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Hypothesis testing via a comparator

Yury Polyanskiy

Abstract—This paper investigates the best achievable perfor-
mance by a hypothesis test satisfying a structural constraint:
two functions are computed at two different terminals and the
detector consists of a simple comparator verifying whether the
functions agree. Such tests arise as part of study of fundamental
limits of channel coding, but are also useful in other contexts.
A simple expression for the Stein exponent is found and applied
to showing a strong converse in the problem of multi-terminal
hypothesis testing with rate constraints. Connections to the Gács-
Körner common information and to spectral properties of condi-
tional expectation operator are identified. Further tightening of
results hinges on finding λ-blocks of minimal weight. Application
of Delsarte’s linear programming method to this problem is
described.

I. INTRODUCTION

A classical problem in statistics and information theory is

that of determining which of the two distributions, P or Q,

better fit an observed data vector. As shown by Neyman and

Pearson, the binary hypothesis testing (in the case of simple

hypotheses) admits an optimal solution based on thresholding

the relative density of P with respect to Q (a Radon-Nikodym

derivative). The asymptotic behavior of the tradeoff between

the two types of errors has also been well studied by Stein,

Chernoff, Hoeffding and Blahut. Knowledge of this tradeoff

is important by itself and is also useful for other parts of

information theory, such as channel coding [1, Section III.E]

and data compression [2, Section IV.A].

The problem becomes, however, much more complex with

the introduction of structural constraints on the allowable tests.

For example, it may happen that observations consist of two

parts, say Xn = (X1, . . . , Xn) and Y n = (Y1, . . . , Yn),
which need to be compressed down to nR bits each before

the decision is taken. Even the memoryless case, in which

under either hypothesis the pairs (Xi, Yi) are independent and
identically distributed (i.i.d.) according to PXY or QXY , is a

notoriously hard problem with only a handful of special cases

solved [3]–[6]. Formally, this problem corresponds to finding

the best test of the form

T = 1{(f(Xn), g(Y n)) ∈ A} , (1)

where optimization is over functions f and g with finite co-

domains of cardinality 2nR and critical regions A. Here and

below T = 1 designates the test choosing the distribution P
and T = 0 the distribution Q.

Another rich source of difficult problems is the distributed

case, in which observations are taken by spatially separated

sensors (whose measurements are typically assumed to be
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correlated in space but not in time). The goal is then to

optimize the communication cost by designing (single letter)

quantizers and a good (single or multi round) protocol for

exchanges between the sensors and the fusion center; see [7]–

[9] and references therein. These problems can again be

restated in the form of constraining the allowable tests similar

to (1).

In this paper we consider tests employing a comparator,

namely those satisfying the constraint:

T = 1{f(Xn) = g(Y n)} , (2)

where the cardinality of the common co-domain of f and g is

unrestricted. This constraint is motivated by the meta-converse

method [1, Section III.E], which proves a lower bound on

probability of error by first using a channel code as a binary

hypothesis test and then comparing its performance with that

of an optimal (Neyman-Pearson) test. However, so constructed

test necessarily satisfies the structural constraint (2) and thus

it is natural to investigate whether imposing (2) incurs expo-

nential performance loss.

Another situation in which tests of the form (2) occur

naturally is in the analysis of parallel systems, such as in fault-

tolerant parallel computers, that under normal circumstances

perform a redundant computation of a complicated function

with high probability of agreement, while it is required to

lower bound the probability of agreement when the fault

occurs (modeled as PXY changing to QXY ). Yet another

case is in testing hypotheses of biological nature based on

the observation of zygosity of cells only (in eukaryotes).

The main result is that in the memoryless setting Stein

exponent of tests satisfying (2) can indeed be quite a bit

smaller than D(PXY ||QXY ) and in fact is given by

E
△
= min

VX=PX ,VY =PY

D(VXY ||QXY ) , (3)

where D(·||·) is the Kullback-Leibler divergence, and the

optimization is over all joint distributions VXY with marginals

matching those of PXY . In particular, E = 0 if (and only if)

the marginals of QXY coincide with those of PXY .

In fact, for the latter case, the hypothesis testing with

constraint (2) turns out to be intimately related to a problem

of determining the common information C(X ;Y ) in the sense

of Gács and Körner [10]. Using a technique pioneered by

Witsenhausen [11] we show that the error probability cannot

decay to zero at all (even subexponentially). Unfortunately,

this is only shown under the condition that the confidence level

is sufficiently high. Extending to the general case appears to

be surprisingly hard. For a special case of binary X and Y
we describe a bound based on Delsarte’s linear programming

method [12] and demonstrate promising numerical results.

However, we have not yet been able to identify a convenient



polynomial, such as found in [13] for the coding in Hamming

space, admitting an asymptotic analysis.

The exponent E has appeared before in the context of

hypothesis testing with rate constraints (1), see [4, Theorems 5

and 8], and distributed detection [8, Theorem 2]. We identify

the reasons for this below and also use this correspondence to

prove the strong converse for the results in [4].

II. BACKGROUND AND NOTATION

Consider a distribution PXY on X×Y . We denote a product

distribution on Xn × Yn by Pn
XY and by PXY > 0 the fact

that PXY is non-zero everywhere on X × Y .
Fix some PXY and QXY . For each integer n ≥ 1 and

0 ≤ α ≤ 1 the performance of the best possible comparator

hypothesis test of confidence level α is given by

β̃α(P
n
XY , Q

n
XY )

△
= inf Q[T = 1] ,

where infimum is over all (perhaps, randomized) maps f :
Xn → R and g : Yn → R such that

P[T = 1] ≥ α ,

where T is defined in (2). Here and below we follow the

agreement that P and Q denote measures on some abstract

spaces carrying random variables (Xn, Y n) distributed as

Pn
XY and Qn

XY , resp..

For a finite X × Y and a given distribution PXY we

define a bipartite graph with an edge joining x ∈ X to

y ∈ Y if PXY (x, y) > 0. The connected components of

this graph are called components of PXY and the entropy

of the random variable indexing the components is called the

common information of X and Y , cf. [10]. If the graph is

connected, then PXY is called indecomposable. In particular

indecomposability implies PX > 0 and PY > 0.
We also define a maximal correlation coefficient S(X ;Y )

between two random variables X and Y as

S(X ;Y ) = sup
f,g

E [f(X)g(Y )]

supremum taken over all zero-mean functions of unit vari-

ance. For finite X × Y indecomposability of PXY implies

S(X ;Y ) < 1 and (under assumption PX > 0,PY > 0) is

equivalent to it.

Finally, we recall [10] that a pair of sets A ∈ Xn and

B ∈ Yn is called a λ-block for Pn
XY if Pn

X [A] > 0, Pn
Y [B] > 0

and

P[Xn ∈ A|Y n ∈ B] ≥ λ , P[Y n ∈ B|Xn ∈ A] ≥ λ .

An elegant theorem of Gács and Körner states

Theorem 1 ([10]): Let PXY be an indecomposable distri-

bution on a finite X × Y . Then for every λn ≥ exp{−o(n)}
there exists a sequence νn = o(n) such that for all n any

λn-block (A,B) for Pn
XY satisfies

Pn
XY [A×B] ≥ exp{−νn} .

III. MAIN RESULTS

A. Stein exponent

Theorem 2: Consider an indecomposable PXY on a finite

X × Y . Then for an arbitrary QXY and any 0 < α < 1 we

have

lim
n→∞

1

n
log β̃α(P

n
XY , Q

n
XY ) = −E ,

where E is defined in (3). Moreover, if E = ∞ then there

exists n0(α) such that β̃α(P
n
XY , Q

n
XY ) = 0 for all n ≥ n0.

Proof: Achievability: Consider functions

f(xn) = 1{xn 6∈ T n
[PX ]} , (4)

g(yn) = 2 · 1{yn 6∈ T n
[PY ]} , (5)

where T n
[P ] denotes the set of P -typical sequences [14, Chapter

2] over the alphabet of P . Then, on one hand by typicality:

P[f(Xn) = g(Y n)] = Pn
XY [T

n
[PX ] × T n

[PY ]] (6)

≥ 1− o(1) . (7)

On the other hand, using joint-type decomposition it is

straightforward to show that the set T n
[PX ] × T n

[PY ] under the

product measure Qn
XY satisfies

Qn
XY [T

n
[PX ] × T n

[PY ]] = exp{−nE + o(n)} . (8)

For the case of E < ∞, this has been demonstrated in the

proof of [4, Theorem 5]. For the case E = ∞, we need to

show that for all n ≥ n0 we have

Qn
XY [T

n
[PX ] × T n

[PY ]] = 0 .

Indeed, assuming otherwise we find a sequence of typical

pairs (xn, yn) with positive QXY -probability. But then the

sequence of the joint types V
(n)
XY associated to (xn, yn) belongs

to the closed set of joint distributions {VXY : VXY ≪ QXY }
and by compactness must have a limit point V̄XY . By the

δ-convention [14, Chapter 2], the accumulation point must

have marginals V̄X = PX and V̄Y = PY and thus E ≤
D(V̄XY ||QXY ) < ∞ – a contradiction.
Converse: We reduce to the special case of the theorem,

stated as Theorem 3 below. If E = ∞ then there is nothing

to prove, so assume otherwise and take an arbitrary VXY with

VX = PX , VY = PY and D(VXY ||QXY ) < ∞. Our goal is

to show that

β̃α(P
n
XY , Q

n
XY ) ≥ exp{−nD(VXY ||QXY ) + o(n)} . (9)

If VXY 6> 0 then we can replace VXY with (1 − ǫ)VXY +
ǫPXPY , which is everywhere positive on X × Y , and then

take a limit as ǫ → 0 in (9). Thus we assume VXY > 0.
Denote

An
△
= {f(Xn) = g(Y n)} .

By the special case of the theorem we have

V n
XY [An] ≥ exp{−o(n)} . (10)

Then, by a standard change of measure argument, we must

have

Qn
XY [An] ≥ exp{−nD(VXY ||QXY ) + o(n)} . (11)

Optimizing the choice of VXY in (11) proves (9) and the

Theorem.
It remains to consider the case of matching marginals:
Theorem 3 (Special case E = 0): Let PXY be indecom-

posable, QXY > 0 and QX = PX , QY = PY . Then for

any 0 < α < 1 we have

β̃α(P
n
XY , Q

n
XY ) ≥ exp{−o(n)} . (12)



Proof: First we show that any test of level α must

contain a λ-block with λ ≥ α
2 . Indeed, each pair ({f(Xn) =

i}, {g(Y n) = i}) is a λi-block for some λi (chosen to be

maximum possible). Then, by the Bayes rule andmax{x, y} ≤
x+ y we get

P[f(Xn) = g(Y n) = i] ≤ λi(P[f(X
n) = i]+P[g(Y n) = i]) .

Summing this over i shows that at least one λi ≥
α
2 .

By the Gács-Körner effect (Theorem 1) the probability of

this λ-block is subexponentially large:

P[f(Xn) = g(Y n) = i] ≥ exp{−o(n)} .

Therefore, in particular we have (since the marginals of Xn

and Y n under P and Q coincide)

Q[f(Xn) = i] ≥ exp{−o(n)} , (13)

Q[g(Y n) = i] ≥ exp{−o(n)} . (14)

Thus, the sets {f(Xn) = i} and {g(Y n) = i} must occupy

a subexponential fraction of typical sets T n
[PX ] and T n

[PY ]. In

view of (8) it is natural to expect that

Q[f(Xn) = g(Y n) = i] ≥ exp{−o(n)} (15)

(note that marginals match and thus E = 0 as per (3)). Under

the assumption QXY > 0 it is indeed straightforward to

show (15) by an application of blowing-up lemma; see [6,

Theorem 3].

Finally, (15) completes the proof because

Q[T = 1] ≥ Q[f(Xn) = g(Y n) = i] .

B. Discussion

It should be emphasized that although intuitively one imag-

ines that the behavior of β̃α should markedly depend on how

the connected components of PXY and QXY relate to each

other, Theorem 2 demonstrates that the Stein exponent is not

sensitive to the decomposition of QXY .

The assumption of indecomposability of PXY in Theo-

rem 2, however, is essential. Indeed, consider the case of

X = Y = {0, 1} and X = Y uniform (under PXY ) vs X,Y

independent uniform (underQXY ). Clearly a test {X
n = Y n}

demonstrates

β̃1(P
n
XY , Q

n
XY ) ≤ 2−n , (16)

while according to the definition (3) we have E = 0.
We also remark that the case of E = ∞ is possible.

For example, let X,Y be binary with PXY (0, y) = 1
2 −

PXY (1, y) =
p
2 for p > 1

2 , and QXY (x, y) =
1
21{x = y}.

C. Hypothesis testing with a 1-bit communication constraint

The exponent E in (3) is related to hypothesis testing

under the communication constraint (1). In fact, Theorem 2

extends [4, Theorem 5] to the entire range 0 < ǫ < 1,
thereby establishing the full strong converse. This result has

been obtained in [6] under different assumptions on PXY and

QXY
1.

1Namely, we do not require D(PXY ||QXY ) < ∞ or positivity of QXY ,
but require indecomposability of PXY .
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Fig. 1. Linear programming upper bound on λ as a function of p. Uniform
X and Y connected by the BSC(δ), δ = 0.3.

Corollary 4: Consider a hypothesis testing between an in-

decomposable PXY and an arbitrary QXY with structural

restriction on tests of the form

T = 1{(f(Xn), Y n) ∈ A} (17)

with binary-valued f . Then for any 0 < ǫ < 1 we have

inf Q[T = 1] = exp{−nE + o(n)} ,

where infimum is over all tests satisfying P[T = 1] ≥ 1 − ǫ

and E is given by (3).

Proof: Clearly, any test with binary-valued f and g of

the form (2) is also a test of the form (17). Thus Theorem 2

establishes the achievability part. Conversely, for any test of

the form (17) we may find sets A0 and A1 such that

P[T = 1] = P[{Y n ∈ A0, f(X
n) = 0}

∪{Y n ∈ A1, f(X
n) = 1}] (18)

≥ 1− ǫ . (19)

Then without loss of generality assume that the first set in the

union has P-probability larger than 1−ǫ
2 . Define the following

function

g(yn) = 1{yn ∈ A1 \A0}+ 21{yn 6∈ A0 ∪ A1}

Then since {f = g} ⊇ {yn ∈ A0, f(X
n) = 0} we have

P[f(Xn) = g(Y n)] ≥
1− ǫ

2
, (20)

and thus by Theorem 2 we conclude that Q[T = 1] is at least
exp{−nE + o(n)}.
We remark that the correspondence between the hypothesis

tests with 1-bit compression and those of interest in this

paper (2) does not hold in full generality. In particular, it

was shown in [4, Theorem 5] that the exponent E in (3) is

still optimal in the 1-bit scenario without the requirement of

indecomposability of PXY , while example (16) demonstrates

the contrary for our setup.

IV. NON-VANISHING LOWER BOUNDS

By Theorem 3 in the case when marginals of PXY and

QXY coincide the error cannot decay to zero exponentially.

In fact, we conjecture that in the cases of matching marginals

β̃α(P
n
XY , Q

n
XY ) does not vanish at all. In this section we

prove the conjecture under additional assumptions and discuss

potential methods for extending to the general case.



Theorem 5: Consider a PXY and QXY = PXPY such that

S
△
= S(X ;Y ) < 1

2 (under PXY ). Then for any α ∈ (2S, 1]
we have

lim
n→∞

β̃α(P
n
XY , Q

n
XY ) > 0 .

Proof: As in the proof of Theorem 3 given a test

{f(Xn) = g(Y n)} of level α we can extract a λ-block

(A,B) with λ > α
2 . We want to show that for some constant

p = p(α) > 0 and all n at least one of the marginals Pn
X [A]

or Pn
Y [B] can be bounded away from zero:

max{Pn
X [A], Pn

Y [B]} ≥ p . (21)

Indeed, then we have

Q[T = 1] ≥ Pn
X [A]Pn

Y [B] ≥
α

2
p2 (22)

which follows because in a λ-block the smaller of the two

probabilities in (21) should still be larger than the joint prob-

ability Pn
XY [A×B] which is ≥ λp. Finally, the estimate (21)

follows from the next result.

Lemma 6: Consider a λ-block (A,B) for Pn
XY . Then,

max{Pn
X [A], Pn

Y [B]} ≥ min

{

1

2
,
λ− S

1 − S

}

, (23)

whenever S = S(X ;Y ) < 1.
Proof: Consider an operator Tn : L2(Y

n, Pn
Y ) →

L2(X
n, Pn

X) defined as follows:2

(Tnh)(x
n)

△
= E [f(Y n)|Xn = xn] , (24)

where the expectation is over the distribution Pn
XY . Note

that the second largest singular value of Tn is precisely

the maximal correlation coefficient S(X ;Y ) (under PXY ),

see [15]. Thus, for any zero-mean functions h ∈ L2(X
n) and

h′ ∈ L2(Y
n) we have

E [h(Xn)h′(Y n)] = (Tnh
′, h) ≤ S(X ;Y )||h||2||h

′||2 . (25)

Denote pA = Pn
X [A], pB = Pn

Y [B] and assume pB ≥ pA. If
pB ≥ 1

2 then there is nothing to prove, so assume otherwise.

Then, we have

λpB ≤ Pn
XY [A×B] (26)

≤ pApB + S
√

pA(1− pA)pB(1 − pB) (27)

≤ p2B + SpB(1− pB) , (28)

where (26) is by the definition of a λ-block, (27) is by (25)

applied to h(xn) = 1{xn ∈ A} − pA and h′ = 1{yn ∈
B} − pB; and (28) is because pA ≤ pB ≤ 1

2 . Canceling pB
on both sides in (28) we obtain (23).

Next, we discuss what is required to extend Theorem 5 to

full generality. To handle a general QXY one needs a non-

vanishing lower bound independent of n on

λmin(p,Q
n
XY ) = min

A,B
Qn

XY [A×B] ,

where the minimization is over Qn
X [A], Qn

Y [B] ≥ p. For

QXY = PXPY this problem is void since λmin(p, P
n
XPn

Y ) =

2The idea to use the maximal correlation to relate marginals and the joint
distribution was first proposed by Witsenhausen [11] in the context of a
slightly different problem.

p2. Nevertheless, even the case of QXY = PXPY is far

from being resolved as we need to extend to the full range

0 < α < 1. We discuss this second problem further.

A. More on spectral methods

In a nutshell, the proof of Theorem 5 consisted of two steps.

First, we identified a Markov chain

F → Xn → Y n → G , (29)

where we denoted F
△
= f(Xn), G

△
= g(Y n). Note that by the

data-processing for maximal correlation we have

S(F ;G) ≤ S(Xn;Y n) = S(X ;Y ) .

Second, for large α we showed a lower bound

Q[F = G] =
∑

i

P[F = i]P[G = i] ≥ const > 0

under conditions: a) P[F = G] ≥ α and b) S(F ;G) ≤ S. Can
a lower bound be tightened so that it does not vanish for all

α > 0?
The answer is negative. Indeed, consider a distribution PFG

on [M ]× [M ]:

PFG(i, j) =
α

M
1{i = j}+

1− α

M(M − 1)
1{i 6= j} . (30)

Then we have S(F ;G) = α − 1−α
M−1 . That is, such PFG sat-

isfies the α-constraint and the maximal correlation constraint

whenever α ≤ S(X ;Y ) and achieves
∑

i

P[F = i]P[G = i] =
1

M
→ 0

as M → ∞.
It may appear that as a workaround one may consider higher

spectral invariants in addition to S(X ;Y ). Formally, to any

joint distribution Pn
XY we associate the operator Tn as in (24).

Let the singular values of Tn sorted in decreasing order be

1 = σn,0 ≥ σn,1 ≥ σn,2 ≥ · · · ≥ 0 ,

where σ1,1 = S(X ;Y ). Since Tn = T⊗n
1 the singular

spectrum of Tn consists of all possible products of the form
∏n

t=1 σ1,jt and in particular

1 = σn,0 ≥ σn,1 = · · · = σn,n = S(X ;Y ) .

Moreover, it is easy to show that if one has a Markov

chain (29) then singular values {µj, j = 1, . . .} associated with
PFG are related to those of Pn

XY via the following “spectral-

processing” inequalities:

k
∏

j=1

µj ≤

k
∏

j=1

σn,j k = 1, . . . . (31)

Clearly this extends the data-processing for maximal correla-

tion used in the proof of Theorem 5. Does it lead to a lower-

bound non-vanishing for all α?
Alas, the answer is negative. Indeed, in the example (30) the

singular spectrum associated to PFG consists of 1 and 1−α
M−1

(of multiplicity M − 1). This spectrum satisfies (31) as long

as α ≤ S(X ;Y ) and M ≤ n + 1. Thus, for α ≤ S(X ;Y ),
inequalities (31) can not rule out the possibility that

Q[F = G] ≤
1

n+ 1
.



B. λ-blocks of minimal weight

Another method to extend the range of α in Theorem 5 is to

find a non-vanishing (as n → ∞) lower bound on the marginal

probability PXn [A] of a λ-block (A,B). In fact, it is enough to
consider the case of PXY with X = Y and PX = PY . Indeed,

consider an arbitrary λ-block (A,B) and construct a Markov

kernel W : X → X as composition W = PX|Y ◦ PY |X ,

namely

W (x1|x0) =
∑

y∈Y

PX|Y (x1|y)PY |X(y|x0) .

Then distribution PX is a stationary distribution of the Markov

chain associated with W (and operator of conditional expec-

tation (24) is self-adjoint). Moreover, we clearly have

Wn(A|A) ≥ Pn
X|Y P

n
Y |X(B|A) ≥ λ2 . (32)

And hence, it is enough to lower bound Pn
X [A] among all A

with the requirement that (A,A) be a λ2-block for W : X →
X . In other words:

Problem (λ-blocks of minimal weight): Given a

Markov kernel W : X → X with stationary

distribution PX determine

λ∗(p) = lim
n→∞

max
A:Pn

X
[A]≤p

Wn(A|A) .

In fact, for the purpose of extending Theorem 5 we only

need to show λ∗(0+) = 0.
In the remaining we consider a special case of X = Y =

{0, 1} and W (0|1) = W (1|0) = δ – a binary symmetric

channel, BSC(δ). First, let us consider sets A ⊂ {0, 1}n

which are linear subspaces, then denoting by Zn a vector with

i.i.d. Bernoulli(δ) components, we can easily argue that

Wn(A|A) = PZn [A] ≤ (1− δ)n−dimA ,

whereas on the other hand Pn
X [A] = 2dimA−n. Therefore, the

λ-p tradeoff achievable with linear sets satisfies

λ ≤ plog2
1

1−δ .

For the general case, consider an arbitrary set A ⊂ {0, 1}n

of cardinality |A| ≤ p2n. Define its weight distribution as

αd =
1

|A|
· |{(x, y) : x ∈ A, y ∈ A, d(x, y) = d}| ,

where d(x, y) is the Hamming distance. Then,

Wn(A|A) =

n
∑

d=0

αd(1− δ)n−dδd (33)

Define βv(α) =
∑n

x=0 Kv(x)αx, a dual weight distribution of

A, with Kv(x) – Krawtchouk polynomials; e.g. [13, Appendix

A]. By Delsarte’s theorem [12], βv(α) ≥ 0 and in fact by the

cardinality constraint

β0(α) ≤ p2n . (34)

Thus, we get the following linear-programming bound

λ∗
n(p) ≤ max

n
∑

d=0

αd(1− δ)n−dδd , (35)

where maximum is over all non-negative {αd} such that α0 =
1, βv(α) ≥ 0 and (34).

To give the dual formulation of (35) say that a polynomial

P (x) of degree not larger than n is admissible if

P (x) =
n
∑

v=0

pvKv(x) ,

and pv ≥ (1− 2δ)v for all v = 0, . . . , n. Then, we have

λ∗
n(p) ≤ min

(

2−nP (0) + (p− 2−n) max
x=1,...,n

P (x)

)

,

where minimum is over all admissible polynomials. The bound

of Lemma 6 states

λ∗
n(p) ≤ 1 + 2δ(p− 1) , (36)

and corresponds to choosing

P (x) = K0(x) + (1− 2δ)

n
∑

v=1

Kv(x) (37)

As numerical evaluation of (35) shows, see Fig. 1, the

bound (36) can be significantly improved. Finding a suitable

admissible polynomial P (x) remains an open problem.
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