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18.100C. Problem Set 7. Solutions 

Problem 1: Rudin: Chapter 6, ex. 3. 
The functions λj are defined as follows: 

0, x < 0 
λj = 1, x > 0 

, 

and λ1(0) = 0, λ2(0) = 1, λ3(0) = 1 
2 . 

(a) The claim is that f is λ1-integrable if and only if it is continuous from 
the right at 0, and in that case f dλ1 = f(0). 

Let P be the partition of [−1, 1] given by P = {x0 = −1, x1 = 0, x2 = 
x, x3 = 1} for some x, 0 < x < 1. Then U(P, f, λ1) = M2, and L(P, f, λ1) = 
m2, where M2, m2 are the supremum, respectively infimum, of f on the 
interval [0, x]. If f is continuous from the right at 0, one let x � 0, and so 
M2 � f(0) and m2 � f(0). (This is similar to the proof of theorem 6.15 in 
Rudin.) 

Conversely, if the integral exists, for every β > 0, there exists a partition 
P such that U(P, f, λ1) − L(P, f, λ1) < β. We can assume 0 ≤ P (if not we 
take a refinement of P ). Let xj be the first point in the partition P to the 
right of 0. Then U(P, f, λ1 ) − L(P, f, λ1) = Mj − mj . Set ν = xj . For every 
x, 0 � x < ν, |f(xj ) − f(0)| < Mj − mj < β. This verifies the definition of 
continuity (from the right) at 0. 

(b) The statement should be: f is λ2-integrable if and only if f is con­
tinuous from the left at 0, and in this case f dλ2 = f(0). The proof is 
analogous to (a). 

(c) The proof is analogous to (a) (and (b)). 
(d) It follows directly just by applying (a),(b),(c). 

Problem 2: Let f be given by 

0, x irrational 
f(x) = .1 , x rational, x = m 

n n 

(For rational numbers x = m , we assume the representation is in the lowest 
n 

terms.) 
We will show that f is Riemann integrable on the interval [0, 1], and that 

� b 
f(x) dx = 0. Since f(x) � 0, and each subinterval in a partition P of 

a 
[0, 1] contains irrational numbers, the infimum of f on each subinterval is 

� b
0, and therefore L(P, f) = 0, and 

a f(x) dx = 0. It remains to show that 
� b

f(x) dx = 0, or equivalently that, for every β > 0, there exists a partition 
a 

P such that U(P, f) < β. 
Only the rational numbers contribute to U(P, f). The idea is that for every 

natural number N > 0, there exist only finitely many (rational) numbers 
1 x = m in [0, 1], such that f(x) = 1 > 
N . (This is because for every such x,

n n 
m � n < N.) Denote the number of such rationals by S(N). Let N be large, 
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so that 1 < 2 . Let P be a partition of [0, 1], so that the distances �xi areN 
all smaller than β/2S(N). 

Partition the set of points P into two subsets A and B. In A put all points 
xi in P such that the interval [xi−1, xi] contains a rational point x = m with 

n 
1 1> . The subset B is just the complement of A. Note that there are at 
n N 
most S(N) points in A. Then 

U(P, f) = Mi�xi + Mj �xj 

xi�A xj �B 

� � 1 
� �xi + �xj

N 
xi�A xj �B 

β 1 
� S(N) · + 

2S(N) N 
< β/2 + β/2 = β. 

We have seen this kind of proof in Rudin before: the idea is to partition 
the sum into two sums such that one sum can be made small by using the 
suprema, and the other sum by using the total length of the subintervals. 

Problem 3: Rudin: Chapter 6, ex. 8.

The series 

�� f(n) has nonnegative terms, and so it is convergent if and
n=1 
only if it is bounded above. Denote the Nth partial sum by sN = 

�� f(n). n=1 
� b

Define F (b) = 1 f(x) dx. Since f(x) � 0, F is increasing. Therefore F 
has a limit as b � → if and only if F is bounded above. From these two 
remarks, it suffices to prove that F is bounded above if and only if {sN } is 
bounded above. 

Let N > 0 be given. If P is the partition {1, 2, . . . , N} of [1, N ], U(P, f) = 
�N −1 f(n), and L(P, f) = 

�N −1 f(n+1). (We used here the fact that f(x)n=1 n=1 
is decreasing.) In terms of sN , 

U(P, f) = sN −1, L(P, f) = sN − f(1). 

Clearly L(P, f) � F (N) � U(P, f), and so 

sN − f(1) � F (N) � sN −1. 

But this double inequality implies that F is bounded if and only if sN is 
bounded. 

Problem 4: Rudin: Chapter 6, ex. 10. 
(a) Consider the function f : R � R, f(x) = ex . The second derivative 

of f is positive, so by a previous homewrok exercise, f(x) is convex. Apply 
the convexity inequality 

f(�x + (1 − �)y) � �f(x) + (1 − �)f(y), 
1to � = 1 (so 1 − � = 
q ), x = p ln u, and y = q ln v. We get 

p 

1 up vq
( 1 p ln u+ q ln v) 

� 
1 
ep ln u +

1 
eq ln v p quv = e = + . 

p q p q 
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(b) For every x, part (a) implies that


f (x)p g(x)q


+ � f (x)g(x). 
p q 

Integrate both sides of this inequality, and by property 6.12 (b), we find that 
� b � b f p b gq 1 1 

f g d� � d� + d� = + = 1. 
p qa a p a q 

� 
 1 
� 
 1 
� b q(c) Set � = 

� 
a

b 
|f |p d� 

p 
and µ = |g| d� 

q 
. Then the hypoth­

a 
|g|esis of part (b) apply to the functions |f | and 
µ . From (b) we get then 

� b� b |f | |g| d� � 1, and equivalently 
a |f g| d� � �µ. To obtain Holder’s in-

a � µ 
equality, we only need to remark that by the result in theorem 6.13(b): 
� b � b
| 

a f g d�| � |f g| d�. 
a 

(d) Since the improper integrals exist, one can just take limb�� in the 
inequality in (c). 

Problem 5: Rudin: Chapter 6, ex. 16.

For 1 < s < →, the Riemann’s zeta function is defined as


� 1 
α(s) = . 

ns 
n=1 

Since s > 1, we know from Chapter 3 that the series is convergent, so this 
definition makes sense. 

� � [x](a) Consider the integral 1 xs+1 ds. By the integral test, this improper 
integral is convergent, since the associated series is just α(s). We want to 

[x]show that this integral is actually equal to 1 α(s). Set F (N ) = s 
� 
1 
N

xs+1 dx,
s 

1and sN = 
�N 

n=1 ns . 
The calculation is as follows: 

N −1 � n+1 
� [x] 

N −1 � n+1 

F (N ) = s
xs+1 dx = s n 

d
x s+1 

x 
n=1 n n=1 n 

N −1 N −1 � � 
� 1 1

]n+1 
� 1 n 

= s [− = − 
s xs n ns−1 (n + 1)s 

n=1 n=1 

N −1 � � 
� 1 1 1 

= − + 
ns−1 (n + 1)s−1 (n + 1)s 

n=1 

1 1 
= 1 − 

N s−1 + sN − 1 = sN − 
N s−1 . 

Taking the limit N � →, we obtain the result. 
[x](b) This follows from (a) by integration by writing 

xs+1 = 
x
1 
s −

x−[x] . 
xs+1 


