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To date, analytical models of internal tide generation by two-dimensional ridges have
considered only idealized shapes. Here, we advance the Green function approach to
address the generation of internal tides by two-dimensional topography of arbitrary
shape, employing the Wentzel-Kramers-Brillouin (WKB) approximation to consider
the impact of non-uniform stratifications. This allows for a more accurate analytical
estimation of tidal conversion rates. Studies of single and double ridges reveal that
the conversion rate and the nature of the radiated internal tide can be sensitive to
the topographic shape, particularly around criticality and when there is interference
between wave fields generated by neighbouring ridges. The method is then applied
to the study of two important internal tide generation sites, the Hawaiian and Luzon
Ridges, where it captures key features of the generation process.
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1. Introduction
Oceanic internal tides are internal wave fields of tidal period. They are produced

by barotropic tidal flow over topography, with steep, large-amplitude, nominally two-
dimensional topographic features being particularly significant generators (Egbert &
Ray 2000; Rudnick et al. 2003; Simmons, Hallberg & Arbic 2004). While some of
the internal tidal energy produced by these ridges is believed to go into local mixing
near the topography, the consensus is that for tall ridges a majority of the generated
energy is radiated away, to participate in processes such as wave–wave interactions
and reflections from the continental shelf (Ray & Mitchum 1997; Garrett & Kunze
2007; Echeverri et al. 2009). At the Mendocino Escarpment, for instance, field studies
reveal that turbulent dissipation over the top of the topography accounts for only
1 % of the energy flux in the internal tides (Althaus, Kunze & Sanford 2003), and
at Kaena Ridge in Hawaii the corresponding values are 5–25 % (Klymak, Pinkel &
Rainville 2008).

Given the significant contribution to global internal tide generation by nominally
two-dimensional topography, there has been a substantial effort to develop analytical
models that reasonably predict internal tide conversion rates by such features. An early
approach (Baines 1973) uses the method of characteristics, although this technique has
proven challenging to implement. The approach of Bell (1975) uses Fourier methods
to model internal tide generation by small-scale ridges in an infinitely deep ocean that
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is uniformly stratified. A key restriction is that the topography be very subcritical, i.e.
ε � 1, where the criticality parameter

ε =
h′(x)

tan θ
(1.1)

is the ratio of the topographic slope h′(x) to the slope of the internal wave rays

tan θ =
√

(N2 − ω2)/(ω2 − f 2), where ω is the forcing frequency, N is the buoyancy
frequency that characterizes a density stratification and f is the background rotation;
another requirement is that h/H � 1, where H is the far-field ocean depth. Llewellyn
Smith & Young (2002) and Khatiwala (2003) also consider subcritical, small-
amplitude ridges, but in a finite-depth ocean, the former study also accounting
for non-uniform stratification via the WKB approximation.

Consideration of finite-amplitude topography in an infinitely deep ocean was
achieved by Balmforth, Ierley & Young (2002) using a Fourier series-based approach
that still requires the topography to be subcritical. Studies of supercritical topography
in a finite-depth ocean were performed by Baines (1982) using ray tracing techniques,
and by St. Laurent et al. (2003) and Llewellyn Smith & Young (2003), who considered
idealized features such as a knife-edge and a step; the latter study also utilized the
WKB approximation to investigate the effects of a non-uniform stratification. Most
recently, in an effort to consider ever more realistic topography, the Green function
approach of Robinson (1969) was developed to study the scenarios of polynomial and
triangular ridges in a finite-depth ocean (Pétrélis, Llewellyn Smith & Young 2006),
a periodic knife-edge (Nycander 2006) and Gaussian (Balmforth & Peacock 2009)
topography in an infinitely deep ocean.

All the aforementioned studies considered topography that is symmetric and/or
spatially periodic. Of course, this is never the case for an ocean ridge, and it remains an
open issue to determine how features such as topographic asymmetry and roughness
can affect internal tide generation by an isolated, two-dimensional ridge. Some initial
insight is provided by the work of Griffiths & Grimshaw (2007), which considers
the naturally asymmetric case of continental shelves rather than mid-ocean ridges,
revealing significant differences in the shoreward and oceanward energy fluxes of
the internal tide. Another situation that also merits realistic analytical modelling is
a multiple-ridge system of finite extent, since results for idealized, spatially periodic
topography (Nycander 2005; Balmforth & Peacock 2009) suggest that interference
and scattering of the wave fields generated by neighbouring ridges can substantially
affect the radiated internal tide.

In this paper, we use a Green function approach (Robinson 1969; Pétrélis et al. 2006)
to address internal tide generation by arbitrary two-dimensional ridge geometries,
which may be a single asymmetric ridge or a system of multiple ridges. In addition,
the WKB approximation is employed to consider non-uniform stratifications and thus
obtain some reasonable predictions for the Hawaiian and Luzon Ridges. Section 2
gives a summary of the analytical method. In § 3, we present results for single and
double ridges in a uniform stratification, before proceeding in § 4 to case studies of the
Hawaiian and Luzon Ridges, which exemplify large-amplitude complex topography
in non-uniform stratification. Our conclusions are then presented in § 5.

2. Theory
The streamfunction ψ(x, z, t) is defined so that the baroclinic perturbation velocities

of the internal tide are (u, w) = (−ψz, ψx), the horizontal and vertical coordinates being
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x and z, respectively. We assume a harmonic solution,

ψ(x, z, t) = URe[φ(x, z)e−iωt ], (2.1)

produced by the background barotropic flow URe[e−iωt ] of magnitude U and
frequency ω in a Boussinesq and inviscid ocean with non-uniform stratification N(z)
and background rotation f . The wave field is assumed linear and studied in the limit
of small tidal excursion relative to the characteristic width of the topography, 1/k,
such that kU/ω � 1. The governing equation for φ(x, z) is thus (Llewellyn Smith &
Young 2003; Balmforth & Peacock 2009):(

N(z)2 − ω2

ω2 − f 2

)
∂2φ

∂x2
− ∂2φ

∂z2
= 0. (2.2)

The sea-floor topography h(x) and the ocean surface (approximated as a rigid-lid)
impose the no normal-flow boundary conditions:

φ(x, h(x)) = h(x), φ(x, H ) = 0, (2.3)

where H is the far-field ocean depth.
Pursuing a solution to (2.2)–(2.3), we seek Green’s function G(x, x ′; z, z′) that solves(

N(z)2 − ω2

ω2 − f 2

)
Gxx − Gzz = δ(x − x ′)δ(z − z′), (2.4)

subject to the radiation boundary condition in x that disturbances must propagate
away from x ′, which requires that, for a horizontal wave number k, the Green function
takes the form

G(x, x ′; z, z′)e−iωt = f (k|x − x ′| − ωt); (2.5)

and homogeneous conditions in the vertical domain, i.e.

G(x, x ′; (0, H ), z′) = 0. (2.6)

It is convenient to introduce the dimensionless and stretched vertical coordinate

Z =
π

HN̄

∫ z

0

√
N(z′)2 − ω2 dz′, (2.7)

and the corresponding dimensionless horizontal coordinate

X =
πx

µH
, (2.8)

where µ = N̄/
√

ω2 − f 2 and

N̄ =
1

H

∫ H

0

√
N(z′)2 − ω2 dz′. (2.9)

The WKB approximation of the Green function is

G(|X − X′|; Z, Z′) =

∞∑
p=1

1

pπ

sin (pZ)√
N(R(Z))

sin (pZ′)√
N(R(Z′))

eip|X−X′ |. (2.10)

where

N(Z) =
1

N̄

√
N(R(Z))2 − ω2 (2.11)

and the stretched coordinate is mapped back into a physical vertical coordinate via
z = R(Z). This approximation is valid for stratifications that vary slowly with respect
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to the vertical scale of the internal waves and, while it is most accurate for short
vertical wavelengths, it does not give misleading data even for the longest wavelength
solutions (Llewellyn Smith & Young 2002). In the limit of a uniform stratification,

the WKB solution is exact, N̄ =
√

N2 − ω2, Z = πz/H , N(z) = 1, and (2.10) reduces
to the Green function of Robinson (1969) and Pétrélis et al. (2006).

A distribution of singularities γ (X) along the non-dimensional topography
ĥ(X) = πh(x)/H is used to account for internal tide generation, the wave field being
given by

φ(X, Z) =
H

π

∫ b

−a

γ (X′)G(|X − X′|; Z, ĥ(X′)) dX′, (2.12)

where it is assumed that the topography is of arbitrary shape within X ∈ [−a, b]
and of zero height elsewhere. Solution (2.12) differs from that of Pétrélis et al. (2006)
as it considers a horizontally, rather than vertically, distributed array of sources (i.e.
γ (X) instead of γ (Z)), which is the key to straightforwardly handling problems with
complex topography. This approach was also used by Balmforth & Peacock (2009),
but in this study we remove their assumptions of symmetry or periodicity.

The desired quantity γ (X) is found by imposing the lower boundary condition in
(2.3) and solving the integral equation

h(X) =
H

π

∫ b

−a

γ (X′)G(|X − X′|; ĥ(X), ĥ(X′)) dX′. (2.13)

Our numerical approach to solving this problem, which is less sophisticated but
perhaps more transparent than that of Pétrélis et al. (2006), is detailed in the
Appendix. We tested our solution method by comparing with the results of Balmforth
et al. (2002), Llewellyn Smith & Young (2003), Pétrélis et al. (2006) and Balmforth &
Peacock (2009), obtaining excellent agreement in the different respective limits of all
of these approaches.

In the far field, where X < − a or X > b, one can define:

γ ±
p =

1

π

∫ b

−a

γ (X′)
sin (pĥ(X′))√

N(ĥ(X′))

e∓ipX′
dX′, (2.14)

where the superscript of γ ±
p indicates left (−) and right (+) going waves, respectively,

such that, in the far field, the solution of (2.12) can be written as

φ±(X, Z) =
H

π

∞∑
p=1

γ ±
p

p

sin (pZ)√
N(R(Z))

e±ipX. (2.15)

The conversion rate C±, which is the depth-integrated radiated energy flux to the
left (−) and right (+) of the topography, can be expressed in terms of γ ±

p (Pétrélis
et al. 2006) as

C± = ± ρ̄U 2H 2N̄2

4πµω

∞∑
p

|γ ±
p |2

p
= ± ρ̄U 2H 2N̄2

4πµω
C±

∗ , (2.16)

where C∗ =
∑∞

p (|γp|2/p) is the non-dimensional conversion rate and ρ̄ is a reference
background density.
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Figure 1. Snapshots of u/U for internal tides generated by asymmetric Gaussian ridges with
h0/H = 0.5, εr = 0.75 and (a) εl =0.5 and (b) εl = 1.5. (c) Non-dimensional conversion rate in

each direction, C
±
∗ , as a function of εl for εr = 0.75, for a symmetric ridge (εr = εl), and for a

knife-edge (εr = εl → ∞).

3. Uniform stratification
3.1. An isolated ridge

We begin by considering an asymmetric Gaussian ridge:

hG(x) =
h0

1 − e−8

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

exp

(
− x2

2σ 2
l

)
− e−8 −4σl � x � 0,

exp

(
− x2

2σ 2
r

)
− e−8 0 < x � 4σr,

0 x < −4σl, x > 4σr,

(3.1)

where h0 is the maximum height, and 2σl and 2σr are the characteristic widths of
the left and right sides of the ridge, respectively. The factor 1 − e−8 ensures that
the topography goes continuously, but not smoothly, to zero height at −4σl and at
4σr . The slopes on either side of the ridge are different, so the criticality on the left
side of the ridge, εl = max (h′

G ∈ [x = − 4σl : 0])/ tan θ , differs from that on the right,
εr = max (|h′

G ∈ [x = 0 : 4σr ]|)/ tan θ .
Figures 1(a) and 1(b), respectively, present snapshots of the normalized horizontal

velocity u/U for wave fields generated by an asymmetric Gaussian ridge with depth
ratio h0/H = 0.5, εr =0.75 and εl = 0.5 and 1.5. In figure 1(a), both sides of the ridge
are subcritical, so both left- and right-going wave fields possess beams propagating
away from the opposite side of the ridge. The beam propagating to the left, which
is generated on the steeper right slope, is sharper, containing finer vertical structure
and a larger peak amplitude. In addition to these, there are waves in each direction
(propagating leftward from the left slope and rightward from the right slope) that are
not so readily visible but still contain significant energy flux. In figure 1(b), the left side
of the ridge is supercritical. Two wave beams are generated at the upper critical point
of the left slope, one radiating up-and-right and the other radiating down-and-left,
causing the far-field structure to be markedly different to the right and left of the
ridge. In the right far field there is a single sharp right-propagating beam, whereas
in the left far field there are two left-propagating wave beams, the sharper beam
originating from the left side of the ridge and the broader beam coming from the
right side. Formally, there is a singularity in the wave field associated with the sharp
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Figure 2. Fraction Fp of the far-field conversion in the first p modes to the (a) left and
(b) right of the asymmetric ridge in figure 1(a). Results are shown for p = 1, 2, 3, 5 and 10,
with the value of p increasing with line thickness, and also indicated on the right side of (b).

beams originating from the critical slope. In practice, this has been circumvented by
plotting the wave field using a sum of only the first 50 modes, which was sufficient
for convergence of the energy flux.

Figure 1(c) presents the dimensionless conversion rates C
±
∗ for the wave fields in

figures 1(a) and 1(b) as a function of εl , which was varied by changing σl while keeping
all other parameters constant. In the limit εl → 0, we expect the energy flux to be
generated only by the right slope. However, as εl decreases, it is increasingly difficult
to evaluate the solution γ (X) because the horizontal domain [−a : b] increases and
the size of the computation scales as the horizontal domain squared, as per (2.13) and
(A 6). Towards this limit, however, we find that the energy flux is basically symmetric,
although closer inspection of the results in figure 1(c) reveals that slightly more energy
goes to the right than to the left. In the limits εl → 0 and εr → 0, the energy radiation
is symmetric regardless of the topographic shape (Llewellyn Smith & Young 2002).

As εl approaches criticality, the value of C−
∗ increases rapidly and monotonically

with εl for εl < 1.5, with a notable rise in the rate of increase at criticality. The rate
of ascent then diminishes for εl > 1.5, and for εl � 5 the conversion rate is essentially
constant. The value of C+

∗ also initially increases with criticality for εl < 1. For εl > 1,
however, there is initially a sharp decrease in C+

∗ , beyond which the conversion
rate eventually settles to a constant value. The decrease in the rightward energy
flux coincides with the appearance of the second leftward-propagating wave beam
from the left-hand slope for εl � 1, and the same trend at criticality was consistently
observed for both sub- and supercritical values of εr . Also included in figure 1(c) is
the conversion rate for a symmetric ridge (εr = εl), which is the same to the left and
right, and which approaches the limiting value of a knife-edge for ε � 5. This limiting
value is actually less than that of C−

∗ , revealing that the directional conversion rate
of an asymmetric ridge can exceed that of a sharper symmetric ridge. However, the
total conversion rate of the asymmetric ridge, this being the sum of the left- and
right-going energy fluxes, is lower than that of the knife-edge, which is double the
value presented in figure 1(c).

Figure 2 presents Fp , the fraction of the far-field conversion in the first p modes
radiated by the ridge in figure 1(a), as a function of εl . Here,

F ±
p =

1

C
±
∗

p∑
n=1

|γ ±
n |2
n

, (3.2)
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Figure 3. Snapshots of u/U for internal tides generated by two identical Gaussian ridges with
h1/H = h2/H = 0.5, ε1 = ε2 = 0.75 and (a) L/σ = 8.2 and (b) L/σ = 11.2. (c) Non-dimensional
conversion rate to either direction C∗ as a function of L/σ . The dotted line shows C∗ for a
single ridge.

and εl was again increased by decreasing σl . Although F ±
p are dominated by mode 1,

which always carries more than 60 % of the energy flux, the modal structures of the
wave fields propagating to the left and right are quite different. Furthermore, as εl

transitions from sub- to supercritical, there are sharp changes in the modal structure
in both directions, coinciding with the appearance of a new left-going wave beam. For
the left-going wave field, the relative contribution of mode 1 increases and mode 2
becomes much less significant than mode 3. Conversely, for the right-going wave
field, the contribution from mode 1 drops sharply around criticality, where the higher
modes become much more significant.

3.2. A double ridge

For a double-ridge system, we consider the sum of two Gaussian ridges hD(x) =
h1G(x) + h2G(x), where

h1G(x) =
h1

1 − e−8

[
exp

(
− (x + L/2)2

2σ 2
1

)
− e−8

]
, −L/2 − 4σ1 < x < −L/2 + 4σ1,

h2G(x) =
h2

1 − e−8

[
exp

(
− (x − L/2)2

2σ 2
2

)
− e−8

]
, L/2 − 4σ2 < x < L/2 + 4σ2,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(3.3)

and hD = 0 elsewhere. Here, L is the separation between the two ridge peaks and 4σ1

and 4σ2 are the characteristic full widths of the left and right ridges, respectively.
For a pair of subcritical Gaussian ridges, the internal tide radiated by one of

the ridges interferes with that radiated by the other, and is also scattered by the
neighbouring ridge, but cannot be reflected back. Figures 3(a) and 3(b) present
u/U for wave fields generated by two identical, subcritical Gaussian ridges with
h1/H = h2/H = 0.5, ε1 = ε2 = 0.75 and L/σ =8.2 and L/σ = 11.2, respectively. The
radiated wave field is substantially different for the two scenarios. A single strong
wave beam radiates to each side for L/σ = 8.2 (figure 3a). In contrast, for L/σ = 11.2,
two weak beams radiate away in each direction, and there is intense activity between
the ridges (figure 3b).

Figure 3(c) presents C∗, evaluated using the first 50 modes, as a function of L/σ .
For comparison, the conversion rate for an individual ridge is also included in this
figure. The first maximum in the periodic sequence is for L/σ = 8.2, which corresponds
to constructive interference of the wave fields generated by the two ridges. For this
scenario, presented in figure 3(a), one can follow the rightward-propagating wave
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Figure 4. Snapshots of u/U for internal tides generated by a double ridge with
h1/H = h2/H = 0.5, ε2 = 0.75, L/σ2 = 8.2 and (a) ε1 = 0.5, and (b) ε1 = 1.5. (c) The same

as (b) except L/σ2 = 10. (d ) C
±
∗ as a function of ε1, where ε1 is varied by changing σ1 (solid

lines) and h1 (dashed lines). All results are for L/σ2 = 8.2 unless otherwise indicated in the
caption.

beam originating on the outside of the left ridge to the inside of the right ridge, where
it reflects in-phase with the locally generated rightward-propagating wave beam. In
contrast, for L/σ = 11.2, the wave beams generated on the outside of each ridge
destructively interfere outside the confines of the ridges, as shown in figure 3(b),
corresponding to a minimum in the periodic sequence of C∗. This periodic sequence
of constructive and destructive interference has been previously reported in systems
with periodic topography in infinitely deep oceans (Nycander 2005; Balmforth &
Peacock 2009). We find similar trends even for ridges that are substantially more
subcritical, which do not generate sharp wave beams, and if other parameters, such
as h/H , are systematically varied.

If the ridges in a double-ridge system differ in shape, it is reasonable to expect the
radiated internal tide to be asymmetric. As an example, the normalized horizontal
velocity fields for a pair of Gaussian ridges with h1/H = h2/H = 0.5, L/σ2 = 8.2,
ε2 = 0.75 and ε1 = 0.5 and 1.5 are presented in figures 4(a) and 4(b), respectively, the
criticality ε1 being changed by virtue of changing σ1. When both ridges are subcritical
the left- and right-going fields are qualitatively similar, as shown in figure 4(a).
However, when the left ridge is supercritical, as in figure 4(b), a distinct asymmetry
is apparent. The far-field internal tide is dominated in both directions by sharp
wave beams generated at the supercritical ridge, the asymmetry arising because the
rightward-propagating wave beams reflect at different locations on the subcritical
ridge, bringing them closer to one another. Another contributing factor to the
asymmetry, albeit a weaker one, is the initially leftward-propagating wave beam
from the subcritical ridge being reflected back to the right by the supercritical slope
it encounters.

As is the case for a symmetric double ridge (figure 3), the nature of the radiated
tide for an asymmetric double-ridge system depends sensitively on the ridge geometry.
Figure 4(b) shows a noticeably stronger tide than figure 4(c), yet the only difference
between the two is a change in L/σ2 from 8.2 to 10. This relatively small change,
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however, has important geometric consequences. In contrast to the wave field in
figure 4(b), for example, the leftward-propagating wave beam originating on the
outer slope of the right ridge in figure 4(c) no longer encounters the left ridge,
significantly altering wave structure in the left far field.

To further demonstrate the impact of geometric asymmetry on the radiated internal
tide, figure 4(d ) presents C

±
∗ as a function of ε1, evaluated using 50 modes, where ε1 is

increased by either decreasing σ1 (as in figures 4a and 4b) or increasing h1. Although
asymmetry in the conversion rate is most obvious when the left ridge is supercritical,
there is some asymmetry when both ridges are subcritical. The results for increasing
values of h1 are truncated at ε1 = 1.4 since C∗ diverges as h1/H approaches 1. There
is a temptation to assume that C+

∗ will always exceed C−
∗ provided the left ridge is

supercritical, because the supercritical ridge can reflect energy back to the right. This
is not so, however, as the stronger energy flux is towards the left for the configuration
in figure 4(c), as indicated in figure 4(d ). Finally, we note that for all the subcritical
scenarios we studied, the conversion rate is symmetric and approaches that of the
individual right ridge (particularly if ε1 is reduced by reducing h1). This is because
when both ridges are subcritical, the wave beams produced are broad and insensitive
to the asymmetry of the topography, i.e. the two left-going wave beams basically
interact in the same way as the two right-going wave beams. It is only near criticality,
where the wave beams become sharp relative to the scale of the topography, that
asymmetry emerges in the results.

Figure 5 presents Fp for the wave field radiated by the double-ridge system in
figure 4(a) as ε1 is increased by decreasing σ1. The radiated modal structure on
the left and right is qualitatively and quantitatively very similar for ε1 � 1, which is
expected since the far-field structure in both directions is dominated by a single wave
beam of like amplitude. For ε 
 1 the relative contribution of mode 1 dips to less than
half for the left-going wave field but peaks for the right-going wave field. For ε1 > 1,
however, this trend is reversed, and a notable feature is that mode 2 contributes far
more significantly to the rightward than leftward energy flux.

4. Non-uniform stratification
Having investigated single and double ridges in uniform stratifications, finding

that asymmetry in both the energy flux and modal structure can be sensitive to the
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Figure 6. Bathymetry of (a) the ridge at French Frigate Shoals and (b) the Kaena Ridge.
The vectors in (a) and (b) are proportional to the two-dimensional energy flux evaluated at 6
cross-sections of French Frigate Shoals and 10 cross-sections of Kaena Ridge. The stratification
presented in (c) is from averaged HOTS CTD casts, with a zoom-in of the stratification in the
upper 1000 m (inset).

topographic shape, we proceed to investigate more realistic single and double ridges
in non-uniform stratifications, using the Hawaiian and Luzon Ridges, respectively, as
examples. These studies are somewhat idealized, as they assume two-dimensional flow
for cross-sections of the ridges and employ the WKB approximation to account for
a non-uniform background stratification, which is least accurate for the lowest mode.
Nevertheless, this is a significant advance on previous analytical studies as it incorpor-
ates both realistic topography and stratification. Herein, we proceed to investigate the
predictions of the analytical model for these two geographical locations, and make
comparisons with the results of relevant numerical simulations and field data.

4.1. Hawaiian Ridge

Figures 6(a) and 6(b) show the bathymetry of the ridge between French Frigate
Shoals and Brooks Banks, and of Kaena Ridge in the Kauai Channel, respectively.
The bathymetry for French Frigate Shoals was obtained from the latest, satellite-
derived marine topography release SRTM30 PLUS (Becker et al. 2009), and the
bathymetry data for Kaena Ridge was obtained from multibeam data compiled by
the Hawaiian Mapping Research Group (2009). Internal tide generation was modelled
at six evenly spaced, 120 km-long cross-sections at French Frigate Shoals, and 10
evenly spaced, 140 km long cross-sections at Kaena Ridge. For each cross-section, h(x)
was obtained by fitting the bathymetry every 1.4 km with a spline and interpolating
to obtain a smooth shape sampled every 70 m. The same sample stratification N(z)
was used for both locations, since there is not much spatial variability in the averaged
stratifications for French Frigate Shoals and Kaena Ridge (Klymak et al. 2006). The
stratification, presented in figure 6(c), was based on an average of thirty 1100 m deep
CTD casts in the Hawaiian Ocean time-series (HOT) database taken at 24 h intervals
during September 2000 in the Kauai Channel. The profile for the upper 100 m is an
interpolated spline of the HOT stratification, while for the bottom 4900 m, it is an
exponential fit to the values of the measured stratification at depths of 100, 300 and
1050 m. A similar exponential fit was used by Llewellyn Smith & Young (2003). It is
possible to use stratifications that retain more of the fine structure of the ocean data
(e.g. a weak secondary thermocline around 300 m), but we choose to work with this
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French Frigate Shoals Kaena Ridge

Present study M&H Lee et al. Present study M&H Carter et al. Nash et al.

C− 12.1 ∼15 ∼21 7.8 ∼10 ∼6.1 ∼17
C+ 6.5 ∼10 ∼7.5 4.7 ∼8 ∼5.0 –

Table 1. Estimates of the maximum energy flux C± in kW m−1 at the Hawaiian Ridge.
The results of the present study are compared with those of Merrifield & Holloway (2002,
abbreviated as M&H), Carter et al. (2008), Lee et al. (2006) and Nash et al. (2006).

simpler version that captures the primary thermocline, which is the key feature of the
stratification.

The two-dimensional, far-field conversion rate C±, where ‘−’ indicates southwest
and ‘+’ indicates northeast, was calculated for each cross-section in figure 6(a) using
100 modes, with ρ̄ = 1010 kg m−3 and H , µ and N̄ evaluated at each cross-section
using ω = 1.4 × 10−4 rad s−1 and f = 5 × 10−5 rad s−1. For the purpose of this study,
a reasonable value of the far-field barotropic velocity was U = 2 cm s−1, which
lies between the smallest value of U = 1 cm s−1, used in numerical and analytical
studies (Merrifield & Holloway 2002; Llewellyn Smith & Young 2003), and the
larger value U = 3–4 cm s−1, reported in field studies (St. Laurent & Nash 2004;
Lee et al. 2006). Since the magnitude of C scales with U 2 (equation (2.16)), this
introduces significant uncertainty into the predicted conversion rates, which can only
be reasonably estimated within the bounds set by the uncertainty in U .

The values of C±, represented by the vectors on figures 6(a) and (b), vary over
4.0–12.1 kW m−1 at French Frigate Shoals and 0.4–7.8 kW m−1 at Kaena Ridge. At
Kaena Ridge, the maximum conversion rate occurs at the southern end of the ridge,
where the depth ratio approaches 0.9. Further southeast, where the depth ratio exceeds
0.9, we expect the flow to be three-dimensional, preferring to go around rather than
over the ridge, and two-dimensional linear theory is unlikely to provide a reasonable
estimate of the tidal conversion. The peak magnitudes of the predicted conversion
rates at both French Frigate Shoals and Kaena Ridge are in good agreement with
the results of three-dimensional numerical simulations of Merrifield & Holloway
2002, which predict C− ≈ 15 kW m−1 and C+ ≈ 10 kW m−1 for French Frigate
Shoals, and C− ≈ 10 kW m−1 and C+ ≈ 8 kW m−1 for Kaena Ridge; and the three-
dimensional numerical simulations of Carter et al. (2008), which predict C− ≈ 6.1
kW m−1 and C+ ≈ 5.0 kW m−1 for Kaena Ridge. This is also consistent with field
data, which estimate C− ≈ 21 kW m−1 and C+ ≈ 7.5 kW m−1 for French Frigate Shoals
and C− ≈ 17 kW m−1 for Kaena Ridge (Lee et al. 2006; Nash et al. 2006). These
comparisons are summarized in table 1.

While the quantitative values of the theoretical conversion rates have inherent
uncertainty due to the quadratic dependence of C on U , an important qualitative
feature that is well captured by the analytic model is the asymmetry of the energy
flux from both French Frigate Shoals and Kaena Ridge. The results in figures 6(a)
and 6(b) show that, for both locations, the internal tide radiated to the southwest
is predicted to be appreciably stronger than that to the northeast, which is also a
feature of the data from field studies and numerics (see figure 1 in Lee et al. 2006,
figure 6 in Merrifield & Holloway 2002 and figure 7 in Carter et al. 2008).

Figure 7 presents snapshots of u/U along sections A and B in figures 6(a) and
6(b), respectively. Internal wave beams propagate away from the steep slopes of the
topography and are refracted by the stratification, such that, as they approach the
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Figure 7. Normalized across-ridge velocity fields (u/U ) generated at cross-sections (a) A and
(b) B in figure 6. The thick lines in (b) indicate the raw bathymetry data (solid) and a smoothed
version of the profile (dashed), and the inset presents the local depth-integrated, time-averaged,
across-ridge energy flux. The horizontal coordinate x is oriented in the southwest to northeast
direction.

thermocline, they become broader and more horizontal. In cross-section A (figure 7a),
the ridge has a shallow peak at a depth of 800 m, with one inflexion point on the
southwest side that otherwise has a uniform steep slope, and some roughness on
the northeast side associated with several points of high criticality. There are four
principal wave beams generated, two on each side of the peak, and a couple of
notable, but weaker, northeast propagating beams generated by the rough features
on the northeast slope. Cross-section B (figure 7b) coincides with the cross-sectional
cut presented by Carter et al. (2008) (figure 5c). Here, the topography has steep
supercritical slopes (particularly the southwest face) and a relatively flat peak at
a depth of 1000 m. A pair of wave beams, one upward- and the other downward-
propagating, originate from each side of the peak and overall the analytical wave field
is qualitatively remarkably similar to the numerical results of Carter et al. (2008); for
example, both predict upward beams from the different sides of the ridge peak striking
the surface near x = − 40 km, and clear downward beams near both flanks of the
ridge and striking the sea floor around x = ± 100 km. Cross-section B also coincides
with the location of field observations by Nash et al. (2006) and Rainville & Pinkel
(2006). Nash et al. (2006) discerned two internal wave beams propagating southwest
from the plateau, while Rainville & Pinkel (2006) reported upward barotropic-to-
baroclinic conversion over the plateau, associated with the two upward-propagating
internal wave beams generated at either flank.

For cross-section A, 71 % of C− is due to mode 1, which is seven times larger than
the 10 % contribution of mode 2. Lee et al. (2006) also report a highly dominant
mode 1 propagating southwest at this location, being about 10 times larger than
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Cross-section A Cross-section B

Present study Lee et al. Present study Nash et al.

F1 71% ∼77 % 51% ∼65%
F2 10% ∼7% 27% ∼31%

Table 2. Estimates of the fraction Fp of the southwest energy flux C− for modes p =1 and
2 at the Hawaiian Ridge. The results of the present study are compared with those of Lee
et al. (2006) and Nash et al. (2006).

the contribution of mode 2. At cross-section B we find that mode 1 accounts for
51 %, and mode 2 for 27 %, of C−, which is in accord with the field data of Nash
et al. (2006), who attribute ∼ 65 % of the southwest energy flux to mode 1 and ∼ 31 %
to mode 2. These comparisons are summarized in table 2. The inset in figure 7(b)
presents the depth-integrated and time-averaged across-ridge energy flux as a function
of cross-ridge position for transect B. This plot further clarifies the earlier statement
that in the far-field C− is stronger than C+. For this transect, C− is stronger by
24 %. Nash et al. (2006) found the energy flux to be zero atop much of the plateau,
suggesting a standing wave pattern due to the super-position of nearly symmetric
wave beams generated at either flank of the ridge. We also find a reduced energy flux
that approaches zero atop the ridge, but only near the centre of the plateau.

The aforementioned analysis was performed using a mildly smoothed version of the
original bathymetric data, indicated by the solid thin (smoothed) and thick (original)
black lines outlining the topography in figure 7(b). The conversion rates calculated
using the smoothed data varied by only 1 % from those calculated using the original
data. The dashed black line in figure 7(b), however, shows a yet smoother fit to the
topography, a spline being fitted every 4 km and interpolated to every 40 m. This
slightly smoother representation yields 15 % greater value of C−, although only about
1 % lower value of C+, due to the fact that the supercritical feature on the northeast
slope has been modified. This result supports the assertion of Nycander (2005) that
an important issue in the computation of internal tide generation is topographic
resolution. As noted earlier in this study, however, for two-dimensional topography
the greatest uncertainty would seem to come from the barotropic velocity U .

4.2. Luzon Strait

Figure 8(a) shows the bathymetry of Luzon Strait obtained from the ETOPO2 model
of the National Geographic Data Center (2006). The two dominant features are the
substantial Lan-Yu Ridge to the east that extends from north to south across the
entire strait, and Heng-Chun Ridge to the west that becomes much less significant
at the southern end of the strait. In comparison to the sections of Hawaiian Ridge
studied in the previous section, Luzon Strait bathymetry is generally a bit shallower
and more intricate, making the associated barotropic flow more three-dimensional and
the region less amenable to two-dimensional analytic study. Nevertheless, we follow
the lead of Chao et al. (2007) and investigate the two-dimensional cross-sections
marked A, B and C in figure 8(a), at 19.97◦ N, 21.15◦ N and 21.39◦ N, respectively, to
assess the impact of the west ridge on the internal tide radiated to the west. Towards
the south, where the west ridge is relatively deep, internal tide generation by the east
ridge is expected to dominate. At northern sections, where the depth ratios of the
west and east ridges are similar, the west ridge is expected to play a more significant
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Figure 8. (a) Bathymetry and (b) stratification of the Luzon Strait. The vectors in (a) are
proportional to the two-dimensional energy flux evaluated at three representative cross-sections
labelled A, B and C.

role. Figure 8(b) shows the stratification N(z) used in the model. This was obtained
from an average profile of 2575 m deep CTD casts from April and July of 2007
(Farmer, Li & Park 2010) using an interpolated spline of the available stratification
and an exponential fit as in § 4.1.

The two-dimensional far-field conversion C±, where ‘−’ corresponds to west and
‘+’ to east, was calculated for cross-sections A, B and C using the same parameters as
for the Hawaiian Ridge (i.e. the semidiurnal tide), with the exception of U = 5 cm s−1

(Niwa & Hibiya 2004; Chao et al. 2007; Jan, Lien & Ting 2008). The topography
used in the calculations was found by fitting the bathymetry every 10 km with a
spline and re-sampling the fit using interpolation every 100 m. Qualitatively, our
results show that the internal tide radiated at cross-sections A and B is significantly
stronger than that radiated at cross-section C. The conversion rates, which are highly
influenced by the quadratic dependence of C on U , are O(10–100 kW m−1), and are
consistent with the numerical results of Niwa & Hibiya (2004) and Jan et al. (2008).
The analytical model predicts unrealistically high energy fluxes for latitudes such
as 20.5◦ N (the Batan Islands) where the depth ratio of the east ridge approaches
unity. These unphysical results, however, could nevertheless be important indicators
of generation hotspots.

A snapshot of u/U for the internal tide at cross-section B is presented in
figure 9(a). A standout feature is the strong, west-propagating wave beam produced
by constructive interference between two other wave beams, one generated at each
of the twin peaks of the east ridge. Figure 9(b) reveals that reducing the height of
the west ridge by 20 % causes this constructive interference to no longer happen,
so this wave beam is notably weaker in the far field. Another wave beam from the
easternmost peak, which is otherwise reflected back by the supercritical slope of the
west ridge, continues to propagate west, significantly altering the character of
the westward internal tide.
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Figure 10 summarizes the effect on the westward internal tide of decreasing the
height of the west ridge by 20 % for all three cross-sections. The bar height represents
the dimensionless conversion rate C−

∗ , and each bar is decomposed into contributions
from the different vertical modes. The energy flux at cross-sections A and C
is dominated by mode 1, but at cross-section B it is mode 2 that dominates, which is
surprising, because on an inspection cross-section B does not differ so dramatically in
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form from cross-section A. Reducing the height of the west ridge reduces C− for both
A and C, dramatically so for C, but substantially increases C− for cross-section B.
Consistent with the results of Chao et al. (2007), we therefore conclude that, at the
southern end of Luzon Strait, the west ridge plays a relatively minor role in internal
tide generation due to its small size, whereas further north its role is more substantial.
Their conclusion that, at northern latitudes, the west ridge augments the westward
internal tide seems to be too sweeping a generalization, however, as we find the
opposite to be true for cross-section B. Rather, the nature of the radiated internal
tide depends very sensitively on the bathymetry and stratification, and needs to be
assessed on a case-by-case basis.

5. Conclusions
We have advanced the two-dimensional Green function approach of Pétrélis et al.

(2006) to study internal tide generation by realistic sea-floor topography in realistic
stratifications, within the confines of the WKB approximation. For both isolated
and double-ridge systems, geometric asymmetry results in asymmetrically radiated
internal tides with both the magnitude of the energy flux and the modal content
of the wave fields being quite sensitive around criticality. The wave field radiated
by a double ridge is very sensitive to the relative position and size of the ridges
due to interference between the wave fields they generate and the reflection of wave
beams from supercritical slopes. Case studies of the Hawaiian Ridge and Luzon Strait
find good qualitative, and in some cases quantitative, agreement between theory and
corresponding numerical simulations and field data. For example, the analytical model
is able to reasonably predict the low-mode content and asymmetry of the internal
tide generated at French Frigate Shoals and the Kaena Ridge. We conclude that this
approach can be a useful tool for obtaining oceanographically relevant predictions,
provided one recognizes the inevitable limitations in regard to complex topography
and very large depth ratios, where three-dimensionality and nonlinearity become
important.

An interesting scenario, arising naturally in these studies, is that an appropriately
configured double-ridge system can trap internal tide rays between the two ridges,
focusing them onto an internal wave attractor. The phenomenon of an internal
wave attractor has previously only been studied in a closed container (Maas et al.
1997; Hazelwinkel et al. 2008; Grisouard, Staquet & Pairaud 2008). The double-ridge
configuration is qualitatively different from these previous studies as it has open
boundaries through which internal tidal rays can escape. Thus, somewhere like Luzon
Strait is conducive to the possibility of an internal wave attractor. This interesting
development is the subject of a follow-up paper (Echeverri et al. 2010).

We acknowledge helpful discussions with Neil Balmforth and Wenbo Tang. Funding
for this research was through NSF grant 0645529 and ONR grant N00014-09-0282.

Appendix. Numerical evaluation of γ (X)

Substituting the Green function (2.10) into the boundary condition (2.13) and
exchanging the order of summation and integration yields

πh(X)

H
=

∞∑
p=1

1

pπ

sin (pĥ(X))√
N(R(ĥ(X)))

∫ b

−a

γ (X′)
sin (pĥ(X′))√
N(R(ĥ(X′)))

eip|X−X′ | dX′. (A 1)
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To solve (A 1) for γ (X), the domain X ∈ [−a : b] is discretized into K − 1 intervals
so that X1 = − a and XK = b. Functions of X are approximated as constants over the
small intervals �X = Xn+1 − Xn, such that∫ Xn+1

Xn

h(X) dX ≈ hn+1/2�X (A 2)

and ∫ Xn+1

Xn

γ (X) dX ≈ γn+1/2�X, (A 3)

where the notation n + 1/2 indicates a mid-point value. Therefore, the integral of
(A 1) over the interval [Xn : Xn+1] yields

πhn+1/2

H
�X ≈ 1

π

∞∑
p=1

p−1

∫ Xn+1

Xn

∫ b

−a

sin (pĥ(X))√
N(R(ĥ(X)))

sin (pĥ(X′))√
N(R(ĥ(X′)))

eip|X−X′ |γ (X′) dX′ dX.

(A 4)

Rewriting the inner integral as a sum of integrals over each discrete interval gives

πhn+1/2

H
�X ≈ 1

π

∞∑
p=1

p−1

∫ Xn+1

Xn

K−1∑
j=1

γj+1/2

×
∫ Xj+1

Xj

sin (pĥ(X))√
N(R(ĥ(X)))

sin (pĥ(X′))√
N(R(ĥ(X′)))

eip|X−X′ | dX dX′, (A 5)

which can be simplified as

πhn+1/2

H
�X =

K−1∑
j=1

Mnjγj+1/2, (A 6)

where

Mnj =
1

π

∞∑
p=1

p−1

∫ Xn+1

Xn

∫ Xj+1

Xj

sin (pĥ(X))√
N(R(ĥ(X)))

sin (pĥ(X′))√
N(R(ĥ(X′)))

eip|X−X′ | dX dX′. (A 7)

The task of evaluating Mnj can be simplified. Firstly, it can be seen that

Mnj = Mjn. (A 8)

Secondly, for X >X′, Mnj can be rewritten as

Mnj =
1

π

∞∑
p=1

p−1

∫ Xn+1

Xn

sin (pĥ(X))√
N(R(ĥ(X)))

eipX dX

∫ Xj+1

Xj

sin (pĥ(X′))√
N(R(ĥ(X′)))

e−ipX′
dX′. (A 9)

Defining

Un(p) =

∫ Xn+1

Xn

sin (pĥ(X′))√
N(R(ĥ(X′)))

eipX′
dX′, (A 10)

then, for n � j + 1,

Mnj =
1

π

∞∑
p=1

p−1Un(p)U ∗
j (p). (A 11)
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Similarly, for X <X′ (i.e. n + 1 � j ), then

Mnj =
1

π

∞∑
p=1

p−1U ∗
n (p)Uj (p). (A 12)

Therefore, evaluating Un(p) is enough to evaluate Mnj for n �= m. The expression
for Mnn is more complicated and found using symbolic math in MATLAB. For
convenience, we first define the slope s =dĥ/dX and the following variables:

t1 = 2pĥ1/2 + ps1/2�X

and

t2 = ps1/2�X − 2pĥ1/2,

where the subscript 1/2 is used as a short-hand notation for n + 1/2. The diagonal
elements of the matrix can be found using

Mnn =

∞∑
p=1

2
(
1 − s2

1/2

)2

p3πN(R(ĥ1/2))s1/2

[A + B + C + D + E] , (A 13)

where

A = 2s1/2

[
ip�X

(
1 − s2

1/2

)
+ 1 + s2

1/2

]
,

B =
[
i sin(t1) + s1/2 cos(t1)

] (
1 − s2

1/2

)
,

C = 4is2
1/2e

ip�X sin(ps1/2�X),

D = 2s1/2e
ip�X

[
cos

(
2pĥ1/2

)(
1 − s2

1/2

)
−

(
1 + s2

1/2

)
cos(ps1/2�X)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(A 14)

and

E =
[
i sin(t2) + s1/2 cos(t2)

] (
s2
1/2 − 1

)
. (A 15)
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Pétrélis, F., Llewellyn Smith, S. G. & Young, W. R. 2006 Tidal conversion at a submarine ridge.
J. Phys. Oceanogr. 36, 1053–1071.

Rainville, L. & Pinkel, R. 2006 Baroclinic energy flux at the Hawaiian ridge: observations from
the R/P FLIP. J. Phys. Oceanogr. 36, 1104–1122.



266 P. Echeverri and T. Peacock

Ray, R. D. & Mitchum, G. T. 1997 Surface manifestation of internal tides in the deep ocean:
Observations from altimetry and island gauges. Prog. Oceanogr. 40, 135–162.

Robinson, R. M. 1969 The effects of a barrier on internal waves. Deep Sea Res. 16, 421–429.

Rudnick, D. L., Boyd, T. J., Brainard, R. E., Carter, G. S., Egbert, G. D., Gregg, M. C.,

Holloway, P. E., Klymak, J. M., Kunze, E., Lee, C. M., Levine, M. D., Luther, D. S.,

Martin, J. P., Merrifield, M. A., Moum, J. N., Nash, J. D., Pinkel, R., Rainville, L. &

Sanford, T. B. 2003 From tides to mixing along the Hawaiian ridge. Science 301, 355–357.

Simmons, H. L., Hallberg, R. W. & Arbic, B. K. 2004 Internal wave generation in a global
baroclinic tide model. Deep Sea Res. 51, 3043–3068.

St Laurent, L., Stringer, S., Garrett, C. & Perrault-Joncas, D. 2003 The generation of internal
tides at abrupt topography. Deep Sea Res. 50 (8), 987–1003.

St Laurent, L. C. & Nash, J. D. 2004 An examination of the radiative and dissipative properties
of deep ocean internal tides. Deep Sea Res. 51, 3029–3042.


