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The recent paper entitled by K. C. Lee et al. (2011) establishes nonlocal macroscopic quantum correlations, which they term
“entanglement”, under ambient conditions. Photon(s)-phonon entanglements are established within each interferometer arm.
However, our analysis demonstrates, the phonon fields between arms become correlated as a result of single-photon wavepacket
path indistinguishability, not true nonlocal entanglement. We also note that a coherence expansion (as opposed to decoherence)
resulted from local entanglement which was not recognized. It occurred from nearly identical Raman scattering in each arm
(importantly not meeting the Born and Markovian approximations). The ability to establish nonlocal macroscopic quantum
correlations through path indistinguishability rather than entanglement offers the opportunity to greatly expand quantum
macroscopic theory and application, even though it was not true nonlocal entanglement.

1. Introduction

The ability to observe and control nonlocal macroscopic
quantum coherence/correlations, under ambient conditions,
would likely have a powerful influence across a wide range
of fields. This was achieved recently by Lee et al., in Science,
establishing phonon field quantum correlations in two
spatially separated diamonds [1, 2]. The paper was entitled
entitled “Entangling Macroscopic Diamonds at Room Tem-
perature.” Two other studies nonlocally correlating reflectors
(by our group) and a cesium gas respectfully support the
results [3, 4]. However, we will demonstrate on several
grounds that while quantum correlations are established
between the diamonds, they are not true entanglement.

The work in the Lee et al. paper is essentially a two-
arm extension of the DLCZ (Duan, Lukin, Cirac, and Zoller)
experiments [5–9]. Figure 1 is a schematic of the key compo-
nents of the Lee experiment, but a more detailed schematic
can be found in Figure 1 of the original paper. An ultrashort

pulsed source is used whose outputs can be represented by
a collection of single photon wavepackets (each wave packet
can only interfere with itself), as they are neither entangled
photons nor significant biphoton wavepackets. An MZI
interferometer is used where diamonds are present in each
arm which contain nearly identical Raman scatterers. The
diamonds are 15 cm apart making any interaction between
them macroscopic. The optical phonon modes of the dia-
mond allow relatively low decoherence at room temperature
because they have very high oscillatory frequencies (40 THz)
so are not readily disturbed by thermal energies. A pump
pulse is sent through the interferometer of sufficient intensity
to entangle with and stimulate the Raman scatterers. A Stokes
photon is then emitted, with the diamond and Stokes photon
entangled until detection. The extra energy remaining in
the diamond (lost from the photon) is in the form of
increased phonon field energy levels. If the detector registers
one Stokes photon, it could have come from either of the
diamond crystals in which one phonon was excited. This
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will be discussed in more detail below, but because the paths
are indistinguishable, the system behaves as if the photon
at the beam splitter came from both arms. Paraphrasing
Dirac, a single photon wavepacket can only interfere with
itself. Therefore, prior to the pump photon being detected,
both phonon fields are stimulated. To confirm these results,
a probe photon is introduced into the interferometer that
interacts with the diamonds producing the anti-Stokes
photons. The probe photon must interact with the diamond
prior to the Stokes photon being detected. The nature of
the detection scheme for the anti-Stokes photon allows
determination if one or both phonon fields are stimulated.
If we were only looking at one arm, prior to the Stokes
photon detection, there is an entanglement between the
Stokes photon, phonon field, and anti-Stokes photon. This
is somewhat analogous to the nonlocal entanglements in
the well-known studies performed by Brune et al. described
below which we will use to support our conclusions about the
Lee paper [10–12]. The key point of the Lee et al. paper made
below is that the two phonon fields are quantum correlated,
but not truly entangled as stated in the original paper.

Our analysis is that Lee’s explanation, in the Science
paper, for the quantum correlations generated between
diamonds (resulting from the pump photons) is unlikely
representative of the actual situation. They postulated a
nonlocal entanglement between the diamonds. While we
agree that quantum correlations are established, we do not
believe that the data or analysis of the experimental design
supports true entanglement. The essential points will be
made here but the remainder of the paper will expand on
these points. First, our examination supports that these
nonlocal quantum correlations occur from a combination of
paths indistinguishability (for a single photon wavepacket)
plus nearly identical local entanglements (Raman scatterers)
in each path [13–19]. The source is coherent so building the
pulses up from single photon wavepackets (a photon can
only interfere with itself) is a useful approach for illustrating
the physics. The correlations between diamond phonons do
not fit definitions of entanglement laid out, for example, by
von Neumann, EPR-B, or GHZ [20–23].

Second, the pump photon/diamond interactions do
not (and must not) meet the Born (system-environment
coupling weak) or Markovian (memory effects of the
environment are negligible) approximations of decoherence
theory [15, 17]. This occurs largely from the high frequency
of the optical phonons and the strong coupling associated
with the Raman scatterers. The results then of the pump
photon/diamond interactions are more analogous to single
photon wavepacket decoherence theory than nonlocal entan-
glement (point 1). Environmental interactions are occurring
with indistinguishable paths, but in the case of the Science
paper, coherence is expanded rather than lost (point 2) [15–
17]. This demonstrates perhaps the most important point
of the paper, that the diamonds can lead to either deco-
herence (distinct local entanglements and meeting Born-
Markov approximations) or coherence expansion (nearly
identical local entanglements and not meeting Born-Markov
approximations) depending on the setup.

In the next several paragraphs, the topics addressed will
be as follows. First, nonlocal correlations will be examined,
which can be represented by entangled states or states
generated by indistinguishable paths. Second, we review the
general definition of entanglement demonstrating why the
nonlocal phonon field correlations in the Lee study are not
accurately described as being entangled. Third, we discuss
that path indistinguishability and the quantum correlations
that can be generated. This and the previous paragraphs
draw heavily from the work by pioneers that include von
Neumman, Mandel, and Shih, as well as insights from recent
decoherence theory by Zurcek and Zeh [15–17]. Decoher-
ence theory is particularly useful in illustrating the point of
this paper as indistinguishable paths lead to coherence while
typical environmental entanglements generally lead to deco-
herence (with this paper representing an exception). Finally,
we will also discuss how the authors represented visibility,
concurrence, density operators, and statistical significance
(particularly the correlation coefficient), and how these are
completely consistent with nonlocal correlations from either
indistinguishable paths or entanglement. We do not believe
there is a basis to employ a two-mode squeeze state as
discussed by Julsgaard et al., for the nonlocal correlations [4].
The appendix will speculate on the role misunderstanding
type II SPDC sources and Dirac notation play in the misuse
of the term “entanglement.”

2. Nonseparable States (Unfactorizable)
and Quantum Correlations

In order to discuss quantum correlations, including entan-
gled states and those from path indistinguishability, density
operators and their nonseparability will be discussed. The
density operator is a Hermitian operator acting on Hilbert
space with nonnegative eigenvalues whose sum is 1 (it
is not a classical statistical operator). It should not be
confused with a classical statistical matrix and it has its
greatest value in calculating expectation values of physical
properties [24]. A density operator does not specify a
unique microscopic configuration, which is not surprising
based on its definition and contains the information about
superpositions between subsystems. Quantum correlations
imply unfactorizable density operators between multiple
entities, with quantum entanglement being one type. They
demonstrate correlations that exceed those describable by
classical mechanics. They can be local or nonlocal, with the
latter used extensively in decoherence theory. For simplicity,
in this paper, we will approximately describe the coherent
portion of the system as the principal and everything else
as the environment. We describe the principal as being
represented by a pure state density operator, a single vector
in Hilbert space (there is no loss of generality as a mixed state
can be modeled using purification) [15]. In the Lee system,
for clarity, the phonon fields are part of the principal and can
be viewed as pure. But as the phonon fields are part of the
diamond, the diamond itself is of low purity as the principal
only makes up a small portion of the diamond.

Described more formally below, a state describing a
pair of nonlocal quantum correlated entities (photons or
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Figure 1: This diagram is a simplified version of the interferometer used in the Lee et al. experiments. Components have been removed
which are needed for practical application but not for understanding the physical principles.

phonons) has an unfactorizable density operator for the
pair that progresses forward in time via linear unitary
operators. But in performing the trace operation to obtain
the subsystems (e.g., a given diamond phonon field), these
subsystems are represented by reduced density operators
that move forward in time, unlike the true principal, via
nonlinear unitary operators (i.e., the trace gives information
on the subsystem statistical averages but is not the complete
description of the subsystems) [15, 25]. So for the Lee
system, the principal contains both phonon fields that have
inseparable density operators.

3. Entanglement

Entanglement, a type of quantum correlation, is a function
of superposition and the linearity of Schrödinger’s equation,
but not generally path indistinguishability (which will be
dealt with in a subsequent section) [22]. Here we will
limit the discussion to complete entanglement and partial
entanglement can be extrapolated from the discussion.
Demonstrating interference with entangled photons though
does require path indistinguishable (see the Appendix). The
entanglement process is described by (as per von Neumman)
[26] as follows:

∣
∣ψ
〉|ar〉 =

⎛

⎝
∑

i

ci|si〉
⎞

⎠|ar〉 −→ |Ψ〉 =
∑

i

ci|si〉|ai〉. (1)

This is a form which would be used to describe deco-
herence (or a one-arm Lee experiment) where the principal
is given by the wavefunction (ψ) [15, 16]. For two-particle
entanglement, the wavefunction is simply replaced by a
particle symbol. The arrow describes the unitary transform.
The principal is represented in terms of the basis si while
the basis for the environment is given by ar . Entanglement
represents pairing of the eigenstates. It can be stated in an
equivalent form that their conjugate pairs (e.g., position
momentum) are completely correlated. So we have two

points: (1) with two entangled particles, the two base
states si and ai develop a constant relationship; this is the
core to entanglement. Measuring one of an entanglement
pairs establishes the eigenvalue of both exactly from the
superposition. (2) This point will be more clear from the
path indistinguishability discussion, but without further
interactions, entangled particles continue to have inseparable
density operators. This is not true for quantum correlations
from path indistinguishability where the inseparability is
dependent on such factors as detector time and wavepacket
width. We will use the phrase “conditionally inseparable.”
(3) The initial entanglement generally requires local inter-
action between atomic/subatomic particles, but can become
nonlocal with entanglement swapping, for which we use for
illustration the well-known-Brune studies described below
[10, 12]. This local-to-nonlocal entanglement can be found
both in the Lee and Brune papers.

Equation (1) in the Lee paper (which is a DCLZ equation
or one arm of the Lee interferometer) presents the initial
local type of entanglement, in the annihilation operator
form. This form was introduced by Dirac and expanded
upon by Glauber for the quantum theory of light [27, 28].
The equation is

|ΨS〉 ≈ [1 + εSs
+(lS)b+(lS)]|vac〉. (2)

The equation is described in detail in the Lee paper.
The essential point is that, for the potential, annihilation
operators for the Stokes and phonon modes are in an
inseparable product form. It will be seen that this is in
contrast to (2) from that paper which is a superposition
(below).

As noted, in addition to the Lee study being an extension
of the DLCZ experiments, it is analogous to the pioneering
experiments by Brune, entangling atoms with fields (and
then a second atom) [10–12]. These studies are more useful
than the Lee study for understanding the physics of entan-
glement and entanglement swapping because of the complex
design of the Lee study. Its analogy is to a single arm of the
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Lee experiment. Rubidium atoms in a Rydberg state were
passed through an EM field in the large Q cavity. The atom
and field become and remained entangled even after the
Rubidium atom exited the system (i.e., until a measurement
is made at the output of the device). One can then only
speak of the combined Rubidium atom-Q cavity field system
as a pure state, which is non-local (this is analogous to
the pump-phonon entanglement in the Lee experiment).
The nonlocality can be extended even further by sending a
second atom after the first (analogous to the probe photon in
the Lee study). Here, the second atom becomes non-locally
entangled with the first atom (which had already passed
through) with perfect correlation (inseparable biparticle
wave packet). The second atom non-local entanglement
represents entanglement swapping with the field, which
is no longer entangled. This demonstrates true nonlocal
entanglement of the two atoms as the eigenstates of each,
even though passing through the cavity at different times,
exactly correlate. The two atoms of course are analogous to
the Stokes and anti-Stokes photons in the Lee study and the
EM field to the phonon field, except only one arm is used.

For a more formal description of entanglement and its
subsystems, we will provide the mathematical framework for
one EPR-B particle state. There are two observers of these
particles, A and B, separated by a large distance. One of these
two entangled qubits is directed at each observer. The specific
paths of each are inconsequential as long as no measurement
has occurred. Neither does the order of detection nor the
times between detection (as opposed to correlations from
indistinguishable paths) for these entangled states. The Bell
state used here is given by (let them be spin 1/2 particles, with
two states, 0 and 1)

∣
∣Φ+〉 = |Ψ〉 = 1√

2
(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B) (3)

(Analogous Bell states with entangled energy and spin
generated by a SPDC source type II, and the limitations, are
discussed in the appendix.) Equation (3) is a true entangled
state (spin superposition) in that the result of one observer
exactly correlates with the results obtained with the second
observer (irrespective of what spin axis is measured); the
information of the system is complete. The density operator
is given by

ρ̂T = |Ψ〉〈Ψ| = ρ̂A ⊗ ρ̂B

= |00〉〈00| + |11〉〈00| + |00〉〈11| + |11〉〈11|
2

.
(4)

The density operator product is nonfactorizable. If we
examine a subsystem, it is an inseparable state as the trace

operation of each observer (here, observer B) yields less
information than the whole

ρA = Tr
(

ρ
)

= TrB(|00〉〈00|) + TrB(|11〉〈00|)
2

+
TrB(|00〉〈11|) + TrB(|11〉〈11|)

2

= |0〉〈0|〈0 | 0〉 + |1〉〈0|〈1 | 0〉
2

+
|0〉〈1|〈0 | 1〉 + |1〉〈1|〈1 | 1〉

2

= |0〉〈0| + |1〉〈1|
2

= I

2
.

(5)

A reduced density operator is generated by the trace
operation representing an improper mixed state, losing
information about coherences. It is an expectation value.
To paraphrase Schrödinger, the best possible knowledge of
a whole does not include the best possible knowledge of
its parts (if that knowledge is even available) [22]. In other
words, the principal is inseparable as any description of
the subsystem is incomplete as demonstrated by (5). We
will contrast this true entanglement with correlations from
indistinguishable paths where they are inseparable within
certain experimental limits (e.g., path lengths and detector
integration time).

4. Path Distinguishability and First-Order
Correlations

Path indistinguishability can lead to nonlocal macroscopic
correlations but generally not entanglement. A more com-
plete discussion of coherence and indistinguishability can be
found in the pioneering work of Mandel [20], reviewed by
Shih (for both single- and two-photon (boson) correlations)
[13, 19]. The topic will be addressed here briefly. It should
also be noted that our group in a previous paper also
established nonlocal macroscopic correlations. Correlations
were produced between two reflector arms with path
indistinguishability using a thermal source under ambient
conditions [3].

We begin looking at path indistinguishability for a
single photon entering a beam splitter with the two arms
as exit ports (essentially equivalent to the pump photon
in the Lee paper). All first-order interference is a single-
photon wavepacket interference (as per Dirac), no matter
what the intensity, along indistinguishable paths. Second-
order correlations are generally the interference of biphoton
wavepackets and are reviewed elsewhere [3, 13, 19]. First-
order coherence (single-photon wavepacket interference) has
a wavefunction given by

∣
∣ψ
〉 = α|1〉1|0〉2 + β|0〉1|1〉2. (6)

Here the subscripts 1 and 2 are the two paths and the
value in the ket represents occupation number. The alpha
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and beta terms take into account beam splitter ratios. Note
that this is the form of (2) of the Lee paper and is not an
entangled state. Equation (2) in the Lee paper was

E|ΨS〉 =
[

b+
L (lS) + e−iϕxb+

R(lS)
]

|vacvib〉. (7)

Again, the specifics can be found in the original paper but
unlike (7), the annihilation operators of the potential are now
in a summation form rather than a product form.

Returning to (6), the density operator (in its expanded
form) is given by

ρ̂ = |α|2|1〉1|0〉22〈0|1〈1| +
∣
∣β
∣
∣2|0〉1|1〉22〈1|1〈0|

+
[

αβ ∗ |1〉1|0〉22〈1|1〈0| + h.c.
]

.
(8)

The first two terms, the diagonal terms, are the DC
terms that reduce fringe visibility to a maximum of 50%
unless they can be removed (for true entanglement, there
are no DC terms and maximum visibility is 100%). When
paths are distinguishable, these are the only nonzero terms.
The third and fourth terms represent indistinguishable paths
and generate interference (h.c. is the Hermitian conjugate
or adjoint) (see Figure 3 in the Lee paper, as off-diagonal
elements are not exclusive to entanglement as suggested).
These off-diagonal elements are complex. It is important
to note that the density operator is inseparable only within
the constraints of path indistinguishable (e.g., wavepacket
width, detector time, path lengths, etc.). Coherence time is
an example. For an optical pulse, delay times must be within
the coherence time. In contrast, for most entangled states,
coherence time is not an issue except when demonstrating
interference.

Young’s interferometer is useful for illustrating the
concepts of path indistinguishability. We will use diamonds
similar to the Lee experiment before each slit in the
Young’s interferometer. Examining the Young’s interferom-
eter (Figure 2), if one or the other slit is blocked, the photons
are registered on the screen with no interference pattern
(NI). If both slits are open, classically it is easy to appreciate
when waves pass through the apparatus, and an interference
pattern will develop on the screen (I). The sinusoidal peaks
in the Young’s design are position-dependent interference
on the screen (I) due to varying phase relationships. The
Young’s experiment results hold for a high intensity photon
beam, but the interference is still single-photon wavepacket
interference. Even when only one photon (or other particle)
is coming from the source at a time, a first order interference
pattern develops on the detection screen, which is predicted
naturally from quantum mechanics but is unexplainable by
classical mechanics (which would predict the NI pattern)
[13, 14]. This is because quantum mechanics is predicting
the interference of potentials (along indistinguishable paths),
and not intensities, as long as no measurement is made prior
to the screen. There is no measurement of the pump photons
in the Science paper until after the second beam splitter, so
paths are still indistinguishable (in spite of the frequency
shifts from the Raman scattering). So two-pump “beams”
do not actually interfere as in the classical description of

E1

E2

I NI

Figure 2: Illustration path indistinguishability and the influence
environmental entanglements (diamonds) with Young’s interfer-
ometer. The I is an interference pattern and the NI is no interference
pattern. E1 and E2 are the diamonds.

interference after the second beam splitter; it is a single-
photon interference. Interference of indistinguishable paths
potentials (of single-photon wave packets) leads to the inter-
ference. Interference is possible when these single photon
potential paths are identical with respect to the diamond
interactions, as is more formally described in the next
paragraph. Quantum correlations are established between
the diamonds because they are part of each indistinguishable
path that led to the single photon interference.

Now we extend (8) beyond one photon (increase inten-
sity) and include interactions with the environment, E (dia-
monds) in the form of an inner product. This is a relatively
common procedure for describing basic decoherence [15,
17], where the relevance to the diamond experiment will
become apparent (though coherence is expanded rather than
reduced). The interference pattern at the screen (of the
Young’s interferometer) is described by the cross terms (off-
diagonal) in the density operator (it is in the expanded
matrix form) as

ρ̂ = 1
2

{∣
∣ψ1

〉〈

ψ1
∣
∣ +

∣
∣ψ
〉

2

〈

ψ
∣
∣

2

+
∣
∣ψ1

〉〈

ψ2
∣
∣〈E2 | E1〉 +

∣
∣ψ2

〉〈

ψ1
∣
∣〈E2 | E1〉

}

,

(9)

where
∣
∣ψ1

〉〈

ψ1
∣
∣ = ρ11,

∣
∣ψ2

〉〈

ψ2
∣
∣ = ρ22,

∣
∣ψ
〉

1

〈

ψ
∣
∣

2 = ρ12,
∣
∣ψ
〉

2

〈

ψ
∣
∣

1 = ρ21.
(10)

The first two terms are again DC terms and the second
two represent interference terms. The wavefunction (in
the bras-kets) incorporates all properties of the photons
(polarization, bandwidth, photon numbers, etc.) now and
not just occupation number. As can be seen from the density
operator, the interference pattern is independent of whether
the photons come individually or at high intensity (if one of
the wavefunctions was zero, interference would still occur).
In the density operator equation, 1 and 2 correspond to
the two potential paths the photon can take. The density
operator contains an inner product (E) in the last two terms
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that represents the diamonds which can be identical or
distinct. The event that occurs at the screen is analogous to
detection at D3 in the Science paper.

To illustrate the counter-intuitive interaction of the
photons and phonons leading to indistinguishable paths and
coherence, Young’s experiment will be examined by varying
the Raman scattering. As a basic rule of quantum mechanics,
which can be found in any introductory quantum mechanics
textbook, until a measurement is made potentials are added
then squared but once a measurement occurs, intensities
(squared potentials) are added. If we initially ignore the
E terms (environmental entanglements/diamonds), the pat-
tern on the screen demonstrates interference that comes from
the last two terms (off-diagonal) of the density operator
(again, even if one photon is coming through at a time).
Now, if E1 and E2 are substantially different terms (inner
product near zero), such as when the Stokes photons are of
different frequencies, the third and fourth terms disappear
as the paths become distinguishable. Interference is lost in
this simple example of environmentally induced decoherence
by Raman scattering [15–17]. The similarity of the Raman
scattering in each arm affects the degree to which coherence
(and interference) is lost (fringe visibility). If E1 and E2

are similar (inner product 1) such that Stokes photons
are identical from the prospective of detection, the paths
are indistinguishable even though the interaction with the
diamonds occurred (and changed the frequency), and the
interference pattern is maintained. The key point is that
indistinguishablity is needed at the time of measurement (the
detector).

But another critical point is that the Born and Markovian
approximations are not met hence decoherence will result.
The Born approximation is that the diamond-principal
interaction is sufficiently weak and environment (diamond)
large such that the principal does not significantly change
the diamond. Obviously the coupling is strong (Raman
scattering) and the diamond changes significantly (change in
phonon frequency). The Markovian approximation, having
no memory effects, means that self-correlations within
the diamond/environment decay for all practical purposes
instantly into the environment. If these two are not met
(along with the diamond interactions being identical), then
the diamonds become part of the coherent system rather
than a source of decoherence. Together, the indistinguishable
paths of single-photon coherence, near identical nature of
Raman scattering, and not meeting the Born/Markovian
approximations resulted in expansion of the coherence (the
two diamonds become part of the principal, resulting in
quantum correlations). This describes why the two phonon
fields become correlated and why it does not require (or
include) an explanation of true non-local entanglement
between arms.

We suggest that confusion over the distinction between
quantum correlations due to entanglement versus path
indistinguishability has arisen, at least in part, over a mis-
understanding of the type II spontaneous parametric down-
conversion (SPDC) source and overextending interpretations
of Dirac notation, which is presented in the Appendix. This
speculative topic is addressed in the Appendix.

5. General Results of the Lee et al. Paper

So to summarize, in the Lee paper the state, when using a
single arm/diamond, is initially a Stokes-phonon(s) entan-
glement then Stokes-phonon(s)-anti-Stokes entanglement,
arising from and remaining consistent with (1). It is an
entanglement in the von Neumann sense as measurement
of one subsystem exactly determines the state of the other
subsystems. When two paths are used, the photon(s) and
phonons are then entangled within a given path, but not
entanglement of phonons between paths. However, the two
diamonds are quantum correlated through path indistin-
guishability. The use of a coherent pulsed source allows the
argument to be built up from single photon wavepacket
interference.

As pointed out, the coherence expansion that results
requires very specific conditions with respect to the dia-
monds. First, the high phonon frequency minimizes thermal
decoherence. Second, the generated Stokes photons must
be essentially identical with respect to detection. Third,
the Born and Markovian approximations must not be met.
Together, along with the path indistinguishability, this results
in quantum correlations between the diamond phonons.

6. Notes on the Probe Photons

Just briefly discussing the probe photons, what is being
measured is second-order correlation between detectors
Da+ and Da−, generated from phonon fields in the two
arms, in a superposition. In general, we agree with the
author’s interpretations of the physical principles of the
probe photons, which will not be reviewed here because
of space limitations [13, 18, 25]. A quantitative description
of these second-order correlations from both entangled
photons and indistinguishable paths is best described in
terms of the correlation functions, electric field operators,
and annihilation operators. These are discussed elsewhere in
detail for those interested [13, 19, 27].

7. Notes on the Quantitative Results

The four-quantitative/qualitative results for discussion from
the Science paper are the density operators presented,
concurrence, confidence intervals, and visibility. (1) The
density operators in Figures 3 and 4 of the Lee paper
describe a coherent state as demonstrated by the off-
diagonal coherences, which is not unique to entanglement.
(2) There was some confusion in editorials/commentaries
on the article that there was 98% concurrence. There was
actually a 98% confidence interval that the concordance
was positive (which as the reader is aware could mean it
was 98% confidence the concurrence was extremely small
but positive). The concurrence was positive and somewhere
below 35%, values consistent with quantum correlations that
are not exclusive to an entangled state [29]. (3) The visibility
graph (Figure 2 of the Science paper) demonstrates two main
points. (A) The second order correlations are phase sensitive
with opposite signs due to the beam splitter, which is known
for second-order correlations. (B) The correlations between
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the pump and probe can exceed coincidence rates of classical
correlations. These results demonstrate quantum correla-
tions, but are not sufficient for specifically demonstrating
quantum entanglement. This statement is also consistent
with the experimental design analysis described above.

True entanglement between the phonon fields neither
needs to be elicited as an explanation for the results
nor leads to be proven in the paper. Though the phrase
“entanglement of diamonds” attracts considerable attention,
we believe that the establishment of quantum correla-
tions/coherence between two macroscopic objects using path
indistinguishability without nonlocal entanglements is far
more important to the field. We point out that we have
also achieved this with two macroscopic distant reflectors
[3]. Path indistinguishability, under the local entanglement
conditions described above, leads to quantum correlations.
This approach required that no quantum source could be
done under ambient conditions and potentially opens the
door to a much larger number of applications than straight
entanglement.

8. Conclusion

The recent paper in Science entitled “Entangling Macroscopic
Diamonds at Room Temperature” by C. Lee et al. establishes
nonlocal macroscopic quantum correlations between two
diamonds. However, while the authors claim the correlations
between diamonds represent entanglement, we present why
a different underlying mechanism exists which explain the
results. The quantum correlations are generated by path
indistinguishability of first order correlations (single-photon
wavepackets) in combination with essentially identical local
entanglement in each arm. Irrespective, the results are of
considerable importance. They offer a mechanism for gen-
erating macroscopic nonlocal quantum correlations under
ambient conditions, which could represent a substantial
advance to a wide range of applications.

Appendix

Unfortunately, many examples exist in the literature that
treat quantum correlations from path indistinguishability
and entanglement as essentially identical, an obstruction to
the field and in part likely due to misunderstanding of the
widely used SPDC II source (spontaneous parametric down-
conversion) and misuse of Dirac’s notation. Two prominent
examples are a 2008 Nature review on entanglement and the
recent study claiming entanglement between two diamonds
in Science [1, 30]. A brief review of the SPDC may illustrate
the point.

SPDC sources generally use a CW pumped nonlinear
crystal to produce two energy entangled photon pairs
(including entanglement of uncertainty) [31]. They were
initially pursed to test EPR-B. Due to energy conservation,
photon pairs’ angular frequency and wave number are

entangled. According to the standard theory of parametric
downconversion, the two-photon state can be written as

|Ψ〉 =
∫

dωPA(ωP)

×
∫

dω1dω2δ(ω1 + ω2 − ωP)a+(ω1)a+(ω2)|0〉,
(A.1)

where ω represents the angular frequency of the signal (1),
idler (2), and pump (p) of the downconversion. The a+

represents the respective annihilation operators. The delta
function represents perfect frequency phase matching of the
downconversion (i.e., entanglement). A(ω) is related to the
wavepacket extent and is not critical to the discussion here
(but it is when interfering entangled photons). This is a
type I SPDC source (no fixed polarization relationship); note
that the equation does not require path indistinguishability.
With a type II SPDC source, the signal and the idler have
orthogonal polarization states (i.e. the energy entangled
photons are associated with perpendicular polarizations).
The state is given by [32]

|Ψ〉 =
∫

dωPA(ωP)

×
∫

dω1dω2δ(ω1 + ω2 − ωP)a+
o (ω1)a+

e (ω2)|0〉.
(A.2)

The subscripts on the signal and idler represent different
polarization states associated with the entangled energy
states (o and e). Again, the energy states are entangled
(and thereby the polarization states) without any use of
indistinguishable paths.

Now, using a SPDC II source with an interferometer
(Figure 3) illustrates both entanglement and path indistin-
guishability. In this setup, prior to the beam splitter, the
photons are both entangled by energy and polarization.
After the beam splitter, indistinguishable paths are used
to generate interference. Under the correct setup of the
polarizers (P1 and P2) in each arm, Bell states can be
generated which can be used to test, for example, EPR-B.
The path indistinguishability after the beam splitter does not
cause the entanglement, but rather it is used to generate
Bell states from the already entangled states. Authors often
abbreviate the wave function for these Bell states, (entangled
photons grouped by indistinguishable paths) for example,
as (1/2)(|HV〉+ |VH〉). This representation, as seen in the
Nature review, can be misleading, because it drops the
energy/polarization entanglement that exists without the
beam splitter, as well as the wavepacket for the biphoton
(basically just using the e and o from (A.2) and giving
the impression that they are being entangled by the beam
splitter) [37]. Interfering light from the SPDC II source
in the Nature paper, a common yet incorrect statement in
Figure 2 of that paper is made, “However, in the regions
where the two cones overlap, the state of the photons will
be |HV〉+ |VH〉. It is around these points that entangled
photons are generated.” This abbreviated representation of
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Figure 3: An SPDC type II source using a beam splitter used to
generate Bell states.

the state ignores the already entangled energy/polarization
in areas outside the overlap (9), as well as the space-time
probability density. This leads to a misunderstanding of the
physics. Entanglement exists in the areas outside the overlap,
not just Bell states. Similarly, path indistinguishability did
not lead to entanglement of diamonds in the Lee experiment.

The example also illustrates the misuse of Dirac notation,
which seems particularly common in the quantum commu-
nication and computer fields. Dirac notation is a powerful
shorthand technique for describing quantum information
flow. But it is frequently treated as representing the state of
a system, which it generally does not do. If we represent a
vacuum and photon by |01〉+ |10〉, this neither tells us, for
example, about the state of the vacuum nor the bandwidth of
the photon. But this is how it is often interpreted leading to
erroneous conclusions.
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