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Abstract 

We explore in depth the theory behind deterministic fractals by investigat­
ing transformations on metric spaces and the contraction mapping theorem. 
In doing so we introduce the notion of the Hausdorff distance metric and its 
connection to the space of fractals. In order to understand how deterministic 
fractals are generated, we develop the concept of an iterated function system 
(IFS) and what it means for these fractals to be an attractor of the IFS. Fi­
nally, we give creedance to our notion of fractals as objects having fractional 
dimension, by introducing a simplified version of the Hausdorff Dimension. 

Introduction 

Fractals as a mathematical object of study is in many respects, still in its infancy. 

Before the term fractal was ever coined, Karl Weierstrass began a formalized train of 

thought that would eventually give birth to the mathematical study of fractals. In 

1872, Weierstrass sought a curve which was continuous everywhere and differentiable 

nowhere[1]. Although this famous counterexample may have served originally as a 

powerful result in mathematical analysis, what was really discovered was a class of 

rough objects that would be characterized as fractal. 

Impelled by Weierstrass’s example, Helge Von Koch developed one of history’s 

first fractals by prescribing a simple geometric algorithm for manipulating a line[2]. 

Pursuing almost an entirely different line of thought, Georg Cantor provided a con­

struction for a perfect set with uncountably many points, whose recursive algorithm, 

when given a real line could provide a self­similar fractal of the utmost simplicity[3]. 
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Figure 1: Koch’s Curve – Continuous everywhere, differentiable nowhere. – From 

Wikipedia 

We will discover that this self­similar nature of many fractals comes from the 

prescribed algorithm for construction of the fractal, and can actually be viewed as a 

transformation of some metric space. The Cantor Set, for example, can be viewed 

as the contraction and translation of an interval on the real line. This notion of 

transforming a metric space has proved extremely useful in multiple branches of 

mathematics and we will find it of particular use in the development of the space of 

fractals. 

The Space of Fractals 

Now that we understand some of the basic principles behind contraction mappings 

on general complete metric spaces, we may now introduce the metric space where 

fractals live, often called (H(X), h(d)). Here H refers to the space of nonempty 

compact subsets of X, and h(d) refers to the Hausdorff metric. In order to build up 

these two concepts, let us introduce the following definitions and theorems[4]: 

Definition: Let (X, d) be a complete metric space. Then H(X) de­

notes the space whose points are the compact subsets of X, other than 

the empty set. 

Definition: Let (X, d) be a complete metric space, x ∈ X and B ∈ 

H(X). Let d(x, B) be the distance from the point x to the set B, where 

d(x, B) = min{d(x, y) : y ∈ B}. 

Definition: Let (X, d) be a complete metric space, and A, B ∈ H(X). 
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Let d(A, B) be the distance between the set A and the set B, where 

d(A, B) = max{d(x, B) : x ∈ A}. 

It is clear that the distance metric d(x, B) is well­defined by the fact that the 

minimum can be viewed as the intersection of decreasing subsets, which must contain 

a single point since B is compact. The last definition requires careful consideration. 

Firstly, one must note that, as defined, the distance d(A, B) does not constitute a 

metric. In particular one should observe 

d(A, B) = d(B, A). 

To provide an informal justification for this, let our two sets A and B be the United 

States of America (USA) and France.If we take Washington D.C. as our element 

x of the USA, then d(x, F rance) is approximately the distance from Washington 

D.C. and the western most coastal city of France: Brest[5]. However, in evaluating 

d(USA, F rance) then we want the distance between Brest, France and some city in 

the USA to be largest. We then see that 

d(USA, F rance) ≈ d(Seattle, Brest). 

If instead we consider d(France, USA), we would find that first we would pick 

the closest city in the USA (Danforth, Maine) to France, and then maximize the 

distance from that city, by picking the eastern most inland city of France (Strasbourg, 

France)[5]. We would then conclude that 

d(France, USA) ≈ d(Danforth, Strasbourg). 

We now have our desired counterexample and can safely conclude that the distance 

function, as defined, does not constitute a metric! In particular, 

d(USA, F rance) = d(France, USA). 

Now that we have spent all this time developing these distance functions between 

sets, which sadly do not constitute a metric, we would like something which could 

operate as a metric between sets. Such a metric is termed the Hausdorff distance and 

is described below[4]: 
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Definition: Let (X, d) be a complete metric space. Then the Haus­

dorff distance between two points A, B ∈ H(X) is defined by 

h(A, B) = max{d(A, B), d(B, A)}. 

Theorem: The Hausdorff distance is a metric on H(X). 

We will demonstrate that h(d) suffices as a metric by verifying the three axioms 

needed for a distance function to qualify as a metric. Let A, B, C ∈ H(X). We then 

see that: 

h(A, A) = max{d(A, A), d(A, A)} = d(A, A) = max{d(x, A) : x ∈ A} = 0. This 

proves that the distance between a set and itself is zero. 

It is also clear that h(A, B) = max{d(A, B), d(B, A)} = max{d(B, A), d(A, B)} = 

h(B, A). This gives us that distance between two points isn’t dependent on the order 

in which we compare them. 

To show that h(A, B) ≤ h(A, C)+h(C, B) we first show that d(A, B) ≤ d(A, C)+ 

d(C, B). We see that for every a ∈ A: 

d(A, B) = min{d(a, b) : b ∈ B}


≤ min{d(a, c) + d(c, b)
: b ∈ B}∀c ∈ C 

= d(a, c) + min{d(c, b) : b ∈ B}∀c ∈ C 

d(a, b) ≤ min{d(a, c) : c ∈ C} + max{min{d(c, b) : b ∈ B} : c ∈ C} 

= d(a, C) + d(C, B) 

d(A, B) ≤ d(A, C) + d(C, B) 

We can similarly conclude that d(B, A) ≤ d(B, C) + d(C, A), and thus that: 

h(A, B) = max{d(A, B), d(B, A)} 

≤ max{d(A, C), d(C, A)} + max{d(B, C), d(C, B)} 

= h(A, C) + h(C, B) 

This shows that the triangle inequality holds, and now h satisfies the three axioms of 

a metric. 

Transformations and Contraction Mappings 

Spaces can be mapped to spaces, just as the function f(x) =
 1 
2
x maps
 the unit 

interval to [0, 1 
2
]. Before we develop fractals formally, we must first understand basic
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principles of how certain mappings work, and what a transformation is, and what it 

means for a mapping to have a fixed point. 

We offer the following definitions[4]: 

Definition: Let (X, d) be a metric space. A transformation on X is 

a function f : X �→ X, which assigns exactly one point f(x) ∈ X to each 

point x ∈ X. 

Definition: Let f : X �→ X be a transformation on a metric space. 
nThe forward iterates of f are transformations f ◦ : X �→ X defined by 

f ◦0(x) = x, f ◦1(x) = f(x),..., f ◦(n+1)(x) = f(f ◦n(x)) for n = 0, 1, 2, .... If 

f is invertible, then the backward iterates of f are transformations defined 

analogously with f ◦−m(x) : X �→ X. 

Transformations, in general are an easy concept to understand, but their power 

should not be doubted. They can take on many forms, but we will be concerned with 

a specific type of mapping or transformation. We offer the following definition and 

theorem[6]: 

Definition: Let X be a metric space, with metric d. If ϕ maps X 

into X and if there is a number 0 < c < 1 such that 

d(ϕ(x), ϕ(y)) ≤ cd(x, y) 

for all x, y ∈ X, then ϕ is said to be a contraction of X into X. 

Theorem: If X is a complete metric space, and if ϕ is a contraction of 

X into X, then there exists one and only one x ∈ X such that ϕ(x) = x. 

We call x a fixed point if ϕ(x) = x. It is easy to see that this fixed point is unique. 

If there happened to be two fixed points x, y ∈ X then 

d(ϕ(x), ϕ(y)) ≤ cd(x, y) ⇒ d(x, y) ≤ cd(x, y) 

is only true if 

d(x, y) = 0 ⇒ x = y. 

Although we have established that such a fixed point, if it exists, must be unique, 

the existence is still in question. We will show that such a fixed point can actually 

be constructed as follows: 
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Pick x0 ∈ X at random, and construct a sequence {xn} such that 

xn+1 = ϕ(xn) (n = 0, 1, 2, ...). 

We know that since ϕ is a contraction, there exists a c such that for n ≥ 1 

d(xn+1, xn) = d(ϕ(xn), ϕ(xn−1)) ≤ cd(xn, xn−1). 

By induction we observe that 

d(xn+1, xn) ≤ c nd(x1, x0) (n = 0, 1, 2, ...). 

If n < m, we have that 

d(xn, xm) ≤ m d(xi, xi−1)i=n+1 
n + cn+1≤ (c + · · ·+ cm−1)d(x1, x0) 

d(x1,x0) nc .≤ 
1−c 

The last inequality satisfies the Cauchy Criterion and we call {xn} a Cauchy 

sequence in X. Since X is complete (by assumption) we know that limn→∞ xn = x 

for x ∈ X. Finally, since ϕ is a contraction, it is continuous and thus 

ϕ(x) = lim ϕ(xn) = lim xn+1 = x. 
n→∞ n→∞ 

Contractions and Fractals 

Now that we are intimately familiar with the space of fractals and contraction map­

pings, we are now in a position to define exactly what kind of set a fractal is. We shall 

call connect the idea of an attractor for a set of maps on a metric space with a deter­

ministic fractal. Once we have proven some key results, we will be left with a picture 

of just how deterministic fractals are created, and what their connection to real world 

dynamics is. We offer the following set of lemmas, definitions and theorems[4]: 

Lemma: Let w : X �→ X be a contraction mapping on the metric 

space (X, d). Then w is uniformly continuous. 

Let � > 0 and s > 0 be a contractivity factor for w. Then there exists a δ = 
s
� 

such that when d(x, y) < δ 

d(w(x), w(y)) ≤ sd(x, y) < �. 
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Lemma: Let w : X �→ X be a contraction mapping on the metric 

space (X, d). Then w maps H(X) into itself. 

Let K be a nonempty compact subset of X. Since H(X) is the space whose points 

are all nonempty compact subsets of (X, d), the lemma follows immediately if we show 

that w(K) is compact[6]. Let {Vα} be an open cover of w(K). Since w is continuous 

we know that w−1(Vα) is open. Since K is compact, we know that there exist finitely 

many indices α1, ..., αn such that 

K ⊂ w−1	 (Vαn ).(Vα1) ∪ · · · ∪ w−1

Since w(w−1(E)) ⊂ E for every E ⊂ X, we have then our result that every open 

cover of w(S) can be covered by a finite subcover: 

.w(S) ⊂ Vα1 ∪ · · · ∪ Vαn 

Lemma: Let w : X �→ X be a contraction mapping on the metric 

space (X, d) with contactivity factor s. Then w : H(X) �→ H(X) defined 

by 

w(B) = w(x) : x ∈ B}{ ∀B ∈ H(X) 

is a contraction mapping on H(X), h(d) with contractivity factor s. 

From the previous two lemmas we know that w is continuous and it maps H(X) 

into itself. Now consider B, C ∈ H(X), then 

d(w(B), w(C))	 = max{min{d(w(x), w(y)) : y ∈ C} : x ∈ B} 

≤ max{min{sd(x, y) : y ∈ C} : x ∈ B} 

= sd(B, C) 

We can similarly conclude that d(w(C), w(B)) ≤ sd(C, B), and thus that: 

h(w(B), w(C))	 = max{d(w(B), w(C)), d(w(C), w(B))} 

≤ max{sd(B, C), sd(C, B)} 

= sh(B, C) 

Proposition: For all B, C, D,E ∈ H(X) and h the Hausdorff metric: 

h(A ∪ C, D ∪ E) ≤ max{h(B, D), h(C, E)} 
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Lemma: Let (X, d) be a metric space. Let {wn : n = 1, 2, ..., N} be 

contraction mappings on (H(X), h). Let the contractivity factor for wn 

be denoted b sn for each n. Define W : H(X) �→ H(X) by 

W (B) = w1(B) ∪ w2(B) ∪ · · · ∪ wN(B) �N = n=1 wn(B) ∀B ∈ H(X) 

Then W is a contraction mapping with contractivity factor s = max{sn : 

n = 1, 2, ..., N}. 

We demonstrate the fact for N = 2. An inductive argument completes the proof. 

Let B, C ∈ H(X). We have 

h(W (B), W (C)) = h(w1(B) ∪ w2(B), w1(C) ∪ w2(C)) 

≤ max{h(w1(B), w1(C)), h(w2(B), w2(C))} 

≤ max{s1h(B, C), s2h(B, C)} 

≤ sh(B, C) 

Now that we understand some of the formal notions about contraction mappings 

on the space of fractals, we can develop what is meant by an iterated function system. 

The key notion in the next few definitions and theorems will be to realize that in order 

to create a fractal object, whether it be the Cantor set or the Sierpinski triangle, one 

merely starts with some nonempty compact set, twist, turn, and shift pieces in some 

prescribed order, then iterate that same process until one reaches a level of detail 

desired. To make this notion precise we offer the following definiton and theorems[4]: 

Definition: An iterated function system, abbreviated “IFS,” consists 

of a complete metric space (X, d) together with a finite set of contrac­

tion mappings wn : X �→ X, with respective contractivity factors sn, for 

n = 1, 2, ..., N . The notation for the IFS just announced is {X; wn, n = 

1, 2, ..., N} and its contractivity factor if s = max{sn : n = 1, 2, ..., N}. 
Theorem: Let {X; wn, n = 1, 2, ..., N} be an IFS with contractivity 

factor s. Then the transformation W : H(X) �→ H(X) defined by 

N

 
W (B) = wn(B) ∀B ∈ H(X) 

n=1 

is a contractivity mapping on the complete metric space (H(X), h(d)) 

with contractivity factor s. Otherwise stated 

h(W (B), W (C)) ≤ sh(B, C) ∀B, C ∈ H(X). 
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Figure 2: A smiley face under the influence of an IFS 

Its unique fixed point, A ∈ H(X) satisfies the condition 

N

 
A = W (A) = wn(A). 

n=1 

and is given by


lim W ◦n(B) ∀B ∈ H(X).

n→∞ 

Definition: The fixed point A, describ ed above, is called an attractor 

of the IFS. 

The notion of an attractor, as presented, can be taken as a definition of deter­

minsitic fractals. It is important to understand the power of this characterization. 

A deterministic fractal and be generated by any nonempty compact set, and then 

by iterating a finite set of contraction mappings, we can generate our fractals. The 

figure demonstrates how a smiley­face can be used as our initial set, and applying a 

prescribed sequence of contraction mappings, the Sierpinski triangle is created. 

Fractional Dimensions 

We have made considerable progress in the formal development of deterministic frac­

tals, but the take­home message has not been delivered. It would be terrible if our 

best answer to the question “What is a fractal?” would go something like “Oh, it’s 

the attractor of an iterated function system on some compact subset of a complete 

metric space.” Rather, we would like to connect our current understanding of fractals 

with the notion of a fractional number of dimensions. 

The intuitive notion of dimension, seems so deeply ingrained in us that defining 

it appears to be nonsense. This intuition is so deeply held that the concept of a 

non­integer dimension can be mind­boggling. However, if we give our concept of 

dimension a formal definition, we will see fractals nicely fall out. 
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In 1977, Benoit Mandlbrot introduced notion of sets with fractional number of 

dimensions and called them fractals. The definition provided is actually a simplifi­

cation of a more formal concept of Hausdorff Dimension that Mandelbrot used to 

base his definition on. We will focus on this definition as it is more intuitive than the 

rigorous definition offered by Hausdorff[4]. 

Definition: Let A ∈ H(X) where (X, d) is a metric space. For each 

� > 0 let N (A, �) denote the smallest number of closed balls of radius 

� > 0 needed to cover A. If 

log N (A, �)
D = lim 

� 0 log 1 
�

→

exists, then D is called the fractal dimension of A. 

In order to gain an intuitive understanding of how this definition could be possibly 

capture our understanding of dimension, consider the following series of observations: 

If you have a line and you double it, you have a line twice as long, in which you 

have two copies of the original line. If you have a square and you double all of its 

sides, you have four times the area of the original square, and thus four copies of the 

original square. If you have a cube you can double each of its sides and then you 

have an object with eight times the volume of the original cube. It appears that the 

following pattern emerges: 

2 = 21 4 = 22 8 = 23 N = 2d 

Where N refers to the number of copies of the original object, and d refers to the 

dimension of the object. If we then consider an such as the Sierpinski triangle, we see 

that if we double the length of each leg of the triangle, removing the middle portion 

leaves us with 3 copies of the original Sierpinski triangle. Our generalization leads 

us to believe that the dimension of the Sierpinski triangle must satisfy the following 

series of equations: 

3 = 2d d = 
log 3 

= 1.58496...⇒
log 2 

One might object that the situation so far considered has only a superficial rela­

tionship with the definition provided. The definition speaks of balls and covering sets, 

where we have been speaking vaguely about copies of the original. The difference can 

be reconciled quite easily. We cannot speak of doubling a set and asking how many 

copies of the original set are in the old one, this would greatly sacrifice the kind of 
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generality and accuracy that we require. Instead imagine, we keep our original line 

and instead we try to cover it by a ball (a circle in this case) of radius equal to have 

the length of the line. It clearly requires only one circle to do this. Now let us reduce 

our circle’s radius by a half, then it takes two circles, by a fourth, four circles, and so 

on. For a square, reducing the radius of a circle originally covering the entire square 

by a half means we need four circles to cover the entire square, and so on. For the 

case of the cube we imagine a sphere (a literal ball for once!) covering the original 

sphere and having its radius shrunk progressively. This algorithm is extremely useful 

for calculating the fractal dimension of almost any object and when boxes serve the 

role of balls, we have the following theorem[4]: 

The Box Counting Theorem: Let A ∈ H(Rm), where the Eu­

clidean metric is used. Cover Rm by closed just­touching square boxes of 
1side length 

2
1 
n . Let Nn(A) denote the number of boxes of side length 

2n 

which intersect the attractor. If


log Nn(A)

D = lim 

log 2nn→∞ 

exists, then D is called the fractal dimension of A. 

One can think of this algorithm as placing your object on a grid, counting the 

number of grid­boxes necessary to cover the entire object. We then increase the 

resolution on our grid by decreasing the spacing of the grid by a half, and then 

repeating this cycle while counting the number of boxes necessary to cover the object, 

during each iteration.The figure demonstrates a version of this procedure that doesn’t 

use a grid as visual crutch, but rather just decreases the size of the boxes and then 

covers the object. In the figure involving Koch’s curve, the geometry suggests that 
1we decrease the size of our squares by a 
3
. Thus for our first iteration, we require 

3 squares, then 12, then 48, following the relationship that logarithm of our number 

of boxes, divided by their inverse size approaches log 4 = 1.26185... The calculation 
log 3 

of a fractional number of dimensions is now no longer a theoretical possibility, but a 

practical algorithm, applied in numerous situations[8]. 

Conclusions and Applications 

Fractals are beautiful mathematical creatures which have played an important role in 

analysis for over a century. However the mathematical principles behind deterministic 
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Figure 3: Box Counting Dimension of Koch’s Curve
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fractals have only recently been understood. In order to actually build up a fractal 

as simple as the Sierpinski triangle, we had to cover a great deal of mathematical 

territory. We first introduced the notion of a space of fractals, with a metric known as 

the Hausdorff distance. From there we considered general transformations on general 

metric spaces, focusing in particular on contractive mappings. All the ingredients were 

then in place to cook up the notion of a sequence of contractive mappings known as 

an iterated function system or IFS. Finally we were able to characterize deterministic 

fractals as the attractor of an IFS. This understanding of fractals, although technically 

correct, is intuitively unsatisfying, so a weaker notion of the Hausdorff dimension was 

introduced in order to understand fractals as objets with a non­integer number of 

dimensions. The notion of box­counting has provided a very practical method for 

calculating the dimension of a wide range of objects. 

However these pursuits would only subsist as mathematical oddities if it weren’t 

for a boom in research inspired by Benoit Mandelbrot. His understanding of the world 

told him that a fractal would mathematically model a cloud better than a circle or 

other smooth object every could. After developing many of the tools presented above, 

researchers were in a unique position to ask seemingly strange questions about the 

fractal nature of the world. The question of “How long is the Coast of Britain” may 

seem trivial, but when one considers the scale of our measurement the question is not 

so easy. From an airplane one could make a rough approximation, but if a beetle were 

to hung the shore, following, every nuance, every stream and river as it runs deep 

into the British Isle, the measured length tends toward infinity. Characterizing the 

coastline as having a fractal dimension of 1.2, proved to be a more accurate answer 

to the question. By the late 70s, it became clear that fractal geometry is a powerful 

tool for understanding the structure of everyday things 

The geometry proved useful, but its relationship with dynamics proved even more 

profound. While modelling certain physical systems with differential equations, some 

researchers found that the phase space of physical, real­world systems, could only be 

characterized by “stange attractors” and the connection with fractals was made. The 

complexity revolution collided with full force into the fractal revolution, and people 

began to see fractals everywhere. 
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