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ABSTRACT

Personal workspaces are places where one comfortably
gets work done organizing information and exploring ideas.
Information is organized by moving things around, drawing
associations and making piles. Ideas are explored by
creating sketches and plans and then editing and refining
them, moving between levels of detail and abstraction. For
personal computers to support individual styles of problem
solving and design they must exhibit the qualities that make
ordinary workspaces feel personal.

The system design for an interactive environment,
Spatial Contexts, is presented that provides a framework for
building computer-based personal workspaces, drawing upon a
number of interaction metaphors. A prototype system has been
developed and demonstrated on a color graphics computer
workstation with an object-oriented software architecture.

In Spatial Contexts, three principal classes of objects
are defined: Elements- singular objects referencing specific
information; Containers- objects that contain other objects
for compositions, groups and hierarchies; and Tools-
functional objects that are applied to other objects.
Complex workspaces can be built from these, for applications
that include page layout, animation storyboarding, spatial
data management and semantic knowledge representation.

Thesis Supervisor: Muriel Cooper
Associate Professor of Visual Studies
Director, Visible Language Workshop, MIT
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INTRODUCTION

Design is both a cognitive and physical process of
discovery and creation. It is not limited to the jobs of
professional designers, such as graphic artists, architects
and engineers, but is integral to everyday human activities
of planning, problem solving and organization. Where there
is decision making, there is design. Design involves
planning what to do, deciding how to do it, and working to

do it right.

Computers allow us to look at situations in ways never
before possible, for modeling, simulation and information
organization. They are changing the way we work. If tasks
are to be moved to the computer workstation, so must the
qualities of design and creativity that make the work
challenging, rewarding and personal. Workstations must

become personal workspaces.

Page layout design has a history in conventional media,
yet it is an application whose tasks are increasingly being
supported in personal workstations. Graphic designers are
typically not computer users, preferring hands-on work. They
like to play with paper as they play with ideas, arranging

visual elements to explore new compositions.



Such interactivity with one's work is also true for
many other tasks, including those based in today's
electronic information media. The role of designer (author,
producer) and user (reader, consumer) are converging as each
of us becomes more active in the selection, production and

presentation- the personal design- of our own information.

This thesis is an exploration of design as an
interactive personal process and the implications for

electronic computer-based workspaces.

Section One, CONCEPT, asserts that spatial organization
and spatial thinking are integral to problem solving. The
notion of "personal design workspaces" is defined as both
the physical and mental organization of objects during the
design process. Then, a number of key characteristics of
computer-based workspaces are identified that can support
personal design, drawing upon recent metaphors of human-

computer interaction.

Section Two, SCENARIO, presents an experimental user
interface system, Spatial Contexts, as an example of an
interactive environment that becomes an evolutionary

personal workspace. A sequence of interaction scenarios



demonstrate how workspaces evolve as one's work develops.
The properties and behaviors of particular objects are

defined.

Section Three, ARCHITECTURE, specifies the
implementation of the system using a color graphic computer
workstation and an object-oriented software architecture.
The user works with top level application-specific objects
built from the principal object classes: graphic elements,
containers, and tools. The application is supported by the
sub-system libraries for object, display, input, memory and

database management.

The software program that accompanies this document is
a prototype for a Spatial Contexts system, demonstrating

many of the key system concepts defined here.



"All who use computers in complex ways are using
computers to design or to participate in the
process of design. Consequently we as designers,
or as designers of design processes, have had to be
explicit as never before about what is involved in
creating a design and what takes place while

creation is going on." Herbert A Simon [SIMON'S81].
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Section 1. CONCEPT

1.1 PERSONAL DESIGN WORKSPACES

1.1.1 Personal workspaces are dynamic inhabited spaces where

one organizes things and develops ideas.

When you move into an empty new office, it may feel
uncomfortable at first, equipped with a strange desk and
bare shelves. But soon the office becomes your own as you
move in, get to work and begin to inhabit the space. It
becomes your personal workspace, where you organize papers

and notes, make piles, file things away for later retrieval.

Thomas Malone has examined ways people organize their
offices, and the implications for the design of office
systems [MALONE'83]. He asserts that spatial organization of
work is a function of both the working style of a person and

his particular task.

The organization of material on one's desk is not just
to facilitate information retrieval, but to be reminded of
tasks to do. Certain piles represent work in similar states
of completion. Materials on a desk are edited, shuffled

around and accumulated dynamically as work progresses.

10



Malone notes that "the cognitive difficulty of
categorizing information" is an important factor in
explaining how people organize their desks. Piles are
loosely defined groups whereas files contain named and
ordered elements. Piles are less tedious to use than files,

but are inexact and informal (Figure 1-1).

Electronic information workspaces must allow the user

to build piles, and should assist the user with information

categorization and filing.

11
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1.1.2 Work environments are composed of many integrated

workspaces that evolve as one works.

At the studio office, the graphic designer has a
personal work environment that has evolved through the day
to day habitation of the space. It is made of work areas for
editing ideas, reviewing work in progress, arranging

information, and collecting tools (Figure 1-2).

The drawing board is the space for generating and
editing ideas. We all have had to "go back to the drawing
board"™ now and then. Plans and prototypes are designed in
this primary editing space. There may be several drawing
boards simultaneously when (1) more than one problem is
worked on at a time, (2) there are several approaches to a
single problem, and (3) a single idea is represented in

various levels of abstraction and refinement.

As work progresses, one often needs to step back and
evaluate the overall flow and rhythm of a project or design.
Sketches and miniatures are posted and reviewed on the
tackboard. This is useful for sequencing, as well as
tracking progress and communicating with others on the

project.

13



Other spaces include cabinets, shelves and drawers.
Design and problem solving more often requires the
arrangement and combination of existing material than the
generation of completely new work. Components are stored,
retrieved, collected and arranged in these reference spaces

as they are brought into play.

Toolboxes contain various tools and other small items.
Designers have many tools, though only a few are used most
frequently. These tend to be collected near the work areas,
in the context of the work. The usage of a tool depends on
its context: as a function of the tool, the object it is
applied to, and the purpose of the action. For instance, a
pencil is ordinarily used to make marks on paper, however it
can also punch holes in the paper. Tools are used to
transform components of the design, edit things, and even

modify other tools, as a pencil sharpener sharpens pencils.
Personal workspaces are made of task components and

tools arranged into work areas. One should be able to

similarly configure their own electronic workspaces.

14
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1.1.3 Objects in the environment are organized spatially and

symbolically.

Chunking and layering are primary principles of
organizing information in the human mind [MILLER'76]. A
chunk is a symbolic object of arbitrary complexity, built on
hierarchical layers, and handled as a single entity.
Chunking allows one to synthesize mental models that are
manipulated as unique entities, and perceive trends and
patterns in information. Personal workspaces reflect the
mind's chunking and layering activity, as items are

spatially arranged and hierachically grouped.

Mental organization can be highly symbolic, but is
greatly aided by spatial references and visualization.
Inherently non-spatial concepts can be graphically
represented, providing visible maps of the mind
[FILLENBAUM'71, HAMPDEN'81, SCHUBERT'83]. Figure 1-3 shows a
formal psychological study where emotional names were
spatially arranged and clustered, and, more personally, a
map of activities in the author's life. Expressing concepts
geometrically helps make them more concrete and tractable,
as the spatial-visual 'right brain' supports the linguistic-

symbolic 'left brain'.

16



The inverse is also true- physical objects can be
related to one another in many ways other than simply their
physical position. Tools may be scattered about an office,
but each is still a kind of tool. A photograph may lie in a
pile of photos for a particular document, but still is
associated with others by the same photographer, of the same

subject, etc.

One draws both spatial and symbolic associations

between objects. Electronic workspaces should allow users to

freely express and edit association maps between objects.

17
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1.1.4 Structured design methods provide guidance by

constraining the process and limiting choices.

Structured design methods help us understand the design
process and offer effective techniques. Design activities
are organized into components and stages of completion. The
problem domain is structured as though it is inherently
organized and defined, just waiting to be discovered. To
find a solution means to map a path through the objects,
operations, subgoals and constraints that make up the
problem domain. Figures 1-4 and 1-5 show models for graphic

design and software design processes, respectively.

One method of structured design is the top-down
approach with incremental refinement. One starts out
defining the task in general terms, identifying the overall
goals, inherent constraints and prescribed specifications.
The problem is decomposed into a set of subtasks, and the
process of refinement is continued as each level resolves
the goals of the one above until the solution is
satisfactorily mapped out. Nicholas Wirth explains this in
terms of software design: "The programmer sets up a
hierarchy of abstractions, viewing the program first in
broad outline and then attending to one part at a time while

ignoring the internal details of other parts." [WIRTH'84].

19



Graphic artists have many structured systems to work
through design decisions of varying complexity. Karl
Gerstner, for example, considers the grid to be an excellent
example of a systematic design tool [GERSTNER'64]. Offering
a structured approach to spatial layout, the grid is a
"proportional regulator" that offers many intelligent
choices through tight constraints, as in Figure 1-6. Other
structured systems take the form of symmetrical geometry,
ordered tables and matrices, notation systems and three
dimensional models. These are manifestations of the problem

space in which solutions can be mapped.

Graphic designer Allen Hurlburt comments that solving a
design problem is much like running a maze. "The designer
selects a line to follow only to learn that the constraints
he encounters send him back to probe another direction until
he finds a clear path to the solution." [HURLBURT'78].
Finding a solution is then reduced to a search problem
[SIMON'81]. Gerstner reduces it even further, to simply a
matter of making the right choices.

"To describe the problem is part of the solution.

This implies: not to make creative decisions as

prompted by feeling but by intellectual criteria. The

more exact and complete these criteria are, the more
creative the work becomes. The creative process becomes
reduced to an act of selection. Designing means: to

pick out determining elements and combine them."
[GERSTNER,p8.10]

20



Enforcement of structured design systems should be
available in electronic workspaces to help constrain the
user to predefined sequences of operations, limit choices at
specific decision nodes, and maintain components of the work

as they are developed.

21
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1.1.5 Informal design methods encourage experimentation and

innovation.

Structured design methodologies try to engineer the
design process, providing discipline and rules. They can be
quite useful and effective, but if taken too seriously in
practice they can become stiff and confining. When a
particular design strategy is rigidly imposed, it turns from

a tool of great potential into a straitjacket.

informal design allows for intuitive discovery and
evolution of technique. Informal design methods encourage
experimentation and innovation. Accidents are allowed to

happen.

There is no single correct solution to any design
problem. Individuals make for individual differences, though
a good solution will be widely recognized as such. One
relies on techniques and rules learned and shared in the
cultural environment of peers and experts. These statements
of conventional wisdom are respected because they work, most
of the time. Whereas strucfured design rules are meant to be
enforced, informal rules are often stretched to their limits

to control contrast and harmony dynamics.

25



Design problems are evolutionary, not static. The
problem domain changes as the solution emerges, not only in
the sense that the next step is different from the previous,
but the objectives of the design may evolve as well.
Flexibility with old ideas and reception to new ones is

critical.

The user interface to electronic workspaces should
permit the user to relax structured constraints and work
loosely through a problem. Informality is essential for one

to work comfortably in his or her personal workspaces.

26



1.1.6 Various spatial, temporal, and detail representations

are used during the design process.

Consider the process of designing the layout of a
multi-page pamphlet. A 'page' contains information in
different levels of material, style and content components,
as in Figqure 1-7. Material components include the background
or paper characteristics. The style sheet specifies
constraints on the format of the content, including
typographic, graphic and grid specifications. The contents
of a page include graphics, images and text data. The page
is part of a larger whole, sequentially linked to other

pages in the document.

Designers are concerned not only with the spatial
layout of individual pages, but the continuity, flow and
rhythm of the document as a whole, as graphic designer White

explains in Figure 1-8 [WHITE'82].

In this sense, page layout shares characteristics of
temporal layout of animated sequences. Figure 1-9 shows two
graphic layouts of animated films. The top one shows the
components of a single shot, including separate photographic

images, drawings and masks, and how they are combined within

27



a frame and within the sequence. The lower illustration is
an excerpt from a film showing key frames and verbal

descriptions of the actions and sound in each shot.

The structure of a page layout can be represented at
various levels of refinement and detail. Figure 1-10 shows
the four basic levels of a page layout. Initial ideas of the
design are explored with thumbnail sketches, quickly drawn
and easily arranged for comparison and sequencing. As the
number of ideas are narrowed, more detailed rough sketches
are developed that help the designer determine balance,

scale and format relationships in context of the text and

At an early stage, a basic grid is defined. The grid
provides a framework for the layout. Grid lines offer
guidance for the alignment of components on the page and
consistency between pages. rhe strict use of grids is
optional and unique grids often must be developed for

different layout strategies.
Electronic workspaces intended to support interactive

design tasks should allow for varieties of spatial,

temporal, and detail representations of the work.

28
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"Design each story, no matter how long or how short,
as a unit. Do not fall into the trap of working on one
page of a multipage story until you have solved the basic
pattern for the entire story, start to finish. This is
where the value of that kitchen—counter worktable is most
evident: use it to organize the raw material into piles
coordinated to the pages on which the material is planned
to falls then work out an overall design that will
accommodate the material within the story’s matrix".
[WHITE,p2S1.

FIGURE 1-8 THE TEMPORAL DIMENSION OF PAGE LAYOUT
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FIGURE 1-9 ANIMATION STORYBOARD STYLES
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Figure 1-10
VARIOUS LEVELS OF REFINEMENT OF A PAGE LAYOUT
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1.2 COMPUTER METAPHORS

1.2.1 Computer graphic workspaces rely on the sensation of

direct manipulation of simulated objects.

Interactive computer graphics provides a medium for
exploring object-oriented design, where a user manipulates
the model of an object while its picture is continually
updated on the screen. Ivan Sutherland's Sketchpad system
was the first computer aided design system to allow the
interactive creation, editing and constraint of graphic

layouts [SUTHERLAND'63].

The MacIntosh computer brings the computer graphics
paradigm into the hands of consumers. The MacDraw program is
a typical graphics editor where graphic objects, such as
lines, curves and text, are selected from a menu and added
to a composition. The component is easily edited by
performing an operation selected from a menu or by using a

surrounding "handle".
Another MacIntosh program, FileVision, extends the
concept so that objects are associated with fields in a

database. No longer simply components of an illustration,
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the graphic objects become symbolic references or
representational images in the context of an information

domain.

Traditional computer-aided design systems exploit the
integration of computer graphics with domain-specific
databases. Two and three dimensional designs can be modeled
and incrementally transformed. These may be high quality
simulations of real world objects, for what-you-see-is-what-

-you-get (wysiwyg) interaction.

Beyond wysiwyg, alternative views of the same data can
be represented. In graphic design, for instance, page
layouts need to be viewed at different levels of refinement
(thumbnails, roughs, comps), as layers of components, and as

temporal sequences, as discussed in the previous section.

The direct manipulation metaphor of interactive
computer graphics offers a simulated physical world with
tactile eye-hand feedback. Computer graphics allows design

by construction and editing of objects.
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1.2.2 Electronic workspaces are metaphors for real world

workspaces.

The metaphor of using the computer screen as an
"electronic desktop" was first introduced by the Learning
Research Group at the Xerox Palo Alto Research Center (PARC)
in the early 1970's. The graphics screen corresponds to a
desk, with overlapping spatial regions, or windows analogous
to pieces of paper. Each window is a separate work area with
its own data and functions. Alan Kay explains the invention
of these windows,

"In many instances the display screen is too small to

hold all the information a user may wish to consult at

one time and so we have developed "windows" or
simulated display frames within the larger physical
display. Windows organize simulations for editing and
display, allowing a document composed of text,
pictures, musical notation, dynamic animation and so on
to be created and viewed at several levels of
refinement." [KAY'77,p234].

Icons are small symbols and images that represent data
and functions. For instance, to print a document, copy its
icon onto the icon of the physical printer. To edit a file,

open it's icon into a new window running its application

program.
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These concepts have been extended from business office
environments to graphic design studios. The computer screen
acts like an "electronic light table" [BLOMBERG'84]. The
computer screen contains multiple viewports to layouts of
objects on the tabletop. Two-dimensional graphic components,
including slides, photographs, drawings, headlines and text
can be overlapped, combined and masked. Like their real-
world counterparts, each component has form, transparency

and intensity attributes.

Workspace metaphors allows one to design directly in
his problem domain. Non-technical users can easily approach
the system, feel comfortable exploring its capabilities, and
go about working in familiar ways. The ability to arrange
and combine these components into meaningful piles and work

areas facilitates building personal workspaces.
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1.2.3 Workspaces can be explored and edited by perusing and

arranging data resources.

Systems for data resource management have been
developed which present the user with an interactive
"dataland" he can travel through. Figure 1-11 shows a
variety of dataland configurations. The ZOG system developed
at Carnegie Mellon configures separate screenfuls of
information, or frames, linked to other frames
[ROBERTSON'79]. Frames were limited on text screens,
although graphics and images should be included. From any
one frame, the user can move through the network making
choices between forward linked frames, or backing up to the

previous frame.

Facilities for traveling through the ZOG frame-base and
authoring new frames and links were available to anyone
wanting to explore the datalands and develop their own
frame-bases. A significant factor in its success was the
speed of the ZOG system, since new frames could be displayed
almost instantaneously allowing perusal of the database in

interactive real time.
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The Spatial Data Management system from MIT presents a
dataland mapped onto the surface of a torus or doughnut
[DONELSON'78]. One can pan up and down and around the space,
looking through the "window" of the computer screen. If one
zooms into an object, say a telephone, it becomes activated
and the user can make a call. Other similar systems allow
one to enter other datalands through portals, like trap

doors in some exotic adventure game [HEROT'S80].

Such systems allow one to build personal workspaces by
organizing and customizing their dataland. Richard Bolt
explains,

"Your personal Dataland would look different from mine

or anyone else's. There would be different items in

different arrangements, just as the everyday desktops
of people reflect their individuality. What would be
common to all Datalands, however, is that the data

types dwelling in them would be presented as images in
specific locations." [BOLT'84,pll].

Datalands are an interactive world to explore, build,
and design within. Structure is supplied by limiting the
choices where one can go next, and by arranging and
categorizing data into hierarchical files. Design becomes
the organization and selection of objects in an electronic

terrain.
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FIGURE1-11 A VARIETY OF DATALANDS
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1.2.4 Workspaces are programmed by assembling objects into

functional models.

When behavior and responsiveness can be programmed into
objects, the environment becomes a microworld with a finite
number of objects and the ability to build new ones.
Microworlds offer a toolkit for assembling objects into

programs.

ThingLab is a microworld simulation laboratory for
dynamic experiments in geometry and physics [BORNING'71].
The top of Figure 1-12 shows a Centigrade-Farenheit
temperature conversion program built from basic arithmetic
objects and sliding "thermometers" for input and output.
ThingLab allows interactive programming by defining

constraints between graphical objects.

There are other examples of graphical object
programming. With the LOGO language, children have an
"object to think with" and draw pictures by instructing a
'turtle' with a pen how to move [PAPERT'80]. ChipWits, a
game on the MacIntosh, has the player program the behavior
of a robot by assembling functional "chip" icons into

programs. Rockey's Boots, an Atari video game, lets the
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player collect electronic components and plug them together
to build simple simulated machines. Electronic financial
spreadsheets, such as VisiCalc and Lotus 1-2-3, are toolkits

for financial modeling and simulation.

In each of these examples, programming is integrated
into the user interface environment, in context of the
particular user task. One learns to program without
realizing it, since the goal is simply to draw a picture,

win a game, or calculate a financial model.

By assembling objects, constraint relationships are
defined that direct the behavior of the objects. There may
be models and constraints given to the user, plus the
facility to develop them for him or herself. Design becomes

programming of constraints, experimentation and assemblage.
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FIGURE 1-12 MICROWORLD PROGRAMMING TOOLKITS
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1.2.5 New and refined objects are defined relative to

existing ones.

Object-oriented programming languages provide a system
for building taxonomic relationships between objects by
defining objects as belonging to particular classes. New
objects are created from existing ones by saying "this one
is just like that one, except ...", and then enumerating the

differences.

The Simula-67 language [DAHL'68] first introduced the
'class' construct, whereby sets of generic operations and
properties are associated. New classes are be derived from
existing ones, allowing inheritance to determine their
operations and property sets. In Simula, these
relationships are determined at compile time and are not

dynamically alterable.

The Smalltalk language developed at Xerox PARC
generalizes these ideas and supports a high degree of
consistency, uniformity and integrity of object management
[GOLDBERG'83, SHOCK'79]. Everything in the system is an
object, including classes themselves. Objects can be altered

dynamically, allowing the development of highly interactive
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programming environments that encourage evolution and

testing.

Multiple inheritance occurs when an object is defined
from more than one parent. Conflicts must be resolved when
different values are offered from different parents for the
same property. It could be predetermined that one take
precedence, or a method is defined to resolve the conflict

at the time the property is referenced.

This ability to define new things relative to existing
ones supports the evolutionary refinement of objects in the
design environment. Ideas can be drawn from earlier work.

Sketches can be refined. Work can progress in stages.

44



1.2.6 Objects in the workspace are associated by property

values and arbitrary semantic connections.

Other relationships can be drawn between objects by
matching property values, and by creating explicit semantic

links.

Relational database systems provide a mechanism for
collecting objects based on property values. Sets of objects
of the same type can be selected based on a range of
property values. Furthermore, sets of different types of
objects can also be selected, when they share the specific

properties matched against.

Rather than searching on property value ranges,
explicit connections can be made between objects. Such links
can be given a symbolic name, and be used by operations that
recognize the link. Symbolic links drawn between discrete
objects form semantic networks to represent relationships
within specific knowledge domains [WOODS'83, BRACHMAN'S83a,

BRACHMAN'83b].

Relational and semantic connections are a means of

defining symbolic associations between objects. In a
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personal workspace, this permits loosely associating objects
in a pile, creating containers of related files, searching
for specific objects in a dataland, and support of design

constraints requiring definition of specific links.
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+1.2.7 Electronic workspaces need to integrate with our

everyday workspaces.

The physical spaces for these computer metaphors are as
important as the conceptual models themselves. After all, if
your chair is not comfortable, you will not get much work
done regardless of how effectively you understand the task.
Furthermore, a comfortable chair in an alien setting is

inhibiting also.

For instance, a user sitting in the middle of a 'media
room' has an electronic multi-sensory workspace that, in
practice, would likely be too sterile and uncomfortable.
More practical implementations of electronic workspaces need

to integrate better with our everyday ones.

In the an office, an electronic workspace may look like
a desk blotter, allowing one to move with ease between
electronic workspaces and real pieces of paper, folders and
telephones. In the home, consider a thin lightweight tablet
about the size of a newspaper that you hold on your lap as
you sit comfortably in your living room. Very portable
workspaces should fit in your pocket or be worn like

jewelry.
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Computer—-based workspaces must be useful, practical and
personal. This discussion has identified a set of
characteristics of personal design workspaces that all
workspaces share. A set of computer metaphors have been
identified that can support these requirements in electronic
computer-based workspaces. The following section presents a

user interface that begins to integrate these ideas.
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Figure 1-13. Electronic Workspaces Must Integrate
with our Everyday Workspaces
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Section 2. SCENARIO

2.1 USER MODEL

2.1.1 Users sitting at the Spatial Contexts system are

encouraged to explore, synthesize and massage their work.

For interactive computer environments to be truly
effective, the technology itself must become transparent
allowing the user to work more directly in his problem
domain. The user's primary concern is solving some design or

management problem, not how to use the computer.

The objects in the Spatial Contexts system are familiar
to the user and relevant to the task. They can be moved,
modified, edited and used in different ways. Users are
encouraged to organize their work spatially, creating

different work areas and piles at will.

While composing a page of a document, a designer may
need to choose one of several images for an illustration.
The candidate images are collected in a pile and then
inserted one at a time onto the page. If the image is
sitting on the page or in a pile, it can be cropped and

adjusted within that context. Contexts can constrain the
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effect of tools on the object, and may even determine the
visual representation of an the object. For instance, the
image in the pile may be full color, while on the page it is

black and white.

Users sitting at the system are encouraged to explore,
synthesize and massage their work. One learns to travel
through the datalands, examining objects, trying out tools
and synthesizing his or her own models. The system is
interactive and conversational as the user arranges the
environment while being constrained by the workspaces.
Easily moving between several workspaces at a time, one can
organize things spatially, hierachically, and in other more
symbolic configurations. It allows visualization of form

with regard to spatial context.
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2.1.2 A new environment contains the Main Cabinet and a Main

Toolbox for the system's elements, containers and tools.

The Spatial Contexts simulated user environment, itself
an object, contains all the objects the user is currently
working with and access to all other objects in the system.
The environment is responsible for intercepting user input

and signaling appropriate objects that an event occurred.

Figure 2-1 shows the default new environment with two
open containers: a Main Cabinet portal to the system's
dataland, and a Main Toolbox with a complete collection of

tools on the system.

Data appears in the system as element objects which
include graphics, images and text. Elements represent
discrete units of information spatially arranged in a
container. Their visual form and properties can be edited.
Symbolic links can be drawn between them. Elements are

discussed in Section 2.3.1.
Environments are a special type of Container object.
Containers are objects that contain other objects, for

making compositions, groups and hierarchies. Other types of
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containers include Cabinets, Toolboxes and Pages. Containers

are discussed in more detail in Section 2.3.2.

Tools are used to interact with objects, using a mouse
input device. There are three ways to select tools: by
picking one up, by moving the cursor over an attachment
site, and by selecting it from a menu or button box. Tools

are discussed in more detail in Section 2.3.3.
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main cabinet

Default New Environment contains

Main Cabinet

principal port into the system's dataland
including any data files (pictures, text)
and an empty container

Main Toolbox

principal container of tools in the system
including Scale, Group, Sequence, Paint, etc.

Figure 2-1
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2.1.3 High level application environments can be built from

these primitives as the user works.

Examine how the workspaces are setup in Figure 2-2,
where a user is designing the page layout for a document.
Pages are constructed and composed largely on the right side
of the screen, in the Drawing Board area. On the left is the
Reference area with containers of images, text and other
things. The upper right is used as a Tackboard area where
pages of the document are sequenced and there is a notepad
for notations and reminders. On the lower left is the
Toolbox area. The user has conveniently setup other
toolboxes nearby each work area. Miscellaneous tools and

other objects are scattered about.

Starting from a new environment as in Figure 2-1, the
following scenarios show a user building a Spatial Contexts
environment as in Figure 2-2, in the natural course of

working on the page layout job.
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2.2 TASKS

2.2.1 Setup a new job by collecting objects into a Job

container.

Starting from a new default environment, the user
begins work creating a Job container by duplicating an Empty
container in the cabinet and naming it "Job". A "Duplicate"

tool from the toolbox is used.

The Job container is then opened using the Open tool.
Any objects now moved onto the container fall inside it;
whereas when the container was closed, an object moved onto

it would just overlap, and not be inside.

The user then begins to browse around the existing
dataland database, scrolling, zooming, and entering sub-
containers. Pertinent objects are selected and put into the
Job container, including picture libraries, text files, and
predefined stylesheets for layout formats. Copies of

material from earlier jobs may be collected as well.

57



Figure 2-3 Setup a new job by collecting objects Into a job container

Begin with new environment

Starts out with a Main Cabinet and
Main Toolbox, both open.

Take an empty container out

Drag a duplicate from the cabinet
Object gets proportionally bigger.

duplicate

Open container and name it "Job"

Move cursor over title bar to become
an Open tool (by attachment).
Use keyboard to rename the container.

o

open

Select a Stylesheet for the Job

Pan through the main cabinet,
find the box of existing stylesheets,
and copy one into the Job container.

< (@

pan open duplicate

Collect other relevent objects

Other components include text files,
images, and a Document container.

| [

pan duplicaﬁ
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2.2.2 Setup workspaces by arranging the job components and

tools.

The user begins to arrange the contents of the Job
container within the Environment. First, the Main Cabinet is
scaled down and put aside. The Job container is enlarged. It
contains an empty Document container, a Stylesheet

container, and various image and text files.

The Document container is copied from the Job and
opened, to be used for collecting and posting page designs

as they are developed.

Stylesheets specify the page size, proportion, grid,
typography, and other constraints. They become prototype
pages when put in a Document. Several duplicates of the
Stylesheet are made in the Document container, for prototype

blank Pages.

As items are arranged, the user begins working in more
than one workspace at a time. Rather than moving across the
screen each time to pick up tools, copies can be made and

placed near each work area.
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Figure 2-4:

Setup a Reference area on the left

Close and scale down the Main Cabinet

EIRD=

close scale

Move the Main Cabinet to the side.
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Setup Tackboard area

Copy empty Document from Job
and open it.

@ |

view open

Copy a Stylesheet into the document,
as a prototype page.
Make several duplicates for later use.

o

duplicate

Setup the Drawing Board area

Make a view copy of a page,
dragging it into the environment.
It enlarges to a working size.

B

view
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2.2.3 Begin sketching a few ideas for the layout.

The designer is now ready to begin laying out pages of
the document. An empty Page is brought out from the Document
and enlarged to a comfortable working size. It is opened,
and with various marking tools, the designer begins

sketching out spatial formats and content regions.
Additional thumbnails are generated as the designer

continues exploring layout ideas. Good sketches are put back

in the Document container, and others are thrown out.
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Figure 2-5

Open page In the drawingboard area

Page on the drawingboard is opened.

Begin sketching.

Y| %

open paint

Make a thumbnail sketch

Use a Paint or Charcoal writing tool..

Any changes on the large page view
are propogated to the original page.

LY

paint

Do a few more

Put away some of the sketches

using the Put-away and Throw-away
tools, remove pages from the pile.
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2.2.4 Refine a sketch into a layout.

A thumbnail sketch is selected and refined as the
designer firms up the sketched regions. The edges are
straightened against the Page's default grid using a
Straightener tool. This editing tool re-shapes objects

according to grid and orientation criteria.

The designer defines content Regions on the Page.
Regions are "generic" or empty graphic elements with

arbitrary boundaries. Their content can be added later.

The regions to be used for text are directionally
linked, using the Sequencer tool, to indicate the flow of
text between columns. When text is put into a region, it

flows from the bottom of one column to the top of the next.

As the designer works on these sketches, other pages
can be worked on concurrently. Pages are sequenced by
linking them together. Contents can be added or removed any

time for visualization.
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Figure 2-6  Refine a Thumbnail into a comprehensive page

Start with a thumbnalil sketch
Open the page for editing.

opet

Firm up the sketched regions

Use the Straighten tool to tighten up the
region edges against the page's default grid
(which could be edited by the user)

straighten

Continue straightening the regions

Define text column sequence

use the Sequential Linking tool
to define the flow of text between
the columnar regions

Vs

sequence

Flow text onto the page

Open a text container and select
a text file to go onto the page.
View the text in the columns.

3| |53 &

open move view
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2.2.5 Edit an image on a page by cropping and color

retouching.

An image is selected and copied into the page's image

region, and then edited with the Zoom and Contrast tools.

Cropping is performed interactively with the Zoom tool
by grabbing the image with the Zoom tool at a location and
pulling it. Pulling towards the anchor point (center by
default) zooms back, bringing more image into view, whereas
pulling away from the point zooms up, stretching the image.
Arbitrary anchor points can be defined by changing the

tool's anchor link location.

Color and contrast retouching are done with various
brush tools. A Contrast tool, for instance, can be opened to
adjust its effect, and then be picked up and applied to a
pixel image like a brush. As in painting, brushes may
completely replace the existing color, or more usually,
modify the existing pixels in subtle ways, like watercolor

paints or photographic contrast filters.
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Figure 2.7  Edit an image on a page by cropping and color correcting

Copy a view of an i'mage

Move pictures container from Job,
open it, and pan through it.
Select an image for the page.

Expand the background window
of the image

nE
Ll
window

Zoom up on the image with Zoom tool

®

zoom

Retouch contrast on the image
using the Contrast brush tool

contrast

Put away the page - [(Socument

Close the page, return.itto - Pﬁ &

the Document container.
Continue working by bringing out
another page to work on.
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2.3 OBJECTS

2.3.1 Elements are singularly defined units of information

with properties and form.

Element types, summarized in Figure 2-8, include
graphics, text and images. An element's property values are
accessed with an editing tool (discussed below) or by

opening the object's property container.

Elements are ordinarily "closed" and treated as a
singular unit object. They can be opened so its properties

are explicitly edited in it Property Control Panel.

Control Panels are containers attached to a specific
object. They contain other elements that control properties
of the object acting like meters, knobs, sliders or strings
used to constrain or parameterize property values. The
properties of an element can be edited by opening it and

manipulating the property elements inside its control panel.
Figure 2-9 shows how the color of a polygon is edited

using a control panel rather than a coloring tool. The

element is opened with an Open tool, causing a property
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container to pop up. Properties of a polygon include the
list of vertices, the f£ill style, and the fill color. To
edit the color, open the color swash, causing a color space

to pop up to choose a color from.

When an element is copied, it can either be Duplicated
or Viewed (Figure 2-10). Duplicates are new instances of the
original object, with copies of its property values. The two
objects are now independent. Views, on the other hand, are
instances where property values point directly back to the
original object. When one edits one of these objects, the

changes are propagated to the other as well.

Hybrid copies can also be made (Figure 2-11).
Ordinarily the properties copied with the Duplicate or View
tools are all either duplicated or viewed. But, users can
edit property containers, or build their own, and determine
individually how each property is copied. Taking properties
from more than one parent object is multiple inheritance.
Defining new types of elements becomes property inheritance

programming by direct manipulation.
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Figure 2-8. Types of Element Objects and Their Properties

GENERIC ELEMENT
extent, transformation matrix, filename

GRAPHICS
Line
vertices, length, angle, color
Curve
control vertices, curve type
Rectangle
width, height, position
Circle
begin arc, end arc, fill, outline
Polygon
vertices, f£ill, outline
TEXT
Label
string, font, size, char spacing
Paragraph
string, line space, justification
IMAGE
Lookup
buffer, lookup table, resolution, bits
RGB
r buffer, g buffer, b buffer
Mask

operation, transparency
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Figure 2-9  EdIt the Properties of a Polygon Element

Open a Polygon element object

N

open

Its property container pops-up PP

. , type: polygon
contains displays and controls vertices: 5
for each property of the element

solid

green

Open color property

pops-up a color space to
select a new color from

Close

class: element
type: polygon
vertices: 5

® 3

solid

close just the color space
and edit more properties,

or close the object completely
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Figure 2-10 T

Duplicate

Vi o

View

Using Duplicate tool,

drag a copy of the object.
Dotted line shows movement
of cursor and object.

Creates a new instance
of the object

with property values
copied from the parent.

The two objects are

now independent.
Subsequent changes to the
parent's properties

do NOT effect the child's.

Using View tool,

drag a copy of the object.
Link line shows movement
and the view link created.

Creates a view instance

of the object

with property values
directly linked to the parent.

The two objects are
inter-dependent.
Subseguent changes to the
parent's properties

DO effect the child's,

and vice versa.



Figure 2-11 Property Inheritance Programming
Through Direct Manipulation

Parent
A

Child object inherits some properties from Parent A object,
some from Parent B object, and others not inherited at all.

Hybrid copies between Duplicate and View are defined by
Duplicating some properties: instance inheritance
and Viewing other properties: continuous inheritance
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2.3.2 Containers are objects that contain and constrain

other objects.

Containment is a natural metaphor for groups and
hierarchy (chunking and layering). Containers contain other
objects, including other containers. Containers also have
constraint properties that affect the behavior of objects
and the usage of tools within them. Containers include
Environments, Cabinets, Toolboxes, Pages and Property

containers (Figure 2-12).

An Environment contains all objects a user is currently
working with, and controls the primary user-object
interaction. A new default environment has a Main Cabinet
for browsing and a Main Toolbox for selecting operations.
Like any other object, Environments can be saved, restored

and arranged in dataland.

Cabinets are gateways into datalands with spatial and
hierarchical organization maps. The Cabinet container acts
as a browser or window on the objects currently available in
the system. The contents of a cabinet can be changed, as in
changing directories in a hierarchical file system. However,
not limited to hierarchical organization, containers can be

linked in any arbitrary network configuration.
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Each object is linked to a "home" container, ordinarily
where the object was created. If the object is moved from
this container to another, it becomes "contained-by" the new
one, but its "home" link remains the same. With the Home
tool, a user can transport to an object's home container and

jump around the dataland this way (Figure 2-13).

Other containment links can be drawn based on ranges of
any number of properties. Containers can be made by
searching on logical conditions of properties, such as all
images with the word "Boston" in its description. This
becomes a direct manipulation interface to a relational

database.

Each container has its own coordinate system. In Figure
2-14, the visual consequences of this are illustrated.
Objects of a given size will appear larger or smaller with
respect to the window boundaries depending on the coordinate
system of its container. When a container is placed inside
another container, it and all its contents are scaled

relative to the new coordinate system.
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Figure 2-12  Types of Containers

Environment

contains all objects user is
currently working with and
arranged into workspaces.

Cabinet

a portal to datalands,
contains collections of objects
and other containers

Toolbox

contains tools for user access,;
variations include menu box and
button box

Property Container

contains displays and controls
for properties of objects.

Page
contains text, image and graphics

regions, plus grid, format and
typographic constraints.
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@ . dataland

"home" link

container window

Object has been moved from
its original home container,
but retains a "home" link there.

home container

®
e

o
.....
e
.....
...
Tens
.....

Using the Home tool transports the
user through dataland, switching the
current container to the object's home container.
Use Undo to return.
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Figure 2-14 Manipulation of Container Objects

Object moved from Container A to Container A Container B
Container B is scaled according to the
coordinate system of the destination F4--- ixs
container. 7 oy
Obj :
Container A moved into Container B is i Container A__ & -Qontaiger B
also scaled to B's coordinates. : : —t-
: ot
amanns gk *: """ 3
o s
Obj Obj
Original Container Scale Window
L1

TIIT
O
o3
i
]

Obj

Ji1d

Pan Zoom Up Zoom Back
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2.3.3 Tools are functional objects one uses to edit other

objects and peruse the environment.

Tools are uséd to perform functions on other objects.
There are tools for perusing, editing, and control. Perusing
tools (Figure 2-15) include pan, zoom, window and home, are
for traveling through datalands and modifying the visible
coordinates of containers. Editing tools (Figure 2-16)
include move, scale, label, and sequence, are for
interactively modifying objects' properties and links.
Control tools (Figure 2-17) include duplicate, view, put-

away, and help, are for object control and maintenance.

There are three ways to select tools: by picking one
up, by moving the cursor over an attachment site, and by

selecting it from a menu or button box (Figure 2-18).

A tool can be picked up using the PICKUP button on the
mouse (Figure 2-19), and begins tracking the mouse. The DO
button applies the current tool to the object beneath it.
The UNDO button reverses the previous application of the

tool to the object.
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Instead of picking them up, tools can be attached to an
object and used like a "handle" or border function. Once
attached, these tools are automatically picked up when the
cursor moves over the attachment site. For instance, closed
containers ordinarily have an Open tool attached to their
title bar. When the cursor moves over the bar, it will
temporarily switch to the Open tool until the cursor is
moved away. If the user presses the Do button, the container

will be opened allowing him to edit its contents.

Suppose a user wants to pan around a dataland
container. He picks up the Pan tool and applies it to the
opened container, "pulling" the contents with the cursor
(Figure 2-20). Or instead, copies of the tool could be
attached to the border of the container and constrained to
scroll in only one or two directions. Figure 2-22 shows how
a MacIntosh MacDraw-like window borders can be constructed

from Spatial Contexts attached tools.

Toolboxes, Menu boxes, and Button boxes contain tools
organized by the user but constrained in specific ways
(Figure 2-23). Toolboxes contain tools that the user can
pickup, remove, use, and then drop it anywhere in the
environment. Tools selected from a Menu are view copies,

automatically "put away" to the menu when dropped. Button
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boxes are like menus, where tool positions correspond to
physical function keys on the keyboard for picking up the

tools.

Tools can be applied to other tools. Functional
extensions to tools would allow them to be opened, edited
and combined as graphical programs. Toolmaking becomes a
means for system extensibility by the user, by combining

tools to make macro tools.
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Figure 2-15  Perusing Tools

Y

N

OPEN
open an object, allowing editing its contents
and/or properties

CLOSE
close an object, unifying its contents/properties

WINDOW

modify the clipping boundary size of a container
and on-screen viewport synchonously.

PAN
modify the window boundary coordinate position
of a container

ZOOM

madify the clipping boundary size of a container
while the on-screen size remains constant,

HOME
switch to the home container of an object
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igure

&

0
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Editing Tools

LABEL
create/edit an object's label or title.
(string, font, background)

SCALE
edit the size of an object.
(preserve aspect ratio, grid gravity)

MOVE
edit the position of an object
(grid gravity)

SEQUENCE
define/edit sequential links between objects
(from object, to object, link label, enumeration)

GROUP

define/edit unordered groups or sets of objects
(selection attribute range)

PAINT
mark objects with hand strokes
(color, size, pattern)

CONTRAST
retouch contrast of a bitmap object
(factor)

STRAIGHTEN
allign object boundaries to grid
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Eigure 2-17  Control Tools

'

(14

DUPLICATE COPY
create a new instance of an object

THROW AWAY
remove an instance of an object

VIEW COPY
create a continuous inheritance instance
of an object

PUT AWAY
remove a view copy of an object

COLOR PALETTE
color property editing

HELP
inquire object capabilities and description

QUIT ‘
exit current environment and save it for
later retrievals
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Pickup and Do

Use mouse PICKUP button to
grasp a tool; it becomes a
cursor tracking the mouse.

Use DO button to apply the tool
to object beneath it.

Use UNDO to restore object.

Attachment

Moving the cursor over an
attachment area temporarily
picks up the attached tool.

Here, the container's OPEN tool is
attached to the title bar. Pressing

DO opens the container, a CLOSE tool
replaces Open for easy re-closing.

Menus and Panels Container
When the container is moved, =i
attached toolbox is also moved. Hid

Toclboxes can be used like
menus and control panels.
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Pickup and
drop tools

Figure 2-

TN

/

N\

Pickup Do Undo

h\

)
Do current tool Undo last tool
operation on operation on
located object located object
n M ns f ing Too!
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PICKUP Pan tool

by moving cursor to its
icon, and using the
PICKUP button on the
mouse

Begin using the tool
by pressing

to grab a location in
the container

Continue pressing DQ
pulling with the Pan
tool

Continue pressing DO
pulling with the tool,

and then release the
button when done.

UNDQ will return the

container to its
previous state.

main cabinet

stylesheets

LU

main cabinet




PICKUP Scale tool

by moving cursor to its
icon, and using the
PICKUP button on the
mouse

Begin using the tool
by pressing

to grab a location in
the container

Continue pressing. DO
Scale is achored at
opposite corner, if not
otherwise specified.

Continue pressing DQ
pulling with the tool,

and then release the
button when dons.

UNDOQ will return the

object to its
previous state.

main cabinet

5 ¥

main cabinet




close title

3 a

(‘ ORO pan (up)
~

e Name —o——— /
s s
4] pan (up/down)
menu toolbox S {}
)
&7 | pan {down)
@ &

&

pan (left) &ED |
pan (right)

window

pan (left/right)

A Macintosh MacDraw-like window

built from a Spatial Contexts container
with attached tools.

The Pan tool has been constrained
to limited directional movement.
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Figure 2-23, Types of [ool Containers

Tool Box

Pick up tool out of container,
use it and

drop it anywhere in the environment

Position in container is unconstrained.

Menu Box

Pickup view copy of tool

use it;

dropping it puts it back directly
to the menu box container.

Position in container is fixed.

Button Box 1
Can use like Menu Box, plus F3 @3
tool positions correspond to physical i s
function keys on the keyboard. F5 o
Pressing function key picks up -
corresponding tool. F7 % ﬁg F8
Fof] EiF10
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Section 3. ARCHITECTURE

3.1 SYSTEM ORGANIZATION

3.1.1 Spatial Contexts software is organized in a layered

architecture with objects.

The Spatial Contexts user interface environment is
built on a color graphics computer workstation and an object
oriented software architecture. Figure 3-1 shows the
components of the system are built on top of each other in a

layered organization.

From the bottom-up, there are the physical devices
which interface the simulated work environment with the
physical world. On these are built the sub-system libraries
which create a higher level functional interface to the
devices, and assist in system resource management. The sub-
systems include an object management library that allow the
definition of object classes. Three principal classes are
defined: elements, containers, and tools, from which

application level objects are defined.

With object-oriented programming, each piece of a

system is treated as a separate autonomous object made of
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private data (properties) and the operations supported on
that data (methods). The system has independence from the
objects it contains, such that new objects may be added and
existing ones modified without major code modifications.

Figure 3-2 summarizes the advantages of this paradigm.

An essential component of the system is the user, who
works in the physical domain by interfacing with physical
devices, and in the problem domain by interfacing with high

level simulated objects.
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SPECIFIC OBJECTS
Element:
Container:

Tool:

GENERIC OBJECTS
Attributes:
Methods:

Links:

Specific Objects

Generic Objects
-

User

graphic, text, image

environment, cabinet, toolbox, page

peruse, edit, control

class, type, name, form, history
maintenance, display, tools

home, contained-by, next, previous

92



(Figure 3-1 continue

SUB-SYSTEM LIBRARIES
Objects:
Display:

Input:
Memory:

Database:

DEVICE INTERFACES
System:
Graphics:

Interact:

Sound:
Soft Store:
Hard Store:

Communication:

d)

control, inheritance, select, overlap
render, 2d, color, font

locate, cursor, border

pixel buffers, tiles, lists

elements, containers, tools, relations

cpu, memory, ports, Dos

frame buffer, processor, monitor
mouse, keyboard

voice in, voice out, music synthesis
video tape, disks

printer, typesetter, photo

network, asynch, modem
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Figure 3-2. Features of Object-Oriented Programming

ENCAPSULATION
- Objects are private data and operations on that data

MODULARITY
- Software is malleable, reusable and enhanceable

EVOLUTION
- System independence from the objects it contains

CLASSIFICATION
- Objects know their type explicitly

MESSAGING
- Objects know what operations they can perform

METHODS
- Objects know how to perform their operations

INHERITANCE
- New objects are defined from existing ones
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3.1.2 The system is demonstrated on a color graphic personal

computer workstation.

Spatial Contexts is implemented in the "C" language on
an interactive color graphic workstation configured from an
IBM personal computer, a YODA graphics system, and a mouse

input device (Figure 3-3).

The system unit is an IBM PC/XT personal computer
running under MS-DOS 2.0 operating system. The typical
system has up to 640k bytes RAM memory, an 8087 arithmetic
co-processor, two 10 megabyte hard disk drives and a floppy

disk drive.

The graphics system is an experimental IBM YODA frame
buffer and graphics processor, that plugs directly into the
PC chassis. [SHOLTZ'85]. The frame buffer has 640 x 480
pixel resolution displayed, plus an additional 320 scan
lines of off-screen image buffer. Each pixel is eight bits
and indexes into a 256 entry color lookup table with 24 bits
output (one byte each red, green, and blue) to a low cost

RGB color monitor.
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The YODA has a programmable bitslice processor that
provides high speed graphics, imaging and anti-aliasing
support. Additional custom microcode was developed for the
Spatial Contexts system that addresses performance
requirements of the project, including the scaling of bitmap

images by arbitrary scale factors in interactive real time.

The principal interaction device is a three button

mouse. A character keyboard is used primarily to enter text.

Other devices from the Visible Language Workshop
laboratory that could be integrated into the workstation
configuration include other display systems, interaction
devices, sound instruments, hard and soft copy storage, and

communications interfaces, as illustrated in Figure 3-4.

96



YODA display processor

color monitor

mouse

visible

image buffe

off-screen bitslice
image buffer processor

PC system unit

monochrome
text monitor

/ \____/4:1\_

keyboard
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graphics processor

color graphic monitor D
= secondary monitor

=

data tablet and stylus

scanner input ascii keyboard
speech synthesis

video input
) "
speech recognition

B
music keyboard and

) ) synthesizer
video tape i/o
‘%] typeset hardcopy @

workstation system unit

LN

photographic hardcopy
networking and
communications

iqure 3-4_ Devices in the VLW La



3.1.3 Application level objects are built from graphic

elements, containers and tools.

There are three principal classes from which all
objects are derived. Element class objects have geometric
tranformations and property container attributes. Container
class objects have additional information about their
borders, attached tools, and "contains" links. Tool class
objects include its icon property and functional

constraints.

Figure 3-5 shows the taxonomic relationship between the
generic object of each class and its specific sub-class
types. Through this organization, objects lower in the
hierarchy can inherit properties and methods from its
parent, reducing redundency of code and facilitating new,

similar objects to be added to the system.

The procedures in Figure 3-6 are the methods installed
in each object's method dictionary. Methods include those
for creating new instances, loading from a file, saving to a
file, drawing, and each of the tool operations. New methods

may be installed by system programmers.
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Elgure 3-5. Object Taxonomies
Generic Object
Generic Element Generic Container Generic Tool
Generic Element
Polyline Curves String Bitmap

Line Polygon Circle Spline Paragraph Lookup RGB
Filled Polygon

Generic Container

Environment Cabinet Page Toolbox

Main Cabinet Main Toolbox Menu Box

Button Box

Generic Tool

PAANN

(all tools)
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Figure 3-6 SPECIFIC OBJECT METHODS

mak_env
mak_cont
mak_tool
mak_1line
mak_rect
mak_circle
mak_pmd
mak_string

init_env
init_cnt
init_tool
init_1ln
init_rect
init_cir
init_pmd
init_string

save_env
save_cnt
save_tool
save_1ln
save_rect
save_cir
save_pmd
save_string

create new enviroment instance

init

ave

I 3 3 3 3 3 an

container

tool

line

rectangle

circle

bitmap

character string

environment object from file
container

tool

line

rectangle

circle

bitmap

string

environment object to file
container

tool

line

rectangle

circle

bitmap

string
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i_DrwEnv
i_DrwCont
i_DrwTool
i_DrwLine
i_DrwRect
i_DrwCircl
i_DrwPmd
i_DrwStr

t_mv_cont
t_mv_tool
t_mv_elem
t_mv_pmd

t_cp_cont
t_cp_tool
t_cp_elem

t_sc_cont
t_sc_tool
t_sc_elem
t_sc_pmd

t_wd_cont
t_wd_pmd

mak_magnify
do_magnify

raw

32 3 3 3 3 3 30,

tool

tool
n
"
tool
n

tool
tool

environment
container
tool

line
rectangle
circle
bitmap
string

move container
tool
element
pmd

copy container
tool
element

scale container
tool
element
bitmap

window container
window pmd

create new magnify tool
apply magnify tool
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3.2 OBJECT ARCHITECTURE

3.2.1 All objects have the same basic structure, and are

classified by their Class and Type.

The high level objects specified by the scenarios in

the Section 2 and described in the previous section are

built from generic objects. All objects in the system have

the same basic internal structure, as in Fiqures 3-7 and 3-

8.

Figure 3-7 Generic Object Properties

ID
CLASSIFICATION
CLASS PROPERTIES
PROFILE

VISUAL FORM
METHOD DICTIONARY
LINKAGES

HISTORY STACK

instance identifier

class and type of object

sets of properties for class & type
name, date, filename

icon, size, color

maintenance and editing procedures
linkages to other objects

stack of recent states for undo
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When a new object is created, memory is allocated for
each of its property values and a unique ID is assigned
which corresponds to it internal memory address. An object

is always referenced by its ID.

Every object has a CLASS and a subclass, or TYPE
identifier. These enumeration values define what kind of
object it is. For each class there is a structure of class-
specific properties, and for each type within a class there
is a structure of type-specific properties. Class and type
descriptions therefore act like templates with slots to be

filled with values.

The initial state of the system provides generic
instances of each object class/type: a prototype object
with default values used as a top level parent. New objects
can be derived from existing ones, defining a parent-child
link between them. The new object can then have its own
property values and methods, or inherit them from its

parent, recursing to the top level parent if necessary.

Objects can be located by property searches that find
all objects meeting certain property value criteria. Complex
. logical expressions can be used for searching and collecting

objects.
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Figure 3-8. Data Structures for Generic Objects

typedef struct {

int Class:;
universal Class_data;

int Type;
universal Type_data;

Profile Profile_data;
Form Form_data;

proplist Methods;
proplist Links:;
queue History;

} GenericObject;

class enumeration */
class properties */

sub-class enumeration */
sub-class properties */

maintenance properties */
device level properties */

(message, method) pairs */
(linkage,object) pairs */
state history for undo */

("universal” is a pointer to an arbitrary data structure)
("proplist" is a linked list of (name, value) pairs)

("queue" is a circular queue)
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3.2.2 An object's Profile holds maintenance properties.

All objects have a Profile record with internal
maintenance properties for names, dates, and addresses
(Figure 3-9). Objects can have a character string name or
title, and a verbal description of arbitrary length for
documentation and semantic identification. Dates include the
creation date and last update. Data residency properties

include archiving and/or networking information.

Figure 3-9 Profile Properties

- Title/Name

- Verbal Description

- Creation Date, Update
- File Name

- Data Residency

106



3.2.3 An object's Form defines device level properties for
high speed display and interaction.
.

An object's draw method uses the object's class/type
properties to render it on the screen, perhaps mapping from
a world coordinate space to pixel coordinates. Then the draw
method will update the object's Form properties with the
physical device information (Figure 3-10). This data is used
when operations must be done in screen coordinates and

pixels for high speed interactive performance.

The pixel extent is the enclosing rectangle in screen
coordinates, for instance for locating objects with the
cursor or block transfers (bitblt'ing) to drag it on the
screen. Overlap information includes the object's pixel
windows or corner-stitch tiles. The undersave buffer may
contain the pixels that lie beneath the object for fast un-

drawing.

Figure 3-10 Form Properties

Pixel Extent
Overlap Information

Undersave Buffer
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3.2.4 Links define qualified associations between objects,

include "isa", "home" and "contained by".

Specific'types of links can be drawn between objects.
These links are given a symbolic name and verbal

description, establishing semantic connections.

The "isa" link points to the parent object through
which inheritance occurs. The default isa link is the
prototype object of its class. Multiple qualified isa links
permit multiple inheritance, with the links specifying what
properties or methods are being explicitly linked from that

parent.

The "home" link points to the home container of the
object. The default home container is where the object was
created. This link is used and edited by the Home tool. The
"contained-by" link points to the current container of the
object and can be edited with the Move tool. The default

contained-by link is the object's home container.

Like the method dictionary, the link dictionary is a
linked list of link-name/ link-to pairs, where link-name is

a character string and the link-to is an object ID.
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3.2.5 Methods are operations an object performs in response

to messages.

Operations, like setting and inquiring about an
object's property values, are affected by signaling the
object by sending messages. The corresponding response
method is looked up in a message-method dictionary and is
performed. Objects have standard maintenance methods (Figure
3-10), plus tool methods for each tool that operates on the

object.

Figure 3-10 General Maintenance Methods

CREATE - generates a new instance object with default
property values

SAVE - save an instance of an object to disk

LOAD - retrieve a saved instance object, creating a

new instance with previous values intact

DRAW - draw the graphic representation of the
instance object

DELETE - destroy the instance object

Each object has a method dictionary where method
functions can be looked up by message names. If a method is
not found, it looks to the object's parent, recursing until
one is found. Once a method is found, it is placed in the

object's local dictionary and bound (Figure 3-11).
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The method dictionary is implemented as a linked
property list of message-name/ method-pointer pairs. The
message is an enumeration variable. The method pointer is a

pointer to a pre-compiled C function.

Each method has up to three operations: Start, Do, and
Finish (Figure 3-12). This partitioning of the method allows
startup and cleanup operations to be separated from the main
function. This way, Do can be repeatedly signaled in the

body of a loop or by a clock (Figure 3-13).

For example, MOVE is a method activated by the Move
tool to drag an object on the screen. Typically, there is
some preparation necessary before interactively moving the
object, like allocating temporary bitmap storage. When the
user presses the mouse button, Start Move is invoked. Then
within the main loop, each time the mouse moves, Do Move is
signaled until the user releases the button and Finish Move
is called to clean up. Other methods, like Draw, may not

need a Start and Finish phase and only Do is defined.
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object ——_

"is-a" link

parent
message top level

—— generic parent
method 1

methnoi
k\‘*mm
)

MESSAGE-METHOD Dictionary Lookup
with inheritance and logkup-time binding.

Figure 3-11
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Figure 3-12 Method Entry Points
START Setup Operation for the Given Object
example: START MOVE TOOL
signal object to push its state history
allocate temporary bitmap and
draw the pixels under the object into it
DO Perform One "Tick" of the Operation
example: DO MOVE TOOL
calculate changed areas of screen
save newly covered pixels
bitblt object to new position
restore uncovered pixels
FINISH Clean Up Operation
example: FINISH MOVE TOOL

free allocated buffers
signal object to update its position
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Figure 3-13 Environment Main Interaction Loop

PICKUP tool:
message = tool.message

Press DO:
object id = which object under cursor
method = lookup( tool.message, object id )
method.START( object id )

while DO still pressed {
locate( x, y ) from mouse
method.DO( x, y )
}

Release DO:
method .FINISH()
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3.3 SUB-SYSTEM FUNCTIONS

Sub-~systems provide the underlying support for
implementing objects. These robust function libraries
provide a high level software interface to devices,
algorithmic control, and system utilities which include
functions for object management, color graphic display, high
speed interaction, flexible memory management, and database

maintenance.
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3.3.1 MAIN SYSTEM DRIVER

The main system driver procedures are the top level
functions for starting up, running, and shutting down a
Spatial Contexts system. The procedures are listed in

Figure 3-14.

Figure 3-14 Main Level Procedures

new_environ generate new default environment
set_tables setup method dictionary & inheritance tables
obj_init generic object initialization

display_init initialize display systems
env_interact environment interaction control

env_save save environment to filename
env_setup setup environment from filename
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3.3.2 OBJECT MANAGEMENT SUBSYSTEM

3.3.2.1 OBJECT INSTALLATION

The object installation functions are for setting up

the system tables, parentage relationships and inheritance

mechanisms.

Figure 3-15 Object Installation Procedures

InitTables initialize system tables

Install install message/method in method dictionary
InheritMethod inherit method from parent

LookUp lookup method in dictionary

SetParent intall object in parentage table

GetParent lookup parent in parentage table
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3.3.2.2 GENERIC OBJECT CONTROL

These functions are for control and manipulation of

generic objects.

Figure 3-16 Generic Object Control Procedures

CreateGenObject create generic object

SetObjPos
GetBndRect
EraseObj
UndoObj
SaveObj
LoadObj
switch_cont
prep_render
set_pmd

move object to new position

get bounding rectange of object in pixels
erase object

restore object state

save arbitrary object to a file

load arbitrary object from a file

switch the "contained by" link of an object
prepare renders for a hierarchy of containers
get bound rectangle size from bufmgr
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3.3.2.3 OBJECT PROPERTY SEARCH

These functions search for objects meeting specified
property value criteria, such as whether a point is

within an object's boundaries.

Figure 3-17 Object Property Search Procedures

is_near is (x,y) near an object

which_obj return which object matches
which_tool return which tool matches
which_cont return which open container matches

3.3.2.4 TOOL SUPPORT

These are used by the environment interaction loop for

handling the user interface with tools.

Figure 3-18 Tool Support Procedures

pickup_tool pickup tool, make it active
bgn_pickup initiate tool pickup
drop_tool release tool, make it inactive
reset_cursor restore previous cursor
EraseTool restore pixels from under
SaveUnderTool buffer pixels under object
GetToolSave
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3.3.3 DISPLAY SUBSYSTEM
3.3.3.1 RENDER DESCRIPTION RECORDS

Render records define the mapping of data from one
coordinate space to another, allowing clipping and scaling
of graphic primitives. Basically, it is like laying a new
coordinate system on top of a pmd (YODA pixel matrix
descriptor), and then allowing child renders to be defined
relative to existing ones. Conversion between renders and
pmd's is simple, so one can work with either (or both)
structures as necessary. The render structure is used by
the enhanced display primitives (d_). These functions
expect float data as opposed to pmd pixel coordinates which

are all integer precision.

Rendering is the operation of generating a picture from
data. When rendered, graphic primitives are first
transformed by the current geometric transformation matrix,
then clipped, mapped to pixels, and displayed. A render
record is a data structure describing the mapping from one

coordinate system (clip bounds) to another (port bounds).
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The 'clipping' boundary defines the rectangular
boundary of a coordinate space. Any data inside the clip
bounds will be drawn, any outside will be clipped. Defines

the coordinate system of the area.

The 'port' boundary defines rectangular boundary of
where a render is mapped. Defines the size and position of

the view port in its parent's coordinates.

The 'effective' boundaries are truncated boundaries of
a render. If the clip bounds, port bounds, and/or pmd for a
render extends beyond the clipping bounds of its parent, the

boundaries will be truncated to only the visible portion.
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Figure 3-19 Render Data Structure

typedef struct _render {

/* family links */
struct _render *mapto; /* parent render */

int mapfmcount; /* # children */
struct _render *mapfm[RENDMAX]; /* list of children */

/* geometric transformation */

bool isidentity; /* T=xform is reset to identity */
tmat xform; /* current transformation matrix */
/* boundaries */

rectangle clip; /* clipping boundary */

rectangle port; /* port boundary on mapto render */
rectangle bounds; /* pixel boundary on initial pmd */
/* effective boundaries, from propagation of renders */
rectangle Eclip; /* effective clipping bounds */
rectangle Eport; /* effective port */

rectangle Ebounds; /* effective pixel boundary */

/* transformations from here */

tmat tomapmat; /* transform to "mapto" */

tmat topixmat; /* transform to initial pixels */
tmat topmdmat; /* transform to "rpm" pmd */

tmat dismat; /* display xform = xform*topmd */
/* transformations to here */

tmat fmmapmat; /* transform from mapto to here */
tmat fmpixmat; /* transform from pixels to here */
tmat fmpmdmat; /* transform from rpm pmd to here*/
/* pmd's */

pmd initpm; /* initial pixel matrix */

byte startbit; /* relative bit planes */

byte depth;

bool visible; /* F= ports completely truncated */
pnd rpm; /* render pixel matrix */

} render;
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Figure 3-20 Render Control Procedures

r_init
r_create

r_inside

r_fromscreen

r_toscreen

r_setmat
r_setclip
r_setport
r_setplanes
r_pmdport
r_pmdwindow
r_switch

r_update

r_askmat
r_askclip
r_askport
r_askbounds
r_askEclip
r_askEport

r_askEbounds

r_askpmd
r_clear

initialize a render from a pmd
initialize a child render from existing one

ask
map
map

if a point is inside a render
a point from pixels to world coordinates
a point to screen coordinates

change instance transformation

change window clipping boundaries

change port bounds in render coordinates
change bit planes

change port bounds in pixel coordinates
change window clipping in pixel coordinates
change parent of a render

propogate render map transformations

ask
ask
ask
ask
ask
ask
ask
ask

current instance transformation
current clip bounds

current port bounds

current pixel bounds

effective clip bounds

effective port bounds

effective pixel bounds

render pmd

erase render pmd
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3.3.3.2 EXTENDED GRAPHIC PRIMITIVE DISPLAY FUNCTIONS

These extended display primitives use renders rather
than YODA pixel matrix descriptors (pmd's). All primitives
are specified in the world coordinate space defined for the
render. All coordinates are floating point numbers. Each
function transforms the primitive by the render instance
transformation, then clips the points, and maps from the

window to screen coordinates.

Figure 3-21 Extended Display Primitive Procedures

d_line display line

d_rect display rectangle outline
d_frect display filled rectangle
d_pline display polyline

d_polygon display polygon

d_fpolygon display filled polygon
d_circle display circle outline
d_fcircle display filled circle

d_string display short text string
d_image display bitmap image data
d_bitblt bitblt from one render to another
d_setaa set anti-aliasing parameters
d_setline set line attributes

d_setfill set f£ill attributes
d_setimage set image dimension attributes
d_setscan set image scan attributes
d_setchar set character attributes
d_settext set text paragraph attributes
d_setfont set font selection attributes
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3.3.3.3 GEOMETRIC TRANSFORMATION FUNCTIONS

These functions manipulate geometric transformation
matrices for two-dimensional (x,y) coordinate data. The
matrices are 2x3 where column 1xN transforms the x
coordinate, and 2xN transforms the y coordinate (the third
column is assumed to be 0,0,1). For an explanation of the
principles governing these transformations, see the basic
computer graphics texts by Newman and Sproull, or Foley and

VanDam.

Figure 3-22 Geometric Transformation Functions

m2_identity reset transformation to identity matrix
m2_move move by (dx,dy)

m2_scale scale by (sx,sy) about origin (ox,oy)
m2_rotate rotate by angle about origin (ox,oy)
m2_mult concatenate two transformations

m2_copy copy a transformation

m2_apply transform point (oldx,oldy) to (newx,newy)
m2_port generate mapping transform between windows
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3.3.3.4 COLOR UTILITY FUNCTIONS

These functions support color handling, including
determining pixel values for particular colors in the

cone.vlt color space, color map file i/o, and compensation

table.

The CONE.VLT represents the skin of the double hex-cone
color model, where each pixel uses 3 bits to indicate color
(1 bit each red, green, blue), and 5 bits for shading (4
bits gradient, 1 bit direction), as follows:

msb |7 6 51413 2 1 0 | 1sb

e it S e e A
|l £ g b Ib/wl gradient |
R Rt e e E &

When the gradient half-byte is 0, the full primary
(rgb) is visible. As the gradient increments to 15, the
primary is shaded towards black or white depending on the
b/w bit. This allows the gradient to be logically treated
as an overlay and support mixture of anti-aliased text and

images.
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Figure 3-

getprime
getrange
getcolor
colormenu
conevlt

loadvltf
savevltf

makctbl

23 Color Utility Procedures

get pixel value for a primary color

get pixel range between two primary colors
get pixel value between two primary colors
offer a color selection menu to user
generate a standard "cone" color table

load a color table from a file
save a color table to a file

make a color correction compensation table

3.3.3.5 ANTI-ALIASED FONT SUPPORT FUNCTIONS

The
the high
multiple
requests

and inter

Figure 3-

fontinit
fontselec
fontclose
fontmenu

ftodbl
dbltof

font support functions simplify the interface to
quality fonts on the yoda display by allowing

fonts to be open at a time. The program simply

a font by name and all the low level initialization

facing are taken care of.

24 Anti-Aliased Font Support Procedures

initialize high level font support
t select and open font to use

close a font

offer a font selection menu to user

convert from float to fixed double
convert from fixed point to float
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3.3.4 INPUT SUBSYSTEM

The locate functions provide a high level interface to
locator (pointing) input devices and cursor. The main
function "inp_locate" waits for the user to perform some
action, and returns an action code. It reads the device,
moves the cursor, checks the keyboard for any input there,
and returns an action code, the locator device coordinates,
and a button value depending on the action code. Programs
using these functions instead of lower level ones will
retain a level of device independence, because these
functions are sensitive to the configuration of the

workstation, using DOS environment variables.

The keyboard functions provide a direct interface with
the IBM PC keyboard (through the ROM BIOS), rather than
standard C getchar, etc. This allows non-ascii input and
special keys to be read, such as the function keys. The
function "keyarrows" allows the keyboard to simulate the

mouse.

The mouse functions simplify the interface to the
equivalent Mouse Systems, Inc. optical mouse interface
library. The "mouse" function is smarter, remembering the

button state.
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Figure 3-25 Locate Actions

OUTSIDE

PRESSED

RELEASED

ASCIIKEY

FTNKEY

ABORT

user simply moved the cursor, no button change
(button returned as UNDEFINED (-1) )

like MOVED, except cursor went outside locate
boundary (see set_locbounds)

a locator button was pressed, and its number is
returned in button

a locator button was released, and its number is
returned in button

an printable ascii key was pressed on the
keyboard, returned in button

a function key was pressed on the keyboard,
returned in button (see below)

the abort key was pressed (esc, break or ctrl-c)
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Figure 3-26 Input Library Functions

inp_locate
inp_dblclick
inp_device

ask_locposn
set_locposn
set_locdevice
set_locbounds
set_locspeed

set_cursor
mak_cursor

signal user events, track cursor
look for double click on mouse

get

get
set
set
set
set

set

input= device configuration from DOS

current locate position

current locate position coordinate
current locate input device
current cursor boundary limits
device speed sensitivity

cursor pattern from a bitmap

make a standard cursor pattern

plus keyboard and mouse interface functions
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3.3.5 MEMORY AND DATABASE SUBSYSTEMS

Numerous memory management and database management
procedures were implemented to support (a) string
manipulation, (b) large buffer and file io, (c¢) linked list
and property list handling, (d) offscreen pixel buffer
allocation and management, (e) rectangular border control,
(£) overlapped layering and tiles, (g) raster image
processing and color lookup table management, and (h) raster

image database management.
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CONCLUSION

The Spatial Contexts system demonstrates the
integration of personal workspaces into computer-based
environments. Key characteristics of personal design
workspaces are identified, and a set of important computer
metaphors that can support these requirements are described.
A sequence of scenarios and detailed functional definition
of objects in the system illustrate how these metaphors can
be integrated into a comprehensive user interface
environment. The system architecture specifies how a
demonstration of this system has been designed and

implemented on a personal workstation.

Programmers can expand the system by adding new
objects, object properties and methods. However, the
current software program is not a complete implementation of
the ideas defined in this thesis. Furthermore, the "C"
language has no built-in support for objects and limitations
in software tools impacted the system development. In an
object-oriented language and an interactive programming
environment, the implementation of these specifications

could be improved.
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Future work on these ideas obviously includes
completing the implementation and testing the effectiveness
of the concepts with real people involved in real design

projects.
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