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Data Assimilation with Gaussian Mixture Models using the Dynamically Orthogonal

Field Equations. Part II: Applications

Thomas Sondergaard and Pierre F. J. Lermusiaux ∗

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT

The properties and capabilities of the GMM-DO filter are assessed and exemplified by applications
to two dynamical systems: (1) the Double Well Diffusion and (2) Sudden Expansion flows; both
of which admit far-from-Gaussian statistics. The former test case, or twin experiment, validates
the use of the EM algorithm and Bayesian Information Criterion with Gaussian Mixture Models
in a filtering context; the latter further exemplifies its ability to efficiently handle state vectors of
non-trivial dimensionality and dynamics with jets and eddies. For each test case, qualitative and
quantitative comparisons are made with contemporary filters. The sensitivity to input parameters
is illustrated and discussed. Properties of the filter are examined and its estimates are described,
including: the equation-based and adaptive prediction of the probability densities; the evolution
of the mean field, stochastic subspace modes and stochastic coefficients; the fitting of Gaussian
Mixture Models; and, the efficient and analytical Bayesian updates at assimilation times and the
corresponding data impacts. The advantages of respecting nonlinear dynamics and preserving
non-Gaussian statistics are brought to light. For realistic test cases admitting complex distributions
and with sparse or noisy measurements, the GMM-DO filter is shown to fundamentally improve the
filtering skill, outperforming simpler schemes invoking the Gaussian parametric distribution.

1. Introduction

In part I of this two-part paper, we derived the GMM-
DO filter: data assimilation with Gaussian Mixture Mod-
els (GMMs) using the Dynamically Orthogonal (DO) field
equations. The result was an efficient, rigorous, data-driven
assimilation scheme preserving non-Gaussian statistics and
respecting non-linear dynamics. In the present study, we
evaluate its performance against contemporary filters in a
dynamical systems setting, including ocean and fluid flows.
In section 2-a, we examine the application of the GMM-DO
filter to the Double Well Diffusion Experiment (Miller et al.
1994; Eyink and Kim 2006), which is based on a classic
stochastic system, time-dependent but of zero dimension
in space. We compare our results with those of the Ensem-
ble Kalman filter (Evensen 1994; Houtekamer et al. 1998)
and the Maximum Entropy filter (Eyink and Kim 2006).
For clarity, the latter filter is outlined in Appendix A of
this paper. In section 2-b, we consider flows that are more
realistic for coastal ocean or fluid dynamics. Specifically,
we consider dynamic jets and eddies that occur in Sudden
Expansion flows (Cherdron et al. 1978; Fearn et al. 1990;
Durst et al. 1973) of two dimensions in space. We illus-
trate and study the results of the GMM-DO filter, includ-
ing the evolution of probability density functions (pdfs) and
of their DO decomposition, the Bayesian impacts of obser-

vations, and the overall capabilities of the filter. We also
compare the GMM-DO filter’s performance to that of an
ESSE filter, scheme A (Lermusiaux and Robinson 1999).

For each test case, we critically evaluate the proper-
ties of the GMM-DO filter and outline the advantages that
arise through its utilization. We illustrate and stress its
equation-based and adaptive characteristics, which elimi-
nate the need for heuristics or ad-hoc choices. We further
conduct sensitivity studies in which we examine the filter’s
performance to variations in the following independent pa-
rameters: the model error; the number of observations and
the observation error; and the number of subspace realiza-
tions. We give our concluding remarks in section 3. Table
1 provides the notation relevant to this manuscript.

2. Applications

a. Double Well Diffusion Experiment

The Double Well Diffusion Experiment has served as a
test case for several assimilation schemes (e.g. Miller et al.
1994), recently among them the Maximum Entropy filter
(see Appendix A). Due to the bimodal climatological dis-
tribution of the double well, the experiment lends itself to
the evaluation of filters that aim to capture and extract
non-Gaussian features.

Given the experiment’s low dimensionality (specifically,
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the state is a scalar, i.e. n = 1), the DO equations are
here not needed and are thus not used. A first purpose of
this test case is to evaluate the use of the EM algorithm
and Bayesian Information Criterion (BIC) with GMMs in
a dynamical systems setting. As described in Part I, such
validations – applied to different test cases – were the used
by Smith (2007), Dovera and Rossa (2010) and Frei and
Kunsch (2011). A second purpose is to evaluate the sensi-
tivities and capabilities of the GMM-DO filter as one varies
key parameters, specifically the model error, the observa-
tion error and the number of ensemble realizations.

1) Description of Experiment

In the Double Well Diffusion Experiment, the goal is
to track the location of a ball, X(t), located in one of two
wells. The ball is forced under ‘pseudo-gravity’ and exter-
nally excited by white noise. Specifically, the location of
the ball evolves according to the following scalar stochastic
differential equation (Miller et al. 1994):

dX = f(X)dt + κdΓ(t), Γ ∼ N (γ; 0, 1) , (1)

with
f(X) = 4X − 4X3 (2)

essentially acting as the gravitational force (see figure 1).
The strength of the stochastic forcing is tuned by the dif-
fusion coefficient κ. We also note that X ∈ R.

We occasionally get access to direct, but noisy, mea-
surements, y, of the ball location, modeled as:

pY |X
(
y|x

)
= N

(
y;x, σ2

o

)
. (3)

From these measurements, we wish to infer the current
location of the ball. We are thus faced with a filtering
task.

This experiment is an ergodic Markov Chain (e.g. Cover
and Thomas 2006) and therefore possesses a stationary dis-
tribution (from hereon a climatological distribution), qX

(
x
)
.

It can be shown that this distribution satisfies (Eyink and
Kim 2006):

qX

(
x
)
∝ e−

2x4−4x2

κ2 , (4)

which can be approximated by a GMM of complexity two,
i.e.

qX

(
x
)
≈

2∑
m=1

wm ×N
(
x;µm, σ2

m

)
, (5)

with – by arguments of symmetry – the following parame-
ters:

w1 = w2 = 0.5 (6)
−µ1 = µ2 = µ (7)

σ2
1 = σ2

2 = σ2. (8)

For the particular case of κ = 0.40, Eyink and Kim (2006)
estimated the mean and variance of the GMM to be around
µ = 0.98 and σ2 = 0.011, respectively. This is plotted
against the exact distribution in figure 2.

The choice of κ, the diffusion coefficient, determines the
average time that the ball spends in a well before transi-
tioning. For instance, according to Eyink and Kim (2006),
for κ = 0.40, this residence time is τres ≈ 105 with transi-
tions from one well to the other taking only τtrans ≈ 101.
For small values of κ, the system thus behaves in a manner
similar to a noisy switch.

2) Test Procedure

We solve the governing stochastic differential equation,
(1), by application of the Euler-Maruyama scheme (Higham
2001):

xi,k+1 = xi,k + f(xi,k)∆t + κγi,k

√
∆t, i = 1, . . . , N, (9)

where γ is white in time and drawn from a normal distri-
bution with zero mean and unit standard deviation, and
xi,k is the ith Monte Carlo realization at discrete time k.

Our goal is to evaluate the performance of the GMM-
DO filter against the Ensemble Kalman filter (EnKF) and
the Maximum Entropy filter (MEF) in its ability to track
the ball. We did so by repeating the experiment for a large
number of parameter values and, in Sondergaard (2011), we
report results for a subset of these evaluations, specifically:

• Diffusion coefficient, κ = {0.4, 0.5}
• Observation error, σ2

o = {0.025, 0.050, 0.100}
• Number of realizations, N = {100, 1000, 10000}

In what follows, for the sake of simplicity, we primarily
focus on the results for the case of N = 1000, κ = 0.5 and
σ2

o = 0.100. We then summarize and briefly illustrate the
effects of varying the three aforementioned parameters.

For a fair comparison, all filters are initialized (at dis-
crete time k = 0) with the same Monte Carlo realizations,
generated from the optimal Gaussian mixture approxima-
tion for the climatological distribution, equation (5). Fur-
thermore, the stochastic forcing applied to the individual
ensemble realizations of any one filter is identical to that
of the others.

3) Results and Analysis

We show in figure 3 the results obtained for the case
of N = 1000, κ = 0.5 and σ2

o = 0.100. Superimposed
onto the true solution we show the temporal mean and
standard deviation envelope (±σ) for each of three filters,
as well as the observations with associated error bars. We
have purposely centered the plot about a transition of the
ball from one well to the other, as this event is of central
interest to us. We have further framed the transition within
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a suitable time window that will allow for an appropriate
filter evaluation.

Following the assimilation of the first observation, at
time t = 2, all three filters initially capture the true loca-
tion of the ball (centered on x = 1; from hereon the posi-
tive well), as represented by their temporal means. They
continue to do so until time t = 20, at which point the
ball transitions, through stochastic diffusion, into the op-
posite well (centered on x = −1; from hereon the negative
well). This transition is suggested by the observation at
time t = 22. Both the MEF and the GMM-DO filter tran-
sition accordingly, the statistics of the latter settling com-
pletely to the negative well following the update at time
t = 26. The EnKF, on the other hand, fails to recognize
this transition despite observations at times t = 22 and
t = 26 suggesting otherwise. In fact, not until time t = 30,
following three information-rich observations, does it shift
its course to the negative well. In what follows, we take
a closer look at the mechanics of the three filters. Partic-
ularly, we investigate the prior and posterior distributions
assigned by each filter as well as their ensemble represen-
tations at observation times t = 18, t = 22 and t = 26. We
graphically depict this in figure 4.

In panel (a) of figure 4, we show the distributions as-
signed by each of the three filters (based on their ensemble
representations, also shown) at time t = 18, at which point
the ball has not yet transitioned into the negative well.
All three filters correctly assign probability to the posi-
tive well, both prior and posterior to the recorded observa-
tion. We note, however, that both the GMM-DO filter and
the MEF represent their estimates with greater certainty
than the EnKF, as indicated by the spread of their respec-
tive distributions. This essentially derives from the former
two’s ability to differentiate between realizations located in
separate wells. To illustrate the components of the GMM-
DO algorithm, we also display (panel (a), left hand side)
the optimal mixture complexity, M , obtained utilizing the
BIC on the set of GMM-DO ensemble realizations. At time
t = 18, this optimal complexity is one (i.e. M = 1). This
is intuitively supported by previous measurements, having
repeatedly suggested the true location of the ball to be in
the positive well.

Panel (b) depicts the distributions assigned at time
t = 22, at which point the ball has transitioned into the
opposite well. This is supported by the available observa-
tion. Through the EM-BIC procedure, the GMM-DO filter
optimally fits a GMM of complexity three to its prior set of
ensemble realizations. While difficult to capture visually,
one mixture component is centered on the negative well
due to the presence of two local realizations (having dif-
fused across from the positive well since time t = 18). As a
consequence, following the Bayesian update, the GMM-DO
filter satisfactorily assigns the majority of its probability to
the negative well. This is depicted by its asymmetric bi-

modal posterior distribution; only few particles remain in
the positive well. The MEF largely proceeds in a similar
manner. Meanwhile, due to the imbalance of prior variance
with measurement uncertainty for the EnKF, a Kalman
gain of less than a half results (i.e. K < 0.5), which is in-
sufficient to force individual ensemble members across into
the negative well. As a consequence, the majority of its
particles remain located in the positive well, albeit biased
towards the center; the EnKF does not capture the transi-
tion.

In panel (c) of figure 4, at time t = 26, the majority of
realizations of each filter have – since the update at time
t = 22 – been forced under gravity into the nearest well, dis-
placed from its minimum only by stochastic diffusion. In
particular, most of the GMM-DO filter’s realizations are
now centered on x = −1, consequently causing this well
to be probabilistically weighted during the GMM fitting
procedure. Following the Bayesian update, in which infor-
mation on the true location of the ball is extracted from
the observation, all of its realizations are satisfactorily lo-
cated in the negative well, coinciding with the true loca-
tion of the ball. The posterior distribution assigned by the
MEF agrees with the GMM-DO filter. Again, however, the
EnKF’s conservative estimate for the Kalman gain is insuf-
ficient to completely force particles across into the negative
well. Rather, after their update, the ensemble members lie
centered on x = 0, a state which – due to its instability (see
figure 1) – is highly improbable. The EnKF continues in
this manner, gradually forcing ensemble members across,
and not until time t = 30 has it captured the transition
(see figure 3).

In figure 5, we briefly investigate the filter sensitivity to
each of the three parameters: κ, σ2

o and N . We vary each
parameter independently (holding the other two fixed) and
compare results with these of the standard test case, figure
3. We then generalize the conclusions based on all of our
simulations, more of which are presented in Sondergaard
(2011).

(i) Filter sensitivity to the number of realizations, N

In figure 5–(i), we reduce the number of ensemble re-
alizations for each of the three filters to N = 100. As ex-
pected, we see a deterioration in performance for all three
filters. In particular, while the statistics in figure 3 of the
MEF and the GMM-DO filter settled at times t = 22 and
t = 26, respectively, this settling is now postponed by an-
other observation period, i.e. four time units. The EnKF,
however, fails entirely to settle statistically within the time
window: while it correctly estimates the true location for
the ball following the assimilation at time t = 34, it con-
tinues to exhibit large variance. In general, based on our
experience with varied dynamical systems including results
shown in Sondergaard (2011), we found that the GMM-DO
filter better handles the task of filtering in the case of fewer
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realizations. The more limited the number of ensemble re-
alizations, the more important it is to try to capture the
proper shape of the pdfs.

(ii) Filter sensitivity to the diffusion coefficient, κ

In figure 5–(ii), we reduce the diffusion coefficient to
κ = 0.4. While this has little effect on the performances
of the GMM-DO filter and MEF, the EnKF again fails to
transition during the time interval of focus. This is con-
firmed in other cases (Sondergaard 2011). As such, for
models exhibiting low noise, the approximations made on
the prior distribution employed in a Bayesian update be-
come crucial. On the other hand, when the model uncer-
tainty is large, the model noise then dominates the prior
pdf and if that noise is Gaussian, a Gaussian update is
warranted. An advantage of the GMM-DO filter is that
it adapts to all these situations as they occur, in part by
updating its shape (its complexity M).

(iii) Filter sensitivity to the observation error, σ2
o

In figure 5–(iii), we reduce the observation error to
σ2

o = 0.025, with marked improvements for all three fil-
ters. In fact, here the GMM-DO filter and MEF become
indistinguishable, both transitioning at the first suggestion
by an observation (at time t = 22). On the other hand,
when observation errors increase (Sondergaard 2011), we
found that the GMM-DO filter significantly outperforms
the EnKF. This is because the prior distribution then dom-
inates the update (i.e. the posterior pdf is influenced more
by the prior pdf than by the observation pdf) and thus
gains importance. As such, when working with systems
in which observations are sparse or noisy – and therefore
contain useful but relatively limited information – the gain
of moving beyond the simple parametric Gaussian distri-
bution becomes substantial.

4) Discussion

For the parameter values investigated in the Double
Well Diffusion Experiment, the GMM-DO filter has been
shown to outperform the EnKF in its ability to track the
transitions of the ball. This enhanced performance is due
the former’s ability to capture and retain non-Gaussian
features during the updates. Moreover, for just a moderate
number of ensemble realizations, the performance of the
GMM-DO filter is comparable to that of the MEF even
though the MEF may be considered tailored to the given
test case, i.e. a solution that uses structural information
not known by the other two filters.

The MEF shares a number of similarities with the GMM-
DO filter, particularly in its use of GMMs for approximat-
ing the prior distribution. However, while the MEF en-
forces its structure through an imposed climatological dis-
tribution (see Appendix A), the GMM-DO filter infers this

structure in real time by use of the EM algorithm applied
to its set of ensemble realizations. As a consequence, the
GMM-DO filter is substantially more generic, needing no
specification of a climatological pdf and learning only from
information contained in the available data. Furthermore,
the minimization procedure required by the MEF quickly
becomes intractable for systems of increasing dimensional-
ity. In any event, for cases in which the climatological pdf
is known or is well approximated with a pdf of low dimen-
sions, the two schemes – GMM-DO filter and MEF – can
be merged in a beneficial manner.

We have examined the effects of parameters N , κ and
σ2

o on the performances of the three filters. With only a
few realizations, the GMM-DO filter satisfactorily captures
the ball transitions. Specifically, it only requires enough en-
semble realizations to sufficiently explore the state space;
the optimal fitting of the GMM in turn completes the ap-
propriate assignment of probability. As we increase the
number of ensemble realizations, we expect the GMM-DO
filter to converge to the optimal Bayes filter. This claim is
supported by the results obtained for the case of N = 10000
(Sondergaard 2011). For trials with increased observation
error, we found the GMM-DO filter substantially more ca-
pable than the EnKF. This was also the case for a reduced
diffusion coefficient, κ. The extrapolation of these results
to ocean and atmospheric data assimilation is interesting.
This is because situations with limited number of realiza-
tions, limited measurements, or reduced model errors fre-
quently arise, specifically: i) running realistic computa-
tional models remain costly and the number of DO modes
will remain limited even with distributed computing; ii)
the number of platforms and sensors remains small com-
pared to the scales of interest and data errors of representa-
tiveness can be significant; and iii), the sustained progress
in computational models continues to reduce model er-
rors (e.g. Deleersnijder and Lermusiaux 2008; Deleersnijder
et al. 2010). Taken together, these limitations highlight the
need for refined data assimilation schemes.

The bimodal distributions of the present experiment is
reminiscent of that which arises, for instance, in the dy-
namics of the Kuroshio (Sekine 1990; Miller 1997; Qiu and
Miao 2000; Schmeits and Dijkstra 2001). We consequently
hypothesize that many of the conclusions drawn here may
be extrapolated to larger systems with more complicated
dynamics. This is explored in the following test case on
Sudden Expansion fluid and ocean flows.

b. Sudden Expansion Flows

In this section, we examine and discuss the performance
and results of the GMM-DO filter in more realistic fluid and
ocean dynamics with variable jets and eddies. Specifically,
we consider two-dimensional Sudden Expansion flows. In
fluid dynamics, such flows have been of considerable inter-
est (Durst et al. 1973; Cherdron et al. 1978; Fearn et al.
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1990) and continue to do so. Due to the breaking of symme-
tries with increasing Reynolds number and the consequent
development of at least bimodal statistics, it provides a
test case particularly well-suited to the evaluation of data
assimilation schemes. In ocean dynamics, such flows are
analogous to a uniform barotropic jet (2D flow in the hor-
izontal plane) exiting a narrow strait or an estuary, in the
case of a width that is small enough for the effects of the
earth rotation (Coriolis acceleration) to be neglected. Such
strait or estuary flows are common in the coastal ocean,
generally leading to meanders and vortices as the jet exits
the constriction.

After describing the test case, we will outline the nu-
merical method used. As with the Double Well Diffusion
Experiment, we evaluate the performance of the GMM-
DO filter by application of ‘identical twin experiments’
(Bengtsson et al. 1981; Ide and Ghil 1997a,b): we gen-
erate a simulated true solution over a suitable time frame
at a Reynolds number that allows for interesting dynamics.
Based on sparse and intermittent synthetic measurements
of velocities, we ultimately wish to reconstruct the true
solution with knowledge only of initial uncertainties. We
compare the GMM-DO filter against an ESSE-DO scheme
A (the ESSE scheme-A (Lermusiaux and Robinson 1999)
combined with the DO equations for priors), using as per-
formance metric the root mean square difference between
the true solution and their respective mean fields. We fur-
ther provide detailed results of the Bayesian update proce-
dure at assimilation times and conclude with an in-depth
analysis of their performances.

1) Description of Experiment

It is a well known fact that flows, seemingly symmet-
ric both in initial conditions and geometry, may develop
asymmetries with increasing Reynolds numbers, Re; a phe-
nomenon sometimes referred to as the ‘Coanda’ effect (Fearn
et al. 1990). A classical example of such is the development
of the von Karman vortex street in the wake of a blunt body
placed in a uniform flow (Kundu and Cohen 2008). Vortex
streets are also ubiquitous in the ocean and atmosphere,
especially around islands or other geometric features with
rapidly varying aspect ratios. Sudden Expansion flows ex-
hibit similar behavior.

Sudden Expansion flows, here limited to two spatial
dimensions, are perhaps most easily understood visually,
see figure 6. A developed, symmetric flow of maximum
inlet velocity Umax in a channel of height h expands into a
larger channel of height H, denoting H/h as the expansion
ratio. Depending on the Reynolds number,

Re =
(h/2)Umax

ν
, (10)

where ν is the kinematic viscosity, a number of phenomena
may occur. Experimental results show that, for low Re,

the flow is symmetric about the channel centerline, with
circulation regions formed at the corners of the expansion
(Durst et al. 1973). This is the case depicted in figure
6, in which the flow is described by streamlines. As the
Re is increased, instabilities develop, giving rise to asym-
metric flows, steady or unsteady. In this paper, we will
consider the case of an intermediate Re for which the two-
dimensional flow develops asymmetries, yet remains steady
and laminar. Specifically, we utilize an expansion ratio of 3
and Re = 250, for which Cherdron et al. (1978) suggested
the onset of asymmetries (for the case of three-dimensional
flows). We expect results similar to those predicted numer-
ically and verified experimentally by Fearn et al. (1990) for
the case of Re = 140, as shown in figure 7. The symmetric
inlet velocity initially breaks to one side of the centerline.
Further downstream, a second region of circulation forces
the flow to the opposite side before eventually restoring its
initial symmetry. Clearly, the favored direction of breaking
depends sensitively on perturbations in the initial condi-
tions, thus giving rise to at least bimodal statistics.

2) Test Procedure

(i) Physical setup

In figure 8, we present the setup for our test case. Plac-
ing variables in a non-dimensional form, we let h = 1

3 ;
l = 4; H = 1; and L = 16. We further impose a uniform
inlet velocity of Uin = 1. By conservation of mass and
assuming a steady, fully developed Navier-Stokes flow, we
obtain the velocity profile at the expansion, x = 0 (Kundu
and Cohen 2008):

U(x = 0, y) =
2
h3

(
h2

4
− y2

)
. (11)

and thus a maximum inlet velocity of Umax = U(x = 0, y =
0) = 3

2 .

(ii) Initialization of DO decomposition

• Mean Field, x̄: the x-component of the mean field
velocity is everywhere 1 in the inlet and 1

3 at any
point in the channel, in accordance with continuity;
the y-component of the mean field is initially zero
everywhere.

• Orthonormal modes, x̃i: following Sapsis and Lermu-
siaux (2009), the orthonormal modes are generated
by retaining the dominant eigenvectors of the corre-
lation operator C(·, ·), defined by:

C (r1, r2) = M (r1, r2) C(r), (12)

where r is the Euclidean distance between points r1

and r2, and M(·, ·) is a mollifier function globally
taking the value 1 apart from at solid boundaries,
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at which it vanishes smoothly. We let C(r) take the
form (Lynch and McGillicuddy 2001):

C(r) = (1 + 5r +
52r2

3
)e−5r. (13)

We initialize the stochastic subspace, X 0, by retain-
ing the twenty most dominant eigenvectors (i.e. s =
20) and hold this size constant throughout the GMM-
DO simulations. We note that we have also run cases
where s varies in time, as governed by the system
dynamics and an adaptive criterion (Sapsis and Ler-
musiaux 2012).

• Ensemble Members, {φ} = {φ1, . . . ,φN}: we gener-
ate N = 10000 subspace realizations, φi, from a zero
mean, multivariate Gaussian distribution with diag-
onal covariance matrix. We thus initialize the modes
as being uncorrelated with marginal variances pro-
portional to the eigenvalues of the matrix defined by
correlation (13).

In general, both N and s evolve but N remains much larger
than s to capture the unknown dynamic structure of the
pdf in the evolving subspace. This is feasible because the
cost of evolving the scalar coefficients {φ} is much smaller
than that of the evolving the modes X k.

(iii) Generation of the true solution

We initialize the true solution by generating an arbi-
trary field according to the aforementioned initial pdf, re-
stricted, however, to the five most dominant modes. Since
the true solution is generated from the same statistics as
the one imposed by the initial pdf, we ensure that our ini-
tial statistics capture the true solution. We note that we
have also studied cases where this is not the case and the
results remain similar; here, we focus on evaluating assimi-
lation schemes, so we assume the statistics is representative
of the unknown truth.

The true solution is propagated deterministically for-
ward in time under the governing Navier-Stokes equations
for a total time of T = 100, after which the simulation
settles into its steady state.

(iv) Observations

We make a total of three sets of measurements of both
u- and v-velocities of the true solution at times Tobs =
{50, 70, 90} at the locations indicated in figure 9. The
measurements are independent of each other and are made
with an observation noise distributed according to a zero-
mean Gaussian with variance σ2

obs = 0.1. This variance is
comparable to that expected at the measurement locations
during the first assimilation, T = 50. We note that other
data errors were also employed (not shown here).

(v) Numerical method

Based on Ueckermann et al. (2012), we solve the DO de-
composition of the stochastic Navier-Stokes equations nu-
merically, using a flexible and efficient finite volume frame-
work:

• Geometry: The Sudden Expansion geometry is dis-
cretized on a uniform, two-dimensional, structured
grid of 40 by 30 elements in the x- and y-direction,
respectively. A staggered c-grid is utilized to avoid
spurious pressure modes.

• Discretization in space: The diffusion operator is ap-
proximated using a second order central differencing
scheme; the advection operator makes use of a Total
Variation Diminishing scheme with a monotonized
central limiter (van Leer 1977).

• Discretization in time: For the modes, a first-order
accurate, semi-implicit Projection method is employed,
where the diffusion and pressure terms are treated
implicitly, and the advection is treated explicitly (for
details see Ueckermann et al. (2012)). In all cases we
limit the time step in accordance with the Courant-
Friedrichs-Lewy (CFL) condition. For the scalar co-
efficients, a Runge-Kutta scheme is employed.

• Boundary conditions: As depicted in figure 8, we as-
sume no-slip boundary conditions at all solid bound-
aries, while imposing a uniform velocity of 1 across
the inlet opening. At the open outlet boundary we
restrict the flow by eliminating the first x-derivative
of the v-velocities and the second x-derivative of both
pressure and u-velocities:

∂v

∂x
= 0;

∂2u

∂x2
= 0; and

∂2p

∂x2
= 0. (14)

3) Results and Analysis

In what follows, we focus on the results of the GMM-
DO filter at times T = {10, 50, 70, 100}. These shows the
DO evolution, two assimilation times and the final time,
respectively. They allow to appreciate the mechanics of the
filter, both prior and posterior to the assimilation of data.
We refer to Sondergaard (2011) for complete analyzes every
10 time units.

At each of these times, we display in

• panel (a): the true field, xt;

• panel (b): the mean field, x̄;

• panels (c) and (d): the two most dominant modes,
x̃1 and x̃2;
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• panels (e) and (f): the marginal pdfs of the stochastic
coefficients Φ1 and Φ2, approximated using a kernel
dressing method (Silverman 1992);

• panel (g): a scatter plot of the ensemble set, {φ} =
{φ1, . . . ,φN}, projected in the two-dimensional plane
defined by the pair of modes: (x̃1, x̃2);

• panel (h): a time history of the variances of all the
stochastic coefficients, Φj ; and

• panel (i): a time history of the RMS error of both the
GMM-DO filter and the ‘ESSE-DO filter’, the latter
being equivalent to the GMM-DO filter with a forced
mixture complexity of one (i.e. M=1).

These series of figures illustrate the way in which the flow
and its uncertainties develop, ultimately settling into a
steady mean state. It also shows the manner in which
the DO equations evolve the state representation and how
the GMM update is completed.

At the two assimilation times shown (i.e. T = {50, 70}),
we further display:

• the optimal fitting of the GMM to the set of ensemble
realizations within the DO subspace based on the EM
algorithm and the BIC; and,

• the spatially local Bayesian updates at each of the
measurement points.

From here on, all figures depicting the fluid flow will be
described by streamlines overlaid on a color-plot denoting
the magnitude of velocity.

(i) T = 10
After 10 non-dimensional time units (figure 10), the ini-

tial perturbations in the true solution, panel (a), have not
yet broken the symmetry of the flow, ultimately causing
the appearance of eddies as shown in figure 7. The sym-
metric mean field, panel (b), consequently still provides a
good approximation for the true solution, as quantified by
the low RMS error, panel (i). We note that as no data has
yet been assimilated, the GMM-DO filter and ESSE-DO
scheme provide identical solutions (the two schemes differ
mainly in their manner of carrying out the update). The
DO statistics (only two of twenty modes shown here) have
seemingly evolved little from the initial Gaussian seeding,
as represented by the scatter plot, panel (g), and marginal
pdfs, panels (e) and (f). The corresponding modes, panels
(c) and (d), further give an indication of the initial correla-
tions and probabilistic structures that exist in the flow by
combinations with the coefficients (panel g).

(ii) T = 50 – prior distribution

At the time of the first assimilation of data, dynamics
has drastically broken the symmetry of the true solution,

as visualized in figure 11–(a). Meanwhile, the DO mean
field has remained symmetric, panel (b), thus causing a
substantial increase in the RMS error, as shown in panel
(i). Fittingly, the filter uncertainty has increased accord-
ingly, witnessed by the inflation of variances of each of the
stochastic coefficients in panel (h). Moreover, the marginal
distributions of the two most dominant modes, panels (e)
and (f), suggest the presence of at least bimodal statistics,
reflecting the ambiguity of direction with which the Sud-
den Expansion flow may break. As such, we expect that
the prior DO distribution still statistically encompasses the
true solution. Panel (g) also shows that the dynamical
system manifold leads to 2d-marginal pdfs with seemingly
“harder boundaries”, in part due to the limited width of
the physical domain and size of the eddies and meanders.

(iii) T = 50 – fitting of GMM

We show the fitting of the GMM using the EM algo-
rithm to the prior set of ensemble realizations, {φf} =
{φf

1 , . . . ,φf
N}, in figure 12. Based on the BIC, we deter-

mine the optimal mixture complexity to be M = 29. We
display the one-standard-deviation contours of the 29 mix-
ture components (shown in red) marginalized across pairs
of modes (2d joint pdfs), considering only the four most
dominant modes. We further project the optimal GMM
onto the domain of each of the stochastic coefficients, thus
giving their respective 1d marginal distribution. We find
that the GMM-DO filter successfully captures the compli-
cated, multi-dimensional and nonlinear features present in
the set of 10000 DO realizations. For example, the 2d-
projections of the GMM clearly identify the localized re-
gions of the subspace (and thus of the state space) where
solutions are dynamically possible while the 1d-projections
differ little from the marginal distributions predicted by a
1d kernel dressing method (shown in blue). Finally, while
not shown in the figure, any other scheme (e.g. ESSE-DO)
that fits a single Gaussian to the set of DO realizations
undoubtedly results in a severe loss of dynamical informa-
tion. This is supported by the ESSE-DO performance at
later assimilation times.

(iv) T = 50 – local Bayesian update in the data space

Based on the GMM-DO filter’s optimal GMM fit, we
display in figure 13 the local Bayesian updates projected
at each of the observation locations (indicated in panel (a)
of figure 11). Shown are the: local true solution, obtained
observations, and prior and posterior GMM-DO distribu-
tions, computed in exact accordance with Bayes’ Law. The
local prior distributions are logically more bimodal for u
than for v and more uniform near the center of the flow.
Overall, they are found to consistently capture the true
solution, as particularly evidenced in panel (a). Had we
instead used a Gaussian approximation for the prior dis-
tribution, the true solution would have been within the
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tail of the Gaussian and thus inadequately represented. Of
further notice is the shape of the GMM-DO filter’s poste-
rior distribution, generally placing greater weight on the
mixture components surrounding the true solution. This
is again clearest for the Bayesian update in panel (a), in
which the left lobe of the bimodal distribution encompasses
the true solution.

(v) T = 50 – posterior distribution

We show the resulting posterior state description in fig-
ure 14. The GMM-DO mean estimate has slightly smaller
RMS error than the ESSE-DO scheme mean. However, in
accord with the significant data uncertainty, both filters
show limited improvements in their estimates for the true
solution, as indicated by the small reduction in the RMS
error in panel (i). Meanwhile, the stochastic subspace –
here just visualized by modes x̃1 and x̃2 – has remained
unchanged, as explained in part I. Yet, the two filters differ
in one crucial aspect: while the posterior statistics of the
ESSE-DO scheme-A is Gaussian (not shown), the GMM-
DO filter has retained an accurate description of the true
statistics of the flow. As such, we expect a superior perfor-
mance of the latter at the next assimilation step at T = 70.

(vi) T = 70 – prior distribution

By the time of the second assimilation, figure 15, the
prior state estimate of the GMM-DO filter still suggests
the presence of at least bimodal statistics, most notably
reflected in the marginal distribution of the most dominant
stochastic coefficient, panel (e). The RMS error has, since
the first assimilation at time T = 50, further increased for
both filters, the GMM-DO filter providing a slightly su-
perior estimate over the ESSE-DO scheme. The variances
of the stochastic coefficients, panel (h), have also slightly
increased.

(vii) T = 70 – fitting of GMM

In figure 16, we show the fitting of the GMM to the
set of realizations in the DO subspace at time T = 70.
Here, we determine the optimal mixture complexity to be
M = 20 based on the BIC, reflecting the multi-dimensional
structures of the true probability distribution. As before,
we note the satisfactory representation of the non-Gaussian
features by the GMM, both in one- and multi-dimensional
space.

(viii) T = 70 – local Bayesian update in the data space

In figure 17, we show the local Bayesian updates pro-
jected at each of the observation locations, using the opti-
mal GMM just determined. The local prior GMM-DO pdfs
at these data points are now more bimodal than at T = 50.
This is in part because at T = 70, the data points are right
at the location of a wide meander. Overall, we again note
that the prior pdfs capture the true solution relatively well,

especially for the lower data points, see panels (d), (e) and
(f), which are in a recirculation eddy (see figure 15). Con-
sidering the GMM-DO posterior estimate at data points,
the local probability densities have increased where the ob-
servations were most expected; this is most clearly visible
from increased lobes close to the observations.

(ix) T = 70 – posterior distribution

Based on the prior fitting and analysis, we show the
global Bayesian update and corresponding posterior distri-
bution at time T = 70 in figure 18. We now note how
the updated mean field adequately captures the true solu-
tion, in particular having determined the direction of the
main meander. The RMS error has been reduced, see panel
(i). An added strength of the GMM-DO filter is its abil-
ity, again, to retain the bimodal structure, as witnessed in
panels (e), (f) and (g). As such, it stores the possibility
that the flow may in fact have meandered in the opposite
direction.

(x) T = 100

At the final time, T = 100, the true solution is settling
into a steady state, exhibiting the characteristic asymmet-
ric flow (e.g. figure 7). This is nearly perfectly captured
by the GMM-DO filter. In particular, the RMS error of
the GMM-DO mean has been reduced to that at which it
started, at time T = 0, before the perturbations in the true
solution were dynamically evolved. The bimodal struc-
ture of the GMM-DO filter, while still present, is much
reduced, suggesting an added confidence in its estimate
for the mean. This is further supported by the reduced
variances of the stochastic coefficients, displayed in panel
(h). As such, we conclude that the GMM-DO filter has
accurately captured the true solution, exhibiting little un-
certainty in its estimate.

4) Discussion

We have examined the application of the GMM-DO fil-
ter to fluid and ocean dynamics with variable jets and ed-
dies. The illustration consisted of a two-dimensional Sud-
den Expansion flow of aspect ratio 3 and Re = 250, at
which the true solution becomes asymmetric. Given the
sensitivity of the meanders and eddies to the initial pertur-
bations, the corresponding stochastic flow admits complex,
far-from-Gaussian distributions and as such is well-suited
to evaluate the performance of the GMM-DO filter.

Based on the root mean square errors between the filter
mean and true solution, we found the GMM-DO filter to
significantly outperform the ESSE-DO scheme A, the lat-
ter referring to the GMM-DO filter with a forced mixture
complexity of M = 1. Specifically, assimilating temporally
and spatially sparse measurements, the GMM-DO filter ac-
curately predicted the structure of the true solution at time
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T = 100 (figure 19). In particular, based on the RMS er-
ror, the GMM-DO filter showed a four-fold improvement
over the ESSE-DO scheme. (While these results naturally
depend on the chosen truth and observations, similar con-
clusions were drawn based on many other runs not shown
here.)

We found the performance of the ESSE-DO scheme to
be comparable to that of the GMM-DO filter up until the
second assimilation step (i.e. T = 70), after which the
latter showed marked improvements. This is because the
GMM-DO filter accurately captures and retains the inher-
ent far-from-Gaussian statistics, both prior and posterior
to the melding of data, in exact accordance with Bayes’
Law. With this, the statistical representation of the state
following the first assimilation of data remains accurate, re-
flected in the successful updates at later assimilation times.
At T = 70, the dynamics is well captured by the data loca
tions and the GMM-DO filter compellingly corrects the
mean and uncertainties.

A further strength of the GMM-DO filter is its ability
to adapt to the complexity of the subspace realizations at
assimilation times. In particular, for the illustrated case,
the optimal mixture complexity at the first update was
found to be M = 29; at the second, M = 20; and at
the third, M = 14; each as determined by the BIC. The
accuracy of the fitting procedure is illustrated by figures
12 and 16. This adaptation suggests that Bayes’ Law is
accurately carried out during the update, neither under-
nor over-fitting the true prior pdf.

Finally, by adopting the DO equations, we render com-
putationally tractable the optimal fitting of GMMs. Rather
than working in n-dimensional space, the focus is the s-
dominant subspace (with s � n) defined by X k. The mi-
nor loss of information incurred by the reduced dimension-
ality is more than counterbalanced by the optimal GMM
fitting: the complex pdf structures can be captured in the
subspace. The subsequent non-Gaussian GMM update in
this subspace is then also computationally efficient. Ulti-
mately, the result is an accurate estimation of the posterior
pdf, in some sense the central goal of data assimilation.

3. Conclusion

In part II of this two-part paper, we evaluated the per-
formance of the GMM-DO filter in a dynamical systems
setting, applying it to (1) the Double Well Diffusion Ex-
periment and (2) Sudden Expansion flows. We illustrated
the overall capabilities of the filter including: equations-
based and adaptive characteristics; dynamical evolution of
the pdfs and DO decompositions; estimation of the GMM
parameters in the DO subspace using the EM algorithm
and Bayesian Information Criterion (BIC); and, efficient
Bayesian updates and the corresponding data impacts. We
also compared results to those of contemporary filters in-

cluding the Ensemble Kalman Filter, Maximum Entropy
Filter and ESSE-DO filter. Results clearly showed the ad-
vantages of respecting nonlinear dynamics and preserving
non-Gaussian statistics.

With the Double Well Diffusion Experiment, we vali-
dated the use of the EM algorithm and BIC with GMMs
in a filtering context. In particular, we have shown the
GMM-DO filter to outperform the Ensemble Kalman filter
in its ability to track the transition of the ball from one
well to the other. We attribute this skill to the former’s
ability to capture and retain non-Gaussian features during
the data assimilation update. We have further suggested
the benefits of adopting the GMM-DO filter over the oth-
erwise novel Maximum Entropy filter; the GMM-DO filter
is adaptive, generic and substantially more efficient, learn-
ing from information contained in the dynamics and avail-
able data. We also examined the sensitivity to variations
in the input parameters, finding the GMM-DO filter espe-
cially superior for cases of few realizations, sparse and noisy
measurements, and moderate model errors – all commonly
encountered in ocean and atmospheric applications.

With the Sudden Expansion flows, we showed the prop-
erties of the GMM-DO filter in problems of non-trivial
dimensionality, specifically flows with dynamic jets and
eddies. By focusing on the evolving dominant subspace
of the full stochastic state space, the GMM-DO filter en-
ables an otherwise computationally intractable procedure.
Specifically, it allows the prediction of prior uncertainties
using nonlinear differential equations, the optimal fitting
of GMMs to large sets of realizations in the subspace,
and the subsequent efficient non-Gaussian update of the
GMM pdfs by Bayesian data assimilation. We found the
GMM-DO filter to consistently capture the non-Gaussian
features of the flow uncertainties, and, critically, preserve
them through the Bayesian update. As a consequence,
the GMM-DO filter gave a fourfold improvement over the
ESSE-DO scheme at the final time step for the given test
case. We note that we have obtained similar results with
systems of lower (e.g. the Lorenz-95 model) and higher di-
mensionality (other 2D flows with larger state vectors and
more complex features).

A research direction that is now feasible is the study of
the dynamics and evolution of the GMMs: they identify the
localized nonlinear regions of the stochastic subspace that
correspond to dynamically realizable solutions of the uncer-
tain governing equations. Such studies would also be useful
for data-model comparisons, adaptive sampling and learn-
ing of model errors. If the pdfs of real ocean or atmospheric
fields are complex and far-from-Gaussian, we showed that
refined data assimilation schemes such as the GMM-DO
filter are needed. Should these pdfs be Gaussian, an advan-
tage of the GMM-DO filter is that it automatically adapts
to a linear Kalman update. Another obvious next step is
the efficient implementation of the GMM-DO filter and its
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variations to a full, 4D ocean model, evaluating its perfor-
mance in a multiscale ocean setting (Haley and Lermusiaux
2010).
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APPENDIX A

The Maximum Entropy Filter

The Maximum Entropy filter (Eyink and Kim 2006) –
developed to handle far-from-Gaussian distributions in a
dynamical systems setting – is based on a Monte Carlo ap-
proach and is applicable to cases in which a climatological
distribution for the system of interest exists, is known, and
further can be well approximated by a (semi-)parametric
distribution that allows for tractable Bayesian inference.
For simplicity, in what follows we restrict our attention to
univariate distributions. We note, however, that the anal-
ysis generically extends to the multivariate case.

We assume that our system is defined such that a clima-
tological distribution, qX

(
x
)
, exists and is known. While

the method holds for arbitrary distributions, we restrict
our attention to a GMM of complexity M :

qX

(
x
)
≈

M∑
m=1

wm ×N
(
x;µm, σ2

m

)
. (A1)

For a system modeled as a non-periodic Markov Chain
with a single recurrent class (Bertsekas and Tsitsiklis 2008),
it can be shown that any distribution, pX

(
x
)
, forced under

the transition kernel (i.e. model) converges to the station-
ary (i.e. climatological) distribution of the system, qX

(
x
)

(Cover and Thomas 2006). We write this as:

lim
k→∞

DX(pk || q) = 0, (A2)

where k is a discrete time index, and DX(p || q) denotes
the Kullback-Leibler divergence (Kullback 1968) between
probability density functions pX

(
x
)

and qX

(
x
)
:

DX(p || q) =
∫
X

pX

(
x
)
log

pX

(
x
)

qX

(
x
) dx. (A3)

Adopting this framework, an ensemble of forecast realiza-
tions (or particle forecasts) is assumed available at the time

of a new observation, y. The prior probability density func-
tion of the system is then fit to these realizations using an
information projection,

p̂k
X

(
x
)

= argmin
p∈Sk

DX (p || q) , (A4)

where Sk denotes a chosen set of distributions consistent
with Monte Carlo moment constraints on the set of fore-
cast realizations, {x} = {x1, . . . , xN}. Qualitatively, we
understand (A4) as finding the distribution, pX

(
x
)
, that

satisfies the moment constraints given by Sk and that is
‘closest’ to the climatological distribution, qX

(
x
)
, having

chosen the Kullback-Leibler divergence for measure of dis-
tance. A hat is used on the prior pdf, p̂X

(
x
)
, to note that

it has arisen through an information projection.
For the purposes of tractability, we will concern our-

selves only with the first and second moments of the par-
ticles, i.e.

Sk = {pX(x) : E
[
X | pX(x)

]
=

1
N

N∑
i=1

xi ≡ x̄k,

var(X | pX(x)) =
1
N

N∑
i=1

(xi − x̄)2 ≡ s2
k},

(A5)

although, the analysis holds for arbitrary constraints. We
note that x̄k and s2

k refer to the sample mean and vari-
ance, respectively, at discrete time k. When limiting our
attention to the first two moments of the set of realizations,
{x} = {x1, . . . , xN}, we will show that the prior distribu-
tion, too, takes the form of a GMM.

With Sk defined as in (A5), it can be shown that p̂k
X

(
x
)

is a member of the following exponential family (Cover and
Thomas 2006):

p̂k
X

(
x
)

= qX

(
x
)eλ1x+λ2x2

Z(λ1, λ2)
, (A6)

with λ1 and λ2 chosen such that (A5) is satisfied (i.e. λ1 =
λ1(x̄k, s2

k) and λ2 = λ2(x̄k, s2
k)), and where Z(λ1, λ2) is the

partition function ensuring that p̂k
X

(
x
)

is a valid distribu-
tion. By substituting (A1) into (A5), and completing the
square (dropping the explicit notation of time with the un-
derstanding the update occurs at discrete time k), it can
be shown (Sondergaard 2011) that p̂X

(
x
)

takes the form
of a GMM:

p̂X

(
x
)

=
M∑

m=1

ŵm ×N
(
x; µ̂m, σ̂2

m

)
(A7)
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with parameters

ŵm =
wm × e

− 1
2σ2

m

„
µ2

m−
(µm+σ2

mλ1)2

1−2σ2
mλ2

«
Z(λ1, λ2)

√
1− 2σ2

mλ2

(A8)

µ̂m =
µm + σ2

mλ1

1− 2σ2
mλ2

(A9)

σ̂2
m =

σ2
m

1− 2σ2
mλ2

. (A10)

where wm, µm and σ2
m are assumed known (parameters of

the fixed background or climatology pdf). Having deter-
mined the prior pdf (here, left as a function of λ1(x̄, s2) and
λ2(x̄, s2)), we proceed with the Bayesian update based on
observation y. We showed in part I (Sondergaard and Ler-
musiaux 2012), however, that for a Gaussian observation
model,

pY |X(y|x) = N
(
y;x, σ2

o

)
, (A11)

with a GMM as prior, the posterior distribution equally
takes the form of a GMM. We specifically arrive at

pX|Y (x|y) =
M∑

m=1

w̃m ×N
(
x; µ̃m, σ̃m

)
, (A12)

with parameters

w̃m =
ŵm ×N

(
y; µ̂m, σ2

o + σ̂2
m

)∑M
i=1 ŵi ×N

(
y; µ̂i, σ2

o + σ̂2
i

) (A13)

µ̃m = µ̂m +
σ̂2

m

σ2
o + σ̂2

m

(y − µ̂m) (A14)

σ̃2
m =

σ̂2
mσ2

o

σ̂2
m + σ2

o

. (A15)

At this point, we generate a new set of realizations, {x} =
{x1, . . . , xN}, from the updated GMM and evolve these in
time using the governing equation for the system.
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x=1
x=‐1

Fig. 1. Forcing Function, f(x). At any location (o) in
the horizontal, x, the ball is forced under pseudo-gravity
in the direction indicated by the appropriate vector. The
magnitude of the vector corresponds to the strength of the
forcing. We note that there exists an unstable node at the
origin, and two stable nodes at x = ±1, corresponding to
the minima of the wells.
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Gaussian Mixture Approximation

Exact Distribution

x=-1 x=1

Fig. 2. Climatological distribution and Gaussian mixture
approximation for κ = 0.40. In accordance with intuition,
the distributions are bimodal, appropriately centered on
the minima of each of the two wells.
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Fig. 3. Results of the three filters – GMM-DO filter (blue);
MEF (yellow); and EnKF (red) – for the case of N = 1000,
κ = 0.5 and σ2

o = 0.100. The black curve denotes the true
solution for the location of the ball, with the green markers
representing observations with associated standard devia-
tion envelope. The highlighted instances – (a), (b) and (c)
– are examined in detail in figure 4.
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Fig. 4. An analysis of the prior and posterior distributions
assigned by each of the three filters – the GMM-DO filter,
MEF and EnKF – at times t = 18, t = 22 and t = 26 for the
standard test case, displayed in figure 3, with parameters
N = 1000, κ = 0.4 and σ2

o = 0.025. We also display the
optimal mixture complexity for the prior distribution of
the GMM-DO filter, as obtained by application of the EM
algorithm and the BIC.
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Fig. 5. A study of the filter sensitivities to variations in each
of the three parameters κ, σ2

o and N . In panel (i), we reduce
the number of ensemble realizations to N = 100, while holding
the other two parameters constant. In panel (ii), we reduce the
diffusion coefficient to κ = 0.4, while in panel (iii), we reduce
the observation error to σ2

0 = 0.025. These results are to be
compared with the standard test case, shown in figure 3, with
parameters N = 1000, κ = 0.5 and σ2

o = 0.025.
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H, channel height

x, downstream distance

h, inlet height

Uin, inlet velocity

Uout, outlet velocity

Fig. 6. Setup of the Sudden Expansion test case (Fearn
et al. 1990).
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Fig. 7. Calculated streamlines at Re = 140. (Fearn et al.
1990).
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y, transverse distance

Uout, outlet velocity

Uin, inlet velocity

x, downstream distance

No‐slip boundary conditions at walls

L, channel length

H, channel height

l, inlet length

h, inlet height

Fig. 8. Sudden Expansion Test Setup.

20



Observations

xobs

yobs

Uin, inlet velocity

Uout, outlet velocity

Fig. 9. Observation Locations: (xobs, yobs) =
{(4,− 1

4 ), (4, 0), (4, 1
4 )}.
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root mean square errors (between the DO mean and the
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Fig. 11. As Fig. 10, but for the prior DO decomposition
at time T = 50 which is the first assimilation time step.
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Fig. 12. Marginal prior distributions (in one and two dimen-
sions) for the DO stochastic coefficients at time T = 50 (first
assimilation time step) focusing on the first four DO modes only.
The complete prior distribution is obtained by fitting the GMM
using the EM algorithm and BIC to the ensemble of realizations
in the DO subspace. This leads to an optimal complexity es-
timate of M = 29. The GMM scalar marginals (1d pdf) and
planar marginals (2d joint pdfs) are illustrated by the red plain
curves and red standard ellipses, respectively. The DO realiza-
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and a scatter plot in 2d. We note that the GMM marginals
shown are only projections of a complex GMM distribution of
20d i.e. s = 20.

24



True Solution

Observation

Observation Distribution

Prior Distribution

Posterior Distribution

(a) u‐observation @ (x,y) = (4,+0.25)

(c) u‐observation @ (x,y) = (4,0)
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prior and posterior distributions at the observation loca-
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Fig. 14. As Fig. 11, but for the posterior GMM-DO esti-
mates at time T = 50.
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Fig. 15. As Fig. 11, but for the prior GMM-DO estimates
at time T = 70.

27



Stochastic Coefficient 4

-0.5 0 1.0

-0.6

0

0.4

40

0

0 10

St
o

ch
as

ti
c 

C
o

e
ff

ic
ie

n
t 

3

20

0

-1.0

0

1.0

-1.0 0 1.0

0 20

Stochastic Coefficient 1

St
o

ch
as

ti
c 

C
o

e
ff

ic
ie

n
t 

2

Gaussian Mixture Model

Ensemble Members

Fig. 16. As Fig. 12, but at the second GMM-DO assimila-
tion time T = 70: when compared to the priors at T = 50,
the optimal complexity is now found to be a bit smaller
M = 20, the 2d marginals of the stochastic coefficients
remain complex, while the 1d marginals are either more
bimodal (coefs. 1 to 3) or relatively unimodal (coef. 4).
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Fig. 18. As Fig. 15, but for the posterior GMM-DO esti-
mates at time T = 70.
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Fig. 19. As Fig. 15, but for the prior GMM-DO estimates
at time T = 100.
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Table 1. Notation relevant to the GMM-DO filter. (While
we have primarily adopted notation specific to probability
theory, information theory and estimation theory, where
possible we also utilize the notation advocated by Ide et al.
(1997).)

Descriptors
(·)f forecast
(·)a analysis

Scalars
i ∈ N stochastic subspace index
j ∈ N mixture component index
k ∈ N discrete time index
n ∈ N dimension of state vector
p ∈ N dimension of observation vector
q ∈ N dimension of dominant stochastic subspace
r ∈ N realization index
s ∈ N dimension of stochastic subspace
M ∈ N complexity of Gaussian Mixture Model
N ∈ N number of Monte Carlo members
Φi ∈ R random variable describing the pdf for orthonormal mode x̃i

Vectors
X ∈ Rn state (random) vector
x ∈ Rn state realization
x̃i ∈ Rn DO mode i: dynamically orthonormal basis for stochastic subspace
x̄ ∈ Rn mean state vector
Y ∈ Rp observation (random) vector
y ∈ Rp observation realization
x̄j ∈ Rn mean vector of mixture component j in state space
µj ∈ Rs mean vector of mixture component j in stochastic subspace
Φ ∈ Rs multivariate random vector, [Φ1 . . . Φs]
φ ∈ Rs realization residing in stochastic subspace
Υ ∈ Rp observation noise (random) vector
υ ∈ Rp observation noise realization

Matrices
P ∈ Rn×n covariance matrix in state space
Σj ∈ Rs×s covariance matrix of mixture component j in stochastic subspace
Pj ∈ Rn×n covariance matrix of mixture component j in state space
R ∈ Rp×p observation covariance matrix
H ∈ Rm×n (linear) observation model
X ∈ Rn×s matrix of s DO modes, [x̃1 . . . x̃s]
{φ} ∈ Rs×N set of subspace ensemble realizations, {φ1, . . . ,φN}
{x} ∈ Rn×N set of state space ensemble realizations, {x1, . . . ,xN}
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