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ABSTRACT

We describe a new sketch recognition framework for chem-
ical structure drawings that combines multiple levels of vi-
sual features using a jointly trained conditional random field.
This joint model of appearance at different levels of detail
makes our framework less sensitive to noise and drawing
variations, improving accuracy and robustness. In addition,
we present a novel learning-based approach to corner detec-
tion that achieves nearly perfect accuracy in our domain. The
result is a recognizer that is better able to handle the wide
range of drawing styles found in messy freehand sketches.
Our system handles both graphics and text, producing a com-
plete molecular structure as output. It works in real time,
providing visual feedback about the recognition progress.
On a dataset of chemical drawings our system achieved an
accuracy rate of 97.4%, an improvement over the best re-
ported results in literature. A preliminary user study also
showed that participants were on average over twice as fast
using our sketch-based system compared to ChemDraw, a
popular CAD-based tool for authoring chemical diagrams.
This was the case even though most of the users had years
of experience using ChemDraw and little or no experience
using Tablet PCs.
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INTRODUCTION

Sketches and diagrams are an essential means of communi-
cating information and structure in many different domains,
and can be an important part of the early design process,
where they help people explore rough ideas and solutions in
an informal environment. Despite the ubiquity of sketches,
there is still a large gap between how people naturally in-
teract with diagrams and how computers understand them
today.

One field where sketches and diagrams are especially widely
used is in chemistry. When chemists need to describe the
structure of a compound to a colleague, they typically do
so by drawing a diagram (e.g., the grey sketch in Figure 1).
When they need to convey the same structure to a computer,
however, they must re-create the diagram using programs
like ChemDraw that still rely on a traditional point-click-
and-drag style of interaction. While such programs offer
many useful features and are very popular with chemists,
these CAD-based systems simply do not provide the ease of
use or speed of simply drawing on paper.

Our goal is to develop an intelligent sketch understanding
system that provides a more natural way to specify chem-
ical structures to a computer. To preserve the familiar ex-
perience of drawing on paper, our interface allows users to
use the same set of standard chemical notations and sym-
bols they used before. However, unlike real pen and paper,
sketches created using digital ink are interpreted and under-
stood by our system, which converts them to a format that
can be readily exported to other tasks such as structure anal-
ysis, visualization, and database/literature search.

This paper presents a new sketch recognition framework and
applies it to hand-drawn chemical diagrams. The framework
combines a hierarchy of visual features into a joint model us-
ing a discriminatively trained conditional random field. This
joint model of appearance makes our framework less sensi-
tive to noise and drawing variations, improving accuracy and
robustness. The key research contributions of this paper are:

e A symbol recognition architecture that combines vision-
based features at multiple levels of detail.

e A discriminatively trained graphical model that unifies the
predictions at each level and captures the relationships be-
tween symbols.
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Figure 1. Grey strokes: an example of a chemical drawing that our
system is designed to recognize. The notation consists of element ab-
breviations (e.g., “N”, “0”), group abbreviations (e.g., “R”), straight
bonds, hash bonds, and wedge bonds. Wedge and hash bonds show the
3-D structure of a molecule: hash bonds angle down beneath the plane,
wedge bonds angle up.

e A new approach to corner detection that learns a domain-
specific model of how to segment strokes.

e A new clustering-based algorithm for inferring the con-
nectivity structure of sketched symbols.

e A real-time sketch recognition interface that has been eval-
uated by intended end-users and compared against the most
popular existing technique for chemical diagram author-
ing, demonstrating a two-fold speed advantage.

HIERARCHICAL SKETCH RECOGNITION
Our system interprets each sketch using three levels of clas-
sification : inkpoints, segments, and candidate symbols.

InkPoints

The first level of the hierarchy is composed of inkpoints, data
points sampled at a regular spatial interval on each stroke
(Figure 2). At each inkpoint, we model the surrounding
patch of ink using a set of rich local descriptors similar to
those in computer vision [3, 10]. These descriptors focus
on visual appearance rather than temporal or geometric pat-
terns, making them less sensitive to stroke level differences
like pen-drag (not lifting the pen between typically separate
strokes) and over-tracing (drawing over a previously drawn
region or shading). This improves robustness and accuracy.

Our method uses four sets of feature images to describe the
local appearance around each inkpoint at varying scales and
orientations. The individual feature images in each set act
as orientation filters, capturing only the ink that was drawn
at a specified pen direction (at 0, 45, 90, and 135 degrees).
For example, in the 0-degree feature image a bright pixel
indicates that the pen direction at that point is perfectly hor-
izontal, a dim pixel indicates that the direction is somewhat
horizontal, and a black pixel means that there is no ink at
that point or that the pen direction is diagonal or vertical.

We make these descriptors invariant to scale by normalizing
the size of the ink patch based on L, an estimate of the scale
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Figure 2. Shows the set of inkpoints (blue) that were extracted from
a chemical diagram. For the inkpoint highlighted in red, the two red
boxes show the size of the /2 and L feature regions. The figures below
show the set of feature images generated for the same inkpoint.

of the sketch (described in the next section). We also make
half of the images invariant to rotation by reorienting them so
that the direction of the pen at the inkpointis horizontal. This
dual representation helps the system model both variable-
orientation symbols like bonds as well as fixed-orientation
symbols like elements and group abbreviations.

The set of visual ink features are rendered onto four 10x10
pixel feature images. We perform Gaussian smoothing on
each image to improve robustness and reduce sensitivity to
small distortions and noise. We then downsample each im-
age by a factor of 2 to a final size of 5x5 pixels to improve
computation speed. The result is a set of sixteen 5x5 pixel
images, producing a total of 400 feature values per inkpoint.

Segment Extraction

The second level of the hierarchy is composed of stroke seg-
ments extracted from the sketch. These segments are gen-
erated by dividing strokes at corner points (Figure 3). In
our domain corners have a special meaning because they
determine the breaks between straight bonds. This is be-
cause chemists often draw multiple straight bonds using a
single polyline stroke (Figure 1), relying on the reader to in-
fer that they are actually drawing multiple individual bonds
connected by implicit Carbons.!

Corner detection is a well-studied problem in sketch recog-
nition. Previous approaches have explored looking at ex-
tremes in curvature and pen speed [18], temporal patterns in
pen direction [17], and alternative approximations to stroke
curvature [25]. These methods often use hand-coded thresh-
olds to achieve good performance and custom heuristics to

'Carbons and Hydrogen atoms are so common in chemistry that
they are typically left out of the drawing, and are assumed to be
present anywhere that two bonds connect without an intermediate
atom.



deal with common errors. Prior work has also focused pri-
marily on finding well defined corners in isolated shapes,
where there is a clear distinction between corners, curves,
and lines. However, as seen in Figure 3, corners in real-
world chemical drawings are often messy and unclear.

To deal with these challenges, we designed a novel corner
detection algorithm that learns how to segment a stroke. In-
stead of forcing the developer to define thresholds and pa-
rameters beforehand, we train our corner detector from la-
beled sketch data. This allows our detector to learn a specific
model of what it means to be a corner for chemical diagrams,
which may be different from what it means to be a corner in
another domain. To the best of our knowledge this is the first
trainable corner detector used as part of a complete sketch
recognition system.

Instead of immediately trying to decide which points are cor-
ners, our system instead repeatedly removes the point that is
least likely to be a corner. This process stops when the sys-
tem decides that all of the remaining points are likely to be
corners. Specifically, our algorithm repeatedly discards the
point p; that introduces the smallest cost when removed:

cost(p;) = /mse(s;; pi—1, pit1) - dist(ps; pi—1, pis1) (1)

where s; is the subset of points in the original stroke be-
tween point p;_; and point p;11 and mse(8;; pi—1, pit1) is
the mean squared error between the set s; and the line seg-
ment formed by (p;_1,pi+1). The term dist(p;; pi—1, pit1)
is the minimum distance between p; and the line segment
formed by (pi—1, pi+1)-

Instead of using a hard threshold to determine when to stop
removing vertices, our system learns the likelihood of a ver-
tex being a corner from training data. For each vertex elimi-
nation candidate p (the point with the lowest cost) it extracts
the set of features shown in Table 1. During classification,
if the classifier decides that p is not a corner, it removes the
vertex and continues to the next elimination candidate. If,
on the other hand, it decides that it is a corner, the process
stops and all remaining vertices are returned as corners.

One important feature of our approach is that in each itera-
tion the system makes its decision based on the set of corner
candidates that are still remaining, taking advantage of the
partial solution generated so far. To illustrate this, consider
the bottom ring in the left diagram of Figure 3, where there
are two high-curvature points close to each other and only
one of them is an intended corner (the other has high cur-
vature due to noise, a common problem in corner detection
since noise is easily mistaken for a corner). When both high-
curvature points still remain in the polyline approximation,
removing either one of them will not change the local shape
by very much (i.e., have low cost). However, after one of
them is removed, the cost of removing the remaining point
becomes much larger. This leads to the correct behavior of
eliminating only one of the points. Of course in our imple-
mentation the other features from Table 1 will factor into the
decision, so this is an illustrative but much simplified de-
scription.
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Figure 3. The result of our segment extraction algorithm on two chem-
ical drawings. Detected corners are highlighted in red. Note that we
only show corners from strokes that represent straight bonds.

Feature Description

Cost The cost of removing the vertex, from
Equation 1.

Diagonal The diagonal length of the stroke’s
bounding box.

Ink Density The length of the stroke divided by the

diagonal length.

The distance to the farther of its
two neighbor (p;—; or p;y1) normal-
ized by the distance between the two
neighbors.

The distance to the nearer of its two
neighbor normalized by the distance
between the two.

The sum of the distances to the two
neighbors normalized by the distance
between the two.

Max Distance

Min Distance

Sum Distance

Table 1. List of features for corner detection.

After segment extraction the system records the length of the
longest segment L (excluding the top 5% as outliers). This
value is later used as an estimate for the scale of the sketch.

Segment Features

We compute two types of features for segments. The first
type consists of the same feature images that we use for ink-
points, except in this case the image regions are centered at
the midpoint of the segment, and the width and height are
set to L for the first scale and 2L for the second scale. The
number of pixels in the feature images is the same as before,
once again producing 400 feature values. The second type
consists of a set of geometric properties listed in Table 2.

Symbols

Symbols are the final unit of classification in our hierarchy.
We define a symbol as a group of one or more segments that
represents a complete entity in the domain (e.g., bonds, ele-
ments, etc.). Our algorithm searches for candidate symbols
(henceforth referred to as candidates) among groups of tem-
porally or spatially contiguous strokes. It forms the set of
temporal candidates by considering all possible sequences



Feature
Length*
Ink Density

Description

The length of the segment.

The length of the stroke region match-
ing the segment divided by the length
of the segment.

The total number of segments in the
parent stroke (discrete, ceiling=10).
Stroke The diagonal length of the parent
Diagonal* stroke’s bounding box.

Stroke Ink Den- | The length of the parent stroke divided
sity by the diagonal length of the parent
stroke’s bounding box.

Segment Count

Table 2. List of geometric features for segment classification. (*) means
we include two version of this feature, one normalized by L and the
other unnormalized.

Feature
Stroke Count

Description

The number of strokes in the candi-
date (discrete, ceiling=10).

The number of segments in the candi-
date (discrete, ceiling=10).

Segment Count

Diagonal* The diagonal length of the candidate’s
bounding box.
Ink Density The cumulative length of the strokes

in the candidate divided by the diago-
nal length of the candidate.

Table 3. List of geometric features for candidate classification. (*)
means we include two version of this feature, one normalized by L and
the other unnormalized.

of up to n = 8 consecutively drawn strokes. It forms the
set of spatial candidates by combining groups of strokes that
are close to each other. This process starts with all possi-
ble groups of size 2 (each stroke and its nearest neighbor)
and successively expands each group by including the next
nearest stroke (e.g., each stroke and its 2 nearest neighbors,
then its 3 nearest neighbors, etc.). This expansion ends when
either the size of the group exceeds a spatial constraint or
when the group contains more than 4 strokes. This spatial
grouping algorithm allows temporal gaps in candidates, so
symbols need not be drawn with consecutive strokes.

The features we use for candidates encode the visual appear-
ance of the candidate, based on our previous work in [16].
For each symbol we generate a set of five 20x20 feature im-
ages, four orientation filter images and one “endpoint” image
that captures the location of stroke endpoints. These feature
images contain only the strokes that belong to the candidate
(unlike feature images in the other levels, which include all
the ink in a local patch). In order to improve robustness to
differences in aspect ratio, we stretch each candidate symbol
so that it has the same standard deviation of ink in both the
x and y axes. As before, we smooth and downsample each
image by a factor of 2. An example is shown in Figure 4.
Notice that the “S” (candidate 2) is stretched horizontally to
ensure equal standard deviation of ink in both axes.

In addition to these five feature images, we include another
set of four images that describe the ink in a patch around the
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Figure 4. The set of candidates extracted from a chemical diagram,
shown boxed in blue. The feature images generated for the two candi-
dates highlighted in red are also shown below.

candidate. These are identical to those used for segments,
but are centered at the center of the candidate with a region
size of L. The result is a total of 600 feature image values.
We also include as features the set of geometric properties
listed in Table 3.

Feature Image Templates

In the sections above we described how the system gener-
ates sets of feature images for each classification entity (i.e.,
inkpoints, segments, and candidates). However, we do not
use the image values directly as features for classification.
Instead, we compare the images against a set of stored tem-
plates taken from the training data and record the match dis-
tances to the nearest template neighbor in each class. In or-
der to make matches at the candidate level rotation invariant
we test 8 evenly-spaced rotations of the candidate symbol.
Next, we convert these distances into match scores (score
= 1.0 - distance) and use as features both the label of the
nearest neighbor and the best match scores to each class.
For example, a candidate whose nearest neighbor is an “N”
(Nitrogen) symbol might have the following features: (near-
est="“N", score.N=0.7, score. H=0.5, etc.).

To improve the speed and memory usage of the template
matching process described above, we use principal com-
ponent analysis to reduce the dimensionality of the feature
images for each entity to 256. For example, we compress
the 400 image values from an inkpoint to 256 principal com-
ponents. We then calculate match distances based on these
principal components rather than the original image values.

JOINT GRAPHICAL MODEL CLASSIFIER

We propose a new model for sketch recognition based on
conditional random fields (CRF) that combines the features
from the three levels in the classification hierarchy. A CRF
can be seen as a probabilistic framework for capturing the
statistical dependencies between the different entities we wish
to model (i.e., inkpoints, segments, and candidates).



An alternative architecture is to train an independent classi-
fier at each level, then use some type of voting scheme to
combine the predictions. This approach has two disadvan-
tages. First, by treating each layer in isolation it ignores any
joint dependencies between features at different levels. Sec-
ond, it requires the designer to specify a weighting scheme
for each layer (e.g., deciding that the predictions in the can-
didate layer should be worth 2x those in the inkpoint layer)
either manually or by some separate learning process.

Figure 5 shows an illustration of our CRF graph structure.
The nodes in the bottom row represent labels for inkpoints
(Vp), nodes in the middle row represent labels for segments
(Vs). Inkpoint and segment nodes each have four possible
labels: “bond” (straight bond), “hash”, “wedge”, and “text”.
The “text” label temporarily condenses the specific letters
and abbreviations (e.g., “H”, “O”, “R”) into a single label.
When classification is finished, any candidate symbol recog-
nized as “text” is converted back to the letter identity of its
nearest template match.

The nodes at the top level represent symbol candidates (V).
Notice that our model creates one candidate node for each
segment rather than one for each candidate. This node con-
tains, as possible labels, all of the candidates that the seg-
ment could belong to. During the inference process the sys-
tem chooses the best candidate for each segment and adds
the candidate to the set of final symbol detections. For ex-
ample, if the system decides that the correct label for ¥, o
(the candidate node for segment 2) is a “wedge” candidate
containing segments [1,2,4], then the “wedge” candidate is
added to the final symbol detections. Note that the candi-
date node labels can contain multiple interpretations of each
candidate, so y. 2 also has “hash” and “text” versions of can-
didate [1,2,4] as possible labels (the “bond” label is only ap-
plied to single-segment candidates).

The edges in our CRF model encode four types of relation-
ships between nodes:

Entity features to label mapping: We define ¢ as the lo-
cal potential function that determines the compatibility
between an entity’s features and its label. This is anal-
ogous to a local classifier that classifies each entity inde-
pendently of the others.

Gp (Vi %i30) =D (i Xi)0p.1 )
l

Here x; is the set of features for entity 4, y; is the label,
and f is a feature function defining the set of features for
the given entity (e.g., the 256-valued PCA vector for ink-
points). There are three versions of this relationship: ¢,
(shown above) for inkpoints, ¢, for segments, and ¢ for
candidates (the same is true for f and #). Note that ¢ is
linear to the parameters #, making the joint model (Equa-
tion 6 below) log-linear. In the case of candidate nodes
the situation is more complicated because the labels can
map to different candidates. Therefore the feature func-
tion here depends on the candidate of label y;.

Candidates:

Segments:

Ink points:

Figure 5. An illustration of our conditional random field model. Cir-
cles represent label nodes (y), edges represent relationships, and dark
boxes represent evidence nodes () that connect the label nodes to their
corresponding features.

bt |
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Figure 6. The three pairwise relationships used in the spatial context
compatibility between segments.

Cross-level label consistency: This is a pairwise constraint
stating that predictions at each level need to be consistent
with predictions at other levels. An inkpoint and its parent
segment should have the same label, and a segment and its
parent candidate should have the same label.

v fo, ify; = y;
V(Yi,yj) = { —inf, otherwise )

Segment to segment spatial context: This pairwise rela-
tionship captures the spatial compatibility between pairs
of segments given their respective labels. This relation-
ship enables our system to classify each segment jointly
with its context, allowing neighboring interpretations to
influence each other.

ws(yivyjaxivxj; 0) = Z fss,l(yivyjaxivxj)ess,l (4)
l

Here the feature function fs; contains the 3 spatial re-
lationships shown in Figure 6. The system discretizes f1
and f5 into bins of size 7/8 and f3 into bins of size L /4.

Candidate to candidate overlap consistency: This is a
pairwise constraint that prevents the system from choos-
ing two different candidates that share any of the same
segment(s), resulting in conflicting interpretations for those
segment(s). For example, if the system decides that the la-
bel of y.. 2 (the candidate node for segment 2) is a “wedge”
candidate that spans segments [1,2,4], then the labels for
Ye,1 and y. 4 also need to be assigned to the same “wedge”
candidate.



0, ify; = y; or
Ye(Yi, yj) = y; does not overlap y; (5)
—inf, otherwise
Combining all of the relationships described above, the joint
probability function over the entire graph is:

log P(y|x,0) = Y ¢p(yixi;0) + Y ¥(yi,y))

i€V, 1,j€Eps

+ Y balyixi0) + > V(i)

i€V 1,JE€EFsc

+ Z be(yis xi50) + Z Ve(yiry;)

1€V, 4,j€Fcc

+ Y Wiy xix550) —log(Z)  (6)

4,j€E s

where I, is the set of label consistency edges from ink-
points to segments, F. is the set of label consistency edges
from segments to symbols, F,. is the set of overlap consis-
tency edges from candidates to candidates, and E; is the set
of spatial context edges from segments to segments. Z is a
normalization constant.

Inference and Parameter Estimation

During training the system estimates the parameters 6 in a
maximum likelihood framework. The goal is to find 0* =
argmax L(#), where, following the previous literature on
CRFs [8], we define:

1
L(6) = log P(y[x.6) — 5—|I6II” ™

Here the second term is a regularization constraint on the
norm of 6 to help avoid overfitting. We optimize L() with
a gradient ascent algorithm, calculating the gradient for each
parameter %L(G). This process requires us to compute the

marginals P(y;|x,6). Since loops in the graph make ex-
act inference intractable, we calculate these marginals using
loopy belief propagation [11], an approximate inference al-
gorithm. We employ a randomized message passing sched-
ule and run the BP algorithm for up to 100 iterations. For
gradient ascent we use L-BFGS [12], which has been ap-
plied successfully to other CRF-based problems in the past
[20]. We use the same belief propagation algorithm during
inference.

Real-Time Recognition

Our system takes about 1 second to classify a sketch on a
3.7ghz processor running in a single thread. While this is
likely sufficient for real time recognition, we also took steps
to make sure that our system is fast enough to run on slower
Tablet PCs. First, we implemented an incremental recog-
nition model that updates the interpretation only of strokes
and segments that have been modified or added since the last
pass. Second, we made the most time consuming step of the
process, generating features and template matches, parallel
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Figure 7. An illustration of the structure interpretation process: (left)
an interpreted sketch with detected symbols highlighted and (right) the
generated structure exported and rendered in ChemDraw.

so that we could take advantage of multi-core CPUs. In our
on-line user study a 1.8ghz Tablet PC was able to easily keep
up with the users’ drawings.

STRUCTURE GENERATION

After choosing the final set of symbol detections, our system
builds a connectivity graph between the symbols to produce
the complete molecular structure. An example is shown in
Figure 7. This symbol connectivity analysis is based on three
pairwise distance metrics:

e Bond-element distance: The distance between a bond and
an element is the distance from the bond endpoint to the
nearest point in the element symbol. We impose an addi-
tional penalty if the bond does not point towards the ele-
ment. For hash and wedge bonds, we define the direction
of the bond as the principal axis based on PCA.

e Element-element distance: The distance between two let-
ter symbols is defined as the distance between the two at
their closest point.

e Bond-bond distance: The distance between two bonds is
defined as the distance between their respective endpoints.
We impose a penalty if the bonds do not point towards
each other (e.g., if one bond is pointed to the midpoint
of the other) or if they are nearly parallel (though parallel
double bonds are technically connected to each other, we
are interested in determining the elements to be joined at
either of their endpoints).

We use an agglomerative clustering algorithm to generate
the set of symbol connections. The algorithm iteratively
merges the two nearest symbols or symbol clusters, using the
maximum distance between the entities in the two groups as
the clustering metric (i.e., complete-link). We empirically
set the threshold to stop clustering at 0.4L. Since as a gen-
eral rule all symbols should be connected to at least one other
symbol, the system reduces the distance value by a factor of
two if there are only two symbols in the cluster. This en-
courages the algorithm to connect isolated symbols first and
effectively lowers the threshold for single connections. We
also impose a penalty if the cluster makes connections that
violate the rules of chemical valence (e.g., connecting three
bonds to an “H”, as Hydrogen should form only one bond).



OFF-LINE EVALUATION

We recruited 10 participants who were familiar with organic
chemistry and asked each of them to draw 12 real world or-
ganic compounds (e.g., Aspirin, Penicillin, Sildenafil, etc.)
on a Tablet PC. We performed a set of user-independent per-
formance evaluations, testing our system on one user while
using the examples from the other 9 as training data. By
leaving out sketches from the same participant, this evalua-
tion demonstrates how well our system would perform on a
new user.

Because one goal of our research is to build a system that
can handle the range of drawings styles found in natural,
real world diagrams, the program used to collect these draw-
ings behaved simply like a piece of paper, i.e., capturing the
sketch but providing no recognition or feedback. This en-
sured that the system did not inadvertently provide guidance
in how to draw.

Corner Detection

We first evaluate the accuracy of our trainable corner de-
tector in finding corners in bond strokes, where the corners
determine the breaks between straight bonds. The results in
Table 4 show that our algorithm was able to correctly detect
99.91% of the corners, with a precision of 99.85% (these
measurements include stroke endpoints and single-segment
strokes). In comparison, it outperformed a simpler version
of the detector that uses a fixed threshold? on the cost metric
from Equation 1.

Symbol Detection

The results in Table 5 show that our system was able to
accurately detect and classify 97.4% of the symbols from
the sketches in the dataset. Our result also represents an
improvement on the best previously reported accuracy of
97.1% [15]. While the increase in performance seems mod-
est, it is worth noting that performance on the dataset was
already very high and may be beginning to plateau. Despite
this, our new approach was able to remove over 10% of the
remaining errors.

Note that for completeness we report precision as well as
recall. However, for this task we believe that recall (the frac-
tion of true symbols detected) is a more appropriate metric
than precision (the fraction of detections that are true sym-
bols) because, unlike in traditional object detection, there are
no overlapping detections and every stroke is assigned to a
symbol. Thus, a false positive always causes a false negative.
Also, precision can be a less reliable metric because similar
mistakes are not always counted equally. Misclassifying a
3-segment “H” as straight bonds, for instance, generates 3
false positives, while misclassifying it as a hash bond gener-
ates only one.

ON-LINE COMPARATIVE EVALUATION

We conducted a second user study to evaluate the usability
and speed of our system, asking a number of chemistry grad-
uate students to draw a set of five pre-selected diagrams on

The threshold was chosen to produce similar values for the recall
and precision.

Method Recall Precision
Trained detector 0.9991 0.9985
Fixed threshold 0.9879 0.9904

Table 4. Evaluation of the corner detection component of our system.
We only count corners in strokes labeled as bonds and compare against
the hand labeled ground truth.

Method Recall Precision
ChemlInk (context) 974 956
Chemlnk (no context) .969 951
0&D 2009 [15] (context) 971 -

O&D 2009 [15] (no context) 958 -

Table 5. Evaluation of the recognition accuracy of our system. The
(no context) version does not employ spatial relationships between seg-
ments.

a Tablet PC3. While they were drawing, our recognition en-
gine was running in real time and constantly providing feed-
back about the recognition progress by highlighting symbols
detected so far. Users were asked to correct any errors the
system made by simply erasing and redrawing the troubled
region. Some of the study diagrams are shown in Figure 10.

We compared our system to an existing popular chemistry
authoring tool called ChemDraw, asking users to produce the
same diagrams using its traditional mouse-and-keyboard in-
terface. We recorded each session and measured the amount
of time taken to construct the diagrams using both interfaces.
Afterwards we also asked the users for their opinions about
how fast and easy it was to use each program.

Demographics

We had a total of 9 participants, all with prior experience
with chemistry either through coursework only (1 user) or
research only (1 user) or both (7 users). All of them had
experience drawing chemical compounds on paper, report-
ing an average of 5.9 out of 7 (1=novice, 7=expert). Most
also had extensive prior experience using ChemDraw, rating
themselves on average a 5.0 out of 7. Conversely, most had
little or no prior experience using Tablet PCs, rating them-
selves an average of 2.2 out of 7.

Quantitative Analysis

Figure 8 shows the average time that the users took to com-
plete a diagram using both ChemInk and ChemDraw. It
shows that they were on average more than twice as fast
using our Chemlnk sketching interface, averaging 36 sec-
onds per diagram, compared to ChemDraw’s average of 79
seconds. The difference in drawing time between the two
interfaces is statistically significant (paired one-sided ¢-test,
p < .05). This was a surprising finding for us since many of
the participants mentioned that they had years of experience
using ChemDraw and use it daily in their research. This
finding would also likely surprise those users who did not
rate Chemlnk as being significantly faster in the subsequent
survey (Figure 9).

3This study was conducted using an earlier version of our recogni-
tion engine, combining parts of our work in [15].



As Figure 8 shows, User 6 had an especially difficult time us-
ing ChemDraw, taking on average over 3 minutes per sketch.
To make sure that the outlier was not biasing our results we
repeated the analysis with User 6 omitted. The average time
spent per sketch becomes 35 seconds for ChemlInk and 61
seconds for ChemDraw, showing that our interface is still
nearly twice as fast, and the difference is still statistically
significant (p < .05).

Not surprisingly, the two users with the lowest prior Chem-
Draw experience (both rated themselves 1 out of 7) were
also the slowest ChemDraw users (#6 and #8), and there
was a highly negative correlation between reported Chem-
Draw experience and time spent per sketch (corr = -0.738,
p < .05). This suggests that prior training is very important
to using ChemDraw proficiently. In contrast, all of the users
were able to use ChemlInk effectively regardless of prior ex-
perience with Tablets PCs (corr =0.111, p > .05).

Qualitative Analysis

On average users rated Chemlnk as being faster (6.3 vs. 4.5)
and easier to use (6.3 vs. 4.7) than ChemDraw (both differ-
ences are statistically significant, p < .05). In their com-
ments about our system most of the users were very satis-
fied with the speed and performance, in many cases com-
paring it favorably against the traditional ChemDraw pro-
gram. Some of the comments were: “Awesome!”, “The pro-
gram was very good at recognizing my drawing even though
I have fairly messy handwriting...”, and “In classroom set-
ting, ChemDraw is too slow, whereas this is almost as fast as
paper for taking notes.”

Some also had suggestions for making it faster: “It would
be even faster if you have predrawn sections that you could
insert...” and ”...if other letters or abbreviations were recog-
nized, it would be even faster (for example recognizing that

ph = [phenyl group])”.

One user made the interesting comment that there is some-
thing fundamentally different about sketching vs. click-and-
drag: “I like drawing structures by hand rather than in Chem-
Draw. Just like w/ typing hand-written notes are easier to
remember / visualize / understand. Ability to sketch in 3D is
very important too. great work guys! :)”

RELATED WORK

There is a growing body of sketch recognition research cov-
ering a variety of different domains, including electrical cir-
cuits [4, 13, 19], general charts [22, 23], and mathematical
expressions [9]. Many of these approaches focus on the rela-
tionships between geometric primitives like lines, arcs, and
curves, specifying them either manually [1, 5, 6] or learn-
ing them from labeled data [19]. Recognition is then posed
as a constraint satisfaction problem, as in [5, 6], or as an
inference problem on a graphical model, as in [1, 19, 21,
23]. Similar to our approach, Szummer [23] proposed using
a CREF to classify segments in a diagram by modeling the
spatial relationships between neighboring segments. Their
work differs from ours in that it focused only on segments
and did not model complete symbols.
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Figure 8. The average time taken by each of the study participants to
draw a chemical diagram using ChemInk and ChemDraw.
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Figure 9. The ratings given by the study participants on how fast and
how easy it was to use ChemInk and ChemDraw. Higher ratings indi-
cate faster and easier.

Another group of related work focuses on the visual ap-
pearance of shapes and symbols. These include parts-based
methods [13, 22], which learn a set of discriminative parts
or patches for each symbol class, and template-based meth-
ods [7, 16], which compare the input symbol to a library
of learned prototypes. The main advantage of vision-based
approaches is their robustness to many of the drawing varia-
tions commonly found in real-world sketches, including ar-
tifacts like over-tracing and pen-drag. However, these meth-
ods typically do not model the spatial relationships between
neighboring shapes, relying on local appearance to classify
a symbol.

There have also been previous efforts to recognize chemical
diagrams. Tenneson and Becker [24] developed a sketch-
based system that helps students visualize the three dimen-
sional structure of an organic molecule. Their system was
able to avoid many of the challenges in sketched symbol de-
tection by requiring that all symbols be drawn using a single
stroke. It also did not handle implicit structure such as omit-
ted carbon and hydrogen atoms. Casey et al. [2] developed a
system for extracting chemical graphics from scanned doc-
uments, but their work focused on scanned printed chemical
diagrams rather than freehand drawings.

This paper builds upon the work on multi-domain symbol
detection from [14] and [15]. It presents a new principled ap-
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Figure 10. Examples of sketches collected from the on-line user study. The system’s interpretation is highlighted as: text = boxed blue with letters
below, straight bonds = blue, wedge-bond = light blue, hash-bond = green, bond endpoints = small boxes.

proach to combining multiple visual feature representations
using a jointly trained CRF model. It also introduces a new
learning-based approach to corner detection that achieves
nearly perfect results in our evaluation.

GENERALITY OF OUR APPROACH

While this paper focused exclusively on chemical diagrams,
we made efforts to design our approach to be as general
as possible. As part of this choice, many components of
our architecture expand upon previous techniques that have
been proven in other domains. We have successfully ap-
plied the visual feature image descriptors, for example, to
isolated symbol classification in electrical circuits, Power-
Point shapes, and handwritten digits [16]. Also, an earlier
version of our graphical model approach was used in [15] to
build a symbol detector for electrical circuit diagrams, im-
proving upon the best existing benchmark for that dataset.
While this does not mean that our architecture will general-
ize to other domains without modification, we believe that

the results from these other studies are encouraging. This
represents an exciting area for future work.

Our approach does make two important assumptions about
the domain. First, it only detects symbols among temporally
and/or spatially neighboring segments. Second, it assumes
that segment breaks correspond to symbol boundaries, so
that no segment belongs to more than one symbol. While we
believe that these are reasonable assumptions for many do-
mains (e.g., flow charts, circuits, course-of-action diagrams,
etc.), if needed it should be possible to modify our algorithm
so that it does not rely on these drawing patterns. For ex-
ample, if there is no natural notion of segments or corners,
the system could instead search for symbols among groups
of inkpoints.

CONCLUSIONS
In this paper we introduced a new sketch recognition ar-
chitecture for hand-drawn chemical diagrams. It combines



rich visual descriptions of the sketch at multiple levels with
a joint CRF model that captures the relationships between
levels. Our system was able to correctly detect 97.4% of the
symbols in a dataset of real-world chemical diagrams, im-
proving on the best result previously published in literature.
We also present a novel trainable corner detector that is ac-
curate over 99% of the time. In an on-line study our new
interface was over twice as fast as the existing CAD-based
method for authoring chemical diagrams, even for novice
users who had little or no experience using a tablet. While
the evaluation is still preliminary, to our knowledge this is
one of the first direct comparisons that shows a sketch recog-

nition interface significantly outperforming a popular industry-

standard CAD-based tool.
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