr)

250

depends on the electron density n(r), the Kohn-Sham Equations have to be solved self-
consistently (in such a way that the resulting electron density is consistent with the KS potential).
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Extracting Physical Observables

In this section, we try to determine whether we can make sense of the output of our DFT
calculations (other than the total SCF energy). In particular, we like to decompose the total
energy results into its various components (Kinetic, Coulombic, etc)

V1 -+ e V2 + Z' 1 P(rg) = Eip(r)
2-m, |r g - R1| |,rjg- r;\ 2 M1 1 R1 - R1|

251

Output of Quantum Espresso

A sample output of Quantum Espresso SCF run (the main DFT calculation) is given below:

total energy = -2434.16877502 Ry
Harris-Foulkes estimate = -2434.16924056 Ry
estimated scf accuracy < 0.00057787 Ry

The total energy is the sum of the following terms:

one-electron contribution = 328.27526527 Ry
hartree contribution = 231.77750778 Ry
xc contribution = -1000.22065260 Ry
ewald contribution = -1994.09563536 Ry
smearing contrib. (-TS) = 0.09473990 Ry

convergence has been achieved in 7 iterations

One-Electron Contribution

The one electron contribution or band energy contains contributions from both kinetic and the
external KS potential (the latter comes out of minimizing Equation 236 with respect to electron
density). The calculation is done in k-space, so there is really no straightforward correspondence
between this and a physical quantity.

However, the information about kinetic energy may be retrieved from electronic wave functions,
which QE calculates and stores. This may be done using the post-processing program (pp.x)
which actually calculates the electron localization function or kinetic energy density.
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Hartree Contribution

This is the classical electron-electron interaction energy (Equation 232). This has a physical
meaning.

Exchange Correlation Energy

The closest physical interpretation we can attach to the exchange correlation energy is Equation
238.

Summary

We have presented a brief summary of DFT theory for reference purposes. We then connect it to
energy calculation within our particular implementation of DFT (Giannozzi, 2010).
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Chapter 6 - SuperCell Configurational Considerations

Introduction

So far, we have calculated state energies ab initio via a random placement of hydrogen atoms
within the palladium interstices. We have done this because the large number of possible
configurations makes it impractical to interrogate them all. As the following elementary figure
shows for a 2x2x2 supercell, the number of combinations is very large:

Figure 67: Number of different configurations for Loading a 2x2x2 super cell

Obviously some of these states are degenerate, nevertheless, lacking some intuition on the
bonding states of H in Pd, we still have a very large number of computations to grapple with.
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Current Understanding of PdH Bonding States

There is currently a general consensus about how H bonds with Pd atoms (Flanagan & Oates,
1991). The bonding occurs via a small charge transfer from around Pd to H. These electrons
come from Pd's d-band (Chan & Louie, 1983), thus creating a new bonding state several eV
below it.

It is also generally understood that the PdH interaction is short range and does not extend beyond
nearest neighbors [ibid]. It takes just one electron to screen the proton, independent of the
loading level of course. Therefore, it is plausible that our state energies should not be much
affected by the configuration chosen, but should depend on loading.

Ab Initio Calculation

2 H Configuration.

With the above assumption about state energy dependence on configuration, we set out to
validate the hypothesis. To do this with a 2x2x2 Pd Super Cell, we can start with a simple case of
two H atoms as a 'stick model' exercise. For this simple case, we can identify the following
configurations. All atomic coordinates are Cartesian { x, y, z} relative to the supercell lattice
constant, a.

We then calculate the interaction energy as follows: We pick the first H atom at the center of the
first FCC unit cell {0.25,0.25,0.25}, while the second is picked at a distance away as shown in
the following table.

{0.25,0.25,0.25} {O.75,0.25,0.251 0.5 a -0.42098
{0.25,0.25,0.25) {0.75,0.75,0.25) 0.707 a -0.42479
{0.25,0.25,0.25i {0.75,0.75,0.75} 0.866 a -0.41991

The results indicate that the lowest energy is achieved by placing both H atoms at the center of a
unit cell vs. at the edge (Figure 68).
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Figure 68: Energy as a percentage above the minimum for three configurations with two Hydrogen atoms.

The energy difference is about 1% per H atom, which is significant. The hypothesis of a
distance-based energy, therefore, does not appear to hold.

We believe that energy is minimized by placing the Hydrogen atom in an electron density that is
closer to the one in hydrogen gas. There is some support of this hypothesis from other authors,
(Christensen, Stoltze, Jacobsen, & Norskov, 1990) for example, who found out that the electron
density in the interstice was a crucial factor in determining the heat of solution. We also have
some preliminary electron density data that appear to confirm this view, shown below. In each
case, the density is taken along a line containing the two hydrogen atoms. The lowest energy
configuration contains a potential energy hole with the lowest electron density:
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Electron Density vs. Configuration (2 H)
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Figure 69: Electron density along the line of site of two H atoms in Pd 0 sites. See visual model below.

Figure 70: Lowest Energy configuration. Fully loaded Supercell shown. Pd atoms are in Blue, H atoms white and the 2 H
configuration is shown in Red. Orange are H atoms that are not part of the supercell.
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Figure 71: Example 2H Higher Energy Configurations (Blue)

Summary

We have attempted to analyze configurational energy differences. We have found some
differences, as should be expected. However, despite these results, it is unclear if this
dependence holds in general - we may not generalize the model based on such a limited
configurational testing.
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Figure 72: Example 2H Higher Energy Configurations (Green)
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Chapter 7 - Understanding Enthalpy and Entropy

Introduction

In this chapter, we switch gears and try to understand the enthalpy and entropy changes resulting
from the loading a metal with hydrogen. Our aim is to gain some understanding of the model
results by approaching the problem from a physical chemistry point of view here.

We start with basic thermodynamics by following the basic formulation presented by (Silbey,
Alberty, & Bawendi, 2004), and writing the combined First and Second Laws of
Thermodynamics as follows:

IV
dU = TdS - PdV + pidni

1=1
252

where U is the total internal energy, T is temperature, S is system entropy, P is pressure, and j
is the chemical potential of species i, of which there are ni in number, and N is the total number
of species.

Enthalpy, on the other hand, is defined by the system variables U, P and V according to

H = U + PV
253

A change in enthalpy is a measure of the energy change involved in a process. For example, at
constant pressure, Equation 253 indicates that the enthalpy change will be equivalent to the heat
absorbed by the system.

Formally, we may write differential change in enthalpy as, using Equation 253

dH = dU + PdV +VdP

254

Substituting for dU from Equation 252, we get:
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N

dH = TdS + VdP + pid ni
L=1

255

We may use Legendre transforms on the state equation for enthalpy, Equation 253, to define a
new thermodynamic potential, the Gibbs Free Energy, G. Thus, subtracting TS from Equation
253, we get:

G = U + PV - TS = H - TS
256

and

dG = dU + PdV + VdP - TdS - SdT
257

or, using Equation 252:

N

dG = VdP - SdT + pid ni
1=1

258

We understand Gibbs Free Energy as the useful, non-mechanical useful work that may be
extracted from a closed system. At equilibrium, we expect it to attain a minimum with respect to
state variables, T, P and p.
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Enthalpy-Pressure Connection

We like to connect pressure that we calculate from our model to enthalpy and entropy that are
measured by experimentalists. In order to do this, we note that, from Equation 258 above,

(dG
V = --P

JT,n
259

where we have dropped the i subscript on n for brevity. The two sides of Equation 259 may be
integrated thus

0G

260

and

VdP=PP' = nRT * ng

261

where -Go is standard Gibbs energy and P0 is standard pressure, and we have assumed an ideal
gas in the last step.

The result is

P
G = GO + nRT * 1nTO

262

Equation 262 provides a connection between Gibbs Free Energy and pressure. To connect
enthalpy and Gibbs Free Energy, we note from Equation 258 above that
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263

Using this result in Equation 256, we get

GOG
G (H+TIPn

264

We can use a mathematical device to eliminate G from Equation 264 by noting that (Silbey,
Alberty, & Bawendi, 2004)

( (j))
PIfn

(\T2

T P,n

265

Using Equation 264 to eliminate G from Equation 265, we get

(

-7H
+ T G

266

or

H = -T Pn

267

which is the Gibbs-Helmholtz equation. From it, we get the enthalpy change as

AH = -T2 ( T
OT 

P,n
268
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Connection to pressure is achieved via Equation 262, which we may rewrite, since Gibbs energy
is relative, as

AG = nRT * In(P)
269

The final result is

a (nRTln(P)\AH =-T2 8T
a 

n

- nRT 2(O)2(O(nP))

\ nT

270

Entropy Pressure Connection

We use Equations 256 & 270 to make the connection between pressure and entropy

AG - AH O(anP)
-AS= T =nR*ln(P)+nRT T)T O n

271
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Fugacity

We used ideal gas model to derive the Gibbs Free Energy, Equation 262. For a real gas, G. N.
Lewis recognized the convenience of using the same form by defining a fugacity f according to

G = Go +nRT * 1n

272

We have previously [Chapter 2] used fugacity models, e.g. (Tkacz & Litwiniuk, 2002), that we
may use together with Equation 272, i.e.,

If = {1.5 * A * P 21 3 + 3 * B * P 11 3 + (D + E * T) * In(P) - 3 * C * p-1/3
R * T

273

For real gases, therefore, overall results are then given by the following

AH = -nRT 2 ( T n(f))

274

and

-AS = nR * In(f) + nRT ( )\

275
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Model Enthalpy Calculation: Differential Fugacity Formulation

In the single phase regions only, we can use Equations 274 & 275 to connect model fugacity
calculations and experimental enthalpy data. In literature, for example (Flanagan & Oates, 1991),
these two equations take the equivalent "molar" form, with the 2 factor used to go from
hydrogen gas to the atom, thus:

(a (1np) Ap2

276

and

(in p-) 1 Ag

T O + Inp=

277

To proceed, we take Eft(6) as the total interaction energy of the configuration, and re-write the
fugacity model, Chapter 2, as:

B(O,T)
f(0,T) =A(T)*eT

278

where

A(T)= KT 2 1 h2)

279

6__ 
8

e(0) e 2icT 87r2
IKBT

B(6,T) = 2KHT in - 2KT in(z) + 20 + 2eh(0) +TIn + Tin o-h2 + ED
1 - e +sD

280
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or, using,

Z= 2sinh

281

we get to

B6 .2 60V + e() ) +7r 2 IKBTB(6, T) =2KBT 1n 1 0+ 6KBT1 ( 2 KT sih +00 e hO B alt 2 +LC

282

and Eh(G) is the total interaction energy of the configuration at a loading of 6 as before.

To calculate the relative enthalpy change, it is perhaps easiest to start with Equations 274 & 275
in their molar forms (later, we will actually use a 'per hydrogen atom' metric):

AH - (0 1W~))
2 k nf )

283

and

R RT (d 1n(f)
-AS e- 

nn(f)+-~
284

Then, simplifying Equation 283 first, we get, after noting that we may dispense with the
following algebra:

RT 2 0Inf(6,x)
AH(,T) = OT
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RT 2  1 ( f(0,T)

- 2 f(6,T) OT )

B(6,T,

RT
2  1 A(T) * e

2 f(6,T) OT

0

RT2 1 A(T)
2 f(6,T)

E K8 TB'(6, T) - KBB(6,T)+
e LKBT (KBT) 2 I +A'(T)

R (TB'(8, T) - B(6,T) 2A'(T)

2 KB j ACT))0

AH(O,T) R ([TB'(0,T)-B(0.T)] + 2A'(T)\ I
A (T) Mci o-1

285

where

A'(T) = ( 27mnKBT)2

286

B(0, T) = 2KT in -00 + 6 T ln 2 sinh
B(OT=2K8 1n1 00Eo

+2 ____(O 
81r'lJICBT

+ IO +2eh(6)+KBTfl crWh2 O

287
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00 a co, a 8ir 2oI\ /
B'(6,T) = 2KBl 1  +6KRT n 2sinh +6Kln 2Tsinh 2 TT Bh2

87r2IKBT

oh 2

____ 1 a 0T= 2Keln w + 6KBT 2 sinh cov T 2 sinh 2KT
16 00 mnh...±.T 2K8

+ 6KB l n 2 sinh 2o T
2Ka TI

B h2 B 87r
2 1KRT

8+K21BTOT k nh2

81r2 IK8 T
+ yln 87. 2

=2K8 ln +
cosh

6KHT 2 KLB(
sinh -ov

2KBT
2:,T2)

+ 6Ka In (2 sinh -xaT S Bh2

= 2K8 ln 60 - 3 conth c + 6 n 2sinh +KB +KBIn82 IT
- cT h- 6K8 T 2KBT) Ih

Tsnh2T+ + 8ir21ngTB'(0, T) = 2K9 uIn 1- 3 Lo3-cothl E1C3 + 6ICB In~ 2 2K 8T) + KCB + KBIn

288
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The entropy change is given by

RT (01n f (0,T)) R
-AS(O,T) = R T n + * 1n f(0,T)

fR(T Of(6,T) + 1nf(0,T)

B(,T)T

R _ _T ( 0 A (T ) * e KBT

R _ T B(OT TB'(0,T) -B(O, T)*K+ lnf(T)

AT e T ',* e KBA'(T) + 1n f(0,T)
2f eT)[A(T)e ~ KBT (KBT) 2  

*K)+eBOT

R T *B'(0,T) - B(6,T) +T A'(T)+ n f(, T)
2 KT ACT)]

-AS(' T)R [(T *B'(0, T) - B(0, T) (T)+1 (,T
- , + A(T) + n T

289

Alternatively, once the enthalpy change has been calculated, we can also use Equation 271 to

calculate entropy change as follows:

AG - AH
- S T

290

The results are shown below. To compare the model results to (Kuji, Oates, Bowerman, &
Flanagan, 1983), we have made the results relative to those at zero loading.
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Enthalpy Change (delH) [Kuji1983]
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Figure 73: Enthalpy Change: Raw Model and Model relative to Zero Loading vs. Experiment

Figure 74: Total Enthalpy Change vs. Experiment
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Excess Molar Enthalpy and Entropy

Excess Molar Enthalpy

To be able to accurately compare our results to those in literature, e.g. (Kuji, Oates, Bowerman,

& Flanagan, 1983), we need to derive the so-called excess molar quantities. These are molar

properties with the infinite dilution quantities subtracted out as explained below.

We begin with Equation 269, written for the hydrogen gas and with pressure replaced by
fugacity. As is customary in physical chemistry literature, we have used an over bar to denote

that we are dealing with a molar quantity, with the mole defined for hydrogen atoms:

.. 1
AGH = 7RTlnfHz

291

As before, the relative enthalpy change is given by Equation 270:

AH T (AGH)

O P,n

292

However, Equation 292 is the total enthalpy change of dissolution of hydrogen in metal, not the
excess enthalpy in the sense of (Kuji, Oates, Bowerman, & Flanagan, 1983). To get the excess
enthalpy, we follow the definition of (Boureau, Kleppa, & Dantzer, 1976) by separating the

Gibbs Energy changes as a sum of two terms:

AGH = aIdeal + AExcess

293

where, assuming that only one type of site is occupied, we may write the ideal entropy term as

Qdeal = RTln *
1-899

294
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Therefore, using Equations 278, 279 & 282, we may write ACHas

1 B(O.T)

ACH = RT * 1n A(T) * e BT)

= RT [In(A(T)) + B(0,T)

+RTin +
1-80

R
+ ED

61n 2sinh-J + 2 )+ eh( )
2K 0T) KBT 00 K0;Te

+ R08(0) R RT
+KEh (0) +-ln

Comparing Equations 293 & 295, we get the following expression for the excess Gibbs Energy in
the context of our model:

- RT Eov
AG =-nA(T)+3RT1n 2sinh- R 0Eh (0)

+-8 6
R

+ eh(0) +
KS

RT 81r21KBT
-2n eyh2

Using Equation 292, we can get the excess molar enthalpy change as:

AHH = -T OT

297

We simplify Equation 297 using Equation 295, noting once again that we may dispense with the
following algebra. The numerator of Equation 297 is

176

RT 1 2 +
=-2lnA (T) +- RT i21n 1-0+

RT
--lnA (T)

2

+ ir2 IKBT n 6D
+l1n - h2 +KoT]

3RT In (2sinh 60T
8ir2 IKBT

o0h2

295

R
+ ED
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Lastly, to compare to (Kuji, Oates, Bowerman, & Flanagan, 1983) or (Sakamoto, Imoto, Takai,
Yanaru, & Ohshima, 1996) data, we arrive at excess enthalpy term by subtracting out the value
enthalpy change at infinite dilution, i.e.,

H i= AHH AHHO
300

We get the infinite dilution enthalpy term, AH from (Kuji, Oates, Bowerman, & Flanagan,
1983), presented here as a functional fit of temperature. The infinite dilution enthalpy increases
with temperature as expected, with the dependence approximately linear.
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Infinite Dilution Enthalpyvs. Temp- After [Kuji1983]
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Figure 75: Change of Enthalpy at Inf'mite Dilution

The results are shown below compared to experiment:

Excess Enthalpy Change (delH) [Kuji1983]
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Figure 76: Excess Enthalpy Change - Model vs. Experiment.
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Excess Molar Entropy

We can use Equations 263 & 296 to calculate the excess entropy in the sense of (Kuji, Oates,
Bowerman, & Flanagan, 1983) and (Boureau & Kleppa, 1976):

-TnT(OAn+)

a [RTi IA (T) + 3RT 1 n(2 sinh 10v ~ + 1 19 1h (0 + R Eh (0) +E n9r1B D2JCBT) KB 2 +2

RT+A'(T) R T)
2 A(T) '2 "L

+3RT coth -2x \ 60T 2 + 3Rln (2 sinh 2 + 8 IKT g 2

R 87r 21KBT

2 oh 2

-E RTA'(T) + R nA(T 3 R0v I o Rnn ( stnh EK R R ovh2 8-A A( (T) 2KBT cth + 2si TI + -in olh2

Alternatively, we can use Equation 290 to define the excess molar entropy as

As H - ACH
T

301

302

Finally, just as in the case for enthalpy, the Excess Entropy excludes ideal and infinite dilution
terms (Sakamoto, Imoto, Takai, Yanaru, & Ohshima, 1996):

SH = H - AH

303

Infinite dilution entropy data is from (Kuji, Oates, Bowerman, & Flanagan, 1983) - see Figure 77
below:
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Figure 77: Infinite Dilution Entropy - after (Kuji, Oates, Bowerman, & Flanagan, 1983)

The results are shown in the following figure, followed by an attempt at an interpretation of the
results.

Figure 78: Entropy Change (T*dS): Experiment vs. Model
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We also added some higher loading results from (Sakamoto, Imoto, Takai, Yanaru, & Ohshima,
1996) that show some leveling off in the beta phase (loading of 0.68-0.85). The results are shown
below compared to model.

Entropy Change (TdeIS) [Kujil983] & [Sakamoto1996]
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Figure 79: Excess Molar Entropy*T at room temperature. We show different experimental data, (Kuji, Oates,
Bowerman, & Flanagan, 1983) for r < 0.68 and (Sakamoto, Imoto, Takai, Yanaru, & Ohshima, 1996) for r> 0.68 (purple
solid line). Model result is shown in red.

Correction to Model Molar Entropy

From the discussion in Chapter 2, it is apparent that the calculated enthalpy term for dissolved

hydrogen in metal, will contain electronic and configurational entropy terms, but not acoustical,

option and image interaction terms. These need to be added as correction terms. We attempt to

capture this correction term here following the treatment of (Kuji, Oates, Bowerman, &

Flanagan, 1983).

For dissolved hydrogen, we identify the following excess entropy correction terms (relative to

zero loading):

AScorr = ASope + ASac + ASei + ASim + ASnc
304
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for optical, acoustic, electronic, image interaction, and non-ideal configurational entropy,
respectively.

We ignore magnetic and translational contributions since we expect these to be small (Kuji,
Oates, Bowerman, & Flanagan, 1983). Next, we attempt to estimate each term as in [ibid]:

ASopt is estimated to increase from 4.15E-05*T to 6.15E-05*T eV per H atom as the loading 0
increases from 0 = 0 to 6 = 1. (Rush, 1982) in (Kuji, Oates, Bowerman, & Flanagan, 1983)

ASac is estimated to be zero (ASac~0) [ibid]

ASelec may be estimated to rise from zero at zero loading to about ASel = 4.15E - 05 * T eV per
H atom (Oates & Flanagan, 1971) in (Kuji, Oates, Bowerman, & Flanagan, 1983).

ASim may be estimated to be ASim = -3.01E - 05 * 6 * T eV per H atom (Alefeld, 1972).

Of course AS, is already included in our model. From these results, we estimate the total
entropy correction to be

Ascorr = 7.26 * 10~ * T I
\ Atom/I

305

The corrected model entropy is shown below:
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Entropy Change (TdeIS) [Kuji1983J & [Sakamotol996]
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Figure 80: Same as Figure 79 but showing the results of our model entropy calculation after a simple correction based on
experiment (Blue solid line). Details of correction above, based on [Kujil983].
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Can We Understand Entropy Using Our Model?

In this section, we will attempt to understand entropy in the context of our model. In other words,
once we calculate the entropy according to Equation 301, what meaning can we attach to it?

To answer this, we start with the fundamental Boltzman relationship between entropy and the
number of accessible microstates:

S = KB * log 12
306

In Equation 306,12 is the number of equally accessible microstates. A simple count of the 0-sites
yields

N!

n!(N -n)!

where n is the number of hydrogen atoms, distributed among N available 0-sites. This is
obviously pure configurational entropy.

Configurational Entropy: O-Sites in2x2x2Supercell
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Figure 81: Configurational Entropy (H in Pd 2x2x2 Cell)
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The interpretation of Figure 81 is straightforward: configurational entropy increases with loading
until a peak at the half way point - where the system is at its most disordered. It thereafter
decreases until, at a loading of unity, there obtains a perfect PdH lattice with zero configurational
entropy. However, this so called ideal entropy is rather un-interesting and we subtract it as
indicated in Equations 293 & 294 above.

Accessible Excess Microstates

To understand what the excess entropy means, we can write Equation 306 in terms of excess
entropy, i.e.

A5H = KB lft2E
308

where

= final

Elinitial

309

flinitial is the initial number of states while ffinai is the final number of states as the hydrogen
moves from gas phase into palladium bulk. We interpret Equation 308 as quantifying the change
in the number of accessible microstates during the absorption process. The ratio

-final AS

7i-tnitiaL= B

310

therefore, is the fractional increase (or decrease if less than 1) of the excess microstates available
for the H-atom to go into during the absorption process.

We plot Equation 310 as a function of loading for the model and experimental data in Figure 82
below.
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Fractional Available Microstates [Kuji1983] & [Sakamotol996]
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Figure 82: Fraction of Available Microstates, model vs. experiment. Experiment from (Kuji, Oates, Bowerman, &
Flanagan, 1983) r <0.68 and (Sakamoto, Imoto, Takai, Yanaru, & Ohshima, 1996) (r>0.68)

We also provide below the results based on (Kuji, Oates, Bowerman, & Flanagan, 1983)'s results
in the loading range

Fractional Available Microstates [Kuji1983]
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Figure 83: Same as Figure 82 but showing the results based on (Kuji, Oates, Bowerman, & Flanagan, 1983) only.
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Figure 82 and Figure 83 show that the model has not correctly predicted the reduction in the
microstates. This is perhaps not surprising in view of Figure 76 and Equation 302, and - the errors
in model excess enthalpy results errors in excess entropy, and the resulting excess entropy
(Figure 80) is simply not good enough to model available microstates.

Interpretation of Fractional Accessible Excess Microstates Result

According to the results of Figure 82, the absorption process leads to the loss of about half the
number of accessible microstates in the miscibility gap. In the beta phase, the number of
microstates approximately doubles from its initial value. There also appears to be a leveling off
based on experimental data from (Sakamoto, Imoto, Takai, Yanaru, & Ohshima, 1996) in the
loading range 0.7-0.82 beyond which the number of states again increases rapidly.

The results based on the (Kuji, Oates, Bowerman, & Flanagan, 1983) data alone shows similar
loss of half the microstates in the miscibility gap. In the beta phase however, the increase in
available states is about 4x. A central question is whether we can understand these results.

As a first attempt at a model, we hypothesize that, in the miscibility gap, the loss of available
microstates is due to the hydrogen forming clusters, while in the beta phase, the electronic states
of the electron in protium play a crucial role in the increase in the number of available
microstates. Let's see if we can validate or otherwise disprove these hypotheses.

Mixed Phase "Clumping" Model

In the miscibility gap, the loading is non-uniform and clustered or "clumpy". The hydrogen may
then be thought of as loading the metal bulk in clusters. One way to model this is to use a
clustered statistical formulation as described below.

Previously, we considered a purely random statistical placement of hydrogen within the metal
lattice. This is the model captured by Equations 38 Chapter 2,

ZH(T,)= e z"
n ASN

311

and using the Bragg-Williams approximation,
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N! -neh

ZH (T, n)= n! (N -n)! e T Z"

312

In Equation 312, n is the number of H atoms, randomly distributed among N available O-sites,
and we shall consider octahedral occupations only for now, such that

0<n<N
313

and the implied summation is over all integer values of n. The distribution is then purely random
in n.

To model a PdH cluster or "clumping" characteristic of the miscibility gap, we may consider
loading the hydrogen in pairs, triplets, quadruplets, etc. To do this, we choose an integer
clustering factor, y, such that

n

314

for some integers k. k is then the sequence

n N
k=0,1,2.

Y Y

For example, if the clustering is in pairs, y = 2; for loading in clusters of 3, y = 3, and so on. In
general, for y - tuple clustering, Equation 311 becomes

N

kyyU-fh
ZHOT,p A6 e Zk

k=O ASN
316
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and

1 1 1

y ak ~On
317

Equation 316 becomes

iCyeh

ZH (,=k) N e T zk
k! -Zk)!

318

where the first term in brackets is the number of ways of choosing k sites at a time. Obviously, in
N

this formulation, N must be chosen in such a way that - is an integer according to Equation 315.
Y

Additionally, in Equation 318, there are no additional entropy terms related to the tuple because
we choose the entire tuple and it has a known entropy, i.e.,

319

Paralleling earlier treatment in Chapter 2, we derive the chemical potential for the dissolved
hydrogen in the miscibility gap as:

pH = yf ( ! ky 1f T + yn z-- ky

an k - T yak k -

= {k T1+T+a

320

We use the Stirling approximation as before,
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In(x!) 2 in(Vii) + (x + ln(x) - x

321

to write (algebra may be dispensed with)

N1

T1 = 1n

N
k! -k) !

= In-! - In k! - In(N - k)!
Y

[ in(vZ + + In -] - [in(VZir) + (k

- (In(Zi+ (L_ k +0 )n ( - k) - +k

+ Ink - k]

322

Collecting only terms dependent on k, we get the gradient term as

T1=-k+ nk-k+ 2-k+ in 2-k)+kj

=-0(k+i0ink+(!-k+ 1n -k)

=- (k+ +lnk- 2-k+7) - in 2-k)
I Yk

1 N1
=- 1+- +nk-1----In -k={ Y 2N

1'

InNyk Nk

The other terms are
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a a a
3-T =knzkYV=F(kylnz) =yIn z

324

and

Y Y y yE(n O nT3 T -7-~ [Eh (l)]I + Eh (n)" = -Okk~)
a keh) = --- (kh(n)) -- k [ ~ +Eh(n)

=- (kyeA(n) + Eh(n))

325

In Equation 325 E(n) denotes a derivative with respect to the "n-space" argument. This is
important because our model calculates Eh (n) in n-space - but because there is a simple scaling
between n and k, the result is particularly simple, as shown.

Using hydrogen to metal atomic ratio,

n ky
N =N

326

we rewrite Equation 323 as

T1=- -2N - 1-0)
327

In Equation 327, we think we are justified in making the last approximation because, for N very
large, the first two terms will always be much smaller than the last, even in the low loading limit,
6 -+ 0, because N quickly overwhelms the former.

The rest of the terms are, Equation 324, as before,

a
T2 = y In z

328
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and Equation 325:

T3= - (kyeA(n) + E(n)) = -(0e4(6) + Eh(3))

329

The chemical potential valid for the mixed phase is, therefore, from Equation 320,

T 6 a
= - -in -T in z + O- eft(6) + Eh( 6 ) valid for 0.02 < 6 < 0.6

330

which obviously matches the results of Equation 50, Chapter 2 in the case of y = 1, i.e. random
arrangement without clustering (1 - tuple).

We need to use the results of Equation 330 in Equation 295 to get the Gibbs Energy. Note that
(r = kBT). Additionally, k, the clustering factor is not to be confused with Boltzmann constant,
kB. Thus,

1 B(6,T)

AGH= RT* ln ACT)*e )

1 r( ~~ B(9,T)]
= RT In(A(T)) + k8 T

RT 1 2 6. ov~ 2 0 6 8h(O) 28K 72 kBT 6D1=-lnA(T)+ RT n + +[ 2 8 -+ i TJ2T 2 yj +- 2kT BT 0 kTE ~

RT RT 0 3ROl R @Eh (0) +-ln1r IB
=-lnA(T)+ in +3RT in 2-sinh +j -Eh(O) Ik T2 Y 1-6 nsnk B 08 2 cah2

R
+ -3ED

331
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The excess Gibbs Energy is defined as before: Equations 293 & 294

AG.x'e* = AGH - Ghaeal

Chdea = RT * In 0
1-6

333

or

-ECup RT RT 6 / e0E, R 8Eh(O) R
AGH n -nA(T) +-In + 3RT In 2 sinh +- 6 0 Eh(2Y 1-9 2k,.T) 1c kB

RT Su2 kBT R 6
+-21 ah + -ED - RTIn 122kh 2 12k

334

Following previous derivation, Equations 297-300, we may use our new excess Gibbs Energy

model, Equation 334, to write the excess enthalpy as:

AHE =-T2

Pn
335

-;E.Clumnp R
H - inA (T)
T 2

R ,
+-n +3R In (2sinh 2T

R dEh(6)
+ 6 d +

R 8 2 lkBT R E

+ n h2 + 2kBTED Rin 1 _

336

and
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aHE.Clump

= a -inA(T)+Eln-'G +3Rin(2sinh + e 6) en(6)+ -ln + ED -RnOT ~)P

=-T
2 (RcA'(T) -R

0 , e0o R Dec(O)
2 A(T) 2 Y1CBT 2

" 2,cT 1CBT 2 o1e -h(6) + -2 ET
2

ED

ECIUnp RT 2 A'(T)
H 2 A(T)

3Re0 , e0 ,
+32E coth-6ET

+ ZKB 2,c 8 T

jRJE,CLump EClump _ -

338

Finally, we get the Excess Entropy from Equations 302 & 303, which, due to the dependence of
the excess Gibbs Energy on the clumping factor, k, may show the effect we are trying to model:

Em ECIumP - ECLUmP

HCump H HT

gECLump ECLump Ao
H H H

The results are shown below.
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Fractional Available Microstates - Clumped [Kujl1983] & [Sakamotol996]
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Figure 84: Fractional Microstates in the miscibility gap within the clumped Model

Obviously, the results are not much different from those presented earlier, and the reasons
already given for the deviation of the un-clumped model apply equally here. Qualitatively,
however, we see in the "clumped" model that the decrease in available sites is ALWAYS
LARGER than would be expected from a random arrangement, which validates our overall
hypothesis. However, the decrease is not anywhere close to expectation since our model has a
large constant correction. Also, beyond a loading of about 1/3, the clumped model actually
exhibits a smaller decrease in the available microstates. We may explain this on physical
grounds, namely that as the loading increases, the effect of clumping decreases.

A plot is shown below:
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Figure 85: Clumped vs. Random Loading (clumped in 3-tuples example shown)

We may perhaps see the clumping model more clearly if we do some correction to eliminate
DFT errors. We attempt such a model below

Mixed Phase "Clumping" Model - Corrected Gibbs Energy

We would like to find a systematic way to correct the entropy results. At first, we may be
tempted to reprise our methodology of Chapter 2. But such a path would be misguided since
entropy is a measure of the number of available states, such that we cannot simply "correct"
entropy. To make progress, we may try correcting Gibbs Energy, since that is directly tied to our
model calculations.

We may start from Equations 297 & 300, rewritten below to emphasize temperature dependence:

A E(T) = T 2  T

1P,n
341
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r (T) = AHN (T) - AH (T)
342

Substituting Equation 342 into Equation 341 and integrating with respect to T,

- fF(T) + AHo(T)) dT = ' ' d7 T
J Tz I f OT

343

The left hand side may be accessible from experiment, and the right hand is derived from the
fundamental theorem of calculus. The results are

ACE (T) = - H R(T ) + AH)(T ) dT

344

Unfortunately, we could not find experimental data from which to evaluate the right hand side of
Equation 344. However, the left hand side of Equation 344 is readily accessible since Gibbs
Energy per mole is nothing more than chemical potential, such that we may write

A6(0, T) = AyE (6, T)
345

The excess chemical potential Pi(0)
1983) and is defined by

is accessible from (Kuji, Oates, Bowerman, & Flanagan,

346

and AGH(T) is available directly from our model. Combining Equations 345 & 346 trivially, we
get
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AG (T) -AyHO = yp(6)
347

We write Equation 347 this way so we can easily compare experiment and model - the right
hand side of available directly from (Kuji, Oates, Bowerman, & Flanagan, 1983), while AGC(T)
is directly from our model, and ApH0 is also available from [ibid].

In the figure below, we plot the two sides of Equation 347. The experimental data is at several
temperatures based on experimental/model after [ibid]. We also show the experimental data side
by side. Lastly, we compare these with our model results. The model already has an explicit
temperature dependence.

Excess Chemical Potential vs. Temperature [Kuji1983]
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Figure 86: Excess Chemical Potential vs. Temperature, after (Kuji, Oates, Bowerman, & Flanagan, 1983)
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Excess Chemical Potential @573K [Kuji1983]
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Figure 87: Excess Chemical Potential at 573K: Experiment vs. Model

Excess Chemical Potential at 603K: Experiment vs. Model
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Excess Chemical Potential @653K [Kuji1983]
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Figure 89: Excess Chemical Potential at 653K: Experiment vs. Model

One trend we see in the above results is that the temperature dependence is slight, both in the
model and in the experimental data.

The excess chemical potential at infinite dilution (polynomial fit to (Kuji, Oates, Bowerman, &
Flanagan, 1983) experiment) is also shown below)
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Infinite Dilution Chemical Potential vs. Temp - After [Kuji1983]
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Figure 90: Excess Chemical Potential - Experiment

From Figure 87, Figure 88 and Figure 89, we may attempt various degrees of correction, from a

constant to linear to quadratic. The results are shown below, for various temperatures, followed

by regression graphs:
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Excess Chemical Potential - Constant Fit - Results - 573K
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Figure 91: Regression Fit of Model to Experimental Chemical Potential (Constant Fit)
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Figure 92: Regression Fit of Model to Experimental Chemical Potential (Linear Fit)
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Excess Chemical Potential - Quadratic Fit - Results -573K
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Figure 93: Regression Fit of Model to Experimental Chemical Potential (Quadratic Fit)
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Figure 94: Regression Details (T=573)
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Figure 95: Regression Fit of Model to Experimental Chemical Potential (Constant Fit)
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Figure 96: Regression Fit of Model to Experimental Chemical Potential (Linear Fit)
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Excess Chemical Potential - Quadratic Fit - Results - 603K
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Figure 97: Regression Fit of Model to Experimental Chemical Potential (Quadratic Fit)
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Figure 98: Regression Details (T=603)
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Figure 99: Regression Fit of Model to Experimental Chemical Potential (Constant Fit)
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Figure 100: Regression Fit of Model to Experimental Chemical Potential (Linear Fit)
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Excess Chemical Potential- Quadratic Fit - Results - 653K

-- - -

* -- - -- -------------- -

* .-- -- -- -- --- -- - -- --- --

0.0 0.1 0.2 0.3
Loading

0.4

. Experiment [Kujii983]

0.5 0.6

. Model

Figure 101: Regression Fit of Model to Experimental Chemical Potential (Quadratic Fit)
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Figure 102: Regression Details (T=653)
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What Does This All Mean?

We may write, with view of Equation 291 for enthalpy and Equation 301 for the entropy, and
noting the temperature dependence as "small", the correction to the Gibbs energy as a Taylor
expansion around some temperature, To,

AGHError (06T) = &g 0T(0, 0 ~) +~ 0 12 T(0(~02T...

348

where g(0, T) is a 0 and T-dependent corrective term. The excess entropy is then derived from
the corrected Gibbs Energy, AECo"(0, T), thus,

ASECorr _
'T )P,n (ACE(T))' + (ACEError(0 T))

349

The corrected excess enthalpy is also derived from Equation 291

-- = ( . ) E( + (AgE,Error(

T2 GI T )P,n TT

350

We obviously need a model for Ag(8, T). One thing we know is that Ag is connected via
Equation 349 for Entropy and Equation 350 for enthalpy, such that any model of Ag(0, T) must be
consistent between these two equations.

We also know that Equation 348 allows us to make connection to experiment. Starting from this
perspective, we may get an approximate model for Ag(T) (Kuji, Oates, Bowerman, & Flanagan,
1983). Perhaps the only difficulty may be calculating the temperature derivatives in Equation
348. To make things simpler, we concentrate first on one particular arbitrary value of loading,
namely, 8 = 0, before generalizing. Using results from Figure 91 through Figure 102, we have
for 8 = 0, in a least squares quadratic fit sense:
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Temperature (K) g(0, T)
423 0.1686
573 0.1815
603 0.1818
653 0.2061

Approximately, therefore,

g(0, T) = 1.1797 * 10- 6T2 - 1.1130 * 10-3T + 4.285 * 10-1
351

Equation 348 then becomes, substituting Equation 351 to get a concrete example,

E,ErrorACH' (0, T)
a

=Ag (0, T)+-T (Ag (0, T)) ITTOT TT
1 02

(T - TO) +2(Ag(, 
T=TO

= (1.1797 * 10- 6T2 - 1.1130 * 10-3T + 4.285 * 10-1 )IT=T0

+ (2 * 1.1797 * 10-6T - 1.1130 * 10- 3 )1T7.=0 (T - TO)

+ (2 * 1.1797 * 10-6) (T - TO) 2

2 T=To

352

Around T = To = 573K therefore, Equation 352 becomes

AGE,Error(, T) = 1.780807 * 10 + 2.389362 * 1 4 (T - 573) + 6.759681 * 10-4(T - TO)2

Then, with view of Equation 349,

(AcEEor = 2.389362 * 10 + 2 * 6.759681 * 10-4(T - 573)
354
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Beta Phase

We shall begin by considering the issue of electronic contribution to entropy that is already
estimated by (Kuji, Oates, Bowerman, & Flanagan, 1983), based on the prior work of (Oates &
Flanagan, 1971). According to [ibid], the change in the heat capacity of Pd upon the addition of
hydrogen is shown to contribute to the excess entropy [ibid]. Based on this, (Kuji, Oates,
Bowerman, & Flanagan, 1983) estimated this contribution to increase only slightly in the alpha
and mixed phases, then increase more substantially up to a value of AS,, = 4.15E - 05 *
T eV per H atom at unity loading.

We take a slightly different approach by phenomenologically including the electronic partition
function in our grand partition function, Equation 54 Chapter 2:

ZH(T, nt) = eh z(%o+nt)z no+nt)

no nt ASN
355

where zeto*"t) is the electronic partition function for the dissolved protium, and the other terms
have already been defined. The electronic partition function may be written as

Ze = gje KBT

J,e
356

where gj is the degeneracy of state j with energy Ej and the summation is carried out over all
electronic states. Because the electronic energies are usually large and well separated, the terms
of Equation 356 all drop off except the first one:

Ze gje41 =go+gie + 2 e-i- +- -

J,e
357

The ground state is a doublet, such that the degeneracy for the electron is 2. The grand partition
function for the dissolved hydrogen, Equation 355, then becomes
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(no+nt)- (no+nt) +t)
ZH I p enn T n n0

no nt ASN
358

Following our results from Chapter 2, we calculate the chemical potential as

0 in ZH(T, n, nt)
po(,no, t) -

359

1t(r, no, nt) - ~aInZH(T, no, nt)
Ont

360

whereby

yo (T, no, nt) =pt(T, no, nt)
361

and we use the Bragg-Williams Approximation:

No! Nt! (no+nt)eh(no.nt)
Zn, no, ne) = N ne!z(no+nt) no+nt)

ZH T, o, t)no! (No - no)! nt!(Nt - nt) !,e9

Using prior analysis, we can write down the chemical potential terms by inspection, thus:

p (T,60o, t)= T in - T ln(z) - T ln(go) + (6, + 2 0t) 06 + eh(0O,O)1-0 a)0

1 - 1t 80~et)+(
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Using earlier results once again, the fugacity is calculated by matching the chemical potential at
the Pd-H boundary:

PH (absorbed) = j pHz2 (0S)
365

Therefore:

B(O)
f(0)= A()e-T

366

where now, respectively,

A(T) = T
367

60 aEh (0) e _____

B(,T)=2Tln 2 -2lnz-2Tlngo+26 66 + 2eh(O)+'rln + +1601 - e

8ir 2 +
r h2 +ED

368

To get the corrected enthalpy, we calculate the Gibbs free energy as in Equation 295, but now
using B(6, T) from above, Equation 368:
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_ 1 EdLM
AGH = RT * ln (A(T)* e BiT

= RT [ln(AT)) + B(0,T)]

RT r1 ~ Eov 21ngnA(T)+ RT [21n +61n 2sinh -21ng 0

87r2IKBT ED
+ln 2 +TOrh 2 KT

+ RT1n100 0 Eov \+ 1T n + R6 i( sn 2
KCBTJ Ti o

26 OEh(G) 2
06BT - + KBEh (0)

R 0Eh( 6 ) R
+- 00 hKB

RT 87r21KT R
+2 h2 + 2 KB

369

The excess Gibbs Free Energy (Equation 296), then becomes

_G~ RT 1 (
GEe = - nA(T ) + 3RT 1n 2 sinh2xT -

R OEh (0)
RTlngo +-6 +

KB 06

R RT 87r2IlcBT
Eh(6) +-n h

R
+ -ED2

KB

370

and Equation 298 is:

R /R( ov'\
-inA(T) + 3R n(2 sinh BT)

R OEht(O)
- R ingo + 6

KBT 06

R
+ Eh (0)KBT

R 87r2 IKT
2 ah2

R
+ E6D

2K 0yT

371

such that, similar to Equation 299,
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E 2 O R Ev RO 0e6(0)ARH =-T - InA(T) + 3RIn 2sinh LT- -

R
+ -

P ED n

ARE = RT A'(T)
H 2 A(T)

3Reo, ___,_

+ coth 2ic8
2xiy 21.T

R Oh(O) R
+-B0 +-Et(O)
KB Of) KB

Finally, as in Equation 300,

HE= AH - AH
373

It is therefore abundantly clear that there is at best a high order electronic correction to excess
enthalpy.

The relative molar entropy is given by Equation 302, except that excess Gibbs Energy is now
given by Equation 370:

. AE - AdGE,e
ASK- T (valid in Beta Phase)

Lastly, excess entropy is

375

The results are shown below, where once again, no discernible difference from the model
without electronic correction.
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Fractional Available Microstates -Beta Electronic Correction [Kuji1983] &
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=3.00
3.00

C

.0

1.50

1.00

LL0.50

0.00

0.6 0.65 0.7 0.75 0.8 0.85 0.9
Loading

-- Experiment [Kuji1983], [Sakamoto1996] -M odel (Electronic Correction - beta phased)

Figure 103: Beta Phase Fractional Microstates with Electronic Correction
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Thinking About SHO Approximation to the Vibrational States of Hydrogen in Pd

So far, we have only considered the ground state for the dissolved hydrogen. The partition
function was thus described using a harmonic oscillator approximation, Equation 53 of Chapter
2:

376

where e0o, is the ground state vibrational quantum, and we have included all three normal modes.
In reality, however, we know that there will be excited states.

Now, it is well known that within the lattice, the partition function of hydrogen is actually
anharmonic, see for example (Wallace, 1992) . In this section, we will correct the pure harmonic
treatment to include the first excited state from experiment. The goal is to find out how much
difference it makes to our results.

We will take the first excited state to be at an energy of e1 ,. As a first approximation, we can
simply include the two quanta at so, and e -, in the partition function, thus:

z ~-(e+e )3
377

In Equation 377, we ignore all the higher order states.

Using this result, and following (Powell, 1976), we write the partition function of the H in Pd as

n ASN
378

Even before we make any calculations, we can anticipate the results of this approach to our
model. Because the excited vibrational quantum level is about twice that of the ground state, 138
meV vs. 68.5 meV, (Rush, Rowe, & Richter, 1984), we do expect only a slight correct in the
model results.
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Following results from Chapter 2, we can write down the chemical potential for H in Pd from
Equation 40 as follows:

OF 0 In ZH
PH 3

p, (-r,0, t) = 'r 1n -rln(z) + (6 + 20t) eh(0,) + eh(0

____ / 1 6
e(o )( )

pt (r,0 0 ,60) = T n1 -r In(z) + (t + 1O) 6* 0 O + 8h(00,61)

As before, we calculate fugacity as (Chapter 2)

f(6)= Ae

where

Ch Oef(0) e 2T
B(6) = 2z1n - 2rln(z) + 26 +2Eh(6 0 ,6t) + T ln -+ T

1-e

8ir 2 +
1n -0h*2 +EGD

384
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The results are shown below, where we compare them with those from pure SHO approximation.

PdH9: Pressure Composition Temperature Isotherm [Wicke1978], [McKubre2006]

1.1+06

1.C+05

1.1+04

1.E+03

1.E+02

E
& 1.E+01

1.10 0

1.E-01

110

1.E-04

1.E-05

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Loading (8)

. Wicke1978 + McKubre2006 * Exp(Extrapol) - Model(T=293,HO) - Model(T=293,Anharmonic)

Figure 104: For the partition function of hydrogen in Pd, a comparison of SHO approximation with an anharmonic
approximation using two first excited states.

Summary

In this Chapter, we have connected our analysis to molar quantities (enthalpy and entropy) in a
fundamental way, beginning with first and second laws of thermodynamics. A simple, initial
correction mechanism is also attempted - see later chapters for a fuller analysis of the
corrections.
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Chapter 8 -Understanding DFT Energy Shift

Introduction

In this chapter, we would like to gain some intuition into the DFT energy calculations. In
particular we would like to quantify the order of differences between the DFT results and
experiment.

Second, we would like to gain some understanding whether there is consistency when the same
set of parameters is used to calculate different configurations energies (say in H-H binding
energy vs. Pd-H binding energy).

Lastly, we like to use any insight gained to correct derived quantities like enthalpy and entropy.

We begin with analysis of the energy differences between DFT and experiment in potential
energy curves.

Potential Energy Curves: Pd-H and H-H. Model vs. Experiment

A good starting point is the potential energy curve for Pd-H and H-H. We show the curves
below, noting that even though the works cited are not experimental, (Kolos & Wolniewicz,
1964) for H-H, and (Balasubramanian, Feng, & Liao, 1987) for Pd-H, their agreement with
experiment (Herzberg, 1970) for H-H, and (Lagerquist, Neuhaus, & Scullman, 1964) for PdH, is
well established.

219



Figure 105: Potential Energy Curve, PdH: Model vs. Experiment

H-H Binding Energy

1

-- t

It

-5

0 1 2 3 4 5 6 7 8

Separation (Bohr)

Model - Experiment- After [Kolosl964]

Figure 106: Potential Energy Curve, H-H: Model vs. Experiment.
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In the case of H-H, the difference between model and experiment is 310 meV while that for Pd-
H is 110 meV:

AEHH EMod - Ex= 310 meV
385

AEpa- = EModeL - EExg = 110 meV
386

These values are taken at the minima of the potential energy curve. In fact, the experimental
value of the dissociation energy for H-H is 4.49 eV (Herzberg, 1970) in (Silbey, Alberty, &
Bawendi, 2004) - (Kolos & Wolniewicz, 1964) curve on which Figure 106 is based is
theoretical, not experimental, i.e. our model results are closer to experiment, and

AEH.-H = EModel - EP = 54.7 meV
387

The initial results are comforting because in each case, model results are above those of
experiment. The model results were arrived at using the same DFT framework, such that we may
attribute the difference between Equations 385 and 386 to experimental uncertainties in the two
experimental values.
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Excess Enthalpy Comparison to Model

Energy Offset Comparison

To make a comparison of our model to experiment, we may compare our model enthalpy
calculation to experimental data:

Excess Enthalpy Change (deiH) [Kuji1983]
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Figure 107: Excess Enthalpy: Model vs. Experiment (Kuji, Oates, Bowerman, & Flanagan, 1983)

If we ignore loading dependence for now, we see from Figure 107 that the difference between
experiment and model is approximately

AEg E -HE =93.4 meV (infinite dilution)HModel - Exp

388

In the sense of Equation 388, the results are indeed of the same order of magnitude as Equations
385 and 386, which shows that our model calculations in three contexts are consistent with one
another.
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Constant Regression Fit to Experiment

Given the favorable energy comparisons in the previous section, we may attempt to correct our
DFT results using the constant off-set suggested by Equation 388. The result is shown in Figure
108 below.

The results indicate a reasonable fit in the single phase regions, especially the alpha phase. This
is perhaps not surprising since in these two phases, the excess enthalpy is approximately linear,
so a linear correction is expected to yield good agreement with experiment. In the mixed phase
region, the match is relatively poor. Note that in absolute terms, the largest error occurs
approximately in the middle of the miscibility gap, and is a modest 80 meV per H atom.

Excess Enthalpy Change (Constant Fit to Exp.) [Kuji1983]
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Figure 108: The result of a Constant fit to Model to Experimental Excess Enthalpy Data.
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Linear vs. Quadratic Regression Fit to Experiment

It is also plausible that the dependence of the DFTl error on loading is not constant, and that
Equation 388 is simply the lowest order correction of a more generalized dependence:

AEDrr = E(O) = eg6k

k
389

We stress that, except for k = 0 for which we have a foundational argument, we take Equation
389 for k > 0 as pure conjecture at this point. Nonetheless, the idea is that the difference in
energy calculations between DFT and experiment may be expressed in terms of a Taylor series
in loading, with the weights chosen in a least squares sense to match experiment. A particular
choice of the weights for a linear fit leads to

Eo = 0.0926, Ei = 0.0229

390

and, for a quadratic regression

Eo = 0.1104, E, = -0.5756, E2 = 0.8805

391

as shown below (Figure 109). The final results are shown in Figure 110.

224



Excess Enthalpy Change (DFT Error, Fitted) [Kujil983]
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Figure 109: Polynomial Fit of DFT error vs. Loading

Excess Enthalpy Change (Linear, Quadratic Fit to Exp.) [Kujil983]
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Figure 110: Excess Enthalpy: Linear Fit (red) and Quadratic Fit (purple) to Experiment

Summary

The primary aim of this chapter is to characterize the magnitude of DFT. We find it to be about
100 for the class of problems considered.
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Chapter 9 - A New Model of Interstitial Hydrogen in
Palladium

Introduction

In the last few chapters, we have attempted to build a progressively more complete description of
the physics of hydrogen absorption in Pd bulk. Starting with a relatively simple statistical
description of octahedral-only occupation, in Chapter 2 we added tetrahedral occupation and a
simple O-to-T excitation model. We proceeded to model the absorption process by using DFT to
calculate state energies and using these in the statistical model to derive thermodynamic
quantities like chemical potential, enthalpy and entropy.

We also improved the results by adding energy corrections that we could not calculate within the
DFT model. These included zero point and thermal excitation energies, DFT corrections and
others, as described in Chapter 2. From there we were able to reasonably accurately predict
experimental pressure isotherms with only constant corrections to DFT state energies.

In Chapter 3, we tried to come up with a model to account for the miscibility gap, and thereby
modeled fairly accurately, the phase change during the absorption process. We found that
applying the Rule of Equal Areas was a reasonable description of the clumping that occurs in the
miscibility gap.

In Chapters 4, 5 & 6 were foundational chapters, designed to validate the DFT framework in
simple, well understood systems.

In Chapters 7 & 8, we used our basic model to understand fundamental thermodynamic
quantities of enthalpy and entropy changes in the absorption process. In particular, we were
interested in modeling excess enthalpy and excess entropy and based on those results, we were
able to gain some understanding of the accessible microstates associated with the absorption of
hydrogen into metal lattice. As a result we made some model modifications to account for
clumping in the miscibility gap, and also attempted to understand the electronic contribution to
entropy from a first principles view.

The question at hand, therefore, is whether we can put together a model that encompasses all of
the above model elements. Since we now have a good understanding of the different components
of the physics of the problem, the hope is that we can include any corrections a priori in the
model formulation, instead of after-the-fact like we have been doing. For example, instead of
starting our model with an approximate statistical model, deriving the Gibbs energy from it, and
using experiment to determine the amount of correction, we would like to include the correction
terms explicitly in the statistical mechanical formulation.

Based on our understanding of the accessible microstates reduction, we also would like to further
explore our clumped model in the miscibility gap, except that, instead of choosing a clumping
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factor, we will instead make it a function of the model temperature. As a result, we hope to
phenomenologically determine enthalpies that were heretofore obscured by the miscibility gap.

We attempt a model below.

An Improved Statistical Model

The model we attempt to build has the following components:

(1) Octahedral and tetrahedral site occupations are modeled as in Chapter 2.

(2) Interaction energy corrections are added phenomenologically to the model, not as a
posteriori experimental fit.

(3) We include hydrogen clustering or "clumping" as a third occupation type, by defining a
"Clumped Occupation".

(4) We make the clumping occupation temperature dependent.

(5) We include electronic contributions to the partition function, in singlets for the clumped
configuration, and doublets for the octahedral or tetrahedral occupations.

(6) We will need to model clumping, by making clumping factor a parameter in the model.

With view to these considerations, and Equation 38 of Chapter 2, therefore, we can write the
partition function of the improved model as

(no +nt+nc)A-eh (nont,nc) ncn cn tZn
ZH (T,p) = eSzo 'z "c zeoze,t , C

nc nt nnc ASN
392

In Equation 392,

nnc is the number of hydrogen atoms distributed among Nnc available non-clumped sites (see
below),

nt is the number of hydrogen atoms distributed among Nt available tetrahedral sites,
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n, is the corresponding number of particles in "clumped" sites. A clumped site is a cluster of
sites containing a total of y hydrogen atoms. We assume only octahedral sites are clumped (see
below),

y is the clumping factor or tuple in the sense of Chapter 7,

E(nnc, nt, nc) is the total interaction energy of the configuration having n = nc + nt + nc
hydrogen atoms, distributed among a total available interstitials sites N = Nnc + Nt + Nc,

N, is the total number of octahedral sites, such that N0 = Nnc + Nc,

zo is the hydrogen partition function when in an octahedral non-clumped site,

zt is the hydrogen partition function when in an tetrahedral site,

ze is the hydrogen partition function when in an octahedral "clumped" site,

ze,o is the electronic partition function for an octahedral site, which is a doublet, (degeneracy=2)

ze,t is the electronic partition function for an tetrahedral site, which is a also doublet,
(degeneracy=2)

Ze, is the electronic partition function for an clumped site, which is a singlet (degeneracy= 1),
and

"ASN" means all configurations containing (nnc, nt, nc) hydrogen atoms.

H Particle Count

To make some sense of Equation 392, we need to make sure our particle count comes out
correctly for the total number of hydrogen atoms at any particular configuration.

First, the total number of interstitial sites available is given by

N = Nnc + Nc + Nt
393

In other words, we are initially treating clumped configurations as a type of site, on the same
footing as octahedral and tetrahedral interstitials.
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One way to perform the count is to take the view that only sites of type octahedral will be
clustered. This is certainly justified in light of our O-to-T excitation models in Chapter 2, and
from experiment.

With this assumption, we may perform the count in Equation 392 as:

No No-nnc Nt
I (nnc+nt+nc)#u-eh(nnecnt,ne)

Z H (T, y) = e N ' z" t*z "cz ,"cz ,"tz "

L..L.J e~Cfltfl)Ir~h~CfltlC 0 t C e,o eXt e,cnnc=0 nc=0 nt=0 ASN
394

In Equation 394, we note that our count of the clumped sites is coupled with that of the non-

clumped octahedral sites, making the partition function non-separable. The counts have been

adjusted to make the summations over nnc and nc consistent with the total number of octahedral
sites at any given loading level, such that, as above,

No = Nne + No
395

Additionally, because of its coupled nature, Equation 394 is sufficiently foundational for what
follows that a simple example may be in order to clarify the coupled nature of the summation.
And because the tetrahedral sites summation has no coupling by assumption, we leave it out of
the example, such that the summation we want to clarify is

NO No-nne

Z (T p) = I I I(---.)
nnc=0 nc=O ASN

396

Note that we have left the configurational summation, "ASN", intact since it captures the
statistical formalism at the core of our model.
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An Example

Suppose that

N =10
397

Then, if we further suppose that, based on a self consistent determination (see below), the
available octahedral and tetrahedral sites are apportioned as

No = NVc + Nc = 9

398

Nt = 1
399

then, we may visualize the octahedral sites being loaded as follows, using Equations 396 & 398:
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Figure 111: Example of coupled loading of clumped vs. non-clumped O-sites. c=clumped sites, nc=non-clumped and grey
sites are clumped. Clumping factor=2 is shown. "ASN" means all arrangements having the same number of hydrogen
atoms, preserving the clumps.

Another way to proceed is to perform a brute force count of the number of states suggested by
Equation 396, and compare the results to the non-clumped case.

N_!
Nstates (n) =stts nnc! (N0 - nue)! nc! (N,, - nc- nc)! nt! (Nt - n)

400

and its non-clumped approximation

Ntates(n) = No! Nt!
Nstatesn ,n! (No - no,)! nt ! (Nt - nt)!

401
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The results below are shown for a particular value of k = -' = 4 since Equation 400 introduces
Y

a large number of configurations compared to Equation 401. In Equations 400 and 401, at each
loading, we pick the configurations with the largest number of microstates, since that is the most
likely configuration (Christensen, Stoltze, Jacobsen, & Norskov, 1990).

Number of Accessible Microstates: Clumped vs. Non-Clumped Configuration

16

14

0

12

10

8

6

4

2

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Loading

-- umped

0.7 0.8 0.9 1.0

-Non-Clumped

Figure 112: Number of microstates for a clumped vs. non-clumped configuration, as a function of loading

Equation 394 suggests that we need to do the summation of the clumped sites in another "integer
space", say k, via a simple change of variables as in Chapter 7. This avoids any over-counting of
the clumped states since Equation 396 assumes all integer values of the clumped states counter,
nc. Suppose:

k = c
Y

402

for some integer k. The result is that Equation 394 becomes,

NO-nnc
No y Nt

(nnc+nt+kY)JU-q-(nnc~nt~ky)
ZH (r, p) = eS' z'z" S. ' c z,"t"zk

nn = n0 NeO et ec
nn,=0 k=O flt=O ASN

403
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In Equation 403, the relative fractions of clumped versus non-clumped occupations is left to be
determined consistently with the free parameters - see below. Equation 403 also makes it clear
that

n = ne + nn + ky
404

Protium Particle Partition Function

For the protium partition functions of the non-clumped octahedral and tetrahedral sites, we use
the harmonic approximation as before, (Chapter 2), including the zero point contribution,

zo = zt= e T
(e 2 (. MYv-3

'C = (2sinh--'

Clumped Binding Energy Contribution

In the clumped configuration, we propose that clustering has the effect of lowering the overall
configurational energy. We may therefore define a binding energy that represents the difference
between the completely random configuration and the clumped case, keeping in mind that each
bulk configuration is referenced against the free gas. This energy is NOT accessible from our
DFT model, so we have to make it a free parameter that is a function of loading.

We depict this binding energy conceptually below, where the "clumped" configuration binding
energy is defined to depend on overall loading as follows:

EcBnd (n) = AEciump (n) - AeRand (n)
406

and we note that Figure 113 below is simply a conjecture at this point.
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Hypothetical H-H Binding Energy Curve for Clumped Sites
2 -- ---- ----- 1

0 I

2 3 4 5 6 7 a 9 20 11

Leading(Arbtrary Units

-1Indng Energy fordCustered Site

Figure 113: Depiction of Conjectured H-H Binding for Clumped Configuration

We may factor in this binding energy difference in the clumped configuration by adding an
energy factor to the single particle partition function

("" Eovn+i) 3 Ej(n)

ze(n) = e T e T

(n=o

Because there are no excited states in clumped configuration, we take only the ground state in
the SHO contribution to Equation 407. The SHO contribution is then, for all 3 modes,

z(n) = e ) =(e
(n=0

407

408

Equation 407, the clumped partition function, is then

Zc ( (n)

409
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Electronic Contribution to the Partition Function

The electronic contribution to the partition function was previously derived in Chapter 7,
Equation 357:

z,,o = g e KIST ~ 0

J,e
410

Ze,t = goge ICB g
J,e

where the octahedral and tetrahedral electron contributions are taken to be a doublet, i.e.,

0 =2o tgui = 2

For the clumped case, the electronic configuration is a singlet, or,

Zec gje ~

J,e

411

412

413

Model "Free" Parameters

We have previously added DFT energy corrections to the model a posteriori. We now add these

corrections phenomenologically to the model, thus:

Eh () -+ 8f(0)+ e + ei8 + e62 + 0(63)
414

This gives us three free parameters.
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The other three parameters may be chosen to be the binding energy of the clumped
configuration, EB(n), which we may chose to depend on the overall loading, thus:

Ej(8) -+ E: + Ec0 + 22 + 0(03)
415

where 0 is the overall bulk loading, and ec are constants to be determined based on experimental
fit.

Overall Model

From the foregoing, we get the overall model as below

No)-nne
No yNt

(nnc+nt+ky)p-eh(nnc,nt,ky)
e T Z:nncZtntc Zy ncZ ntZ~I I.2 I ZC 6e,0 e, te,c

nnc=O k=0 nt=O ASN

416

We may simplify Equation 416 using Equations 409-413, with,

Zot -Zo = Zt = (2sinh -2T

417

and

So,t Zeo = Ze,t g0 9 0
418

such that
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No-nne
No y Nt

ZNH(T,#) = e' l(nnc+n)+ky); -eh(nnctk.y) n"'+nt kIY gnc+nt

nnc=O k=O nt=O ASN
419

For the moment, we will assume that we can use Bragg-Williams approximation, where such an
approximation would be consistent with the earlier, simpler models. We write Equation 419 as

No - nc Nt!

(No - Ac -kl !Int! (Nt - nt)!

No !
nAc! (No - nnc)!k!

(nnc+nt+ky)eh(nne,ntky)znnc+nt nnc+ntzk
TZOt c't hcnZcy

Paralleling earlier analysis, we make the argument that each site, regardless of its type, has the
same chemical potential. If that were not true, then particles would be expected to build up in
sites with lower chemical potential, something that does not happen physically. Therefore,

pc (T, nc, nnc, nt) :nc (T, nc, nnc, nt) =t (T, nc, nnc> nt)
421

for clumped octahedral, non-clumped octahedral and tetrahedral site chemical potentials,
respectively.
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Clumped Chemical Potential

These chemical potential terms are

(No - nnch

pc(T> n) = -N! yn ) + n l
Onc nnc! (No - nn)! k! (NO - nc - kY)! n! (Ne - nt)!

k Y

(nn, + n, + ky)Eh (nc, nts ky)
+ (nne + nt)ln(z,e) + (nne + ne)ln(got)

+kYln(z) =- (T1+T 2 +T3 +T 4 +TS +T6 +T 7 }

422

and similarly for ync and pt.

In previous chapters, we have simplified Equation 422 using the Stirling approximation. We will
do so again here:

1 / 1
inx)g2 )\x21~x-

423

The results are, after some algebra,

T1 = n No! InNO! -In c ! - In(NO - nne)!
nnc!' (No -nnc)!

~= In(2x) + ( N0 + g In No - N0] - ln(27r) + (nnc + in(nnc) - nc

- ln(27r) + (N - nne + In(No - c) - No + nnc

424

and
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a T =I 0

Oncl k-T
425

Similarly, the other terms and their partial derivatives are

(No - nc ,
y f' _ N -n'! No -nne -ky

T 2 =k!(No -n -ky nk!-n

S[ln(2)+(No nnc iNnn N -Yn(2Y)+ kk+ inNk -- k

-Ol(2)+No -nne -ky 1 NO-nne -ky No -nc -ky
l27r \ y - l y y'

426

a I a
- T 2 = -TkT 2

(No - fnc - Y1) Y N - c -ky+}

k \ y 3 No - nc - ky y +)

- k + in k]
+1 N -Y k No - nc - ky

427

T3 = in Nt = 1nNt! - in n! - 1n(Nt - nt)!

In(2ir) + Nt + In(Nt) - (Ne) - [ln(21r) + (n. + in nt - n.

- In(21) + (Nt - nt + In(Nt - nt) - (Nt - nt)

428

a
T3 = 0

429
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(nne + nt + ky)eh(N,, nt, ky)

430

0 10 1 8
T4= T4=- + nt + ky) Ehnncnt,ky) + YEh (fncont, ky)

431

Ts = (nc + nt)ln(zo.,)
432

0
-T 5 = 0

433

T6 = (nnc + nt)n(g0 .t)
434

0
T6 = 0

435

3 - soy + E (n)

436

3
+ j o, + Ej(n))

437

Collecting the terms
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= Ty
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I(r, n) 61
-- (T1 + T2 +T3 +T 4 +TS + T6 +T7 )

=f- + ink] + NN -0 - nne - ky

1(c + nt + ky) eh(nnc, n, ky) + yeh(nnc, nt, ky)
YT 0 k

3 C
+3Eov +E(n)

438

We first approximate Equation 438 by dropping terms that are considered "small" - No~', no-
etc, in line with prior chapters. Thus,

pe (T,n) _1 1 NO-nme -ky

T y 1 y

-1 (c + nt + ky) aEn-c, nt, ky) + yeh(nnc, nt, ky)
YT yOlc+nt4 /C '

-(k E (n) +3 JoyT+ Fk + Ej(n))

439

or

T N -nn -ky 1
-- In n +- (nne

y' YY
+ nt + ky) ah (nc, nt, ky) + YEh(fnnc, nt, ky)

+ (k Ej(n) + Eov + E (n))

T ky (
= -l nNo- -k + (nnc + nt + ky) Eh (nc, nt, ky) + yMh(nnc, nt, ky)

+ k Ej(n) + E0v + E (n))

440
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If we define the fractional "clumped" loading and fractional non-clumped loading as,
respectively,

ky _ ne
N N

441

nnc
-n N

442

Additionally, we define the following fractional loading terms,

N

443

N
444

N

445

n
=

446

then Equation 440 may be written as, after making the change from ky -+ ne, nnc + n, + ky - n,
etc.,
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peT, 0 - O)- - +- n yTy n(n) +ye y + nc, nt, ky)

+ ky aE(n) + 3oV + Ej(n)

T Bc ( o
=-In + ((nnc + nt + n)0 eh(n) + eh (n t, ntnc))

+ nc a n EC(n) On+ 3Eov + EjC(n)( Tna n
=-In c + e() + e0(B) + (c 4 E (0)y e. - 0

flc -B Oc ~ tv To/h()+1h0

3
+ Eov + E())

447

The final result is quite simple:

T oc a a 3
sc(rB) = -In C +0 Eh(0)+ Ea(0)+ Oc Ei,(0) + Eo + E,(0)ydod

where we have used 0, = 9c + Oc.

Equation 448 is certainly of the right form based on earlier results from Chapter 2, with entropic
terms, energy terms and energy slope terms.
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Non-Clumped Chemical Potential

For the non clumped sites, we proceed similarly,

a
anic T

1 1 1
-+ ln(nc)] +1- + In(N0 -nnc)

449

a ~ - (No - nnc + -y I N 0 - n" +1
y P \y 5 No - nne y

1[_(No -nn-ky + r y 1' No - nc- ky 1y ]N No - c - ky y k

1~ ~ 1 y NN - nnc++MN- c - ky]
Y L No - nne y yL No - nc - ky y

450

T-- 3= 0

451

1 a
= -- nh (n) + 1-h(n)

452

a- Ts = ln(zot )
antc

453

a
T6= In(g0.t)anc

454
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a nc 0

On=e7 
T nnE

455

The result, after dropping "small" terms, is

pnc(T,fn) 0
- =n {T1 +T2+ T3 +T4+ TS +T6+ T7}

1 N0 -nne, 1 N 0 -nnc-ky
- ln(nnc) + 1n(N - ne) -- In +-In

- -[n -sh(n) + e(n) + 1n(zOt) + n(got) - E(n)
T 6nn c T Onnc

- in Nnch In No -nn - -n Eh(n) + Eh(n)] + in(zo,t) + in(go,t)No - nn y N - nn-kY T Onnc

nc 0
T ne jn

456

or

pnc(T, n) = T in No - nn+I No - c - ky

L a 1

InlnnE(l) + e'h(n)] - Tin(z0 ~t) - Tin(got)

a+ nc Ej(n)
annc

457

In terms of fractional parameters,

inc( ,0) = in 0fl C
T 9o -e O

+-In * +
y 90-90

9 doE(0) + Eht(0) - T inzt - r lngt +c ToE ,(0)
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Tetrahedral Chemical Potential

Lastly,

a a
T1 = T2 = 0

Ta
1 r 1r 1 1

={-ne +n nt - 1 -- Nt - nt+2 Ne= - -in(Nt - nt)+1

=- + 1n nt] + N n + 1n(Nt - nt )]

460

a 1 aT4 = - n aE(n) + E,(n)

461

a
Ts = In(z.,t)ant

462

a
T6 = In(g.,t)ant

463

a nc a
T =T7 T ant

464

The result is,
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yt (r, n) _1( a c n c (n- n= -In ln + ln(Nt-ne ) n e(n) + e(n) + In(zOt) + n(g,,)- an E(n)
T T nth T} t

or, including a summary of earlier results,

4, a

lit (r, ) = r I -n + 0 ToE 0 E (0) - rEa(. -1 rInZ.,t ~ O ENS,, (0) E(

0t a a 3
11C(r,0) =-In 9 +6 0 )E) 3 0(+ )+C()+-v + E(0)

468
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Constraints on Binding Energy Parameter: "Orondo Isotherm"

We may use Equations 466 and 467 to get a simple O-to-T excitation model as before - the prior

results apply, as can be seen from here, noting that the binding energy and all the non-entropic
terms cancel out.

Equating Equation 467 and 468, however, places a constraint on the binding energy, thus

6nc T eo - nc _r ec 3 (0

In +-In - In _ = r In(z,t) + r in(go,,) +j soV + Ej(6)

469

We may uncover a clumping isotherm form from Equation 469 if we start by rewriting it as

11
9c -jn(zoc)+n(9OAc+(bov+EB(0)

One9 - One) Y

470

We then write Equation 470 as

6, 1 E)()-ov

oncy e0 ~ Onc)- Zo,tgo,t

471

from which we arrive at the isotherm form

c ( ze z"

9ncy ( .O 1-nc)'-y \ Ze
472

From above, Equation 409,
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3 e ,v . E (n)

Znc (n) = e k2 T T )

473

and, from Equation 405,

Z nnc 
e2

1 e T)
474

Additionally, from Equation 413, and Equations 411 and 412, respectively,

ZeC gje ic3 T _-g
J,e

ZB cLAO I 9~e 0
l.e

0= = 2

475

476

477

such that Equation 471 becomes

6c

6O47(e. - 6.clY-
_4e V T  i

- 2

\1 - e T/

1'

478
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Simplifying

0e e47 1 Ec(n)

\ \ 1 -- TY

479

Finally,

480

To find the range of values that Be may assume in Equation 480, we require that the denominator

never vanishes. To this end, (e0 - nec)-Y is always positive, so the requirement of 0,c * 0 is such

that, based on physical considerations, 0,e > 0, or

6 < 00
481

Equation 480 is an isotherm that determines the fractional clumping for a given binding energy.

We call it the "Orondo Isotherm" since, to our knowledge, and despite its simplicity, this is the

first time anyone has ever derived it.

251

Oncy(ORO= OT- 1 - e jcBT e a



Continuity Condition, Full Model

The full model continuity condition, using Equation 467 or 468, with Equation 480,

In OC3
T 6e 26 C6O 3v

-+ Eh(ETE ) e + E + En72T
a nri e 8n2

482

or

f (T, 0) = A(T)e
483

with

3

A(r) = r(2mT)2

484

and

B(r,6) = 2In cG +1 f(6) + eh(6)+0C Ej(6)- Go-E()E()OTECO

3
+ 3o + E,(0)J

2
e 2T

+-rln -~
1-e

+ rln ah2 +ED

485

Simplifying Equation 485, using
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e_ _ P = (2sinh -r=-
1-eT'

we get

B(6, T()) + Eh c (0) + E (0) + 36v

-KT in 2sinh -" + K1T I + ED

B 2KBT/ +KTiah2 DI

Substituting for model parameters, Equations 414 & 415, we get

B(0,T)) = In + 2 aef(B) + EO + E10 + E202] + ( ) + E E6 + E2g21

+ 2 (c0a [e* + E16 + E22] + [Ec + Ec6 + Eg2]) + 3Eov - KBT In 2sinh 2KT

+KBT In 87r 2 IT + ED]

2=BT1n c +2(6 eah() + eh(6) + E + 2E6 + 3ej62)

+ 2[ec + Elfec + 6) + E2 (2gc +0 2)] + eov - KBTIn 2sinh 28 + KTTIn 87 IKT

+ ED

488
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Excess Molar Enthalpy

We derive the excess molar quantities as before, Chapter 7. Thus the excess Gibbs Energy is
defined by

... 1
AGH = R'Tn (fHz2

489

AGH = CHIdeaL + AGHExcess

where we use previous definition of the ideal Gibbs energy in the non-clumped model

H
ChaeaL = RTn n

1 -

490

491

The excess enthalpy change is then

E

Using Equations 483, 484, 488 & 489, we get

C(T 
)P,n

.T2(

492
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1 BD i B(6, T)
AGH , T ) = RT in A(T) * e ''a = RT IinA(T)+ I

_ RT RT 6 R + 3E2)
A(0,T) = 2inA(T) + in + E,(6) + E,(0) + E,0 + 2E6

+R [E0 + E( + 6) + E2(266cg +6 2)] 3R0 - In 2 2sinh 2K0KB 0  K o 2KBT

RT 87r2IKBT 1 R
+ in ah2 + j CD

493

and therefore, the excess molar Gibbs Energy is

RT
AHE(6, T) =-inA(T)

2

RT 6
+-in 

c.+
R'(6 en(6) + eh (6) +E8 + 2e,6 + 3E62)

R 3R
+-[e0 + e(C + 6) + ec(26c6 +62)] + -Ev

KB 2KR

RT 87 2 IKBT 1 R 6
+Tin Ih 2 +-eD- RT1nlO

- in 2sinh - v
22KT

494

and

ACE(6,T) R R 6O R +T -4inA(T) +-in +-6 a()+Eh(60)+e+2e + 3262,T 2 y eo -60 KHT \060h
6 a~ee+s

+ - [ec + EI(6c + 6) + Ec2(2gcg + 62)] + - 0v - in 2sinh -,

K0BT 2 KB T o2 \ KBT/

R 87r21KBT 1 R 6
2 1 - +2-T ED -Rin _

2 ah K0 -

495

such that
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AHE (0, T) = -T 2 
( )

O 
P~n

2( R A'(T (8)
-T 2(2 ACT ) KBT2 20 70 e, (0) + eh( 8 ) + e0 + 2 2 + 362)~72[eC +e(6+)+(ee 2]3 0 o

- [(e0 + Ec (c + 0) + E 2(20ct + 6 ~ O + COth +&T2,KBT2EOv 4,cT2 coth

R
~2xRT72ED

496

or

RT 2 A'(T) R ( 0
AFI HEo h(O) + Eh(g 8 0+ 28 6+ 3E82 )

- % coth 2%T - + ED

497

Finally,

19= AHH - RH
498

which completes the excess enthalpy model. Equations 497 and 300 need to be solved for the
unknown parameters es, 4, ej, ec, l and e.
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Excess Molar Entropy

The excess molar entropy is

-ASH OAGH(0,T)
6T P,n

_RT A'(T) R R 6c 1REo, Eo, R / eo,

2~A(T) + - 4nA(T)+Tn 8 + coth 2 --TRn (2sinh T2A()2 y eo0-60 4 KBT 2 KBT 2 2 KBTI

_ RTA'(T)
-ASH =A(;)

R R 6c
2 i' e 190

1Reo, 4 o, R / , R
+ I coth -- n 2 si EOv R

4 KBT 2KBT 2 ( 2KBT) 2 -

R 81r2IKBT
2 n rh2

499

and

RT A'(T) R R 0c
= A)y(T) -- In2 A(T) 2 -_ Y 60 0

1 REo, EOV R /n
4 IgT ct2 8T+ i 2 2cT

R

2

R 8Ni1,T 8
- In -h- + Rin _

500

Finally,

i= Ag -AsA
501

From Equation 500, we see that our parameters only enter into the determination of entropy
indirectly, i.e. via the determination of relative clumped vs. non-clumped states according to the
"Orondo Isotherm", Equation 480.
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Summary of Model Equations of State

Here we summarize all the equations of the model

(1) From the O-to-T Excitation Model, we determine the relative 0 vs. T occupation
(Chapter 2)

e (- =)

502

(2) From the "Orondo Isotherm", Equation 480, we determine the relative clumped
occupations, with the "free" binding energy parameters EO, e1, e2 (Equation 415):

c 1 _1ex. 3y YEi(n)
=- 1-e CBT e CBT

Oncy(eo - One ~Y 2"Y
503

(3) From the continuity condition, we determine bulk fugacity and hence the excess molar
quantities, Equations 497 & 500, with state energy "free" parameters e-, el, e, ee", e , e

(Equations 414 and 415):

RT 2 A'(T) R aB _2)
T -- -C Eh(0) + Eh (0) + E0 + UE + 38HH~J 2 - 2(T) KB (

R + 32] R e0 v R6ov r6 0v RT RED -o+- [Ec + E'(Bc + B) + E2(20cg + 02)1 + - coth - + -TK AHR
KB 2

KB 
4

K, 2ic8 T 2 2
KB

504

- RT A'(T) R R Bc 1 Re0 , e, R / 0 , R
S T) nA(T) - n -coth -+v -ln 2 sinh 2-"

2 AT) 2 To e 0 41cBT- 2KB T 22KT 2

R 8ir2IlcBT B
- In + Rln 7 -A;

2 rh2 0 -B

505

(4) The solutions of Equations 502-505 must be consistent with experiment.

This completes the model.
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Special Case Solutions: Clumping Factor y = 2

To get further intuition into the nature of solutions of Equations 502-505 above, and hence the
value of the free parameters, we can make the following approximation, valid for the O-to-T
model in the miscibility gap. (Note that this section is not strictly necessary since Equations 502-
505 may be solved readily using a numerical approach for any value of y. Nonetheless, to get
some intuition regarding the solutions, a simple analytical exposition is helpful) .

We start by approximating

6"-~0
506

eo - 1
507

and write the isotherm, enthalpy and entropy,
(Equation 502 remains as is, obviously)

Equations 503, 504 and 505, respectively, as

Oe(1 - 6n) 1 ( - E,
6 

-2E

= - 1 e ) e KICT

508

RT 2 A'(T) R 6
HHE (, T ) = 2 A (T ) To- Eh (0) + Eh(0) + Ego + 2E,61 + 3 E22

2 A (T) Ka

R + 2]+3Rcov Re ov RT REE g
+ [Eco + Ec+ -c + + Ec2 (c 0 2 Reovcoth , RT R

KB 2 KB 4KB 2KB 2 2KB

509

RT A'(T) R R 1c 1 Reo, eo, R , R
S2(T)2 A 2 1-8 4T cot2K Ti 2

R 87r2IKJT 6 _
2 -;:h2 _+RIn -

510
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Because of the 0e term, we have to similarly expand the "Orondo Isotherm" in terms of loading.
With y = 2 and the above approximations, we have

eI ) 28ecO+6e+2eC2

O= (1-- nc) 1 e 8 _ K3T

Onc2
511

such that Equations 509 and 510 need to be solved consistently with the isotherm. For this special
case, the isotherm is a quadratic. The solutions are

Be(e) =
-1 - (26(0) - 1)0 ± V[1 + (2f(6) - 1)e]2 + 4[1 - p(6)]i(e)6 2

2(1 - p())

-1 - (26(0) -1)0 t 1+ 4#(0)- 20 + 02

2(1 - fl(6))
512

where

1i \ 6  2(e8+e4+6 2
,g)

() =J1 - e KBT) e BT

513

From Equations 512 and 513, it is clear that only certain solutions are possible. Thus, because

f(6) > 0, all 0
514

it follows that, depending on the value of the discriminant in Equation 512, the possible solutions
for clumped fractional loading are the following:
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-1 -(2(6) -1)6

2[1 -9(6)]

-1 -(2()-1)6+41+4fl(6)-26+62
c(6)={ - 2 2[1 - l()]

-1 - (2fl(2) - 1)1 - 41+ 4() - 20 +02

2[1 -9(6)]

A=O0

A >0

A >0

515

Equations 515 may be used to eliminate non-physical solutions in a computational framework.

Assuming Equation 512 is analytic, we can expand it as a Taylor Series in loading, with a view
that solutions must obey one of Equations 515. We write the result symbolically below since it is
too complicated for a simple analytical expression.

6e(6) = CO + C16 + C2 62 +
516

where

Ci -+ Ci(T, o, El, E2)
517

and Ci may be determined using a symbolic mathematical software like Matlab.

Substituting Equation 516 in Equation 509, we have for enthalpy,
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RT2 A'(T)HaEMT)
R 0

+-(3h (0) + Ell(6) + E + 2E0 + 3E62)

KB 8 8 8

R 3Reo
+-[ec0+e (Co+C 1 6+C 2 0 2 + 9)+ec2 [C0 +C1 O + C2 g 2 0 + 2)] + Kv

KB 2KB

R ov 0 V RT ReD A 0()
+ - coth -- + - AH

REW (0, T = EM AR ++
2 +...

518

Similarly substituting Equation 516 into Equation 510 yields for entropy, which we write in the

form

$H(6,T) So ASH(6,T) 1 [C0+C 1 6+C2 62  0
R R R 2 1n 1- 1-0)

§0(T) AsPH(6,T) 0 0____1-6 _

R R 1nG- )Co+C 1 6+C 2g2)

519

or

Ex($ , T)-go(T)R
exp , R I

exp( A(6T))
(1-0I

\1 61Co +C16 C0 2

where go(T) is a constant independent of loading in the overall model approximation:

R 1Reo, Eo,
InA(T) -4 T coth2

2 4 KT 2K8 T
+ R 1n 2 sinh 2KT

R R 87r2IKBT

2 -2 ah 2

The infinite dilution entropy term is known from experiment as a function of loading, so we may
write it as

262

520

RTA'(T)

2 A(T)
521

..... ........



exp (- =6T) = A900(T) +A91 (T)6 + A§20(T)6 2 + ---

522

Equation 520 then becomes

exp (SHE _ 0 (A90(T) + A 0(T) 0 +A20(T) 2) 0 0( + 1 2 2

= -EM -EM 2E,Mg2 +S0 +5'-12

523

Expansion Terms

The enthalpy constant coefficient terms are readily derivable from Equation 518, but we use
symbolic expressions below

HOEM = E, _ 00

HE,M = (HE _ A0)

524

525

H2  E ,-M - AR20)

526

We note that the "Orondo Isotherm" couples the clumping parameters. Nonetheless, Equations

524-526 provide constraints on {e 0 , e , e 2} and {e , E,, E }
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The entropy constant coefficient terms may also be derived in closed form using a symbolic
mathematical tool like Matlab, thus, using a Taylor series approximation

n !"(a
n=o

527

where we choose a = 0.25 near the mid-point of the miscibility gap. We choose a = 0.25
instead of the closer value of a = 0.3 for simplicity in the Taylor expansion terms.

We then have the following symbolic expression for the expansion, from Equation 523:

7 7(A4 + AV,+ A)
gE,M __4 16

0 16 (f,+ C'+ -2

528

gEM _2
(C_____ ____ ) no

(4I - 1l6

529

gE.- = (long expression)

Obviously, the idea is to compare Equations 524-530 to experimental data in a least squares
sense, i.e., from experimental data we have

E,E T) 0E,E + RfE + fl,Eg2 +

and
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exp k R gE,E EE EE2+

532

where HfE andsgE are all known.

Zeroth Order Approximation

The zeroth's order approximation, using Equations 524-526 and 531, leads to the following, with
a view to Equations 518, reproduced next, and Equation 531 above:

E,M(6T) = (H g) + (9qE,M _ A)+ (EM _ 202)g
2  ,,,

533

HOEE (E,
M _ Ag)

534

such that

-EE.. RT 2 A'(T) R 5R 0eo, ov R RT R
Ho 2A( +e)+ coth + -4 Co -- + -eD2 A(T) KB 4 KB 2 KT KB 2 2KB

535

EI= E2 = 0
536

and

E =E = 0
537
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Equation 535 simplifies to

e= -i+ EE R2 A(T) E coth + 
1

~2 - 6D

538

which is simple enough, but not expected to yield much of a correction other than a simple
energy shift.

Similarly, for entropy, we compare Equations 520, 528 & 532 to arrive at

gAgoEA.o
o - ~16 + + C2l1a,4 1 4 1 ,

16( ~ 16 1+t-

7 00

1 -CL() C1(ef) + C2 (Ec)
16 4 + 16 64 16)

whereby Equation 539 is evaluated for the single unknown eg by setting el = 0, E2 = 0, denoted
above by making the constants only a function of the single zeroth order parameter:

Ci (E0, El, E 2) -+ Ci (Eo)
-C C 540

540

i.e. by solving for 6O(O) using Equation 512, while setting Equation 513 to

... \ 6  2eg
-eKBT) e KBT

541
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First Order Approximation

Similarly, a first order approximation leads to, for enthalpy,

-fE E ,

'E = (HUOE _ A'Ug)

,UEE= (RE M
_ AgHo)

543

or

-E RT 2 A'(T)
HEE 2 (T)

R
KB (Eh~

5Re0, /_0,
E) + 5co COth B TI

R RT
-BC 0 (e2,e$) --

EE 2R R
1',E =-(e +4 E) +- [eC 1 (E,El) + 2E C0 (EE)]

KB KB

e = e2 = 0

545

546

Equation 544 simplifies to

E6 + elC0(eg,e') = -e+ KB , E BT
2 A'(T)

KHA'E + 2 A (T) 4 EoCt ( 2 T)

while Equation 545 becomes

2E5 + EIC,(ee, eI) + 2eC 0 (Eg, El) = -2a- + KBHE,E

548
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For entropy, we have Equations 523 and 532 (repeated below for convenience)

E - -02
(SH - SO 1-20 gEIMexp 00 +A = 00 + AS1 'g2oo')(ASO ( -Coo + (1 - CJ02 - C203 EMI- +S2,Mg 2+

549

exp EER +E + gE.E2 +

550

from which, using Equations 528 & 529, we get by matching terms

E 6 __
16 +1 + 6 -6

551

AS 2~A\
+ -SL I I4 16/]

552

and C1 -+ C1 (ee", e4) are implied.

Equations 547, 548, 551, 552 form a system of four equations in the four unknowns,

IE 0, E4, e 0, E 8.
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Results

Clumped vs. non-clumped occupation - this depends critically on the shape of the binding
energy curve, see below, which shows a decrease with loading.

Clumped vs. Non-Clumped Occupation

0.8____ ____ _______ _

0.7

0.6 _
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0.4
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0.1

0.0

0.0 0.1 0.2 0.3 0.4

Loading
--- umped

0.5 0.6 0.7 0.8

-non-dumped

Figure 114: Clumped and non-Clumped Occupation vs. Loading
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Figure 115: Binding Energy vs. Loading
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We also show fractional occupation as a function of loading:

Fractional Occupation: Clumped vs. Non-Clumped

Jim

I

1.2 __
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0.6
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0.2
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Fractional Loading
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Figure 116: Fractional clumped and non-clumped populations

umped

Next, we show available fractional microstates

Available Microstates: Model vs. Experiment
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Figure 117: Available Microstates upon absorption
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Finally, we show model molar entropy and enthalpy compared to experiment.

Entropy: Model vs. Experiment
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Figure 118: Enthalpy vs. Experiment. Experiment is from (Kuji, Oates, Bowerman, & Flanagan, 1983)

Enthalpy: Model vs. Experiment
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Figure 119: Model Entropy vs. Experiment. Experimentis from (Kuji, Oates, Bowerman, & Flanagan, 1983)
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Summary & Discussion

The molar quantities show that our model indeed provides an excellent description of the
problem. In fact the match is incredibly good. Of note is that our clumping model provides
exactly the expected behavior, namely, the clumped population is highest in the miscibility gap
and drops to near zero in the beta phase.

Additionally, the degree of binding is highest in the miscibility gap where the clumps form, and
is lower in the single phase regions, just as would be expected (note that the binding is defined as
in Equation 407).

In the next Chapter, we try to compete this model by including exclusions around the clumps.
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Chapter 10 - Interstitial Hydrogen Clumped Model
with Nearest Neighbors Exclusion

Introduction

In this Chapter, we will investigate a variation of the prior clumped model in Chapter 9 that
excludes nearest neighbors. This effort is motivated by the realization that we may improve on
the prior model by restricting the clumps to form in isolation, a restriction that was not placed on
the prior model.

Nearest Neighbor Exclusion

Formulation

We propose that clumping will form singlets, consistent with last chapter's model, only if they
are isolated. This means we need a slight correction to Equation 394 of Chapter 9. To do so, we
may find it most convenient to proceed as follows, thus

No a+y Nt (nnc+nt+ky)yk-eh(nnc.nt,ky)
ZH (T,) nec c ntcZc Zeo Zet Zec

nnc=O k=O nt=O ASN
553

where a is the number of "exclusion sites" surrounding a clump. Equation 553 is obviously an
approximation, but it is designed to explicitly reproduce the physical result that, at high loading,
we do not expect clumps to form and thereby exclude them statistically. It is also designed to
create a physical picture whereby clumps form via an annihilation of surrounding interstitials.
We use the following pictorial depiction (Figure 120) to appreciate that Equation 553 has the right
form.
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Figure 120: Pictorial depiction of the model. Clumped sites are shown in green and nearest neighbors in grey.

We proceed as before, thus,

ZH (T ,

(No - nnc
No! a +y -)- Nt!

nc.! (No - nnc)! k! (No - n"' - k) ! nt! (Nt - nt )!
\ a+y

(nnc+nt+ky)eh(nnent,ky)
Zo c+nt n nc+ntZkyo9t ot c

554

and

c c( nc, t = Anc c nnc = pt ( c, nt)
555

274



Clumped Species Chemical Potential

The clumped species chemical potential terms are

tN No!- nneTy_ +
ic(Tn)=To nnc! (No - nnc)! k! (No ( -nnc -k)

1. k a+ y

(nnc + n, + ky)e~nn ent, ky)+ (nnc + nt)ln(z,,t) + (nc + nt)ln(go0 t) + ky in(zc)
T

- T1 +72 +13 + T4 + TS +76 + T7 )1

556

and similarly for yne and yt. Using the Stirling approximation,

in(x) - n(21) + (x +0 )n(x) - x

557

the results are, including some of the algebra,

T1 = in No! n NoI - innc I - In(No - nnc)!
nnc! (No - nnc)

S in(2r) +(N 0 +) in No -N 0 - ln(2) + (nnc + in ne -w c

- in(27) + (No - nnc + In(No - nn) - (No - nnc)]

558

such that

a
-Ti = 0=0

559
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and

(No - n--\
a+y Y ' No - nnc! -(k-nNo - nn' kT 2 =ln- (N 1nc) , N0 -f -lnk!-lN0fc - k)!

k!([No- - k I a+y a+y
a+y k)

L n(2i)+ (No - nnc1 No - n _ No - [in(2)+k+')nkk-=I n(7r a y I) n va+y a+y - l(7)+k+ 1nk-]

- n(21)+ (N0 - C - k(a + y)
2 + a+y

1n No - c - k(a+ y)
I Ia+y

No -nc - k(a+ y)

a+y I

560

with

a 10a 1 f11 1
T2= - T2=-- [ k+( + 1nk-1]

_1[ No-nnc-k(a+y) 1l a+y (1
y ( a+y ) No-c-k(a+y)

+No -c-k(a+(1)_
a+y

- 1nk - 1nNo -nnc-k(a+y)
yf a+y

1 k(a+y)
y NO-%nc-k(a+y)

561

The other terms are unchanged from Chapter 9. The results are repeated here for ease of
readability, thus,
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=
-T 3 = 0

562

T4= T4 = (n + nt + ky) efC(nnc, nt, ky) + yeh(nnc,nt, ky)

563

a a
-T =-T 6 = 0

564

a 1 a 1 6/
T7 = - T7 = -- k Ej(n)

3
+ EoV + Ej(n)

565

Collecting the terms

c (T,) = a(T
T r n +T 2 +T 3 +T 4 +TS+T 6 +T)

1 k(a +y)
y N- nc-k(a +y)

a 3
k E 2n+ g

+1 nnt +cy) )
YTc + y+ky) Eh nnce nt, ky) + yMh(n))

+ E(n))

1 k(a+y) 1 (aE(
uc(T, n) =yT 1n No - nc - k(a +y)+ ylc + n + ky) enn+yeJ(lcofts ky)

+ (kEj(n)+geoy+Ejrn)+(k Tk 3B=,+ n

567
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As before, we may write Equation 567 in terms of the fractional loading parameters of Chapter 9.
Additionally, we may define

ka a

N y
568

where Equation 568 is a simple result of the definition of an exclusion around a clump. The result
is

Mic(T,6) = tin Oa Onc + ((nn +nt + nc) Eh(n) --- +%-(nn(nc, ntnc)

y eo-Oc c On 3n

+ (nc'E (n)- + j, + Ej(n))

1 a a 3
=i:-l -96e +6 gO-v(O)+h(6)+6c -E(0)+ -OV+ E(0)yc TO8-q0 002

569

where

a +y
-Y

570

The final expression is again fairly simple

ye(,6) = -I I e _ +64e(6)+ sB(3) E, + E8,(0)
Y 9o - On .VC+0 9E 0 Ehpe (0 oEc (0) + 2o

Equation 571 reduces to Equation 448 of Chapter 9 when there are no exclusions around the
clumps, i.e., a = 0 or p = 1.
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Non-Clumped Species Chemical Potential

For the non clumped and tetrahedral sites, the results are, similar to those from Chapter 9,

T1 = (., - je + + 1n n,,, - 1] - -(No - nne + No-nein(No - nc) + 1
~n c n n e + [n( N - n) Ne -) = -n (NnN - n n

-1n Nc + In(N0 - nn) =
1.. 0 -n

572

a /N - nnc 1\ +y 1 No - nnc 1\/ 1

Tnn ka+y 2 No - nn r+y c+na+ y a ;y\~I

[No - nn - k(a + y) +1 a + y ( 1
a+y 2)No, - nnc - k(a +y)\( a+ y)

+(No-nnc-k(a+y) 1

+ 1n N N-cN-nnc ) 1 No)-(nne

a+y a+ny a+yj + y No -n-k(a+y)

573

a
T = 0anc

574

T4 - J(nne+nt+ky)nngE(n) + Ehin)+Eh(n)

575

a
ITs In(z.t)

ann*-a7n 6 9'

576

577
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n T 1 En 0 (n)
T 0 flnc

-n c 1 No - nc -
N--no-c a+y No-nnc-k(a+y)

-1[nn ae(n) + E(n)] + ln(zot)

nc -

+ ln 60,t) En, 8%c(n

579

Simplifying,

nc T No - nnc
MncT ,n)= inNo - ne + Y N - nne - k(a + y) + In a l- Eh (n) + Eh (n) - n(Zot)o-c

- on(g0 ,t) + nc EB(n)
Onnc

580

or, by way of summary, including prior results,

ILZ,)=lft_ att(r, )= t n + 90s)(6) + I+a() - in(z.,e) - r In(Bge) + ,c Ec,(0)
581

c _ 90- a
yc (r,0) = r in "" + nn * "' + - Eh(O) + Eh(O) ~ nzOt - rIngot

60 - Onc a + y 9o - Onc-<pc do

a
+ OC30ECB(0)

582
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1 90 a 3
Ic(r,e) =r-in _+-'_ Es() + ES(O) + OFEc(O) + eo. +Ec(O)y 90 - On- POC a89

583

Note that Equation 582 reduces to Equation 467 when there are no exclusions.

Constraints on Binding Energy Parameter: "Orondo Isotherm"

The "Orondo Isotherm", via Equations 582 and 583, becomes

i nc T n e- nc T 6PC 3T -n ,+ a +y In -6nc-9c y o -8n -o6 EB(0) + T In z,, + T lngo,. + 6,o

584

Simplifying,

nc _o -_ nc (6c / 1 3l\
y(In 0  + In (yq, Y(i nz.~ +IfgOt+-L[2 Ov BO]Jeo - Onc eo - Onc-9Oc Oo - Onc - 96Oc = 9iToe+ig~ 0 b6

Equation 585, in its clumping isotherm form may be written as

~( YIP f e( o - 6n
\-eO- uni\o n -tc 1 3\

In 9Jc , = y9(p in zo + Ingt +! [iO + E.(0)])

u 5 o - wnc-edocb

We write Equation 586 as follows, where we have retained some of the algebra,
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-eYp(in zO,t+LngO,t+4,4O+E(0)])

(e. - on c o Onc-90c) _( 1 -( eY{Ec(0) 4 ov)
Oncy'' (eo~ Onc- (q9)c (8c - 6onc) 1 zo,tgot

c eo- Oncy'l 1 1 (0)
4 o)

Onc-4 (o - Onc- c - 97 ZotgoI

587

or in isotherm form

Oc p()o Onc( Z~c Zefc)

encylp (e - 0 nc-(pec )-1 (iZ,""" Z,0
588

where the individual terms are described in Chapter 9, such that Equation 587 becomes the
"Orondo Isotherm" with nearest neighbor exclusion:

c onEj(n) 1'~=- 1 - (- e~ me e ICBT
- Onco 58- Onc tocE

By setting V = 1, Equation 589 reduces to Equation 480, Chapter 9 as expected.
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Continuity Condition, Full Model With Exclusion

The full model continuity condition, is unchanged from Chapter 9, i.e. using Equation 582 or 583,
and Equation 589,

n +6 eh(0) + a(0) + 6 E(6) + EO,+ E(6)

2 1 2 TI
+-n

e

87r 21T+ ED]
In h2 T]

590

or

f(T,6)=A(r)e

591

with A(r) already defined, and B(6, T) is now

B(6,T) =

(KYT 6c 0[2 I l- i n c-6+ h

+ KT n 87r2 IKBT
+1CThf

+ 3
+ Eh(0) + Oc ToEc(0)+ e o,+ Ej(0))

+eD

r2KBT VOC=1 1ny e. -Onc -PVc
+2 (eh (0) + eh(6)) +2 Oc Ej(9) + Ej(6) + 3e,

- KBT in 2 sinh 2CB +1 8KB OT +

592

283

ED]

+ KHT 1n,
1e KB4



Substituting for modeled eh(6) and Ej(6),

B(6,T) = 2KT 1n Vc-<p + 2 a [En(O)+EO +el6 +eC62 ] + [E(([)+el + E1 +E22y 19o-eOnc-qe 06 O8

+ 2 (0,c 0 [ EO + El + E2g2] + ([0 + ec g + e2g21 + 3Eov - KBT 1n 2 sinh 2 BT+c +BTc 8c 2KBT)

+ KBT In- oh2 +E

593

or

B(0,T ) = Lin 9P6c<p +2 6 Eh()+Eh f)+E +2E'6+ e2
y eo- Onc-q6 lch1ov0 872I88

+ 2 [ec* + El(Oc + 6) + E2(2cO + 02)] + 3E0 - KBT 2 sin2  B )KB B

+ ED

594
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Excess Molar Enthalpy With Nearest Neighbor Exclusion

We derive the excess molar quantities as before, Chapter 7. Thus, the excess enthalpy change is
then

~T/AnHE = -T 2 a(T

O P~n

595

and

AGH = RT * In (fH 2 )

596

AG1 = jfIeal + AExcess

6IdeaL = RTin-1-0.

_1 /
AGH(6,T) = RT In A(T)

2
* e B ) 1 +B(6, T)]

=RT 1nA (T) +(0

RT RT (O9C R[ 8
AC(0,T=-InA(T) +-In +- [ e6eh(O)+Eh(e)+Ei +2E6+3 g 02

2 y 6O-n-p6 ocDKi

R 3R RT 6,
+-[? +c 4(O +6) + s2(260 +)]+-eo"- 2In 2sinh2 T

RT 81rzIncT R
+-In hz + -eD2 K9 ZC

599
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RT RT 'p6c Rr [aaE2
A& (, T)=-1nA(T) +- In e q19O+-[ EO+ Eh(6) + + 2f46 +32 Y9 ln JC K 0 0

+ [E + E (8c + ) + E (2ecg + g2)] + REov -
K8 g 21C0

-TIn 2 2snh-
2 \ 2cTi

RT 8ir2Iic0T R 6
oh~ , 2 +I-ED -RTin-_h 1-6

600

- 0,T)R1nA(T) +-RIn +o R[ - '6hf(6) + Eh( 6 ) + E0 + 246O+3E2
T 2 Y 6-,c -p 470i-T TO 86 3a62

R 3R
+ EO+ ECI(8C +80) + Ec2(28cO + 92)] +I

R 8R21cT
+ i -- 7

- RfI(2 sifh CoT

R 6
+ j-jED -Rll -- 0

601

ARHE _2T) -T
2

)P,n

= -T 2 A(TKBT - 2 (o0Eh(6) + Ehft() + E' + 246 + 3E262

eR + El (oc + 0) + E2 (2 gcg 02 3R R Eov v2 CR
-2 2 6V+ coth 1+-

ic 8 4ZT2  KBT +1B 2K TT

-2KB 8 T2 6D)

602

RT2 A'(T) R / 82rIE(6,T) 2 -- (T) +c kl 89 36262)

+-[ sE + E (6c + 6) + E (20cO + 02)] + _ -

KH KB0 u
R Ejcoth 2Eov 2 +TED

- AR?,(T)

603
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Excess Molar Entropy With Nearest Neighbor Exclusion

The excess molar entropy is

-A9H(6, T) = (8AGH (6, T)

0T P,n

RT A'(T) R R <OC Reo, 0v R / Eov
+-lnA (T) +-1n +f-coth -I sn

2 ACT) 2 y e - nc -6c 4KBT 2xcT 2 s 2KxT I

R R 81r2IKBT
+ + -n ah2

604

RTA'(T)
S(8,T) = 2 AT)

R R p8c Reo E 6y 0,
2-InA(T)--In -nc Rxyvcoth lz0T
2 So 6- Onc - 90c 4ICBT icBT

R / s0v
In(2 sinh 2cxT

R R 81rzI1BT
- -In ehz + 1-0

605

Octahedral Occupation Approximation

To get closer to a computable model (one we can use in Matlab for example), and determine the

free parameters, we can make the following approximations, valid for the O-to-T model in the

miscibility gap:

00 = 0
606

Go - 1
607

and write the enthalpy and entropy, respectively, as
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HHE(0,T) RT 2 A'(T) R a62R$(e,T)=- ) +T R ef(6)+e(6)+es+2e,6+3ej62)

+R [ 1+ (0 )+E2 +0) 3R R cov 60v RT R
+ [ec (6c96+ e(26 z)g2]+......Eov, -- coth-- + -eD

KB 
2 K20,0 2Ct 2 2

KD

- AH(T)

608

RTA'(T) R R _____e_ Reo,eV + R eo, RS(6, T) =-- -- nAT ) -- In --- coth +-In 2 sinh2 ACT) 2 y 9o-6nc-P 6c 4 KBT 2 KBT 2 2KBT /2

R 81ir2KBT +
In +h2 + Rln

609

The "Orondo Isotherm" is then given by (after a slight rewrite),

I IEq-1
I 6er(1 - 6nc) YV 1 C 3 Ec")

qY = 1-e K"I e IsB&

One(1 -6ne-9)Y /

610

such that Equations 608 and 609 need to be solved consistently with the "Orondo Isotherm",
Equation 610 which, in this case, does not have as simple a form as before. Nonetheless,
solutions to the isotherm in this case exist in the regime where the denominator does not vanish,
which is equivalent to

1 - ene-p90 > 0
611

or

Be < L(I - 0)

612
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Results

We start by presenting clumped vs. non-clumped occupation - and corresponding binding
energy. In all instances, we show a comparison between NN=0.5 and NN=1.0.

Clumped vs. Non-Clumped Occupation
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Figure 121: Clumped vs. non-clumped populations
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Figure 122: Binding Energy Model
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We also show fractional occupation as a function of loading:

Fractional Occupation: Clumped vs. Non-Clumped

V
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Figure 123: Clumped and non-clumped Fractional Occupation

Next, we show available fractional microstates

Available Microstates: Model vs. Experiment
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Figure 124: Available Excess Microstates
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Finally, we show model molar entropy and enthalpy compared to experiment.

Entropy: Model vs. Experiment
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Figure 125: Entropy: Model vs. Experiment
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Figure 126: Enthalpy vs. Experiment
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Discussion

As in the clumped case, we see that the clumped population is highest in the middle of the
miscibility gap, as would be expected from physical considerations. We also see a reasonable
match with experimental entropy but the enthalpy match deteriorates with more severe
exclusion.

We also see that NN exclusion creates a tighter binding in the hydrogen quasi-molecules, which
is perhaps not a real effect but rather an artifact.

It is also seen that a very small exclusion (NN=0.5) provides a closer match, and the match gets
worse as the exclusion increases. We must therefore conclude that a clumped exclusion model
does not accurately capture the physics of the problem.
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An Improved Electronic Model

In this section, we take a second look at the electronic contributions to the thermodynamic
quantities. As before, we begin with an examination of the partition function.

Taking a Second Look at the Electronic Partition Function

Equation 357, Chapter 7, contains the following approximation for the electronic contribution to
the partition function:

e__ 8-ix _±2,e

z,= g je IBT = go + g 1 e B +g 2 e Cs + -- =go

J,e
613

In Equation 613, g; is the degeneracy of state j with energy cj and the summation is carried out
over all electronic energies. We previously justified the approximation based on the electronic
energies being large and well separated, such that subsequent terms decrease very rapidly. We
would like to investigate if these higher order electronic terms make any significant contributions
to thermodynamic terms, especially entropy in the high loading regime.

To proceed, we will propose that the clumped electronic contribution is given as before in
Equation 413, Chapter 9, i.e.:

z,,e= ge KBT ~_ gC
J,e

614

In other words, these clumped electrons will localize in the clump since they are needed in the
very formation of the clump electronic states.

The non-clumped electrons, however, are free to move around the metal bulk and form electronic
energy bands. It is the entropy from these bands that we propose may be responsible for the high
entropy seen in experiment. To model them, we assume that these electrons have a loading
dependent band energy, i.e.
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e -+ e,(nK,T )
615

where n denotes the number of electrons (or loading), K denotes their band, and - is a spin
index. We may further assume that band energy depends only weakly on temperature, such that,
to a zeroth order approximation, we may have

ed,(n, K, T) ~ e,(n, K)
616

If we assume some electronic chemical potential (Fermi) level pF(n, T), which will depend on
temperature in general, we may express Equation 613 in its exact form as (Hagelstein, Senturia,
& Orlando, 2004)

qa(n,K)-pF(n,T)

Ze,o(n) = gBe T

K O

617

In Equation 617, go is the degeneracy of the ich band with spin a, and we have assumed that the
electronic chemical potential depends on loading in general.

With these approximations, Equation 553 yields the new model partition function

Nn-nne
No a+y N (nnc+nt+ky)pu-eh(n)

ZH(,p)= e KBT ZCZZntze 9x' e
nnc=O k=O nt=O ASN K U

eg(n,K)-yp(n,T)

I ) ze,t ec

618

Equation 618 is a mere substitution for now. We can proceed by moving the electronic partition
function out, since it is independent of the statistical configuration details in our model. Thus,
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ZH(Tg) =
K ff

No-nn(
No a+y Nt (nnc+nt+ky)p-zht")

"nc=O k=O nt=O ASN

g eS i)CF(nqT
or KBT

The terms in brackets contain configurational entropy that we already evaluated in Equation 554
above. Using those prior results, we have

ZH (r, y)

= I I

( No - nc\INo! a + y I' Nt! e
nne! (No - nnc)! k! No - n"c - k) ! nt! (Nt - nt)!

a+y

neh(n)
oB t nnn nt gY e

620

Clumped vs. Non-Clumped Chemical Potentials

Clumped Species

Equations 555 & 556 hold as before, assuming we can exchange the summation and the partial
derivative:

pc (r,n) =nc (,n)= n pt(T,n)

pc (r,n) = -r InZH(T,p)anc

621

622

However, now we also have the following constraint on charge neutrality

1

1+- exp ( Et(nnc, ~ F (nc, T)

623
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Equation 623 is understood to apply within the Brillouin Zone and may be evaluated numerically
and self consistently, or obtained from literature.

We write

in ZH (T,I)

(No-rec1n -No! a +y P Nt! e
\ncl (N. - Nc)! k! (No - n' - k nt! (Nt - n,)!

\ a+y

nzh (n) (n,,c)-AFnT

ICt oC g9K 1 3

+In~~ neff

No! a I j Nt! neh(n)
=1n +- 1n a + 1n + (nnc + nt )lnzo,t + ntlngo,t

n ! (No- nnc)! k! (No-nc-k ! n! (Nt - ne)! KBT
( a+y )+

( e,(n,)-yug(n,r)ky ln(ze) +1n ( 1gie Ia =T1 +T2 + T3 +T4+ TS + T6 + T7+ TO)

624

from which we can evaluate the effect of electronic contributions to entropy. We proceed similar
to above, thus

TT1 =ST =-T =-T 6 = 0
6c
625

0 1 k(a + y)

n = y N -. c - k(a + y)
626

- 1 ( +
SncT4 = T -(n T-Eh (n) + YEh (n))

627
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T7 = (k Ej(n) + eo, + Ej(n)

The T8 term is a little bit complicated, at least initially. We start by writing

6 6 I *atn,x)-y F(nT)
T8 = In gKe s =

e a(n,)-p(n,T)

Y x Y10 9xe KBT

By taking the partial derivative inside the summation, we have

a 4yafl,I)-AF(fl,T)
ZKY111yi-le NKT

eg(n,K)-pg(n,T)
7-7- dase KBT

g(n,)-g(n,T) (n, K) - 1F(n, T)

sg(n,K)-pF(nT)
3 L dae NET

Equation 630 may be re-written as

1 Z0 g9Ke

KBT

e,(n.K)-py(n,T )

nsi (Eeg n, K) - UF (n, T))

N a(".l)-6F( nT)
5.. . aie NaT

631

which looks like a thermal average of the gradient of the band energy relative to the Fermi level.
For compactness, we write Equation 631 as

a 1 a
g,-T - T ( (e(n, K) - AF (n, T -Onc C

1 1
( , E(n, K))T - ( F-

632

297

628

629

a
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which reveals a chemical potential dependence on the slope of the Band energy and (negative)
slope of the electronic Fermi level.

The first term is

6,,(, )

Zfa(f,K)-AU;(,Tj C
ZKZICBT e K)

60,(njc)-1Ap(n,T)

YXK Za gKe KBT

The second chemical potential term is particularly simple because:

( MILF(n,T))T 

f l(n,x)-y,(nr) a
T9xj*UF(, T)

- c a
AFCT

634

The resulting chemical potential, similar to Equation 571, is

T k(a + y) 1 (
Pc(T, n) = -In N+ - n @e()+ye() +

yN 0-nnc-k(a+y) y \ Ok)+Yh~n k Ec(n)
3

+ Eo, + Ej(n)

6 a
C1

635

which shows that electronic correction terms in this approximation will be small, on the order of
1
-. We therefore drop them in the following expression of the chemical potential to be consistent

with earlier approximations.

1 (6c O6 19aE ' 3
PeTO) =,rlIn 0 + eh() +Eh() oc E +6) +-Eov + E(0)y1' - Oc- (O~c CIO00 2

636
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Non-Clumped Species

For the non-clumped species, we have

a T nne
T1=-ln8%c No -nAc

637

a 1N - c
- T2 - In

an=e a+y No-nnc-k(a+y)
638

a
- 3= 0annC

aT i=0

T4=- n -E(n)+Eh(n)anneT . nne

a
Ts = in(z.,t)

-- T6= 0
(nne

-T7 = E (n)
5anne Tnne

643
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T. once again requires a lit bit more work:

nT 8 .= .in gie U T =

a ea(n,x)-y g(n,T )
0Uj ; K, IgCe KBT

KB

644

However, as in the prior section, we can at once determine that this term is also negligibly small,
such that

nne T No - nne
Yn (, n) =r NT-n 1. + -n h()+C n n(,+No - nn + y No - n n - k(a + y) nne

+ nc --- Ej(n)
anne

645

and therefore our results are the same as before.

An Estimate

Even though the analysis of the prior section indicates that the electronic correction to band
energy is negligible, it would be interesting to estimate this entropy term, -} yF(0, T). To do

so, we will assume that the chemical potential dependence on temperature and loading is
separable, i.e.,

MF( 6 , T) = PF,O (6)F,T (T)
646

We estimate these below.
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Chemical Potential Dependence on Temperature

There is an approximation for chemical potential temperature dependence based on the
linearization of the number of states around the Fermi level. The result, stated here without proof
(Hagelstein, Senturia, & Orlando, 2004), is

( (2 1 dg(e)
pF() LF(O) -- KB 2Q(E) dE I F

+ o-(T 4)

647

To Equation 647, we add the fourth order term, which we derive following the same arguments
in [ibid]. The result is

2 1 dg(E) 1(K 1 d 2gX)) + LT(T6)pF( =pF(0) -6B (QE) dE UF( 3 Q(E) dE2 F(O 6

648

where I(x) is the definite integral

I(x) = x 4sech2 (x')dx'

649

which we evaluate numerically to:

I(x) = 5.682196976983474
650

We can take the zero-temperature value to coincide with the zero loading value from DFT (see
below)

PA(6= 13.2213 eV
651
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In Equation 647, yF(O) is the electronic Fermi level at T = 0 such that the equation describes an
approximate evolution of the Fermi level with temperature. We can estimate the second term
using (Mueller, Freeman, Dimmock, & Furdyna, 1970):

g(IF (0)) = 2.281 states per eV atom + 0.171
652

and

[dg(e)

Lde PF(0)
= -12.3 states per eV2 atom + 1.62

653

[ d2g(E)]de 2 ] Jd(O)
= 84 states per eV3 atom + 65.0

654

We plot Equation 647 below.

Pd: Relative Fermi Level vs. Temperature
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Figure 127: Relative Fermi Level vs Temperature
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From Equation 647, we get

CI nF( 2 1 WK dg(E)
pT ~A) KB2 T E) - B4 1 d2 g(E) + o,(T)

KB3(O) 19( ) de 2 M(O)5
655

or using Equations 652-654, we get the following models

1
MuF(T) = 7.7807E - 08T 2 - 6.0993E - 06T + 1.3222E01 + o,(Ts) eVi

656

and

a
pFO(T) = 2.7290E - 14T 3 + 5.2940E - 23T2 + 1.3173E - 07T + 1.4745E - 17 + g(Ts) eV/K

657

Fermi Energy vs. Loading

While there are several references, e.g. (Klein & Pickett, 1984), we have used the results of our
DFT results for pF, -(). The results are shown below, i.e.

pF,O(0) = -0.0665 * 04 - 0.561 * 63 + 1.7866 * 02 - 1.5232 * 6 + 13.223 eVi
658

and

a
pg(F6) = -0.266164 * - 1.683042 , p2 + 3.573148 * 6 - 1.5232 eV/atom

659
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Fermi Level vs. Loading (DFT Model)
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Figure 128: Fermi Energy vs. Loading (Model DFT)

By comparison, (Klein & Pickett, 1984), which has only a few data points, finds the Fermi level
as follows,
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PdH - Fermi Energy vs. Loading (Kleinl984)
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Figure 129: Fermi Level vs. Loading ((Klein & Pickett, 1984) Model)

Total correction

The total term is shown below:

Electronic Correction Term to Entropy
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Figure 130: Total Electronic Correction to Entropy
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A Second Look at the Electronic Contribution to Enthalpy/Entropy

Introduction

So far in our analysis above, we have modeled the electronic contribution to enthalpy and
entropy via the grand partition function, for example, Equation 619, rewritten here for
convenience.

No +y Nt

ZH(T,)L= I E 1 1
K o nnc=0 k=O nt=O

g , CfK)- U FT)gir KBT

However, all the subsequent analysis was denominated upon the chemical potential of
hydrogen's proton, even though we know that the absorption includes the proton and an electron,
see, for example, (Oates, 1982). It therefore means, except for empirical corrections in Chapter 2
based on the work of (Kuji, Oates, Bowerman, & Flanagan, 1983), we have not accounted for the
electronic chemical potential in a first principles manner. We seek a resolution below.

It is known that electronic contribution to entropy comes in the form of a change in electronic
specific heat as hydrogen is absorbed, see for example, (Wuttig, 1974), (Oates & Flanagan,
1981). The resultant change in entropy is given by [ibid]

ASHE(0, T) = f T (C1rYT))dT

661

In Equation 661, Y(T) is the electronic specific heat coefficient of the metal.
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Empirical Correction to Clumped Results with No NN Exclusion

Given that the exclusion model does not appear to capture the physics of the problem (see above
results), we drop it momentarily and revert back to the model with no nearest neighbor
exclusions (Chapter 9) in the following analysis.

Separating Electronic Contribution

One way to deal with the electronic contribution is to separate protonic vs. electronic chemical
potentials since the two are absorbed almost independently [see, for example, (Oates &
Stoneham, 1983)]. We acknowledge as in [ibid] that the two contributions are likely to be
coupled in interesting ways. Nonetheless, to a first order approximation, as in (Fowler, 1936),
etc, we may write the total contributions as a simple sum, i.e.

jE(6, T) = gH+(6,T) +g p(6, T)
662

Protonic contributions, l+(0, T), have already been modeled above via a continuity with gas
phase value. We therefore concentrate on the electronic component below.

Basic Formulation

To model electronic contributions, we go back to basic principles for a metallic crystal. While
this is a basic result and well documented in literature - see for example (Eriksson, Wills, &
Wallace, 1992) or (Wallace, 1992) - we provide a full treatment below, complete with derivation
from first principles for reference purposes, and consistent with our overall investigation
philosophy.

The grand partition function that applies to fermions is

ZE (T'it) e
n 1

663
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where e, (n) is the electronic energy for a given number of particles n, and y is the electronic
chemical potential (Fermi Level), which may depend on temperature. Due to the Pauli Exclusion
Principle, only a single particle can occupy an orbital [in the sense of (Kittel, Thermal Physics,
1980)], such that Equation 663 becomes,

( y-eg(n)

ZE(T,p)= 1(1+e
n

664

Concentrating first on the single particle partition function (the term in brackets in Equation 664),
we let

y - El(n)
x(6) =

T
665

such that

ZE(X) = 1 + el
666

Still considering just the single particle, the electronic entropy is given by (in units of KB per
atom)

a
SE(,X) = - (T log ZE (T,/i)p

667

Simplifying, we get

1 ax
SE(X) =T 1e T ~+ log( + ex)

668

308



With (remember y is kept constant)

(x) y-el(n) x

we have

ex x xex
SE(X xJ- +log(1 +ex) = - + ex+ lOg(1 + e)

We now introduce the Fermi-Dirac distribution function

1
fFD~x -x +

669

670

671

If we also notice that

1 1
1-fFD -+ --1 +e" ZE

672

then we can rewrite Equation 670 as

SE(W = -XfFD - 109(1 - fFD)
673

Furthermore, we notice that
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fFD = ex
1 - fFD

674

which, together with the identity

x = log(e")

675

lead us to

SEW = -fFD og (FD - log(l - fFD)

676

or

SE (X = -FD IOQfFD + (1 - fFD)lOQ(1 - fFD)]

677

Reintroducing the full problem - Equation 664 - we have

SE (x) = - (fFD o9fFD + (I - fFD)l09(1 - fFD)]

678

which may be turned into an integral via the introduction of a density of states function g (e).

The final, well known, result is

SE(x) = - f g(e)dE(fFDlogfFD + (1 - fFD)lOg(i - JFD))

679
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where, explicitly,

fFD(X) =FDCE4= -1e(8e10/T+1
680

Typically, we also require that the chemical potential p(T) be determined in such a way that the
number of valence electrons comes out correctly (Eriksson, Wills, & Wallace, 1992)

. f f9(e)FD(e)de

681

Computational Details

To get to a computational model, we need to determine the following quantities as functions of
loading:

g(8) Density of States States/eV
e(0) Electron (Band) Energy eV/atom

_ F( ) Fermi Level eV

The above quantities are accessible ab initio, meaning that we may dispense with Equation 681.
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Density of States (DOS)

The density of states (DOS) may be calculated using a two step calculation; a first SCF to get a
converged ground state electronic charge density followed by a much finer NSCF calculation to
get the actual DOS. The density of states is assumed to depend on loading, such that

9(e) -go()
682

Below, we plot DOS for several loading levels (derived from a 4-Pd unit primitive cell). We note
that the zero loading results compare well to (Eriksson, Wills, & Wallace, 1992):

PdH: DOS
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PdH. DOS
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Figure 131: PdH Density of States vs. Loading (First Principles Calculations)

Fermi Level

The Fermi Level is also directly available ab initio as a function of loading. It is referenced
against that at zero loading, so we may write

AyF(G) = -0.896 3 + 2.629602 - 1.92340 + 0.0032 eV
683

The result is shown below:

Relative Fermi Level

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-+- Relative Fermi Level Loading - Poly. (Relative Fermi Level)

4:+0.003

0.9 1.0

Figure 132: Fermi Level vs. Loading (First Principles Calculation)
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Band Energy

The band energy is directly accessible ab initio as a function of loading. The band energies are
also referenced against zero loading, i.e.

3

2

E
0

S

I

1

0

-1

-2

-3

-4

AE(6) = 17.38264 - 55.16163 + 66.68302 - 26.7810 + 0.0427 eV/atom

Band Energy (Relative /Atom)

0 0.1 0.2 0.3

- 2x2x2 - 1cell - Poly.(2xx2)

0.4 0.5 0.6 0.7 0.8 0.9 1

Loading

Figure 133: Band energy per atom (relative to zero level at loading). We show two results from two cell sizes.

Temperature Dependence: Fermi Dirac Distribution

As a first order approximation, we can assume that the temperature dependence of Equation 679
only enters via the Fermi Dirac distribution, and that the Fermi Level and band energies are
temperature independent.

We therefore have

1
AfFD(0) = IfFD(E(0)1A(0)) =6

e +1
685
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684

y =17 382X4*-55.161x]'+ 156.683x2 -126.78x<.42



Equation 685 is not of the usual form, JFD(e), but rather its loading dependent version. An
example is shown below for T=298.

Figure 134: Model Fermi Dirac in "Loading" Space (Equation 685)

All that remains is to evaluate Equation 679 at each loading level for which we have the density
of states data. In view of Equations 683 & 684, we rewrite the equation as

[ASE(E)]O = - Q(e)dE(fFDlOgfFD + (1 FD)lOg(1 - fFD))]

686
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Results

The results are shown below. Note that the electronic entropy decreases with loading, consistent
with other results (Oates & Flanagan, 1981). Additionally, the order of magnitude, in comparison
with configurational entropy results above, at an order or magnitude lower, is also consistent
with literature (Wallace, 1992)

Model Entropy (T=571K)
0.025

0.020

0.015

0.010 _

0.005 _______

0.000 _

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-+-Entropy
Loading

Figure 135: Model Electronic Entropy at 571K
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A Re-Examination of Configurational Entropy

The results of the previous sections, starting with the more approximate result in section An

Improved Electronic Model above, followed by more exact ab initio results just presented above

make it clear that electronic contributions to entropy are negligible. This is supported by other
workers, for example, (Oates & Flanagan, 1981), (Kuji, Oates, Bowerman, & Flanagan, 1983)
and (Wuttig, 1974). The consequence is that the entropy at high loading, specifically the change
in slope around a loading of 0.65 from negative to positive, must have a non-ideal
configurational origin - see (Flanagan, Luo, & Clewley, 1991) and (Kuji, Oates, Bowerman, &
Flanagan, 1983), for example.

We set out to investigate this in the context of our clumped model.

Clumped Model Without Exclusion and Non-Ideal Configuration Entropy

The obvious question is whether any of our models here can predict the high loading entropy
result.

First, we already dismissed the Clumped Model with Exclusion since it yields worse fit to
experiment. Second, we note that our clumping model without nearest neighbor exclusions

appears to show a correlation between strong clumping and the miscibility gap (see Figures 6
and 7 of Chapter 9). We may use these results as foundation, except that instead of making
assumptions regarding the clumping factor, we numerically solve the "Orondo Isotherm"
generally (it is relatively simple in this model).

Allowing Clumping at High Loading

We previously attempted to exclude clumping at high loading on the basis that no clumps would
form in adjacent interstitials. This assumption, however, does not appear to be correct.
Specifically, if we allow an interpretation of the binding energy as a simple energetically favored
configuration within a clump, then there is no practical or theoretical difficulty in having
adjacent clump configuration, and there appears to be some support for it in the literature, e.g.,
(Lacher, 1937), (Simons & Flanagan, 1965) or (Makrides, 1964). There could certainly be some
higher order binding energy between neighboring clumps, but as long as the clumped binding
energy is lower, there clump quasi-molecules would still be more stable and hence favored
energetically.

We use those results to derive the phase diagram in the next chapter.
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Chapter 11 - Phase Diagram of the Clumped Model
and Analysis of Temperature Dependence

Summary

This is a summary chapter uses the results from prior chapters to derive the phase diagram of
PdH.

Phase Diagram Model I

As you may recall from Chapter 2, the original phase diagram was based on the initial statistical
model, which contained the following model elements:

" A statistical description of H loading Pd in the mold of (Lacher, 1937), following
treatment of (Christensen, Stoltze, Jacobsen, & Norskov, 1990).

" The model treats absorbed hydrogen as a harmonic oscillator (Chapter 2, Equation 53)

687

" The model finds an expression for the chemical potential of absorbed hydrogen as
(Equation 50, Chapter 2)

688

* The model includes tetrahedral site occupation, based on an ab initio determination of an
O-to-T Excitation model (Equations 86, 89, Chapter 2)

e-Aeo-r()/T = Ot(' - 00)

00 (1 - 80)
689
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1 ah (00Ot) _ eh(00t)
e- (6 2 ot 0e

690

* The state energies above are determined according to (Equation 94, Chapter 2), and are
corrected via a simple offset to match experimental pressure.

Eh(n) = Eff,1,H - (,n +2 E2c)
691

* The gas phase Hydrogen is treated as non-ideal, with the non-ideal corrections added via
the fugacity model of (Tkacz & Litwiniuk, 2002) (Equations 138, 152, Chapter 2)

[22 nT] e 2r 87r 2IT
pH2 = -7 -n I2 -Tn-r - I~ h2 - EDH I~h 2 IfCe69

692

- {1.5 * A * P 2/ 3 + 3 * B * P 1/ 3 + (D + E * T) * In(P) - 3 * C * p-1/3

R * T

* The final pressure model, to be compared to experimental data, was then modeled by a
continuity between individual site potentials and the gas phase (Equations 160-162,
Chapter 2)

B(O)
f(6) = Aer

A = (22mr )

695

GoV (0) e 8r 2 
IT

B() = 2T In 1- 60 2T 1n(z) + 20 do + 24h(0) + T In + +Tf n 2 + D
1-e T

696
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e Using these results, together with the Rule of Equal Areas
following phase diagram [Figure 54, Chapter 3]

(Lacher, 1937), we derived the

PdH*: Model Pressure Isotherm& Phase Diagram
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Figure 136: Model vs. Experimental Phase Diagram (After (Wicke & Brodowsky, 1978)).
graphically based on alpha/beta phase boundary, and is approximate.

Model Phase diagram is derived
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Phase Diagram Model II

We would like to improve on the above results based on subsequent model improvements. In
particular,

e We added a clumping model to account for the mixed phase (Equation 394, Chapter 9)

No No-neNNo NO-nnc Nt (nnc+nt+nc)p-eh(nnc,nt,nc) nntcncn c
ZH(T, !) = I I Ie T z'""zStzee,zeS

nnc=0 nc=e nt=0ASN

* Clumping was then assumed to lower configurational energy (relative to non-clumped
states) according to a simple binding energy model correction to the single particle
partition function (Equation 409, Chapter 9)

697

z((n) =e

698

We also modeled electronic contributions to the partition function explicitly; thus, the
non-clumped configuration was modeled as a doublet while the clumped configuration
was deemed to be a singlet (Equations 411 and 413, Chapter 9)

ze,t gje !L.T = go = go 2tie~

Ze,c = 0ge KT ~ g =
J,e

700

* We phenomenologically added the interaction and binding energies to the model as free
parameters, thus (Equations 414, 415, Chapter 9)

()-(6)+ E + E8 + E22 + 0( 3 )
701
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Ec(6) -> E + 6c1 + 2 + (g3)
702

* The results were a clumping-type isotherm that we christened "Orondo Isotherm"
(Equation 503, Chapter 9)

Oncy (eO - Oc'- '
703

* The "Orondo Isotherm" needs to be solved in consistency with thermodynamic molar
quantities from experiment (Equations 504, 505, Chapter 9)

flE(9 T) RT 2 A'(T) R ( 6  ( 2 2
1H(, T) AT) 6 Eh6)J+EhJ)+E +2E6 + 3 g2

R + 32 R +Mo, Rco, EOV RT ..- Rea
+ -Ec +Ec(Oc +6)Ec +-2(2c+2)c + -- cth -

KBC C 2KB 4,7 2KBT 2 2K0

704

RT A'(T) R
SHE(0, T) = - -- -i 1A (T)

2 M()

R In c 1 Rco, o 6 0V +- In 12 sinh- CO-

y' e.-060 4K;T 2KBT 7( ] ,

R 87r2IKT 

2-7n eh 2  + R

705

In this model, fugacity is given as above, Equation 694, except B(6, T) is now (Equation

488, Chapter 9)

B(6, T)= I~2 n c +2 (6 eh(6)+Eh()+e +2e6+3 42)

( 6v 8 2 IKT
+2[Ec + Ec(Oc + 0) + Ea(26Oc + 62)] + 3Eo - KBTIn 2sinh- N KBT 2I

+ ED]I

706
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The results were found to be, respectively, fractional occupations, enthalpy, and entropy

Fractional Occupation: Clumped vs. Non-Clumped
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-dumped
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Figure 137: Fractional clumped and non-clumped populations
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Figure 138: Enthalpy vs. Experiment. Experiment is from [Kuji1983]
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Entropy: Model vs. Experiment
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Figure 139: Model Entropy vs. Experiment. Experimentis from [Kujil983]
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Phase Diagram Model III

While the prior model matched the enthalpy and entropy data very well, we attempted an even
further refinement of the model by a phenomenological treatment of the electronic contributions
to thermodynamic quantities (Chapter 10) whereby

* The miscibility gap was modeled to contain clumps with nearest neighbor exclusions,
designed to approximate a physical picture where singlets are only formed by isolated H
quasi-molecule clumps (Equation 553, Chapter 10)

No-nnc
No a+y Nt

ZH(T,") = I I I etnnT p-nnyzon" zt Zc Ze,o Zetze,c
nnc=O k=0 nt=0 ASN

707

" The new Enthalpy, Entropy and "Orondo Isotherm" expressions were found to be,
respectively, (Equations 608-610, Chapter 10)

RT 2 A'(T) R (0 a
27A0T) T 6h(0) + EhJ(0) + - + 2E8+10

R 3R R EO, E0, RT R
+ [ec* + e c + 6) + 20c+02)] + -E, 4 K coth 2 T 2

KB 2 KB 4 KB 2KBT 2 2K5

- AH,0(T)

708

(E (g R Oc @ c coth + In 2 sinh -v R
2 A(T) 2 To e- Onc-(P6 4KBT 2KT 2 2KBT /T

R 82JKT 6
- In 8 -2 + Rin - -
2 ah2  0-

709

1 6cF(1 - Onc) Y /P 3 Eac(n)

V = 1 - e IBT) e i 5T

nc (I - 6ne-o6d) Y
710
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* The results were, respectively for fractional clumped occupations, entropy and enthalpy,
respectively (Figure 121, Figure 125, Figure 126, Chapter 10):

Clumped vs. Non-Clumped Occupation
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Loading
-clumped(nn=0.5) - non-clumped(nn=0.5) -clumped(nn=1) - non-dumped(nn-1)

Figure 140: Clumped and non-clumped Fractional Occupation

Entropy: Model vs. Experiment

z

0

0.05

0.04

0.03

0.02

0.01

0.00

-0.01

-0.02

-0.03

-0.04

0.0 0.1

- Exp

0.2 0.3 0.4 0.5 0.6 0.7
Loading

- Model(nn0.5) -Model(nn=1)

0.8

Figure 141: Entropy: Model vs. Experiment
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Enthalpy: Model vs. Experiment (w/ infinite dilution terms)
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Figure 142: Enthalpy vs. Experiment

e We noted an inadequacy in the model for electronic contributions to thermodynamic
quantities. To that end, we attempted an improved electronic model where we did away
with prior approximations in the non-clumped electrons and instead assumed a full band
energy model leading to the partition function of the non-clumped electrons being
(Equation 617, Chapter 10)

ea(n,K)-gF(nT)

Zeo = ge IaT

711

" This resulted in negligible correction since the terms were of the order

* We next separated the loading process into protonic and electronic contributions. The
protonic contribution was found to be captured in the statistical model, while the
electronic contributions to entropy was found to be (Equation 679, Chapter 10):

SE(Tx) = - g(E)dE(fFD109oFD + (1 - fFD)log(1 -fFD))

712

328



* An ab initio evaluation of Equation 679, however, led to the conclusion that electronic
contributions to entropy were about an order of magnitude smaller than those from
configuration, a result confirming other workers (Wallace, 1992).

* Based on these results, we base our phase calculations on the Clumped model, with no
exclusions.

Overall Phase Diagram (Based on Clumped Model)

We may derive a phase diagram from the clumped model by calculating the Pressure-
Composition-Temperature profiles as before (Equations 694, 695 and 706 above)

The initial results are shown below for three temperatures, T=293K, T=433K and T=571K. We
also shown two experimental profiles (one at T=293K and the other at T=571K)

PdH@: Pressure Isotherm / Phase Diagram
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Figure 143: Model PCT vs Experiment based on Enthalpy and Entropy least squares fit to [Kuji1983]
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Obviously the match is not good - there is a large constant offset which we address in the next
section. We however note that our model correctly predicts the disappearance of the miscibility
above the critical temperature.

Below, we plot the corresponding molar quantity matches together with the matched parameters,
where we also note that the clumping population increases with temperature, albeit modestly.

Fractional Occupation: Clumped vs. Non-Clumped
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330

:1

I
1-

0.7 0.8



Fractional Occupation: Clumped vs. Non-Clumped Entropy: Model vs. Experiment
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Figure 145: Fractional Clumping (top left), Entropy (top right), enthalpy (bottom left), and model binding energy (bottom
right) T=433K
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Practionaloccupation:Cumped vs. Non-Clumped
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Figure 146: Fractional Clumping (top left), Entropy (top right), enthalpy (bottom left), and model binding energy (bottom
right) T=571K
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Free Parameters

Enthalpy Fitting parameters

Temperature (K)
293
433
571

8 M(eV)
2.638319E-01
1.624982E-01
1.785568E-01

&"(eV/atom)
-1.849281E-01
-2.881014E-01
-2.881014E-01

H
1&(SV/atomA2)

1.721260E-01
2.932991E-01
2.932991E-01

Binding Energy Fitting Parameters

Ternerature (K) (eV) s. s(eV/atom) (eV/atomA2)
293 1.131048E-02 -2.595355E-01 3.918549E-01
433 8.15E-02 0 0
571 8.15E-02 0 0

Entropy Constant Offset Fitting parameters

Te rature K) (eV) S1 (eV/atom) S2 (eV/atomA2)
293 1.401763E-001 0 0
433 1.8E-01 0 0
571 2.5E-01 0 0

P-C-T Fitting Parameter

Temperature (K) I P (atm)
All (-)5 decades
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Connecting Enthalpy & Entropy Fitting Parameters to P-C-T

From the previous section, it is clear that we cannot simply use enthalpy and entropy fitting
parameters with the PCT model. To understand why not, we need to go back to the relationship
between pressure and enthalpy (Equation 270, Chapter 7), which we rewrite as

aR T n(P))
RHH(, T) = -T 2 ( T = -RT 2 6(OnP(0, T))

713

We use the expression for enthalpy, Equation 708 above, to write

flE(0,T) 1 A'(T) 1 ( +hCO)+ E+ 260+36_02)
RT 2  2 B AT) T Eh(@) + E E 2 8 g

-7Ce 10 0eCoc2)] - 3 , 1 EV O
T 2 [Ee + E2B(T + 0) + E2(CT

2 gc 20 + C BT +2T

- 1 ARH(T)
2 KBT2 RT 2

714

and

S(1nP (, T))\

( T )
1 A'(T) 1 /

ACT ) TEh0) +6Eh(O) + EO + 2E,0 + 3E620 2

- (T2[c + EC0c + 0) + ec2(20c +82)] 2KBT 2 
E0 E 1

- 1 AR (T)

BT2 ED + RT 2

715
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Integrating both sides at constant loading yields

Jr1A' (T)InP(6, T) = A(T)
1 a2(8 + 2

KBTI 207 5Eh (0)+ Ell () + E80 + 2SE86 + 3E 8g2

- [eO + E'(, +0) + E(2, 2] + 60] 3th C + 1" ft
0 +T KH2 4BT 2 KBT 2T

1 AH(T)]d
2KBT2eD+ RT 2 d

716

The result is

1 1 8
P(6,T ) =-lnA(T)+ - Eh(f0) + Eh f(6) +2 KT 0 0

E8 + 2E46 + 3E 82

1 + 302) + 3
+-[EO + El(Oc +80) + Ec2 (286 + 62) 1n+2n

KBOT TO - In 2snh2, 8

1 81r2 IKBT
+ 1n oh 2 + 2icT6'+ ) RT dT+C()

717

where C(6) is an integration constant independent of temperature but may depend on loading.

Setting

C(6) -+ In (PO)
718

allows us to set the level of model P-C-T isotherm to be consistent with experiment.

A consistent correction should also be available via entropy formulation (Equation 271, Chapter
7), which is rewritten as
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fa(inP)
--SH(, T ) = Rln(P) + RT dT

719

PdHg: Model Pressure Isotherm & Phase Diagram
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Figure 147: Phase Diagram for the Clumped Model

The results of Figure 147 do not compare well to experiment. However they also suggest a
solution, namely that the binding energy should depend on temperature. We attempt such a
model improvement below.

336

I. 1.E.00

1.E-01 --

1E-02

l-E-03

1.E-04

0.0

Exp.T-293

0.8



Temperature Dependent Binding Energy Model

Formulation

It is expected that the binding energy will be temperature dependent, in addition to being loading
dependent - see for example, (Stem & Sarma, 1984). In addition, this dependence is expected to
be approximately linear [ibid]. The result is that Equation 415 may be corrected as follows, with
constants 8,0, 8c1 and 62 to be determined based on experimental fit (in a manner described
below)

Ej(6) -> ec + Sc(T - Tc) + (Ec + 6c(T - c())T +(el + 2(T - T+))B 2 + 0(B3)
720

Equation 720 is designed to reproduce the previous model results at the critical temperature, Tc,
and make temperature dependent corrections away from it.

The previous results for the clumped model apply, Equations 466-468, 480 and 483:

6t + a
lt(T, B) = in t -Eh() + Eh(0) - lnzo,t - Tngo,t Oc E (0)

721

nc (T, e) = T in +- n +0 a Eh (0) + Eh 0 - ot ~ in n - o,t 0 Oc a E (0)eo -e On o- . 0 I
722

T 6 a 3
pe(T,0) = -ine _ 6 + O Eh(0) + Eh(0) + Oc ToE (0) + j + ER(0)

723

S1 / .v 3'y E (n)

6cr( -enc)- 1-e CBTr e KaT

724

f(r,0) = A(r)er
725
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but with Equation 488 modified according to Equation 720 above:

-In9 +2 a 20 ~+e61B(6,T)= [0 Fi0 ~ [Eh~(6) + e.0 + E10 + E660] + [Eh(e) + E6 + 1B(6,T) Yin EO+2 6 (h6$ E8 +Sg) h 6E E6 Eg

+ 2 (c IEc9 + El + c + 6co(T - Tc) + 50(T - cO + 6c2(T _Tc)g 21

+(*e+ g2,60(T _ c) +0c(T ~ Tc) +02 (Tc)g92] 43e0

- KBT In 2sinh T +xT In- IIIT

726

or

B(6,T)= In + 2 [ Eh(0)+ Eh (6) + EO + 2,-1 + 3E2g2

+ 2 -c+ 2Ec2c0 + 6(T - T)c + 20c2(T - Tc)c0

+ e + 622O (T - Tc) + 6(T - Tc)0 + 6c2(T C)2 + 3E0v

- KBTIn 2sinh 2zT + KETIn 8 B2KRT +ED

2KBT 0C E20-- In +2 6-h()+eh(6)+ej 9 +2e$6+3ej62 ]

+ 2(e* +(T T))6+ (E$ + 0(T-T))62' +(e30( -T)n6c

+K 8ig
2 IK8 T

= In + 2 \ Eh(0) + Eh(O) + E6 + 2El6 + 3g

y 0 -650 86 1

+ 2 Ec+ (T - Tc) + (Ec + 6c (T - Tcc))(0 + (, + (E + 5 (T - Tc)c + 62))

+ 3ov - KTfl (n 2si++ + eD

727
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The relative Gibbs energy and other related quantities are then given by, similar to Equations
493-499:

ACE (0, T ) nA(T) + -in + [0 E() + e(O) + E8 + 246O + 3E8262
2 y' eo0 e0 KB TO 86

R /1
+ Eag Oc0(T - Tc) + (El +,6 c'(T - Tc))6 + (E + 06(T - Tc Oc

KB 1

+ 2(c + 6c2(T - Tc))c + E +,6c2 (T -))02 + 3R -T (2sinh Ov

RT 87r2IKBT 1 R 0
+ - -in +h2  + -RTin -

KB 1-8

728

ACE(6,T) R R 6c R 8 2T 14nA(T) +-In + (0 h(6) + Eh6) + E E + 26+3ES62T 2 y 00 - 6o K-T T

+ [Ec + O(T - Tc) + (E' + 6(T -Tc))6 +(E + 6(T -Tc))Oc

(E +,6 (E -T 3R
+2(E c (T2 2 _T)) + (c2 +0(T~c 2  oV- In 2sinh IKBT)

R 87r 2 IKBT 1 R 0
+ In 2 + -- ED -Rin-

R R 0~ R a(0 t=inA(T) +-in + 0 -e(0) + eh(0)+ EO + 2E6 + 3E2
2 e. 6-60 KBT \0

R 1 
(2+2+ 1 Ec + O(T _ Tc) + (Ei + 6c' (T - Tc))( Oc) + +Ec 6c2 (T _ Tc)) (2Ocg g

3R R601, R 8Zr2 IKBT 1 R 6
+ - v - in 2sinh +-in + -eD - Rn

92K9T 2

729
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AHE(0,T) = -T( (T)

c T P,n

-
2 (A'(T) R(60 06,~o26 2

-T2 -AT) KT2 
86 eh(6)+Eh()+e8 +2E80+3E,62

3R I 0  o

-T2R EO + 60 (T c) +(El +Sict T - Tc)) (6+ Oc)

+ 6c2 S(T - Tc))(26Oc6 +62 + Sc Si6 6) c22c 6

- 2 ' TU2 +- th2 T + T ED)3R R ov _coth OV2R R T D

730

or

+-.- Eh(O) +Eh(6)+4E +2E6+362

+ [e* EO + 6c(T - Tc) + (el + Se(T - T,))(6 +ec) + (c + 5c2(T - Tc))(2 Oc + +2)]

RT 1 + R2Re3R cov RT
-- [16 + 6cl(O +Oc)+,6c2(2c +62 )J+Eov oh -KB 2 KB'v 4 K, 2 KBT 2

allE (, T ) =- -T AnAT )R
2 TA (T) 2

1 RO th 60V
4 KBT' 2KBT

R Oc Rh
- -In -- Sc + 6(0 +Oc) + 5c2(2c6 + 02)

y . 9-0 KB Rin

R I Eo, R R 81r 21KBT 0
+-iIn (2 sinh- --- In -- h2+ Rlnj_

732
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R
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Similarly, (Equations 713-716),

H(, T) - A'(T) 1( a) +e(6)+e + 2E6 + 3E62)
RT 2  2 A(T) 1CBT (06F h()+Eh()+1

- 1 1[eC + 6c(T - Tc) + (E' + Si(T - Tc))(6 +6c)

+ (e + 62(T - Tc))(26,6 +62) + [5+ SI(6 + 6c) + 62(2606 +62)

3 1 COV Cov 1 1 AHHO(T)
Eov+ coth + - ED+

2KBT 4;BT2  2CT T2BT 2  RTD

733

(0(nP(0, T))) 1A'(T) - 1 T(eh (6) + eft(h0)+ EO + 246 3 E2)

- 1'[1E0o + Sc(T - Tc)+ (El + 6c T - Tc))(O +6Oc)

+ 6(e2+6(T - Tc))(266 +62)] + c0 + e5(6 + 6c) + c2(26c6 +62

3 6+1 e0O, coCv+ 1 - K1 EDAHHO(T)

2KT2 E0v +4 coT 2 T T 2iBT2 D + RT 2

734

or

P(6, T) =-lnA(T) + ( T-Eh (6) + Eh6) e +2e6+23e0 g2

c0 + O(T - Tc) + (eI + 6(T - Te))(6 + Oc) + (e2 + S5$(T - Tc))(2686 +62)

3~~o 1 2,c8  1l 97r2 1KcBT 1 f AHTM+ E0 - 1n 2sn + - n- h2ED+ 2)2 h 2 73 RT 2 dT+C(5)

735
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Methodology and Results

There are probably several ways to proceed from here. One way is to use Kuji's data (Kuji,
Oates, Bowerman, & Flanagan, 1983) for entropy and enthalpy in the single phase regime where
our model is valid (at T = Tc).

To do this, we used the earlier results as starting point for the optimization of Equations 731 and
732 to experiment. To our surprise, the new model converged to a bound state as before that
matched the pressure isotherm reasonably well - other schemes including constraining the
optimization around prior results or using setting some of Sc, 8c or 8c2 to zero did not yield any
physically meaningful results.

Once we get critical point results, we can derive the other isotherms by assuming piece-wise
solutions within the mixed phase region. The results are quite reasonable and provide a
consistent model for the entire phase - as can be seen from a much improved estimated phase.
We present the results below.

Phase Diagrams: Experiment vs. Model Estimate
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Figure 148: Estimated Phase Model (Temperature dependent binding energy)
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The excess molar quantities, matched at the critical temperature are also fairly reasonable.

Excess Enthalpy Excess Entropy
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Figure 149: Excess Molar Quantities (Temperature dependent binding)
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Figure 150: Binding Energy (at T=Tc) and Clumping Population as a function of loading

We notice that there is a somewhat tighter binding energy when we include temperature
dependence (90 meV vs. 136 meV per H atom). The result is a higher clumped population as
expected.
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Temperature Dependent Interaction Energy

Analysis and Motivation

The above results, while very encouraging, still consist of a set of parameters at each
temperature. In other words, each isotherm in Figure 148 is arrived at using a different value of
the parameter set e6, e, e, ec E, Ec2 g , c and the entropy and chemical potential offsets.

It would seem like a universal model should be accessible, especially when we notice that the
temperature dependence of the interaction energy parameters appears linear:

Figure 151: Interaction Energy Correction terms vs. Loading. The figure is arrived at by evaluating the model Interaction
Energy Corrections along the loading scale.
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Interaction Energy Correction at Constant Loading

340.00 390.00 440.00 490.00 540.00

Temperature

-+*-r"0 --wr"0.3 -r0.6

Figure 152: Interaction Energy Correction at constant loading

Figure 152, especially, suggests that we may reprise the argument behind Equation 720 to write
the Interaction energy as

Ehf(0, T) -+ -h(0) + E8 + E(T - Tc) + (E8 + Ec(T - Tc)) 8 + + Ej(T - Ic 2 + 0(03)

736

whereupon
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B(6,T)= In T
1 90- 0

+ 2 (6O[1 el6) + e0 + e'6 + e862 + Ec(T - Tc) + Ec(T - Tc)6 + el(T - Tc)g2

+ eh(e) + E + El6 + E8g 2 + E2(T - Tc) + E (T - Tc)6 + E(7' - Tc)g2

+ 2(6c(Ec0 + g~+~2 +S0g0(T - T) + 0(T - Tc)9 +Oc(T _ Tc)g2]

+ [ec + e 6 + _22 + Sc*(T - T c) + + cT - Tc)6 + 6|(T - Tc)62] + 3e0

- K0 T in (2sinh3 )+ 0 T0 in+ ED]

+ 3(E4 + ET2 T))2

+ ~ ~ +,c( 2 Ec) +,O - 0(T c Oc + c(E + Tc - Tc))266 6

+ 3E0, - ,c 0 T in 2sinh )+Ti 8KT2 T + ED]

737

and

AG~~(6,T)T orin (Th+ i

+2 (6I)h(O)+Eh( 6)+EsE(T-Tc)+2 ie&+cE(T-Tc) 0

+3e+ E2(T-Tc g2
+(e, 8 c~T)) 62)

( Ec +60g(T _ Tc) + (E + I(T - Tc))(6 + 6e) + (ec2 +,2(T-T ))(26c6 +62)

+ ov - Tin 2sinh ov + +Tin +1EDK- RT+in

738
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AGE (, T) R R Qc
T 2 y 9o -0

+ E-h 6) +Eh6) +E8 + ESCT - Ic) +2 E + ElT - Tc)) 0

+3(e +ei(T Tc))02

+ R E0 + Sc (T - Tc) + (Ec + 6cl(T - Tc)) (0 +6Oc) +(Ec2 +06c2 (T _ Tc)( Ocg 0 02)

3+R R0-8n(2sin +oV in 87r +IKBT 1R -
+2T60v - 2k 2i +T 2crh 2 +2Be Rjn1

739

SGH (0, T)

AHHE(0, T) = -T 2  T
O P,n

=-T 2 E (T6)+Eh)+ +ET - Tc) (E + E( +(T - Tc)) 0

+ E3 +e!(T - Tc)) 82) + (ej + 2e E0 + 3e$62)

- ER 1 -O c(T _ c) + (El + 6c(T - TC))(6 + Oe)
R~ 11

+(cc2 +Sc2(T -Tc))(26c6 +62) + [,Sc0 +,c S(0 +c) +,2 (20c6 +02]

3R R Eoc ov R R
2 +T2OV+ coth + -2x T2,D

KBT2'O -; -V 2KT - 2EDE

740

or

347



ARRE 0, T) RT 2 A'(T)
R(6,T) AT)

+ Eh()+ Ehf(O) + E + Ec(T - Tc) + 2 E+ e(T -Tc) 0

+3e + e(T - TC)) -0(2 + 2'66 + 36262

+ [1e* +8c(T - Tc) + (e' + 6c(T - Tc))(6 +6c) + (e + 62(T - Tc))(2c6 +62)]

- [c* + 61(6 +6c)+ 6 (20c+ - c oth **7 -4 KB 2 1CBT 2

RTA'(T) -R MA()-R 1n 0 R 6-- nAT -- In(0+ cO
-2 y e - Key+2E 6+3E 62)

- (80 + 5(8 +6c) +c 8(2686+62)) - coth 2Ka j
+ n 2 sinh 2 CT

R
2

R 87r 2 IiBT 0
- -I1n -:h2+ Rln1

2 0*2 1-

742

Finally, the model is completed with

B(TO)

f (T, 6) = A (T) e~W~7
743
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Results

We carried out the above analysis. We first present the interaction energy as a function of
loading and temperature. We know the latter should be approximately linear and a confirmation
of this would indicate if the model is on the right path.

Interaction Energy Correction Isotherms (Global)

----- 4---+------- --- --- 4

0.10 0.20 0.30 0.40 0.50 0.60 0.70

Loading
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Figure 153: Interaction Correction Based on a global fit to enthalpy, entropy and three pressure isotherms

Interaction Energy Correction at Constant Loading (Global)
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Figure 154: Same as Figure 153 but at constant loading
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We present next the thermodynamic quantities and chemical potential. All show very good
match.

Phase Diagrams: Experiment vs. Model Estimate (Global Fit)
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Figure 155: Chemical Potential and Estimated Phase Diagram for the Global Fit
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Binding Energy at Critical Point
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Figure 156: Binding Energy Based on Global Fit
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Excess Enthalpy at Critical Point
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Figure 158: Excess Enthalpy Based on Global Fit

Excess Entropy at Critical Point
0.04

0.03

0.02

0.01

0.00

-0.01

2-0.02 -

-0.03 -

-0.04

-0.05

-0.06

0.00 0.10 0.20 0.30 0.40

Loading
-Model

0.0 .-- - 0

- -- ----- ---

0.50 0.60 0.70 0.80

-Exp

Figure 159: Excess Entropy Based on Global Fit.
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Discussion of the Results

The following table shows the final values of the free parameters.

Parameter Value (eV/H atom) Description

0 -9.9601 * 10-2 Interaction Energy Correction - 0" Order
E -1.5285 * 10-1 Interaction Energy Correction - 10 Order

2 +1.2307 * 10-1 Interaction Energy Correction - 2 Order

ECO +1.4182 * 10-1 Binding Energy Correction - 0 Order
E -3.0024 * 10-2 Binding Energy Correction -1 " Order
EC2 +8.1793 * 10-2 Binding Energy Correction -2nd Order

g gy6 +4.7136 * 10-s Interaction Energy Correction -1" Order (Temperature)

+2.6481 * 10~4 Interaction Energy Correction -2"s Order (Temperature)

8 -3.4818 * 10-4 Binding Energy Correction - 0' Order (Temperature)
60 +4.4300 * 10-4 Binding Energy Correction -1' Order (Temperature)
8 -6.2001 * 10-4 Binding Energy Correction -2"' Order (Temperature)

SO +2.7783 * 10-1 Entropy Offset (at 571K)
po -1.2068 * 10-2 Chemical Potential Offset (see Above)

These parameters may be reduced from the above 14 to 8 as suggested by Equations 720 and 736:

E (0) -+ c0 + 00(T - Tc) + (Ec + Oc4(T - Tc))( + c (3)

=~ E(T - Tc) + eS (T - Tc) 0 + EB2(T - C)g2

744

= eo(T - T)) + +e(T - Tc C)g2

745
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As before, the results were obtained by performing a least squares fit for enthalpy and entropy at
the critical point, and simultaneously fitting the three pressure isotherms. The resulting 8
temperature dependent fitting parameters describe the loading process at any temperature, and
provide a reasonable model of the physics and thermodynamics of the loading process. Other
than setting the initial conditions at the critical point, the optimization is otherwise
unconstrained. Following this process remarkably yields a bound state of the system as can be
seen in Figure 156.

The first confirmation that the results are correct is in the temperature dependence of the
interaction energy, which shows a positive slope, Figure 153 & Figure 154, consistent with
experiment (Stem & Sarma, 1984). This is a validation of the model because we did not restrict
the slope in any way.

The other validation point is in the binding energy, which we also did not constrain. The
interpretation is that a preferred binding state exists that matches experimental data. The model
now predicts the highest binding closer to beta phase boundary (compared to the middle of the
miscibility gap as we would have expected), and the clumped population does not appear to be
decreasing with loading; rather it levels off. One possible interpretation of this result is that once
they are created, clumps persist even as loading increases. This would mean that the bound states
are deeper than the interaction with non-clumped H-atoms.

In the next section, we explore some limits of clumping in the model.
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Is Clumping Essential to the Model?

Analysis and Motivation

With the introduction of temperature dependence, it may be worthwhile to explore if clumping is
still a critical factor in the model. To do this, we run the prior model by setting a large constant
binding energy in an attempt to remove any clumping. However, it is soon realized that no
solutions exist (in a least squares sense) above about 80 meV. This seems to suggest that some
binding or clumping, however small, is a necessary ingredient in the model. Specifically, the
binding is responsible for the non-ideal entropy, as can be seen by examining the expression for
entropy, Equation 742. We therefore need to remove clumping completely from the model.

In addition, we revisit the Clumped Model with Nearest neighbor exclusion

Model with No Clumps

We assume here that there is no clumping, but the interaction energy depends on Temperature
according to Equation 745. To do this, it may be easier to rewrite Equation 419 as

NZ e (no+fnt)A-eh(no,nt)zn"+nt 
n +nt

n 0=0 nt=O ASN
746

and we can derive the chemical potential simply as

po (T, 6) = T ine 00+9 ah(B) - Tlzo,t - Tngo,t

747

The boundary condition becomes
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T in + 6 Ch f(0) + eh (6) - rinz0,t - Tlngo,t

= n - 2wM TI
+ -e

ir
in2 T~

748

from which we get fugacity, except now (Equations 499):

B(T,6e) = 2 (T n e + 5h(6) + eh(6) + e + e(T - Tc) + 2 (e+e(T-Tc)) 6

+ 3 (e + e(T - c)) 02 + Tln(2sinh - ingo,t + Tln + 6 D(E' Tln( 2T) h2

749

such that

ACE (6, T) = RT nA (T) + 1nr 2 IKBT + 51n 2sinh Co )

and

+ c- cothT KBT 2 - 2KqT1

RT
- - (c + 2ed6 + 3U202)

KB )

+ To Eh (6) + -ph(0) + evj+ ego(T - Tc) + 2 (El + e (T - Tc) 0

+3()j02jT-Tc)) E2

751
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- 21ng,t) + 6 Eh (0) + eh (6) + ED)

750

ARH(6, T) = -RT 2 (T



RT A' (T) R R 1 8ir2IKBT 5 R6Lo 50  IE. O
ASE(O,T)= -- --- nA T ) --- Rn 82 +-- coth - RIn2sinhAH2 A (T) 2 2 2 eh 2  4 K8 T ch2KBT 2 \ 2 CBT

R 60+.Ringt -- (es +2ej6 + 3e6 2)
KB

752

Clumps with Nearest Neighbor Exclusion

For the clumped configuration with nearest neighbor exclusion, we start with Equation 592, from
whence:

B(6,T) 2KT1n <Pc
y eo - Onc - (P~c

+ 2 ( Eh(6) + Ef6(O) + ES + Ec(T - Tc) + 2 E+ E(T - Tc)) 0

+3 (e +e(T Tc))02)

+ 1 Eeo + Sc(T - Tc) + (Ecl + Oc(T - Tc))0 + Oc) + 6c2 c(T _c))0g2 +0c)

6 0V + KfTIR 8r 2 1KBT
+ 3c0, - KBTIn (2 sinh 2 T +h2 + ED

753

and
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ACE(6,T) RTlnA(T)+ RT n O 6c -<pc

R 0
+ eh)+ Ehf(6)+ E + E6(T -Tc)+2 + E(T - Tc))0

+3(e +e((T -T0))62

+{E0v - RT'n2sinh -)+-RTIn +~eD - RTIn-

754
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With Equation 589 rewritten with the temperature dependent binding energy model:

c eo - onc)yep- 1  392Y e
= - - 1 -e 'sieov a

Oncy' eo9-6Onc-<p~c)?-1 <pe
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The results are shown below:
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Figure 160: No Binding Model: Pressure Isotherms and Phase Envelope
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Figure 161: No Binding Model - Excess Enthalpy
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Figure 162: No Binding Model: Excess Entropy
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Model with Binding
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Figure 163: Model with Binding: Pressure Isotherms and Phase

Excess Enthalpy @571K
0.10

0.05

0.00

-0.05

-0.10

-0.15

-0.20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80

Loading
- Exp -- Model

Figure 164: Model with Binding: Excess Enthalpy
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Figure 165: Model with Binding: Excess Entropy
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Figure 166: Model with Binding: Clumped vs. Non-Clumped Population
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Figure 167: Model with Binding: Binding Energy
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Model with Binding and Nearest Neighbor Exclusion
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Figure 168: Model with NN Exclusion: Pressure Isotherm and Phase
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Figure 169: Model with NN Exclusion: Excess Enthalpy
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Figure 170: Model with NN Exclusion: Excess Entropy
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Figure 171: Model with NN Exclusion: Clumped Population.
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366



Does Temperature Correction Contain Any Physics?

We would like to evaluate if the temperature dependence is reasonable physically. We therefore
plot the corrections to the interaction energy, i.e.,

Aeh(6,T)= e6 + (T - Tc) +(+(e +e(T -TC))2
758
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Figure 173: Temperature corrections vs. Loading (No Clumping)
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Figure 174: Temperature corrections vs. Loading (Clumping with NN Exclusion)
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We note that there is a big (150 meV) constant DFT offset as expected. Even more remarkably,
we note that the temperature dependence is weak, as would be expected from solid state physics.
This weak dependence is seen in both the model with no binding (Figure 173) and that with
binding (Figure 174). Of note is the inversion in temperature dependence of the corrections going
from no binding to binding. A possible explanation could be that occupation probabilities
increase with temperature, in which case, the model with binding provides a physically more
plausible model.

Summary

Overall, all three models show reasonable match with experiment. However, the nearest
neighbor exclusion appears to capture the physics of the problem. The exclusion model shows
the clumped population peaking around the middle of the miscibility gap, which corresponds to
our physical intuition of the miscibility gap. Additionally, it provides the best match with entropy
data. The model is hereby proposed for experimental verification.
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Chapter 11 - Summary and Conclusions

In this work, we have attempted a physics-based model that describes the hydrogen absorption
into palladium lattice. Using a statistical analysis and the grand partition function formalism, we
are able to obtain a theoretical expression for basic properties of the absorption process in
equilibrium.

To calculate the state energies, we solved the Time Independent Schrodinger's Equation for the
many body problem using Density Functional Theory (DFT). We know that we can only hope
for an approximate solution - (if we could solve the TISE exactly, the physics of the absorption
would be completely specified!). It is noticed that the gross DFTl results are able to capture some
basic physics of the absorption process in an approximate manner. For example, we are able to
derive a phase envelope, P-C-T isotherms, and thermodynamic quantities that bear some
semblance to experiments.

We have also connected the various properties of the equilibrium loading process in a
fundamental way from first principles. Even though this is not new, the particular analysis is
novel, especially the interpretation of the entropy in terms of accessible microstates at low
loading.

The miscibility gap is analyzed by introducing a clumping model that posits a weak binding
between adjacent absorbed hydrogen atoms. We propose that the resulting quasi-molecule may,
for the first time, provide a physical explanation for the miscibility gap in palladium. The
resulting analysis leads to the Orondo Isotherm, which is a key theoretical result.

Electronic contributions to entropy have long been postulated, but not demonstrated nor much
understood. We show here that these contributions are not significant through an ab initio
calculation, and provide the theoretical foundation for some further investigations.

Another key contribution of this thesis is the analysis and methodology surrounding the
interpretation and correction of the calculated state energies. We are able to show that a physics-
based correction of interaction energies leads to results that are consistent with Solid State
Physics, namely, a weak dependence of band energies on temperature.

Finally, we invite experimentalists to conduct investigation of palladium hydride in the middle of
the miscibility gap and look for any evidence of pairings between absorbed hydrogen atoms.
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