
XS, S, M, L
Creative Text Generators of Different Scales

Nick Montfort

January 2012 TROPE–12–02

Abstract
Creative text generation projects of different sizes (in terms of lines of code and length
of development time) are described. “Extra-small,” “small,” “medium,” and “large”
projects are discussed as participating in the practice of creative computing differently.
Different ways in which these projects have circulated and are being used in the
community of practice are identified. While large-scale projects have clearly been
important in advancing creative text generation, the argument presented here is that
the other types of projects are also valuable and that they are undervalued (particularly
in computer science and strongly related fields) by current structures of higher
education and academic communication – structures which could be changed.

A technical report from

The Trope Tank
Massachusetts Institute of Technology
77 Massachusetts Ave, 14N-233
Cambridge, MA 02139 USA
http://trope-tank.mit.edu

© 2012 Nick Montfort
This work is licensed under the Creative Commons

Attribution-ShareAlike 3.0 Unported License.
To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/
or send a letter to Creative Commons, 444 Castro Street,

Suite 900, Mountain View, California, 94041, USA.

2

Introduction
In S, M, L, XL, Rem Koolhaus discusses his realized and unrealized architectural projects,
organizing them by scale. At 1376 pages, this book, designed by Bruce Mau, is itself
certainly extra-large. S, M, L, XL is widely used for interior decorating purposes; its
formidable thickness can be shown off on a shelf to good effect. But despite its
capaciousness and wide-ranging discussion, Koolhaus’s more focused 320-page Delirious
New York, published the year before, has actually been cited much more often. As a
communication about architecture rather than an audacious publishing project, the
more “M-sized” book seems to have had greater success.

The creative computing projects that tend to be discussed at conferences and focused
upon by researchers are of the “large” variety: Dissertation-sized systems with
elaborate architectures and subsystems that can be extended by researchers to
investigate new questions. The significance of projects on this scale is rather obvious;
consider, for instance, Terry Winograd’s SHRDLU, Eduard Hovy’s PAULINE, Scott
Turner’s MINSTREL, Michael Mateas and Andrew Stern’s Façade, and D. Fox Harrell’s
GRIOT.

Although this report will not look impressive on a shelf, in it, I follow Rem Koolhaus’s
general scheme of organizing projects by scale. I also follow Koolhaus in discussing my
own projects, the ones I have the most insight into when it comes to motivation and the
development process.

There are certainly “extra-large” projects as well, such as (to leave the creative text
domain) Douglas Lenat’s Cyc and Rodney Books’s Cog. But I have no direct experience
with any of these myself and have certainly not initiated any of them. Instead, I prefer
to consider the “extra-small” category of creative programs that are less than even a
single page long.

XS
ppg256
I have been writing a series of very short Perl programs to generate poems since late
2007. Each program in the ppg256 (Perl poetry generator in 256 characters) series [3, 4,
5] consists of exactly 256 characters of code. Each one can be run on the command line
on any system that has Perl installed. The programs use no data sources except for
strings in the code itself; no other programs or special libraries are invoked.

The use of non-traditional constraints in the writing process has been championed
by the French mathematical and literary group, the Oulipo [6, 7]. Raymond Queneau,
founder of this group, described members of the Oulipo as “rats who must escape from
the labyrinth they construct,” while Italo Calvino said “an Oulipian writer ... runs faster
when there are hurdles on the track.” Beyond the Oulipo, certain writers have recently
developed significant new methods of constrained writing. Those who have done so in
English include Walter Abish, Christian Bök, William Gillespie, Doug Nufer, Jackson Mac
Low, and George Starbuck. In ppg256, the concept of writing under constraint is joined
to the practice of programming.

Writing ppg256 in Perl was one significant constraint on programming determined at

3

the beginning of the series. Perl is not known for supporting clarity or consistency, and
has been called a “write-only” language. On the other hand, it is widely used, flexible,
and well-adapted to text processing. And, programs can be written very compactly in
Perl. This is reflected in an online, competitive recreation, Perl golf, in which
programmers vie to write the smallest program that accomplishes a specific task.

The other main constraint, the 256 character limit, was particularly inspired by the
demoscene [8], where coders work to develop amazing process-intensive generators of
music videos for specific platforms. On the major demoscene site pouet.net, it’s possible
to download numerous length-constrained demos, including 256 bytes; all of these
limits are powers of two. The 160-character limit of SMS, 140-character limit of Twitter,
and the 80-character line provide other similar constraints. The Twitter-based limit has
been used to produce an album of Supercollider programs, sc140, and was used in a
modified form for the interactive fiction competition TWIFcomp.

In developing ppg256-1 I first attempted to create a program whose output would be
recognized by a receptive reader as a series of poems. I did not attempt to create poems
like those that people in general, or any one poet specifically, have produced. To
accomplish this, I found it essential to use some of the very limited amount of code
producing titles, shaping the language into lines, and printing blank lines between the
single-stanza poems. Generating an interesting stream of words was not enough to
signal that the text was meant to be a poem or series of poems. Sketching different
versions of the generator revealed to me, experimentally, the importance of these
formal poetic markers. I have maintained most of them throughout most of the
generators in the series.

In ppg256-1, I also sought to produce a very large vocabulary, at least a majority of
which consists of English dictionary words and almost all of which at least sounds like
English. I developed an unusual method of generating words because the most obvious,
well-known method of generating words – using the conditional probability of letters
given n-grams – will not fit in a 256-character Perl program, even for n=2. (To specify
conditional probabilities for each pair of letters requires storing 26×26 = 676
probabilities.) I determined that common initial bigrams and common final bigrams of
four-letter words could be joined uniformly at random to produce 450 distinct four-
letter words, 273 of which (more than 60%) were dictionary words. By repeating the
most common initial bigrams to weight the distribution and by adding a small bit of
code to fix up a set of words, the probability of a dictionary word was improved.

The following string contains the 256 characters of ppg256-1 (between single quotes)
and can be run on the command line as it appears:

perl -le 'sub b{@_=unpack"(A2)*",pop;$_[rand@_]}sub w{" ".b(
"cococacamamadebapabohamolaburatamihopodito").b("estsnslldsc
kregspsstedbsnelengkemsattewsntarshnknd")}{$_="\n\nthe".w."\
n";$_=w." ".b("attoonnoof").w if$l;s/[au][ae]/a/;print$l=0if
$l++>rand 9;sleep 1;redo}'

As with the other programs in the series, this one generates an unbounded series of
poems. Although the texture of this continuously-produced language and not any
particular excerpt is the point of this project, here is one example of a generated poem:

4

the cots

 diws on dite
 cabs no cons
 coar to deed
 mick at pock
 mank at cats

The other programs in the series were developed with different specific goals, although
they are all meant to generate poems. The requirement for a large vocabulary was
relaxed in ppg256-2, which instead exhibits greater variety in the syntax of lines, the
shape of stanzas, and the length of words:

perl -le 'sub p{split/,/,pop;$_[rand@_]}{$_=p("sw,-aw,&w,saw
".", "x$l);s//p("aw,w")/e;s// /g;$_="\n\nthe s\n"if$l;s/s/ws
/;s/a/p("a,the,to,of")/e;s/w/p("b,ch,f,gr,k,p,sh,s,sk,sp,tw"
)."i".p("ll,n,t")/eg;s/(b|p|f)i/$1.p("a,i")/e;print;$l=0if$l
++>6+rand 9;sleep 1;redo}'

the balls

 the span
 to grit
 grit kins skit
 shill shits of spill
 to pill
 a twit chits a bill
 of sit grills shill
 spall skins skin
 of chill

In ppg256-3, which generates kennings in the form of compound words, the output
provides very brief stanzas that are also stories – “stanzories” – that describe a
potentially provocative situation and have some narrativity:

perl -le 'sub p{(unpack"(A3)*",pop)[rand 18]}sub w{p("apebot
boyelfgodmannunorcgunhateel"x2)}sub n{p("theone"x8)._.p("big
dimdunfathiplitredwanwax")._.w.w."\n"}{print"\n".n."and\n".n
.p("cutgothitjammetputransettop"x2)._.p("herhimin it offon o
utup us "x2);sleep 4;redo}'

one_dun_manelf
and
the_dim_eelbot
cut_off

one_wan_mangod
and
the__gunman
met_us

5

ppg256-4 was developed to drive an
LED sign in an art gallery and
contains all of the control code
necessary to drive the sign. This
generator produces a set of
utterances – vaguely aggressive
commands that include coined
kennings. The utterances are meant
to suggest a speaker of a certain
gender (male) and to highlight how
racial standing influences everyday
speech with terms such as “dogg”
and “vato.”. The possible lexical
combinations for a syllable include
“fag,” an offensive term that is in
keeping with the tone of the
generator and can remind a reader
that offhand expressions include
reference to sexuality as well as
gender and race. These texts are
further constrained to fit on the LED display:

perl -e 'sub c{$_=pop;$_[rand split]}sub w{c("b br d f fl l
m p s tr w").c"ad ag ap at ay ip on ot ow"}{$=print"\0\0\0\0
\0\1Z00\2AA\33 b".c("be de mis re pre ").w." ".c("a on the t
hat")." ".w.w.", ".c("boss bro buddy dogg dude guy man pal
vato")."\4";sleep 4;redo}' > /dev/alpha

ppg256-5 was premiered at a poetry festival at the Banff Centre. It was written to
generate a continual riff on Tristan Tzara’s Feburary 1921 “Dada Manifesto,” one which
degrades over time with the introduction of misspellings and refers to contemporary
poetry movements:

perl -le '@a=split/,/,"conceptual,digit,flarf,maximal,modern
,pixel,quiet,real";sub f{pop if rand>.5}sub w{$a[rand@a]}{pr
int f("post").w."ism ".w."s ".f("the ").w."\n".(" "x45)."WHA
T DOES ppg DO?";$a[rand@a]=~s/[aeio]/substr("aeio",rand4,1)/
e if$l++>5;sleep 5;redo}'

flarfism pixels the real
WHAT DOES ppg DO?

conceptualism flarfs quiet
WHAT DOES ppg DO?

postconceptualism conceptuals digit
WHAT DOES ppg DO?

ppg256-6, the latest program in the series, was developed as an example of a
deterministic poetry generator. In this case, the generator always produces the same

Figure 1. Example output from ppg256-4.

6

text when run at the same time. It has a very limited vocabulary but does not repeat a
full line until 12 hours have elapsed:

perl -le '@d=split/ /,"eros won to tree for fire sex sever a
te nice tin elfin wealth";@t=split//,"_bhlmnpstw";{$_=localt
ime;/(..):(.)(.):(.)(.)/;print"\n$t[$3]".($4%2)."ck $t[$4]".
($3%2)."ck\n"if!$5;print"\\"x$5." $d[$1%12] $d[$2] $d[$3] $d
[$4] $d[$5]";sleep 1;redo}'

l0ck _1ck

 eros for tree eros eros
\ eros for tree eros won
\\ eros for tree eros to
\\\ eros for tree eros tree
\\\\ eros for tree eros for
\\\\\ eros for tree eros fire
\\\\\\ eros for tree eros sex
\\\\\\\ eros for tree eros sever
\\\\\\\\ eros for tree eros ate
\\\\\\\\\ eros for tree eros nice

These programs, in addition to being tiny, each resulted from at most a few days of
work. They demonstrate not only that very tiny poetry generators are possible, but that
a range of such generators can be developed to explore language in different ways.
While these generators do not have the architectures and subsystems that facilitate the
understanding of large systems, and while very compressed Perl does not make for the
clearest monolithic program, these generators can be very easily transmitted. For
instance, one can be sent to someone by copying and pasting it off of a Web page and
into an instant message or onto an IRC channel. The code is of course not well-
commented, but these programs have been documented in various blog and academic
conference contexts, an approach that works well for programs that are this short.
They are free and open for people to inspect and understand. A few people have sent or
posted modified versions of some of the ppg256 programs; for instance, Travis Kirton
sent a modified version to ppg256-5 which generates answers to that program’s
repeated question, “WHAT DOES ppg DO?,” such as “detxtulizes typfcation / IS WHAT
ppg DOES! / mutizes illmnations / IS WHAT ppg DOES! ”

S
The Two
I posted three Python programs, each 1k (1024 characters) long, on November 30, 2008.
[1] Each of these are very simple, but I believe interesting, story generators. The first
one was modified into “Excerpts from the Chronicles of Pookie & JR” by J. R. Carpenter
and used to generate texts for her book Generation[s], while the third one is a
collaboration with an author that builds on the first. Here I focus on the second

7

program, which I later ported to JavaScript so that it can be run simply by loading a
Web page. [2] The Web version of this program is called “The Two.” Like ppg-256-3, the
program generates stanzories. “The Two” produces this sort of output:

The student knocks on the teacher’s door.
She seeks help from her.
They pray together.

The indigent turns to the librarian.
She seeks help from him.
One ends up with a broken will.

The student knocks on the teacher’s door.
She begs him.
Rude gesture meets rude gesture.

The first line is simply one selected from several possibilities; the second line has “He”
or “She” followed by a verb and associated words and then “him” or “her”; the final line
is also one selected from several. All choices are made uniformly at random.

The point of this generator is not a compelling new sort of computation or the
production of novel situations or plots. Rather, the system is meant to challenge the
reader to resolve referring expressions. In the second story above, the reader must
decide whether “she” is the librarian or the indigent, and, jointly, which one is “him.”
The subject and object of the first line may contribute to the reader’s interpretation;
there is a tendency to maintain the subject of the first sentence as the subject of the
second. However, our ideas of power relations (why would a librarian seek help from an
indigent?) are also a factor. And, additionally, our gender stereotypes of different roles
are significant: When no other information is presented, most people in United States
will think of a woman when imagining a librarian, a man when thinking of an indigent.

As challenging as this can be (depending upon the particular generated story) for the
reader, it can be even more challenging for a translator. Serge Bouchardon undertook a
translation of this generator into French, where the gender of a character is usually
indicated as soon as that character is introduced. By using the names of professions
that begin with vowels and eliding what would otherwise be written beginning with the
gendered definite articles “La” and “Le,” Bouchardon kept the gender of characters
ambiguous in the first line so that the reader is compelled to resolve pronouns
according to syntax, power relations, and gender stereotypes:

L’économiste interpelle l’entrepreneur.
Il la congratule.
Six ans après, ni l’un ni l’autre ne se souvient de l’incident.

Since then, “Two Two” has also been translated into Spanish (by Carlos León) and
Russian (by Natalia Fedorova).

“The Two” was written in a few hours. However limited of a system it is, it has posed
some interesting questions to readers of its output. The process of translating it to
another language also revealed some interesting qualities of English and French
(beyond the obvious differences in grammatical gender) related to ambiguity and the
gender of characters. There are additional challenges to maintaining such ambiguities

8

in French, and even more severe ones in Spanish, but they are evidently surmountable.

Taroko Gorge
This is a poetry generator written in Taiwan’s Taroko Gorge National Park and on the
plane afterwards on one day, January 8, 2009. It was written initially in Python. The
code with comments is one page long (that is, it does not exceed 66 80-column lines and
can be printed on a single dot matrix printer page). I later ported this generator to
JavaScript so that it could easily be appreciated on the Web. [9] Here is a sample of its
output:

Stone ranges the rocks.
Heights sweep the vein.

 progress through the encompassing arched clear —

Shape sweeps the flow.
Heights dwell.
The crags hold.
Mist roams the shapes.

 enter the straight objective —

There are three types of lines generated. The first two, and the first and last line in the
third stanza, are “path” lines meant to suggest the experience of walking along an
outdoor path and seeing natural features either above or below. One or more “site”
lines may be generated between these, as happens in the third stanza. These lines are
less active and are meant to suggest the experience of stopping at a viewing area.
Finally, the indented one-line stanzas are “cave” lines meant to suggest the experience
of moving through the tunnels that, like the paths, were carved through the rock by
Chiang Kai-shek’s Nationalist army. In many of these tunnels, which are not lit with
artificial light, it is not possible to see the exit from the entrance on the other side. This
is why the ending of the sentence in a “cave” line is also unseen.

In part, “Taroko Gorge” was developed to show that just as one can visit a pleasing
natural space and write a nature poem about it, one can write a generator of nature
poetry and even do so at the natural site. Given this goal, it may be less of a surprise
that the output of this generator is more conventional that that of the ppg256 programs
and of the next system that I discuss. I was not seeking to radically explore language or
to connect to the concerns and techniques of the avant-garde, but rather to extend a
traditional mode of poetic composition into creative text generation. The stanzas
generated here are meant to be expressive and related to experience.

On March 27, 2009, Scott Rettberg announced his “remix” of this poetry generator,
which he called “Tokyo Garage.” [10] Rettberg changed the strings and added more of
them without modifying the code. He did not use the original one page limit, producing
a 6.3k file in comparison to the original 2.7k one. As Rettberg wrote in describing his
project,

Where Montfort’s poem is an elegant nature poetry generator, I attempted to
develop a poetry generator about ... a city I have never been to, Tokyo. “Tokyo

9

Garage” is about the idea of Tokyo, barraging us with images and archetypes absurd
and sublime, in seemingly infinite variety. Reading the poem should feel much being
dropped by a spaceship onto a busy corner of a strange city in the neon glow of a
bustling, baffling night as the denizens stream past you now. [11]

Rettberg’s version of the generator produces text of this sort:

Chat client rescues the casinos.
Transvestites walk.
Zombies rest.
Private security agents bribe the dancers.

 paint the disorganized strangely quiet disoriented peripheral--

By May 2010 J. R. Carpenter also had remixed “Taroko Gorge” as “Gorge,” a piece about
overeating and the sickeningly sweet textures of gastronomic excess. [12] Or, as
Carpenter writes in describing the piece: “This never-ending tract spews verse
approximations, poetic paroxysms on food, consumption, decadence and desire.” [13]
The following is example output:

Thirst agitates the vinaigrette.
Veins dissolve.
Blood vessels perfume.
Incisor strengthens the finger tip.

 translate the faint cardamom cinnamon liquorice -

It is output from “Gorge” and from “The Chronicles of Pookie & JR” (as mentioned, a
remix of “The Two”) that forms the basis of J. R. Carpenter’s book Generation[s].

Carpenter and Rettberg are both wide-ranging authors of electronic literature who,
although I have not known them to typically identify as programmers, are technically
proficient, expert at working with markup languages and style sheets, and have
modified programs before. “Taroko Gorge” can be seen as a program, but it makes as
much sense to see it as defining a boundless poetic form, like an infinite sonnet or
pantoum: a path line followed by zero or more site lines followed by a path line
followed by a line break and a cave line and a line break. Rettberg and Carpenter were
clearly interested in playing with this form, in maintaining most of it while switching
its original purpose from natural observation to urban experience or endless ingestion.
They used the formal, poetic core of the program in their appropriations of it.

At the time of this writing, more than ten remixes of Taroko Gorge have been
published online. In addition to the two mentioned previously, there are “Alone
Engaged” by Maria Engberg, “Along the Briny Beach” by J. R. Carpenter, “Argot Ogre,
OK!” by Andrew Plotkin, “Fred & George” by Flourish Klink, “Inside the House” by
Adam Sylvain, “Takei, George” by Mark Sample, “Toy Garbage” by Talan Memmott,
“Whisper Wire” by J. R. Carpenter, and “Yoko Engorged” by Eric Snodgrass. These are
quite various in tone and suggested subject matter. “Argot Ogre, OK!” is a meta-remix
which automatically remixes all of the versions presented up to that point individually
and in pairs. It is likely that the small size of the original generator contributed to its

10

widespread use for remixing and appropriation.

M
Sea and Spar Between
I collaborated with poet Stephanie Strickland, who has also done extensive work in
digital media, to create a poetry generator that uses language from Emily Dickinson’s
poems and Herman Melville’s Moby Dick. The processing of source text, creation of
syntactical structures, and development of the interface (since this system is
interactive) was significantly more involved than in my small projects and required in-
person collaborative work, discussion on the phone, and many exchanges of drafts and
emails. I sketched the system in Python and did the final implementation in JavaScript
and HTML with canvas. The resulting JavaScript program, extensively commented, is
502 lines long. It was almost exactly a year from our first discussions on December 15,
2009 to the publication of this piece, Sea and Spar Between, in the very appropriately-
named journal Dear Navigator. [14]

Like ppg256-5, this generator is deterministic; unlike that small program, it is
interactive, allowing a user to navigate in unconventional ways. Instead of randomly
drawing a poem from a distribution, the Sea and Spar Between defines a very large,
fixed, two-dimensional space of stanzas and (in the only use of randomness) places the
user initially at a random point. The generator can be invoked with coordinates as
arguments, in which case it presents the specified stanza and is completely
deterministic.

Since we developed a short description of the system together which is included with
the project, I will quote it rather than giving my own rephrasing:

Sea and Spar Between is a poetry generator which defines a space of language
populated by a number of stanzas comparable to the number of fish in the sea,
around 225 trillion. Each stanza is indicated by two coordinates, as with latitude and
longitude. They range from 0 : 0 to 14992383 : 14992383. To operate the system, you
may:

• move your mouse;
• press the spacebar to mark the stanza that is in the center of the screen of that

moment, bringing its coordinates into the navigation box at the bottom in order
to note them and return to this view;

• click your mouse at the right edge of the screen to move right to a new region of
texts (to increase the first coordinate); click your mouse at the bottom, left, or
top to move similarly in those directions;

• tap the arrow keys to move the visible lattice of stanzas up, right, down, or left
by a single stanza;

• scroll the wheel on your mouse or tap the A and Z keys on the keyboard to zoom
in and out;

• type a pair of coordinates into the navigation box at the bottom and press enter
to move anywhere in the sea of text.

11

Here are some of the stanzas defined by the system, a few of the fish in the sea, along
with their coordinates:

swerve me?
 for pangless is the earth

one care one show one star one pain
 paradise! dying!

(3034896, 6450568)

cut to fit the bardblot course
 nailed to the coffin

wheel on
 hueless sing and sleep

(3058586, 4994118)

loose-fish
 another! alone!

loose-fish
 nailed to the groove

(10486167, 5840830)

In the browser, these appear (when one types in the coordinates or navigates to them)
as the central stanzas in a lattice of stanzas, so there is more to read on the screen at
any point – unless the user has zoomed in so far that only one stanza can be be seen.

Strickland and I worked on all aspects of the project together, jointly determining the
strings that are assembled into lines, the way those lines are assembled, the shape of
the stanzas, and the overall interface and visual appearance of the piece. Although I
wrote the Python and later JavaScript code, we worked together closely on all of these
aspects and even on properly commenting the code as the new issue of Dear Navigator
was preparing for launch.

Sea and Spar Between was widely announced on major poetry blogs and has received
more attention in the poetry community than any of these other projects. It has not yet
been taken up by others and transformed, however. This generator has only been
available for a few months, and, as of this writing, we have only presented it together
on one occasion. It is explicitly licensed as free software, with the hope that poets and
programmers will use some or all of it in their own projects.

While medium-length projects may be more difficult for others to casually appropriate
and remix, they may begin to provide a framework for future reuse, allowing modules,
rather than the entire piece, to be taken and reworked. They also allow for the
extended investigation of a poetic concept.

12

L
Curveship
This is an interactive fiction system that can automatically change the way that it
narrates. It was developed beginning in early 2006, initially under the name “nn,” and
used in my dissertation research, which was completed in June 2007. The system is still
in development; it was first released as free software in February 2011 at
<http://curveship.com>.

The system, as with any full-featured interactive fiction system, includes a world
model, including representations of characters, objects, and locations. To this
Curveship adds first-order representations of actions and a model of the narrative
discourse, so that the narration and description of the simulated world can change. A
“string-with-slots” formalism allows individual sentences representing actions or
describing items to be modeled in a way that is reasonably easy to author while
providing the ability to flexibly realize many different output strings and accomplish
several significant narrative variations. Curveship can tell events out of order, using
flashback and other techniques, and can tell the story from the standpoint of particular
characters, based on their perceptions and understandings.

Although Curveship is an interactive fiction system, it is easiest to explain its
facilities for narrative variation if a fixed story (the same sequence of actions in the
same storyworld) is considered. While this leaves aside a major aspect of the system, it
allows for clear discussion of Curveship’s creative text generation abilities. The system
is provided with an example file that allows it to tell a (non-interactive) story about a
bank robbery in many ways. This is the default narrative, told in chronological order,
narrated as if during the events themselves, and without a diegetic narrator or
narratee:

The twitchy man puts on a Dora the Explorer mask.
The twitchy man leaves the street.
The twitchy man examines the lobby.
From here, the twitchy man is able to see: inside the vestibule, some deposit slips, the bank
teller, and a black bag.
The bank teller waves to the twitchy man.
The twitchy man brandishes a gun-shaped object at the bank teller.
The bank teller laughs.
Something sees the twitchy man.
The bank teller puts something in the black bag.
The twitchy man turns to the burly guard.
The burly guard shoots the twitchy man in the chest.
The burly guard shoots the twitchy man in the chest.
The twitchy man falls.
The twitchy man dies.
The bank teller cries.

The same underlying events can be narrated with a different spin. For example, the

13

story can be told in reverse-chronological order, with an appropriate shift of tense after
the first sentence:

The bank teller cries.
Just beforehand, the twitchy man died.
Previously, the twitchy man fell.
Earlier, the burly guard shot the twitchy man in the chest.
Previously, the burly guard shot the twitchy man in the chest.
Previous to that, the twitchy man turned to the burly guard.
That was after the bank teller put something in a black bag.
Just beforehand, something saw the twitchy man.
Previously, the bank teller laughed.
Previous to that, the twitchy man brandished a gun-shaped object at the bank teller.
A moment before the bank teller waved to the twitchy man.
Before that, the twitchy man examined the lobby.
From there, the twitchy man was able to see: inside the vestibule, some deposit slips, the bank
teller, and the black bag.
Earlier, the twitchy man left the street.
Previously, the twitchy man put on a Dora the Explorer mask.

A narrative that is focalized by the guard (so that it includes only those events known
to the guard) and also told by the guard (so the guard becomes the “I”) to the bank
teller (the “you”) can also be produced:

I was snoozing.
The twitchy man brandished a gun-shaped object at you.
I woke.
I saw the twitchy man.
I saw that the twitchy man possessed the gun-shaped object and was wearing a Dora the
Explorer mask.
I left the guard post.
I examined the lobby.
I saw the twitchy man. The gun-shaped object was held by the twitchy man. The Dora the
Explorer mask was on the twitchy man.
From there, I was able to see: inside the vestibule, some deposit slips, you, and a black bag.
You put something in the black bag.
The twitchy man turned to me.
I shot the twitchy man in the chest.
I shot the twitchy man in the chest.
The twitchy man fell.
The twitchy man died.
You cried.

This is the beginning of a narrative focalized by the guard and told by the guard to the
the bank teller, hesitantly:

I, uh, was snoozing.
The twitchy man brandished a gun-shaped object at you.
I woke.

14

I saw the twitchy man.
I, uh, saw that the twitchy man possessed the gun-shaped object and was wearing a Dora the
Explorer mask.
I left the guard post.
I examined the lobby.
I saw the twitchy man. The gun-shaped object was held, uh, by the twitchy man. The Dora the
Explorer mask was on the twitchy man.

The next excerpt is told in a prophetic way (the narrator speaks from a time before the
events have happened) by a narrator who is hesitant, somewhat pleasantly surprised,
and speaks in the stereotypical style of a “valley girl”:

The twitchy man will put on a Dora the Explorer mask!
The twitchy man will leave the street! Wow!
The twitchy man, um, like, will examine the lobby!
From, like, uh, there, like, the twitchy man will be able, like, to see: inside, like, the vestibule,
some deposit slips, um, er, the bank teller, like, and, like, a black bag, man! Wow!
The bank teller, like, uh, will wave to the twitchy man!
The twitchy man, like, will brandish, like, a gun-shaped object at the bank teller!

Curveship can do all of this and more
not just with fixed representations of
stories but also based on user
interaction in the context of a
simulated world, as is typical in
interactive fiction. The system models
the world as a tree of items, with
edges representing different child
relationships so that actors can be
contained with rooms, objects can be
on tables, etc. There is also a rich
model of every action that has
transpired in the storyworld. The
system checks to see whether
attempted actions will succeed in the
world as it has been defined. Its
persistent representation of actions
allows for flashbacks and other
anachronies. The simulation of the
world is abstracted from the
generation of language.

In addition to maintaining a world model, Curveship also maintains a concept for each
actor, representing that actor’s theory of the world based on knowledge (specified
initially) and perceptions (as the simulation proceeds). A concept is be used to focalize a
particular actor.

From a research standpoint, one of the major goals of the project was to
computationally connect high-level narrative concepts to low-level grammatical
specifics. The programmer creating an interactive fiction in Curveship does not ever

Figure 2. The architecture of Curveship. The important
functions of an IF system are modularized, with the Simulator
dealing exclusively with changes to the world model and to
concepts and the Teller dealing exclusively with producing the
narrative text.

Simulator

Clarifier

Joker

Preparer

Presenter

Recognizer

discourse
model

world,
concepts

Teller

spin

15

have to specify person or tense. If that were necessary, it would, in general, be
necessary for each sentence. Instead, the assignment of narrator and narratee, the
positioning of the narrator in time, the ordering of events, and other narrative factors
are used by Curveship to determine the grammatical particulars.

One of the major contributions of Curveship, in terms of narratology and text
generation, is a new representation of the order of events in the telling, allowing
anachronies such as flashback, retrograde narration, and sylleptic narration (narration
by category) to be generated. Instead of using Gérard Genette’s simple sequence of re-
ordered actions (e.g., “341256”) Curveship uses an ordered tree representation which
captures why actions are being reordered, so that an main sequence with flashback can
be narrated differently than a syllepsis. To generate the appropriate tenses from a high-
level narrative representation, the programmer indicates whether how the time of
reference and time of speech should be defined for an ordered tree overall – not for
each action being represented. The event time is determined by the simulation. Using
Hans Reichenbach’s theory of tense, these times specify how verbs in the output
sentence should be realized. [15] It is unlikely that this result could have been obtained
in a small- or medium-sized system. Much of Curveship’s heavy machinery (its three-
stage pipelined natural language generator and its simulation of events with
timestamps, for instance) is necessary for this result.

Curveship has the ability to add non-narrative stylistic variation through the use of
output filters. The examples of these that were discussed previously are the hesitant,
surprise, and valley girl filters. These almost always impressive when shown in
demonstrations, particularly when it is shown that they can compose arbitrarily. They
are not, however, part of the core research project, since they are not variations in
narrative specifically and can be applied to any text. There is also little in Curveship
that enables them. The system does have a lightweight model of sentence structure and
prevents interjections from occurring within verb phrases, for instance. Also, it knows
where sentence boundaries are. But it would probably not be much harder to apply
these filters to arbitrary plain text. Nevertheless, these output filters – each one a
decidedly small-scale project in itself – are effective in the context of Curveship, which
also offers more difficult-to-achieve types of narrative variation. They demonstrate that
“S” subsystems (which might have been developed independently) can add value and
interest to “L” systems.

As of this writing, a small number of “spins” and one complete interactive fiction in
Curveship have been written by people other than the developer of the system, and the
system has been used in teaching narrative theory and interactive narrative. Several
publications have resulted, including one reporting preliminary results from
integrating Curveship with a plot generator, MEXICA. [16]

Inquiry into Creativity and Language
With the exception of Curveship, these projects were not undertaken with scientific
inquiry as a major purpose. They are not meant as trivial curiosities, either. Rather,
they are critical investigations of creativity and language developed through the
practices of programming and the literary arts. The small and medium projects
described here are offered as a complement (not an alternative) to large-scale, rigorous
systems that are driven by ontologies or large stores of data or have elaborate

16

architectures motivated by cognitive models or concepts from other fields.
For example, a very simple system such as “The Two,” although not developed as a

scientific project, can nevertheless inform a more elaborate story generator that is
designed to tell stories with male and female characters, to generate pronouns and
other referring expressions, and to use gender ambiguity in its production of narrative
discourse. “The Two” and “Les Deux” show that there are general ways of producing
such ambiguous reference in two languages, one in which the scope for such reference
is significantly more limited. If one believes that the production of different sorts of
ambiguities is important to the creation of poetry and other sorts of literary art, as has
often been asserted (e.g., [17]), it could certainly be useful to incorporate this non-
scientific result.

These projects all arise from the same interest in exploring language and
computation. Instead of relegating them exclusively to distinct contents (this one on a
blog, this one at a literary festival, this one in a predominantly computer science
conference), I suggest that it is useful to see the relationship of the projects to one
another and to examine how insights can be achieved from working on different scales.

Remixing as a Metric for a System’s Value
Citation analysis is a basic technique in the field of bibliometrics, used to determine the
impact of an academic publication. When sophisticated bibliometric techniques are
used, citations are usually weighted to approximate their value. In addition to looking
at the different value of different sorts of publications, ideally, the citation of a book as
an offhand example should be weighted less strongly than a citation that indicates core
importance and intellectual influence.

One of the forms of citation that expresses the greatest influence is remixing or other
direct use of an pre-existing system (as a subsystem of or direct inspiration for a new
system, for instance). That a student is reimplementing and modifying MISTREL as a
Ph.D. dissertation project strongly suggests that MINSTREL is a system of lasting value,
as much as any citation suggests this. [18] The main value of WordNet and ConceptNet
are seen in their use in other systems. But mainstream citation measures do not
perfectly track the remixing, reimplementation, and reuse of systems, particularly
small-scale systems that are important in artistic as well as scientific contexts. For
instance, as of the end of April 2011, Google scholar shows only 9 citations to Olia
Lialina’s significant early net.art piece “My Boyfriend Came Back from the War,” from
1996. Liliana’s site links to her work and documents 22 remixes, reworkings, and pieces
inspired by her piece. [19]

The value of having pieces translated, remixed, recombined, and further developed is
clearly great, but the extent of this activity can be greatly understated by standard
citation metrics. One way to value small systems better is to consciously and explicitly
value remixing in addition to standard citation.

Gaining Space for the Small (and Extra-Small)
Small-scale systems can have many types of significance. They can be picked up and
modified by others, contributing directly to new types of aesthetic cultural production.
They can be instructive and provocative, challenging the ideas that have been
developed using exclusively large-scale systems. They can be used in teaching to

17

prompt discussion or as the basis for student work. And, of course, they can be used to
sketch and explore so that one’s efforts are better applied when later undertaking
medium- or large-scale work.

Although not discussed in this report, I have developed a set of poetry generators
even smaller than ppg256. This set, “Concrete Perl,” consists of four 32-character Perl
programs that generate moving concrete poems in a terminal window or on a console.
These are not as clearly oriented toward narrative or standard poetic questions as are
the systems covered in this paper, but they show that the lower boundary for extra-
small systems is probably even lower than 256 characters.

To turn to projects on the other extreme: The potential of large-scale projects such as
Curveship is without doubt. The way that large-scale projects are valued is also not at
risk. Nor am I proposing that smaller-scale projects replace larger ones.

Despite the worth of small-scale projects, the contexts of computer science and
engineering, and interdisciplinary contexts based on these disciplines, discourage such
projects and suggest that time be spent on large-scale systems. Only if a small-scale
system is developed as an example during a longer discussion, or as a subsystem of a
larger system, is it likely to be seen as valuable.

The dissertation is often the occasion for the development of a large-scale system,
just as a master’s thesis and undergraduate thesis often occasion medium-sized systems
that occupy as much student time as possible. It seems that occasional smaller-scale
projects could be intellectually invigorating as well as productive, but the drive toward
a monolithic dissertation project discourages such work and discourages students to
connect insights from any smaller projects with those in their large-scale one. One way
past this barrier is to encourage the inclusion of smaller-scale projects that relate to the
major project in the dissertation. Michael Mateas did this in his dissertation, which
focused on the large-scale system Façade. He wrote about Subjective Avatars, Office Plant
#1, and Terminal Time. These three were not small-scale projects, and the main
discussion was relegated to appendices, but they show how independent, smaller-scale
expressive AI endeavors can be usefully related to the main system. Students are
expected to understand their research area well by understanding the literature; why is
it inappropriate for them to occasionally spend as much time as they would spend
struggling with an conference submission in the creation of a small-scale project that
relates to their research question?

Open-ended, short term “competitions,” along the lines of a hackathon, codefest, or
demo party, could give additional space for small-scale projects to be created, shown,
and appreciated. These can be arranged at conferences as well as universities.
Conferences currently offer a venue for “short papers” (often position papers rather
than papers about small-scale systems) and “late-breaking results,” but inviting a wider
variety of systems in demo sessions and hosting friendly contests that encourage the
development of such systems, perhaps collaboratively, would enhance the
opportunities for producing and discussing small-scale systems.

If I did not have the experience of writing small-scale systems, it is unlikely that I
would have added one of Curveship’s most impressive, if not very research-related,
features: output filters. The small-scale systems I have created have also proved more
inviting and understandable to people outside computer science, which has allowed for
a broader discussion and the effective and surprising remixing of my work. Using only

18

remixing, translation, and other direct reuse of the system as a metric, benefits do seem
to accrue from the development of small-scale systems. Since the cost of developing
these systems in terms of time and effort is also so low, it seems reasonable to make
more space for them in undergraduate and graduate education and in our conferences.

References
1. Montfort, Nick. “Three 1K Story Generators.” Grand Text Auto. November 30, 2008.

http://grandtextauto.org/2008/11/30/three-1k-story-generators/
2. Montfort, Nick. “The Two.” nickm.com. [JavaScript and Python, with French, Spanish,

and Russian translations.] http://nickm.com/poems/the_two.html.
3. Montfort, Nick. ppg256 series. nickm.com. n.d.

http://nickm.com/poems/ppg256.html
4. Montfort, N. “The ppg256 Series of Minimal Poetry Generators.” Proceedings of the

Digital Arts and Culture Conference, 2009.
http://www.escholarship.org/uc/item/4v2465kn?display=all

5. Marino, Mark. “The ppg256 Perl Primer: The Poetry of Techneculture.” Emerging
Language Practices 1. 2010. http://epc.buffalo.edu/ezines/elp/issue-1/ppg256.php

6. Site officiel de l’OuLiPo, Ouvroir de Littérature Potentielle. http://oulipo.net
7. Mathews, Harry and Alistair Brotchie Oulipo Compendium. London: Atlas, 1998.
8. Tasajärvi, Lassi. DEMOSCENE: The Art of Real-Time. Evenlake Studios. 2004.
9. Montfort, Nick. “Taroko Gorge.” nickm.com. n.d.

http://nickm.com/poems/taroko_gorge.html
10. Rettberg, Scott. “Tokyo Garage.” retts.net. n.d. http://retts.net/tokyogarage.html
11. DAC 09 Literary Arts Extravaganza Gallery. Writer Response Theory. n.d. [Click on

“Scott Rettberg.”] http://writerresponsetheory.org/dac09/gallery.htm
12. Carpenter, J. R. “Gorge.” [Poetry generator.] Luckysoap & Co. n.d.

http://luckysoap.com/generations/gorge.html
13. Carpenter, J. R. “Gorge.” Blog post. Luckysoap & Co. May 26, 2010.

http://luckysoap.com/lapsuslinguae/2010/05/gorge/
14. Montfort, Nick and Stephanie Strickland. “Sea and Spar Between.” Dear Navigator 2.

Winter 2010. http://blogs.saic.edu/dearnavigator/winter2010/nick-montfort-
stephanie-strickland-sea-and-spar-between/

15. Montfort, Nick. “Ordering Events in Interactive Fiction Narratives.” Intelligent
Narrative Technologies: Papers from the 2007 AAAI Fall Symposium, pp. 87-94. Eds. B.
Magerko and M. Reidl. 9 November 2007.

16. Montfort, Nick and Rafael Pérez y Pérez. “Integrating a Plot Generator and an
Automatic Narrator to Create and Tell Stories.” Proceedings of the 5th International Joint
Workshop on Computational Creativity, pp. 61-70. Eds. P. Gervás, R. Pérez y Pérez and T.
Veale. 17-19 September 2008.

17. Su, Soon Peng. Lexical Ambiguity in Poetry. Longman: New York. 1994.
18. Tearse, Brandon, Michael Mateas and Noah Wardrip-Fruin 2010. “MINSTREL

Remixed: a rational reconstruction.” Proceedings of the Intelligent Narrative Technologies
III Workshop (INT3 ’10). Article 12.

19. Lialina, Olia. Last Real Net Art Museum. n.d. http://myboyfriendcamebackfromth.ewar.ru/
20. Mateas, Michael. “Interactive Drama, Art and Artificial Intelligence.” Ph.D. Diss,

Computer Science Department, Carnegie Mellon University. December 2002.

	Abstract
	Introduction
	XS
	ppg256

	S
	The Two
	Taroko Gorge

	M
	Sea and Spar Between

	L
	Curveship
	Inquiry into Creativity and Language
	Remixing as a Metric for a System’s Value
	Gaining Space for the Small (and Extra-Small)
	References

