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The moving bar experiment is a classic paradigm for characterizing the
receptive field (RF) properties of neurons in primary visual cortex (V1).
Current approaches for analyzing neural spiking activity recorded from
these experiments do not take into account the point-process nature of
these data and the circular geometry of the stimulus presentation. We
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present a novel analysis approach to mapping V1 receptive fields that
combines point-process generalized linear models (PPGLM) with tomo-
graphic reconstruction computed by filtered-back projection. We use the
method to map the RF sizes and orientations of 251 V1 neurons recorded
from two macaque monkeys during a moving bar experiment. Our cross-
validated goodness-of-fit analyses show that the PPGLM provides a more
accurate characterization of spike train data than analyses based on rate
functions computed by the methods of spike-triggered averages or first-
order Wiener-Volterra kernel. Our analysis leads to a new definition of
RF size as the spatial area over which the spiking activity is significantly
greater than baseline activity. Our approach yields larger RF sizes and
sharper orientation tuning estimates. The tomographic reconstruction
paradigm further suggests an efficient approach to choosing the number
of directions and the number of trials per direction in designing mov-
ing bar experiments. Our results demonstrate that standard tomographic
principles for image reconstruction can be adapted to characterize V1
RFs and that two fundamental properties, size and orientation, may be
substantially different from what is currently reported.

1 Introduction

The receptive field (RF) of a neuron defines how its spiking activity changes
in response to a stimulus. Developing accurate quantitative characteriza-
tion of the RFs of neurons in primary visual cortex (V1) is critical for under-
standing how the early visual system represents and transmits information
(De Valois, Albrecht, & Thorell, 1982; Jones & Palmer, 1987; de Ruyter van
Steveninck & Bialek, 1988; Leventhal, Thompson, Liu, Zhou, & Ault, 1995;
Stanley, 2002; Ringach, 2004; Nishimoto, Arai, & Ohzawa, 2005; Chen, Han,
Poo, & Dan, 2007). The moving bar experiment is a classic paradigm pio-
neered by Hubel and Wiesel (1959) for measuring the RFs of V1 neurons.
It has been well known that V1 simple cells respond precisely to the lo-
cation and contrast polarity of features in the visual scene. In the typical
moving bar experiment, electrodes are implanted in the animal’s V1 area,
and a bar is passed in front of the animal’s eye (i.e., the visual field) at
constant speed and a fixed orientation. The bar is passed systematically at
multiple orientations for several trials, and the neurons’ spiking activity
is recorded across all orientations and all trials. Simple V1 neurons can be
well described by a set of linear filters (RFs), which can be analyzed using
the principle of reverse correlation (Ringach & Shapley, 2004) or Bayesian
inference (Park & Pillow, 2011). The standard approaches to estimating the
RF rely on constructing a spatial histogram of the spiking activity or using
methods of spike-triggered average (STA) or Wiener-Volterra kernel (WVK)
with linear or second-order kernels (Gabbiani, 1996; Rieke, Warland, de
Ruyter van Steveninck, & Bialek, 1997; Paninski, 2003). The STA provides an
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unbiased estimate of the linear filter for uncorrelated (or spherically
symmetric) stimuli, and WVK provides a minimum-variance estimate in
the least-squares sense. The moving bar experiment remains a practical
paradigm for mapping visual RFs in awake moneys, although other alter-
native visual stimuli have been employed, such as the white noise, grating,
and m-sequences (Reid, Victor, & Shapley, 1997).

An examination of the literature found that two important estimation
issues have not been considered in standard analyses of V1 moving bar
experiments. First, none of these methods uses the fact that neural spiking
activity can be accurately represented by point processes (Brown, Kass, &
Mitra, 2004; Kass, Ventura, & Brown, 2005; Truccolo, Eden, Fellow,
Donoghue, & Brown, 2005; Paninski, 2004). Second, none of these estimation
procedures has considered the highly structured geometry of the moving
bar experiments (Fiorani, Azzi, & Gattass, 2001). Passing the moving bar
at multiple orientations to construct the visual neuron’s RF is analogous
to tomographic image reconstruction in which energy is passed through
an object from different directions. The transmitted energy is captured
by arrays of detectors, and a reconstruction algorithm is used to build a
tomogram or image of the object’s internal structure. For computer tomog-
raphy, positron emissions tomography, and single photon emission com-
puter tomography, the incident energies are, respectively, X-rays, gamma
rays, and electron-positron annihilation (Kak & Slaney, 1988; Deans, 1993;
Natterer, 2001). This analogy suggests that tomographic principles for im-
age reconstruction could be used to estimate visual RFs in moving bar
experiments. The idea of using the tomographic reconstruction principle to
map visual RFs is not new (Sun & Bonds, 1994). However, the spiking ac-
tivity of V1 neurons was not carefully modeled in that the non-Poissonian
firing effect was completely ignored. Another important issue is charac-
terizing the RF size of V1 simple cells. The V1 RF size was traditionally
determined based on the minimum-response-field technique (Movshon,
Thomson, & Tolhurst, 1978; Pettet & Gilbert, 1992; Crist, Li, & Gilbert,
2001). The minimum-response-field technique assumes the RF profile has a
gaussian or difference-of-gaussian shape, and it characterizes the RF extent
using a threshold based on the e−1 criterion (DeAngelis, Anzai, Ohzawa,
& Freeman, 1995) or using the standard deviation to be the size of RF
(Nienborg, Bridge, Parker, & Cumming, 2004). However, we argue that this
technique lacks statistical justification since, it does not take the uncertainty
of the neuronal responses into account; moreover, the gaussian assumption
is a poor approximation, and the selection of the threshold is rather ad hoc.

In this article, we combine point-process generalized linear model
(PPGLM) methods (Truccolo et al., 2005; McCullagh & Nelder, 1989) with
a filtered backprojection algorithm (Kak & Slaney, 1988) to derive a novel
analysis approach for mapping the RFs of V1 neurons recorded in a mov-
ing bar experiment. Based on our new analysis approach, we propose a
statistical criterion (based on the notion of confidence intervals) to define
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Figure 1: (a) Two-dimensional RF (warm shading represents high firing rate).
(b) The bar is moved with a constant velocity with an angle θ j across the rect-
angular visual field. (c) Raster plot of a single V1 neuron recorded from one
awake monkey with respect to 12 moving bar directions; each row represents
recording from one trial in one specific direction. (d) Estimated CIF profiles in
12 directions from panel c. (e) Reconstructed RF using filtered backprojection
based on the 12 estimates from panel d. A color version of the figure is provided
in the online supplementary material.

the RF size. We use the proposed approach to characterize the RF size and
orientation tuning of 251 V1 neurons. Our results show that the orienta-
tion preferences of V1 neurons are sharper and the sizes of their RFs are
larger than the estimates from conventional methods. Our analysis further
suggests an approach to optimal design of moving bar experiments. We em-
phasize the computational nature and principle of our proposed approach;
therefore, an exhaustive comparison with every estimation method in the
literature is beyond our scope here. In addition, our proposed approach is
specifically aimed at the moving bar experiments; we make no claim about
the superiority of moving bar stimuli to other state-of-the-art experimental
stimuli paradigms for mapping V1 RFs.

2 Methods

Our approach consists of three important steps: we use a PPGLM to charac-
terize the neuronal responses at each moving bar direction, use the principle
of tomography reconstruction to map the visual RF, and characterize the
RF size and orientation tuning for every neuron. The first two steps are
illustrated in Figure 1.

2.1 Visual Receptive Field Characterization via Radon Transform.
Passing the moving bar at multiple orientations to construct the visual
RF is analogous to tomographic image reconstruction in which energy is
passed through an object from multiple directions. The neuronal responses
to a visual stimulus at different locations of the RF are assumed to follow a
linear superposition principle, such that the neural response along a moving
bar angle θ is treated as a line integration of the two-dimensional (2D) RF
orthogonal to the moving direction.
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Mathematically, the Radon transform R( f )[θ ] specifies the sliced pro-
jection of a 2D function f(x,y) along the specific projection angle θ

(Kak & Slaney, 1988; Deans, 1993; Natterer, 2001). The V1 RF estimate con-
ditional on the angle θ , characterized as a function of both spatial position
(x, y) and orientation α, is denoted as h(x, y, α|θ ). Assuming a factorial
property (Rodieck, 1965), the V1 RF is expressed as a product of spatial tun-
ing and orientation tuning: h(x, y, α|θ ) = f (x, y|θ )g(α|θ ),1 where g(α|θ ) ∈ R,
0 ≤ α ≤ π . It then follows that

R(h)[θ ] = R( f · g)[θ ] = g(α|θ ) · R( f )[θ ]. (2.1)

That is, the one-dimensional (1D) projection of neural response can be fully
characterized by a product of an orientation tuning function and a spatial
tuning function jointly defined by the Radon transform. For notation sim-
plicity, the conditional term of the angle θ is made implicit in the functions
f and h from now on.

To reconstruct the spatial tuning f(x,y), the inverse Radon transform is
applied (Kak & Slaney, 1988),

f (x, y) = R−1{R( f )[θ ]} = F−1
2 {F1{R( f )[θ ]}}, (2.2)

whereF1 andF2 denote the 1D and 2D Fourier transforms, respectively. The
second equality follows from the relationship between the Radon transform
and Fourier transform. (See appendix A for technical details on continuous
Radon transform.) In theory, the projection-slice theorem states that a perfect
reconstruction is possible given an infinite number of 1D projections taken
at an infinite number of angles (Kak & Slaney, 1988). In practice, the inverse
Radon transform is realized by filtered backprojection based on a finite
set of projection angles {θ j}, which is implemented numerically in a finite
discrete grid.

The spatial tuning function f (x, y) is assumed to have a band-limited
spectrum with a bandwidth of b Hz. Reliable reconstruction of f(x,y) based
on its line projections {R( f )[θ j]}J

j=1 requires a minimum sampling frequency
q and a minimum number of projections J such that the following two
sampling criteria are fulfilled (Natterer, 2001):

{
J ≥ 2b (angular sampling)

q ≥ 2b/π (linear or projection sampling)
. (2.3)

1A more realistic model for the V1 RF is the 2D Gabor filter (Daugman, 1980; Jones
& Palmer, 1987), which has coupled or nonseparable spatial and orientation tunings.
However, applying the Radon transform to the nonseparable Gabor filter model would
make the analysis nontrivial (see equation 2.1).
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For J = 16 projections evenly spaced on 2π , the bandwidth is upper-
bounded: b ≤ 8 Hz. Arbitrarily small bin size could be chosen to ensure
a sufficiently high temporal sampling frequency q.

2.2 Point-Process Generalized Linear Model for Estimating the Radon
Transform. In RF mapping, the Radon transform at each moving bar pro-
jection direction is unknown and requires estimation based on spike train
observations recorded from multiple trials. To do so, single-unit spike trains
are treated as point-process observations. Within a time interval (0, T],
the spike trains are evenly binned with a bin size of � = K−1T (note that
q = 1/�). The number K is chosen sufficiently large such that there is at
most one spike in any bin, and the point process is modeled by a condi-
tional intensity function (CIF) λ(tk|Htk

), for k = 1, . . . , K (Brown, Barbieri,
Eden, & Frank, 2003). With a small bin size � = 1 ms (i.e., q = 1000 Hz),
λ(tk|Htk

)� approximates the probability of a spiking event within the inter-
val ((k − 1)�, k�] given the observed spike history Htk

up to time tk.
For the jth moving bar direction θ j, we model the log CIF of the spiking

activity at time tk, denoted by log λ j(tk|Htk
), as the sum of stimulus-evoked

and spike history–dependent components (Truccolo et al., 2005),

log λ j(tk|Htk
) =

M∑
m=1

ξ
(B)

m, jBm(tk) +
I∑

l=1

ξ
(n)

l, j nk−l, j, (2.4)

where the first term of the right-hand side of equation 2.4 represents the
stimulus-evoked component that is related to the RF characteristic, and
the second term represents the spike history–dependent component that
is related to the neuron’s intrinsic biophysical property. The stimulus-
evoked component is modeled using M cubic B-spline functionsBm, and the
spike history–dependent component is modeled using spike count statis-
tics within preceding I history windows. Equation 2.4 essentially defines a
GLM with a log link function.

The parameters of PPGLM are estimated using an iterative reweighted
least-squares (IRWLS) algorithm (glmfit function, Matlab) based on max-
imum likelihood estimation (Pawitan, 2001; Brown et al., 2003; Paninski,
2004). The order parameters M and I are chosen according to the Akaike’s
information criterion (AIC) and assessed by a Kolmogorov-Smirnov (KS)
test in light of the time-rescaling theorem (Brown, Barbieri, Ventura, Kass,
& Frank, 2002; Haslinger, Pipa, & Brown, 2010). Upon completing the max-
imum likelihood fitting, taking the exponent of both sides of equation 2.4
and evaluating it with the maximum likelihood estimate yields the CIF es-
timate from the PPGLM (see Figure 1d). In addition, confidence intervals
(CIs) for the parameters {ξ (B)

m, j} and {ξ (n)

l, j }, as well as the CI for λ j(tk|Htk
) at

each direction, are analytically derived (Brown et al., 2003).
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Due to the circular geometry of the stimulus representation, the neural
response along a moving bar angle θ is treated as a line integration of the
2D RF spatial tuning function f(x,y) orthogonal to the moving direction,
which is characterized by a Radon transform R( f )[θ ]. At each moving
bar direction, the estimated Radon transform is determined only by the
stimulus-evoked neural response,

R̂( f )[θ j] = exp

(
M∑

m=1

ξ̂
(B)

m, jBm

)
. (2.5)

2.3 Modeling Stimulus-Evoked and Spike History–Dependent Com-
ponents. To model the stimulus-evoked spiking activity of equation 2.4
in each moving bar direction, we use a set of cubic B-spline basis func-
tions {Bm}M

m=1. A B-spline is a spline function that has minimal support
with respect to a given degree, smoothness, and domain partition. A cubic
B-spline is a curve with smoothness order d = 3 (i.e., polynomials of
degree 3), which is continuous and twice differentiable. The values of
control points affect only the shape of equation 2.5 locally in time due
to the piecewise definition of Bm given a sequence of control points
{0 ≤ t0 ≤ t1 ≤ · · · ≤ tr−1 ≤ tr ≤ T} (de Boor, 1978):

Bm,0(t)=
{

1 if tm ≤ t < tm+1

0 otherwise
, (2.6)

Bm,d(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t − tm

tm+d − tm
Bm,d−1(t)+

tm+d+1 − t
tm+d+1 − tm+1

Bm+1,d−1(t)

if tm ≤ t < tm+d+1

0 otherwise

. (2.7)

The control points are placed nonevenly on the 2 s time interval with
an adaptive placement strategy, which automatically allocates the control
points based on the cumulated peristimlus time histogram (PSTH) of the
spike activity (see Figure 2 for illustration).

To model the spike history–dependent component of equation 2.4 at
each moving bar direction, we use the spike count within the previous
temporal windows to account for the spiking history prior to the current
spike’s occurrence. The nk−l, j in equation 2.4 is the observed spike count in
the past lth temporal window at the jth moving bar direction, and ξ

(n)

l, j is
the associated weight coefficient. A positive (negative) value of ξ

(n)

l, j implies
an excitatory (inhibitory) effect. We let GLMhist and GLM refer, respectively,
to the PPGLM with and without the history term, respectively. That is,
GLM is a special case of GLMhist with all ξ

(n)

l, j = 0. In the absence of spike
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Figure 2: An illustration of adaptive placement of knots for cubic splines. (a) A
set of 16 cubic B-splines is placed on the 2 s time interval. The knots are nonuni-
form in that the distance between two neighboring knots is determined in a
way that there are on average the same number of spikes within each time in-
terval. (b) The placement of the knots is determined by the gaussian smoothed
cumulative PSTH (right axis, spikes/s).

history dependence, λ j(tk|Htk
) reduces to the standard rate function of an

inhomogeneous Poisson process. Therefore, GLMhist is more general since it
allows for accommodating non-Possionian neuronal spiking by considering
spike history dependence. To fit the GLMhist to the spiking activity for each
of the 16 orientations for each of 251 V1 neurons, we use the following five
temporal windows: [1–3], [4–6], [7–17], [18–23], [24–35] ms (see Figure 3a
for illustration).

2.4 Receptive Field Reconstruction via Filtered Backprojection. Upon
estimating the Radon transform in 16 directions, each Radon transform
estimate is stored in a 2000 × 1 vector. In light of equations 2.2 and 2.5, the
spatial tuning of the V1 RF is then reconstructed by applying the filtered
backprojection algorithm (Kak & Slaney, 1988) to the 16 estimated 1D Radon
transforms, followed by a spline interpolation in the finite (1414 × 1414)
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Figure 3: The estimated spiking history–dependent coefficients within five
history intervals: [1–3], [4–6], [7–17], [18–23], [24–35] (unit: ms). Five esti-
mated spiking history–dependent coefficients were shown along with their
95% CIs (gray vertical bars). Negative coefficient reflects an inhibitory
effect in that interval, indicating the presence of a refractory period.
(a) Estimated coefficients from one representative V1 neuron from one mov-
ing bar direction. (b) Box plot statistics of the estimated coefficients across
all 251 neurons in all 16 directions. The horizontal line within the box indi-
cates the median value. Despite the large variability, the median values of
the spike history coefficients have a similar representative profile shown in
panel a. A color version of the figure is provided in the online supplementary
material.
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discrete grid (see Figure 1e).2 Specifically, the continuous integration is
approximated by a finite sum operation,

f (x, y) =
∫ π

0
Qθ (t)dθ

≈
16∑
j=1

Qθ j
with θ j = 2( j − 1)π

16
, (2.8)

where Qθ j
represents a discrete 1D Fourier transform of the filtered version

of the estimated Radon transform R( f )[θ j] (Kak & Slaney, 1988),

F1{R̂( f )[θ j](t)}=
707∑

k=−707

R̂( f )[θ j](t)e
−i(2πwt/707), (2.9)

Qθ j
(t)= Re

{
707∑

m=−707

F1{R̂( f )[θ j](t)}|wm|ei(2πwmt)

}
, (2.10)

where i = √−1, and the frequency response |w| in equation 2.10 defines a
so-called Ramp filter in the frequency domain (note that |w| is not a square
integrable function, so its inverse Fourier transform does not exist in a
conventional sense). Therefore, the reconstruction is viewed as a filtered
backprojection process: a filtering operation (see equations 2.9 and 2.10)
combined with a backprojection (see equation 2.8).

To make the filtered backprojection operation more robust with respect to
noise, we use a modified Ramp filter (multiplied by a Hamming window).
We specifically construct a symmetric, finite-length discrete filter (with a
total length 2048, where 2048 is the next highest power of 2 for 2000) within
the Nyquist bandwidth (and therefore cut off the frequency response out-
side the Nyquist range by setting the response to 0). In addition, we can
implement the Ramp filter in the time domain instead of the frequency
domain. In so doing, we zero-pad the filter as well as the Radon transform
signal, which helps avoid aliasing. We thus replace the circular convolution
with a nonperiodic convolution.

Finally, for each discrete point (x̃m, ỹn) in the 1414 × 1414 grid, we com-
pute tmn = x̃m cos θ j + ỹn sin θ j (1 ≤ m, n ≤ 1414), and we use a cubic spline

2The number 1414 = �2000/
√

2	 arises from the fact that we treat the moving bar 2 s
traveling time (binned as a 2000-dimensional vector) as the diagonal in the rectangular
stimulus field (see Figure 1b).
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to interpolate Qθ j
(tmn) in the discrete grid from the filtered projection Qθ j

(t)

(see equation 2.10).
Note that there is a typical time delay between the moving bar stimulus

and V1 responses in the order of ∼60 ms. For each direction, we used a
fixed latency of 60 ms to shift the neuronal response in time to reflect the
delay (otherwise the peak of the estimated RFs would be misidentified).
The rationale for estimating the latency and choosing 60 ms is as follows.
Given that the moving bar directions are spanned from 0 to 2π (the Radon
transform theory requires sampling only from 0 to π by assuming radial
symmetry), we can use bars moving in from reverse directions (e.g., 0 and
π , π/2 and 3π/2) to estimate the actual latency. If the latency parameter is
correct, two estimated CIFs from opposite directions would be aligned in
the peak response; in contrast, if the latency parameter is either too large or
too small, the peak responses of two estimated CIFs would deviate. In fact,
we have tested other alternative latency values of 50, 55, 65, and 70 ms and
found that by using these alternative values, the reconstructed RF is much
more elongated, indicating that the latency is either too long or too shorts.3

2.5 Estimating Receptive Field Size and Orientation Tuning. The stan-
dard minimum-response-field technique (Movshon et al., 1978; Pettet &
Gilbert, 1992) to define the RF extent is based on a gaussian shape as-
sumption of the RF profile. However, the gaussian assumption is not fully
justified, and this ad hoc technique lacks statistical justification. Because of
the asymmetry of the V1 RF, we compute the RF size from the projected
temporal profile at each direction, using two criteria defined below. With
the standard e−1 criterion (criterion 1; DeAngelis et al., 1995), the RF size
is defined by the extent (in time and then converted to degree) where the
neuronal response exceeds a threshold (see Figure 4); and the threshold
value is defined as e−1 of the dynamic range above the baseline firing rate,
λ j,0 + e−1(λ̂ j,max − λ j,0), where e is the Euler’s number (e−1 ≈ 0.37); λ j,0 and

λ̂ j,max define the baseline and the estimated peak firing rates at the jth di-

rection, respectively; and their difference (λ̂ j,max − λ j,0) defines the dynamic
range. The e−1 criterion is based on the assumption that the RF is of a gaus-
sian or difference-of-gaussian shape. With criterion 2, the RF size is defined
by the extent to which the lower 95% CI of the CIF estimate is greater than
the baseline (see Figure 4). The user chooses the level of confidence, which
is determined by the need for conservativeness based on the available data.
Even with the identical confidence level, a small sample size would often
induce a large confidence bound (i.e., uncertainty) to the estimate.

3Alternatively, as suggested by one reviewer, one could apply the reverse correlation
or STA method to reveal the period between the stimulus onset and the cortical response
that is either significantly correlated or not correlated, and based on that to use it as a
rough estimate of the latency.
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Figure 4: Illustrations of RF size estimation in three moving bar directions for
a single V1 neuron based on criterion 1 (top row) and criterion 2 (bottom row),
where the black curve indicates the estimated CIF and the shaded area marks
the RF range. In the top row panels, the RF size is determined by the e−1 criterion,
where the horizontal dashed line represents the critical threshold. In the bottom
row panels, the RF size is determined by the area where the lower 95% CI of the
CIF exceeds the baseline firing rate (horizontal dashed line). A color version of
the figure is provided in the online supplementary material.

Specifically, for the jth direction, assuming that the maximum likeli-
hood estimate ξ̂ j = {ξ̂ (B)

m, j, ξ̂
(n)

l, j } follows a multivariate gaussian distribution
N (ξ̂ j,� j) (Pawitan, 2001), then by virtue of equation 2.4, the estimated log-
CIF profile log λ̂ j follows a univariate gaussian distribution, N (μ j, σ

2
j ), and

the estimated CIF profile λ̂ j follows a log-normal distribution with mean
and variance statistics as

E[λ̂ j] = eμ j+σ 2
j /2

, (2.11)

Var[λ̂ j] = (
eσ 2

j − 1
)
e2μ j+σ 2

j . (2.12)

The 95% (or 99%) CI roughly corresponds to the twofold (or threefold)
standard deviation. In comparison to criterion 1, criterion 2 is statistically
meaningful and makes no assumption of the RF shape.
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Orientation tuning g(α|θ ) is estimated separately from the spatial tuning
f(x,y) at each direction θ j. The strength of g(α|θ ) in the specific angle θ j

is identified by the estimated peak firing rate λ̂ j,max (maximum response
during the complete 2 s time interval) and stored in the jth entry of a
vector. Upon collecting the values of estimated λ̂ j,max from 16 directions,
we compute the circular variance (CV) (Mardia, 1972; Ringach, Shapley, &
Hawken, 2002),

CV = 1 −
∣∣∣∣∣
∑16

j=1 λ̂ j,maxe2iθ j∑16
j=1 λ̂ j,max

∣∣∣∣∣ , (2.13)

and characterize the orientation tuning with an index: ε = 1 − CV (where
0 ≤ ε ≤ 1). A large value of CV or a low value of ε indicates a low sensitivity
to orientation (see Figure 5c). Since the periodicity of orientation is 180◦,
but the moving bar direction is cyclic over 360◦, the actual directions of
the bar are used to calculate the directional preferences of each neuron. In
all graphic visualizations presented later (see Figures 5b and 7), instead of
visualizing h(x, y, α) = f (x, y)g(α), we plot a rescaled version of f(x,y) by
assuming an isotropic orientation in all directions.

3 Results

3.1 Data. The spiking activity from 251 V1 neurons was recorded in
two awake macaque monkeys during the moving bar experiment (see
Figure 1c for the raster plot of one V1 neuron), in which a moving light bar
(luminance: 50 cd·m−2, bar width: 0.2◦) stimulus was used in 16 different
orientations separated evenly by 22.5◦ in nine trials per direction presented
in random order. Each trial lasted 2 seconds. Details of experimental setup
and recordings are described in appendix C.

3.2 Encoding Analysis and Receptive Field Mapping. In the encoding
analysis, we estimate the 1D Radon transform of each of the 16 different
orientations as the CIF of a PPGLM fit to the spiking activity. We compare the
reconstructed RF from two PPGLMs—one using spike history (GLMhist) and
one not using spike history (GLM)—with estimates computed from standard
methods of STA and WVK (using only linear kernels). The details of the
STA and WVK methods are given in appendix B.

Figure 5 shows a typical comparison of four estimation methods. All
provide rate function estimates in each of the 16 directions from the nine
trials of spiking activity (see Figure 5a). In Figure 5a, the estimated CIFs are
plotted against the raw spike rasters. The CIFs from the GLMhist and the GLM

are smoother than those from the STA and WVK because the former two
used smoothing cubic splines as basis functions. The WVK and STA rate
function estimates are noisier because neither considers the point-process
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Figure 5: Comparison of four spike encoding approaches (columns 1–4: GLMhist,
GLM, STA, WVK) in estimating an excitatory RF of V1 neuron. (a) Raster plot
of the single cell response to 16 moving bar directions, with each direction
containing 9 experimental trials. Each panel shows the spike train data with the
estimated stimulus response (spikes/s) in each direction. (b) The estimated 2D
RF is shown in terms of the visual angle (in degrees) relative to the fixation point.
Response strength is coded for spatial tuning. In this example, the estimated
peak rates fmax from four paradigms are 70, 90, 90, and 120 spikes/s, respectively.
The mean RF size estimate averaged across all 16 directions is GLMhist: 1.46◦;
GLM, 1.36◦; STA, 1.39◦; WVK: 1.18◦. (c) Polar plot for the RF orientation tuning
estimate, characterized by an ε-index. The ε-estimates from four approaches
are, respectively, 0.24, 0.23, 0.13, and 0.13. The GLMhist estimate for the RF size is
larger and has a sharper orientation tuning than the STA and WVK estimates.
A color version of the figure is provided in the online supplementary material.
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Table 1: Goodness-of-Fit Assessments Summary for the Fits of the GLMhist, GLM,
STA, and WVK Models for 251 V1 Neurons.

GLMhist GLM STA WVK

Complete data (9 trials per direction) 238 (94.9%) 171 (68.1%) 154 (61.4%) 129 (51.4%)
Training data (6 trials per direction) 243 (96.8%) 183 (72.9%) 162 (64.5%) 128 (51.0%)
Validation data (3 trials per direction) 242 (96.4%) 179 (71.3%) 112 (44.6%) 61 (24.3%)

Note: The table entries are the number (and percentage) of the neurons whose KS plots are
within the 95% CIs, suggesting a close agreement between the model and experimental
data.
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Figure 6: The KS plot comparison between four spike encoding methods in
modeling the V1 neuronal spiking data used in Figure 4. The horizontal and
vertical axes of these plots are the time-rescaled empirical cumulative distribu-
tion function (cdf) and the theoretically uniform cdf, respectively. Here, only
the KS statistic from GLMhist passes the test, in which the curve falls completely
within the 95% CI.

nature of the spiking activity. The WVK is a least-squares estimate whereas
the STA is the simple average of the spike counts over the nine trials.
Furthermore, the RF spatial tunings of the GLMhist and the GLM are sharper
than those of the STA and the WVK (see Figure 5b). The spatial RF’s peak
amplitude of the GLMhist is typically less than that of the GLM because the
latter does not consider spike history. Note that all spatial tuning estimates
have stripe-like “artifacts” that are clearly related to the discrete sampling
of the bars at the 16 orientations. In addition, the GLMhist gives sharper
orientation tuning measured as a greater ε-index value than the GLM, STA,
and WVK (see Figure 5c).

Of the four models considered, the GLMhist gives the most accurate de-
scription of the spiking activity across all of the 251 V1 neurons in terms of
cross-validation KS goodness-of-fit assessments (see Table 1 and Figure 6 for
one example). In the validation data, the GLMhist fits meet the KS goodness-
of-fit criterion for 96.4% of the neurons compared with 71.3% of the GLM,
44.6% of the STA and 24.3% of the WVK fits. Therefore, in the subsequent
analyses, we compare the GLMhist results with the conventional STA and
WVK methods.
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Figure 7: Comparison of three methods in the RF mappings of two different
types of V1 simple cells: an excitatory cell that has an above-baseline response to
the stimulus (a) and an inhibitory or suppressive cell that has a below-baseline
response to the stimulus (b). The RF is shown as a function of the visual angle
relative to the fixation point. The neural response of the spatial tuning function
is represented in grayscale. At the top right corner of each panel, the estimated
maximum (or minimum) rate is marked. A color version of the figure is provided
in the online supplementary material.

V1 neurons have both excitatory and inhibitory RFs. Two representative
examples of spatial RF mapping are shown in Figure 7. In the encoding
analysis, GLMhist consistently obtains a smoother and sharper spatial RF
estimate (higher contrast and spatially well defined).

3.3 Receptive Field Size, Orientation Tuning, and Bandwidth. Our
PPGLM framework also provides a new criterion for assessing RF size based
on comparing the baseline firing activity with the lower 95% CI of the CIF.
The logic behind this new definition is that activity significantly greater than
baseline can be considered the stimulus-evoked response. Using the new
criterion, we find that the estimate of RF size is asymmetric and larger than
that determined by the e−1 criterion. As illustrated in Figure 4 for one V1
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Figure 8: Summary statistics of RF size and orientation tuning estimates for
251 V1 neurons. (a, b) Box plots comparison of three spike encoding methods in
estimating the RF size and orientation tuning. On each box, the center line marks
the median, the edges of the box are the 25% and 75% quantiles, and the whiskers
indicate 1.5 times the interquartile range from the edges of the box. Outliers
are marked by the symbol +. The RF size estimates from GLMhist (criterion 2)
differ significantly from three other estimates (n = 4, 016 orientations, P < 0.01,
Kruskal-Wallis one-way ANOVA median test, and a follow-up post hoc pairwise
median test), and the other three show no difference among themselves (P >

0.1). The orientation tuning estimates differ significantly between GLMhist and
STA and WVK (n = 251 cells, P < 0.01), and the estimates from STA and WVK
are not statistically different (P > 0.1). (c) Scatter plot of the RF size estimates
from GLMhist using two criteria. The two estimates appear correlated, but the
estimates using criterion 2 are larger (least-squares fit: RFGLM,crit 2 = 1.066 ×
RFGLM,crit 1 + 0.599, shown in the thick gray line). (d, e) Scatter plots of the ε-
estimates between GLMhist and the STA and WVK methods. The slope and its
95% CI of a linear regression fit are calculated: slope = 0.543 ± 0.021 for WVK
versus GLMhist; slope = 0.573 ± 0.023 for STA versus GLMhist. A color version of
the figure is provided in the online supplementary material.

neuron, the RF size estimates from three selected moving bar directions are
smaller using the old criterion than using the new one. This is consistently
observed across the majority of the orientations (80.9% among all 16 × 251
orientations; see Figure 8c) of the V1 neurons.



2560 G. Pipa et al.

We compare the population RF size and orientation estimates of three
methods: GLMhist, STA, and WVK (see Table 1). For GLMhist. we consider
two criteria for defining RF size: criterion 1, the standard e−1 criterion, and
criterion 2, defined by the 95% CI of the estimated CIF. For STA and WVK,
we consider only the standard e−1 criterion. In principle, we can also use
the 95% CI criterion for the WVK (i.e., roughly two standard deviations
of the estimate; see the appendix); however, the least-squares method may
produce a negative CIF estimate at some time points (see the last column
of Figure 5a for an illustration), such that its lower 95% CI is completely
within the negative region. In this case, it is not meaningful at all to use the
95% CI criterion for the WVK method.

As seen from Figure 8a, based on criterion 1, the median RF size esti-
mates from GLMhist, STA, and WVK are in close agreement (pairwise me-
dian tests between STA and WVK, n = 4016 orientations, P > 0.05). Using
criterion 2, GLMhist has a larger median RF size. The RF size estimates from
the GLMhist using criterion 2 are linearly related to, but significantly larger
than, the estimate from GLMhist using criterion 1 (see Figure 8c; linear re-
gression, RFGLM,crit 2 = 1.066 × RFGLM,crit 1 + 0.599), suggesting a clear off-
set between these estimates. In the analysis of the orientation tuning (see
Figure 8b), the ε-estimate from GLMhist is significantly different from STA
and WVK (n = 251 cells, P < 0.01, Kruskal-Wallis one-way ANOVA median
test). No significant difference is found between STA and WVK estimates.
In addition, the ε-estimate from GLMhist is nearly twice the estimates from
WVK and STA (see Figures 8d and 8e). The average slope (±95% CI) for
the linear regression of WVK versus GLMhist is 0.543 ± 0.021, and for STA
versus GLMhist it is 0.573 ± 0.023. These findings suggest that formal sta-
tistical modeling of the point-process nature of the neural spiking activity,
combined with tomographic reconstruction and statistically based defini-
tion of the RF property, leads to substantially different inferences about the
RF size and orientation tuning. Note that there is no significant correlation
between the estimated RF size and the orientation tuning. We compare the
median RF size and the ε-estimate from 16 directions from 251 neurons; the
Pearson correlation coefficients for the GLMhist, STA, and WVK methods are
−0.1284, −0.1548, and −0.1122, respectively. None of these correlations is
statistically significant.

Furthermore, using an approximate formula between the index ε and
the V1 RF bandwidth b (Ringach et al., 2002),

ε ≈
(

sin(2πb)
2πb

)2

, (3.1)

we estimate the V1 RF bandwidth b from the ε-estimate. A greater ε-estimate
(a sharper orientation selectivity) yielded a narrower bandwidth. The me-
dian value 0.129 (25% quantile: 0.067, and 75% quantile: 0.250, respectively)
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of the ε-estimate among 251 V1 neurons (see Figure 8b) corresponds to a
median bandwidth 0.35 Hz (0.39 Hz and 0.30 Hz, respectively).

3.4 Experimental Design. For experiments using moving bar stimuli
to estimate visual RF, two design questions arise naturally. What is the
minimum number of moving bar directions required to reconstruct the RF
with high fidelity? Given a fixed total number of trials, what is the optimal
configuration of number of directions and the number of trials per direction?

To answer these experimental design questions, we simulate spiking
activity from a V1 neuron with an ON-center, OFF-surround RF (with a
shape of the difference of gaussians) having the following spatial tuning
function (see Figure 9a),

f (x, y) = A1 exp
(

− 0.5(x2 + y2)

σ 2

)
− A2 exp

(
− 0.5(x2 + y2)

1.2σ 2

)
+ A3,

(3.2)

with σ 2 = 1/8. The function f(x,y) is properly shifted and scaled (by three
parameters A1, A2, and A3) such that the ultimate function f (x, y) > 0 and
has a peak firing rate of 125 Hz and a baseline firing rate of 25 Hz. The RF
f(x,y) is discretized in a 1414 × 1414 grid and has a bandwidth of 8 Hz/pixel.

From equation 2.13 we simulate 2 seconds of spike trains in each of 128
evenly spaced directions with nine trials per direction. From these data,
we reconstruct the RF using 8, 16, 32, 64, and 128 directions and one to
nine trials per direction (see Figure 9 for illustrations). Given a number of
directions and a number of trials per direction, we fit PPGLMs to the spiking
activity to estimate the Radon transforms in each direction and then applied
filtered backprojection to the estimated transforms to reconstruct the RF. We
evaluate the quality of the reconstruction by computing the mean-squared
reconstruction error (MSRE) between the estimated RF and the true value
across all 1414 × 1414 pixels.

As expected, the reconstruction error decreases as the number of direc-
tions and the number of trials per direction increases (see Figure 10a). In
examining the MSRE with respect to the total number of trials, we observe
that, provided the condition for the minimum number of spatial samples
is satisfied (at least 16 directions), the error decreases with an increasing
number of trials. However, as the total number of trials reaches approxi-
mately 200, the MSRE approaches an asymptote of approximately 2 × 10−5

(see Figure 10b). As the sampling theory suggests, if the high-frequency
details of the RF are required (i.e., larger bandwidth), then the number
of directions is crucial, and oversampling will yield a more accurate re-
construction. Because in moving bar experiments the neural responses are
stochastic, a minimal number of trials per direction is always required. We
find that to achieve an MSRE of 2 × 10−5, a feasible design would be to use 32
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Figure 9: (a) The simulated 2D visual RF, and the reconstructed RF based on
tomographic reconstruction using various numbers of projections (b1–b5). The
visual RF is simulated with a baseline firing rate of 25 Hz and a peak firing
rate of fmax = 125 Hz. From the visual RF, inhomogeneous Poisson spike trains
are generated along all directions. In each direction, nine trials are simulated.
According to the Radon transform sampling criterion, to ensure a reliable signal
reconstruction, at least 16 directions are required. In panel b1, due to undersam-
pling effect, the RF reconstruction is very poor. As more and more projections
are added, the fidelity of the reconstructed RF improves. (c) Reconstruction
comparison using varying numbers {2, 3, 5} of trials in each direction for the
same number of 16 directions. (d) Reconstruction comparison using three dif-
ferent configurations with a fixed total number of 128 trials. A color version of
the figure is provided in the online supplementary material.
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Figure 10: Results from the simulation study using a difference-of-gaussians
model. (a) Comparison of the MSRE (normalized by the total number of pixels)
with varying number of directions and number of trials per direction. (b) The
MSRE curve as a function of the total number of trials for a fixed number
of directions J. The MSRE saturates to an asymptotic level of approximately
2 × 10−5 when the total number of trials approaches about 200. A color version
of the figure is provided in the online supplementary material.

directions, with at least 6 trials per direction, or 192 trials for the experiment,
which suggests a different configuration from the 16 directions and 9 trials
per direction used in our experiment.

3.5 Robustness of the Separability Assumption. Thus far, we have
assumed that the spatial tuning and orientation tuning of the V1 neurons
are separable (see equation 2.1). In reality, V1 neurons are better modeled by
a 2D Gabor filter (Daugman, 1980; Jones & Palmer, 1987). In order to test the
robustness of our assumption and tomographic reconstruction approach,
we further simulate a V1 neuron using a Gabor filter model, which is given
by the product of a gaussian-shape envelope and a complex sinusoidal
carrier (Movellan, 2008),

f (x, y) = A exp
(

− π((x − x0) cos ξ + (y − y0) sin ξ )2

a2

−π(−(x − x0) sin ξ + (y − y0) cos ξ )2

b2

)

× exp(i2π(u0x + v0y) + iφ), (3.3)

where (x0, y0) denotes the location of the peak of the gaussian envelope;
(a2, b2) denote the spatial variances along the (x, y) coordinates, respec-
tively; (A, ξ ) denote the amplitude and rotation angle of the gaussian enve-
lope, respectively; (u0, v0) and φ denote the spatial frequencies and phase of
the sinusoid, respectively. Taking the 2D Fourier transform of equation 3.3
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Figure 11: Results from the simulation study using a Gabor filter model. (a) The
real part of the complex Gabor filter in spatial domain ( fmax = 80 Hz). (b) The
imaginary part of the complex Gabor filter in spatial domain. (c) The estimated
RF profile based on 32 projections. (d) The estimated RF profile based on 64
projections. A color version of the figure is provided in the online supplementary
material.

further yields

F (u, v) = A
ab

exp(−i2π(x0(u − u0) + y0(v − v0)) + φ)

× exp
(

− π
((u − u0) cos ξ + (v − v0) sin ξ )2

a2

−π
(−(u − u0) sin ξ + (v − v0) cos ξ )2

b2

)
. (3.4)

Basically, the Gabor filter is spatially localized and can be viewed as a
bandpass filter that favors spatial frequencies within a certain range. Here,
we set x0 = y0 = 0, a = 50 pixels, b = 40 pixels, ξ = π/4 , u0 = v0 = 1/80

cycles/pixel, and φ = 0. Let C =
√

log 2
π

and R =
√

u2
0 + v2

0 , the spatial fre-
quency BW is about 2C/a ≈ 0.0188 pixel, and the orientation BW is about
2 tan−1(C/Rb) ≈ 1.173 deg (see Movellan, 2008, for BW derivations based
on the half-magnitude RF profile). Figures 11a and 11b show the real and
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imaginary parts of the Gabor filter in spatial domain on an image of
1024 × 1024 pixels, respectively.

From the real part of the Gabor filter (which is properly shifted such that
it is nonnegative, with a peak firing rate of ∼80 Hz, and a baseline firing rate
of ∼20 Hz), we simulate 2 seconds of spike trains in 32 (or 64) evenly spaced
directions in [0, 2π) with four trials per direction.4 Using the separability
assumption, we estimate the spatial tuning of the visual RF and evalu-
ate the quality of the reconstruction by computing the MSRE between the
ground truth (see Figure 11a) and estimated RF profile (in terms of the pixel
intensity of two images). The estimated results are shown in Figures 11c
and 11d. It appears that despite the use of the separability assumption, the
estimated RF profile remains qualitatively and quantitatively similar to the
true RF. In these two cases, the MSRE values are 0.0432 and 0.0304, respec-
tively. As seen in Figure 11, although the details of the reconstructed RF
images are partly distorted, the underlying Gabor filter structure has been
captured, suggesting the robustness of the separability assumption.

4 Discussion

4.1 Tomographic Reconstruction and PPGLM. By combining statisti-
cal modeling of neural spike trains using the PPGLM framework with the
principles of tomographic reconstruction, we have presented a new two-
step approach to estimating the RFs of V1 neurons from spiking activity
recorded in an experiment in which a bar was moved across the visual
field at multiple orientations. In the first step, a PPGLM is used to esti-
mate the Radon transform as the CIF of the spike trains recorded across
multiple trials in each direction. In the second step, under the linear super-
position principle, we invert the estimated Radon transforms to reconstruct
the V1 RF using filtered backprojection. This approach takes advantage of
the point-process nature of the spiking activity and the highly structured
geometry of the experiment. This latter step is analogous to image recon-
struction in which use of filtered backprojection is standard practice (Kak
& Slaney, 1988; Deans, 1993). Our use of tomographic principles to map
V1 RFs is a further extension of previous work by Sun and Bonds (1994)
in two important aspects: one is characterization of spiking activity via a
PPGLM; the other is to propose a statistical criterion for determining the
RF size.

Our PPGLM (GLMhist) that models spike history along with stimulus
effect gives the most accurate description of the spiking data compared
with a PPGLM that models only the stimulus effect (GLM) and the standard
STA and WVK algorithms for rate function estimates. There are several

4Assuming circular symmetry, this is equivalent to sampling from 16 (or 32) evenly
spaced directions in [0, π ) with eight trials per directions.
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reasons that the GLMhist outperforms the STA and WVK. Instead of treat-
ing the spiking activity as a point process, the WVK use a linear gaussian
model to relate the visual stimuli to neural responses (Paninski, 2003). The
WVK parameters are one of the initial guesses commonly used to start
the IRWLS algorithm used to compute the PPGLM parameter estimates
(Pawitan, 2001). The STA is an approximation to the WVK. Neither of these
methods takes into account spike history. The spike history effect reflects
the nature of non-Poissonian firing (Shimokawa & Shinomoto, 2009), as
evidenced in most V1 neurons (see Figure 3b). Compared to coarse spike
count coding (as in STA and WVK), fine temporal coding contains more in-
formation of visual stimuli, as seen by its superior decoding performance in
real visual system (Jacobs et al., 2009). It is also now appreciated that intrin-
sic neuronal dynamics including absolute and relative refractory periods
are important for predicting current spiking activity (Truccolo et al., 2005;
Truccolo, Hochberg, & Donoghue, 2010). Including both the stimulus and
spike history in the PPGLM helps explain its superior performance relative
to the STA and WVK in terms of the accuracy of the data description and
the model generalizability, as evaluated, respectively, in the goodness-of-fit
and cross-validation analyses. Since neither STA nor WVK meets the sam-
pling criteria imposed by tomographic reconstruction, they consequently
suffer a loss of reconstruction accuracy.

4.2 Receptive Field Size and Uncertainty. The RF of a V1 neuron de-
fines a region of space that is sensitive to a visual stimulus. Such a region
can have rather complex dependencies of the stimulus sensitivity on the
exact position and type of the stimulus. Despite this complexity, an RF is
often experimentally described with rather simple measures, such as the RF
size and the orientation specificity. Our analysis, based on the maximum
likelihood estimation of the PPGLM, provides a new definition of RF size.
This definition is more reasonable than the standard one because it uses
an accepted statistical criterion. The spatial extent of the RF is determined
by the region over which the lower bound of 95% CI of the CIF is greater
than the baseline. In contrast, the e−1 criterion assumes a gaussian shape
for each RF and does not consider the statistical properties of the data. In
particular, it is possible to set the e−1 boundary beyond the point where
there is a statistically significant increase in the CIF relative to baseline. It is
also possible to have statistically significant activity beyond the boundary
defined by the e−1 criterion. This latter case is what we have observed. In
the GLMhist analyses, the RF sizes based on the new criterion are systemati-
cally larger compared with the RF sizes estimated by the e−1 criterion (see
Figure 8c). The GLMhist RFs also have greater orientation specificity than
those estimated by either the STA or the WVK (see Figures 8d and 8e).

One has to keep in mind that defining the RF size requires determining
a threshold or minimal sensitivity given a certain type of a stimulus. Based
on the signal detection theory, it is clear that changing the threshold or
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minimal sensitivity results in changes of the RF size. Given the typical
shape of the RFs in V1, a stricter criterion that requires a larger sensitivity
will typically result in a smaller RF size and vice versa. We expect the same
for the threshold criterion and the CI criterion discussed in this article. For
both criteria, the precise change of the RF size as a function of the threshold
will depend on the exact shape of the spatial sensitivity. In the case of the CI
criterion, the threshold itself also depends on the number of data used for
fitting the PPGLM, so more data usually lead to smaller CIs and larger RF
size. Therefore, the RF size estimate should be seen as not only an intrinsic
property of the V1 neurons, but also an induced quantity of uncertainty
about the data. The confidence of uncertainty is defined a priori and is
often dependent on the number of data available.

Our proposed definition using the 95% CI criterion applied to the 251 V1
neurons analyzed in this study suggests that V1 RFs may be larger than cur-
rently appreciated. Presumably if we increase the threshold of confidence
level (say, from 95% to 99%), the estimated RF size will become smaller,
and the gap between these two criteria might become smaller. However,
with the same level of confidence but with more spiking data collected from
more experimental trials, the estimated RF size may also become smaller
(due to reduced confidence bounds or reduced uncertainty for the estimated
parameters).

4.3 Regularization. Maximum likelihood estimation is known to sub-
ject to overfitting by using an undesirable or unnecessary complex model.
Due to the small number of trials being collected, we have not extensively in-
vestigated the regularization option for all the methods (WVK and PPGLM).
Determining optimal regularization parameters and regularization schemes
(e.g., L1 norm or L2 norm) is a nontrivial estimation problem in the pres-
ence of small sample size (Hastie, Tibshirani, & Friedman, 2009). Based on
the goodness-of-fit assessment using the KS plot and cross-validation, we
believe that the overfitting issue is not a concern for GLMhist.

4.4 Experimental Design. Finally, our paradigm suggests an approach
to determining the optimal design of moving bar experiments to maximize
the accuracy of RF reconstruction. Given a fixed number of projections,
the signal bandwidth that can be faithfully estimated is bounded above
(Natterer, 2001). For the smoothing spline model, the number of control
points per direction is bounded above by the number of moving bar projec-
tions multiplied by the time interval duration per direction. Therefore, in
order to improve the estimation resolution of the RFs, it is necessary to in-
crease the number of moving bar projections to meet the sampling criteria.
Given a fixed number of trials, an experimental design can be chosen that
balances the trade-off between accurate RF reconstruction and the number
of directions and the number of trials per direction required to achieve it
(see Figures 9 and 10).
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4.5 Future directions. Our findings suggest several directions for fu-
ture investigations. We can directly compare V1 RF properties (size and
orientation tuning) obtained using different stimulus paradigms and ex-
amine the plasticity or sensitivity of V1 RF to distinct visual stimuli (Pettet
& Gilbert, 1992; DeAngelis et al., 1995; Wandell & Smirnakis, 2009). Since
our moving-bar tomographic reconstruction framework is not limited by
the assumption of a linear relationship between the visual stimuli and their
neural responses, it can also be used to examine the nonlinear stimulus-
response relationship of neurons in other visual areas, such as V2. Alter-
natively, the principle can be extended to estimate the spatiotemporal RF
profile (Rust, Schwartz, Movshon, & Simoncelli, 2005). In addition, instead
of using filtered backprojection, alternative computational approaches for
tomographic reconstruction (Herman, 2009; Mao, Fahimian, Osher, & Miao,
2010) can be used to improve the reconstruction accuracy and reduce the
minimum number of moving bar directions required. Finally, our current
RF model is rather simplified and limited by several assumptions. It would
be interesting to explore the possibility of estimating the spatiotemporal
visual RF (Theunissen et al., 2001; Stanley, 2002; Ringach, 2004; Nishimoto
et al., 2005) using the same or a modified experimental paradigm. These
studies will be topics of future reports.

4.6 Limitations. Finally, there are some limitations in using the moving
bar stimuli paradigm. Considering a 0.2◦ bar width, the size of the bar width
might be comparable to the full RF of some V1 cells; therefore, it might be
too coarse to reconstruct the fine internal structure of RF. In addition, at
the eccentricity of 2◦ to 5◦, the fixation noise is comparable to the RF size,
which might cause blurring in the reconstruction. Despite these inherent
limitations caused by the original moving bar experiments, we still believe
that our proposed analysis approach provides an alternative computational
solution for mapping visual RFs using moving bar stimuli.

In addition, in this article, we estimate only the orientation tuning, not
the directional tuning property of the V1 neurons. If V1 neurons are di-
rectionally selective (de Valois, Yund, & Hepler, 1982; Livingstone, 1998;
Livingstone & Conway, 2003), then our approach would yield some biases
in the RF estimate. This is due to the fact that the Radon transform is defined
in the symmetric plane with orientation coverage of [0, π ) (Kak & Slanney,
1988; see also appendix A); therefore, the orientation selectivity is implicitly
assumed. Despite this simplified assumption (in addition to the assump-
tion of separability of spatial and orientation tunings), our approach still
provides a useful tool to assess the visual RF properties (complementary to
the STA and WVK approaches).

Since the moving bar experiment remains a classic paradigm for map-
ping visual RFs in awake monkeys, we believe that our proposed approach
and the investigation of experimental design would provide valuable in-
formation for neuroscientists. This can also be used as a complementary
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approach to compare the RF estimate obtained from the other experimental
paradigms based on either random white noise stimuli or m-sequences.

Appendix A: Continuous Radon Transform

The Radon transform (Radon, 1917) is a method that has been widely used
in various inverse reconstruction problems, such as computerized tomogra-
phy, nuclear magnetic resonance, optics, astronomy, and geophysics (Kak
& Slanney, 1988; Deans, 1993). The common task of these problems is to
reconstruct a 2D or 3D function based on its lower-dimensional (1D or 2D)
projections, which are treated as samples of the Radon transform.

Let f(x,y) be a continuous, band-limited function defined on a 2D
Euclidean space [x, y] ∈ R

2. The Radon transform of f along a direction
θ ∈ [0, 2π], denoted as R( f )[θ ], is defined by a set of line integrals along
the projection direction θ at a distance t of the origin. Mathematically, the
line integral is written as

R( f )[t; θ ] =
∫ ∞

−∞
f (t, s)ds, (A.1)

where (t, s) are defined by the rotated version of (x, y) as follows:

[
t

s

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x

y

]
. (A.2)

Here, t = x cos θ + y sin θ defines a line in the 2D plane, which is speci-
fied by an angle θ and a distance t from the origin. Therefore, the Radon
transform R( f )[θ ] is a 1D line projection of f(x,y) for a given direction
θ . The underlying mathematical theory for tomographic reconstruction is
the projection-slice theorem. Let F1 and F2 denote the 1D and 2D Fourier
transforms, respectively. The 2D Fourier transform of f(x,y) is written as

F2(u, v){ f (x, y)} =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−2π i(ux+vy)dxdy, (A.3)

where i = √−1, and {u, v} are the spatial frequencies. Let u = w cos θ and
v = w sin θ , which convert the Cartesian coordinate system (u, v) in the
frequency domain to a polar coordinate system (w, θ ); we then obtain

F2(w, θ ){ f (x, y)} =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−2π iw(x cos θ+y sin θ )dxdy. (A.4)
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Because of t = x cos θ + y sin θ (see equation A.2), it follows that

F2(w, θ ){ f (x, y)} =
∫ ∞

−∞

∫ ∞

−∞
f (t, s)e−2π iwtds dt

=
∫ ∞

−∞

[∫ ∞

−∞
f (t, s)ds

]
e−2π iwt dt. (A.5)

From equation A.1, equation A.5 is further written as

F2(w, θ ){ f (x, y)} =
∫ ∞

−∞
R( f )[t; θ ]e−2π iwtdt

=F1

{
R{ f }} . (A.6)

That is, the 2D Fourier transform of a function f(x,y) is identical to the 1D
Fourier transform of the Radon transform R{ f }. Note that equation A.6 is
defined in the polar coordinate system (w, θ ) of the frequency domain. To re-
construct f(x,y), we apply the inverse 2D Fourier transform to equation A.6,
which yields

f (x, y) =F−1
2

{
F1

{
R( f )

}}
=

∫ ∞

−∞

∫ ∞

−∞
F2(u, v)e2π i(ux+vy) dudv. (A.7)

Using the identity u = w cos θ , v = w sin θ , and dudv = wdwdθ ,
equation A.7 is rewritten as

f (x, y) =
∫ 2π

0

∫ ∞

0
F2(w, θ ) w e2π iw(x cos θ+y sin θ )dwdθ. (A.8)

In light of the Fourier transform property, F2(w, θ + π) = F2(−w, θ ),
equation A.8 is further written as

f (x, y) =
∫ π

0

∫ ∞

−∞
F2(w, θ ) |w| e2π iw(x cos θ+y sin θ ) dwdθ

def=
∫ π

0
Qθ (t)dθ, (A.9)

where F2(w, θ ) = F1

{
R( f )[θ ]

}
, and

Qθ (t) =
∫ ∞

−∞
F1

{
R( f )[t; θ ]

} |w| e2π iwtdw, (A.10)
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in which the frequency response |w| defines a so-called Ramp filter. Hence,
the reconstruction is viewed as a filtered backprojection process: a filter-
ing operation (see equation A.10) combined with a backprojection (see
equation A.9).

A.1 Numerical Issues of Filtered Backprojection. In terms of discrete
implementation of the inverse Radon transform, it is worth pointing out
several additional important numerical issues that are often encountered in
practice (some of which might not be crucial in the computerized tomogra-
phy problem but are pivotal in the RF mapping problem):

� Ramp filter. The original Ramp filtering is defined in continuous
time. Due to discrete implementation, the exact zero frequency fil-
tering cannot be done, so some very low-frequency components
might be cancelled out. One of the solutions to alleviate this prob-
lem is to implement the Ramp filter in the time domain instead
of in the frequency domain, namely, to zero-pad the filter as well
as the Radon transform R( f )[t; θ j] (Kak & Slanney, 1988), followed
by FFT. This is aimed at avoiding the aliasing in circular convo-
lution and replacing the circular convolution with a nonperiodic
convolution.

� DC leakage. If the 2D RF profile has a nonzero baseline, the DC leak-
age phenomenon will occur due to the discrete Fourier transform in
F1{R( f )[t; θ j]}. This issue will become more severe because of the
finite projection effect (the fewer the projections, the more severe
is the problem). To tackle this issue, we came up with a practical
solution. Because the inverse Radon transform involves only linear
operations, the linear superposition principle will hold. Therefore, we
can first estimate the DC component c (the global mean value) of the
reconstructed RF image and apply the Radon transform to a constant
DC image (with the same image size), from which we obtain R(c).
Before applying the inverse Radon transform, we subtract the origi-
nal Radon transform by R(c), and finally, we apply the inverse Radon
transform to R( f )[t; θ j] − R(c), from which f̂ (x, y) is obtained, and
we estimate the RF by adding back the constant f (x, y) = f̂ (x, y) + c
for every pixel (x, y). In practice, this trick is quite effective in reduc-
ing the DC leakage effect.

� Boundary effect. In the discrete inverse Radon transform, because of
finite approximation and interpolation, the boundary values in the
reconstructed RF images are less reliable (typically overestimated). In
practice, we may simply ignore the estimated boundary values and
display only the central image.
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Appendix B: STA and WVK for RF Estimation

A visual RF can be viewed as a linear transfer function that maps the
visual stimulus input to a neuronal response output. The RF characterizes
the basic firing property of a neuron, either excitatory or inhibitory. In the
experimental setup of mapping a 2D visual RF, we assume that the RF space
has a size of � × � pixels.

Let j = 1, . . . , J denote the number of bar projections. In the jth direc-
tion and at the kth time bin, let S j,k ∈ R

�2
be a vectorized visual stimu-

lus field input (represented as a 1 × �2 row vector), and let nj,k denote
the corresponding observed spike count (neural response output). Let
X j = [S

j,1, . . . , S
j,K] ∈ R

K×�2
denote a concatenated matrix that consists

of K visual stimuli observed from K time instants at the jth direction (where
 denotes the transpose operation); let n j = [nj,1, . . . , nj,K] ∈ R

K×1 denote
a column vector with the concatenated neural response output at the jth
direction. We further construct an ensemble stimulus matrix X ∈ R

KJ×�2
that

combines all J directions as well as an ensemble response vector n ∈ R
KJ×1,

such that

X = [
X

1 . . . , X
J

]
,

n = [
n

1 , . . . , n
J

]
.

The linear neural encoder relates the stimulus input with the neural re-
sponse output via a linear regressor ξ,

n = Xξ, (B.1)

where ξ ∈ R
�2×1 is a parameter vector to be estimated. Upon rematrization

of ξ into an � × � matrix, we obtain the 2D RF estimate projected onto an
� × � pixel space. Equation B.1 defines a linear representation between the
input X and output n, and the parameter vector ξ serves as a linear transfer
function.

To find a solution to linear equation B.1, we can use the least-squares
method, which yields the WVK (using only linear kernels) solution,5

ξWVK = (XX )−1Xn. (B.2)

The variance of the estimate ξWVK is

Var[ξWVK] = σ̂ 2(XX )−1, (B.3)

5This is obtained by solving the Yule-Walker equation. Multiplying X to both sides of
equation B.1, we approximate the autocorrelation and cross-correlation as XX and Xn,
respectively, and it follows that (XX )ξ = Xn, and the linear least-squares estimate
yields the optimal Wiener solution.
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where σ̂ 2 = 1
KJ−�2 ‖n − XξWVK‖2 = 1

KJ−�2 (n − XξWVK)(n − XξWVK) (the de-
nominator KJ − �2 denotes the statistical degrees of freedom).

STA can be viewed as a reduced form of the first-order WVK method.
Let N denote the total number of spikes, and let D(N) be an �2 × �2 diagonal
matrix with N in all diagonal entries. Then the STA estimate is a special case
of equation B.2 by letting XX = D(N),

ξSTA = D(N)−1Xn ≡ cXn, (B.4)

where c = 1/N denotes a rate constant, which multiplies the vector Xn
to yield the STA estimate. That is, STA computes the normalized spike
counts across time related to the stimulus; hence, it can be interpreted as
coding a preferred stimulus of the neuron. In the so-called whitened STA
or rotated STA (RSTA) (Paninski, 2003), the regressor vector is weighted by
a full matrix rather than a constant: ξRSTA = �−1

X ξSTA, where �X denotes the
sample covariance matrix computed from the stimulus samples. By simple
linear algebra, we can see that the RSTA estimate is a scaled version of the
WVK solution.

Next, in the context of moving bar experiments, we would like to examine
the STA and WVK estimates (given data collected from all moving bar
directions) in relation to their individual estimates given data collected in
each direction. Put another way, can the STA or WVK estimate be composed
into a linear sum of J estimates computed separately from each moving bar
direction?

In the case of STA, let Nj = ∑K
k=1 nj,k denote the number of total spike

counts in the jth moving bar direction, and let N = ∑J
j=1 Nj and c j = 1/Nj.

We rewrite the constant c in equation B.4 as

c = 1∑J
j=1 Nj

= 1∑J
j=1 c−1

j

= 1
J

J∑J
j=1 c−1

j

. (B.5)

Hence, c is equal to 1/J fraction of the harmonic mean of cj obtained from
all J directions. By decomposing the estimate ξSTA in terms of individual
estimates computed from each moving bar direction, equation B.4 can be
rewritten as

ξSTA = c
J∑

j=1

X
j n j = c

J∑
j=1

ξ j

�= 1
J

J∑
j=1

c jξ j, (B.6)
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where ξ j = X
j n j = ∑K

k=1 nj,kS j,k denotes the individual estimate from the
jth direction. Since the harmonic mean and the arithmetic mean are gen-
erally different in value, we know from equation B.4 that c �= 1

J

∑J
j=1 c j.

However, in the special case when Nj or cj is identical across all directions
(i.e., the neuron firing is invariant to all orientations), the STA estimate is
purely a linear average of the individual STA estimates from each direction.

Unlike STA, WVK generally cannot be decomposed into a linear combi-
nation of the individual estimates from each direction:

ξWVK =
⎛
⎝ J∑

j=1

X
j X j

⎞
⎠

−1 ⎛
⎝ J∑

j=1

X
j n j

⎞
⎠

=
J∑

j=1

⎛
⎝ J∑

j=1

X
j X j

⎞
⎠

−1

X
j n j

�= 1
J

J∑
j=1

(
X

j X j

)−1
X

j n j. (B.7)

From simple linear algebra, we know in general that the last two equations
are not equal in value, except for a special case when X

j X j are identical
for all j. In the moving bar experiment, if the bar length is greater than the
diameter or maximum span of the visual field, this special condition could
be satisfied since the area coverage of the moving bar, X j = [S

j,1, . . . , S
j,K],

is exactly the same at each direction in a circular-shape visual field (due to
circular symmetry).

Note that in equation B.7, the matrix X
j X j has to be of full rank for

all jth directions, which typically requires a large number of K for each
direction. Because of the least-squares fit, the elements of X jξWVK are not
always nonnegative (see, e.g., Figure 5a, right-most column), and the least-
squares estimate might be sensitive to noise or outliers in X j, as reflected in
the worst performance in goodness of fit (see Table 1).

Appendix C: Data Recordings and Visual Stimulus Setup

The experimental procedures were approved by the National Committee
on Animal Welfare in compliance with the guidelines of the European
Community for the care and use of laboratory animals. Two adult female
rhesus monkeys (Macaca mulatta) were used in this study. Neuronal spiking
activity was recorded from awake and head-fixed monkeys in the opercular
region of V1 (2–5◦ of eccentricity) and, on some occasions, from the superior
bank of the calcarine sulcus (8–12◦ of eccentricity). The receptive fields were
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first visualized using a method that was developed by Mario Fiorani in the
Biophysics Institute Carlos Chagas Filho at the Federal University of Rio de
Janeiro, Brazil (Fiorani et al., 2001).

Each trial started with an appearance of a red fixation point (0.15◦;
luminance: 10 cd·m−2), and the monkeys were trained to press a lever
within 700 ms and to maintain their gazes within a virtual window (win-
dow size: 1◦) centered on the fixation point. The task ended by randomly
changing the color of the fixation point from red to green between 2500
and 4000 ms after the trial onset. To obtain a juice reward, monkeys had to
release the lever within 500 ms after the color change in the fixation point.
Trials were discarded whenever fixation was interrupted. The monkeys’
eye positions were tracked continuously by a search coil system (DNI and
Crist Instruments) with a 500 Hz sampling rate.

Visual stimuli were generated as sequences of computer-generated
bitmap images with an interface developed in LabVIEW (National
Instruments) and were presented as movies (frame rate: 100 frames/s) us-
ing a standard graphic board (GeForce 6600-series, NVIDIA) controlled
by ActiveSTIM (www.activestim.com). The CRT monitor (CM813ET,
Hitachi) was gamma corrected and spanned a visual angle of 36◦ × 28◦.
The visual stimulus was a high-contrast light bar (luminance: 50 cd·m−2;
bar width: 0.2◦) that was moved with a constant velocity (14.9◦/s) in the
visual field (21.8◦ × 21.8◦). The bar stimulus was presented in random order
in 16 different orientations separately and evenly by 22.5◦. Each trial lasted
2 seconds (during which the bar traveled inside the visual field), where
t = 0 and T = 2 s, respectively, corresponded to the moment when the bar’s
position overlaid two corners of the visual field in the diagonal and t = 1
corresponded to the center of the field (see Figure 1b).

Quartz-insulated tungsten-platinum electrodes (∼80 μm diameter, 0.3–
1.0 M� impedance; Thomas Recording) were used to record the extracel-
lular neural activity from three to five sites in both superficial and deep
layers of the striate cortex (digitally bandpass filtered, 0.7–6.0 kHz; Plexon).
Neuronal spikes were detected by amplitude thresholding, which was set
interactively based on online visualization of the spike waveforms. Spike
events and corresponding waveforms were sampled at 32 kHz (spike wave-
form length: 1.2 ms). Single-unit activity was separated using an interactive
custom-designed spike-sorting software. Experimental trials with artifacts
were rejected during which either monkey did not maintain fixation or
showed no response or incorrect behavior. Upon trial rejection, the com-
plete data sets were balanced for all conditions such that all recorded V1
neurons contained exactly nine trials per direction.
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