
Spatial Contexts:
An Interactive Environment for Personal Design

by
Jonathan Scott Linowes

Bachelor of Fine Arts
Syracuse University
Syracuse, New York

1979

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE

DEGREE
MASTER OF SCIENCE IN VISUAL STUDIES AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February, 1986

O Jonathan Scott Linowes, 1986
The Author hereby grants to M.I.T. permission
to reproduce and distribute publicly copies
of this thesis document in whole or in part.

Signature of the author
Jonathan S. Linowes

Pepartmen o Arphitecture
7 uy 15, 1985

Certified by
CMuriel R. Cooper

Associate Professor of Visual Studies
Thesis Supervisor

Accepted by
r Nichola P. Negroponte

Chairman
Departmental Committee on Graduate Students

Archives
MASSACHUSETTS INS--TIT

OF TECHNOLOGY

FER 0 3 1986
LIBRARIES

MITLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://Iibraries.mit.eduldocs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The images contained in this document are of
the best quality available.

Spatial Contexts:
An Interactive Environment for Personal Design

by
Jonathan Scott Linowes

Submitted to the Department of Architecture, MIT
on January 17, 1986

in partial fulfillment of the requirements for the degree
Master of Science in Visual Studies

ABSTRACT

Personal workspaces are places where one comfortably
gets work done organizing information and exploring ideas.
Information is organized by moving things around, drawing
associations and making piles. Ideas are explored by
creating sketches and plans and then editing and refining
them, moving between levels of detail and abstraction. For
personal computers to support individual styles of problem
solving and design they must exhibit the qualities that make
ordinary workspaces feel personal.

The system design for an interactive environment,
Spatial Contexts, is presented that provides a framework for
building computer-based personal workspaces, drawing upon a
number of interaction metaphors. A prototype system has been
developed and demonstrated on a color graphics computer
workstation with an object-oriented software architecture.

In Spatial Contexts, three principal classes of objects
are defined: Elements- singular objects referencing specific
information; Containers- objects that contain other objects
for compositions, groups and hierarchies; and Tools-
functional objects that are applied to other objects.
Complex workspaces can be built from these, for applications
that include page layout, animation storyboarding, spatial
data management and semantic knowledge representation.

Thesis Supervisor: Muriel Cooper
Associate Professor of Visual Studies

Director, Visible Language Workshop, MIT

1

ACKNOWLEDGMENTS

It is a pleasure to thank the people who have assisted
me in producing this thesis.

My thesis supervisors, Muriel Cooper and Ron MacNeil,
provided continued support and encouragement as I struggled
to focus my ideas, develop software, and help build the VLW
laboratory research environment.

The thesis committee showed much patience while
offering a critical eye, included Steven Benton, Lois Craig,
Henry Leiberman, and Patrick Purcell. Don Hatfield and Alan
Kay offered stimulating discussions early in the
development.

Research assistantship support were granted principly
by Dr-Ing. Rudolf Hell, GmbH of Kiel, Germany, with
additional support from Toshiba Corp.

Special thanks to the graduate and undergraduate
students who played a part in the discussion and
implementation of these ideas. In particular, Dimitry
Rtischev's and Robert Mollitar's programming wizardry were
invaluable.

Finally, my family was an unlimited source of support,
especially Lisa who married me during these maddening times,
and our cats: Winchester, Fractal, Ubu, and Sid who put up
with my obsessive persistence (and I with theirs).

2

TABLE OF CONTENTS

INTRODUCTION ..6

Section 1. CONCEPT

1.1 PERSONAL DESIGN WORKSPACES

1.1.1 Personal workspaces are dynamic inhabited spaces
where one organizes things and develops ideas 10

1.1.2 Work environments are composed of many integrated
workspaces that evolve as one works 13

1.1.3 Objects in the environment are organized
spatially and symbolically16

1.1.4 Structured design methods provide guidance by
constraining the process and limiting choices 19

1.1.5 Informal design methods encourage experimentation
and innovation.....................................25

1.1.6 Various spatial, temporal and detail
representations are used during design 27

1.2 COMPUTER METAPHORS

1.2.1 Computer graphic workspaces rely on the sensation
of direct manipulation of simulated objects 33

1.2.2 Electronic workspaces are metaphors for real
world workspaces35

1.2.3 Workspaces can be explored and edited by perusing
and arranging data resources37

1.2.4 Workspaces are programmed by assembling objects
into functional models40

1.2.5 New and refined objects are defined relative to
existing ones 43

1.2.6 Objects in the workspace are associated by
property values and arbitrary semantic
connections .. 45

1.2.7 Electronic workspaces need to integrate with our
everyday workspaces47

3

Section 2. SCENARIO

2.1 USER MODEL

2.1.1 Users sitting at the Spatial Contexts system are
encouraged to explore, synthesize and massage
their work ... 50

2.1.2 A new environment contains the Main Cabinet and a
Main Toolbox for the system's elements,
containers and tools52

2.1.3 High level application environments can be built
from these primitives as the user works 55

2.2 TASKS

2.2.1 Setup a new job by collecting objects into a Job
container ... 57

2.2.2 Setup workspaces by arranging the job components
and tools .. 59

2.2.3 Begin sketching a few ideas for the layout 61

2.2.4 Refine a sketch into a layout63

2.2.5 Edit an image on a page by cropping and color
retouching ..65

2.3 OBJECTS

2.3.1 Elements are singularly defined units of
information with properties and form67

2.3.2 Containers are objects that contain and constrain
other objects 73

2.3.3 Tools are functional objects one uses to edit
other objects and peruse the environment 78

4

Section 3. ARCHITECTURE

3.1 SYSTEM ORGANIZATION

3.1.1 Spatial Contexts software is organized in a
layered architecture with objects 90

3.1.2 The system is demonstrated on a color graphic
personal computer workstation95

3.1.3 Application level objects are built from graphic
elements, containers and tools99

3.2 OBJECT ARCHITECTURE

3.2.1 All objects have the same basic structure, and
are classified by their Class and Type 103

3.2.2 An object's Profile holds maintenance properties ..106

3.2.3 An object's Form defines device level properties
for high speed display and interaction 107

3.2.4 Links define qualified associations between
objects, include "isa", "home" and

3.2.5 Methods are operations an obje
response to messages

3.3 SUB-SYSTEM FUNCTIONS

3.3.1 Main System Driver

3.3.2 Object Management Subsystem ..

3.3.3 Display Subsystem

3.3.4 Input Subsystem

3.3.5 Memory and Database Subsystems

"contained by"..108

ct performs
...........

in
...109

..................... 114

.....................116

..................... 119

..................... 127

.................... 130

CONCLUSION ..131

BIBLIOGRAPHY133

5

..

INTRODUCTION

Design is both a cognitive and physical process of

discovery and creation. It is not limited to the jobs of

professional designers, such as graphic artists, architects

and engineers, but is integral to everyday human activities

of planning, problem solving and organization. Where there

is decision making, there is design. Design involves

planning what to do, deciding how to do it, and working to

do it right.

Computers allow us to look at situations in ways never

before possible, for modeling, simulation and information

organization. They are changing the way we work. If tasks

are to be moved to the computer workstation, so must the

qualities of design and creativity that make the work

challenging, rewarding and personal. Workstations must

become personal workspaces.

Page layout design has a history in conventional media,

yet it is an application whose tasks are increasingly being

supported in personal workstations. Graphic designers are

typically not computer users, preferring hands-on work. They

like to play with paper as they play with ideas, arranging

visual elements to explore new compositions.

6

Such interactivity with one's work is also true for

many other tasks, including those based in today's

electronic information media. The role of designer (author,

producer) and user (reader, consumer) are converging as each

of us becomes more active in the selection, production and

presentation- the personal design- of our own information.

This thesis is an exploration of design as an

interactive personal process and the implications for

electronic computer-based workspaces.

Section One, CONCEPT, asserts that spatial organization

and spatial thinking are integral to problem solving. The

notion of "personal design workspaces" is defined as both

the physical and mental organization of objects during the

design process. Then, a number of key characteristics of

computer-based workspaces are identified that can support

personal design, drawing upon recent metaphors of human-

computer interaction.

Section Two, SCENARIO, presents an experimental user

interface system, Spatial Contexts, as an example of an

interactive environment that becomes an evolutionary

personal workspace. A sequence of interaction scenarios

7

demonstrate how workspaces evolve as one's work develops.

The properties and behaviors of particular objects are

defined.

Section Three, ARCHITECTURE, specifies the

implementation of the system using a color graphic computer

workstation and an object-oriented software architecture.

The user works with top level application-specific objects

built from the principal object classes: graphic elements,

containers, and tools. The application is supported by the

sub-system libraries for object, display, input, memory and

database management.

The software program that accompanies this document is

a prototype for a Spatial Contexts system, demonstrating

many of the key system concepts defined here.

8

"All who use computers in complex ways are using

computers to design or to participate in the

process of design. Consequently we as designers,

or as designers of design processes, have had to be

explicit as never before about what is involved in

creating a design and what takes place while

creation is going on." Herbert A Simon [SIMON'81].

SHOE by "Jeff MacNelly

?V:59E S1 M EVERYIWUMIr EGE, AY. IUWCOME IN ANY
MPE IA O CAA CNr..

coN 3V6T AF0Ur
IEg'r PEROWAL COMPUTER

WIt.L WAVE A PER60N!...

9

Section 1. CONCEPT

1.1 PERSONAL DESIGN WORKSPACES

1.1.1 Personal workspaces are dynamic inhabited spaces where

one organizes things and develops ideas.

When you move into an empty new office, it may feel

uncomfortable at first, equipped with a strange desk and

bare shelves. But soon the office becomes your own as you

move in, get to work and begin to inhabit the space. It

becomes your personal workspace, where you organize papers

and notes, make piles, file things away for later retrieval.

Thomas Malone has examined ways people organize their

offices, and the implications for the design of office

systems [MALONE'83]. He asserts that spatial organization of

work is a function of both the working style of a person and

his particular task.

The organization of material on one's desk is not just

to facilitate information retrieval, but to be reminded of

tasks to do. Certain piles represent work in similar states

of completion. Materials on a desk are edited, shuffled

around and accumulated dynamically as work progresses.

10

Malone notes that "the cognitive difficulty of

categorizing information" is an important factor in

explaining how people organize their desks. Piles are

loosely defined groups whereas files contain named and

ordered elements. Piles are less tedious to use than files,

but are inexact and informal (Figure 1-1).

Electronic information workspaces must allow the user

to build piles, and should assist the user with information

categorization and filing.

11

Piles
organi c
unnamed
associated
unordered
spatial

Files
organized
named
grouped
sorted
symbolic

Figure 1-1. Piles vs Files

12

1.1.2 Work environments are composed of many integrated

workspaces that evolve as one works.

At the studio office, the graphic designer has a

personal work environment that has evolved through the day

to day habitation of the space. It is made of work areas for

editing ideas, reviewing work in progress, arranging

information, and collecting tools (Figure 1-2).

The drawing board is the space for generating and

editing ideas. We all have had to "go back to the drawing

board" now and then. Plans and prototypes are designed in

this primary editing space. There may be several drawing

boards simultaneously when (1) more than one problem is

worked on at a time, (2) there are several approaches to a

single problem, and (3) a single idea is represented in

various levels of abstraction and refinement.

As work progresses, one often needs to step back and

evaluate the overall flow and rhythm of a project or design.

Sketches and miniatures are posted and reviewed on the

tackboard. This is useful for sequencing, as well as

tracking progress and communicating with others on the

project.

13

Other spaces include cabinets, shelves and drawers.

Design and problem solving more often requires the

arrangement and combination of existing material than the

generation of completely new work. Components are stored,

retrieved, collected and arranged in these reference spaces

as they are brought into play.

Toolboxes contain various tools and other small items.

Designers have many tools, though only a few are used most

frequently. These tend to be collected near the work areas,

in the context of the work. The usage of a tool depends on

its context: as a function of the tool, the object it is

applied to, and the purpose of the action. For instance, a

pencil is ordinarily used to make marks on paper, however it

can also punch holes in the paper. Tools are used to

transform components of the design, edit things, and even

modify other tools, as a pencil sharpener sharpens pencils.

Personal workspaces are made of task components and

tools arranged into work areas. One should be able to

similarly configure their own electronic workspaces.

14

Flaure 1-2. Sketch of a Granhic Deslan Studio

Personal Design Workspaces

- DRAWING BOARD: edit, compose, experiment

- TACKBOARD: evaluate, sequence, review

- REFERENCE SPACE: store, retreive, collect, arrange

- TOOLBOX: tools, utensils, gadgets

1.1.3 Objects in the environment are organized spatially and

symbolically.

Chunking and layering are primary principles of

organizing information in the human mind [MILLER'76]. A

chunk is a symbolic object of arbitrary complexity, built on

hierarchical layers, and handled as a single entity.

Chunking allows one to synthesize mental models that are

manipulated as unique entities, and perceive trends and

patterns in information. Personal workspaces reflect the

mind's chunking and layering activity, as items are

spatially arranged and hierachically grouped.

Mental organization can be highly symbolic, but is

greatly aided by spatial references and visualization.

Inherently non-spatial concepts can be graphically

represented, providing visible maps of the mind

[FILLENBAUM'71, HAMPDEN'81, SCHUBERT'83]. Figure 1-3 shows a

formal psychological study where emotional names were

spatially arranged and clustered, and, more personally, a

map of activities in the author's life. Expressing concepts

geometrically helps make them more concrete and tractable,

as the spatial-visual 'right brain' supports the linguistic-

symbolic 'left brain'.

16

The inverse is also true- physical objects can be

related to one another in many ways other than simply their

physical position. Tools may be scattered about an office,

but each is still a kind of tool. A photograph may lie in a

pile of photos for a particular document, but still is

associated with others by the same photographer, of the same

subject, etc.

One draws both spatial and symbolic associations

between objects. Electronic workspaces should allow users to

freely express and edit association maps between objects.

17

Fig. 6-9. I wo-dunensaunal -ude an eprewntatun for Group LICS.

[from Fillenbaum, Structures in the Subjective Lexicon]

Spatial arrangement and statistical clustering of
emotional names from four groups of human subjects.

A flap of Activities In the Authors Life

Figure 1-3

is.6.11. I wo-dimnnonu~al 1-ueiicanl re~prewntaloun for Group I- K

18

1.1.4 Structured design methods provide guidance by

constraining the process and limiting choices.

Structured design methods help us understand the design

process and offer effective techniques. Design activities

are organized into components and stages of completion. The

problem domain is structured as though it is inherently

organized and defined, just waiting to be discovered. To

find a solution means to map a path through the objects,

operations, subgoals and constraints that make up the

problem domain. Figures 1-4 and 1-5 show models for graphic

design and software design processes, respectively.

One method of structured design is the top-down

approach with incremental refinement. One starts out

defining the task in general terms, identifying the overall

goals, inherent constraints and prescribed specifications.

The problem is decomposed into a set of subtasks, and the

process of refinement is continued as each level resolves

the goals of the one above until the solution is

satisfactorily mapped out. Nicholas Wirth explains this in

terms of software design: "The programmer sets up a

hierarchy of abstractions, viewing the program first in

broad outline and then attending to one part at a time while

ignoring the internal details of other parts." [WIRTH'84].

19

Graphic artists have many structured systems to work

through design decisions of varying complexity. Karl

Gerstner, for example, considers the grid to be an excellent

example of a systematic design tool [GERSTNER'64]. Offering

a structured approach to spatial layout, the grid is a

"proportional regulator" that offers many intelligent

choices through tight constraints, as in Figure 1-6. Other

structured systems take the form of symmetrical geometry,

ordered tables and matrices, notation systems and three

dimensional models. These are manifestations of the problem

space in which solutions can be mapped.

Graphic designer Allen Hurlburt comments that solving a

design problem is much like running a maze. "The designer

selects a line to follow only to learn that the constraints

he encounters send him back to probe another direction until

he finds a clear path to the solution." [HURLBURT'78].

Finding a solution is then reduced to a search problem

[SIMON'81]. Gerstner reduces it even further, to simply a

matter of making the right choices.

"To describe the problem is part of the solution.
This implies: not to make creative decisions as
prompted by feeling but by intellectual criteria. The
more exact and complete these criteria are, the more
creative the work becomes. The creative process becomes
reduced to an act of selection. Designing means: to
pick out determining elements and combine them."
[GERSTNER,p8.10]

20

Enforcement of structured design systems should be

available in electronic workspaces to help constrain the

user to predefined sequences of operations, limit choices at

specific decision nodes, and maintain components of the work

as they are developed.

21

PROCESS--7-
rm#e Oer~w PwoZ UNi We AS -V~ At #W#.&
A WODR 4'WO1C X AS eA'fryXAS M44/A.*
A we~Is ap x~i5J7,fC Trstm Irw
9&t" FROV4 6&X77A49 A 7Wt 70 =""-4
A WAMYC CXw114 jMWIAVtftDr FO A MASMSV
wATER awmd7 mLwarAmcr 7He~ ow~ mnAE

eAC jWV.f "d4 WOW* aLVAOI. Mr

eAU.W e*"tAMW117lw 00 HOW #W(~iWS 1b
MTKC7CW 71vMI AlrA~e OJ A PPWMC

AO.BMAM SMU77US - 'ANY PA8&IM/44S AV
IIJFRiJ/?1 AP.4W~8 49

FMW&E MIMA' 0wrlog. 'P wa ez4h A2K
7.IlS Ar,r Alit' eM W&DAlI V'S AOM~8WMP
4 600 CM&S 49 "~4 £A A07VlrCW4 /SIJ W4
MAIA Mgt 0W.

IMJMWR AdR m.*ir ac
(Row43 s (oywlr)

VI

A 5ThA4T UA.

Em....
~I4TIF9M

AM4L.

DerLAJ

W~4A

WSUALS

MANY
"IL

04K
IrAM

57~T
Cu',-
CUU AV
P tp i OMe

C44PAMEA
oasr7
2UM, 5

MT

CC A55Sw - P04 AWO WB IAA e)CIO Oi
-~~~wn C/v4 WIe#AZ' CZwd4(Am

A& c6.JrIm

RAEPI

qWArZ.
F 4C PM - eAOk MWWAD AlfP3T MLE

-~ftveyrBuvx J40.CURWAwM
me sy ows smrc1A#9e.Wr
C/4%INA BON4fS TA~64
PM04cK 4MPS. A - e

M7YA

MWt-d4/A Me COI~t SrAWS MJ6et

7AA 4VE >MM/OA U.KE, A MME.

AtRO* R~ EPNFE or-EC4e IMPL1emar

2 t
M/r AMAL'rz AA'AZ7.

PRWfY P~RvcE-S - w ri'e xcer-w P~xen, Jn4e
c-A&Is-IEAjr oF F~ioIT5s

IS C-56VNTLL. X-1Nf kIUST eE A&I rJ16
AAJc 6 4-0 WRE..rwe i" vr4uce oF c~PIrve

As NEY R&AM4T ro a4C Awket7!. p~jIeTE w

3C PQACYTOA A, VA4 6e/rtIA (Aj L;4.1A4(AJJCA4TiASV.

I I I.. i
MCK Min7 ink'6 u0VIcE *SM @Mar

7

(from Barryman, "Notes on Graphic Design and Visual Communication")

FIGURE 1-4 GRAPHIC DESIGN PROCESS

22

cwx-

FIGURE 1-5
THE SOFTWARE DESIGN PROCESS

(from Texas Instruments, Inc.
"Engineering TI Style" manual)

Software Development Process

INKU CON

SYSTEM SPECIFICATION

PROGRAM FRCTIONAL SPECIFICATION
IESI TEST SPECIFICATION AND PROCEDURE

SCHEE DEFINITION

IECHMISMS

Design Phase inputs and Outputs

0SIGN MPECIFICATIOS

Design Phase Paramters

23

ITST PLANRE I Nn

IOLS U"PU

IPROGRUM DESIGN SPECIFICATION

COD AND

rM LIU

(fo Gesnr UsgtgPorme"**UE16GID SAGAHC EINSSE
2m

1.1.5 Informal design methods encourage experimentation and

innovation.

Structured design methodologies try to engineer the

design process, providing discipline and rules. They can be

quite useful and effective, but if taken too seriously in

practice they can become stiff and confining. When a

particular design strategy is rigidly imposed, it turns from

a tool of great potential into a straitjacket.

informal design allows for intuitive discovery and

evolution of technique. Informal design methods encourage

experimentation and innovation. Accidents are allowed to

happen.

There is no single correct solution to any design

problem. Individuals make for individual differences, though

a good solution will be widely recognized as such. One

relies on techniques and rules learned and shared in the

cultural environment of peers and experts. These statements

of conventional wisdom are respected because they work, most

of the time. Whereas structured design rules are meant to be

enforced, informal rules are often stretched to their limits

to control contrast and harmony dynamics.

25

Design problems are evolutionary, not static. The

problem domain changes as the solution emerges, not only in

the sense that the next step is different from the previous,

but the objectives of the design may evolve as well.

Flexibility with old ideas and reception to new ones is

critical.

The user interface to electronic workspaces should

permit the user to relax structured constraints and work

loosely through a problem. Informality is essential for one

to work comfortably in his or her personal workspaces.

26

1.1.6 Various spatial, temporal, and detail representations

are used during the design process.

Consider the process of designing the layout of a

multi-page pamphlet. A 'page' contains information in

different levels of material, style and content components,

as in Figure 1-7. Material components include the background

or paper characteristics. The style sheet specifies

constraints on the format of the content, including

typographic, graphic and grid specifications. The contents

of a page include graphics, images and text data. The page

is part of a larger whole, sequentially linked to other

pages in the document.

Designers are concerned not only with the spatial

layout of individual pages, but the continuity, flow and

rhythm of the document as a whole, as graphic designer White

explains in Figure 1-8 [WHITE'82].

In this sense, page layout shares characteristics of

temporal layout of animated sequences. Figure 1-9 shows two

graphic layouts of animated films. The top one shows the

components of a single shot, including separate photographic

images, drawings and masks, and how they are combined within

27

a frame and within the sequence. The lower illustration is

an excerpt from a film showing key frames and verbal

descriptions of the actions and sound in each shot.

The structure of a page layout can be represented at

various levels of refinement and detail. Figure 1-10 shows

the four basic levels of a page layout. Initial ideas of the

design are explored with thumbnail sketches, quickly drawn

and easily arranged for comparison and sequencing. As the

number of ideas are narrowed, more detailed rough sketches

are developed that help the designer determine balance,

scale and format relationships in context of the text and

At an early stage, a basic grid is defined. The grid

provides a framework for the layout. Grid lines offer

guidance for the alignment of components on the page and

consistency between pages. rhe strict use of grids is

optional and unique grids often must be developed for

different layout strategies.

Electronic workspaces intended to support interactive

design tasks should allow for varieties of spatial,

temporal, and detail representations of the work.

28

materials background/paper color
reproduction tech

style typographics
graphics
grid

content graphics
image
text
masks
regions

visual

Fiaure 1-7. Layered Components of a Paae

29

previous
page

300oooooo__o
00ooM

next page

Pages (s 5) are evewi

Thj dAon ht dt- s b in coihtr ofbe Inu

The reader has Ae, ee, o, +ha e. h as W sr s te

So IirV- 1gal i d gick F.ar bc. A ght 4 }- as 4 WaUSPed"series .f eve-isi

(from White, "Editing by Design")

"Design each story, no matter how long or how short,
as a unit. Do not fall into the trap of working on one
page of a multipage story until you have solved the basic
pattern for the entire story, start to finish. This is
wbere the value of that kitchen-counter worktable is most
evident: use it to organize the raw material into piles
coordinated to the pages on which the material is planned
to fall; then work out an overall design that will
accommodate the material within the story's matrix".
[WHITE,p253.

FIGURE 1-8 THE TEMPORAL DIMENSION OF PAGE LAYOUT

30

(from Laybourne, "The Animation Book")

.Aj t*__ E . 0 9_ C,. -.da A-

-4. .. .6"s- A ,.

(excerpt from Bruce MacCurdy's film "Flipping")

FIGURE 1-9 ANIMATION STORYBOARD STYLES

31

Figure 1-10

VARIOUS LEVELS OF REFINEMENT OF A PAGE LAYOUT

Thumbnail Sketches
Thunsmal S

--- quick
preliminary

-3 exploratory

Rough Sketches
larger
more refined
more detail
balance
scale
patterns

Grid
spatial constraints

columns
horizons
margins
gutters
allignment

Comprehensive Sketches

mockup
approx. final product
final touchup
crop images
flow text

-6K

32

1.2 COMPUTER METAPHORS

1.2.1 Computer graphic workspaces rely on the sensation of

direct manipulation of simulated objects.

Interactive computer graphics provides a medium for

exploring object-oriented design, where a user manipulates

the model of an object while its picture is continually

updated on the screen. Ivan Sutherland's Sketchpad system

was the first computer aided design system to allow the

interactive creation, editing and constraint of graphic

layouts [SUTHERLAND'63].

The MacIntosh computer brings the computer graphics

paradigm into the hands of consumers. The MacDraw program is

a typical graphics editor where graphic objects, such as

lines, curves and text, are selected from a menu and added

to a composition. The component is easily edited by

performing an operation selected from a menu or by using a

surrounding "handle".

Another MacIntosh program, FileVision, extends the

concept so that objects are associated with fields in a

database. No longer simply components of an illustration,

33

the graphic objects become symbolic references or

representational images in the context of an information

domain.

Traditional computer-aided design systems exploit the

integration of computer graphics with domain-specific

databases. Two and three dimensional designs can be modeled

and incrementally transformed. These may be high quality

simulations of real world objects, for what-you-see-is-what-

-you-get (wysiwyg) interaction.

Beyond wysiwyg, alternative views of the same data can

be represented. In graphic design, for instance, page

layouts need to be viewed at different levels of refinement

(thumbnails, roughs, comps), as layers of components, and as

temporal sequences, as discussed in the previous section.

The direct manipulation metaphor of interactive

computer graphics offers a simulated physical world with

tactile eye-hand feedback. Computer graphics allows design

by construction and editing of objects.

34

1.2.2 Electronic workspaces are metaphors for real world

workspaces.

The metaphor of using the computer screen as an

"electronic desktop" was first introduced by the Learning

Research Group at the Xerox Palo Alto Research Center (PARC)

in the early 1970's. The graphics screen corresponds to a

desk, with overlapping spatial regions, or windows analogous

to pieces of paper. Each window is a separate work area with

its own data and functions. Alan Kay explains the invention

of these windows,

"In many instances the display screen is too small to
hold all the information a user may wish to consult at
one time and so we have developed "windows" or
simulated display frames within the larger physical
display. Windows organize simulations for editing and
display, allowing a document composed of text,
pictures, musical notation, dynamic animation and so on
to be created and viewed at several levels of
refinement." [KAY'77,p234].

Icons are small symbols and images that represent data

and functions. For instance, to print a document, copy its

icon onto the icon of the physical printer. To edit a file,

open it's icon into a new window running its application

program.

35

These concepts have been extended from business office

environments to graphic design studios. The computer screen

acts like an "electronic light table" [BLOMBERG'84]. The

computer screen contains multiple viewports to layouts of

objects on the tabletop. Two-dimensional graphic components,

including slides, photographs, drawings, headlines and text

can be overlapped, combined and masked. Like their real-

world counterparts, each component has form, transparency

and intensity attributes.

Workspace metaphors allows one to design directly in

his problem domain. Non-technical users can easily approach

the system, feel comfortable exploring its capabilities, and

go about working in familiar ways. The ability to arrange

and combine these components into meaningful piles and work

areas facilitates building personal workspaces.

36

1.2.3 Workspaces can be explored and edited by perusing and

arranging data resources.

Systems for data resource management have been

developed which present the user with an interactive

"dataland" he can travel through. Figure 1-11 shows a

variety of dataland configurations. The ZOG system developed

at Carnegie Mellon configures separate screenfuls of

information, or frames, linked to other frames

[ROBERTSON'79]. Frames were limited on text screens,

although graphics and images should be included. From any

one frame, the user can move through the network making

choices between forward linked frames, or backing up to the

previous frame.

Facilities for traveling through the ZOG frame-base and

authoring new frames and links were available to anyone

wanting to explore the datalands and develop their own

frame-bases. A significant factor in its success was the

speed of the ZOG system, since new frames could be displayed

almost instantaneously allowing perusal of the database in

interactive real time.

37

The Spatial Data Management system from MIT presents a

dataland mapped onto the surface of a torus or doughnut

[DONELSON'78]. One can pan up and down and around the space,

looking through the "window" of the computer screen. If one

zooms into an object, say a telephone, it becomes activated

and the user can make a call. Other similar systems allow

one to enter other datalands through portals, like trap

doors in some exotic adventure game [HEROT'80].

Such systems allow one to build personal workspaces by

organizing and customizing their dataland. Richard Bolt

explains,

"Your personal Dataland would look different from mine
or anyone else's. There would be different items in
different arrangements, just as the everyday desktops
of people reflect their individuality. What would be
common to all Datalands, however, is that the data
types dwelling in them would be presented as images in
specific locations." [BOLT'84,pll].

Datalands are an interactive world to explore, build,

and design within. Structure is supplied by limiting the

choices where one can go next, and by arranging and

categorizing data into hierarchical files. Design becomes

the organization and selection of objects in an electronic

terrain.

38

FIGUREl-11 A VARIETY OF DATALANDS

Frames in ZOG's Dataland

Plane O)
Plane 1
Plane 2
Plane 3
Plane 4
Plane 5

Information
Space 0

Information
Space 2)

Information Space 1

CCA SYSTEM WITH PORTS (from BOLT)

SDMS TORUS DATALAND

Blown-up image with
increased detail on

- Media Room large screen

SPATIAL DATA MANAGEMENT SYSTEM, MIT (from BOLT)

39

1.2.4 Workspaces are programmed by assembling objects into

functional models.

When behavior and responsiveness can be programmed into

objects, the environment becomes a microworld with a finite

number of objects and the ability to build new ones.

Microworlds offer a toolkit for assembling objects into

programs.

ThingLab is a microworld simulation laboratory for

dynamic experiments in geometry and physics [BORNING'71].

The top of Figure 1-12 shows a Centigrade-Farenheit

temperature conversion program built from basic arithmetic

objects and sliding "thermometers" for input and output.

ThingLab allows interactive programming by defining

constraints between graphical objects.

There are other examples of graphical object

programming. With the LOGO language, children have an

"object to think with" and draw pictures by instructing a

'turtle' with a pen how to move [PAPERT'80]. ChipWits, a

game on the MacIntosh, has the player program the behavior

of a robot by assembling functional "chip" icons into

programs. Rockey's Boots, an Atari video game, lets the

40

player collect electronic components and plug them together

to build simple simulated machines. Electronic financial

spreadsheets, such as VisiCalc and Lotus 1-2-3, are toolkits

for financial modeling and simulation.

In each of these examples, programming is integrated

into the user interface environment, in context of the

particular user task. One learns to program without

realizing it, since the goal is simply to draw a picture,

win a game, or calculate a financial model.

By assembling objects, constraint relationships are

defined that direct the behavior of the objects. There may

be models and constraints given to the user, plus the

facility to develop them for him or herself. Design becomes

programming of constraints, experimentation and assemblage.

41

FIGURE 1-12 MICROWORLD PROGRAMMING TOOLKITS

Ftg. 13. 711 t0 pruseW a eense wb thth emstas fr input nd output

(from Borning, "The Programming Language Aspects of ThingLab")

A TEMPERATURE CONVERSION PROGRAM

SHEET

CELL

NAME

____________________ ALUJE 4ULE

fMA GE

DYNAMIC SPREADSHEET is a simulation kit: as aggregate of
software objects called cells that can get values from one another.
The window selects a rectangular part of the sheet for display. Each
cell can be imagined as having several layers behind the sheet that
compute the ceirs value and determine the format of the presenla.

SPLAY

tion. The ceirs name can be typed into an adjoining cell. Each cell has
a value rule, which can be the value itself or a way to compute it; the
value can also be conditional on the state of cells in other parts of the
sheet. The format rule converts the value into a form suitable for
display. The image is the formatted value as displayed an the sheet.

(from Kay, "Computer Software")

DYNAMIC SPREADSHEET AS PROGRAMMING TOOLKIT

42

1.2.5 New and refined objects are defined relative to

existing ones.

Object-oriented programming languages provide a system

for building taxonomic relationships between objects by

defining objects as belonging to particular classes. New

objects are created from existing ones by saying "this one

is just like that one, except ... ", and then enumerating the

differences.

The Simula-67 language [DAHL'68] first introduced the

'class' construct, whereby sets of generic operations and

properties are associated. New classes are be derived from

existing ones, allowing inheritance to determine their

operations and property sets. In Simula, these

relationships are determined at compile time and are not

dynamically alterable.

The Smalltalk language developed at Xerox PARC

generalizes these ideas and supports a high degree of

consistency, uniformity and integrity of object management

[GOLDBERG'83, SHOCK'79]. Everything in the system is an

object, including classes themselves. Objects can be altered

dynamically, allowing the development of highly interactive

43

programming environments that encourage evolution and

testing.

Multiple inheritance occurs when an object is defined

from more than one parent. Conflicts must be resolved when

different values are offered from different parents for the

same property. It could be predetermined that one take

precedence, or a method is defined to resolve the conflict

at the time the property is referenced.

This ability to define new things relative to existing

ones supports the evolutionary refinement of objects in the

design environment. Ideas can be drawn from earlier work.

Sketches can be refined. Work can progress in stages.

44

1.2.6 Objects in the workspace are associated by property

values and arbitrary semantic connections.

Other relationships can be drawn between objects by

matching property values, and by creating explicit semantic

links.

Relational database systems provide a mechanism for

collecting objects based on property values. Sets of objects

of the same type can be selected based on a range of

property values. Furthermore, sets of different types of

objects can also be selected, when they share the specific

properties matched against.

Rather than searching on property value ranges,

explicit connections can be made between objects. Such links

can be given a symbolic name, and be used by operations that

recognize the link. Symbolic links drawn between discrete

objects form semantic networks to represent relationships

within specific knowledge domains [WOODS'83, BRACHMAN'83a,

BRACHMAN'83b].

Relational and semantic connections are a means of

defining symbolic associations between objects. In a

45

personal workspace, this permits loosely associating objects

in a pile, creating containers of related files, searching

for specific objects in a dataland, and support of design

constraints requiring definition of specific links.

46

1.2.7 Electronic workspaces need to integrate with our

everyday workspaces.

The physical spaces for these computer metaphors are as

important as the conceptual models themselves. After all, if

your chair is not comfortable, you will not get much work

done regardless of how effectively you understand the task.

Furthermore, a comfortable chair in an alien setting is

inhibiting also.

For instance, a user sitting in the middle of a 'media

room' has an electronic multi-sensory workspace that, in

practice, would likely be too sterile and uncomfortable.

More practical implementations of electronic workspaces need

to integrate better with our everyday ones.

In the an office, an electronic workspace may look like

a desk blotter, allowing one to move with ease between

electronic workspaces and real pieces of paper, folders and

telephones. In the home, consider a thin lightweight tablet

about the size of a newspaper that you hold on your lap as

you sit comfortably in your living room. Very portable

workspaces should fit in your pocket or be worn like

jewelry.

47

Computer-based workspaces must be useful, practical and

personal. This discussion has identified a set of

characteristics of personal design workspaces that all

workspaces share. A set of computer metaphors have been

identified that can support these requirements in electronic

computer-based workspaces. The following section presents a

user interface that begins to integrate these ideas.

48

Figure 1-13. Electronic Workspaces Must Integrate
with our Everyday Workspaces

49

Section 2. SCENARIO

2.1 USER MODEL

2.1.1 Users sitting at the Spatial Contexts system are

encouraged to explore, synthesize and massage their work.

For interactive computer environments to be truly

effective, the technology itself must become transparent

allowing the user to work more directly in his problem

domain. The user's primary concern is solving some design or

management problem, not how to use the computer.

The objects in the Spatial Contexts system are familiar

to the user and relevant to the task. They can be moved,

modified, edited and used in different ways. Users are

encouraged to organize their work spatially, creating

different work areas and piles at will.

While composing a page of a document, a designer may

need to choose one of several images for an illustration.

The candidate images are collected in a pile and then

inserted one at a time onto the page. If the image is

sitting on the page or in a pile, it can be cropped and

adjusted within that context. Contexts can constrain the

50

effect of tools on the object, and may even determine the

visual representation of an the object. For instance, the

image in the pile may be full color, while on the page it is

black and white.

Users sitting at the system are encouraged to explore,

synthesize and massage their work. One learns to travel

through the datalands, examining objects, trying out tools

and synthesizing his or her own models. The system is

interactive and conversational as the user arranges the

environment while being constrained by the workspaces.

Easily moving between several workspaces at a time, one can

organize things spatially, hierachically, and in other more

symbolic configurations. It allows visualization of form

with regard to spatial context.

51

2.1.2 A new environment contains the Main Cabinet and a Main

Toolbox for the system's elements, containers and tools.

The Spatial Contexts simulated user environment, itself

an object, contains all the objects the user is currently

working with and access to all other objects in the system.

The environment is responsible for intercepting user input

and signaling appropriate objects that an event occurred.

Figure 2-1 shows the default new environment with two

open containers: a Main Cabinet portal to the system's

dataland, and a Main Toolbox with a complete collection of

tools on the system.

Data appears in the system as element objects which

include graphics, images and text. Elements represent

discrete units of information spatially arranged in a

container. Their visual form and properties can be edited.

Symbolic links can be drawn between them. Elements are

discussed in Section 2.3.1.

Environments are a special type of Container object.

Containers are objects that contain other objects, for

making compositions, groups and hierarchies. Other types of

52

containers include Cabinets, Toolboxes and Pages. Containers

are discussed in more detail in Section 2.3.2.

Tools are used to interact with objects, using a mouse

input device. There are three ways to select tools: by

picking one up, by moving the cursor over an attachment

site, and by selecting it from a menu or button box. Tools

are discussed in more detail in Section 2.3.3.

53

Default New Environment

Main Cabinet

principal port into the system's dataland
including any data files (pictures, text)

and an empty container

Main Toolbox

principal container of tools in the system
including Scale, Group, Sequence, Paint, etc.

Figure 2-1

54

01 -N

main toolbox

contains

2.1.3 High level application environments can be built from

these primitives as the user works.

Examine how the workspaces are setup in Figure 2-2,

where a user is designing the page layout for a document.

Pages are constructed and composed largely on the right side

of the screen, in the Drawing Board area. On the left is the

Reference area with containers of images, text and other

things. The upper right is used as a Tackboard area where

pages of the document are sequenced and there is a notepad

for notations and reminders. On the lower left is the

Toolbox area. The user has conveniently setup other

toolboxes nearby each work area. Miscellaneous tools and

other objects are scattered about.

Starting from a new environment as in Figure 2-1, the

following scenarios show a user building a Spatial Contexts

environment as in Figure 2-2, in the natural course of

working on the page layout job.

55

picture container w

Reference Area

Toolbox Area

Tackboard Area

Drawing Board
Area

56

text files

a in et

m toolbox

Figure 2-2. Sketch of a Spatial Contexts Environment

11

2.2 TASKS

2.2.1 Setup a new job by collecting objects into a Job

container.

Starting from a new default environment, the user

begins work creating a Job container by duplicating an Empty

container in the cabinet and naming it "Job". A "Duplicate"

tool from the toolbox is used.

The Job container is then opened using the Open tool.

Any objects now moved onto the container fall inside it;

whereas when the container was closed, an object moved onto

it would just overlap, and not be inside.

The user then begins to browse around the existing

dataland database, scrolling, zooming, and entering sub-

containers. Pertinent objects are selected and put into the

Job container, including picture libraries, text files, and

predefined stylesheets for layout formats. Copies of

material from earlier jobs may be collected as well.

57

Figure 2-3 Setup a new lob by collectina objects Into a job container

Begin with new environment

Starts out with a Main Cabinet and
Main Toolbox, both open.

Take an empty container out

Drag a duplicate from the cabinet
Object gets proportionally bigger.

duplicate

Open container and name It "Job"

Move cursor over title bar to become
an Open tool (by attachment).
Use keyboard to rename the container.

open

Select a Stylesheet for the Job

Pan through the main cabinet,
find the box of existing stylesheets,
and copy one into the Job container.

pan open duplicate

Collect other relevent objects

Other components include text files,
images, and a Document container.

main cabinet

0..--...-....

OwU0**~ rei

58

In K

2.2.2 Setup workspaces by arranging the job components and

tools.

The user begins to arrange the contents of the Job

container within the Environment. First, the Main Cabinet is

scaled down and put aside. The Job container is enlarged. It

contains an empty Document container, a Stylesheet

container, and various image and text files.

The Document container is copied from the Job and

opened, to be used for collecting and posting page designs

as they are developed.

Stylesheets specify the page size, proportion, grid,

typography, and other constraints. They become prototype

pages when put in a Document. Several duplicates of the

Stylesheet are made in the Document container, for prototype

blank Pages.

As items are arranged, the user begins working in more

than one workspace at a time. Rather than moving across the

screen each time to pick up tools, copies can be made and

placed near each work area.

59

Figure 2-4: Setu2 workspaces by arranging

Setup a Reference area on the left

Close and scale down the Main Cabinet

close

Move the Main Cabinet to the side.

move

Setup Tackboard area

Copy empty Document from Job
and open it.

view open

Copy a Stylesheet into the document,
as a prototype page.
Make several duplicates for later use.

duplicate

Setup the Drawing Board area
Make a view copy of a page,
dragging it into the environment.
It enlarges to a working size.

view

comoonents and tools

60

0OD

Ju oW

0 ..-

I an[0

2.2.3 Begin sketching a few ideas for the layout.

The designer is now ready to begin laying out pages of

the document. An empty Page is brought out from the Document

and enlarged to a comfortable working size. It is opened,

and with various marking tools, the designer begins

sketching out spatial formats and content regions.

Additional thumbnails are generated as the designer

continues exploring layout ideas. Good sketches are put back

in the Document container, and others are thrown out.

61

Figure 2-5 Beein sketching a few Ideas

Open page In the drawingboard area

Page on the drawingboard is opened.
Begin sketching.

open paint

Make a thumbnail sketch

Use a Paint or Charcoal writing tool..
Any changes on the large page view
are propogated to the original page.

paint

Do a few more

Put away some of the sketches

using the Put-away and Throw-away
tools, remove pages from the pile.

put away throw away

for the lavout

62

A1IEWILqi0

IsEQ5~

for the lavout

2.2.4 Refine a sketch into a layout.

A thumbnail sketch is selected and refined as the

designer firms up the sketched regions. The edges are

straightened against the Page's default grid using a

Straightener tool. This editing tool re-shapes objects

according to grid and orientation criteria.

The designer defines content Regions on the Page.

Regions are "generic" or empty graphic elements with

arbitrary boundaries. Their content can be added later.

The regions to be used for text are directionally

linked, using the Sequencer tool, to indicate the flow of

text between columns. When text is put into a region, it

flows from the bottom of one column to the top of the next.

As the designer works on these sketches, other pages

can be worked on concurrently. Pages are sequenced by

linking them together. Contents can be added or removed any

time for visualization.

63

Figure 2-6 Refine a Thumbnail into a comprehensive page

Start with a thumbnail sketch

Open the page for editing.

Firm up the sketched regions

Use the Straighten tool to tighten up the
region edges against the page's default grid
(which could be edited by the user)

sten

Continue straightening the regions

Define text column sequence

use the Sequential Linking tool
to define the flow of text between
the columnar regions

sequence

Flow text onto the page

Open a text container and select
a text file to go onto the page.
View the text in the columns.

open move view

64

0 -

0 sus

14 M I MMM

.............

2.2.5 Edit an image on a page by cropping and color

retouching.

An image is selected and copied into the page's image

region, and then edited with the Zoom and Contrast tools.

Cropping is performed interactively with the Zoom tool

by grabbing the image with the Zoom tool at a location and

pulling it. Pulling towards the anchor point (center by

default) zooms back, bringing more image into view, whereas

pulling away from the point zooms up, stretching the image.

Arbitrary anchor points can be defined by changing the

tool's anchor link location.

Color and contrast retouching are done with various

brush tools. A Contrast tool, for instance, can be opened to

adjust its effect, and then be picked up and applied to a

pixel image like a brush. As in painting, brushes may

completely replace the existing color, or more usually,

modify the existing pixels in subtle ways, like watercolor

paints or photographic contrast filters.

65

Figure 2-7 Edit an image on a gage by croooing and color correcting

Copy a view of an Image ur

Move pictures container from Job,
open it, and pan through it.
Select an image for the page.

Expand the background window
of the image

wvindw

Zoom up on the image with Zoom tool

zoom

Retouch contrast on the image
using the Contrast brush tool

contrast

Put away the page

Close the page, return it to
the Document container.
Continue working by bringing out
another page to work on.

66

-w

aocument

. U I

2.3 OBJECTS

2.3.1 Elements are singularly defined units of information

with properties and form.

Element types, summarized in Figure 2-8, include

graphics, text and images. An element's property values are

accessed with an editing tool (discussed below) or by

opening the object's property container.

Elements are ordinarily "closed" and treated as a

singular unit object. They can be opened so its properties

are explicitly edited in it Property Control Panel.

Control Panels are containers attached to a specific

object. They contain other elements that control properties

of the object acting like meters, knobs, sliders or strings

used to constrain or parameterize property values. The

properties of an element can be edited by opening it and

manipulating the property elements inside its control panel.

Figure 2-9 shows how the color of a polygon is edited

using a control panel rather than a coloring tool. The

element is opened with an Open tool, causing a property

67

container to pop up. Properties of a polygon include the

list of vertices, the fill style, and the fill color. To

edit the color, open the color swash, causing a color space

to pop up to choose a color from.

When an element is copied, it can either be Duplicated

or Viewed (Figure 2-10). Duplicates are new instances of the

original object, with copies of its property values. The two

objects are now independent. Views, on the other hand, are

instances where property values point directly back to the

original object. When one edits one of these objects, the

changes are propagated to the other as well.

Hybrid copies can also be made (Figure 2-11).

Ordinarily the properties copied with the Duplicate or View

tools are all either duplicated or viewed. But, users can

edit property containers, or build their own, and determine

individually how each property is copied. Taking properties

from more than one parent object is multiple inheritance.

Defining new types of elements becomes property inheritance

programming by direct manipulation.

68

Figure 2-8. Types of Element Objects and Their Properties
--

GENERIC ELEMENT
extent, transformation matrix, filename

GRAPHICS
Line

vertices, length, angle, color

Curve
control vertices, curve type

Rectangle
width, height, position

Circle
begin arc, end arc, fill, outline

Polygon

Label

vertices, fill, outline

string, font, size, char spacing

Paragraph
string, line space, justification

Lookup
buffer, lookup table, resolution, bits

RGB

Mask

r buffer, g buffer, b buffer

operation, transparency

69

TEXT

IMAGE

Edit the Properties of a Polygon Element

Open a Polygon element object

open

Its property container pops-up

contains displays and controls
for each property of the element

Open color property

pops-up a color space to
select a new color from

close just the color space
and edit more properties,

class: element
type: polygon
vertices: 5

dk blue
solid

or close the object completely

70

class: element
type: polygon
vertices: 5

green
solid

Close

Figure 2-9

Figure 2-10 DUPLICATE Copy vs VIEW Cogy

Duplicate View

Using Duplicate tool,
drag a copy of the object.
Dotted line shows movement
of cursor and object.

Creates a new instance
of the object
with property values
copied from the parent.

The two objects are
now independent.
Subsequent changes to the
parent's properties
do NOT effect the child's.

Using View tool,
drag a copy of the object.
Link line shows movement
and the view link created.

Creates a view instance
of the object
with property values
directly linked to the parent.

The two objects are
inter-dependent.
Subsequent changes to the
parent's properties
DO effect the child's,
and vice versa.

71

Figure 2-11 Property Inheritance Programming
Through Direct Manipulation

Child object inherits some properties from Parent A object,
some from Parent B object, and others not inherited at all.

Hybrid copies between Duplicate and View are defined by
Duplicating some properties: instance inheritance
and Viewing other properties: continuous inheritance

72

2.3.2 Containers are objects that contain and constrain

other objects.

Containment is a natural metaphor for groups and

hierarchy (chunking and layering). Containers contain other

objects, including other containers. Containers also have

constraint properties that affect the behavior of objects

and the usage of tools within them. Containers include

Environments, Cabinets, Toolboxes, Pages and Property

containers (Figure 2-12).

An Environment contains all objects a user is currently

working with, and controls the primary user-object

interaction. A new default environment has a Main Cabinet

for browsing and a Main Toolbox for selecting operations.

Like any other object, Environments can be saved, restored

and arranged in dataland.

Cabinets are gateways into datalands with spatial and

hierarchical organization maps. The Cabinet container acts

as a browser or window on the objects currently available in

the system. The contents of a cabinet can be changed, as in

changing directories in a hierarchical file system. However,

not limited to hierarchical organization, containers can be

linked in any arbitrary network configuration.

73

Each object is linked to a "home" container, ordinarily

where the object was created. If the object is moved from

this container to another, it becomes "contained-by" the new

one, but its "home" link remains the same. With the Home

tool, a user can transport to an object's home container and

jump around the dataland this way (Figure 2-13).

Other containment links can be drawn based on ranges of

any number of properties. Containers can be made by

searching on logical conditions of properties, such as all

images with the word "Boston" in its description. This

becomes a direct manipulation interface to a relational

database.

Each container has its own coordinate system. In Figure

2-14, the visual consequences of this are illustrated.

Objects of a given size will appear larger or smaller with

respect to the window boundaries depending on the coordinate

system of its container. When a container is placed inside

another container, it and all its contents are scaled

relative to the new coordinate system.

74

Figure 2-12 Types of Containers

Environment

contains all objects user is
currently working with and
arranged into workspaces.

Cabinet

a portal to datalands,
contains collections of objects
and other containers

Toolbox

contains tools for user access,;
variations include menu box and
button box

Property Container

contains displays and controls
for properties of objects.

Page

contains text, image and graphics
regions, plus grid, format and
typographic constraints.

ct

Picture Library

Propete

EeW4s(

___ '

75

Flaure 2-13 Usina the Home Tool

dataland

link

container window

Object has been moved from
its original home container,
but retains a "home" link there.

Using the Home tool transports the
user through dataland, switching the
current container to the object's home container.
Use Undo to return.

76

0

Flacure 2-13 Usina the Home Tool

Fleure 2-14 Manloulation of Container Oblects

Object moved from Container A to
Container B is scaled according to the
coordinate system of the destination
container.

Container A

Obj

Container A moved into Container B is
also scaled to B's coordinates.

Original Container

Obj

Pan

Scale

Obj

Zoom Up

77

Obw

Window

Zoom Back

| IIContainer B

**j

nObij

2.3.3 Tools are functional objects one uses to edit other

objects and peruse the environment.

Tools are used to perform functions on other objects.

There are tools for perusing, editing, and control. Perusing

tools (Figure 2-15) include pan, zoom, window and home, are

for traveling through datalands and modifying the visible

coordinates of containers. Editing tools (Figure 2-16)

include move, scale, label, and sequence, are for

interactively modifying objects' properties and links.

Control tools (Figure 2-17) include duplicate, view, put-

away, and help, are for object control and maintenance.

There are three ways to select tools: by picking one

up, by moving the cursor over an attachment site, and by

selecting it from a menu or button box (Figure 2-18).

A tool can be picked up using the PICKUP button on the

mouse (Figure 2-19), and begins tracking the mouse. The DO

button applies the current tool to the object beneath it.

The UNDO button reverses the previous application of the

tool to the object.

78

Instead of picking them up, tools can be attached to an

object and used like a "handle" or border function. Once

attached, these tools are automatically picked up when the

cursor moves over the attachment site. For instance, closed

containers ordinarily have an Open tool attached to their

title bar. When the cursor moves over the bar, it will

temporarily switch to the Open tool until the cursor is

moved away. If the user presses the Do button, the container

will be opened allowing him to edit its contents.

Suppose a user wants to pan around a dataland

container. He picks up the Pan tool and applies it to the

opened container, "pulling" the contents with the cursor

(Figure 2-20). Or instead, copies of the tool could be

attached to the border of the container and constrained to

scroll in only one or two directions. Figure 2-22 shows how

a MacIntosh MacDraw-like window borders can be constructed

from Spatial Contexts attached tools.

Toolboxes, Menu boxes, and Button boxes contain tools

organized by the user but constrained in specific ways

(Figure 2-23). Toolboxes contain tools that the user can

pickup, remove, use, and then drop it anywhere in the

environment. Tools selected from a Menu are view copies,

automatically "put away" to the menu when dropped. Button

79

boxes are like menus, where tool positions correspond to

physical function keys on the keyboard for picking up the

tools.

Tools can be applied to other tools. Functional

extensions to tools would allow them to be opened, edited

and combined as graphical programs. Toolmaking becomes a

means for system extensibility by the user, by combining

tools to make macro tools.

80

OPEN
open an object, allowing editing its contents
and/or properties

CLOSE
close an object, unifying its contents/properties

WINDOW
modify the clipping boundary size of a container
and on-screen viewport synchonously.

PAN
modify the window boundary coordinate position

___ PAof a container

ZOOM
modify the clipping boundary size of a container
while the on-screen size remains constant.

HOME
| ,, switch to the home container of an object

81

Figure 2-15 Perusing Tools

Figure 2-16 EdIting Tools

LABEL
create/edit an object's label or title.
(string, font, background)

SCALE
edit the size of an object.
(preserve aspect ratio, grid gravity)

MOVE
edit the position of an object
(grid gravity)

SEQUENCE
define/edit sequential links between objects
(from object, to object, link label, enumeration)

GROUP
define/edit unordered groups or sets of objects
(selection attribute range)

PAINT
mark objects with hand strokes
(color, size, pattern)

CONTRAST
retouch contrast of a bitmap object
(f acto r)

STRAIGHTEN
allign object boundaries to grid

82

DUPLICATE COPY
create a new instance of an object

THROW AWAY
remove an instance of an object

VIEW COPY
create a continuous inheritance instance
of an object

PUT AWAY
remove a view copy of an object

COLOR PALETTE
color property editing

HELP
inquire object capabilities and description

QUIT
exit current environment and save it for
later retrievals

83

F~1

w
~I1

Figure 2-18 Ways of Usina Tools

Pickup and Do

Use mouse PICKUP button to
grasp a tool; it becomes a
cursor tracking the mouse.

Use DO button to apply the tool
to object beneath it.

Use UNDO to restore object.

Attachment

Moving the cursor over an
attachment area temporarily
picks up the attached tool.

Here, the container's OPEN tool is
attached to the title bar. Pressing
DO opens the container, a CLOSE tool
replaces Open for easy re-closing.

Menus and Panels

When the container is moved,
attached toolbox is also moved.
Toolboxes can be used like
menus and control panels.

84

Pickup Do Undo

Picku and
drop tools

Q current tool

operation on
located object

Lndg. last tool
operation on
located object

Figure 2-19. Standard Mouse Buttons for Using Tools

85

Fiaure 2-20. USING THE PAN TOOL

PICKUP Pan tool

by moving cursor to its
icon, and using the
PICKUP button on the
mouse

Begin using the tool
by pressing Q
to grab a location in
the container

Continue pressing 2Q
pulling with the Pan
tool

Continue pressing Q
pulling with the tool,
and then release the
button when done.

UNDO will return the
container to its
previous state.

main cabinet

...--....... =.==I~1'I1

86

Figure 2-21. USING THE SCALE TOOL

PICKUP Scale tool

by moving cursor to its
icon, and using the
PICKUP button on the
mouse

Begin using the tool
by pressing W
to grab a location in
the container

Continue pressing. DO
Scale is achored at
opposite corner, if not
otherwise specified.

Continue pressing Q
pulling with the tool,
and then release the
button when done.

UNDO will return the
object to its
previous state.

main cabinet
...
.......................

......
..................

....................I
....

......................................

in cabinet
.....

......

...

IO111

UluII

rI E

a

87

close

menu toolbox

pan (left/right)

A MacIntosh MacDraw-like window
built from a Spatial Contexts container
with attached tools.

The Pan tool has been constrained
to limited directional movement.

88

title

Flaure 2-23. Tyes of Tool Containers

Tool Box

Pick up tool out of container,
use it and
drop it anywhere in the environment

Position in container is unconstrained.

Menu Box

Pickup view copy of tool
use it;
dropping it puts it back directly

to the menu box container.

Position in container is fixed.

Button Box

Can use like Menu Box, plus
tool positions correspond to physical
function keys on the keyboard.

Pressing function key picks up
corresponding tool.

89

ME E E

IME EN

F=

Section 3. ARCHITECTURE

3.1 SYSTEM ORGANIZATION

3.1.1 Spatial Contexts software is organized in a layered

architecture with objects.

The Spatial Contexts user interface environment is

built on a color graphics computer workstation and an object

oriented software architecture. Figure 3-1 shows the

components of the system are built on top of each other in a

layered organization.

From the bottom-up, there are the physical devices

which interface the simulated work environment with the

physical world. On these are built the sub-system libraries

which create a higher level functional interface to the

devices, and assist in system resource management. The sub-

systems include an object management library that allow the

definition of object classes. Three principal classes are

defined: elements, containers, and tools, from which

application level objects are defined.

With object-oriented programming, each piece of a

system is treated as a separate autonomous object made of

90

private data (properties) and the operations supported on

that data (methods). The system has independence from the

objects it contains, such that new objects may be added and

existing ones modified without major code modifications.

Figure 3-2 summarizes the advantages of this paradigm.

An essential component of the system is the user, who

works in the physical domain by interfacing with physical

devices, and in the problem domain by interfacing with high

level simulated objects.

91

Figure 3-1 System Architecture

SPECIFIC OBJECTS

Element:

Container:

Tool:

GENERIC OBJECTS

Attributes:

Methods:

Links:

graphic, text, image

environment, cabinet, toolbox, page

peruse, edit, control

class, type, name, form, history

maintenance, display, tools

home, contained-by, next, previous

92

(Figure 3-1 continued)

SUB-SYSTEM LIBRARIES

Objects: control, inheritance, select, overlap

Display: render, 2d, color, font

Input: locate, cursor, border

Memory: pixel buffers, tiles, lists

Database: elements, containers, tools, relations

DEVICE INTERFACES

System: cpu, memory, ports, Dos

Graphics: frame buffer, processor, monitor

Interact: mouse, keyboard

Sound:

Soft Store:

Hard Store:

Communication:

voice in, voice out, music synthesis

video tape, disks

printer, typesetter, photo

network, asynch, modem

93

Figure 3-2. Features of Object-Oriented Programming

ENCAPSULATION
- Objects are private data and operations on that data

MODULARITY
- Software is malleable, reusable and enhanceable

EVOLUTION
- System independence from the objects it contains

CLASSIFICATION
- Objects

MESSAGING
- Objects

METHODS
- Objects

know their type explicitly

know what operations they can perform

know how to perform their operations

INHERITANCE
- New objects are defined from existing ones

94

3.1.2 The system is demonstrated on a color graphic personal

computer workstation.

Spatial Contexts is implemented in the "C" language on

an interactive color graphic workstation configured from an

IBM personal computer, a YODA graphics system, and a mouse

input device (Figure 3-3).

The system unit is an IBM PC/XT personal computer

running under MS-DOS 2.0 operating system. The typical

system has up to 640k bytes RAM memory, an 8087 arithmetic

co-processor, two 10 megabyte hard disk drives and a floppy

disk drive.

The graphics system is an experimental IBM YODA frame

buffer and graphics processor, that plugs directly into the

PC chassis. [SHOLTZ'85]. The frame buffer has 640 x 480

pixel resolution displayed, plus an additional 320 scan

lines of off-screen image buffer. Each pixel is eight bits

and indexes into a 256 entry color lookup table with 24 bits

output (one byte each red, green, and blue) to a low cost

RGB color monitor.

95

The YODA has a programmable bitslice processor that

provides high speed graphics, imaging and anti-aliasing

support. Additional custom microcode was developed for the

Spatial Contexts system that addresses performance

requirements of the project, including the scaling of bitmap

images by arbitrary scale factors in interactive real time.

The principal interaction device is a three button

mouse. A character keyboard is used primarily to enter text.

Other devices from the Visible Language Workshop

laboratory that could be integrated into the workstation

configuration include other display systems, interaction

devices, sound instruments, hard and soft copy storage, and

communications interfaces, as illustrated in Figure 3-4.

96

color monitor

mouse

YODA display processor

visible

- image
buffei

off-screen bit slice

imge buffe -- processor

PC system unit

monochrome
text monitor

keyboard

97

Fiaure 3-3. IBM PC/YODA based Soatial Contexts workstation configuration

color graphic monitor
secondary monitor

U:
data tablet and stylus

4-iouse

scanner input

video input

video tape i/o

photographic hardcopy

graphics processor

workstation system unit

ascii keyboard

speech synthesis
speech recognition

,ln]

music keyboard and
synthesizer

typeset hardcopy

networking and
communications

Figure 3-4. Devices in the VLW Lab

98

3.1.3 Application level objects are built from graphic

elements, containers and tools.

There are three principal classes from which all

objects are derived. Element class objects have geometric

tranformations and property container attributes. Container

class objects have additional information about their

borders, attached tools, and "contains" links. Tool class

objects include its icon property and functional

constraints.

Figure 3-5 shows the taxonomic relationship between the

generic object of each class and its specific sub-class

types. Through this organization, objects lower in the

hierarchy can inherit properties and methods from its

parent, reducing redundency of code and facilitating new,

similar objects to be added to the system.

The procedures in Figure 3-6 are the methods installed

in each object's method dictionary. Methods include those

for creating new instances, loading from a file, saving to a

file, drawing, and each of the tool operations. New methods

may be installed by system programmers.

99

Flours 3-5. Object Taxonomies

Generic Object

Generic Element Generic Container Generic Tool

Generic Element

Polyline Curves String Bitmap

Line Polygon Circle Spline Paragraph Lookup RGB

Filled Polygon

Generic Container

Environment Cabinet Page Toolbox

Main Cabinet Main Toolbox Menu Box

Button Box

Generic Tool

(all tools)

100

Figure 3-6 SPECIFIC OBJECT METHODS

makenv
makcont
maktool
mak_line,
makrect
makcircle
mak-pmd
makstring

initenv
initcnt
inittool
initln
initrect
initcir
initpmd
initstring

saveenv
savecnt
savetool
saveln
saverect
savecir
save-pmd
savestring

create new enviroment instance
container

" tool
line
rectangle
circle
bitmap
character string

init
"f

"f

"f

"f

"f

"f

"f

save
"f

"f

"f

"f

"f

"f

"f

environment object from file
container
tool
line
rectangle
circle
bitmap
string

environment object to file
container
tool
line
rectangle
circle
bitmap
string

101

i_DrwEnv
i_DrwCont
i_DrwTool
i_DrwLine
i_DrwRect
i DrwCircl
i_DrwPmd
i_DrwStr

t_mv_cont
t_mvtool
t_mvelem
t_mjv_pmd

t-cp-cont
t cp-tool
t.cp-elem

t_sc_cont
t_sc_tool
t_scelem
t-scpmd

t_wdcont
t-wd-pmd

makmagnify
do-magnify

draw
"

"

"

"

"

"

"o

tool
"o
"

"

tool
"

"

tool
"

"

"

environment
container
tool
line
rectangle
circle
bitmap
string

move container
tool
element
pmd

copy container
tool
element

scale container
tool
element
bitmap

tool window container
tool window pmd

create new magnify tool
apply magnify tool

102

3.2 OBJECT ARCHITECTURE

3.2.1 All objects have the same basic structure, and are

classified by their Class and Type.

The high level objects specified by the scenarios in

the Section 2 and described in the previous section are

built from generic objects. All objects in the system have

the same basic internal structure, as in Figures 3-7 and 3-

8.

Figure 3-7 Generic Object Properties

ID

CLASSIFICATION

CLASS PROPERTIES

PROFILE

VISUAL FORM

METHOD DICTIONARY

LINKAGES

HISTORY STACK

- instance identifier

- class and type of object

- sets of properties for class & type

- name, date, filename

- icon, size, color

- maintenance and editing procedures

- linkages to other objects

- stack of recent states for undo

103

When a new object is created, memory is allocated for

each of its property values and a unique ID is assigned

which corresponds to it internal memory address. An object

is always referenced by its ID.

Every object has a CLASS and a subclass, or TYPE

identifier. These enumeration values define what kind of

object it is. For each class there is a structure of class-

specific properties, and for each type within a class there

is a structure of type-specific properties. Class and type

descriptions therefore act like templates with slots to be

filled with values.

The initial state of the system provides generic

instances of each object class/type: a prototype object

with default values used as a top level parent. New objects

can be derived from existing ones, defining a parent-child

link between them. The new object can then have its own

property values and methods, or inherit them from its

parent, recursing to the top level parent if necessary.

Objects can be located by property searches that find

all objects meeting certain property value criteria. Complex

logical expressions can be used for searching and collecting

objects.

104

Figure 3-8. Data Structures for Generic Objects

typedef struct {

int Class;
universal Class-data;

int Type;
universal Type-data;

Profile
Form

Profiledata;
Form-data;

proplist Methods;
proplist Links;
queue History;

/* class enumeration */
/* class properties */

/* sub-class enumeration */
/* sub-class properties */

/* maintenance properties */
/* device level properties */

/* (message, method) pairs */
/* (linkage,object) pairs */
/* state history for undo */

} GenericObject;

("universal" is a pointer to an arbitrary data structure)
("proplist" is a linked list of (name, value) pairs)
("queue" is a circular queue)

105

3.2.2 An object's Profile holds maintenance properties.

All objects have a Profile record with internal

maintenance properties for names, dates, and addresses

(Figure 3-9). Objects can have a character string name or

title, and a verbal description of arbitrary length for

documentation and semantic identification. Dates include the

creation date and last update. Data residency properties

include archiving and/or networking information.

Figure 3-9 Profile Properties

- Title/Name

- Verbal Description

- Creation Date, Update

- File Name

- Data Residency

106

3.2.3 An object's Form defines device level properties for

high speed display and interaction.

An object's draw method uses the object's class/type

properties to render it on the screen, perhaps mapping from

a world coordinate space to pixel coordinates. Then the draw

method will update the object's Form properties with the

physical device information (Figure 3-10). This data is used

when operations must be done in screen coordinates and

pixels for high speed interactive performance.

The pixel extent is the enclosing rectangle in screen

coordinates, for instance for locating objects with the

cursor or block transfers (bitblt'ing) to drag it on the

screen. Overlap information includes the object's pixel

windows or corner-stitch tiles. The undersave buffer may

contain the pixels that lie beneath the object for fast un-

drawing.

Figure 3-10 Form Properties

Pixel Extent

Overlap Information

Undersave Buffer

107

3.2.4 Links define qualified associations between objects,

include "isa", "home" and "contained by".

Specific types of links can be drawn between objects.

These links are given a symbolic name and verbal

description, establishing semantic connections.

The "isa" link points to the parent object through

which inheritance occurs. The default isa link is the

prototype object of its class. Multiple qualified isa links

permit multiple inheritance, with the links specifying what

properties or methods are being explicitly linked from that

parent.

The "home" link points to the home container of the

object. The default home container is where the object was

created. This link is used and edited by the Home tool. The

"contained-by" link points to the current container of the

object and can be edited with the Move tool. The default

contained-by link is the object's home container.

Like the method dictionary, the link dictionary is a

linked list of link-name/ link-to pairs, where link-name is

a character string and the link-to is an object ID.

108

3.2.5 Methods are operations an object performs in response

to messages.

Operations, like setting and inquiring about an

object's property values, are affected by signaling the

object by sending messages. The corresponding response

method is looked up in a message-method dictionary and is

performed. Objects have standard maintenance methods (Figure

3-10), plus tool methods for each tool that operates on the

object.

Figure 3-10 General Maintenance Methods

CREATE - generates a new instance object with default
property values

SAVE - save an instance of an object to disk

LOAD - retrieve a saved instance object, creating a
new instance with previous values intact

DRAW - draw the graphic representation of the
instance object

DELETE - destroy the instance object

Each object has a method dictionary where method

functions can be looked up by message names. If a method is

not found, it looks to the object's parent, recursing until

one is found. Once a method is found, it is placed in the

object's local dictionary and bound (Figure 3-11).

109

The method dictionary is implemented as a linked

property list of message-name/ method-pointer pairs. The

message is an enumeration variable. The method pointer is a

pointer to a pre-compiled C function.

Each method has up to three operations: Start, Do, and

Finish (Figure 3-12). This partitioning of the method allows

startup and cleanup operations to be separated from the main

function. This way, Do can be repeatedly signaled in the

body of a loop or by a clock (Figure 3-13).

For example, MOVE is a method activated by the Move

tool to drag an object on the screen. Typically, there is

some preparation necessary before interactively moving the

object, like allocating temporary bitmap storage. When the

user presses the mouse button, Start Move is invoked. Then

within the main loop, each time the mouse moves, Do Move is

signaled until the user releases the button and Finish Move

is called to clean up. Other methods, like Draw, may not

need a Start and Finish phase and only Do is defined.

110

object "is-a*

parent

mnthnri

link

top level
generic parent

MESSAGE-MET HOD Dictionary Lookup
with inheritance and lookup-time binding.

Figure 3-11

111

message

method

...
qL1 I

Figure 3-12 Method Entry Points

START Setup Operation for the Given Object

example: START MOVE TOOL

signal object to push its state history
allocate temporary bitmap and
draw the pixels under the object into it

DO Perform One "Tick" of the Operation

example: DO MOVE TOOL

calculate changed areas of screen
save newly covered pixels
bitblt object to new position
restore uncovered pixels

FINISH Clean Up Operation

example: FINISH MOVE TOOL

free allocated buffers
signal object to update its position

112

Figure 3-13 Environment Main Interaction Loop

PICKUP tool:
message = tool.message

Press DO:
object id = which object under cursor
method = lookup(tool.message, object id)
method.START(object id)

while DO still pressed {
locate(x, y) from mouse
method.DO(x, y
}

Release DO:
method.FINISH()

113

3.3 SUB-SYSTEM FUNCTIONS

Sub-systems provide the underlying support for

implementing objects. These robust function libraries

provide a high level software interface to devices,

algorithmic control, and system utilities which include

functions for object management, color graphic display, high

speed interaction, flexible memory management, and database

maintenance.

114

3.3.1 MAIN SYSTEM DRIVER

The main system driver procedures are the top level

functions for starting up, running, and shutting down a

Spatial Contexts system. The procedures are listed in

Figure 3-14.

Figure 3-14 Main Level Procedures

newenviron
settables
objinit
displayinit

envinteract
envsave
envsetup

generate new default environment
setup method dictionary & inheritance tables
generic object initialization
initialize display systems

environment interaction control
save environment to filename
setup environment from filename

115

3.3.2 OBJECT MANAGEMENT SUBSYSTEM

3.3.2.1 OBJECT INSTALLATION

The object installation functions are for setting up

the system tables, parentage relationships and inheritance

mechanisms.

Figure 3-15 Object Installation Procedures

InitTables
Install
InheritMethod
LookUp
SetParent
GetParent

initialize system tables
install message/method in method dictionary
inherit method from parent
lookup method in dictionary
intall object in parentage table
lookup parent in parentage table

116

3.3.2.2 GENERIC OBJECT CONTROL

These functions are for control and manipulation of

generic objects.

Figure 3-16 Generic Object Control Procedures

CreateGenObject create generic object
SetObjPos move object to new position
GetBndRect get bounding rectange of object in pixels
EraseObj erase object
UndoObj restore object state
SaveObj save arbitrary object to a file
LoadObj load arbitrary object from a file
switchcont switch the "contained by" link of an object
prep-render prepare renders for a hierarchy of containers
set-pmd get bound rectangle size from bufmgr

117

3.3.2.3 OBJECT PROPERTY SEARCH

These functions search for objects meeting specified

property value criteria, such as whether a point is

within an object's boundaries.

Figure 3-17 Object Property Search Procedures

isnear
which-obj
whichtool
whichcont

is (x,y) near an object
return which object matches
return which tool matches
return which open container matches

3.3.2.4 TOOL SUPPORT

These are used by the environment interaction loop for

handling the user interface with tools.

Figure 3-18 Tool Support Procedures

pickup-tool
bgnpickup
drop-tool
resetcursor
EraseTool
SaveUnderTool
GetToolSave

pickup tool, make it active
initiate tool pickup
release tool, make it inactive
restore previous cursor
restore pixels from under
buffer pixels under object

118

3.3.3 DISPLAY SUBSYSTEM

3.3.3.1 RENDER DESCRIPTION RECORDS

Render records define the mapping of data from one

coordinate space to another, allowing clipping and scaling

of graphic primitives. Basically, it is like laying a new

coordinate system on top of a pmd (YODA pixel matrix

descriptor), and then allowing child renders to be defined

relative to existing ones. Conversion between renders and

pmd's is simple, so one can work with either (or both)

structures as necessary. The render structure is used by

the enhanced display primitives (d_). These functions

expect float data as opposed to pmd pixel coordinates which

are all integer precision.

Rendering is the operation of generating a picture from

data. When rendered, graphic primitives are first

transformed by the current geometric transformation matrix,

then clipped, mapped to pixels, and displayed. A render

record is a data structure describing the mapping from one

coordinate system (clip bounds) to another (port bounds).

119

The 'clipping' boundary defines the rectangular

boundary of a coordinate space. Any data inside the clip

bounds will be drawn, any outside will be clipped. Defines

the coordinate system of the area.

The 'port' boundary defines rectangular boundary of

where a render is mapped. Defines the size and position of

the view port in its parent's coordinates.

The 'effective' boundaries are truncated boundaries of

a render. If the clip bounds, port bounds, and/or pmd for a

render extends beyond the clipping bounds of its parent, the

boundaries will be truncated to only the visible portion.

120

Figure 3-19 Render Data Structure

typedef struct _render {

/* family links */
struct _render *mapto; /* parent render */

int mapfmcount; /* # children */
struct _render *mapfm[RENDMAX]; /* list of children */

/* geometric transformation */
bool isidentity; /* T=xform is reset to identity */
tmat xform; /* current transformation matrix */

/* boundaries */
rectangle clip;
rectangle port;
rectangle bounds;

/* clipping boundary */
/* port boundary on mapto render */
/* pixel boundary on initial pmd */

/* effective boundaries, from propagation of renders */
rectangle Eclip; /* effective clipping bounds */
rectangle Eport; /* effective port */
rectangle Ebounds; /* effective pixel boundary */

/* transformations from here */
tmat
tmat
tmat
tmat.

tomapmat;
topixmat;
topmdmat;
dismat;

/* transformations to
tmat fmmapmat;
tmat fmpixmat;
tmat fmpmdmat;

/* pmd's
pmd
byte
byte
bool
pmd

*/
initpm;
startbit;
depth;
visible;
rpm;

/* transform to "mapto" */
/* transform to initial pixels */
/* transform to "rpm" pmd */
/* display xform = xform*topmd */

here */
/* transform from mapto to here */
/* transform from pixels to here */
/* transform from rpm pmd to here*/

/* initial pixel matrix */
/* relative bit planes */

/* F= ports completely truncated */
/* render pixel matrix */

render;

121

}

Figure 3-20 Render Control Procedures

r_init
r_create

r_inside
r_fromscreen
r_toscreen

r_setmat
r_setclip
r_setport
r_setplanes
r-pmdport
r-pmdwindow
r_switch

r-update

r_askmat
r_askclip
r_askport
r_askbounds
r_askEclip
r_askEport
r_askEbounds
r_askpmd
r_clear

initialize a render from a pmd
initialize a child render from existing one

ask if a point is inside a render
map a point from pixels to world coordinates
map a point to screen coordinates

change
change
change
change
change
change
change

instance transformation
window clipping boundaries
port bounds in render coordinates
bit planes
port bounds in pixel coordinates
window clipping in pixel coordinates
parent of a render

propogate render map transformations

ask current instance transformation
ask current clip bounds
ask current port bounds
ask current pixel bounds
ask effective clip bounds
ask effective port bounds
ask effective pixel bounds
ask render pmd
erase render pmd

122

3.3.3.2 EXTENDED GRAPHIC PRIMITIVE DISPLAY FUNCTIONS

These extended display primitives use renders rather

than YODA pixel matrix descriptors (pmd's). All primitives

are specified in the world coordinate space defined for the

render. All coordinates are floating point numbers. Each

function transforms the primitive by the render instance

transformation, then clips the points, and maps from the

window to screen coordinates.

Figure 3-21 Extended Display Primitive Procedures

d_line
d_rect
d_frect
d-pl ine
d-polygon
d-fpolygon
d_circle
d_fcircle
d_string
d_image
d_bitblt

d_setaa
d_setline
d_setfill
d_setimage
d_setscan
d_setchar
d_settext
d_setfont

display line
display rectangle outline
display filled rectangle
display polyline
display polygon
display filled polygon
display circle outline
display filled circle
display short text string
display bitmap image data
bitblt from one render to another

set
set
set
set
set
set
set
set

anti-aliasing parameters
line attributes
fill attributes
image dimension attributes
image scan attributes
character attributes
text paragraph attributes
font selection attributes

123

3.3.3.3 GEOMETRIC TRANSFORMATION FUNCTIONS

These functions manipulate geometric transformation

matrices for two-dimensional (x,y) coordinate data. The

matrices are 2x3 where column lxN transforms the x

coordinate, and 2xN transforms the y coordinate (the third

column is assumed to be 0,0,1). For an explanation of the

principles governing these transformations, see the basic

computer graphics texts by Newman and Sproull, or Foley and

VanDam.

Figure 3-22 Geometric Transformation Functions

m2_identity
m2_move
m2_scale
m2_rotate
m2_mult
m2_copy
m2_apply
m2_port

reset transformation to identity matrix
move by (dx,dy)
scale by (sx,sy) about origin (ox,oy)
rotate by angle about origin (ox,oy)
concatenate two transformations
copy a transformation
transform point (oldx,oldy) to (newx,newy)
generate mapping transform between windows

124

3.3.3.4 COLOR UTILITY FUNCTIONS

These functions support color handling, including

determining pixel values for particular colors in the

cone.vlt color space, color map file i/o, and compensation

table.

The CONE.VLT represents the skin of the double hex-cone

color model, where each pixel uses 3 bits to indicate color

(1 bit each red, green, blue), and 5 bits for shading (4

bits gradient, 1 bit direction), as follows:

msb 1 7 6 5 1 4 1 3 2 1 0 1 lsb

I r g b lb/wi gradient I

When the gradient half-byte is 0, the full primary

(rgb) is visible. As the gradient increments to 15, the

primary is shaded towards black or white depending on the

b/w bit. This allows the gradient to be logically treated

as an overlay and support mixture of anti-aliased text and

images.

125

Figure 3-23 Color Utility Procedures

getprime
getrange
getcolor
colormenu
conevlt

loadvltf
savevltf

makctbl

get pixel value for a primary color
get pixel range between two primary colors
get pixel value between two primary colors
offer a color selection menu to user
generate a standard "cone" color table

load a color table from a file
save a color table to a file

make a color correction compensation table

3.3.3.5 ANTI-ALIASED FONT SUPPORT FUNCTIONS

The font support functions simplify the interface to

the high quality fonts on the yoda display by allowing

multiple fonts to be open at a time. The program simply

requests a font by name and all the low level initialization

and interfacing are taken care of.

Figure 3-24 Anti-Aliased Font Support Procedures

fontinit
fontselect
fontclose
fontmenu

ftodbl
dbltof

initialize high level font support
select and open font to use
close a font
offer a font selection menu to user

convert from float to fixed double
convert from fixed point to float

126

3.3.4 INPUT SUBSYSTEM

The locate functions provide a high level interface to

locator (pointing) input devices and cursor. The main

function "inpjlocate" waits for the user to perform some

action, and returns an action code. It reads the device,

moves the cursor, checks the keyboard for any input there,

and returns an action code, the locator device coordinates,

and a button value depending on the action code. Programs

using these functions instead of lower level ones will

retain a level of device independence, because these

functions are sensitive to the configuration of the

workstation, using DOS environment variables.

The keyboard functions provide a direct interface with

the IBM PC keyboard (through the ROM BIOS), rather than

standard C getchar, etc. This allows non-ascii input and

special keys to be read, such as the function keys. The

function "keyarrows" allows the keyboard to simulate the

mouse.

The mouse functions simplify the interface to the

equivalent Mouse Systems, Inc. optical mouse interface

library. The "mouse" function is smarter, remembering the

button state.

127

Figure 3-25 Locate Actions

MOVED

OUTSIDE

PRESSED

RELEASED

ASCIIKEY

FTNKEY

ABORT

user simply moved the cursor, no button change
(button returned as UNDEFINED (-1))

like MOVED, except cursor went outside locate
boundary (see setlocbounds)

a locator button was pressed, and its number is
returned in button

a locator button was released, and its number is
returned in button

an printable ascii key was pressed on the
keyboard, returned in button

a function key was pressed on the keyboard,
returned in button (see below)

the abort key was pressed (esc, break or ctrl-c)

128

Figure 3-26 Input Library Functions

inplocate
inp-dblclick
inp.device

asklocposn
setlocposn
setlocdevice
setlocbounds
setlocspeed

setcursor
makcursor

signal user events, track cursor
look for double click on mouse
get input= device configuration from DOS

get current locate position
set current locate position coordinate
set current locate input device
set current cursor boundary limits
set device speed sensitivity

set cursor pattern from a bitmap
make a standard cursor pattern

plus keyboard and mouse interface functions

129

3.3.5 MEMORY AND DATABASE SUBSYSTEMS

Numerous memory management and database management

procedures were implemented to support (a) string

manipulation, (b) large buffer and file io, (c) linked list

and property list handling, (d) offscreen pixel buffer

allocation and management, (e) rectangular border control,

(f) overlapped layering and tiles, (g) raster image

processing and color lookup table management, and (h) raster

image database management.

130

CONCLUSION

The Spatial Contexts system demonstrates the

integration of personal workspaces into computer-based

environments. Key characteristics of personal design

workspaces are identified, and a set of important computer

metaphors that can support these requirements are described.

A sequence of scenarios and detailed functional definition

of objects in the system illustrate how these metaphors can

be integrated into a comprehensive user interface

environment. The system architecture specifies how a

demonstration of this system has been designed and

implemented on a personal workstation.

Programmers can expand the system by adding new

objects, object properties and methods. However, the

current software program is not a complete implementation of

the ideas defined in this thesis. Furthermore, the "C"

language has no built-in support for objects and limitations

in software tools impacted the system development. In an

object-oriented language and an interactive programming

environment, the implementation of these specifications

could be improved.

131

Future work on these ideas obviously includes

completing the implementation and testing the effectiveness

of the concepts with real people involved in real design

projects.

132

BIBLIOGRAPHY

Subject Categories:

Personal Workspaces
Design Methodologies
Computer Metaphors
Object-Oriented Programming

PERSONAL WORKSPACES

Ned Block, Imagery, MIT Press, 1981.

Ronald J. Brachman, "What IS-A Is and Isn't: An Analysis of
Taxonomic Links in Semantic Networks", IEEE Computer, 16:10,
October, 1983.

Ronald Brachman, Richard Fikes, Hector Levesque, "Krypton: A
Functional Approach to Knowledge Representation", IEEE
Computer, 16:10, October, 1983.

Samuel Fillenbaum, Amnon Rapoport, Structures in the
Subjective Lexicon, Academic Press, 1971.

Howard Gardner, Frames of Mind: The Theory of Multiple
Intelligences, Basic Books, 1983.

Charles Hampden-Turner, Maps of the Mind: Charts and
Concepts of the Mind and its Labyrinths, Collier Books,
1981.

John Haugeland, ed, Mind Design: Philosophy, Psychology,
Artificial Intelligence, MIT Press, 1981.

Douglas R, Hofstadter, ed, The Mind's I: Fantasies and
Reflections on Self and Soul, Bantom Books, 1981.

133

Paul Kellam, "The Future of Computing: Personal with a
Capital P", Personal Computing Magazine, May, 1983.

Thomas Malone, "How Do People Organize Their Desks?
Implications for the Design of Office Information Systems",
ACM Transactions on Office Information Systems, Vol.1, No.1,
January, 1983.

George Miller, P.N. Johnson-Laird, Language and Perception,
Belknap Press, 1976.

Seymour Papert, Mindstorms: Children, Computers, and
Powerful Ideas, Basic Books, 1980.

Lenhart Schubert, Mary Papalaskaris, Jay Taugher,
Determining Type, Part, Color, and Time Relationships, IEEE
Computer, 16:10, October, 1983.

Robert Sommer, Personal Space: The Behavioral Basis of
Design, Prentice-Hall Inc, 1969.

M. Wertheimer, "Laws of Organization in Perceptual Forms",
in Ellis, W.D., trans, A Source Book of Gestalt Psychology,
Routledge & Kegan Paul, London, 1938.

William A. Woods, "What's Important About Knowledge
Representation?", IEEE Computer, 16:10, October, 1983.

134

DESIGN METHODOLOGIES

Rudolf Arnheim, The Power of the Center: A Study of
Composition in the Visual Arts, Univ of California Press,
Berkeley, CA, 1982.

Gregg Berryman, Notes on Graphic Design and Visual
Communication, experimental edition, William Kauffmann Inc,
1979.

Alexander Christopher, Notes on a Synthesis of Form,

E.W. Dijkstra, "Go To Statements Considered Harmful", CACM
25th Anniversary Issue, v.26, n.1, January, 1983, p.74.
Also see John Rice, "The Go To Statement Reconsidered", and
Dijkstra's reply on the same page.

Donis Dondis, A Primer of Visual Literacy, MIT Press, 1973.

Charles Eastman, "Explorations of the Cognitive Processes in
Design", CMU Technical Report, February, 1968.

Karl Gerstner, Designing Programmes, Arthur Niggli Ltd,
1964.

Mark Gross, "A Laboratory for Exploring Design Constraints",
MIT Dept of Architecture, Design Theory and Methods Group
memo, May, 1985, to appear in AISB Conference on AI and
Education.

Armin Hoffmann, Graphic Design Manual: Principles and
Practice, Reinhold Publ, 1965.

Allen Hurburt, The Grid, A Modular System for the Design and
Production of Newspapers, Magazines, and Books, Van Nostrand
Reinhold Co, 1978.

Wassily Kandinsky, Point and Line to Plane, Dover

135

Publications, 1979 (original 1926).

Paul Klee, Pedagogical Sketchbook, Frederick Praeger, 1953.

Peter Molzberger, "Aesthetics and Programming", Human
Factors in Computing Systems, SIGCH '83 Proceedings, 1983.

Jack Mostow, "Toward Better Models of the Design Process",
The AI Magazine, Spring, 1985.

Alan Newell, Herbert Simon, Human Problem Solving, Prentice-
Hall Inc, 1972.

Kimon Nicolaides, The Natural Way to Draw, Houghton Mifflin
Co, 1941.

Herbert Simon, The Sciences of the Artificial, Second
Edition, MIT Press, 1981.

Jan White, Editing by Design, A Guide to Effective Word and
Picture Communication for Editors and Designers, R.R.
Bowker Co., 1982.

Hans Wingler, The Bauhaus, MIT Press, 1978.

Niklaus Wirth, "Data Structures and Algorithms", Scientific
American, Vol 251, No.3, September, 1984.

Niklaus Wirth, "Program Development by Stepwise Refinement",
Communications of the ACM, vol.14, no.4, April, 1974.

136

COMPUTER METAPHORS

L. Blomberg, et al, "A New Approach to Text and Image
Processing", IEEE Computer Graphics and Applications, vol.4,
#7, July, 1984.

Richard Bolt, "'Put-That-There': Voice and Gesture at the
Graphics Interface", SIGGRAPH '80, ACM Computer Graphics,
vol.14, no.3, July, 1980.

Richard Bolt, "Gaze-Orchestrated Dynamic Windows", SIGGRAPH
'81, ACM Computer Graphics, vol.15, no.3, August, 1981.

Richard Bolt, The Human Interface: Where People and
Computers Meet, Lifetime Learning Publications, 1984.

Alan Borning, "The Programming Language Aspects of
ThingLab", ACM Transactions on Programming Languages and
Systems, vol.3, #4, October, 1981.

William Donelson, "Spacial Management of Information",
SIGGRAPH '78, ACM Computer Graphics, vol.12, no.3, August,
1978.

"Filevision User Manual," Telos Software Products, Santa
Monica, CA.

James Foley, Andreas VanDam, Fundamental of Interactive
Computer Graphics, Addison-Wesley, 1982.

Don Hatfield, "A 'Direct Manipulation' Approach to Text
Processing", draft, IBM Cambridge Scientific Center, 1984.

Paul Heckel, The Elements of Friendly Software Design,
Warner Books, 1984.

Christopher Herot, et al, "A Prototype Spacial Data
Management System", SIGGRAPH '80, ACM Computer Graphics,

137

vol.14, no.3, July, 1980.

Alan Kay, "Microelectronics and the Personal Computer",
Scientific American, 1977.

Myron Krueger, Artificial Reality, Addison-Wesley, 1983.

D.S. Lipkie, et al, "Star Graphics: An Object-Oriented
Implementation", SIGGRAPH '82, Computer Graphics, vol.16,
#3, July, 1982.

David McKeown, Jr, "Graphical Tools for Interactive Image
Interpretation", SIGGRAPH '82, ACM Computer Graphics,
vol.16, no.3, July, 1982.

William Newman, Robert Sproull, Principles of Interactive
Computer Graphics, 2nd Edition, McGraw-Hill, 1979.

Craig Reynolds, "Computer Animation with Scripts and
Actors", SIGGRAPH '82, ACM Computer Graphics, vol.16, no.3,
July, 1982.

Robertson, McCracken, Newell, "The ZOG Approach to Man-
Machine Communication", CMU Technical Report, October, 1979.

Ben Shneiderman, "Direct Manipulation: A Step Beyond
Programming Languages", IEEE Computer, August, 1983.

David C. Smith, et al, "Designing the Star User Interface",
BYTE, vol.7, no.2, April, 1982.

Ivan Sutherland, "SKETCHPAD: A Man-Machine Graphical
Communication System", SJCC 1963, Spartan Books, Baltimore,
MD. (MIT Lincoln Lab Technical Report #296, May, 1965).

138

OBJECT ORIENTED PROGRAMMING

Elizabeth Allen, "YAPS: A Production Rule System Meets
Objects", AAAI, 1983, 5-7.

Daniel Carnese, "Multiple Inheritance in Contemporary
Programming Languages," Master's Thesis, Dept EE and CS,
MIT, August, 1984.

Brad J. Cox, "Message/Object Programming: An Evolutionary
Change in Programming Technology", IEEE Software, vol.1,
no.1, January, 1984.

O.J. Dahl, "Simula 67 Common Base Language", Publication S-
22, Norwegian Computing Center, Oslo, 1968.

Adele Goldberg, et al, Smalltalk-80: The Language and Its
Implementation, Addison-Wesley Publ Co, 1983.

Carl Hewitt, "Viewing Control Structures as Patterns of
Passing Messages", MIT technical report, no.410, December,
1976.

Alan Kay, "Computer Software", Scientific American, Vol 251,
No.3, September, 1984.

Lamar Ledbetter, Brad Cox, "Software-ICs: A Plan for
Building Reuseable Software Components", Byte, June, 1985.

J. Shoch, "An Overview of the Programming Language
Smalltalk-72", SIGPLAN Notices, ACM, 14(9), September, 1979.

Paul Sholtz, et al, "YODA 0.2 Programmers Guide", internal
document, IBM Yorktown Heights, February, 1985.

David C. Smith, Pygmalion: A Computer Program to Model and
Simulate Creative Thought, Birkhauser Verlag Basel, 1977.

Larry Tesler, "The Smalltalk Environment", BYTE, vol.8,
no.8, August, 1981.

139

Greg Williams, "The Lisa Computer System", BYTE, February,
1983.

140

