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The spatiotemporal evolution of a viscoelastic jet depends on the relative magnitude
of capillary, viscous, inertial and elastic stresses. The interplay of capillary and elastic
stresses leads to formation of very thin and stable filaments between drops, or to ‘beads-
on-a-string’ structure. We show that by understanding the physical processes that control
different stages of the jet evolution it is possible to extract transient extensional viscosity
information even for very low viscosity and weakly-elastic liquids which is a particular
challenge using traditional rheometers. The parameter-space at which a forced jet can
be used as an extensional rheometer is numerically investigated using a one-dimensional
nonlinear free surface theory for Oldroyd-B and Giesekus fluids. The results show that
even when the ratio of viscous to inertio-capillary time scales (or Ohnesorge number) is
as low as 𝑂ℎ ∼ 0.02, the temporal evolution of the jet can be used to obtain elongational
properties of the liquid.

1. Introduction

Understanding the instability and breakup of polymeric jets is important for a wide
variety of applications including spraying of fertilizers and paints and ink jet printing
applications (Hoath et al. (2009); Morrison & Harlen (2010)). Such fluids are typically
only weakly viscoelastic and the jetting/breakup process involves a delicate interplay of
capillary, viscous, inertial and elastic stresses.
In this study, we investigate the growth and evolution of surface-tension-driven insta-

bilities on an axisymmetric viscoelastic jet using nonlinear theory for a range of different
constitutive equations. The initial growth of the disturbances can be predicted using
linear instability analysis for small perturbations. A viscoelastic jet is initially more un-
stable when compared to a Newtonian fluid of the same viscosity and inertia (Middleman
(1965), Goldin et al. (1969), and Brenn et al. (2000)). As the local radius of constrictions
in the jet decreases under the action of surface tension, elastic stresses grow and become
comparable to the capillary pressure, leading to formation of a uniform thread connect-
ing two primary drops. This ‘beads-on-a-string’ structure can be captured by quasi-linear
constitutive models like the Oldroyd-B model, and the radius of the thin cylindrical lig-
ament connecting the beads necks down exponentially in time (Bousfield et al. (1986);
Entov & Yarin (1984)). The finite time breakup of the jet observed experimentally can
be captured using the nonlinear Giesekus model or FENE model (Fontelos & Li (2004)).
The temporal evolution of a viscoelastic fluid thread depends on the relative magnitude

of the viscous, inertial, and elastic stresses and the capillary pressure (Bhat et al. (2010)).
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In order to study this inertio-elasto-capillary balance in detail for a jet, two dimensionless
parameters are defined: the Ohnesorge number 𝑂ℎ = 𝜂0√

𝜌𝛾𝑅0
which is the inverse of

the Reynolds number based on a characteristic capillary velocity 𝛾
𝜂0

and, secondly, the

intrinsic Deborah number 𝐷𝑒 = 𝜆
√
𝛾/𝜌𝑅3

0 defined as the ratio of the time scale for
elastic stress relaxation, 𝜆, to the “Rayleigh time scale” for inertio-capillary breakup of
an inviscid jet, 𝑡𝑅 =

√
𝜌𝑅3

0/𝛾. In these expressions, 𝜌 is the fluid density, 𝜂0 is the fluid
zero shear viscosity, 𝛾 is the surface tension, 𝑅0 is the initial radius of the jet, and 𝜆 is
the relaxation time associated with the polymer solution.

Schümmer & Tebel (1983) proposed that an extensional rheometer based on jetting
can be used to obtain comparative information about elongational behavior of polymer
solutions. Here, we show that by understanding the physical processes that control each
stage of the spatiotemporal evolution in the jet profile it is possible to extract tran-
sient extensional viscosity information even for very low viscosity and weakly-elastic
liquids, at high strain rates relevant to spraying and jetting. The jet extensional rheome-
ter is especially useful since filament-stretching rheometers can typically only be used to
measure the extensional viscosity of moderately viscous non-Newtonian fluids, at least
in 1g. Gravitational sagging is a limiting factor in filament-stretching devices for low-
viscosity polymeric liquids (Anna et al. (2001)). Similarly the capillary breakup elonga-
tional rheometry (CABER) technique faces challenges for low-viscosity elastic polymer
solutions. The limitations arise from the finite time it takes for the device to impose the
initial axial deformation to the sample. In addition, the Ohnesorge number needs to be
large enough (𝑂ℎ ≳ 0.14) to be able to distinguish the effect of viscosity on the local
necking and breakup of the filament (Rodd et al. (2005)). For aqueous solutions with
surface tension coefficient of 𝛾 ≃ 0.07𝑁/𝑚 and plate radius of 3𝑚𝑚, the lower bound on
the measurable viscosity is 𝜂0 ≳ 63 𝑚𝑃𝑎𝑠.

Achieving a quantitative understanding of Schümmer & Tebel (1983)’s experimental
measurements was limited by the large experimental parameter space involved. We use
our numerical simulations to explore the range of operating conditions over which a
jet can effectively be used to measure the transient extensional viscosity of the liquid.
We show that this is limited by three independent factors: 1) calculation of the tensile
stress difference in the thread connecting the drops must be directly connected to the
evolution in the local jet radius; i.e. an “elasto-capillary balance” must be established;
2) the range of diameters over which this elasto-capillary regime is established must be
experimentally-resolvable; 3) the formation of secondary droplets along the thread must
be suppressed. In the present work, we show how the perturbation frequency of forcing
that is imposed on the jet can be used to control those conditions and determine the
optimal range of excitations for using the self-thinning dynamics of fluid jet breakup as a
means of performing transient extensional rheometry. We call this rheometer, Rayleigh-
Ohnesorge Jet Extensional Rheometer (ROJER).

2. Problem Description

In this study, we consider an axisymmetric slender jet of polymeric liquid using the
Giesekus and Oldroyd-B constitutive equations (Bird et al. (1987)). The radius of the jet
𝑅(𝑧, 𝑡) slowly varies along the liquid jet and we only consider the leading-order approx-
imation in an expansion in the radius (Eggers (1997)). The conservation of volume and
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momentum along the jet can be written as follows:
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where 𝑣(𝑧, 𝑡) is the axial velocity; 𝜂𝑠 and 𝜂𝑝 are the solvent and polymer contribution to
the total viscosity, respectively (total viscosity 𝜂0 = 𝜂𝑠 + 𝜂𝑝); 𝑅𝑧 indicates the partial
derivative ∂𝑅

∂𝑧 ; 𝜎𝑧𝑧 and 𝜎𝑟𝑟 are the diagonal terms of the extra-stress tensor and they can
be calculated as follows:

𝜎𝑧𝑧 + 𝜆

(
∂𝜎𝑧𝑧

∂𝑡
+ 𝑣

∂𝜎𝑧𝑧

∂𝑧
− 2

∂𝑣

∂𝑧
𝜎𝑧𝑧

)
+

𝛼𝜆

𝜂𝑝
𝜎2
𝑧𝑧 = 2𝜂𝑝

∂𝑣

∂𝑧

𝜎𝑟𝑟 + 𝜆

(
∂𝜎𝑟𝑟

∂𝑡
+ 𝑣

∂𝜎𝑟𝑟

∂𝑧
+

∂𝑣

∂𝑧
𝜎𝑟𝑟

)
+

𝛼𝜆

𝜂𝑝
𝜎2
𝑟𝑟 = −𝜂𝑝

∂𝑣

∂𝑧
(2.4)

where 𝜆 is the relaxation time of the liquid; 𝛼 is a positive dimensionless parameter
corresponding to the anisotropy of the hydrodynamic drag on the polymer molecules
and is called the mobility factor (Giesekus (1982)). For 𝛼 = 0, the Oldroyd-B model is
recovered. Equation (2.2) can be written in conservative form as (Fontelos & Li (2004);
Li & Fontelos (2003)):
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where ∂𝜅
∂𝑧 = − 1

𝑅2
∂
∂𝑧 (𝑅

2𝐾) (Entov & Yarin (1984)) and 𝐹 is the total tensile force exerted
over the cross sectional area of the jet. Forest & Wang (1990) asymptotically derived
slender jet model for a viscoelastic fluid and Bousfield et al. (1986) numerically solved a
1D model using a Lagrangian formulation. The model used in this manuscript is similar
to that of Bousfield et al. (1986) but an Eulerian formulation is used. The above equations
are solved using an implicit finite difference scheme on a staggered grid and computations
of very low Oh number and De number jets can be achieved. 1400 grid points are used
and the time step is set equal to 3× 10−5𝑡𝑅. Periodic boundary conditions are used and
the the initial shape of the jet, at 𝑡 = 0, is described as 𝑅 = 𝑅0(1 + 0.01 cos(𝑘𝑧)) where
𝑘 is the wavenumber. The evolution and breakup of a viscoelastic jet can be represented
in terms of five dimensionless parameter: 𝑂ℎ, 𝐷𝑒, the dimensionless wavenumber 𝑘𝑅0,
the solvent viscosity ratio 𝛽 = 𝜂𝑠

𝜂0
, and the mobility factor 𝛼.

The results from the simulation can be used to calculate extensional viscosity of the
viscoelastic liquid. For a slender liquid jet, the local strain rate can be calculated as:

�̇� =
∂𝑣

∂𝑧
= − 2

𝑅

𝑑𝑅

𝑑𝑡
(2.7)

The transient uniaxial extensional viscosity, can be written as:

𝜂+𝐸 ≡ 𝜏𝑧𝑧 − 𝜏𝑟𝑟
�̇�

= 3𝜂𝑠 +
𝜎𝑧𝑧 − 𝜎𝑟𝑟

�̇�
(2.8)

As defined, the extensional viscosity is a locally varying quantity and to realize a useful
rheometer, we need to generate a spatially and temporally constant extension rate. In
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Figure 1: Dispersion curve predicted by linear instability of a viscoelastic jet and com-
parison to a purely viscous jet and an inviscid jet. The formation of satellite droplets is
suppressed at wavenumbers larger than 𝑘 ≳ 0.85 at 𝑂ℎ = 0.04 and 𝑘 ≳ 0.75 at 𝑂ℎ = 0.4.
Jet profiles are calculated using non-linear analysis.
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Figure 2: Temporal evolution of an Oldroyd-B liquid jet at𝑂ℎ = 0.04,𝐷𝑒 = 0.8, 𝛽 = 0.27,
𝛼 = 0: a)𝑘 = 0.2; b)𝑘 = 0.8.

the elasto-capillary regime, we obtain a thin uniform tread with a radius which decreases
exponentially in time resulting in a constant strain rate(Clasen et al. (2006)).

𝑅𝑚𝑖𝑑(𝑡)

𝑅0
≈

(
𝜂𝑝𝑅0

2𝜆𝛾

)1/3

exp(−𝑡/3𝜆); �̇�𝑚𝑖𝑑 =
2

3𝜆
(2.9)
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Figure 3: Space-time diagrams for thinning and breakup of an Oldroyd-B liquid jet at
different disturbance wavenumbers, 𝑂ℎ = 0.04,𝐷𝑒 = 0.8, 𝛽 = 0.27 , 𝛼 = 0. For each axial
position and time, the contour plots of 𝑙𝑜𝑔10[𝑅(𝑧, 𝑡)] are shown. Simulations are continued
till a minimum dimensionless radius of 10−3.5 = 0.0003 is obtained. Dimensionless axial
position, 𝑧, varies between 0 and 2𝜋/𝑘. a)𝑘 = 0.2 b)𝑘 = 0.675 c)𝑘 = 0.8 d)𝑘 = 0.9

3. Results and Discussion

In this section, we show how the temporal evolution of a jet can be used to extract the
extensional properties of a low viscosity weakly-elastic liquid. In particular, we discuss
computational rheometry for an aqueous polymeric solution with zero shear viscosity
𝜂0 = 3.7𝑚𝑃𝑎𝑠, 𝜂𝑠 = 1𝑚𝑃𝑎𝑠, relaxation time 𝜆 = 0.17𝑚𝑠, density 𝜌 = 1000𝑘𝑔/𝑚3, and
surface tension 𝛾 = 0.06𝑁/𝑚 moving out of a nozzle with the radius of 𝑅0 = 140𝜇𝑚.
Fluids with similar rheological properties are discussed by Hoath et al. (2009). The
dimensionless parameters for such a liquid are 𝑂ℎ ∼ 0.04, 𝛽 = 0.27, 𝐷𝑒 = 0.8. As
described in the introduction, filament stretching or CABER devices cannot be used to
measure the tensile property of such a low-viscosity liquid because of the rapid timescale
for breakup and formation of satellite beads. The formation of satellite droplet must be
inhibited for the purpose of extensional rheometry and we next show that this can be
achieved by varying the perturbation wavenumber, 𝑘𝑅0, in the liquid jet.
In order to consider effects of the imposed perturbation wavenumber on the jet mor-

phology, let us first examine the prediction of the linear instability theory for a viscoelastic
liquid jet. The dispersion relation between the wave growth rate and the wavenumber for
a temporal instability of a viscoelastic jet in an inviscid gaseous environment was first
given by Middleman (1965) [see also Goldin et al. (1969) and Brenn et al. (2000)] and is
plotted in figure 1 (a). It should be noted that all the quantities presented in this section
are dimensionless; time is nondimensionalized using the Rayleigh time, 𝑡𝑅; length using
𝑅0, and stress using 𝛾/𝑅0. For reference we also show the dispersion curve for a more
viscous liquid at 𝑂ℎ ∼ 0.4 and 𝛽 = 0.5 in figure 1 (b). The corresponding limits for a
viscous Newtonian jet (𝐷𝑒 = 0) and an inviscid jet (𝑂ℎ = 0) are plotted for both cases.
A viscoelastic liquid has a larger growth rate compared to a Newtonian liquid of the
same viscosity. The fluid elasticity enhances the growth of instabilities whereas viscous
effects result in a more stable jet. The effect of varying the excitation wavenumber also
has a pronounced effect on the nonlinear evolution of the jet at long time. Snapshots
of the nonlinear jet profiles developed by different wavenumbers reveals three distinct
regimes. Increasing the dimensionless wavenumber, from 𝑘 = 0.2 to 𝑘 = 0.9 (denoted
by a, b, c respectively), results in the formation of multiple, single, and zero secondary
droplets as the jet evolves. For a wavenumber smaller than the one corresponding to the
maximum growth rate, 𝑘 = 0.2, traveling capillary waves are observed, the details of
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which are shown in figure 2. Multiple satellite droplets form and they migrate towards
the center, they coalesce with another droplet to form a larger intermediary drop. Li &
Fontelos (2003) investigated the effects of elastic forces on the drop dynamics including
drop migration, oscillation, merging and drop drainage for highly elastic liquids. Bhat
et al. (2010) showed that inertia is required for the initial formation of such structures
and that satellite beads do not form if the liquid is sufficiently viscous. Here we show that
increasing the critical wave number suppresses the formation of satellite beads for low
viscosity and weakly-elastic liquids. It is clear that the spatiotemporal dynamics of the
thinning jet greatly impact the ability to use the process of jet breakup as a rheometer.
The information shown in the frames of figure 2 can be condensed into the space-time

diagram plotted in figure 3 (a). Contour plots of 𝑙𝑜𝑔10(𝑅) in the 𝑧 − 𝑡 plane show the
oscillations of both the satellite and main droplets due to capillary forces. A thin axially
uniform thread forms between these droplets and an exponential thinning can be clearly
observed in the thread connecting the main drop and the satellite drops (green-blue
regions). For the wavenumber corresponding to the maximum growth rate, 𝑘 = 0.675,
a single satellite droplet forms (figure 3 (b)). Both the satellite and primary droplets
oscillate due to interaction of capillary and inertia. The period of oscillation for second
harmonic infinitesimal-amplitude perturbations of a drop of an inviscid liquid is given

by Rayleigh (1879) as 𝑇 = 𝜋√
2
𝑅

3/2
𝑑𝑟𝑜𝑝, equal to 𝑇 = 5.8 and 𝑇 = 0.96 for the main and

satellite droplets, respectively. The period of oscillation of the main drop and secondary
drop for 𝑘 = 0.675 determined from figure 3 (b) are 5.4 and 1.06, respectively. Lamb
(1932) considered the effect of small viscosity on the small-amplitude oscillation of drops
and showed that the damping ratio for second harmonic oscillation is 𝜉 = 2.5𝑂ℎ√

2
𝑅𝑑𝑟𝑜𝑝.

Basaran (1992) calculated the nonlinear oscillation of a viscous drop and showed that the
period of oscillation increases as disturbance amplitude rises. The above calculations are
for Newtonian fluids; Bauer & Eidel (1987) and Khismatullin & Nadim (2001) considered
the effect of fluid viscoelasticity on the small amplitude vibration of drops.
As the disturbance wavenumber increases beyond the one corresponding to the maxi-

mum growth rate, 𝑘 = 0.8, the size of the secondary droplet decreases and the oscillations
of the satellite droplet are dampened more rapidly (figure 3 (c)). For a wavenumber of
𝑘 = 0.9 close to the cutoff wavenumber, we see the formation of an axially-uniform thread
which is more appropriate for extensional rheometry (figure 3 (d)).
We next investigate how the temporal evolution of a jet can be used to measure the

tensile rheological properties of a viscoelastic liquid. For a viscoelastic liquid at 𝑂ℎ = 0.4,
𝐷𝑒 = 1, 𝛽 = 0.5, 𝑘 = 0.9 the jet radius thins in the center and main drops form as
shown in figure 1 (b). The corresponding axial velocity field and radius of the jet are
plotted in figure 4 (a). The velocity profile shows regions of homogeneous elongational
flow in the cylindrical ligament and the magnitude of the extension rate is equal to
�̇� = 2

3𝐷𝑒 (Entov & Hinch (1997)). At later times, as the perturbation amplitude grows
nonlinearly, the elastic stress grows in the jet and the elasto-capillary regime given by
equation (2.9) can be clearly observed. The radius of the uniform thread in the center
thins exponentially in time and a beads-on-a-string morphology forms (Clasen et al.
(2006)). In this regime (𝑡 ⩾ 45) the tensile stress difference, 𝜏𝑧𝑧 − 𝜏𝑟𝑟, at the midpoint of
the filament is approximately equal to the capillary stress (1/𝑅𝑚𝑖𝑑) as shown in figure 4
(b). The extensional viscosity of the liquid can be calculated using equations (2.7) and
(2.8) and is plotted in figure 4 (b). Initially the polymeric stress is small and the Trouton

ratio, defined as
𝜂+
𝐸

𝜂0
, is equal to 3𝛽. Then a viscous dominated plateau with Trouton ratio

𝜂+𝐸/𝜂0 = 3 is observed as expected for a linear viscoelastic fluid with constant viscosity.
Later, in the elasto-capillary thinning regime, extensional hardening is observed due
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to the stretch of polymer molecules. In an experiment, the local extension rate in the
thinning ligament can be calculated by measuring the radius of the midpoint. Due to
symmetry, the spatial derivative of stress is zero at the midpoint and equation (2.4) can
be integrated to calculate the tensile stress difference. For an Oldroyd-B fluid we have

(𝜏𝑧𝑧 − 𝜏𝑟𝑟)𝑚𝑖𝑑 = 3𝛽𝑂ℎ�̇� + 𝑒2𝜀−𝑡/𝐷𝑒

∫ 𝑡

0

2(1− 𝛽)
𝑂ℎ

𝐷𝑒
�̇�(𝑡′)𝑒−2𝜀(𝑡′)+𝑡′/𝐷𝑒𝑑𝑡′

+ 𝑒−𝜀−𝑡/𝐷𝑒

∫ 𝑡

0

(1− 𝛽)
𝑂ℎ

𝐷𝑒
�̇�(𝑡′)𝑒𝜀(𝑡

′)+𝑡′/𝐷𝑒𝑑𝑡′. (3.1)

This implies that the transient extensional viscosity of the viscoelastic liquid can be
calculated using an experimentally obtained extension rate together with equation (3.1).
In a Giesekus fluid, the variation in the level of strain-hardening influences the necking

process (see figure 5). As the mobility factor increases, the breakup occurs earlier. Unlike
Oldroyd-B fluid, where constant strain rate occurs in the elastocapillary regime, strain
rate does not remain constant for larger Giesekus parameters.
In order to show how measurements of extensional viscosity will be affected as the

perturbation frequency varies at low Ohnesorge number, in figure 6 we compare the
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Figure 6: Estimates of the elastic stress of a low viscosity and weakly-elastic jet modeled
by the Oldroyd-B fluid at different disturbance wavenumbers, 𝑂ℎ = 0.04, 𝐷𝑒 = 0.8,
𝛽 = 0.27, 𝛼 = 0.
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Figure 7: Effects of the wavenumber, Deborah, and Ohnesorge numbers on the jet mor-
phology for an Oldroyd-B liquid jet at 𝛽 = 0.6 and 𝛼 = 0. Wavenumbers smaller than
𝑘 ≲ 𝑘𝑚𝑎𝑥 are not useful for the purpose of extensional rheometry due to the formation
of satellite droplets and the resulting oscillation. a)𝑂ℎ = 0.02 The space-time diagrams
associated with cases a, b, c, and d are plotted in figure 8. b)𝐷𝑒 = 1. The broken blue
line shows the locus of the most unstable mode from linear theory 𝑘𝑚𝑎𝑥(𝑂ℎ,𝐷𝑒).

stress difference at the midpoint for two different wavenumbers at 𝑂ℎ = 0.04. It can be
seen in figure 6 (a) that for a wavenumber close to the cutoff wavenumber, the stress
at the midpoint can be approximated by the capillary stress, or in dimensionless form
(𝜏𝑧𝑧 − 𝜏𝑟𝑟)𝑚𝑖𝑑 ≈ 1

𝑅𝑚𝑖𝑑
. Whereas for a smaller wavenumber, 𝑘 = 0.675, a satellite bead

is observed at the midpoint and the stress oscillates due to oscillation of the drop. In
this case the capillary stress is not a good estimation of the normal stress difference.
However, in this case we can measure the stress in the thread connecting the satellite
and the main droplet where the thread once again thins exponentially as exp(−𝑡/3𝐷𝑒).
Figure 6 (b) shows the radius, capillary stress, and normal stress difference of the thin
thread at 𝑧 = 6.2. Here, the capillary stress is a better approximation of the normal
stress difference in the thread, as compared to the jet midpoint which corresponds to the
satellite droplet. The stress at 𝑧 = 6.2 varies quasi-periodically with frequencies driven
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Figure 8: Space-time diagrams for an Oldroyd-B liquid jet at different disturbance
wavenumbers and Deborah number, 𝑂ℎ = 0.02, 𝛽 = 0.6 , 𝛼 = 0. For each axial po-
sition and time, contour plots of 𝑙𝑜𝑔10(𝑅) are shown corresponding to the state diagram
of figure 7. a)𝑘 = 0.9, 𝐷𝑒 = 1.67 b)𝑘 = 0.8, 𝐷𝑒 = 3 c)𝑘 = 0.55, 𝐷𝑒 = 25 d)𝑘 = 0.2,
𝐷𝑒 = 300

by both the main and satellite drops. If there is no satellite droplet then the radius
of the large end drops can be calculated to be 𝑅3

𝑑𝑟𝑜𝑝 = 3𝜋/2𝑘. These inertio-capillary
oscillations are increasingly damped as viscous effects increase. For an Ohnesorge number
𝑂ℎ ⩾ 0.4

√
(2)/𝑅𝑑𝑟𝑜𝑝 = 0.34𝑘1/3, the drop response is over damped and no oscillation

occurs. For 𝑘 = 0.9, the Ohnesorge number should be larger than 𝑂ℎ ≳ 0.4. As shown
in figure 4, the main drop motion is over damped for 𝑂ℎ = 0.4, and no oscillation is
observed.
Lastly, we explore the operational parameter-space for a jet elongational rheometer by

considering the combined effects of the excitation frequency, Deborah, and Ohnesorge
numbers. Two slices of the three-dimensional parameter-space (𝑘, 𝐷𝑒, 𝑂ℎ) are shown in
figure 7. For shorter wavenumbers, higher viscosity (𝑂ℎ) and higher elasticity (𝐷𝑒) are
required to inhibit the formation of a satellite droplet. The effect of increasing elasticity
(𝐷𝑒) is illustrated by the space-time diagrams for cases a-d in 8. Cases a and b are most
appropriate for extensional rheometry since no satellite droplet occurs in the elasto-
capillary regime. However, case b is distinct in the sense that initially a satellite droplet
appears to develop near the midplane but the liquid in the secondary droplet subsequently
drains into the main droplets. As shown in figures 7 and 8, wavenumbers smaller than
𝑘 ≲ 𝑘𝑚𝑎𝑥 are not useful for the purpose of extensional rheometry due to the formation
of single (case c) or multiple satellite droplets (case d) and their subsequent oscillation
and interaction.

4. Conclusions

We have shown that a perturbed jet undergoing capillary thinning can be used suc-
cessfully as an elongational rheometer for measuring tensile properties of even weakly
viscoelastic polymer solutions. The formation of satellite droplets can be suppressed
by imposing a perturbation wavenumber between 𝑘𝑚𝑎𝑥(𝑂ℎ,𝐷𝑒) < 𝑘 < 1. This allows
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the thread to thin as a single axially-uniform filament. For a weakly viscoelastic liquid
(𝐷𝑒 = 𝜆/𝑡𝑅 = 𝜆

√
𝛾/𝜌𝑅3

0 = 0.8), a jet extensional rheometer will be effective for Ohne-
sorge numbers as low as 𝑂ℎ ≃ 0.02. For 𝑂ℎ < 0.02, additional calculations show that
the formation of satellite droplets is unavoidable even at wavenumbers close to unity.
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