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Abstract. The full application of Bayesian inference to inverse problems re-

quires exploration of a posterior distribution that typically does not possess a

standard form. In this context, Markov chain Monte Carlo (MCMC) methods
are often used. These methods require many evaluations of a computationally

intensive forward model to produce the equivalent of one independent sample

from the posterior. We consider applications in which approximate forward
models at multiple resolution levels are available, each endowed with a proba-

bilistic error estimate. These situations occur, for example, when the forward

model involves Monte Carlo integration. We present a novel MCMC method
called MC3 that uses low-resolution forward models to approximate draws from

a posterior distribution built with the high-resolution forward model. The

acceptance ratio is estimated with some statistical error; then a confidence
interval for the true acceptance ratio is found, and acceptance is performed

correctly with some confidence. The high-resolution models are rarely run and
a significant speed up is achieved.

Our multiple-resolution forward models themselves are built around a new
importance sampling scheme that allows Monte Carlo forward models to be
used efficiently in inverse problems. The method is used to solve an inverse

transport problem that finds applications in atmospheric remote sensing. We

present a path-recycling methodology to efficiently vary parameters in the
transport equation. The forward transport equation is solved by a Monte

Carlo method that is amenable to the use of MC3 to solve the inverse trans-

port problem using a Bayesian formalism.

1. Introduction. The Bayesian methodology has proven to be a convenient frame-
work to solve inverse problems from available data with limited information. Sam-
pling the posterior distribution is the major computational difficulty associated with
Bayesian inversion. This distribution is often high dimensional and does not possess
a standard form in most applications of interest. Several authors have found ways
to use low-resolution forward models to speed MCMC simulation. In particular, we
note the “two-level” chains developed in [14, 7, 5, 15]. Two-level chains use low- and
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high-resolution forward models in a Metropolis-Hastings scheme and may be sum-
marized as follows: Proposals to sample the posterior distribution are generated as
usual, and then pre-accepted using an acceptance ratio built with a low-resolution
model. If pre-accepted, they are then accepted or rejected using an acceptance ratio
that measures a misfit between low and high resolution models. As a result, the
high-resolution forward model is rarely run—and when it is, acceptance is almost
assured.

Using these two-level chains as a starting point, we introduce a multi-level MCMC
scheme adapted to Monte Carlo forward models, called MC3 . Since our forward
model output is itself a Monte Carlo estimate (hence the name (MC)3 = MC ×
MCMC), we can control resolution by adjusting the number of random samples
drawn. This gives rise to multiple resolution levels and corresponding forward
models F1, F2, . . ., converging to F∞. Since the Monte Carlo estimate is a sum
of independent random variables, the error is well approximated by a Gaussian
random variable and we can obtain a posteriori estimates of its variance. Thus,
when we utilize a low-resolution model we are able to accurately calibrate its effect
on the posterior at that level. These finite-resolution posteriors πi (6) are used
in the first stage of a two-level scheme as described above. For the second stage
we do not fix an upper resolution level. Instead, we progressively increase the
resolution j until the second-level acceptance probability βij has a desired level
of accuracy. The desired “accuracy” corresponds to making the correct decision
with confidence λ ∈ (0, 1). By “correct decision” we mean the acceptance/rejection
choice corresponding to an evaluation of βi∞, where βi∞ uses the exact forward
model F∞. This modification necessarily introduces some distortion of the resultant
posterior. We obtain a stationary distribution πλ for an idealized version of our
chain and characterize its deviation from π∞ in Theorem 2.1 below. This deviation
can be made arbitrarily small and depends on λ and the initial resolution level.
Very little distortion is present if (i) λ is close to 1 independent of the accuracy
at the initial resolution level; or (ii) if the initial resolution level is chosen to be
reasonably accurate.

Since sampling of the posterior distribution requires a large number of forward
solves (at different resolutions in the MC3 scheme) for different values of the inver-
sion parameters, it is important to reduce the computational cost of these forward
solves as well. In applications to remote sensing, one of the main reasons Monte
Carlo forward models are slow is that they are measuring the probability of a rare
event (a photon from the sun reaching a small detector). This rare event sampling
can be accelerated using an importance sampling scheme similar to perturbation
Monte Carlo developed for medical imaging [10, 9, 4]. This path recycling scheme
sends many paths once through a reference atmosphere and then stores only those
that hit the detector. Then, to simulate detector hits in another atmosphere an
importance sampling scheme is used whereby the original paths are re-weighed to
account for changes in atmospheric absorption/scattering (provided these changes
result in an equivalent measure, as is the case in photon propagation modeled by
a transport equation). We differ from standard perturbation Monte Carlo schemes
in that our path recycling scheme also provides multiple-resolution forward models
that are used to speed up the sampling of the posterior distribution. To that end,
our finite-resolution forward model Fj recycles a j−dependent number Hj of all
available paths, but uses information from many more stored paths Hmax in order
to reduce variance (see (24)). Although our paper focuses on the MC3 algorithm,
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we obtain a significant variance reduction using our path-recycling scheme, which
appears to be novel. The theoretical variance reduction results are summarized in
Theorems 3.2 and 3.3.

Both the MC3 and path-recycling methods were motivated by an inverse prob-
lem in atmospheric imaging. Here we are presented with a passive remote sensing
problem involving the identification of an absorbing plume (e.g., a pollution cloud)
using detected sunlight. The detector is spatially small and measures incoming light
from fifteen different angles. Our atmosphere and plume are parameterized with
five unknown parameters (plume absorption cross-section α, plume center (xp, zp),
plume radius ρ, and atmospheric constant c). Since the measurements are sparse,
introducing prior information in the Bayesian setting is useful. Since the number of
parameters to recover is small, full exploration of the posterior distribution is both
feasible and desirable. Unfortunately, because the detector is small, most Monte
Carlo forward paths do not reach it. Importance sampling schemes can increase
the probability of a detector hit [2], but we instead use the path recycling scheme
described above, as it is better suited to the multi-resolution inverse problem. On
its own, path recycling reduces forward model run-time by a factor of thousands,
but this is still too slow for posterior exploration. We therefore use path-recycling
in conjunction with MC3 and present results in Section 4. We stress again that
because of the enormous computational cost involved in transport simulations and
the Bayesian framework, we would not be able to produce such results on desktop
architectures without the huge variance reductions afforded by path-recycling and
MC3 .

While we will demonstrate the MC3 scheme on an atmospheric imaging prob-
lem, we note that many other applications use forward model predictions that are
Monte Carlo estimates. These include more general problems of radiation trans-
port, molecular dynamics simulations, floating random walk methods for capaci-
tance extraction in electronic design, determination of pricing measures in finance,
and DSMC (Direct simulation Monte Carlo) methods in fluid flow.

In Section 2 we describe a MCMC scheme for Bayesian inverse problems where
the forward model is available at multiple resolution levels and endowed with tight
(probabilistic) error estimates. In Section 3 we develop our path-recycling forward
model. In Section 4 we combine techniques from Sections 2 and 3 to solve a five-
dimensional Bayesian inverse problem.

2. Multi-level metropolis-hastings. Here we describe Metropolis-Hastings sch-
emes that use multiple-resolution forward models (along with accurate error es-
timates) to significantly speed up a Metropolis Hastings scheme. In particular,
MC3 is presented as an extension of the two-level schemes developed in [7, 5, 15].
The novelty of MC3 is evaluation of an acceptance ratio up to some confidence (the
λ−acceptance method); this aspect of MC3 may be used with standard Metropolis
or any scheme where an acceptance ratio must be evaluated. We refer the reader
to [11] for an introduction to Bayesian inverse problems.

2.1. Basic setup. The Bayesian viewpoint models the unknown quantities as ran-
dom variables. Our unknown is a random vector x ∈ Γ ⊂ Rn with prior probability
density fprior(x). This is the distribution we assume (from prior knowledge) on x
before any data are collected.

We assume our data d ∈ Rm are given by an infinite-resolution forward model
F∞ : Rn → Rm plus an additive independent (Gaussian) noise term E.
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d : = F∞(X) + E, E ∼ N (0,ΣE), E⊥⊥X.(1)

The methods presented here are independent of the choice of prior density. The ad-
ditive Gaussian noise model will simplify the algebra involved in the λ−acceptance
evaluation, but is not necessary either.

Our infinite resolution posterior is thus

π∞(x |d) ∝ fprior(x)
1

|ΣE |1/2
exp

{
−1

2
‖d− F∞(x)‖2

Σ−1
E

}
,(2)

where for vectors v ∈ Rm and matrices A ∈ Rm×m we define ‖v‖2A := vTAv.
We do not have access to F∞, but instead a sequence of approximate models

F1, F2, · · · . In our framework, the approximate models are an unbiased sum of
i.i.d. random variables, and so we are justified using a Gaussian error model

Fj(x) ∼ N (F∞(x), Var {Fj(x)}).(3)

We assume that Var {Fj(x)} =: Σj(x) can be estimated accurately. This is the case
when the forward model is solved by Monte Carlo.

Equation (3) leads to an enhanced noise model (see e.g. [1, 12], or [11] as well as
[16] for more discussion of model error and inverse problems) at resolution level j:

d : = Fj(x) + Ej(x) + E, Ej(x) ∼ N (0,Σj(x)), Ej(x)⊥⊥E, x⊥⊥E,(4)

and a likelihood at resolution level j,

πj(d |x) =
1

(2π)m/2|ΣE + Σj(x)|1/2
exp

{
−1

2
‖d− Fj(x)‖2(ΣE+Σj(x))−1

}
.(5)

Instead of one posterior, we have a sequence of finite resolution posteriors
{πj(x |d)}∞j=1:

πj(x |d) ∝ fprior(x)πj(d |x).(6)

Assume that for a.e. fixed x ∈ supp(fprior), Fj(x) → F∞(x) and Var {Fj(x)} → 0.
Then, as a consequence of dominated convergence, we can approximate expectations
against π∞ by using πj in the sense that for all f such that

∫
|f(x)|π(x) dx <∞,∫

f(x)πj(x |d) dx→
∫
f(x)π∞(x |d) dx.(7)

From here on we omit the explicit conditioning on d and simply write πj(x),
j = 1, 2, . . . ,∞.

2.2. The algorithms. Here we present three MCMC chains that take advantage
of our multiple resolution models Fj and the error estimates.

2.2.1. Metropolis Hastings at resolution level j. As a starting point, we first present
the standard Metropolis-Hastings algorithm (algorithm 1) [17], using our finite res-
olution posterior πj from (6).
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Algorithm 1 Metropolis-Hastings at resolution level j

1: Given xk, draw y ∼ q(· |xk)
2: Put

αj(xk, y) := min

{
1,

q(xk | y)πj(y)

q(y |xk)πj(xk)

}
3: With probability α, accept and set xk+1 = y. Otherwise set xk+1 = xk

Note that the transition kernel associated with standard Metropolis-Hastings is

K(x, y) : = αj(x, y)q(y |x) + δx(y)

(
1−

∫
αj(x, y

′)q(y′ |x) dy′
)
,

where δx(·) is the Dirac measure on Rn concentrated at x.

2.2.2. Two-level Metropolis-Hastings. The two-level chain (algorithm 2, as devel-
oped in [7, 5, 15]) is as follows:

Algorithm 2 Two-Level Metropolis Hastings at resolution levels-ij

1: Given xk, draw y ∼ q(· |xk)
2: Put

αi(xk, y) := min

{
1,

q(xk | y)πi(y)

q(y |xk)πi(xk)

}
3: With probability αi(xk, y), pre-accept y. Otherwise set y ← xk.
4: The second-level proposal is now y, effectively drawn from

qi(y |xk) = αi(xk, y)q(y |xk) + δxk(y)

(
1−

∫
αi(xk, y)q(y |xk) dy

)
.

Set

βij(xk, y) : = min

{
1,

qi(xk | y)πj(y)

qi(y |xk)πj(xk)

}
.

5: With probability βij(xk, y), accept and set xk+1 = y. Otherwise set xk+1 = xk.

Note that there is no need to compute the integral defining qi since

βij(xk, y) : = min

{
1,

qi(xk | y)πj(y)

qi(y |xk)πj(xk)

}
= min

{
1,
πi(xk)πj(y)

πi(y)πj(xk)

}
.

The equality of the two minimizers above is shown in (16). One can show that
under reasonable assumptions on the proposal q, πj(·) is the stationary distribution
of the two-level chain (see [7, 5]).

Remark 1. The two-level chain (algorithm 2) can be viewed in two ways:

(a) If we are “pre-rejected” (y ← xk) in line 3 of algorithm 2, then we are guar-
anteed βij = 1 and we need not evaluate βij (or Fj). In this sense the pre-
acceptance stage filters out poor draws. This in turn allows one to make more
“courageous” proposals (e.g., from the prior) and not waste time evaluating
the high-resolution forward model on them.
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(b) In algorithm 1, the “ideal” proposal is πj . Since πi ≈ πj we can also view the
two-level chain as a low-resolution chain producing high-quality proposals for
a high-resolution chain.

2.2.3. The multi-stage algorithm MC3 . The MC3 chain is now introduced. We will
re-use αi from algorithm 2 and replace βij with

βi∞(xk, y) : = min

{
1,

qi(xk | y)π∞(y)

qi(y |xk)π∞(xk)

}
= min

{
1,
πi(xk)π∞(y)

πi(y)π∞(xk)

}
.

The equality of the two minimizers above is similar to the case of βij , which is
shown in (16).

If we used βi∞ in place of βij in the two-level chain (or in place of αi in the one-
level chain) then the invariant distribution would be the infinite resolution posterior
π∞(·). Since in practice we do not have access to π∞(·), we instead use an asymp-
totic formula to approximate draws from π∞ using a level of confidence λ ∈ (0, 1).
Roughly speaking, the ratio π∞(y)/π∞(xk) in βi∞ is replaced by πj(y)/πj(xk) plus
a Gaussian error term. See section 2.3 for more detail.

The two-stage algorithm 2 performs its second-level acceptance step as follows:

Step 1: Draw u ∼ U [0, 1]
Step 2: If u < βij accept, otherwise reject.

The multi-stage algorithm MC3 replaces step 2 with the λ-acceptance step:

Step 2a: Using data generated at resolution level j, determine if, with confidence
λ, we can say βi∞ > u or βi∞ < u

Step 2b: If βi∞ > u with confidence λ, then accept. If βi∞ < u with confidence
λ, then reject. If our confidence in βi∞ versus u is less than λ, then increase
resolution j and goto step 2a.

Algorithm 3 MC3 at initial level i, final level jmax, and confidence λ

Given xk, draw y ∼ q(· |xk)
Put

αi(xk, y) := min

{
1,

q(xk | y)πi(y)

q(y |xk)πi(xk)

}
With probability αi(xk, y), pre-accept y. Otherwise set y ← xk.
The second-level proposal is now y, effectively drawn from

qi(y |xk) = αi(xk, y)q(y |xk) + δxk(y)

(
1−

∫
αi(xk, y)q(y |xk) dy

)
.

Draw u ∼ U [0, 1], set j ← i, test← indeterminate
while (test==indeterminate) AND (j ≤ jmax) do

if with confidence λ at jth level, we have βi∞ > u then
Accept and set xk+1 ← y. Set test← determinate

else if with confidence λ at jth level, we have βi∞ < u then
Reject and set xk+1 ← x. Set test← determinate

end if
j ← j + 1

end while
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Bayesian Inverse Problems with Monte Carlo Forward Models 87

This algorithm requires the definition of intervals of confidence parameterized
by the confidence level λ ∈ (0, 1). Assuming that the Monte Carlo forward simu-
lations are sufficiently accurate, then the statistical errors are accurately described
by a Gaussian approximation as an application of the central limit theorem. The
resulting intervals of confidence are analyzed in the following section, which is an
intrinsic part of the definition of MC3 . More precisely, the notion of inequalities
with confidence λ at jth level is described in (14) below.

2.3. The asymptotic confidence interval. We use the delta method to derive
an asymptotic confidence interval for the acceptance test used in algorithm 3. Note
that in our numerical results we will have the following isotropic model for the
likelihood function: ΣE = σ2

EIm. Since this simplifies the presentation in this
section significantly, we only consider this special case here. Generalizations to non-
iid (or even non-Gaussian) additive error are straightforward but not considered for
concreteness.

We first reduce the test βi∞ > u to a form more amenable to an interval test.
First recall,

βi∞(x, y) : = min

{
1,
qi(x | y)π∞(y)

qi(y |x)π∞(x)

}
= min

{
1,
πi(x)π∞(y)

πi(y)π∞(x)

}
.

Define

X̄ = d− F∞(x), Ȳ := d− F∞(y), ϕ(v, w) := |v|2 − |w|2,(8)

so that

π∞(y)

π∞(x)
=
fprior(y)

fprior(x)
exp

{
1

2σ2
E

ϕ(X̄, Ȳ )

}
.

Therefore, our “ideal” acceptance criteria can be written

accept⇔ βi∞ > u⇔ ϕ(X̄, Ȳ ) > 2σ2
E log

(
u
fprior(x)πi(y)

fprior(y)πi(x)

)
.(9)

Second, we derive an asymptotic relation between ϕ(X̄, Ȳ ) and data available at
resolution level j. Defining

Xj : = d− Fj(x), Yj := d− Fj(y),(10)

we have

ϕ(Xj , Yj)− ϕ(X̄, Ȳ ) ≈ ∇ϕ(X̄, Ȳ )T (Xj − X̄, Yj − Ȳ ).

This approximation is accurate for small |X̄ −Xj | and |Ȳ − Yj |, which is the case
so long as Fj(x) ≈ F∞(x) and Fj(y) ≈ F∞(y). Our assumption (3) means that

(Xj − X̄, Yj − Ȳ ) ∼ N (0,Cov (Xj , Yj)).

Note that we define the covariance and variance of random vectors X, Y by

Cov (X,Y ) : = E
{

(X − E {X}) (Y − E {Y })T
}
, Var {X} := Cov (X,X) .

(11)

We therefore approximate

ϕ(Xj , Yj) ≈ N (ϕ(X̄, Ȳ ), µ2
j ), µ2

j := ∇ϕ(X̄, Ȳ )TCov (Xj , Yj)∇ϕ(X̄, Ȳ ).(12)

Inverse Problems and Imaging Volume 7, No. 1 (2013), 81–105
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This argument may be made rigorous, see e.g., [3] for a proof of the delta method
in one dimension. Note that these estimates do hold asymptotically, but are bi-
ased. This bias could affect the resultant sampling distribution (see section 2.4.2).
Assuming (12), (9) becomes

accept⇔ βi∞ > u⇔ E {ϕ(Xj , Yj)} > 2σ2
E log

(
u
fprior(x)πi(y)

fprior(y)πi(x)

)
.(13)

Third, we use (12) to derive a confidence interval around a random variable
ϕ(Xj , Yj) that contains the mean E {ϕ(Xj , Yj)} with probability λ ∈ (0, 1). We
do not quite know µj in (12) and must content ourselves with an estimate µ̂j ,
which can be easily computed using the random variables defining Xj , Yj and is
therefore obtained at resolution level j; see the description in section 3.3.2 for the
inverse transport problem. Briefly, Fj(x), Fj(y) (and hence Xj , Yj) are sums of
i.i.d. random variables, so we use the empirical covariance matrix as an estimate
of Cov (Xj , Yj). Then we use Xj , Yj in place of X̄, Ȳ in ∇ϕ(X̄, Ȳ ). This is put
together to give µ̂2

j .
With zλ > 0 such that P[−zλ < N (0, 1) < zλ] = λ, we define our confidence

interval

Cλ := (ϕ(Xj , Yj)− zλµ̂j , ϕ(Xj , Yj) + zλµ̂j) .

We say that with confidence λ, we have ϕ(X̄, Ȳ ) ∈ Cλ. See [3] for an introduction
to confidence intervals.

Finally, to use this confidence interval in the second stage of algorithm 3, we
start from (13) and then (with ', / denoting >, < with confidence λ at the jth

level, i.e., for the j−dependent confidence interval Cλ):

2σ2
E log

(
u
fprior(x)πi(y)

fprior(y)πi(x)

)
< ϕ(Xj , Yj)− zλµ̂j ⇒ βi∞ ' u ⇒ accept

2σ2
E log

(
u
fprior(x)πi(y)

fprior(y)πi(x)

)
> ϕ(Xj , Yj) + zλµ̂j ⇒ βi∞ / u ⇒ reject.

(14)

The above formulas summarize the multi-stage algorithm MC3 . At a given level j,
we either accept or reject according to the above probabilities, and go to the next
level j + 1 otherwise.

2.4. Chain analysis. The two-level and multi-level chains do not have as limiting
distribution π∞ (this would require access to F∞). Instead, the two-level chain
limits to πj (a broader version of π∞ defined explicitly in (6)) and MC3 has πλ (a
distorted version of π∞ defined implicitly in Theorem 2.1).

2.4.1. Two-level chain analysis. For the two-level chain, following [7, 5] we have
that (for xk 6= y)

qi(xk | y) = αi(y, xk)q(xk | y) =
πi(xk)

πi(y)
q(y |xk)αi(xk, y) =

πi(xk)

πi(y)
qi(y |xk).(15)

As a result, we have

βij(xk, y) = min

{
1,
πi(xk)πj(y)

πi(y)πj(xk)

}
.(16)
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The transition kernel of algorithm 2 is thus

Kij(xk, y) = βij(xk, y)qi(y |xk) + δxk(y)

(
1−

∫
βij(xk, y)qi(y |xk) dy

)
.

It satisfies the detailed balance equation

πj(xk)Kij(xk, y) = πj(y)Kij(y, xk).

Under standard assumptions, πj may be shown to be the limiting distribution [7, 5].

2.4.2. Approximate MC3 chain analysis. We present here an approximation of the
MC3 chain for which we are able to obtain an invariant distribution.

To construct the approximation, first assume that every time the model Fj is
used, a new set of i.i.d. random variables are drawn to compute Fj(x). So for
example, if we visit a particular x twice (so that Fj(x) is computed twice), then
the two computations are independent. This assumption is not met by our forward
model described in section 3. There, the same set of paths is recycled for all x.

As a second assumption, we idealize the implementation of the accept/reject
conditions in (14). Our idealization assumes that we accept/reject once we know,
with confidence exactly equal to λ, that βi∞ < u or βi∞ > u. While this is a
correct interpretation of a confidence interval, this does not strictly hold (in our
MC3 implementation) for two reasons:

(a) The normal approximation (delta method) is only asymptotically correct.
(b) We consider the λ−acceptance test (14) for multiple lower resolution levels

before finally resolving the question at a high enough level. In detail: we
increase j until we can evaluate (9) with confidence greater than or equal to
λ. We always initially take j = i, and most of the time this results in a
confidence interval Cκ for some κj > 0. So long as λ > κj , we keep increasing
resolution, until at some point κj > λ and we stop.

Given these two assumptions, MC3 becomes an algorithm (the λ-approximate algo-
rithm) that acts like two-level MCMC but makes the wrong decision at every step
with probability λ. We present this as algorithm 4 and analyze the error made on
the invariant measure.

We are not able to find the invariant measure associated to MC3 (or even prove
that one exists). The results of this section should then be interpreted as advisory.
Indeed, we use them to set the levels i and λ later in section 4, but conclude that
our method works for the problem at hand only after obtaining numerical results.

Note that algorithm 4 makes use of the functions qi, βi∞ from algorithm 3.

Algorithm 4 λ-approximate algorithm

1: Starting from xk, draw y ∼ qi(· |xk).
2: With probability βi∞(xk, y), set z ← y and zc ← xk,

else set z ← xk and zc ← y
3: With probability λ, set xk+1 ← z

else set xk+1 ← zc

Using algorithm 4 we accept y (recall that we could have y = x at this point)
with probability

Rλ(x) = λri∞(x) + (1− λ)(1− ri∞(x)), ri∞(x) :=

∫
qi(y |x)βi∞(x, y) dy.

Inverse Problems and Imaging Volume 7, No. 1 (2013), 81–105
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If we reject y, it must then be done with probability 1−Rλ(x). So algorithm 4 has
transition kernel

Kλ(x, y) : = Rλ(x)
qi(y |x)βi∞(x, y)

ri∞(x)
+ (1−Rλ(x))δx(y).

We have the following theorem, whose proof we relegate to the appendix.

Theorem 2.1. If λ ∈ (0, 1] the transition kernel Kλ associated to algorithm 4 has
invariant density

πλ(x) ∝ π∞(x)

mλ(x)
, mλ(x) :=

Rλ(x)

ri∞(x)
= λ+

(1− λ)(1− ri∞(x))

ri∞(x)
.

If we assume further that E+ := {x : π∞(x)} is open and connected, and for every
bounded G ⊂ E+ there exist constants Cj , Cq, Dj , δ such that for x, y ∈ G with
|x− y| < δ and j = 1, 2, . . .

(i) Cjπ∞(x) ≤ πj(x) < Dj

(ii) Cqπ∞(y) ≤ q(y |x)

then we have the following convergence result: If f ∈ L1(πλ), then

lim
N→∞

1

N

N∑
k=1

f(xk) =

∫
f(x)πλ(x) dx,

and with ‖ · ‖TV the total variation distance (see (17)), µ an arbitrary initial dis-
tribution, Kn

λ (x, ·) the measure for n iterations of the transition kernel Kλ, and Πλ

the distribution associated with πλ∥∥∥∥∫ Kn
λ (x, ·)µ( dx)−Πλ

∥∥∥∥
TV

→ 0, monotonically.

Remark 2. Some heuristics are evident:

(a) When λ is smaller, mλ(x) is more dependent on ri(x), hence will vary more
with x, and hence more distortion is present.

(b) If one wishes to maintain a fixed amount of distortion (measured in some
metric), i can be decreased only if λ is simultaneously increased.

2.4.3. Distortion example. To investigate the distortion of the measure and verify
the heuristics in remark 2 we compute explicitly the distortion in a simple one-
dimensional case. The target distribution and the proposal are both Gaussian.

π∞(x) ∝ exp
{
−x2/(2σ2

E)
}
, q(x | y) = q(x) ∝ exp

{
−x2/(2σ2

q )
}
.

This roughly corresponds to a forward+noise model d = X + E where d = 0,
E ∼ N (0, σ2

E) and X ∼ U [−M,M ] for some M � 1 so that the prior has negligible
impact on the posterior. To approximate (6) we give πi broadened likelihood with
variance σ2

E + σ2
i . In other words,

πi(x) ∝ exp

{
− x2

2 (σ2
E + σ2

i )

}
, δ > 0.

Using this model, we can numerically compute mλ and then the distance between
the distributions Π∞, Πλ (corresponding to π∞, πλ) can be measured with the total
variation distance:

‖Π∞ −Πλ‖TV : = sup
A⊂R
|Π∞(A)−Πλ(A)| = 1

2

∫
R
|π∞(x)− πλ(x)|dx.(17)
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Figure 1. Left: Plot of πλ for different values of λ, σi. Maximum
distortion occurs near the peak of the distribution. Right: Contour
plot of lines of constant total variation error ‖Π∞ −Πλ‖TV .

The first equality is a definition and the second can be seen by integrating (π∞ −
πλ)1A + (πλ − π∞)1R\A where A = {x : π∞(x) ≥ πλ(x)}.

In Figure 1 we visualize this simple experiment. We set σE = 1, σq = 3, and
sweep λ and σi. We see that maximum distortion occurs indeed for small λ and
large σi. While decreasing σq (still holding σ2

E < σ2
E +σ2

i < σ2
q ) increases error, the

same contour-line shape remains.

2.5. Numerical comparison of chains. We use the one-level, two-level, and
MC3 chains with a variety of parameter values to generate samples. The posterior
distribution of interest fits the framework in section 2.1; it is in fact the atmospheric
imaging problem alluded to in the introduction and described in section 4. Also see
section 4 for a plot of the posterior. The purpose of the present section, however, is
to compare chain performance for different choices of initial resolution level i, final
level jmax, and confidence λ.

We compute the autocorrelation time, for each one-dimensional marginal of sam-
ples (call this AT`, ` = 1, . . . , n). The autocorrelation time for a stationary sequence{
Xk
`

}∞
k=0

is defined as

AT` : = 1 + 2

∞∑
k=1

E
{
X0
`X

k
`

}
E {(X0

` )2}
.

It follows then that

N Var

{
1

N

N∑
k=1

Xk
`

}
→ Var

{
X0
`

}
AT`.

Asymptotically, N/AT` correlated samples have the same variance-reducing power
as the N uncorrelated samples. See the discussion of effective sample size in [17].
Note that calculating autocorrelation time is non-trivial, and straightforward meth-
ods may have non-vanishing variance in the limit N →∞. For this reason, we use
the initial positive sequence estimator described in section 3.3 of [8].

In all cases we used 20 different resolution levels, 0 through 19, with level j + 1
recycling roughly twice as many random variables as level j. Runtime is almost
linearly proportional to the number of recycled random variables. We therefore let
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the total number of random variables recycled in a simulation run serve as a proxy
for forward-model-time. Our performance metric is

fwd-model-time/1000-effective-samples : =
#Recycled-random-variables

1000N
(

1
n

∑n
`=1AT`

)−1 .

Simple estimates of the error incurred by using a finite resolution posterior at
level j are shown in Table 1. We consider j = 6 a very low resolution and j = 15 a
moderate resolution.

Table 1. Comparison of finite-resolution error in the posterior.
The trace gives an indication of the average error across the m
dimensions of data. The condition number gives an indication of
the maximal error in any one direction.

j=6 j=15 j=19

maxx

√
Trace

(
Σj(x)Σ−1

E

)
0.75 0.05 0.01

maxx

√
Cond(Σj(x)Σ−1

E ) 3.0 0.15 0.05

We compared various schemes with various parameter choices. One-level results
were obtained at level j = 6; two-level results were obtained with i = 6 and j = 15;
while MC3 results were obtained with i = 6 and jmax = 19. See Table 2 and also
Figure 2 for a performance comparison. We chose i = 6 since this resulted in the
lowest fwd-model-time/1000-effective-samples for two-level and MC3 . At this level,
a sufficient number of paths interact with the plume to satisfy (27). In other words,
we trust the central limit approximation involved in our λ−acceptance step. Table
1 indicates that we are around the σi = 2.0 line in Figure 1, and therefore λ ≈ 0.90
should give small distortion. Increasing i results would be a safer choice, but this
increases forward model time. When moderate resolution is desired (j, jmax = 15),
MC3 is about twice as fast at producing uncorrelated random variables as the two-
level scheme. When high resolution is desired, the improvement increases to nine
times. Figure 3 shows how forward model time may be reduced by decreasing λ.

The dynamics of the MC3 chain are partially explained by Figure 3. Here we see
that lower values of λ result in fewer uses of high-resolution forward models. We
also see that the high-resolution forward models, despite being used infrequently,
still account for a significant fraction of forward model evaluation time.
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Figure 2. Left: 5hrs, 1-level. Center: 5hrs, 2-level. Right: 5hrs,
MC3 . Parameters are the same as table 2 with j, jmax = 15.
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Table 2. Comparison of performance. The last row of the ta-
ble reports fwd-model-time/1000-effective-samples. Results for the
one-level scheme at j = 15 and j = 19 are estimated. On one 2.6
GHz Intel core, MC3 with (i, jmax, λ) = (6, 15, 0.90)) generates one
effective sample approximately every 101 seconds. See Figure 3 for
additional MC3 results.

1-Level 1-Level 1-level 2-Level 2-level
j=6 j=15 j=19 (i,j)=(6,15) (i,j)=(6,19)
59 10,694 103,584 2,067 10,078

MC3 MC3

(i,jmax,λ)=(6,15,0.90) (i,jmax,λ)=(6,19,0.90)
1,035 1,125
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Figure 3. Comparison of MC3 for different values of λ. In all
cases i = 6 and jmax = 19. Left: Raising λ increases the number of
uses of higher resolution-level forward models. Center: Although
j = 19 was used the least, the time spent in it is significant since
forward-model-time ∝ 2j . Right: Higher λ and/or jmax results
in more forward-model-time/1000-effective-samples. We see that if
less accuracy is desired, one may use lower λ and save time.

3. Path recycling for Monte Carlo transport. Here we describe a new path-
recycling scheme that allows Monte Carlo forward models to be used efficiently in
inverse problems. After the transport models of photon propagation are recalled, the
path-recycling scheme is presented in the construction of the Monte Carlo estimator
Tn[γ] in (23) below, which measures the probability of a photon reaching a given
detector in a given environment γ. This estimator is very similar to those used in
perturbation Monte Carlo [10, 9, 4]. When very accurate information is available in a
reference environment, a significantly more efficient (i.e., with much lower variance)
unbiased estimator Fj(γ) is then introduced in (24) below. We then combine the
path recycling scheme for inverse transport calculations with the (MC)3 algorithm
and characterize our model errors and intervals of confidence.

3.1. Transport of photons in the atmosphere. We consider photon flux at
a single wavelength (all velocities v ∈ S) in a connected domain R ⊂ R2 with
boundary ∂R. Denote by Γ± the incoming/outgoing boundary flux. That is, with
n̂(r) the outgoing normal at r ∈ ∂R, Γ± := {(r, v) ∈ ∂R× S : ±n̂(r) · v > 0}.
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Figure 4. Left: An atmosphere with a sky above and a reflecting
mountain surface below. The inverse problem is to characterize the
round plume. Right: Traces of 75 paths from sky to the detector.
A typical forward model uses 5-300 thousand paths.

We model photon flux density u by

v · ∇ru(r, v) + σ(r)u(r, v) = Ku(r), u
∣∣
Γ−

(r) =
K(u|Γ+

)(r)

|n̂(r) · v|
+

S(r)

|n̂(r) · v|
,(18)

where S is the photon source and

Kf(r, v) = σs(r)

∫
Sd−1

θ(r, v′→v)f(r, v′) dv′, r ∈ R \ ∂R

Kf(r, v) = σs(r)

∫
n̂(r)·v′>0

Θ(r, v′→v)|n̂(r) · v′|f(r, v′) dv′ r ∈ ∂R.

(19)

The functions θ, Θ, σs, and σ = σs + σa account for scattering, absorption, and
scattering+absorption in the domain. See [13].

We also assume the presence of a purely absorbing disk-shaped plume with center
(xp, zp), radius ρ. Away from this plume the absorption/scattering cross sections
σa, σs are given by

σa(r) : = σa,0e
−(c0+c)z, σs(r) = σs,0e

−(c0+c)z.(20)

In the support of the plume σa is modified by the addition of the constant α.
We group the unknown parameters into the vector γ = (α, xp, zp, ρ, c). In the

name of realism many constraints must be invoked.

0 ≤ α <∞, {(x, z) : |(x, z)− (xp, zp)| ≤ ρ} ⊂ R, −c0 ≤ c < cmax.

Thus γ ∈ Γ ⊂ R5 where

Γ : = [0,∞)× [xmin, xmax]× [zmin, zmax]× [ρmin, ρmax]× [−c0, cmax].(21)

All other parameters/constants are known and the inverse problem involves the
recovery of γ. In particular, the detector location and size are fixed.

3.2. Path measures and path recycling. Here we describe the viewpoint that
different atmospheric parameters correspond to different measures on the space of
possible photon paths. Our forward model uses one fixed set of paths to compute
measurements in many different atmospheres. This allows significant time savings
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since we need not re-simulate paths that miss the detector. Probabilistic error
estimates are also obtained.

Collectively, the parameter γ describes a world in which we simulate photon
travel. In determining unknown parameters we will have to simulate many different
worlds. This path measure is induced by the Markov chain corresponding to the
chosen atmospheric parameters. We give below a heuristic description of the Markov
chain, and refer the reader to [13] for details.

1. A starting position and direction (x0, v0) are drawn from the source probability
distribution S.

2. The photon travels along the path x0 +tv0, t > 0, interacting by point x0 +tv0

with probability 1−exp
{
−
∫ t

0
σ(x0 + sv0)ds

}
. If the photon does not interact

in the volume it will always interact at the surface.
3. At an interaction, the photon is either absorbed or scattered.

• At a volume interaction, the photon will be absorbed with probability
σa(r)/σ(r). If not, it will scatter into a new direction using the probability
density θ(r, v0→v1).
• At a surface interaction, the photon will be absorbed with probability
σa(r)/σ(r). If not it will choose a new direction using the density Θ(r, v0→
v1).

4. This continues until the photon is absorbed. Exit from the domain is ac-
counted for by making σa = ∞, σs = 0 outside of R. We note that σa = ∞,
σs = 0 at the detector as well.

This induces a measure on the space of finite-length paths

Ω : = {ω = (r0, . . . , rτ ) : rj ∈ R} .

Note that under reasonable conditions the stopping time τ < ∞ and so we have a
probability measure Pγ . In the special case γ = γ0 := (0, 0, 2, 0, c0) (corresponding
to no plume and nominal background) we have our reference measure P.

This allows us to define a differential measure dP (and similarly dPγ) and ex-
pectation EP {·} by

P[A] : = EP {1A} =

∫
Ω

1A(ω) dP(ω) =

∫
A

dP(ω),(22)

where for A ⊂ Ω, the indicator function

1A(ω) : =

{
1, ω ∈ A
0, ω /∈ A.

As an example of a subset of paths consider those that hit (and are necessarily
absorbed in) the detector. Denote these by a disjoint union D = D1 ∪ · · · ∪ Dm,
meaning that if ω ∈ D then the path ω ended up in the detector, and if ω ∈ Dν

then ω hit the detector with incoming angle in the interval
(

(ν−1)π
m − π

2 ,
νπ
m −

π
2

)
.

Let

D : = D1 × · · · ×Dm, 1D := (1D1
, . . . ,1Dm) ,

and thus our measurement is

Pγ [D] : = Eγ {1D} := (Pγ [D1], . . . ,Pγ [Dm]) .

One can similarly define EP {1D} = P[D].
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3.2.1. The multi-resolution forward models. We are now in position to describe our
forward model and obtain probabilistic error estimates. This model uses importance
sampling to compute Pγ [D] from one fixed set of reference paths. This technique
is an advancement upon schemes developed in the context of medical imaging (see
e.g., [10, 9, 4]).

Choosing n ∈ N, we generate n paths {ω1, . . . , ωn}. Now for any random variable
X,

1

n

n∑
j=1

1D(ωj)X(ωj)
a.s.−−→ EP {1DX} , n→∞.

For example, we could generate paths from measure Pγ , and then n−1
∑n
j=1 1D(ωj)

→ Eγ {1D}.
It is very important to realize that since we only intend on estimating expecta-

tions involving detector hits (e.g., Eγ {1DX}), we only need store paths that hit
the detector. The expected number of detector hits is exactly nP[D]� n.

For every new γ we could generate a new set of paths and repeat the above
procedure. This would be costly since path generation involves complicated steps.
Instead, consider fixing one set of reference paths {ωj}nj=1 (in practice storing only
those that hit the detector) generated by the reference measure P and then set

Tn(γ) : =
1

n

n∑
k=1

1D(ωk)

∣∣∣∣ dPγ
dP

∣∣∣∣(ωk) ≈
∫

Ω

1D

∣∣∣∣ dPγ
dP

∣∣∣∣dP =

∫
Ω

1D dPγ = Eγ {1D} .

(23)

Computation of Tn requires computing the Radon-Nikodym derivative for the ≈
nP[D] paths that hit the detector. This is significantly faster than sending n new
paths. For details as to this calculation, see [13]. For the present work, it will suffice
to assume the following

Assumptions 3.1. Assume that for every γ ∈ Γ, the Radon-Nikodym derivative∣∣∣ dPγ
dP

∣∣∣ exists.

Note that this requires absolute continuity of the measures, and in particular P
must allow scattering in the same directions (at the same points) as Pγ .

Although fast, Tn can be significantly improved by using (for relatively small n)
information from a simulation that used very large n. This is where we depart from
the previously mentioned perturbation Monte Carlo schemes.

We first generate nmax paths using the reference measure P. Denote by Hν
max

the collection of paths ωk ∈ Dν . That is,

Hν
max : =

{
ω1, . . . , ωnmax

}
∩Dν .

For ν = 1, . . . ,m, let

Hν
1 ⊂ Hν

2 ⊂ · · · ⊂ Hν
max,

be nested subsets of Hν
max of (fixed, deterministic) size |Hν

j |. Note that Hν
j , Hν

max

consist of i.i.d. draws from P[· |Dν ]. Since |Hν
max| = n−1

max

∑nmax
k=1 1Dν (ωk), we have

CovP (|Hν
max|, |Hµ

max|) =
1

nmax

{
P[Dν ]− P[Dν ]2, ν = µ
−P[Dν ]P[Dµ], ν 6= µ.
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Above CovP (X,Y ) is defined as in (11) and the subscript P makes it clear that
expectations are with respect to the measure P. Although {|Hν

max|}mν=1 are nega-
tively correlated, so long as |Hν

j | may be selected independently of Hν
max, the sets

Hν
j are independent. We will always ensure this condition holds.

Our improvement on Tj is Fj = (F 1
j , . . . , F

m
j ) where

F νj (γ) : =
|Hν

max|
nmax

1

|Hν
j |

∑
ωk∈Hνj

∣∣∣∣ dPγ
dP

∣∣∣∣(ωk)(24)

Notice that if P = Pγ , then F νj sums |Hν
j | i.i.d. draws from P[· |Dν ], and each of

them scores a hit |Hν
max|/nmax. In other words, up to the approximations Pγ ≈ P,

and |Hν
max|/nmax ≈ P[Dν ], F νj (γ) sums |Hν

j | random variables, each one recording
the exact solution. Hence (up to these approximations) F νj (γ) computes P[Dν ] with
zero variance.

On the practical side, for j < j′, Hν
j ⊂ Hν

j′ , and therefore computation of Fj′ is
quicker after computation of Fj is done.

We collect this and other facts in a lemma

Lemma 3.1.

CovP (|Hν
max|, |Hµ

max|) =
1

nmax

{
P[Dν ]− P[Dν ]2, ν = µ
−P[Dν ]P[Dµ], ν 6= µ.

The sets {Hν
j }, are independent, and for all j, the set Hν

j consists of |Hν
j | i.i.d. draws

from dP[· |Dν ] = P[Dν ]−11Dν dP. Conditioning on |Hν
max| does not change this:

dP [ω |Dν , |Hν
max|] = dP [ω |Dν ] =

1Dν (ω) dP(ω)

P[Dν ]
.

The next theorem shows that Fj is unbiased. See the appendix A for the proof.

Theorem 3.2.

EP {Fj(γ)} = Eγ {1D} = Pγ [D].

Remark 3. Since |Hν
j | is deterministic, it follows that F νj (γ) is a sum of |Hν

j |
unbiased random variables and so by the strong law of large numbers, for fixed x,
Fj(x)→ F∞(x) a.s.. It is straightforward then to show that with probability one,
Fj(x)→ F∞(x) for a.e. x. Equation (7) then follows.

The following theorem shows that in the limit dPγ → dP, and |Hν
max| → ∞,

the F νj (γ) are uncorrelated zero-variance estimates of Pγ [Dν ]. See appendix A for
a proof.

Theorem 3.3. As nmax →∞,

VarP {Fj(γ)}νµ → δµν
P[Dν ]

|Hν
j |

∫
Dν

(∣∣∣∣ dPγ
dP

∣∣∣∣(ω)− Pγ [Dν ]

P[Dν ]

)2

dP(ω).

Remark 4. A similar calculation shows that

VarP

{
Tnj (γ)

}
νµ

=
1

nj


∫
Dν

(∣∣∣∣ dPγ
dP

∣∣∣∣− Pγ [Dν ]

)
dPγ , ν = µ

−Pγ [Dν ]Pγ [Dµ], ν 6= µ.
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One can replace (in the expression for VarP {Fj}) |Hν
j | with the approximation

njP[Dν ] and see that VarP {Fj(γ)} � VarP

{
Tnj (γ)

}
if dP ≈ dPγ . In other words,

the variance of our unbiased estimator Fj is significantly smaller than the estimator
Tnj typically used in aforementioned perturbation Monte Carlo schemes.

3.3. Path recycling and MC3 . Here we show that the multiple resolution for-
ward models Fj (24) meet most of the assumptions from section 2. As was estab-
lished in remark 3, lemmas 3.2 and 3.3 establish that Fj → F∞ in the sense of
(7). The Gaussian error model Fj(γ) ∼ N (F∞(γ) , Σj(γ)) will be established in
sections 3.3.1. The covariance estimate used in section 2.3 is then established in
section 3.3.2.

Note that since we are recycling paths, different runs of these models are not
independent. This is the only way the Fj do not meet the criteria of section 2.
This fact turns out to be an advantage for practical reasons: Since we expect Fj(x)
and Fj(y) to be positively correlated for x near y, we see that µ̂2

j (an estimate of
the variance in our acceptance-ratio estimate, see (26)) will be significantly lower.
Thus, we are able to use fewer paths to determine acceptance/rejection. If we were
using an optimization-based inversion method, a similar phenomenon would occur.
The general theme is that if X and Y are random variables (say some functions
of Fj(x), Fj(y)), then Var {X − Y } = Var {X}+ Var {Y } − 2Cov (X,Y ). In other
words, error in the differential measurements is reduced. This is absolutely essential
since if x is close to y, we expect |F∞(x) − F∞(y)| � Var {Fj(x)} unless j is very
large.

3.3.1. Characterization of the model error. We use lemma 3.3 and the central limit
theorem to characterize the error. We estimate this using standard techniques. The
result is that we approximate Fj(γ) as following a N (Pγ [D] , Σj(γ)) distribution,
where

Σj(γ) : = diag
{
σ1
j (γ), . . . , σmj (γ)

}
,

σνj (γ) : =

(
|Hν

max|
nmax

)2
1

|Hν
j |

1

|Hν
j | − 1

∑
ωk∈Hνj

(∣∣∣∣ dPγ
dP

∣∣∣∣(ωk)−
F νj (γ)

|Hν
max|/nmax

)2

.
(25)

The final sum is the standard estimate of the variance of the random variable∣∣∣ dPγ
dP

∣∣∣(ωk).

3.3.2. The estimate of µj. For our confidence interval in section 2.3 we need to
estimate

µ2
j : = ∇ϕ(X̄, Ȳ )TCov (X,Y )∇ϕ(X̄, Ȳ ),

where

ϕ(X,Y ) : = |X|2 − |Y |2, and for ν = 1, . . . ,m

Xν : = dν − F νj (γ) = dν − |H
ν
max|

nmax

1

|Hν
j |

∑
ωk∈Hνj

∣∣∣∣ dPγ
dP

∣∣∣∣(ωk),

and Y ν is defined similarly. We also have X̄ := EP {X}, Ȳ := EP {Y }. This is

easy since the variables
∣∣∣ dPγ

dP

∣∣∣(ωk) are i.i.d. and due to Theorem 3.3 we have an
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asymptotic variance estimate. As a result (see appendix B), a consistent estimator
is

µ̂2
j : = 4

m∑
ν=1

[
(Xν)

2
VarP {Xν} − 2XνY νCovP (Xν , Y ν) + (Y ν)

2
VarP {Y ν}

]
.

(26)

The question arises, “how large should |Hν
j | be before we believe the CLT ap-

proximation?” Using a theorem on the remainder in a CLT approximation we arrive
at the following scaling criteria (see appendix B)√

#
{
ωk ∈ Hν

j : ωk hits the plume
}
� 1.(27)

In the process of computing the weights
∣∣∣ dPγ

dP

∣∣∣ we can easily keep track of whether

or not the plume was hit. We thus choose our lowest resolution level high enough
so that (27) is met.

3.4. Numerical verification/performance of forward model. The accuracy
of our forward model (24) was verified. In particular, we conducted a variety of
tests where

(i) A Monte Carlo simulation of transport in an atmosphere parameterized by γ
was run until the relative mean square error was less than 1/3%. The mean
is stored as M(γ).

(ii) Another Monte Carlo simulation was run in an atmosphere parameterized by
γ0 = (0, 0, 1, 0, 0) (no plume and baseline atmosphere). The paths are stored.

(iii) The paths from (ii) are used in the forward model (24) to compute Fj(γ).

The forward model “passes” if

• |Fj(γ)−M(γ)|/M(γ) ≤ 0.01 when j is at the highest resolution level
• As y 6= γ becomes sufficiently different than γ, the relative error |Fj(y) −
M(γ)|/M(γ) becomes much worse than 1%

The forward model was seen to pass for a variety of γ.
The performance increase is dramatic. For example, it took 11,727 minutes to

generate approximately 231 million paths (of which 1/348 hit the detector). These
paths can be recycled in only 30.9 seconds (22,770 times quicker). One might have
expected a speed-up of only about 348 times. The dramatic difference is due mostly
to the fact that the original paths were cast using complicated Python code that
explicitly stepped the photons through their path, while the much simpler recycling
could be done using optimized Cython code. In any case, recycling paths only
involves computing a ratio of weights, and in many cases may be much quicker than
sending the original paths.

4. Use in an inverse problem. Here we combine the forward models from section
3 in a Bayesian inverse problem fitting the framework of section 2.

The scene is a sunlit valley with reflecting mountain, a detector located on the
right side, and an absorbing plume to be reconstructed. See Figure 4. The plume
is parameterized by γ = (α, xp, zp, ρ, c) where α is the plume absorption, (xp, zp)
is the plume center, ρ is the plume radius, and c is the atmospheric constant. We
assume γ ∈ Γ (defined in (21)). Our prior density fprior(γ) is

fprior(γ) ∝ 1[0,∞)(α)α1/2e−α · 1[−0.25,0.25](xp) · 1[2.2,2.7](zp) · 1[0,1](ρ) · 1(−c0,c0)(c).

(28)
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In other words, we assume all components are independent with α being Gamma
distributed, and all the others being uniform.

Figure 5. Two marginal posteriors. Plotted is a histogram from
an MC3 run with (i, jmax, λ) = (6, 15, 0.99). (The two-level and
other MC3 results were almost identical to this result.) Also shown
are the prior, the posterior from a one-level j = 6 run, and the
posterior mean (from the MC3 run) as well as the prior mean and
true value.

We ran a Monte Carlo forward simulation in an atmosphere containing a plume
to generate the “noiseless” data. A separate set of paths was then generated for
use in the inverse problem. We added Gaussian noise corresponding to an SNR
of 10. We then sampled from the posterior using the MC3 algorithm using initial
resolution level i = 6, jmax = 15, and confidence λ = 0.90. This is compared with
two-level scheme at i = 6, j = 15 and one-level scheme at j = 6. One can see that
MC3 generates virtually the same posterior as the more expensive two-level scheme.
The difference could be entirely attributed to the finite number of samples used to
construct the histogram. The one-level scheme at j = 6 has too low resolution:
the likelihood is too broad and hence the posterior π6 closely follows the prior. We
also ran MC3 simulations with λ = 0.70, 0.99 and observed results similar to those
obtained with λ = 0.90.

From the practical standpoint, we find that the horizontal position xp and the
plume absorption and plume radius are reasonably reconstructed, in the sense that
the posterior marginals are much tighter than the prior marginals for these pa-
rameters. The reconstruction of the vertical position z of the plume remains very
inaccurate: The true value is near the tail of the posterior. The Bayesian framework
allows us to quantify such statements and the MC3 algorithm allows us to do so at
a more reasonable computational cost than other methods.
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5. Conclusions and outlook. A coherent framework was presented for solving
Bayesian inverse problems when the forward model involves Monte Carlo. Path-
recycling yields efficient multi-resolution forward models for use in the Bayesian
framework, though the utility of these models is not restricted to Bayesian inference.
In this context, however, MC3 takes advantage of multi-resolution forward models
to quickly draw from the posterior distribution. Its application is not limited to
the forward models considered here; MC3 may be used separately whenever multi-
resolution forward models are available with tight probabilistic error estimates.
MC3 was shown to be robust with respect to the choice of initial resolution level

i and confidence λ: the discrepancy for finite i and λ < 1 was quantified in a
simple toy model, and shown to be small in our transport problem (which used
path-recycling). This does not provide strict parameter choice rules for (i, λ) as
would be desirable. However, a reasonable procedure was explained and verified in
sections 2.5 and 4. In general, the forward-model-time/1000-effective-samples for
MC3 at levels i, jmax is superior to that of a two-level MCMC scheme at i, j = jmax
(we experienced two to nine times speedup), but slower than a one-level scheme at
resolution i. The latter, however, may be extremely inaccurate. The efficiency gain
provided by MC3 rises significantly when higher resolution is desired.

We see path recycling as a necessary element in solving any inverse problem
with a Monte Carlo forward model. We see MC3 as a great time saver in Bayesian
applications. Future work should provide further intuition and ideally some concrete
results about parameter choice. We also mention that the MC3 scheme could be
adapted to forward models that are not Monte Carlo, yet that are endowed with
tight error estimates.

Appendix A. Proofs.

Proof of Theorem 2.1. The proof of Theorem 2.1 follows standard techniques. We
include it since the chain in algorithm 4 is not a Metropolis-Hastings scheme and
so some care must be taken.

If λ = 1 then the result is trivial so assume in the sequel that λ ∈ (0, 1). We
first show that the density πλ is well-defined. Since Rλ is a convex combination
of ri∞(x) and 1 − ri∞(x), we have 0 < Rλ < 1. Therefore, λ ≤ mλ and thus
0 < π∞/mλ ≤ π∞/λ is integrable and we can normalize it to define the density πλ.

Second, we show

Kλ(x, y)πλ(x) = Kλ(y, x)πλ(y).(29)

In other words, the chain in algorithm 4 satisfies the detailed balance equation with
distribution πλ. To that end we re-write

Kλ(x, y) = mλ(x)qi(y |x)βi∞(x, y) + (1−Rλ(x))δx(y).(30)

Also note that

βi∞(x, y) : = min

{
1,
qi(x | y)π∞(y)

qi(y |x)π∞(x)

}
= min

{
1,
qi(x | y)mλ(y)πλ(y)

qi(y |x)mλ(x)πλ(x)

}
.

(29) then follows. Thus πλ is an invariant distribution of Kλ.
To show the convergence results we assume (i) and (ii) and proceed to show

irreducibility, a-periodicity, and Harris recurrence.
Let x0 ∈ E+ and Kn

λ (x0, ·) be the transition kernel associated with n steps of the
chain starting at x0. Let B ⊂ E+ with

∫
B
π∞(y) dy > 0. Irreducibility will follow
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once we show Kn
λ (x0, B) > 0 for some n. To that end first note that

Kλ(x, y) ≥ λq(y |x)αi(x, y)βi∞(x, y).(31)

Second, some algebra shows that

αi(x, y)βij(x, y) = min

{
1,
πi(x)πj(y)

πi(y)πj(x)
,
q(x | y)πi(y)

q(y |x)πi(x)
,
q(x | y)πj(y)

q(y |x)πj(x)

}
.(32)

Third, find a bounded open set G with x0 ∈ G and
∫
G∩B π∞(y) dy > 0. We then

have δ, Ci, Di, Cq such that for all x, y ∈ G with 0 < |x− y| < δ, the inequalities of
(i) and (ii) are satisfied. Then, using (31), (32) we have (for x, y ∈ G, |x− y| < δ)

Kλ(x, y) ≥ λπ∞(y)Cq min
{

1, CiDi , Ci

}
.

We finally link x0 to B with n open balls Bk ⊂ G of diameter less than δ,
Bi ∩Bi+1 6= ∅, Bn ∩B 6= ∅. It follows that (for a new constant C > 0)

Kn
λ (x0, B) ≥ C

∫
B∩Bn

· · ·
∫
B2∩B1

π∞(yn) · · ·π∞(y1) dy1 · · · dyn > 0.

Hence the chain is π∞ irreducible.
A-periodicity follows since by choosing a small enough ball Bx0

3 x0, one can
show that Kn

λ (x0, Bx0
) > 0 for all n.

We now show Harris recurrence. The proof here follows more-or-less lemma 7.3
in [17] or corollary 2 in [18]. and relies on showing that the only bounded harmonic
functions are constant. Recall that a function h is harmonic with respect to our
chain if E

{
h(X1) |X0 = x0

}
= h(x0). Since πλ is an invariant probability measure

of the chain, the chain is recurrent by proposition 6.36 of [17]. As in lemma 7.3
from [17] this implies that h is πλ almost everywhere equal to a constant h̄. To
show that h is constant everywhere (on the support of πλ) we write

h(x0) = E
{
h(X1) |x0

}
=

∫
Kλ(x0, x1)h(x1) dx1

=

∫
mλ(x0)qi(x1 |x0)βi∞(x0, x1)h(x1) dx1 + (1−Rλ(x0))h(x0).

The above integral is unchanged if we replace h(x1) by h̄. Then since
∫
mλqiβi∞ dx1

= Rλ(x0) we have Rλ(x0)
(
h̄− h(x0)

)
= 0. The irreducibility portion of this proof

shows that Rλ > 0, hence h(x0) = h̄ and h is constant.
Having shown the chain is Harris recurrent and a-periodic with invariant mea-

sure π∞, the convergence results follow directly from Theorems 6.63, 6.51, and
proposition 6.52 in [17].

Proof of Theorem 3.2. Using lemma 3.1, we have that EP

{
F νj (γ)

}
is equal to

EP

 |Hν
max|

nmax

1

|Hν
j |
EP

 ∑
ωk∈Hνj

∣∣∣∣ dPγ
dP

∣∣∣∣(ωk) | |Hν
max|




= EP

{
|Hν

max|
nmax

1

|Hν
j |
|Hν

j |EP

{∣∣∣∣ dPγ
dP

∣∣∣∣ |Dν

}}

= EP

{
|Hmax|
nmax

Pγ [Dν ]

P[Dν ]

}
= Pγ [Dν ].

The last equality follows since EP {|Hmax|} is the expected number of hits in Dν ,
equal to nmaxP[Dν ].
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Proof of Theorem 3.3. Writing |Hν
max|/nmax = (|Hν

max|/nmax − P[Dν ]) + P[Dν ],
and similarly for µ, we can express CovP

(
F νj , F

ν
j

)
as

VarP

P[Dν ]

|Hν
j |

∑
ωk∈Hνj

∣∣∣∣ dPγ
dP

∣∣∣∣(ωk)


plus terms that tend to zero as nmax → ∞ (due to lemma 3.1). We now compute
the variance of this term, keeping in mind that the ωk ∈ Hν

j are i.i.d. draws from
P[· |Dν ].

VarP

P[Dν ]

|Hν
j |

∑
ωk∈Hνj

∣∣∣∣ dPγ
dP

∣∣∣∣(ωk)

 =
P[Dν ]2

|Hν
j |

∫
Ω

(∣∣∣∣ dPγ
dP

∣∣∣∣(ω)− Pγ [Dν ]

P[Dν ]

)2

dP[ω |Dν ]

=
P[Dν ]

|Hν
j |

∫
Dν

(∣∣∣∣ dPγ
dP

∣∣∣∣(ω)− Pγ [Dν ]

P[Dν ]

)2

dP(ω).

(33)

This is the statement of the theorem.

Appendix B. Estimate of µj and the scaling criteria. Note that

CovP (X,Y ) : =

(
VarP {X} CovP (X,Y )

CovP (Y,X) VarP {Y }

)
,

where due to the approximate independence of the components (true as nmax →∞)

VarP {X} ≈ diag (VarP {Xν}) , VarP {Y } = diag (VarP {Y ν})
CovP (X,Y ) ≈ CovP (Y,X) = diag (CovP (Xν , Y ν)) ,

Since X, Y are sums are i.i.d. random variables, we can estimate the covariance
using Theorem 3.3 (this is similar to (25)).

VarP {Xν}

≈
(
|Hν

max

nmax

)2
1

|Hν
j |

1

|Hν
j | − 1

∑
ωk∈Hνj

(∣∣∣∣ dPγ
dP

∣∣∣∣(ωk)−
F νj (γ)

|Hν
max|/nmax

)2

,

and

CovP (Xν , Y ν)

≈
(
|Hν

max

nmax

)2
1

|Hν
j |

1

|Hν
j | − 1

×
∑

ωk∈Hνj

(∣∣∣∣ dPγ
dP

∣∣∣∣(ωk)−
F νj (γ)

|Hν
max|/nmax

)(∣∣∣∣ dPy

dP

∣∣∣∣(ωk)−
F νj (y)

|Hν
max|/nmax

)
.

(34)

To compute µ̂2
j ≈ µ2

j , we note that ∇ϕ(X,Y ) = 2
(
X1, . . . , Xm,−Y1, . . . ,−Y m

)
,

Var {(X,Y )} =

(
diag (VarP {Xν}) diag (CovP (Xν , Y ν))

diag (CovP (Xν , Y ν)) diag (CovP (Xν , Y ν))

)
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So we have ∇ϕ(X̄, Ȳ )TCov (X,Y )∇ϕ(X̄, Ȳ )

≈ 4

m∑
ν=1

[
(Xν)

2
VarP {Xν} − 2XνY νCovP (Xν , Y ν) + (Y ν)

2
VarP {Y ν}

]
:= µ̂2

j .

Our estimate (34) satisfies |CovP (Xν , Y ν) | ≤ (VarP {Xν}VarP {Y ν})1/2 (with

equality if and only if
∣∣∣ dPγ

dP

∣∣∣(ωk) − Fj(γ) =
∣∣∣ dPy

dP

∣∣∣(ωk) − Fj(y) for all ωk ∈ Hν
j ).

This implies

(Xν)
2

VarP {Xν} − 2XνY νCovP (Xν , Y ν) + (Y ν)
2

VarP {Y ν}

≥
(
Xν
√

VarP {Xν} − Y ν
√

VarP {Y ν}
)2

≥ 0,

so our estimate µ̂2
j will be non-negative and will be zero if and only if∣∣∣∣ dPγ

dP

∣∣∣∣(ωk)− Fj(γ) =

∣∣∣∣ dPy

dP

∣∣∣∣(ωk)− Fj(y), ωk ∈ Hν
j .(35)

We now derive (27). Consider the following heuristic argument: Start by writing
Xν = X̄ν + δXν , Y ν = Ȳ ν + δY ν . Next, provided ρ is small enough, most shots do
not interact with the plume and so to first approximation Xν ≈ Y ν . As a model
for this, we write, Y ν ≈ Xν − aZν where a � 1 is the effect of plume interaction

and Zν = |Hν
j |−1

∑|Hνj |
k=1 Z

ν
k with P[Zνk = 1] = pν , and P[Zνk = 0] = 1− pν . Now

ϕ(X,Y ) = |X̄ + δX|2 − |Ȳ + δY |2 =

m∑
ν=1

|X̄ν + δXν |2 − |Ȳ ν + δY ν |2,

and ignoring terms cubic in the small variables a, δ we have

|X̄ν + δXν |2 − |Ȳ ν + δY ν |2 = |X̄ν + δXν |2 − |X̄ν − aZ̄ν + δXν − aδZν |2

≈
[
2aX̄νZ̄ν − (aZ̄ν)2

]
+ 2aX̄νδZν .

The term in brackets is deterministic, and the next is

2aX̄
1

|Hν
j |

|Hνj |∑
k=1

(
Zνk − Z̄ν

)
, Zνk ∼ Bernoulli(pν).

So, essentially we are concerned with a CLT approximation for a sum of |Hν
j |

Bernoulli(pν) random variables. Consider the following theorem

Theorem B.1 ([6]). Let Z1, . . . be i.i.d. with EZi = 0, E|Zi|3 < ∞. If Dn is the
distribution of (Z1 + · · ·+ Zn)/(nEZ2

1 )1/2, and N (x) is that of a standard normal,
then

|Dn(x)−N (x)| ≤ 3
E|Z1|3√
n(EZ2

1 )3/2
.

With Zν1 ∼ Bernoulli(pν) (pν � 1), we have E|Zν1 − Z̄ν1 |i ≈ pν for i =
2, 3 and so the right hand side in Theorem B.1 is ≈ 3/(pν |Hν

j |)1/2. Since pν ≈
#
{
ωk ∈ Hν

j : ωk hits the plume
}
/|Hν

j |, our scaling criteria is√
#
{
ωk ∈ Hν

j : ωk hits the plume
}
� 1.
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