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Problem 1


We first show that {fn} converges uniformly to the function f (x) = 0.

Of course, as the denominator of fn is strictly positive, the fn are defined

everywhere, and are continuously differentiable. Note that


(1 + nx2) − 2nx2 1 − nx2 

f → n(x) = = 
(1 + nx2)2 (1 + nx2)2 

In particular, fn(x) has a local maximum at x = 1/
→

n and a local minimum 
at x = −1/

→
n, and it’s clear that these are actually a global maximum and 

minimum. So for any x, 

max{|fn(1/
→

n) ,|fn(x)| � | |fn(−1/
→

n)|}
1 � 

2
→

n 

So for any δ > 0, if N > 1/4δ2 , we will have fn(x) − f (x) < δ for every | |
x ≤ R and n > N . So, the {fn} converge uniformly to the function f (x) = 0 as 
claimed. 

Then, for any x = 0, ≥
f →lim n(x) = 0 

n�� 

as the n2 in the denominator will dominate all the other terms. Thus f →(x) = 

n(x). However, at 0, we find fn(0) = 1 for any n, so limn�� f →0 = limn�� f → → 
n(x) = 

1, which is different from f →(0) = 0. 
→In particular, this shows the necessity of the ”uniform convergence of f ” conn 

dition in Rudin Theorem 7.17. 
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Problem 2 

Technically, we should check that f is well-defined, but that’s clear since for any 
x, |f (x)| � 

⎭

� 1 is finite. 2n=1 n

Now, we show that f is discontinuous at every rational point, and continuous

at every irrational point.

Suppose that r ≤ Q, so that r = a/b for some integers a, b ≤ Z with b = 0. We’ll
≥
show that for any � > 0 there is some y with y − x < � and| | 

1 
f (y) − f (r)| | � 

2b2 

In particular, let y = max{r − �, r − 1/2b} (note that y is indeed within � of r). 
Then, 

f (y) − f (r) = 
� (ny) − (nr)| 

n2
| |	

n=1 

|


(by) − (br)
|
b2 

(by) 
(as br is an integer) � 

b2 

1 
(as br > by � br − 1/2)� 

2b2 

So, setting δ = 1/2b2 shows that f is not continuous at r. 

On the other hand, suppose that x is an irrational number. For any integer 
b, let πb denote the distance from x to the nearest integer multiple of 1/b. 
Note that since x is irrational, each πb is non-zero. Then, choose �b so that 
�b < minb

i=1{πi}. This is a minimum over a finite set of non-zero numbers, so 
�b > 0. 

We have chosen �b so that, for any integer i with 1 � i � b, both iy and 
ix lie between the same consecutive pair of integers. That is, for any y with 
y − x < �b and for 1 � i � b we have | | 

(iy) − (ix) = i y − x| | | | 

Now, fix an δ > 0. Choose b ≤ Z such that 

� 1 δ 
< 

n2 4 
n=b+1 

(this is always possible as the sum of inverse squares converges) and choose � 
such that 

� ⎧ 
⎫ ⎬−1 

� δ 
b 

⎨ 
� 1 

� < min �b , 
� 2 n ⎩ 

n=1 
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Then, for y with y − x < �, we have | | 

f (y) − f (x) = 
� (ny) − (nx)| 

n2
| | 

n=1 

|


b �

� n y − x � (ny) − (nx)

= 
|
n2 

| 
+ 

|
n2 

| 
n=1 n=b+1 
⎫ ⎬ 

b � 
� 1 � 2 

+� �
n n2 

n=1 n=b+1 

δ/2 + δ/2 

After this painful check, we find that the only discontinuities of f are at rational 
numbers. This is a countable dense set. In fact, f is Riemann-integrable on every 
bounded interval: on such intervals, the set of rational numbers has measure 0 
and f is bounded, so we can apply Rudin Theorem 11.33. 
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Problem 3 

We need to show that {fn} converges uniformly on K. We’ll use the Cauchy 
criterion for uniform convergence (Rudin Theorem 7.8), since it’s a bit more 
convenient. The strategy will be to use the triangle inequality to express the 
quantity we are interested in, fm(x) − fn(x) , as a sum of other absolute values, | |
each of which can be made arbitrarily small by other considerations. 

One good way to use the fact that a space is compact is to use the fact that any 
open cover has a finite subcover, and that’s what we’ll do here. Of course, for 
any � > 0 and any x ≤ K, the open ball B(x, �) contains x. So, for any �, the 
set of open neighborhoods 

S� = {B(x, �)|x ≤ K} 

is an open cover of K. Thus, it has a finite subcover 

m 

T� = B(xi, �) 
i=1 

for some set of points {x1, . . . , xm} of K. 

Now we must find some large N such that the fn − fm are small for n, m > N .| |
We’ll use equicontinuity to show that we only need to do this for finitely many

points, and then use pointwise convergence to do this for each of those points

simultaneously.

Fix some δ > 0. By assumption the family {fn} is equicontinuous. That is,

there is some � such that for any n ≤ Z, and x, y ≤ K with x − y < � we have
| |
fn(x) − fn(y) < δ. This � yields a finite set of points {x1, . . . , xm} and a T� as| |
above. By construction each point x ≤ K is no more than a distance of � away 
from some xi. 
Now we use the pointwise convergence of the fn to bound the convergence at 
all of these xi simultaneously. That is, for each of the xi in our finite set, there 
is some Ni such that for all n, m > Ni, we have fm(xi) − fn(xi) < δ. If we set | |
N to be the maximum of these (finitely many) Ni, then the fn are small on all 
of the xi simultaneously. 

Let x be any point of K. Pick one of the points xi with x− xi < �. Then, for | |
n, m > N , we have 

fm(x) − fn(x) fm(x) − fm(xi ) + fm(xi ) − fn(xi ) + fn(xi ) − fn(x)

� δ + δ + δ 

so the f converge uniformly by the Cauchy criterion for uniform convergence. 
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Problem 4 

By assumption each function f (x)xi is Riemann-integrable. Suppose that p(x) = 
⎭m i 

i=0 aix
i is a polynomial. Then, since p(x) is a finite sum of terms x , f (x)p(x) 

is Riemann-integrable and 

� 1 m � 1 

f (x)p(x) dx = ai f (x)x i dx = 0 
0 0i=0 

Now, let Pn be a sequence of polynomials on the interval [0, 1] such that the 
Pn converge uniformly to f (x). Since each f (x)Pn(x) is Riemann-integrable on 
[0, 1] and the convergence is uniform, by Rudin Theorem 7.16 the limit f (x)2 is 
Riemann-integrable and 

� 1 � 1 

f (x)2 dx = lim f (x)Pn(x) dx = 0 
0 n�� 0 

Note that f (x)2 � 0. Since the integral evaluates to 0, we must have that 
f (x) = 0. 

(I’m assuming you guys have covered this last result already. If not, the way to 
prove it is to show the converse. Assume that a Riemann-integrable function f 
is non-negative everywhere, and is strictly positive at some point. Then, there is 
an obvious partition with strictly positive lower sum. As the integral is greater 
than any lower sum, this implies that the integral is greater than 0.) 
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Problem 5 

This problem really belongs in a complex analysis class. Rudin does this all the 
time *sigh*. 
Anyways, the way to think about this is to note that the algebra A consists of 
all the polynomial functions on the unit circle. So, this problem is designed to 
show that you really need self-adjointness of A to apply the Stone-Weierstrass 
theorem (since the “conjugate polynomials” are not in A , it need not approxi
mate every continuous function). 

It’s clear that A separates points and vanishes nowhere. Note that for any 
n ≤ Z, the integral 

� 2� � �2�1ni� i� e e d� = e(n+1)i� = 0 
0 (n + 1)i 0 

Since A consists of polynomial functions, the same integral is zero for any 
f ≤ A , and hence for any function in the uniform closure of A . 

However, there are continuous functions on the unit circle such that the integral 

� 2� 
i�f (e i� )e d� = 0 

0 
≥

One example is suggested by the failure of Stone-Weierstrass: we should look 
at conjugation f (ei�) = e−i� . Then, 

� 2� � 2� 
i�f (e i�)e d� = 1 d� = 2� 

0 0 

and so this continuous function is not in the uniform closure of A . 
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Problem 6 

We first must prove that fp(x) � d(a, p) for all x ≤ X . This is just the triangle | |
inequality twice: 

fp(x) = d(x, p) − d(x, a) � d(x, a) + d(a, p) − d(x, a) = d(a, p) 

−fp(x) = d(x, a) − d(x, p) � d(x, p) + d(p, a) − d(x, p) = d(a, p) 

In particular, this shows that each fp is bounded on X , and so is a member of 
C (X). 

Now, we must show that √fp − fq √= d(p, q). 

fp(x) − fq (x) = d(x, p) − d(x, a) − d(x, q) + d(x, a) = d(x, p) − d(x, q) 

By same reasoning as before, this implies that for any x ≤ X , fp(x) − fq (x)
d(p, q). Then, 

√fp − fq √ = sup fp(x) − fq (x) � d(p, q) 
x�X

| | 

Of course, fp(p) − fq (p) = d(p, q), so we obtain equality. So, if we define the | |
map of vector spaces � : X � C (X) taking p to fp, we see that the map � is 
an isometry. 

Finally, we must see that the closure Y of �(X) in C (X) is complete. However, 
we know that C (X) is complete, so Y (being a closed subset of a complete 
metric space) is complete as well. 
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