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Intro. “Cubum autem in duos cubos, aut quadrato-quadratum in duos
quadrato-quadratos, et generaliter nullam in infinitum ultra quadratum
potestatem in duos eiusdem nominis fas est dividere cuius rei demonstra-
tionem mirabilem sane detexi. Hanc marginis exiguitas non caperet.” [1]
How many mathematicians have been infuriated by Fermat’s last theorem?
How many tried to solve it? How many failed? Only one is known to have
succeeded, and it is Andrew Wiles in the mid-nineties. However, his proof
is extremely long and hard. It is certainly not the proof that Fermat was
talking about, especially since it contains modern mathematics. Still, how
could a theorem so simple require such work to prove?

Another question also arises: had Fermat really found an elegant and sim-
ple proof or was he just making it up? And, if he did, was it error-free?
After all, Pierre de Fermat wasn’t really a “mathematician”. He was only
a French lawyer who occupied his spare time with mathematics. Maybe,
in order to find his proof (if it exists), you cannot think like a true math-
ematician does. Maybe you ought to be slightly illogical and childish in
your approach to the proof... two things that I am. Therefore, here is,
as an exercise, a very incomplete and erroneous attempt to prove Fermat’s
last theorem. Why would one try to do such a thing? Simply because it
is incredibly fun to work on that theorem. One could even say it is addictive.

But, first, let’s try to achieve an accessible goal and prove Fermat’s last
theorem for two particular cases: the one when n = 4 and the one when
n = 3. The first one was actually proven by Fermat himself and the second
one was proved by Euler. Actually, for the first case, we’ll show a stronger
result: we shall demonstrate that there is no solution with x, y, z integers
for x4 + y4 = z2. Here are the tools we’ll need to prove it.

Lemma 1. Let’s state the obvious:
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1. If (a, b) = 1 and x2 = ab, then a and b are both squares.
2. If (a, n) = 1 and ax ≡ ay (mod n), then x ≡ y (mod n).

Now, let’s look at the Pythagoean equation x2 +y2 = z2 where (x, y, z) = 1.
Indeed, we only need to consider that case because if (x, y, z) 6= 1, then we
have x = λx̄, y = λȳ, and z = λz̄ which gives us x̄2 + ȳ2 = z̄2. If I multiply
this equation by λ2, I trivially get x2 + y2 = z2.

Thus, considering what we have said before and the fact that (x, y, z) = 1,
then (x, y) = 1, (x, z) = 1, and (y, z) = 1. Now, let’s do a parity table for
x2 + y2 = z2:

x y z

even even even
even odd odd
odd even odd
odd odd even

The first case is impossible because 2 is a common factor. The last case is
also impossible because odd2 +odd2 ≡ 2 (mod 4), which means that z2 can
be divided by 2, but not by 4. However, we also know that 2 | z2, which
implies that 2 | z. Thus, 4 | z2 which brings a contradiction. Therefore, the
only interesting cases are the ones where x or y is even, and z is odd.

Without loss of generality, let x be even (the following statements would
also hold if it was y that was even). Then, we know that (x

2 )2 = 1
4(z2 − y2).

We can rewrite the right-hand side as (z−y
2 )( z+y

2 ). Also, z−y
2 and z+y

2
are relatively prime. Thus, z−y

2 = a2 and z+y
2 = b2 which implies that

(x
2 )2 = a2b2. Thus, x2 = 4a2b2, and x = 2ab. From that, we get that

y = z+y
2 − z−y

2 = b2 − a2, and z = z+y
2 + z−y

2 = b2 + a2.

Briefly, we have shown that if we have (x, y, z) = 1 and x2 + y2 = z2,
then there exists a, b such that, for a < b,

x = 2ab,

y = b2 − a2,

z = b2 + a2.
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Theorem. There exists no solutions made only of integers for the equation

x4 + y4 = z2.

Proof. First, let’s suppose that x, y, z are relatively prime, and even that x

and y, x and z, and y and z have no common factors (this shall be proved
later in this paper). Now, let p | (x, y, z). Thus, we can say that p | x which
implies that p4 | x4. It is possible to state this for y as well. Also, since
we know that p4 | x4 + y4, then p4 must divide z2 because x4 + y4 = z2.
Therefore, p2 | z.

So, we have that the following equation must be a solution:

(
x

p
)4 + (

y

p
)4 = (

z

p2
)2.

Now, let’s go back to our original equation that we can rewrite as

(x2)2 + (y2)2 = z2,

which brings us back to Pythagorean triplets. Suppose x2 is even. Then,
x = 2x̄. So,

(4x̄2)2 + (y2)2 = z2.

Thus, there must exist a, b such that (a, b) = 1, and that 4x̄2 = 2ab. It
is possible to say that 2x̄ = ab which implies that ab is even. Also, since
a, b are relatively prime, only one of them can be even. Anyhow, since
(x2) + (y2)2 = z2, a square, y2 must equal b2 − a2 or, in other words,
a2 + y2 = b2 and z = b2 + a2. This shows that it is impossible to get b even
and a odd. So, a = 2ā, b is odd, and we have that

2x̄2 = 2āb,

x̄2 = āb.

Thus, we have that ā = s2 and b = t2 with (s, t) = 1. If we plug these into
the previous equation a2 + y2 = b2, we get that

(2ā)2 + y2 = b2,

(2s2)2 + y2 = (t2)2.

If we apply the same old trick again, we see that, for (u, v) = 1, 2s2 = 2uv,
and that y = u2 − v2, implying that t2 = u2 + v2. Therefore, s2 = uv, where
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u = α2, and v = β2. So, t2 = (α2)2 + (β2)2 or, in other words, t2 = α4 + β4.

Thus, x4 + y4 = z2 implies that α4 + β4 = t2 for t < z, and (α, β, t) = 1.
From there on, we could restart from the beginning and do it all over again
which means that we would have x4

1 + y4
1 = z2

1 , x4
2 + y4

2 = z2
2 , x4

3 + y4
3 = z2

3 ,
..., x4

n + y4
n = z2

n, ... with |z1| > |z2| > |z3| > ... > |zn| > ... > 0 which is
impossible. [2]

Now, let’s look at the case when n = 3. [3]

Lemma 2. We know from previous results that (x, y, z) = 1. This implies
that exactly one of them is an even number. Let’s analyze two cases: the
one where x or y is even and the one when z is even.

Case 1: x is even

We know then that z − y and z + y is even. Thus, we can write that

z − y = 2p,

z + y = 2q.

Also, the following statements should always be true:

z =
1

2
[(z − y) + (z + y)], and

y =
1

2
[(z + y) − (z − y)].

Therefore, we have that z = p + q and y = q − p. Since z and y are both
odd, then p is even and q is odd or vice-versa. Also, (p, q) = 1. Finally,
since x3 = z3 − y3, we can observe that:

x3 = (z − y)(z2 + yz + y2),

= [(p + q) − (q − p)][(p + q)2 + (p + q)(q − p) + (q − p)2],

= 2p(p2 + 2pq + q2 + q2 − p2 + q2 − 2pq + p2),

= 2p(p2 + 3q2).

Therefore, 2p(p2 + 3q2) is a cube when x (or y) is even.

Case 2: z is even
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We know that x and y must be odd. This means that x + y and x − y

are even, so we can write that

x + y = 2p,

x − y = 2q.

Once again, the following statements should always be true as well:

x =
1

2
[(x + y) + (x − y)], and

y =
1

2
[(x + y) − (x − y)].

So, we see that x = p + q and y = p − q. Also, we can show that (p, q) = 1.
Moreover, since x and y are both odd, then p is even and q is odd or vice-
versa. Finally, here again, we could show that 2p(p2 + 3q2) equals z3, thus
is a cube.

Now, we know that whatever the x, y, z are, we’ll have that 2p(p2 + 3q2)
is a cube. We’ll now show how (2p, p2 +3q2) = 1 or 3. Indeed, let’s suppose
there is a prime that divides both 2p and p2 + 3q2. We know it cannot be 2
because p and q have opposite parity and so do 2p and p2 + 3q2.

Now, let’s assume that there exists a prime greater than 3 that divide those
two expressions. Then,

2p = λP and p2 + 3q2 = λQ.

We see that 2 must divide P . So we know that there must exist R = P
2

where R is an integer. This allows us to rewrite 2p = λP as p = λR. So,

3q2 = λQ − p2,

= λQ − λ2R2,

= λ(Q − λR2).

By our initial conditions on λ, we know that λ doesn’t divide 3. Therefore,

λ must divide q2 since 3q2

λ
is an integer. This means that λ divides q and

we’ll already know that it divides p. Thus, this means that if λ is greater
than 3, (x, y) 6= 1 and we have a contradiction. So, (2p, p2 + 3qs) = 1 or 3.
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Theorem. There exists no whole solutions to the equation

x3 + y3 = z3.

Proof. We know from previous results that (x, y, z) = 1. This implies that
exactly one of them is an even number. We also know from the lemma that
2p(p2 + 3q2) is a cube and that (2p, p2 + 3q2) = 1 or 3.

If (2p, p2 +3q2) = 1, then 2p and p2 +3q2 are both cubes. Let u3 = p2 +3q2,
then u is odd since p and q have opposite parities. Therefore, u is of the
form a2 + 3b2 with (a, b) = 1. It is also possible to rewrite that expression
as:

(a2 + 3b2)3 = (a2 + 3b2)[(a2 − 3b2)2 + 12a2b2],

= (a3 − 6ab2)2 + 3(2a2b + a2b − 3b3)2,

= (a3 − 9ab2)2 + 27(a2b − b3)2.

Therefore, p2 + 3q2 = (a3 − 9ab2)2 + 3(a2b − b3)2 which implies that we
can set p = a3 − 9ab2 and q = a2b − b3 with (a, b) = 1. So, we have that
2p = 2a3−18ab2 = 2a(a−3b)(a+3b). It is rather easy to see that 2a, a−3b

and a + 3b are all relatively prime. So, since 2p is a cube, they must all be
cubes as well:

2a = A3,

a − 3b = B3,

a + 3b = C3.

However, this gives us a new solution for Fermat’s last theorem for the case
when n = 3: A3 = B3 + C3 since 2a = (a − 3b) + (a + 3b). This solu-
tion must be smaller than x, y, z. Indeed, we have that A3B3C3 = 2p and
x3or z3 = 2p(p2 + 3pq) which implies that this solution is smaller.

We could build a similar argument to show that the same thing happens
when (2p, p2 + 3q2) = 3.

Therefore, like in the case for n = 4, we can always find smaller solutions,
but those solutions must necessarily always be bigger than zero, which is
impossible. So, there are no integer solutions to x3 + y3 = z3.
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Remark. A far-stretched corollary of those two proves, but a possible one
nonetheless, is that Fermat’s last theorem is proved for all n composite
numbers. Therefore, only prime numbers remain. Around 1850, the mathe-
matician Ernst Eduard Kummer actually proved the theorem for all regular
primes. He was hoping that this would be sufficient to prove the theorem
since, at that time, it wasn’t known that there was an infinite number of
irregular primes (that was only proven in 1915 by Jensen). Let’s briefly look
at his theorem which nicely conjugates number theory and analysis. [4]

Lemma 3. First, we must define what a Bernoulli number is. It is usually
generated by the following function:

x

ex − 1
=

∞
∑

n=0

Bnxn

n!
.

It is interesting to notice that Bn = 0 for all odd n > 1.

Also, a Dirichlet series is defined as

F (s) =

∞
∑

n=1

an

ns
,

where an is an integer function. Let’s point out that the series can converge
absolutely under certain conditions. A particular and well-known Dirichlet
series is the case when an = 1. It gives us the Riemann Zeta Function:

ζ(s) =
∞

∑

n=1

1

ns
.

Euler was able to relate Dirichlet series and Bernoulli numbers in the fol-
lowing way:

ζ(2n) =
2nπ2|B2n|

(2n)!
,

for any integer n.

A prime p is called a regular prime if p does not divide the numerator
of B2, B3, ..., Bp−3. Also, a prime that is not regular is said to be irregular.

Let’s look at p = 17 for example. We must consider the following bernoulli
numbers B2 to B14: 1

6 , −1
30 , 1

42 , −1
30 , 5

66 , −691
2730 , 7

6 . Obviously, 17 doesn’t divide
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any of the numerators. Thus, p is regular.

On the other hand, for q = 37, if we consider B−2 to B34, we can see that q

is an irregular prime since it divides the numberator of B32 = −7709321041217
510 .

There are only three irregular primes below 100: 37, 59, and 67. That is
why Kummer thought is proof was interesting: he thought that there would
be a limited finite number of cases left to prove.

Theorem. There exists no solutions for uλ + vλ + wλ = 0 if λ is a regular

prime and u, v, w are complex numbers of the form

a + a1α + a2α
2 + ... + aλ−2α

λ−2,

where an are integers and such that u, v, w are relatively prime pairwise.

Remark. We shall not offer a complete proof of Kummer’s theorem, how-
ever we invite the reader to read it on its own in Kummer’s collected papers.
Still, here are a few words on his proof.

First of all, this theorem allows complex numbers which is alright since
it leads to an even stronger result. However, to achieve such a thing, Kum-
mer spends over a 100 pages introducing complex numbers before stating his
theorem. He shows that the number H of classes of ideal complex numbers
cannot be divided by a regular prime, and thus, by λ. Moreover, if f(α) is
ideal, then f(α)λ doesn’t exist unless λ and H have common factors, which
is impossible. Therefore, f(α) cannot be ideal.

Relating all of those facts, he proves his theorem by considering two cases:

1. None of u, v, w can be divided by 1 − α, and
2. One of u, v, w can be divided by 1 − α.

He show that the two cases are impossible (in a fashion similar to what
we’ve done for n=3,4, but more difficult of certain restrictions), thus prov-
ing his theorem.

Now, let’s jump into the burning part of the subject: let’s try to “prove”
Fermat’s last theorem!

Let n be the number of cold months. I am cold. The cold months form
the winter.
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Just kidding (even though it probably makes more sense than what is about
to follow). However, once again, let’s create a useful lemma first.

Lemma 4. It is rather obvious that, in order to get nontrivial solutions to
the equation xn + yn = zn, x, y, z can have no common factors or, in other
words, (x, y, z) = 1. However, nothing tells us that (x, y) = 1 for example.
Let’s try to prove that x, y, z are relatively prime pairwise. So, first, let’s
assume that they are not and that only (x, y, z) = 1 holds. Thus, it could
be possible to have:

xn = abx̄n,

yn = bcȳn,

zn = acz̄n,

with a, b, c different and relatively prime two by two. Then, we would have
that

abx̄n + bcȳn = acz̄n.

This is clearly impossible because, if you divide the equation by b for exam-
ple, strange things happen:

ax̄n + cȳn =
ac

b
z̄n.

We have that an integer plus an integer gives a fraction... except if b = 1.
We can do the same trick for a and c. So, a, b, c = 1 and, thus, x, y, z are
relatively prime pairwise.

Theorem. For x, y, z ∈ N∗ and n > 2, there exists no solution to the

equation xn + yn = zn.

Proof. Basically, if we can show that xn + yn cannot equal (x + α)n where
α is an integer between 1 and y − 1, we win. Of course, x + α is supposed
to equal z.

We can rewrite xn + yn = (x + a)n = zn as

yn =
n−1
∑

k=0

(

n

k

)

xkαn−k.
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It would be rather interesting to transform the right side to get (x + α)n−1.
Let’s try it:

ynR

α
=

∑n−1
k=0

(

n
k

)

xkαn−k( (n−k)
n

)

α

= (x + α)n−1.

It is not possible to know what is R. All we can say about it for now is that
it is at least a rational number and might even be an integer. Now, let’s see
what happens if we transform the right side to be (x + α)n−2 for n > 2. We
get:

ynS

α2
=

∑n−1
k=0

(

n
k

)

xkαn−k( (n−k)(n−1−k)
n(n−1) )

α2

= (x + α)n−2.

Once again, it is impossible to say much about S. Still, we can equate our
two yn to get that

α(x + α)n−1

R
=

α2(x + α)n−2

S
.

From this statement and from others of the same nature (and also from
knowing that x, y, α, n are integers), we can easily get a rather impressive
list of possible divisions which might or might not be useful:

R − S | xS R − S | xR (R − S)2 | RSx2 S | αR

R | (x + α)S S | α(R − S) R | (x + α)(R − S) S(R − S) | αR2

α2 | ynS (x + α)n−2 | ynS α | ynR R − S ∤ S

R − S ∤ R R − S ∤ x S ∤ α R ∤ x + α

x ∤ x + α R ∤ x + α R ∤ S x ∤ α

xs ∤ R − S α2(x + α)n−2 ∤ yn αR ∤ x + α

Let’s keep those in mind, but for now, let’s continue.

The question, of course, is how to continue from that point on. I’ve spent
more than thirty sheets of paper on that topic. Loads of fun were had, and
many interesting facts were found, but none that lead to something resem-
bling a proof. Actually, many proofs were found, all of which were very
wrong after inspection and introspection. Here is the latest one which has
not been inspected yet, and thus must wrong. Still, here it is.

It is easy to show that z = Rx
R−S

. We also know that (x, z) = 1; indeed,
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x and z have no common factors by lemma 2. Thus, x has nothing to do
with z. Nothing. If they saw each other on the street, they would ignore
each other. So, when we say that z = R

R−S
x, then it means that R

R−S
must

somehow make x disappear because z won’t tolerate its presence. How-
ever, R doesn’t have any effect either on x. Why? Well, R = αzn−1

yn
, and

(y, x) = 1, so R leaves x untouched, whole, intact, pure.

So, it must be R−S that annihilates x, there’s no other possibilities. There-
fore, we must have that x | (R−S). We also know that R−S

x
= R

z
, so z must

also divide R. However, R
z

= αzn−2

yn
= integer, and (y, z) = 1, so yn must

divide α. This is impossible because α is smaller than y. So, x ∤ R−S, and
(x, z) 6= 1.

So, this shows that there is something rotten in Denmark. It also “proves”
Fermat’s last theorem. (Of course, this is completely wrong; x doesn’t need
to divide R − S.)

Remark. You may have noticed that I only “proved” Fermat’s last theorem
for x, y, z positive integers. It would probably be fairly easy to change the
initial conditions used here to get it for x, y, z any integer but 0. However,
laziness requires us to only look at what happens when we have a situation
with negative integers.

If n is even, then nothing changes at all because everything becomes pos-
itive anyway. If n is odd, then many situations can arise. If x, y, z are all
negatives, then we come back to the original equation since

−|x|n − |y|n = −|z|n,

|x|n + |y|n = |z|n.

If x or y is negative and z is positive, then

xn − |y|n = zn,

xn = zn + |y|n,

and once again, we’re back to a situation equivalent to the initial one.

If x or y is negative and z is negative, then

xn − |y|n = −|z|n,
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xn + |z|n = |y|n,

which comes back to the same idea.

Finally, we can also have that either x and y are negative or z or nega-
tive. Then, it is simply impossible because one side of the equation will be
negative and the other, positive.

Therefore, x, y, z can be positive or negative integers.

Conclusion. As I worked through this proof, I hit many knots. Every time I
“thought” I was done, there was always a little crack left which contained the
initial problem again. That is certainly one of the most interesting aspects
of this theorem: whatever you do to it, it will always jump right back at
you, whole, where you least expect it. It is like a fractal. It’s truly beautiful.
No wonder it has resisted to the wisdom of so many great mathematicians.
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