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ABSTRACT
First-excursion times have been developed extensively in the literature for oscillators; one major application

is structural dynamics of buildings. Using the fact that most closed-loop systems operate with a moderate to
high damping ratio, we have derived a new procedure for calculating first-excursion times, for a class of linear
continuous, time-varying systems. In several examples we show that the algorithm is both accurate and time-
efficient. These are important attributes for real-time path planning in stochastic environments, and hence the work
should be useful for autonomous robotic systems involving marine and air vehicles.

Nomenclature

x(t) State vector.

y(t) System output, scalar.

A(t),G(t),C System matrices.

w(t) Unit Wiener noise process, vector.

dL(t),dU (t) Lower and upper boundaries, scalar.

ΣΣΣ(t) State covariance matrix.

Σy(t) Output covariance, scalar.

Pa(t) Probability of no collision, scalar.

Phit(t) Collision probability, 1−Pa(t), scalar.

1 Introduction

The problem of predicting extreme deviations of response for a dynamic system subject to stochastic disturbances is

well-known in the broad contexts of design, reliability theory, and Markov chains. In naval architecture, for example, both

short- and long-term extremal loads are modeled and employed extensively through all stages of offshore system design and
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operation, including fatigue analysis. Calculations of the highest average 1/n’th response amplitude are perhaps the most

common in applications. Another quantity of major interest in stochastic dynamics is the cumulative probability of exceeding

a given threshold level d(t) on the system output y before time T: P(T ) = P(∃ t ∈ [to,T ] | y(t)> d(t)). In Markov chains, this

boundary delineates transient and absorbing states. In reliability theory, this problem is known as the first-excursion time;

the reliability function is R(T ) = 1−P(T ).

The analysis of such problems has a long and rich history, both in the physics and engineering communities. Particle

absorption is the simplest scenario, characterizing the distribution of a population of particles as they move at constant speed

near a parallel boundary, while diffusing in the lateral direction. Particle absorption focuses mainly on random walks, how-

ever, a canonical case that does not necessarily extend to more general linear systems [1–4]. Seminal work by Crandall and

others [5–7] explored the statistics of first-excursion for a lightly-damped oscillator with Gaussian process noise. Accurate

formulas have been vigorously pursued especially for lightly damped oscillators, because a low damping ratio corresponds

with long impulse responses, leading to a very long correlation time which complicates the analysis. The LTI oscillator with

stationary noise in fact admits an eigenvalue solution [8], where the eigenvectors are confluent hypergeometric functions.

For more complicated linear dynamical systems, approaches vary; He, for example, recently calculated moments of the

first-excursion time distribution, and combined these with a fitted expression for the decay constant α [9]; Au and Beck

employed an importance sampling approach with very high accuracy [10]. The main application in these two works is the

response of buildings to earthquakes, and here the stochastic excitation usually appears through a time-varying modulation

function G(t). The most general problems, including those with nonlinearities, are addressed through stochastic averaging

[8].

Another type of first-excursion problem arises for mobile and robotic systems that must plan and execute a path with

bounded deviations [11, 12]; formal treatment of this problem in the robotics community is known as chance-constrained

planning, generally posed in discrete time. Typical disturbances include wind in aeronautical applications, and wind, waves,

and currents in marine applications. The bad effects of these disturbances are often exacerbated by the desire to perform

precision tasks, such as inspection or intervention; it may not be only contact with a physical boundary that is problematic,

but rather that a sensor is out of range [13]. Further, deviations from a designed path could jeopardize the fidelity of

communication links or navigation information. Uncertainties in the dynamic behavior of a vehicle motivate conservative

paths through obstacles, wherein avoiding collision is valued highly relative to a minimum-time or minimum-distance plan.

This tradeoff generates a natural optimization problem, captured in the simple cost function J = Tf /(1−P(Tf )), where Tf is

the time to execute the maneuver, and P(Tf ) is the probability of hitting an obstacle along the way, as used in [14]. Absent

of any free parameters, this cost function amplifies the time cost approximately by the number of trials required to achieve a

zero-collision transit.

Toward this end, the present paper gives, for the first time to our knowledge, a single ordinary differential equation

(SDE) that governs the first excursion time probability for a single output channel. The approach applies to any second-order

or higher linear system with no direct feed-through of the noise. That is, if ẋ = Ax+Gw, y = Cx are the system equations

with noise w, then we require CG = 0. The development hinges also on a key assumption that the surviving trajectories are
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Fig. 1. The pdf of the output of a dynamic system diffuses past a “gate,” an instantaneous constraint. Our complete solution is the limiting
case as the distance between consecutive gates approaches zero.

well-approximated by a truncated, zero-mean normal distribution. This makes our SDE solution quite poor at lower damping

ratios, ζ < 0.2, say. On the other hand, controlled dynamic systems typically have higher damping in the closed loop.

There are several advantages to writing the the reliability evolution in a differential equation. First, we seamlessly

accommodate time variations in the plant matrix A(t), the noise gain matrix G(t), and the boundaries dL(t) and dU (t).

Second, as we show in our examples, the SDE solution can sometimes be computed in a time that is competitive with that of

a single Monte Carlo trial; computation speed is critical for autonomous mobile robots, where paths are commonly evaluated

in real-time, during operations. Finally, the new scheme should lend itself well to additional uncertainty analysis, because it

places the white noise aspect of the stochastic response into a deterministic framework. This can then be further decomposed

to characterize the effects of parametric uncertainty, for example through probabilistic collocation [15]. This last topic is

outside our present scope.

The paper outline is as follows. We give a concise statement of our formulas, with two short examples to illustrate the

closeness of the approximations relative to Monte Carlo trials, and to indicate typical computational costs. The derivation is

then given, in which we evolve trajectories after passing a single instantaneous gate, as shown in Fig. 1, combine multiple

gate passages, and finally let the spacing of the gates approach zero to approximate a smooth boundary.

2 Problem Statement and Solution

2.1 System Model

The state vector x ∈ R q evolves through time according to the stochastic differential equation δx = Axδt +Gδw, where

w is a Wiener process of unit magnitude: w(t) ∼ N(0,I t) and δw ∼ N(0,Iδt). The class of problems we address allows

both A and G to be time-varying; we will not show the dependence on time except where necessary for clarification. We

are interested in a scalar output defined by y = Cx, and we assume that CG = 0, that is, the process noise acts through the

dynamics and not on the output directly. In the absence of any boundaries, the state variance ΣΣΣ = E[xxT ] evolves according

to the Riccati equation Σ̇ΣΣ = AΣΣΣ+ΣΣΣAT +GGT , and the variance of the unconstrained output is Σy = CΣΣΣCT . The absorbing

boundaries are given by lower and upper constraints, dL and dU respectively, which can be time-varying functions with
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discontinuities.

2.2 Solution Summary

The probability that the particle has not violated a constraint after t seconds is Pa(t), and it evolves according to the

differential equation Ṗa(t) = −C(t)Pa(t), with the initial condition Pa(0) = 1. Pa(t) is called the reliability function. The

collision probability is Phit(t) = 1−Pa(t); it is the cumulative distribution function for the first excursion time. The decay

constant C is a specific function as follows:

C = C1 +C2 +C3 +C4, where

C1 = (ḋL/n)×N(dL : 0,Σy)×E2(hL : 0,Σc)

C2 = −(ḋU/n)×N(dU : 0,Σy)×E1(hU : 0,Σc)

C3 = (1/n)×N(dL : 0,Σy)

×(ΣcN(hL : 0,Σc)−hLE2(hL : 0,Σc))

C4 = (1/n)×N(dU : 0,Σy)

×(ΣcN(hU : 0,Σc)+hU E1(hU : 0,Σc)) .

(1)

The functions N(), E1() and E2() represent the probability density function (pdf) of a normally-distributed random

variable, its cumulative distribution, and the complement of the cumulative distribution, respectively:

N(x : a,A) =
1√
2πA

exp
(
− (x−a)2

2A

)
(2)

E1(x : a,A) =
1
2

(
1+ erf

x−a√
2A

)
=

∫ x

−∞

N(x : a,A)dx (3)

E2(x : a,A) =
1
2

(
1− erf

x−a√
2A

)
=

∫
∞

x
N(x : a,A)dx (4)

= 1−E1.

We denote by n the probability that instantaneously dL < y < dU :

n = P(dL < y < dU ) =
1
2

(
erf

dU√
2Σy
− erf

dL√
2Σy

)
, (5)

M. Greytak 4 Paper DS-10-1313



and the remaining quantities in Eqn. (1) are:

Σy = CΣΣΣCT (6)

Σc = CAΣΣΣAT CT − (CΣΣΣAT CT )2 / Σy (7)

hL = dL×CΣΣΣAT CT / Σy (8)

hU = dU ×CΣΣΣAT CT / Σy. (9)

The solution requires us to evolve Σ and Pa as functions of time. Σ contains the natural dynamic behavior of the

unconstrained ensemble and does not depend on the boundaries; the differential equation for Pa uses Σ, and accounts for the

boundaries.

2.3 Example 1: Time-Varying Constraints

We consider the fourth-order system given by the following matrices:

A =



−0.175 0.125 0.05 0.1

−0.390 −0.690 −0.156 −0.312

1 0 0 0.25

0 1 0 0


, (10)

G =



√
0.001 0

0
√

0.001

0 0

0 0


, C =

[
0 0 1 0

]
.

This represents a holonomic marine vehicle [14] following a straight reference path under closed-loop control, with

x = [v, r, y, ψ]T , where v is sway velocity, r is yaw rate, y is cross-track position error, and ψ is heading. This plant has four

poles; two are real and the others have a damping ratio of 0.412. The vessel moves between two non-straight walls defined

by,

dL(t) = −0.55+0.03sin(2π t/25) ,

dU (t) = 0.60−0.05sin(2π t/40) .
(11)

We ran Monte Carlo simulation with 50,000 trials, starting from zero initial conditions; one hundred example trajectories
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Fig. 2. The system shown in Eqn. (10) with two time-varying constraints, Eqn. (11). The first plot shows one hundred trajectories from a
50,000-point Monte Carlo simulation. The trajectories drawn in black violate one of the constraints, while the gray trajectories do not. The red
curves show the mean and standard deviation of the Monte Carlo simulation. The second plot shows the particle absorption fraction Phit as
given by the SDE estimate (blue dashed) and the Monte Carlo estimate (red). The error between these is shown in black.

are shown in Fig. 2, along with the SDE and MC collision probability estimates. We can see that the SDE is correctly

modulating the collision probability as the boundaries vary. The MC trials result in a standard error on Phit(t = 40) of less

than 0.001, and this value is close to the discrepancy between the two estimates. Hence the precision of the solution would

be adequate for path planning with confidence levels above 99%, at least over this time scale. In longer runs, we expect

growing errors because of our assumption of truncated normal distributions.

2.4 Example 2: Time-Varying Plant

We consider a second-order time-varying system,

ÿ+b/m(t)ẏ+ k/m(t)y = f w, (12)

with m(t) = 120−0.9t, b = 10, k = 1, and f = 0.0125. This can serve as a simple model for the lateral dynamics of a rocket

that is consuming fuel while subject to acceleration disturbances. The damping ratio of the system is initially 0.456 but it

increases to 0.913 by 100 seconds. The boundaries are straight and fixed at ±0.50 units. Figure 3 shows the results of a

50,000-point Monte Carlo simulation, along with the SDE estimate. The standard error of the MC estimate is about 0.001

again, and we have excellent agreement with the prediction.

2.5 Computational Cost

Our approach has attractive computational cost; fast evaluation of the excursion probabilities is important for on-line

planning schemes in mobile autonomous agents. As a cost reference, Au and Beck [10] achieved good accuracy for a lightly-

damped (2%) oscillator through importance sampling, with about ten trials. Each such trial involves the solution of a q-state

ordinary differential equation, with a discretization of time to handle noise. In contrast, our method solves the matrix Riccati

equation, with q(q− 1)/2 states, and the one-state ODE described in Eqn. (1). With no explicit sampling of noise, these
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Fig. 3. A time-varying second-order system, Eqn. (12), representing the lateral dynamics of a rocket. The first plot shows one hundred
trajectories from a 50,000-point Monte Carlo simulation. The second plot shows the particle absorption fraction Phit as given by the SDE
estimate (blue dashed) and the Monte Carlo estimate (red). The error between these is shown in black.

can be handled in continuous time, and we use an adaptive step-size Runge-Kutta routine. In our MC trials we discretize

time to inject noise with a zero-order hold, but employ the same Runge-Kutta solver for the system dynamic response in the

intervals, for consistency. The integration tolerance settings for the MC and the SDE calculations are identical.

Relative computation times for each example above are listed in Tab.1. The SDE time, which includes the Riccati

equation component, is comparable to or better than a single MC trial in both cases. This likely occurs because the MC

simulation has discontinuities in the noise, requiring vigorous adjustments of the step-size to maintain accuracy, whereas

the SDE is a completely continuous-time formulation. More broadly, the relative cost of the SDE solution will depend on

the specific application, with factors including the system size, the spectral content of A, the output matrix C, and the time

variations of A, G, dL, and dU . Other factors are the choice and extent of the noise discretization.

Table 1. Computation times

MC Noise MC Cost
Example Time Step (avg.) SDE Cost

1 0.2 0.469 0.273
2 1.0 0.370 0.362

2.6 Remarks

1. As noted, the formulas hold for time-varying A, G, dL and dU . The constraints dL and dU are assumed to be continuous,

except for two special cases. In Example 2, the constraint is removed entirely at t = 80 seconds and here Ṗa is set explicitly

to zero, as there are no further losses. In general, if one of the constraints is removed then C1 and C3, or C2 and C4, as

appropriate, are set to zero. The other special case is activating the constraint instantaneously, as shown in Fig. 1. The initial

condition for the Pa(t) differential equation is n(t0); this works for single-sided and double-sided constraints. Single-sided

constraints are handled cleanly by setting dL(t) =−∞ or dU (t) = ∞.
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2. We reiterate an important assumption in our work: that the pdf of the surviving population is always a zero-mean

Gaussian that is truncated, perhaps asymmetrically. This is known to be inaccurate when a low damping ratio affects y, as in

the classical first excursion time problem for oscillators. For example, in Langley’s [7] Tab. 2, the mean first excursion time

clearly is a function of both the damping ratio and the nondimensional threshold level. Inspection shows that our formulas

do not preserve this dependence on damping ratio, and this deficiency is significant for damping ratios less than about 0.2.

We emphasize also that our formulation pertains to a scalar output only, and this distinguishes it from more complicated and

intensive problems in which one desires to track a multi-channel output relative to a feasible set.

3 Derivation

We first compute how the output distribution expands in a small time step after an instantaneous “gate” is encountered,

and then consider the limit as the time step goes to zero. A number of variables used in the derivation are listed in Tab. 2.

Σy represents the unconstrained variance of the output at t, while Σẏ is the variance of the instantaneous change in y and Σρ

represents the correlation between y and ẏ. Σγ represents the variance of the output as it diffuses from t to t +∆t. Note that

Σγ is a function of the small time increment ∆t. The other variables in the table are defined for convenience in the derivation.

This derivation makes extensive use of the notation in Eqns. (2-4).

Table 2. Variables used in the derivation of C(t)

ΣΣΣ = E[xx(t)T ]

Σy = CΣΣΣCT

Σẏ = CAΣΣΣAT CT

Σρ = CΣΣΣAT CT

ρ = Σρ/
√

ΣyΣẏ

Σyρ = Σy
(
1−ρ2

)
Σγ = Σy +2Σρ∆t +Σẏ∆t2

Σc = Σẏ−Σρ
2/Σy

3.1 First Constraint Encounter

The pdf of the output y in the absence of boundaries is given by p(y)open = N(y : 0,Σy). Let us consider a constraint that

is active at an instant; the pdf of the surviving population is rescaled so that the integral is unity:

p(y) =

N(y : 0,Σy)/n for dL < y < dU ,

0 otherwise,
(13)

where n is defined in Eqn. (5).

We are interested next in how the pdf of successful particles evolves a short time after passing an instantaneous gate, as
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shown in Fig. 1. Again for the condition of no constraints, the joint probability density function of y and its derivative is,

defining z = [y, ẏ]T ,

p(z)open =
1

2π
√
|ΣΣΣz|

exp
(
−1

2
zT

ΣΣΣz
−1z
)

= N(y : 0,Σy)

×N
(

ẏ : yρ

√
Σẏ/Σy, Σẏ(1−ρ

2)

)
, (14)

where ΣΣΣz = [Σy Σρ; Σρ Σẏ]. The second equation is obtained by completing the square. For a small time step ∆t, it follows

directly that

p(y,∆y)open ≈ N(y : 0,Σy) (15)

× N
(

∆y : yρ∆t
√

Σẏ/Σy, Σẏ(1−ρ
2)∆t2

)
∆t,

and p(y,∆y) = p(y,∆y)open/n over the domain of interest, as above. Now let γ≡ y+∆y, the particle location a time ∆t after

passing the gate defined by dL(t) and dU (t). To evaluate the pdf for γ we first compute the cumulative probability P(γ < c).

Integrating p(y,∆y) over the whole domain is equivalent to integrating p(y,∆y)open/n along dL < y < dU . The latter approach

is simpler, and this smaller domain of integration is shown in Fig. 4. The resulting integrals are shown below.

P(γ < c) =
∫ c−dU

−∞

∫ dU

dL

p(y,∆y)open/n dyd∆y

+
∫ c−dL

c−dU

∫ c−∆y

dL

p(y,∆y)open/n dyd∆y (16)

Employing the fact that the inner integrals can be written in terms of the error function, using the fundamental theorem of

calculus1 to differentiate P(γ < c) with respect to c, and exploiting the fact that the product of two Gaussians is proportional

1The fundamental theorem of calculus as used here is:

If F(x) =
∫ b(x)

a(x)
f (x,z)dz

then
d
dx

F(x) = f (x,b(x))
db
dx
− f (x,a(x))

da
dx

+
∫ b(x)

a(x)

∂

∂x
f (x,z)dz
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y = dU

y

Δy

y = c - Δy

Δy = c - dU

c

y = dL

Δy = c - dL

Fig. 4. The domain of integration for P(γ < c) Eqn. (16), bounded by dL < y < dL and ∆y < c− y. The first term is represented by the
shaded triangle and the second term is represented by the open rectangle.

to another Gaussian2, after some manipulation we arrive at the pdf of γ, to first order in ∆t:

p(γ) =
1

2n
N(γ : 0,Σγ)×

(
erf

γ(Σy +Σρ∆t)/Σγ−dL

∆t
√

2ΣcΣy/Σγ

− erf
γ(Σy +Σρ∆t)/Σγ−dU

∆t
√

2ΣcΣy/Σγ

)
. (17)

This pdf for γ is plotted in Fig. 5 for the first example system, with ∆t = 0.2, 0.5, and 1.0 seconds after passing the gate.

The pdf is compared to Monte Carlo simulations having 100,000 trajectories, validating the formula. The accuracy of the

predicted pdf decreases as ∆t increases, in accordance with our approximations.

3.2 Wall Diffusion

We consider the limit of ∆t → 0. Note that γ− dU and γ− dL in the numerator of Eqn. (17) are functions of ∆t. The

probability of survival a time ∆t after the gate (modeled as a second gate at t +∆t) is:

Pa(t +∆t) = Pa(t)×P(dL(t +∆t)< γ < dU (t +∆t)) (18)

2If N(a,A) and N(b,B) are normal distributions with means a and b and variances A and B, respectively, then the product of the two distributions is:

N(a,A)×N(b,B) =
1

2π
√

AB
exp

− (x− Ba+Ab
A+B

)2

2 AB
A+B

× exp
(
− (a−b)2

2(A+B)

)
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Fig. 5. p(γ) after ∆t = 0.2, 0.5, and 1.0 seconds with the system in Example 1 and walls at d = ±0.2. The result is validated with the
histogram from a 100,000-point Monte Carlo simulation (gray bars). The pdf at t0, p(y), is the dashed blue line.

so that

Ṗa = lim
∆t→0

Pa(t +∆t)−Pa(t)
∆t

= Pa lim
∆t→0

P(dL(t +∆t)< γ < dU (t +∆t))−1
∆t

= −Pa lim
∆t→0

P(γ≤ dL(t +∆t) or γ≥ dU (t +∆t))
∆t

≡ −CPa. (19)

Define F(t) = P(γ≤ dL(t +∆t) or γ≥ dU (t +∆t)), so that

C =
dF
dt

=
d
dt

[∫ dL(t+∆t)

−∞

p(γ)dγ +
∫

∞

dU (t+∆t)
p(γ)dγ

]
. (20)
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This can be expanded using the fundamental theorem of calculus, leading to

C = ḋL p(dL)− ḋU p(dU )

+
∫ dL(t+∆t)

−∞

d
dt

p(γ)dγ +
∫

∞

dU (t+∆t)

d
dt

p(γ)dγ

≡ C1 +C2 +C3 +C4. (21)

3.2.1 C1 and C2: Changing Wall Distance, Constant PDF

C1 represents the effect of a changing lower wall distance. The first term of the numerator of Eqn. (17) can be simplified

as follows, keeping the leading terms as appropriate:

γ(Σy +Σρ∆t)/Σγ ≈ dL(Σy +Σρ∆t)/Σγ

= dL(Σγ−2Σρ∆t−Σẏ∆t2 +Σρ∆t)/Σγ

≈ dL(Σγ−Σρ∆t)/Σγ

≈ dL(1−Σρ∆t/Σy) (22)

With this approximation, C1 is:

C1 =
ḋL

2n
N(dL : 0,Σy) (23)

×

(
erf

dL
(
1−Σρ∆t/Σy

)
−dL

∆t
√

2Σc
− erf

dL−dU

∆t
√

2Σc

)
.

The numerator of the first error function can be written as −hL∆t whre hL ≡ dLΣρ/Σy. Next, because dU > dL, the

second error function always evaluates to -1 when ∆t→ 0. These quantities are inserted into Eqn. (23), yielding

C1 =
ḋL

2n
N(dL : 0,Σy)

(
erf
−hL√

2Σc
+1
)

=
ḋL

n
N(dL : 0,Σy)×E2 (hL : 0,Σc) . (24)

C2 is easily derived through a parallel derivation, with dU and hU replacing dL and hL, respectively.
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3.2.2 C3 and C4: Constant Wall Distance, Diffusing PDF

The chain rule gives

C3 =
∫ dL

−∞

1
2n

d
dt

N(γ : 0,Σγ)×

(
erf

γ
(
1−Σρ∆t/Σy

)
−dL

∆t
√

2Σc

− erf
γ
(
1−Σρ∆t/Σy

)
−dU

∆t
√

2Σc

)
dγ

+
∫ dL

−∞

1
2n

N(γ : 0,Σγ)×
d
dt

(
erf

γ
(
1−Σρ∆t/Σy

)
−dL

∆t
√

2Σc

− erf
γ
(
1−Σρ∆t/Σy

)
−dU

∆t
√

2Σc

)
dγ

≡ C3a +C3b. (25)

In C3a, the first part of the integrand is nonzero and finite as ∆t → 0. Meanwhile, the first error function is -1 when

γ < dL and zero when γ = dL; the second error function is -1 everywhere since γ ≤ dL < dU . Thus the integrand of C3a is

only nonzero and finite at a single point, γ = dL, and zero everywhere else, so that C3a = 0.

We turn to the second integral, C3b, and shift the limits of integration by introducing a new variable γL ≡ γ−dL, which

scales with ∆t. The chain rule provides the expansion

C3b =
∫ 0

−∞

1
2n

N(γL +dL : 0,Σγ)

× d
dt

(
erf

(γL +dL)
(
1−Σρ∆t/Σy

)
−dL

∆t
√

2Σc

− erf
(γL +dL)

(
1−Σρ∆t/Σy

)
−dU

∆t
√

2Σc

)
dγL

=
∫ 0

−∞

1
n

N(γL +dL : 0,Σγ)

×
[

d
dz1

1
2

(
erf

z1√
2
− erf

z2√
2

)
dz1

dt

+
d

dz2

1
2

(
erf

z1√
2
− erf

z2√
2

)
dz2

dt

]
dγL

=
∫ 0

−∞

1
n

N(γL +dL : 0,Σγ)

×
[

N(z1 : 0,1)
dz1

dt
−N(z2 : 0,1)

dz2

dt

]
dγL (26)
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where

z1 ≡
(γL +dL)

(
1−Σρ∆t/Σy

)
−dL

∆t
√

Σc

≈ γL−hL∆t
∆t
√

Σc
, (27)

z2 ≡
(γL +dL)

(
1−Σρ∆t/Σy

)
−dU

∆t
√

Σc

≈ γL− (dU −dL)

∆t
√

Σc
, (28)

and

dz1

dt
= − γL

∆t2
√

Σc
(29)

dz2

dt
= −γL− (dU −dL)

∆t2
√

Σc
. (30)

The leading functions N()/n in the integrand of Eqn. (26) are smooth, but the others (in the square brackets) are not.

These terms are expanded as

[·] =
[
− γL

∆t2
√

Σc
N
(

γL−hL∆t
∆t
√

Σc
: 0,1

)
+

γL− (dU −dL)

∆t2
√

Σc
N
(

γL− (dU −dL)

∆t
√

Σc
: 0,1

)]
=
[
− γL

∆t
N
(
γL : hL∆t,Σc∆t2) (31)

+
γL− (dU −dL)

∆t
N
(
γL : dU −dL,Σc∆t2)]

The first of these two terms is clearly approaching a delta function as γL = 0 with decreasing ∆t, while the second has

no bearing for the integral, because we only integrate up to γL = 0. To characterize the volume of the delta function, we take

note of the following identity and its associated definite integral,

∫
x N(x : a,A)dx = −A N(x : a,A)+

a
2

erf
(

x−a√
2A

)
∫ 0

−∞

x N(x : a,A)dx = −AN(a : 0,A)+aE2(a : 0,A),

(32)
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and compute the area under the delta function in the domain:

∫ 0

−∞

− γL

∆t
N
(
γL : hL∆t,Σc∆t2) dγL

=− 1
∆t

[
−Σc∆t2 N

(
hL∆t : 0,Σc∆t2)

+ hL∆t E2
(
hL∆t : 0,Σc∆t2)]

= Σc N(hL : 0,Σc)−hL E2(hL : 0,Σc). (33)

Using the sifting property of the delta function, the integral in Eqn. (26) is equal to the value of the integrand evaluated

at γL = 0 multiplied by the area in Eqn. (33), resulting in

C3 =
1
n0

N(dL : 0,Σy)

×
(

Σc N(hL : 0,Σc)−hL E2(hL : 0,Σc)
)
. (34)

C4 is obtained through a parallel derivation, with the delta function appearing at dU rather than dL.

4 Conclusions

We have derived a single differential equation that completely encodes the boundaries in a time-varying, linear first-

excursion problem. This formulation is made possible by a truncated Gaussian approximation, which holds reasonably for the

damping ratios usually employed in closed-look systems, and over satisfactory time scales. The approach is computationally

attractive for several examples considered, wherein a dynamic agent under closed-loop control is forced by stochastic noise.

Thus, it lends itself to on-line path planning in a stochastic environment.
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