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ABSTRACT 

The relationship between regulatory trans-factors binding a gene’s cis-regulatory sequence 

elements and the transcriptional output of that gene is fundamental to even the most complex 

network behaviors such as metabolism and differentiation. In eukaryotes, chromatin dynamics on 

gene promoter sequences is an integral part of regulation, and nucleosome remodeling is often 

required for transcription activation. Though the transient response of these regulated genes is 

often important in biological contexts, the role of promoter chromatin architecture in activation 

kinetics is still unclear. We sought to investigate this relationship as well as possible links to the 

cell cycle, over which chromatin state experiences dramatic changes. To study the activation 

kinetics of individual promoters, we develop a method to infer real-time transcription rates from 

protein expression in single Saccharomyces cerevisiae cells using time-lapse fluorescence 

microscopy. Comparison between the instantaneous transcription rate and cell-cycle phase in 

each cell demonstrates the majority of transcriptional variability is due to cell cycle-dependent 

effects with noisy expression restricted to S/G2/M. This is in stark contrast to current stochastic 

models of gene expression, most of which do not account for extrinsic effects, and reveals a 

permissive activation period beginning each S-phase. We then employ a switchable 

transactivator system to probe transient response kinetics as a function of promoter chromatin 

architecture at the PHO5 promoter, a well-established model system for chromatin-regulated 

expression. While we show transactivator binding site affinity and location relative to 

nucleosomes influences promoter response kinetics, the effect is primarily through architecture-

dependent reliance on a dominant, permissive activation period in S/G2. Together with similar 

observations at synthetic promoters using a chimerical, switchable transactivator, these results 

suggest the cell cycle has a general role in transcription activation. Based on the timing of the 

permissive period, DNA replication may play a direct role in transactivation. Thus, in network 

topologies involving noisy genes and positive feedback, the cell cycle-dependent transcription 

would lead to distinct predictions between frequently- and non-dividing cells. This work reveals 

an unappreciated yet dominant role for the cell cycle as a general regulator of transcription in 

eukaryotes with direct implications in better modeling and design of biological networks. 

Thesis Supervisor: Narendra Maheshri 

Title: Assistant Professor of Chemical Engineering 
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CHAPTER 1. INTRODUCTION 

1.1 A new perspective on gene regulation 

One of the most fascinating aspects of biology is how organisms are able to coordinate 

expression of multiple genes. Well-orchestrated, combinatorial expression programs enable a cell 

to metabolize raw materials and energy sources, to replicate, to mount stress responses, and to 

differentiate and form patterns in higher organisms.  To accomplish these feats, organisms have 

evolved many strategies to regulate gene expression. 

A predominant approach is through trans-acting transcription factors recognizing and binding 

their target DNA sequences, where they then act directly or indirectly, through more general 

cofactor recruitment, to establish a gene’s transcription state. These transcription factors can be 

post-translationally regulated in turn by complex signaling networks, which monitor the cell 

state. However, DNA packaging onto chromatin in eukaryotes provides an additional layer of 

regulation. Even in prokaryotes, where the genome is thought to be readily accessible to protein 

binding, conformational changes due to DNA supercoiling and bacterial “chromatin” can 

influence gene regulation. 

Because nucleosomes can occlude cognate sequences targeted by transcription factors in 

eukaryotes, the competition between nucleosomes and transcription factors to bind cis-regulatory 

elements in a gene’s promoter or enhancer complicates the relationship between transcription 

factor activity and gene expression. Often, chromatin remodeling is required for induction, and 

much work (discussed in section 1.2) has been done to elucidate how the presence of chromatin 

regulates a promoter’s response to a steady transcription factor stimulus. However, it is often the 

transient behavior of regulated genes that is crucial for a biological outcome, including proper 

stress responses, coordination for differentiation and patterning, and cell-cycle control. Yet the 

role of promoter chromatin architecture in regulating gene activation kinetics is less well 

understood.  

The main goal of this thesis work is to investigate the role of chromatin dynamics during 

transcription activation. Specifically, how does promoter architecture, in terms of the relative 
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positioning of nucleosomes and various cis-regulatory elements, influence activation kinetics? 

Additionally, global processes in the cell may affect the promoter chromatin state. A 

conspicuous example would be the drastic changes to chromatin architecture throughout the cell 

cycle discussed in in section 1.3. This thesis therefore also addresses the question of what role, if 

any, does the cell cycle play in the relationship between promoter architecture and activation 

kinetics? 

The tradeoff between data resolution and throughput makes the kinetic role of promoter 

architecture a challenging inquiry. Previous studies of activation at chromatin-bound promoters 

have been limited by population-average measurements, which obscure variability at the level of 

individual promoters, or by assays too onerous for a comparative survey of various architectures. 

Therefore, we have developed a moderate-throughput, single-cell approach to provide a 

promoter-level view of the rate and variability of transcription at a particular gene. The budding 

yeast Saccharomyces cerevisiae provides a model system for studying chromatin-regulated 

expression. Moreover, it offers straightforward genetic manipulation, and gene expression can be 

assayed readily using fluorescent protein reporters. We employed time-lapse fluorescence 

microscopy to obtain a full time-dependent trajectory of reporter expression in single yeast cells. 

In Chapter 2, we describe the experimental methods used to obtain fluorescence microscopy 

movies, and the analysis developed to use the single-cell expression time series to infer a 

corresponding instantaneous transcription rate. The analysis was facilitated by a custom-written 

graphical user interface for simplified movie analysis, visual data inspection, and automated time 

series calculations. By accounting for cell-cycle phase based on cell morphology throughout the 

bright field image series, any correlation to the cell cycle could also be examined. 

We first applied these techniques to interrogate the effects of the cell cycle on transcription. As 

described in Chapter 3, observations of steady-state gene expression at high and low levels 

revealed an unappreciated dependence of transcription activity on cell-cycle phase. While 

constitutively active promoters display an instantaneous transcription rate pattern across the cell 

cycle that increased ~2-fold after replication in S-phase consistent with changes in gene dosage, 

a synthetic promoter known to have “noisy” expression at low levels was found to be 

transcriptionally active only after replication and before mitosis. These findings led to the 

conclusion that the majority of transcriptional variability across a yeast population under steady 
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conditions is due to cell cycle-dependent changes in transcriptional output. This is in stark 

contrast to current stochastic models of transcriptional bursting typically used to explain this 

variability. Furthermore, the dominant influence of cell-cycle phase in transcription pulse timing 

at steady state suggested a role during transient response activation as well. 

To precisely probe the kinetics of promoter activation, we engineered a system in yeast to rapidly 

and observably switch transactivator activity based on the yeast phosphate starvation pathway. 

Phosphate-responsive promoters in general and the PHO5 promoter in particular have served as 

a model system for studying the relationship between promoter chromatin and transcription 

regulation (discussed in Chapter 4). With each cell bearing a unique PHO5 promoter variant 

driving expression of a fluorescent reporter, the activation response time to a step change in 

transactivator can be measured at the promoter level. As described in Chapter 4, the cell cycle 

plays a prominent role in dictating activation kinetics, with a clear permissive activation period 

that occurs post-budding and replication in S/G2.  Conservative changes in promoter architecture 

revealed the effects of transactivator binding site affinity and location relative to well-positioned 

nucleosomes had varying effects on accelerating activation kinetics both in slower G1 periods, 

and in the faster S/G2 periods. Thus, promoter activation kinetics are linked to the cell-cycle in 

an architecture-dependent manner, which had the following unexpected consequences. 

Activation timing at two promoters in the same cell became correlated by the common 

dependence in trans. This result was surprising given the expectation that the nucleosome 

remodeling process in cis would dominate the variability in a promoter’s response time. Also, 

transcriptional memory was observed at reactivated promoters, and manifested as a decreased 

reliance on the permissive S/G2 phase. Moreover, targeting the transactivator to synthetic 

promoters led to similar observations of an S/G2 permissive activation period, which suggests it 

is a general phenomenon. 

Together these studies reshape our view of gene regulation in eukaryotes. As discussed in section 

1.2, a regulatory role of chromatin in repressing or permitting transcription is well-established. 

The results presented extend our understanding of promoter architecture design rules to response 

kinetics. However, the dominant role of the cell cycle found here highlights the necessity of 

considering the global chromatin context in any model of transcription regulation. Given the 

changes to chromatin throughout the cell cycle and previous evidence of its effect on 
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coordinating development and viral expression programs as discussed in section 1.3, it is perhaps 

unsurprising to observe an effect of the cell cycle on transcription. Yet the crucial influence of 

the cell cycle in noisy expression and activation kinetics is remarkable in that it is almost wholly 

neglected in the study of genes not directly regulated by the cell cycle. Instead, this work 

suggests any gene in yeast whose expression is considered to be chromatin-regulated will be 

dependent on the cell cycle rather than solely the 15% of yeast genes previously shown to be cell 

cycle-regulated. This has profound implications for network design and function in eukaryotic 

synthetic biology or metabolic engineering applications. One result of a gene being reliant on a 

permissive S/G2 phase is that its expression dynamics will be largely dependent on growth rate, 

which determines the frequency of the S/G2 phase. Likewise, human health features examples of 

growth-linked, chromatin-regulated genes such as switched and reinforced epigenetic states 

leading to oncogene expression during tumorigenesis, which may require distinct intervention 

strategies in dividing and quiescent cells. 

1.2 Chromatin and transcription control 

Promoter nucleosomes pose a barrier to transcription activation 

In eukaryotes, vast amounts of genetic information are condensed into the confines of the 

nucleus by loading the DNA onto chromatin. The basic packaging unit is the nucleosome. Each 

nucleosome consists of 147 base pairs (bp) of DNA wrapped around a histone octomer 

composed of two each H2A/H2B and H3/H4 heterodimers (Richmond and Davey 2003), and a 

stretch of linker DNA leading to the next nucleosome.  At this level, chromatin resembles “beads 

on a string” and is in its least repressing, euchromatic state while addition of H1 linker histones 

and/or other scaffolding proteins further condenses the chromatin fiber into a heterochromatic 

state associated with gene silencing (Lu et al. 2009). However, even when in a more open, 

euchromatic state, important regulatory DNA sequences can still be bound by a core 

nucleosome. 

Positioning of individual nucleosomes on the DNA is subject to several forces. DNA sequence 

influences its flexibility, and therefore the energetic favorability of wrapping around the histone 

core. Long poly(dA/dT) tracts tend to be inflexible, which inhibits nucleosome formation over 
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that sequence (Segal and Widom 2009). On the other hand, AA/TT/TA dinucleotides spaced at 

10 bp intervals with GC dinucleotides repeating 5 bp out of phase facilitate bending and 

promoter nucleosome formation (Segal et al. 2006; Ioshikhes et al. 2006; Lowary and Widom 

1998). Sequence alone cannot account for observed in vivo nucleosome positions, though. 

“Statistical positioning” was proposed to explain the degree of nucleosome organization across 

the yeast genome (Kornberg 1981; Kornberg and Stryer 1988). This theory proposes that regular 

nucleosome arrangements could arise on lengths of DNA bounded by barriers to nucleosome 

formation. Thus a well-positioned nucleosome abutting the barrier would set the pattern and 

restrict the possible locations of other nucleosomes along the stretch of DNA. Nucleosome 

positions observed within coding regions are consistent with this notion as positioning strength is 

strongest at the 5’ end and decreases as the array progresses toward the 3’ end (Yuan et al. 2005; 

Mavrich et al. 2008). This arrangement would arise from a barrier at the 5’ end possibly in the 

form of an upstream poly(dA/dT) tract (Yuan et al. 2005) or a well-positioned nucleosome at the 

transcription start site (Mavrich et al. 2008). A recent model suggests the latter influences 

positioning across the gene while the former determines the upstream organization (Möbius and 

Gerland 2010). Additionally, there is a role for sequence-specific trans-factors establishing 

nucleosome positioning through remodeling processes as achieving proper in vivo positioning 

using yeast extracts in vitro was ATP-dependent (Zhang et al. 2011). 

Combined, these three forces determine the chromatin architecture at a given gene’s promoter or 

enhancer, and distinct regulatory strategies are achieved by the relative positioning of cis-

regulatory elements and nucleosomes. In yeast, two large classes of promoter architecture are 

observed: “open” promoters where binding sites for transcription factors are present and 

accessible in a nucleosome-depleted region (NDR) proximal to the transcription start site, and 

“covered” promoters where nucleosomes occlude binding sites necessary to achieve transcription 

(Field et al. 2008; Tirosh and Barkai 2008). These two classes correspond to two different 

regulatory strategies. Open promoters favor constitutive expression since general transcription 

factors (GTFs) can be readily recruited, and thus this architecture is enriched for housekeeping 

genes. Conversely, covered promoters often require recruitment of a targeted transactivator to 

initiate chromatin remodeling to form a more open promoter state. The remodeling process can 

be tuned by the promoter architecture-specific competition between nucleosomes and 

transactivating factors to bind cis-regulatory elements at covered promoters. Befitting a class 
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enriched for stress response genes, remodeling requirements at covered promoters supply a 

regulation strategy with greater dynamic range, as well as more noise, than the open promoter 

class (Tirosh and Barkai 2008). Covered promoters not only provide a means to generate 

regulatory diversity between components in stress response pathways, their inherent noise can 

lead to phenotypic variation to spread the population across the fitness landscape. This promoter 

class provides a rich field of study in gene regulation and the basis of this thesis. 

The initiating transcription factor may bind a cognate site in the DNA linker or it may have to 

compete for a nucleosome-occluded binding site. In the latter case, transcription factor binding 

sites are commonly located near the exit-entry portion of nucleosome-bound DNA (North et al. 

2012), and transient, partial DNA unwinding from the histone core would provide occasional 

access (Anderson and Widom 2000; Polach et al. 2000). In vitro measurements indicate 

nucleosomes wholly and spontaneously unwrap several times per second (Li et al. 2005) making 

even deeply buried binding sites available for short periods of time. Rapid histone turnover at 

promoters (Dion et al. 2007; Rufiange et al. 2007) can also contribute to target site accessibility 

(Wang et al. 2011). Therefore, the nucleosome mainly represents a thermodynamic obstacle to 

transactivator binding rather than a kinetic barrier (Hayes and Hansen 2001). 

However, at many covered promoters, the thermodynamic barrier posed by nucleosomes 

prevents immediate formation of a pre-initiation complex, and therefore poses a kinetic barrier to 

transcription activation. While the regulatory role of architecture has been studied in detail at 

steady state ((Lam et al. 2008), discussed below/in Chapter 4), remodeling has also been 

proposed as the rate-limiting step in transcription activation (Mao et al. 2010). In some cases, 

nucleosome eviction alone may be sufficient to allow spontaneous transcription (Han and 

Grunstein 1988; Ohsawa et al. 2009). Though transactivator binding to both nucleosome-free and 

occluded sites can occur through energy-independent nucleosome fluctuations, transactivators 

must precipitate promoter reconfiguration through energy-dependent processes to achieve an 

active transcription state. 

Transactivator-driven remodeling can take place through many pathways, even at the same 

promoter (Barbaric et al. 2007), and the strength and location of nucleosomes in a given 

promoter architecture can determine the cofactors required to activate (Hertel et al. 2005; 
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Dhasarathy and Kladde 2005). Typically cofactor recruitment is done through the 

transactivator’s activation domain, with protein binding abilities distinct from its DNA binding 

domain. A common conserved motif is an acidic activation domain, characterized by an 

enrichment of acidic residues, which stimulates transcription across all eukaryotes (Ptashne and 

Gann 1990). The activation domain directly binds to complexes with chromatin-remodeling and 

-modifying activities as well as transcription cofactors. Well-studied examples of transactivators 

in yeast with acidic domains such as Gcn4p, Gal4p, and Pho4p have been shown to directly 

interact with components of the histone acetyltransferase (HAT) complexes SAGA and NuA4 

(Fishburn et al. 2005; Barbaric et al. 2003; Dhasarathy and Kladde 2005; Reeves and Hahn 

2005), the chromatin remodeler SWI/SNF (Prochasson et al. 2003; Neely et al. 2002; Dhasarathy 

and Kladde 2005), and the cofactors Mediator and TFIID (Fishburn et al. 2005; Reeves and 

Hahn 2005; Herbig et al. 2010). Histone tail lysine acetylation by SAGA (H2B and H3 by 

Gcn5p) and by NuA4 (all but H3 by Esa1p) (Krebs 2007) may directly destabilize the charge 

interactions between DNA and histones as well as provide a targeting signal to factors containing 

bromodomains (Roth et al. 2003). The former mechanism has been called into question by the 

small effect of deleting histone tails on nucleosome unwrapping (Polach et al. 2000) so the main 

role of acetylation may be targeting and stabilizing binding of additional factors including 

ATPase-driven remodeling complexes. While chromatin remodelers can have various activities 

depending on the subunits associated with the core ATPase, SWI/SNF and INO80 are the main 

complexes associated with transcription activation in yeast (Clapier and Cairns 2009). These 

serve to slide and evict nucleosomes from the promoter region through energy-dependent 

mechanisms. Once the core promoter is finally cleared, the transactivator can also potentiate pre-

initiation complex formation through its interactions with cofactors which bridge to components 

of the RNA Pol II holoenzyme. 

The prominent role of energy-dependent processes in relieving chromatin repression at covered 

promoters suggests activation kinetics are crucial to understanding the overall regulatory 

dynamics. Since the requirement for various energy-dependent pathways depends on architecture 

(Dhasarathy and Kladde 2005), the details of a particular promoter architecture should determine 

activation kinetics as well as the steady state dynamics. As a representative of the covered 

promoter class, the PHO5 promoter provides a model system in yeast for the study of chromatin-

regulated transcription. Using a set of PHO5 promoter variants (Lam et al. 2008), we show in 
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chapter 4 there is indeed a role for architecture in the transient induction kinetics. Surprisingly, 

activation kinetics are also strongly cell cycle-dependent in an architecture dependent manner. 

1.3 An indirect role for the cell cycle in transcription 

An S-phase window of opportunity 

Global changes in chromatin structure occur throughout the cell cycle. Aside from direct 

regulation by cyclins, the cell cycle provides phase-specific changes in accessibility that may be 

important to chromatin-regulated genes. While chromosome condensation during mitosis is 

associated with gene repression (Johnson 1965), DNA replication during S-phase necessitates an 

open chromatin structure at least locally and forces changes to the epigenetic state (reviewed in 

(Alabert and Groth 2012)). As the replication fork progresses along the DNA, nucleosomes are 

removed by histone chaperones and randomly redistributed between the daughter strands 

(Annunziato 2012). How H3-H4 tetramers are recycled to the new DNA is not clear, possibly 

through the chaperones Asf1 and FACT (Alabert and Groth 2012), while the fate of the more 

dynamic H2A-H2B dimers is even less clear. Full nucleosome loading on both daughter strands, 

though, requires additional deposition of histones from the soluble pool. These new histones are 

more highly acetylated than those from the original locus (Annunziato and Seale 1983) 

generating a new epigenetic state. Histone methylation is also diluted through replication, but 

may not be reduced sufficiently to alleviate repression (Lanzuolo et al. 2011). Nascent chromatin 

undergoes a 10 to 20 minute maturation process whereby histone modifications from the original 

locus are reformed across the new loci (Annunziato 2012). The temporary, post-replication 

epigenetic state thus provides a “window of opportunity” for activation of many genes, and could 

be an unappreciated feature of chromatin-regulated genes in general. 

Transcription linked to the cell cycle indirectly through chromatin regulation 

The notion of a mechanistic link between transcription and DNA accessibility generated by 

replication has been around for some time (Wolffe 1991). Nascent chromatin provides a window 

of opportunity for both basal transcription (Almouzni and Wolffe 1993) as well as transactivator 

action (Kamakaka et al. 1993). In the latter case, opportunistic trans-factor binding likely 

supports formation of a competent promoter state rather than stimulating transcription initiation 
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itself (Wilson and Patient 1993). In other examples, replication has disrupted epigenetic states to 

the point of allowing transcription at heterochromatic centromeric repeats (Chen et al. 2008) and 

a transactivator to overcome subtelomeric silencing (Aparicio and Gottschling 1994). 

This DNA replication-linked window of opportunity has been exploited by evolution. Timing of 

developmental genes is crucial to differentiation and patterning in higher eukaryotes. Replication 

can “license” an entire locus for coordinated expression (Fisher and Méchali 2003). It can also 

reactivate inherited silenced genes at a specific embryonic stage after a defined number of 

replication rounds (Forlani et al. 1998; Bancescu et al. 2004). Many developmental genes are 

later silenced and only become derepressed oncogenes during tumorigenesis. Unscheduled, 

accelerated replication can contribute to chromatin derepression both by diluting repressing 

factors at the oncogene locus and by enhancing activator accessibility (Crowe et al. 2000). In 

these examples, expression results from a pre-existing epigenetic program or a very rare, 

stochastic event from silenced chromatin. In either case, chromatin at these loci is tightly 

regulated. 

It is currently unclear whether or not the window of opportunity for transactivators is a global 

phenomenon. While the several studies mentioned above show some generality in replication-

linked transcription from various locations in the genome, the primary examples with phenotypic 

consequences in development or cancer occur at loci where the activation is part of a specific 

program or the result of rare misregulation. However, replication-dependent transcription has 

also been implicated in HIV gene expression (Williams et al. 1996), which integrates broadly 

into euchromatic regions of the host genome (Wang et al. 2007). In this case, activation through 

replication is not locus-specific, and must be efficient to effectively initiate infection. Therefore, 

susceptibility to replication-linked transcription may be a general feature of euchromatic genes. 

Since these genes are associated with being transcriptionally active, the phenotypic effect of a 

window of opportunity may not be as apparent as derepressing an oncogene, yet there are 

instances where replication-linked activation could matter. Proliferating and non-dividing cells 

would have entirely different expression patterns for a noisy gene regulated by a post-replication 

active period, and each cell type may activate a stress-response gene at a different rate if 

replication facilitated transcription. In the following chapters, we demonstrate a general, 

dominant role for the cell cycle in both noisy, steady state expression and in transcription 
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activation kinetics, which suggests the replication-linked window of opportunity for 

transactivators may be, in fact, global. 
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CHAPTER 2. INFERRING AN INSTANTANEOUS TRANSCRIPTION RATE IN 

SINGLE CELLS FROM FLUORESCENCE TIME-LAPSE 

MICROSCOPY DATA
*
 

2.1 Introduction 

Single-cell analysis of gene expression has furthered our understanding in many aspects of gene 

expression. Static snapshots of fluorescent reporter expression using flow cytometry or 

microscopy provide useful information on the distribution of single-cell expression, but lack the 

history and evolution of time series data required to directly inform gene expression dynamics. 

Fluorescence time-lapse microscopy presents a means to obtain both single-cell measurements 

and their history. Various experimental and analytical techniques have been developed to obtain 

and quantify movies of fluorescent reporter expression, thus imparting insights into gene 

regulation features (see (Locke and Elowitz 2009) for a review) such as cell-to-cell variation 

(Rosenfeld et al. 2005; Colman-Lerner et al. 2005), transcription initiation and elongation 

(Larson et al. 2011), transcriptional bursting (Golding et al. 2005; Suter et al. 2011), cell-cycle 

dependence (Cookson et al. 2010; Zopf et al.), and heritability (Kaufmann et al. 2007). However, 

obtaining quality single-cell fluorescence time series involves significant technical challenges in 

culturing a monolayer of cells in a controllable environment and regarding high-throughput 

quantification of the acquired fluorescence movies. 

Here, we describe a procedure to obtain and analyze fluorescence movies of S. cerevisiae with 

no required experience in cell culture device manufacture or in software development. Instead, 

we employ a commercially available culture device and an easy-to-use, custom-written graphical 

user interface. The result is a time series for each single cell representing the time-dependent 

trajectory of a fluorescent reporter’s expression. These time series rise and fall as the fluorescent 

protein is expressed or diluted/degraded, respectively, providing a kinetic view of transcriptional 

output. Using the rates of change in the expression level in each cell, we infer an instantaneous 

                                                 

*
 Portions of text and figures in this chapter were drawn from (Zopf and Maheshri) and (Zopf et al.). 
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transcription rate for each reporter through a lumped-parameter differential equation model. We 

also demonstrate the transcription rates calculated are reasonably accurate to draw both 

qualitative and quantitative conclusions in the following chapters. 

2.2 Microfluidic culture and fluorescence microscopy to obtain movies of single 

yeast cells 

The first step in obtaining quality, single-cell time series is generating high-quality fluorescence 

microscopy movies. Perfusion of cells trapped in a microfluidic chamber provides a means to 

image relatively stationary single cells and precise control over the extracellular environment. 

Though customized microfluidic culture chambers have been built and successfully employed 

previously (Cookson et al. 2005; Paliwal et al. 2007; Charvin et al. 2008), we use a commercially 

available microfluidic device. The system confines cells to monolayer growth and allows 

continual control of the perfusion environment. We detail here a basic protocol to generate 

fluorescence time series movies for budding yeast expressing one or more fluorescent reporters. 

In the following chapters, various changes are made to the culture media before and during 

microfluidic culture according to the requirements of the experiment, but all other procedures 

remain the same. 

For each time series experiment, cells were picked from a single colony freshly grown on a 

synthetic solid media (containing no amino acids, or only those for which the strain is 

auxotrophic) with 2% glucose and agar. These cells were inoculated into synthetic complete (SC) 

media. The SC base comprised yeast nitrogen base without phosphate (MP Biomedicals, Santa 

Ana, CA; #4027-812) mixed with monobasic potassium phosphate solution (Sigma-Aldrich 

P8709) to set phosphate levels, and the pH was lowered to 4. Unless otherwise indicated, SC 

contained all amino acids, 2% glucose as the carbon source, and 5000 μM orthophosphate. The 

cells were then grown overnight on a roller drum at 30°C to OD600nm ~0.1, diluted in fresh 

media, and grown again for 6-8 hrs to OD600nm~0.1. These cells were loaded into a pre-washed 

Y04C microfluidic plate (CellAsic, Hayward, CA), which was primed with SC with appropriate 

carbon source and/or phosphate level according to the manufacturer’s instructions and the 

particular experiment. Cells were perfused with SC at 6 psi throughout the experiment. Flow was 
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controlled using the programmable ONIX system (CellAsic) to rapidly switch between various 

media conditions discussed in the text. 

Cell growth and expression was observed using a Zeiss Axio Observer.Z1 inverted microscope at 

63x magnification (Zeiss Plan-Apochromat 63x/1.40 Oil DIC). Bright field (BF), BF out of focus 

(BFOOF, for segmentation) and fluorescence images were acquired with a Cascade II EMCCD 

camera (Photometrics, Tuscon, AZ) using MetaMorph software (Molecular Devices, Sunnyvale, 

CA), a Lumen 200 metal-halide arc lamp (PRIOR Scientific, Rockland, MA) for fluorescence 

excitation, appropriate filters for CFP, YFP, and RFP (Chroma Technology Corp, Bellows Falls, 

VT; set 89006), and acquisition settings optimized for rapid time points. Multiple positions in 

each culture chamber were imaged every 5 min. For each position at the start of each time point, 

a built-in MetaMorph autofocus module found the focal plane (f.p.) based on the BF channel. 

The software then acquired the BF image at +1 μm to the f.p. and a BFOOF image at -4 μm to 

the f.p. This switches the contrast rings surrounding each cell from light to dark, and comparison 

between these two images is used in segmentation. Finally the software acquired any 

fluorescence channels required by the experiment: one grayscale image for cyan fluorescent 

protein (CFP) at the f.p., and a 3-image Z-stack ±0.2 μm around the f.p. for both yellow (YFP) 

and red (RFP) fluorescent proteins. The Z-stack for the YFP and RFP channels was taken to 

provide a more accurate nuclear measurement for the switchable transactivator strain in Chapter 

4, but this acquisition was preserved in all experiments for consistency in exposure. 

Microscopy movies for each acquisition channel were compiled in MetaMorph for analysis in 

MATLAB (MathWorks, Natick, MA). A maximum projection was taken of each Z-stack at each 

time point, and was compiled into a movie for both YFP and RFP. In addition, a nuclear mask 

movie was created by thresholding the RFP movie when the switchable transactivator strain was 

used. The remaining steps in extracting single cell time series data from the movies were 

performed using our custom-written software. 
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2.3 Single-cell time series data extraction from microscopy movies using 

GRAFTS 

We analyzed microscopy movies using a graphical user interface (GUI) –based software package 

in MATLAB (Mathworks, Natick, MA), dubbed the GUI for Rapid Analysis of Fluorescence 

Time Series (GRAFTS), to extract time series data for single cells. GRAFTS has similar features 

to the versatile, open-source software package Cell-ID (Gordon et al. 2007) in segmenting and 

tracking cells and in extracting fluorescence intensity and geometric information. However, 

GRAFTS provides important additional features. First, it offers easy interactive editing of 

segmentation and tracking results to verify data accuracy, rather than just statistical gating of 

outlier region traces after analysis. Moreover, it extends the analysis to automatically designate 

lineage and cell-cycle points of interest of budding yeast. Determining when mother and 

daughter divide to form two independent cell regions is crucial to determining whole cell 

(mother including any connected bud) measurements throughout the cell cycle (Cookson et al. 

2010). 

The suite consists of three modules to accomplish these tasks. The first segments cell regions 

based on the contrast between focused and unfocused bright field images, and allows the user to 

define and visually test segmentation parameters. The second tracks and measures cell regions 

through time; automatically assigns lineages; and enables visual inspection and error correction. 

A simple plotting GUI is included here to quickly query single-cell properties. The third module 

ascribes bud emergence and division times, and outputs whole cell time series data as well as 

their first and second time derivatives, which are used to infer transcription rate in the next 

section. As an example, we show the time series extracted for a single yeast cell expressing CFP 

constitutively from the ADH1 promoter (Figure 2.1). 

Extracting single-cell volume and fluorescence time series from microscopy movies 

Pre-processing movies consisted of registering and segmenting cells. To account for imprecise 

return to each stage position at successive time points, movies were first registered using a 2D 

cross-correlation of BF images between time t and t + 1. Segmentation relied on the large 

differences in contrast of the cell wall between a BF (dark cell with light cell wall ring) and 

BFOOF (light cell with dark outer ring) images, and involved a series of morphological 
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operations and watershedding to identify single cell regions. A tracking and visualization GUI 

used a Matlab implementation of the IDL Particle tracking routine (Blair and Dufresne, available 

at: http://physics.georgetown.edu/matlab/) to assign cell IDs in each frame based on following 

region centroids. When a bud appears (new region and ID), the corresponding mother is assigned 

from the nearest neighbor regions. Lineage assignments for each bud are optimized by penalizing 

potential mothers based on distance between bud and mother perimeters, and based on potential 

matches to other buds in nearby times. After the initial automated analysis, the GUI then allows 

rapid visual inspection and manual curation of the accuracy of automated region segmentation, 

tracking IDs, and lineage assignments before finalizing cell measurement time series. 

For each single cell region, we estimated raw cell volume similar to (Cookson et al. 2010): as an 

ellipsoid of cross-section corresponding to the region and constrained by the microfluidic 

trapping chamber, but with mothers and buds treated separately (Figure 2.1A & B). We 

interpreted the average pixel intensity in each region as a raw volumetric concentration (Figure 

2.1C) because the depth of field (0.5 μm) was significantly less than the trapping chamber height 

(3.5 μm) and the fluorescence profile across the cell was flat, rather than the elliptical profile 

expected if light were captured from the entire cell volume. Both volume and concentration time 

series for each cell were conservatively smoothed to remove measurement noise using the spline 

method described in the next section; total protein was estimated as the product of the two 

(Figure 2.1D).  

Though volume and total protein estimation of buds occurred separately from mothers, the data 

from the bud-mother pair were summed until cytokinesis to represent the whole cell (Figure 

2.1A, B & E). We used morphological cues to define transitions between G1 and S/G2/M. Yeast 

cells pass through START to transition to S-phase, which occurs slightly before a bud appears 

(Cross 1995), so we estimated the time of bud appearance to approximate the G1/S transition. To 

do so, we linearly extrapolated the bud volume trace back to zero volume using the bud volume 

measured at the first five time points the bud was successfully segmented. Clear morphological 

markers for cytokinesis (the M/G1 transition) were the bud neck narrowing after nuclear division 

(easily observable when the nucleus is fluorescently labeled) and the formation of a dark line 

between the mother and daughter (bud) in a bright field image (Figure 2.2). These events 

strongly correlated with the end of a brief plateau in the bud volume, providing an easy way for 

http://physics.georgetown.edu/matlab/
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automated identification based on the slope in the bud volume trace (Figure 2.1B). By 

automatically assigning budding and division times, we have a high-throughput method to 

calculate volume and total protein for the contiguous whole cell throughout the cell cycle. Basing 

our model for inferring transcription rate on the total protein, we are able to avoid complications 

caused by growth-driven dilution and directly relate rates of change in total protein level to total 

mRNA level. 
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Figure 2.1 | Single-cell time series of a haploid yeast expressing PADH1-CFP over several 
generations. 
(A) For the segmented mother cell (blue outline) and its buds (green outline), the contiguous whole cell 
trace is outlined in red. Raw mother and bud (B) volume and (C) protein concentration time series were 
smoothed to remove measurement noise, and (D) integrated CFP fluorescence was calculated as the 
product of volume and concentration. The whole cell (red) trace is extended past division to keep a 
running total that is easily fit to a differentiable smoothing spline across divisions (B & D). The (E) 
relative mRNA level and (F) instantaneous transcription rate are calculated using equations (2.1) and 
(2.2) and the spline fit in (D). 
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Figure 2.2 | Division time assignments correlate with nuclear division and cytokinesis time. 
At the top, bright field snapshots centered on a single cell are overlaid with RFP fluorescence marking 
the nucleus. Growth occurs in a microfluidic chamber, and the whole cell volume trace plotted 
corresponds to the contiguous volume of the central cell in the first image over time. The whole cell 
volume was obtained as in Figure 2.1B with automatically assigned budding and division times 
(beginning and end of gray shaded period, respectively). The cell begins in G1 and grows slowly until bud 
formation (characteristic of early S phase) at t = 50min. The nucleus migrates to the bud neck in G2 at t = 
95min, and divides between mother and daughter during anaphase (A) at t = 110min. The automatically 
determined division time is t = 135min, at which point the nuclei have separated and the bud neck is 
narrowed in telophase (T). The subsequent G1 phase begins after the intersection of mother and 
daughter darkens (indicated by arrow) at the next time point, and by 150 min the dividing cell wall is 
distinct. 
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2.4 A model to infer instantaneous transcription rate in single cells 

The total protein (fluorescence) spline P(t) (Figure 2.1B) for each cell output by GRAFTS was 

used to calculate the protein production rate (proportional to mRNA per cell, M(t)) (Figure 2.1E), 

and the transcription rate, A(t) (Figure 2.1F), using a simple continuous-time model of 

transcription and translation: 

 
1

( ) or ( )t
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dt k dt
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2
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where γM is the mRNA degradation rate and kt is the translation rate of mRNA to protein. The 

mRNA degradation rate for Venus YFP transcript in yeast was measured in our lab to be 0.04 

min
-1 

(To and Maheshri 2010). The Cerulean CFP transcript differs by only a few base pairs, and 

it should have a similar degradation rate. While the transcript for tdTomato RFP is entirely 

different from that of YFP, we assume the same degradation rate in our RFP transcription 

calculations in Chapter 3. Then to use Eqn. (2.2) to represent transcription rate in single cells 

using only total protein level, three conditions must be met: (i) the translation rate kt must not 

change so that inferred changes in A(t) are due to changes in transcription; (ii) fluorophore 

maturation must not be slow relative to other processes; and (iii) we must be able to accurately 

calculate first and second time-derivatives of the total protein time series for accurate estimation 

of the transcription transition times. We address these points in the following sections. The result 

is that the quantity calculated by Eqn. (2.2) from each single-cell total protein time series 

represents a relative instantaneous reporter transcription rate delayed 10-15 minutes (due to 

fluorophore maturation) and smoothed over a 15-20 minute window (due to measurement and 

spline-fitting errors). 

Translational capacity is constant across the cell cycle 

We first contend translation rate kt is nearly constant. In Chapter 3, we present evidence that the 

calculated transcription rate from Eqn. (2.2) fluctuates across the cell cycle, but increased protein 

production in S/G2 may be due to either increases in mRNA level or translational capacity (kt in 



38 

 

Eqns. (2.1) and (2.2)); we argue for the former. First, while ribosomes numbers and activity are 

known to increase in yeast in S/G2 (Waldron et al. 1977; Elliott 1978), ribosome number is 

generally not considered rate-limiting for any particular gene as increasing gene dosage or 

mRNA number by transcriptional regulation leads to increased gene expression. Second, recent 

work in budding (Trcek et al. 2011) and fission (Zhurinsky et al. 2010) yeast suggests mRNA 

levels of constitutive genes increase during S/G2. Third, our lab found average protein to mRNA 

ratios of cells grouped by cell-cycle phase to show no discernible cell-cycle dependent trend 

(Zopf et al.). Therefore, we treat kt as a proportionality constant. 

CFP and YFP mature rapidly, while RFP may mature more slowly 

The lumped-parameter model of gene expression represented by Eqns. (2.1) and (2.2) does not 

explicitly account for the maturation time of the reporter protein fluorophore. Each translated 

protein must undergo an autocatalytic oxidation reaction to form a fluorescent chromophore from 

peptide side-chains which creates a finite delay in the ability to observe new proteins (Reid and 

Flynn 1997). To be sure our estimations of transcription transitions were not artificially delayed 

by a lag in observation, we measured the maturation rate of CFP (Cerulean (Rizzo et al. 2009)), 

YFP (Venus (Nagai et al. 2002)), and RFP (tdTomato (Shaner et al. 2004)) similar to the method 

of (Gordon et al. 2007). We used a “3-color” diploid yeast strain with homologous 7xtetO 

promoters (P7xtetO) driving either Cerulean (CFP) or Venus (YFP) and a constitutive PGK1 

promoter (PPGK1) driving tdTomato (RFP). The tet-transactivator (tTA), which drives expression 

at the synthetic 7xtetO promoters, was also constitutively expressed by the MYO2 promoter. 

Cells were cultured to mid log-phase growth, loaded into the microfluidics, and allowed to grow 

for 3 hrs. Then the flow was switched to media containing 30 μg/mL cycloheximide to block 

translation and images were acquired every 5 minutes. Initially the fluorescence increased, 

presumably due to maturation of the remaining immature protein pool. CFP and YFP 

fluorescence peaked quickly before a slow decline (Figure 2.3A). The loss of observable 

fluorophore occurs at longer time-scales and is most likely due to fluorophore bleaching because 

the fluorescent proteins are very stable. We fit the measured data to a simple model describing 

both maturation and loss of observable protein, P:  

 m

dI
k I

dt
  (2.3) 
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 m P

dP
k I P

dt
 (2.4) 

Here, I is the immature protein, km is the maturation rate and γP is the loss rate, probably mostly 

photobleaching. The time-dependence of the observable protein can be easily determined after 

cycloheximide addition: 

 0
0( ) m P Pk t t tm

P m

k I
P t e e P e

k
 (2.5) 

Here, I0 and P0 are the amounts of immature and mature protein at the time of cycloheximide 

addition. We fit Eqn. (2.5) to the CFP and YFP time series for each cell starting at the time of 

cycloheximide addition to obtain values for I0, P0, km, and γP for each trace. For RFP, the time-

series never decreased, suggesting over the time of the experiment the maturation process was 

dominant over photobleaching (Figure 2.3A). Therefore, we fit the RFP time series assuming γP 

= 0 (reducing the fit to a single exponential). The median maturation half-lives (ln(2)/km) for 

CFP, YFP, and RFP were found to be 10, 32, and 150 min, respectively (Figure 2.3B). The 

corresponding loss/bleaching half-lives (ln(2)/γP) for CFP and YFP were 38 and 10 hrs, 

respectively. If some bleaching of RFP occurs, the 150 min maturation half-life represents a 

lower bound.  

Unfortunately, we are not certain about the accuracy of these estimates for several reasons. First, 

on average CFP and YFP traces appear to change identically in response to cell-cycle dependent 

changes in transcription, within a multiplicative constant, in Chapter 3. This is true not only for 

situations of high expression with transcription occurring in both G1 and S/G2/M, but also with 

low expression where active transcription is only observed in S/G2/M. Given the difference in 

maturation, one would expect a larger delay in YFP expression. Second, in Chapter 4 we perform 

step tests in a diploid variant of the switchable transactivator strain expressing both CFP and 

YFP from a responsive promoter. The CFP and YFP responses are again identical within a 

multiplicative constant. Third, the fit value of the initial ratio of immature to mature protein (

0 0/I P ) is 0.10 and 0.33 for CFP and YFP, respectively. While this is qualitatively consistent 

with YFP having a slower maturation rate, it is quantitatively unreasonable. Cells are expressing 

CFP and YFP at steady-state levels before cycloheximide addition, so 0 0/ /P mI P k . Using the 
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inferred maturation and loss/bleaching rate yields an expected 
0 0/I P of 0.005 and 0.05 for CFP 

and YFP. Fourth, the long maturation time of RFP should in principle dramatically smooth cell-

cycle dependent transitions in the RFP trace, and yet we and others (Di Talia et al. 2007) observe 

these transitions. 

 

Figure 2.3 | Measurement of maturation rate for each fluorescent protein. 
The 3-color strain was grown in microfluidics in synthetic media. After three hours, the chamber was 
perfused with the same media now containing 30 μg/mL cycloheximide to inhibit translation. The 
average intensity in each cell continued to increase for each fluorescent reporter, representing 
fluorophore maturation from the immature protein pool. (A) Single-cell, raw concentration time series 
were fit (black line) to Eqn. (2.5) (γP fixed at 0 for RFP) and (B) the histograms of the measured 
maturation half-lives ln(2)/km are shown. The medians are 10 min, 32 min, and 150 min for CFP (top 
panel), YFP (middle), and RFP (bottom), respectively. 
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Because of the uncertainties in maturation, we chose to analyze the time series data using Eqns. 

(2.1) and (2.2) which do not account for maturation. We discuss in detail how including 

maturation affects our results below. Because we have observed both YFP and CFP expression 

within 15 minutes of turning a gene on (using the kinetic strain), we suggest the maturation rate 

is similar and closer to the value measured for CFP (10-15 minute half-life). Importantly, the 

central findings in the following chapters that (i) transcription rate is greater in S/G2/M versus 

G1, (ii) at low expression levels transcription can be restricted to S/G2/M, and (iii) transcription 

activation delays are shorter in S/G2/M relative to G1 are qualitative and robust to changes in the 

maturation rate. 

Spline-fitting to differentiate time series 

In using Eqns. (2.1) and (2.2), we sought to estimate mRNA number and identify transitions 

from an inactive to active promoter state by examining rates of change in the protein time series. 

While such transitions might be more apparent from direct measurements of an unstable protein, 

its rapid degradation makes detection difficult at low levels of expression. Instead, we developed 

a method to estimate first and second time derivatives of the measured total fluorescence time 

series and thereby infer the transcription rate using Eqn. (2.2). In order to calculate an 

instantaneous growth rate, we consider the time-differentiation of the total volume time series as 

well. Because of noise in experimental data, estimating time derivatives is an ill-posed problem, 

and direct methods (e.g., finite differences) will amplify the noise with each application. Local 

splining techniques such as the Savitzky-Golay method (Savitzky and Golay 1964) can yield a 

smooth first derivative for noisy data, but will amplify noise for higher order derivatives required 

in our subsequent analysis. We instead fit each time series to a cubic smoothing spline following 

the method of de Boor (De Boor 1978). This algorithm calculates a single continuous spline, 

balancing accuracy and smoothness by minimizing a linear combination of the least square errors 

of the fit and the spline’s second derivative (a measure of roughness). A single smoothing 

parameter, ρ, determines the relative weight in the minimization between the residuals and the 

curve roughness to allow an appropriate smoothing of noise in the data, y, while preserving real 

features. The resulting smoothing spline, f, then minimizes the expression 
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where x are the corresponding times for the data points y, with w the relative error weighting for 

each point. 

We applied the MATLAB “csaps” implementation of this method to time series for each cell in 

two stages each with its own smoothing parameter. Due to the sensitivity of the spline fit to ρ, a 

suitable ρ is often near 
31/(1 / 6 )t  (as noted in the Matlab documentation for the “csaps” 

function), and so we approach spline smoothing by setting a suitable β. In the first stage, we fit a 

spline to both the volume and concentration time series to correct outlying data caused by large 

autofocusing and segmentation errors. Using a heuristically-chosen, conservative smoothing 

parameter (β = 3), the raw data was pre-treated to facilitate budding and division time 

assignments as well as the construction of integrated fluorescence time series, computed as the 

product of the volume and concentration splines (Figure 2.1D). 

In the second stage, the total fluorescence and total volume time series (the sum of mother and 

bud series) were again fit to a spline using a second smoothing parameter chosen to provide 

reliable time-derivatives for each. An ideal β would result in a spline f that minimizes 

fluctuations in the derivatives due to noise in the measurement but preserves real features in the 

derivative time series. This β depends on the characteristics of both noise and real features in a 

particular data series, but it is difficult to distinguish these a priori for any one condition. We 

therefore chose to fit all fluorescence time series to a single, pre-determined β. By treating all 

data consistently, we maintain clarity in interpretation across all experiments with the 

understanding that series with fewer and smaller real features will yield slightly noisier splines. 

A computational strategy allowed the determination of a single, suitable β to spline total 

fluorescence for the different experimental conditions (also suitable for total volume, which was 

much less sensitive to the choice of smoothing parameter). 

First, we postulate typical features in a transcription rate time series, and then computationally 

generate representative mRNA and protein time series from that transcription rate. The 

prominent features we include in the simulated transcription rate are informed by experimental 

observations in Chapters 3 and 4: cell cycle-dependent oscillations, different expression levels, 
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and sharp transitions. Total protein accumulation accelerates after budding (Figure 2.1D), so we 

simulate the transcription rate in an oscillatory manner with a period of the cell cycle and an 

arbitrary mean of 1: 

 ( ) ( ) sin 2 1sim

cyc

t
A t u t

t
 (2.7) 

where α is a scaling factor to set the peak to trough ratio (P:T) and tcyc is the doubling time. We 

vary P:T from 1:1 to 3:1 when setting α to simulate behavior from flat transcription to a cycle-

dependence greater than gene dosage. The cycle length tcyc is either 100 or 200 min, the 

approximate bounds for growth in glucose or raffinose. The inclusion of u(t), the Heaviside step 

function, models an ideal switch in response to a step change in input. This is included in all 

simulations to combine transient and steady-state transcription behavior in each fit. Finally, to 

generate multiple asynchronous time series akin to the cell population we measure, we include φ 

as a random number from 0 to 1 to randomize the initial cell cycle position. Solving Eqn. (2.2) 

for M(t) yields: 

 ( ) ( ) ( )M Mt t

sim simM t u t e e A t dt  (2.8) 

with μ a transcription rate scaling factor that depends on promoter strength, and varies from 1 to 

100 to match observed expression levels. γM is the mRNA degradation rate, set to 0.04 min
-1

 

measured in (To and Maheshri 2010). The total protein can likewise be computed by solving 

Eqn. (2.1) for P(t): 

 
( ) ( ) ( )sim t simP t k M t dt t

 (2.9) 

where kt is the translation rate (a redundant scaling factor kept at 1 here), and ξ(t) adds high-

frequency measurement noise in total protein so that we may determine the effect of 

measurement errors on choosing β. 

The noise term ξ(t) models the noise observed in the total fluorescence measurement after the 

first splining stage when there is no transcription – i.e., a baseline level (Figure 2.4A). Baseline 

fluorescence time series could be experimentally obtained using the switchable transactivator 



44 

 

strain under repressing conditions when transcription does not occur, and the fluorescence level 

corresponds to cellular autofluorescence (Chapter 4). We describe this baseline noise– the 

product of smoothing raw, high-frequency noise in the volume and concentration time series – 

using an autoregressive-moving average (ARMA) model. This parametric approach allows us to 

generate stochastic baseline noise reflecting the statistics of experimental observations. To each 

of 86 representative baseline traces, we fit a 4
th

 order ARMA model: 

 1 4 1 4( ) ( 1) ... ( 4) ( ) ( 1) ... ( 4)t a t a t e t c e t c e t  (2.10) 

where the coefficients ai and ci define the autoregressive and moving average polynomials, 

respectively, and e(t) is Gaussian white noise time series with variance σ
2
. To define our noise 

term ξ(t) as a representative ARMA(4,4) model, we take the median of all fits for each 

coefficient. This model then allows us to generate unique baseline noise traces with 

representative statistics simply by simulating a unique e(t) (Figure 2.4B). To ensure we capture a 

realistic range of noise strength in the simulations, we vary σ
2
 by setting it to either the 25

th
, 50

th
, 

or 75
th

 percentile of the fit values. 

Next, we fit a spline to each simulated protein time series over a range of values for β to infer the 

underlying transcription rate (using Eqns. (2.1) and (2.2); Figure 2.4C-E).  We compared this 

inferred rate for each β to the initially postulated Asim(t) and determined the β corresponding to 

the minimum residual error. To be sure our chosen β is suitable for splining all the data, the 

parameters α, tcyc, μ, and σ
2

 are varied within the ranges given above to generate noisy protein 

time series reflecting the gamut of experimental data. For each combination of the parameters 

shown in Figure 2.4F, 100 protein time series with a random instance of φ and ξ(t) were 

generated, and the inferred, underlying transcription rate error was calculated for the range of β 

shown. The residual-minimizing β is insensitive to the parameters tcyc, and α over the ranges 

encountered in the experiments; however, the magnitude of the noise term (σ
2
) relative to the 

expression level (μ) strongly influences the range of β that provides an accurate inference of 

transcription rate. Predictably, relatively noisier protein traces require a higher β for satisfactory 

smoothing, while stronger transcription (i.e., stronger features) can be more accurately inferred at 

lower β. Therefore, there is no single β that will perfectly infer transcription at the noisiest  
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Figure 2.4 | Simulation of realistic total protein time series to determine optimal smoothing 
parameter for spline fit. 
Noise characteristics of experimental integrated fluorescence data before splining (A, representative 
single cell traces from the 1xtetO and 7xtetO step tests, Chapter 4) were used to simulate baseline 
protein time series (B). (C-E)  A(t) was simulated for a step up at t = 0 from zero to an oscillating steady 
state with the period of a typical cell cycle (E, tcyc  = 100 min, P:T = 2:1). A simulated mRNA (D, μ = 10) 
and total protein trace (C) were calculated from A(t) using Eqns. (2.7)-(2.10), with noise added to the 
protein time series ξ(t) similar to the high-frequency, measurement noise observed in data (σ2 = 2.4e4). 
A smoothing spline was fit to the simulated protein time series and the corresponding mRNA and 
transcription rate time series were inferred using Eqns. (2.1) and (2.2) in the Methods. (F) The simulation 
was repeated for all combinations of parameters described in the text that span observed characteristics 
of protein time series across all experiments. For each parameter set (panels), 100 noisy, asynchronous 
traces were generated and the residual error between the simulated and the inferred transcription was 
found across a range of smoothing parameters β (colored lines). The chosen β = 300 (vertical, dashed 
line) minimizes the residual error across all parameter sets and was used for all data sets. (G) Sample 
comparisons of simulated and inferred transcription rate μA(t) (using β = 300) for each parameter set 
with tcyc = 100min. Black dotted line represents half the steady state average for t > 0 (the threshold for 
determining activation in a step test). 
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baseline levels (upper right panels) and at the clear, strongest levels (lower left panels), but these 

simulations inform our decision in making this inherent tradeoff. 

The important biological observation of cell cycle-dependent transcription relies not on 

quantitative accuracy in the inferred transcription rate but on correct inference of the timing of 

transitions in transcription rate. Undersmoothing preserves the sharpness of transitions, but noise 

is amplified in derivatives, possibly indicating false starts and stops in transcription. On the other 

hand, oversmoothing preserves transition times on average, but individual transitions are 

degraded in a trace-dependent manner. For this reason, a β of 300 was heuristically chosen to 

most accurately infer transcription rate for the range of scenarios in Figure 2.4F. This β best 

preserves transition times at the expense of tracking some noisy fluctuations during periods of 

gradual change and eroding the edges of the sharpest features (Figure 2.4G). 

Two additional properties of experimental time series data must be taken into account when 

using spline fits to estimate derivatives. First, there is limited data at the beginning and end of a 

time series. To address this, we tapered the first and last three weights in w to diminish edge 

effects on nearby derivatives (all interior points were weighted equally). Second, sharp jumps in 

data across cell divisions lead to undefined second order derivatives. Therefore, the time series 

across a mother/daughter division was extended by maintaining a continuous whole cell “running 

total” of volume and fluorescence of the mother even after division (Figure 2.1C&E). This 

allowed a single spline with well-defined first and second derivatives to describe the entire, 

multi-generation time series for a cell. As with any smoothing approach for noisy time series, 

potentially real, sharp transitions in the derivative across division will be lost. Still, we capture 

the main features in the time derivatives of these single-cell time series using a cubic smoothing 

spline thus providing the basis for an analysis of gene activity over time. 

Time accuracy of the calculated transcription transition times. 

Inferring transcription rates from measured protein levels limits the time resolution of 

transcription events. We are particularly interested in the ability to infer large transitions in 

transcription rate and do so by applying Eqns. (2.1) and (2.2) to splines fitting total observable 

protein time series. There are three main sources of error which can limit our accuracy in 

determining these transitions. (i) Measurement noise at the protein level degrades feature 
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boundaries and can obscure the times at which the true transcription rate changes. (ii) Cell-to-cell 

variability in the mRNA degradation rate used in Eqn. (2.2) introduces uncertainty when 

inferring transcription using the average mRNA degradation rate. Also, for inference we use a 

model where mRNA degradation rate is deterministic, but there are stochastic fluctuations in 

mRNA numbers during degradation. These effects should not decrease the time resolution of our 

inference at low expression levels by more than 17 min, the mean lifetime of a single mRNA (To 

and Maheshri 2010). (iii) Maturation of the protein fluorophore creates an observational lag in 

the protein time series tightly distributed around an ~10 min time-scale (Figure 2.3A, as 

discussed above). We neglect contributions from cell-to-cell variability in maturation (mostly 

due to errors in fitting short, noisy time series) as well as translation rate, which is relatively 

faster and likely also tightly distributed (as discussed above).  

We then used simulated data to estimate the time resolution considering the three main 

limitations. Transcription rate and mRNA time series were generated as in Figure 2.4 but 

excluding cell cycle-dependent oscillations for clarity. Immature protein I(t) was simulated as an 

intermediate between mRNA and observable protein: 

 ( ) ( ) ( )m mk t k t

t simI t k u t e e M t dt  (2.11) 

where km is the maturation rate. The observable, mature protein Psim(t) was then simulated similar 

to Eqn. (2.7) including the measurement noise term: 

 ( ) ( ) ( )sim mP t k I t dt t  (2.12) 

To simulate idealized transcription rate transitions, we model the transcription rate time series 

input as a square pulse (Figure 2.5A). This approximation is relevant as transcription rate 

transitions during step tests in Chapter 4 appear step-like within the time-resolution found below. 

For the step change from 0 to 1 (and vice versa), the time of transition between the two plateaus 

is determined when the transcription rate reaches a midpoint value of 0.5. One thousand mature 

protein data series were simulated, and a transcription rate series was inferred for each by 

splining and using only Eqns. (2.1) and (2.2) (not accounting for a maturation step, as in Figure 

2.4). Transition times for activation and deactivation in each simulated trace were estimated as 
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when the inferred transcription time series rose above or fell below the 0.5 threshold, 

respectively. Compared to the input transition times of both activation at t = 0 min and 

deactivation at t = 200 min, the inferred times were delayed by ~15 min on average and had a 

mean absolute deviation (MAD) of ~1 min (Figure 2.5B). Next, we allowed the mRNA 

degradation rate to vary during simulation of Eqn. (2.8). For each of the 1000 traces generated, 

the degradation rate was randomly chosen from a normal distribution of mean 0.04 min
-1

 (~17 

min half-life) with a standard deviation of 0.009 min
-1

 equal to the error measured in (To and 

Maheshri 2010). Transcription time series were inferred from these samples using the average 

degradation rate, which lead to shifts in the active steady state and, thus, the appropriate 

threshold. Calculating transition times using the original midpoint threshold for these 

transcription time series does not influence the precision of the inferred activation time, but 

inferred deactivation times now have ~8.4 min MAD Figure 2.5C). The transition times 

estimated from each inferred transcription rate time series are therefore accurate within a ~17 

min window, comparable to the time-scale of mRNA degradation. 

All results reported in the following chapters are based on inferences using only Eqns. (2.1) and 

(2.2), and maturation has not been accounted for in any calculation. We performed simulations 

combining protein maturation and measurement noise to probe the effect of maturation on 

inferring the transcription transition time. We find an observational lag of ~15 min, which is 

approximately one 5 min time point longer than the expected ~10 min delay based on the 

maturation half-life. As transcription is only evaluated at 5 min intervals, a threshold-crossing 

occurring mid-interval is treated as occurring at the next 5 min time point. The observational 

delay can therefore be interpreted as being 10-15 min (2-3 time points). Additionally, modeling 

mRNA degradation deterministically using a single, average rate for each cell limits the time 

accuracy to ~17 min. All observed transcription rate transition events must then be interpreted as 

having occurred 10-15 min in the past with a resolution of no worse than ~17 min (between 3 

and 4 time points). This is a conservative estimate for activation transition times, which are not 

strongly influenced by mRNA degradation. 
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Figure 2.5 | Simulations to estimate the time accuracy of the transcription rate transition 
time assignments. 
(A) Transcription rate time series (thin colored lines) are inferred for noisy protein data simulated from 
the square pulse transcription rate generator function (thick, blue line) as in Figure 2.4 (n = 1000). Here a 
protein maturation step is included in simulating the protein data, but not in the transcription rate 
inference. (B) Activation and (D) deactivation times “observed” for each inferred transcription trace in A 
are delayed 10-15 min relative to the true times (blue histogram compared to vertical, red line) with a 
mean absolute deviation of ~2 min. (C) Allowing the mRNA degradation rate γM in Eqn. (2.8) to vary 
during simulation, but inferring transcription rate using the single, average γM value, results in greater 
dispersion in the sample traces. The “observed” activation times did not vary much more, but 
deactivation time mean absolute deviation increased to ~8.4 min (black histograms in B and D). 
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CHAPTER 3. CELL-CYCLE DEPENDENCE OF TRANSCRIPTION DOMINATES 

NOISE IN GENE EXPRESSION
†
 

3.1 Introduction 

At the single-cell level, mRNA and protein levels of regulable genes are often found to be highly 

variable (Newman et al. 2006; Raj and van Oudenaarden 2009; Taniguchi et al. 2010). The 

resulting long-tailed mRNA and protein distributions are well-described by stochastic models 

(Peccoud and Ycart 1995; Raj et al. 2006; Shahrezaei and Swain 2008; Taniguchi et al. 2010) of 

transcriptional bursting, where a promoter undergoes random and intermittent periods of highly 

active transcription. Real-time observations of transcription in multiple organisms appear 

consistent with this behavior (Golding et al. 2005; Maiuri et al. 2011; Chubb et al. 2006; 

Muramoto et al. 2012; Larson et al. 2011; Choi et al. 2008; Taniguchi et al. 2010; Suter et al. 

2011). Thus, both static and dynamic views attribute much of the observed mRNA variability to 

the stochastic nature of reactions intrinsic to transcription. Consequently, the standard stochastic 

model of gene expression has been widely used to infer steady-state dynamics (Raj et al. 2006; 

Mao et al. 2010; To and Maheshri 2010; Tan and van Oudenaarden 2010; Munsky et al. 2012). 

However, earlier studies examining the origin of variability in protein expression found such 

variability is not solely due to stochasticity in reactions intrinsic to gene expression, but also 

extrinsic factors. This was done by looking for correlations in expression between identical 

copies of one promoter (Elowitz et al. 2002; Raser and O’Shea 2004; Volfson et al. 2006) and/or 

between that promoter and a global or pathway-specific gene (Pedraza and Van Oudenaarden 

2005; Colman-Lerner et al. 2005). Not only is the importance of extrinsic factors clear, without 

time-series measurements the intrinsic noise measured by these techniques may not completely 

be ascribed to stochastic reactions in gene expression (Hilfinger and Paulsson 2011). While 

global extrinsic factors have been suggested to largely impact translation (Raj et al. 2006), their 

influence on transcription and transcriptional bursting is unclear.  

                                                 

†
 Text and figures are largely drawn from (Zopf et al.). 
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The cell cycle has global effects on total protein and RNA synthesis that should play a role in 

transcription (Volfson et al. 2006; Larson et al. 2011; Trcek et al. 2011). With few exceptions 

(Volfson et al. 2006), most deterministic and stochastic models of gene regulation do not account 

for cell cycle variability. Using dynamic real-time protein measurements in single cell, and 

supported by static single molecule mRNA measurements in our lab, we show that much of the 

variability in a synthetic tetO promoter typical of noisy genes in yeast is driven by differences in 

transcription rate between G1 and S/G2/M. 

3.2 Constitutive transcription increases in S/G2/M consistent with gene dosage 

We examined cell-cycle dependent effects by microscopically monitoring fluorescent protein 

expression every 5 minutes in growing monolayers of yeast within a microfluidic chamber (as 

described in Chapter 2). We used a “3-color” diploid yeast strain with homologous 7xtetO 

promoters (P7xtetO) driving either Cerulean (CFP, (Rizzo et al. 2009)) or Venus (YFP, (Nagai et 

al. 2002)) and a constitutive PGK1 promoter (PPGK1) driving tdTomato (RFP, (Shaner et al. 

2004)) (Figure 3.1). A constitutive MYO2 promoter drives expression of the tet-Trans-Activator 

(tTA), a fusion of the tetR DNA binding protein and the VP16 acidic activation domain which 

together activate transcription from the synthetic tetO binding site-CYC1 minimal promoters. 

Addition of doxycycline inhibits tTA activity to control expression level from the tetO 

promoters, which is essentially constitutive without doxycycline present. Correlations in 

transcriptional activity between different promoters allowed distinction between different 

sources of fluctuations (Colman-Lerner et al. 2005; Volfson et al. 2006). Using the methods 

developed in Chapter 2, we infer the instantaneous transcription, protein production, and growth 

rates in single cells from the microscopy movies. 

 

Figure 3.1 | The “3-color” diploid strain expresses three fluorescent reporters. 
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Figure 3.2 | Mapping data from each cell cycle to a normalized cell cycle progression 
representing the average cycle. 
In real-time, the data points (circles) are evenly spaced. The endpoints of each series represent the first 
post-division data point to the division at the end of the cell cycle depicted. Each cell cycle consists of a 
G1 phase (white circles), bud formation (red circles), and S/G2/M phase (black circles). The data from 
each cell cycle in real-time (top and bottom series) are mapped to the average cell cycle (middle two 
series) by aligning bud formation at the average time, and linearly compressing or expanding intervals 
within each phase. The resulting normalized cell cycles can then be compared in terms of progression. 

To examine the effects of cell-cycle phase on expression, we aligned growth and expression data 

with respect to cell-cycle progression. We subdivided single-cell time series data between 

division events, synchronized the data by bud formation time, and rescaled time such that the 

pre- and post-bud phases mapped to the population-average time in those phases (Figure 3.2). 

Thus, division occurs at 0 and 1, and all traces for each measurement bud at the same cell-cycle 

progression (Figure 3.3). From these plots it is apparent there are qualitatively similar cell cycle-

dependent changes in growth and expression at the single-cell level so the average behavior will 

be representative. We then take the mean of all traces binned across the normalized cell-cycle 

progression. Cells exhibit a slow growth phase up to bud formation corresponding to G1 and 

very early S, followed by faster growth in S/G2/M (Figure 3.4A), consistent with (Goranov et al. 

2009; Cookson et al. 2010). The instantaneous protein production rate similarly has two modes, 

but lags the instantaneous growth rate (Figure 3.4B). In contrast, the instantaneous transcription 

and growth rate correlate, approximately doubling in S/G2 relative to G1 (Figure 3.4C). 
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To confirm the relationship between transcription rate and cell cycle phase, we next changed the 

average growth rate by growing cells in media with alternate carbon sources (galactose or 

raffinose) or depleted phosphate (100 µM). All conditions lengthened the cell cycle 

predominately through extending G1. In each case, the above findings in glucose are robust to 

the changes in the cell’s average growth rate (Figure 3.5). The gradual rise in transcription rate 

over ~30 min may mask a sharper change because of smoothing and reporter maturation (Figure 

3.6). Thus, the ~2-fold change in transcription rates (Figure 3.4 and Figure 3.5) could be entirely 

consistent with the change in gene dosage at replication, which occurs during S-phase around the 

time of bud formation. 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 | In silico synchronization of single-cell time series mapped to average cell cycle 
(next page). 
The first column contains the real-time series from each cell growing at steady-state. In the second 
column, each cell cycle is plotted between division events and synchronized so that budding occurs at t 
= 0 (vertical dashed lines). In the third column, the cell-cycle progression for each cell has been 
normalized to the average cycle, extending from 0 to 1 with the bud appearing at the average budding 
point of 0.27. 
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Figure 3.4 | Instantaneous transcription rate in single yeast cells correlates with growth 
across the cell cycle in glucose media. 
(A) Both volume and total CFP rise rapidly post-bud formation but at slightly different rates because of 
the small (<10%) decrease in CFP concentration, similar to (Cookson et al. 2010).  (B) Mean 
instantaneous growth and protein production rates are lower in G1 and peak in S/G2/M. (C) 
Instantaneous transcription rate of P7xtetO and PPGK1 correlates with instantaneous growth rate in glucose. 
YFP and RFP transcription averages were normalized to CFP. Error bars represent the bin SEM from 
bootstrapping over 171 data points in each bin. Dotted lines indicate the bin S.D. 

 

 

Figure 3.5 | Correlation between instantaneous transcription rate and growth rate is robust 
to changes in cell-cycle length. 
Instantaneous transcription rate of P7xtetO and PPGK1 correlates with instantaneous growth rate in 
galactose (A), raffinose (B), and low phosphate (C) media. YFP and RFP transcription averages were 
normalized by the ratio between the CFP average in the condition specified here and in glucose (Figure 
3.4C). Error bars represent the bin SEM from bootstrapping over N data points in each bin. Dotted lines 
indicate the bin S.D. 
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Figure 3.6 | Less smoothing results in sharper transitions in average instantaneous growth 
and transcription rates across cell cycle phases but general trends are robust to choice of 
smoothing parameter. 
The same raw data in as in Figure 3.4 and Figure 3.5 are processed using a more conservative smoothing 
parameter β = 3 (compared to β = 3, see Chapter 2) that does not smooth noisy features, which results 
in slightly different cell cycle lengths compared to the previous figures. After synchronizing and 
averaging single-cell traces as previously, the general trends of the transcription and growth rates are 
similar. Notably, less smoothing leads to sharper transitions at budding and division with roughly 
constant rates within each cycle phase. Gray areas again show the average S/G2/M phase, and white 
areas show the average G1 phase. Error bars represent the bin SEM from bootstrapping over N data 
points in each bin. 

3.3 Random pulses of transcription during “bursty” expression only occur in 

S/G2/M and are correlated 

We next added 50 ng/mL dox to reduce P7xtetO expression in the 3-color diploid to levels where 

transcription is thought to occur in infrequent, independent bursts at each locus (Raj et al. 2006; 
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To and Maheshri 2010). At low enough frequencies, these bursts are presumably resolvable by 

the real-time transcription rate analysis. Inspection of single-cell traces of transcription rate for 

CFP and YFP showed occasional pulses of active expression from the 7xtetO promoters relative 

to the baseline fluctuations (Figure 3.7). Comparatively, RFP transcription from the constitutive 

PGK1 promoter follows the cell-cycle pattern observed above (Figure 3.4). 

Due to the limited time resolution of spline-fitting the data, determining an activation time for 

each pulse is not straightforward. In the case of an underlying instantaneous switch between two 

transcription rates, we demonstrated in Chapter 2 that the activation time can be accurately 

inferred as the time at which the transcription rate reaches the midpoint between the two rates 

even when the observed transcription time series is noisy and spline-smoothed. Unlike for step 

changes, though, an appropriate threshold cannot be determined simply at 50% of the pulse 

maximum for several reasons. First, the pulse maximum may not reflect the true steady-state 

transcription rate as the “on” periods are short; smoothing may degrade the peak height. Second, 

each pulse has a different height and midpoint and weaker pulses are more susceptible to feature 

degradation by spline-smoothing. Third, some periods have irregular shapes and cannot be 

modeled as a sharp step change. 
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Figure 3.7 | Sporadic transcriptional activation in real-time at two copies of P7xtetO. 
Transcription rate time series (solid lines) for four representative cells, one cell in each panel, showing 
transcription rates from P7xtetO driving either CFP or YFP (blue and green, respectively, top of each panel). 
Both promoters are off in G1, may or may not turn ON in S/G2 (with a transcription rate that exceeds 
the dotted black line denoting the threshold). In contrast, a constitutively expressed RFP (red) from PPGK1 
(bottom of each panel) is always ON and exhibits the usual cell-cycle dependent fluctuations. Colored, 
dashed lines show the corresponding relative mRNA level resulting from transcriptional activity. Vertical 
dashed lines demarcate cell divisions. 

To distinguish between “on” and “off” periods, then, we defined an absolute transcription rate 

threshold between real, detectable transcription and baseline noise in measurement. We expect 
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transcription probabilities to be the same for the YFP and CFP reporters in Figure 3.7 so we 

required the threshold to yield similar statistics for each reporter despite CFP traces having 

greater baseline noise. Beginning in a range of transcription rate values known to be above 

baseline noise (based on the baseline data used in Chapter 2), the threshold was decreased as low 

as possible (3 AU/min) without significant qualitative differences arising between the 

transcription probabilities for the two reporters. We then confirmed this threshold was 

appropriate by inspecting mRNA traces after an “on” period in transcription. For strong 

transcription “on” periods, the following “off” period should correspond to an exponential decay 

in the mRNA time series reflecting pure degradation of mRNA with the measured half-life of 

~17 min (To and Maheshri 2010). This is indeed the case for strong transcription “on” periods at 

a threshold of 3 AU/min (Figure 3.8), but the exponential mRNA decay after weak “on” 

transcription periods is both smaller and more susceptible to smoothing making it harder to 

detect. An absolute threshold does introduce systematic errors in transition time assignment 

based on “on” period height (weak periods are detected later and for less time, stronger periods 

are detected earlier and longer), but the transcription rate transitions are still sharp enough that 

assignment errors are within the ~15-20 min time resolution discussed in Chapter 2. We 

therefore used a threshold of 3 AU/min to designate “on” period boundaries for all transcription 

features (Figure 3.7). 
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Figure 3.8 | mRNA levels fall exponentially with the expected degradation rate after periods 
of strong transcription. 
For the single cell in the bottom panel of Figure 3.7, the CFP transcription rate (blue) and mRNA level 
(purple) show sporadic transcription at low expression levels. At the end of a strong “on” period 
(vertical, dashed line), where transcription rate drops below the threshold (horizontal, dotted line), the 
inferred mRNA level drop is consistent with the expected first-order degradation process 

0( ) tM t M e (red line), where γ is the mRNA degradation rate and M0 is a constant. 

After assigning each transcription rate data point as “on” or “off” based on the threshold and 

mapping time to normalized cell cycle progression as above, we find that “on” pulses are 

restricted to S/G2, generally begin within 20 minutes of bud formation, and last until division 

(Figure 3.9A). Because of the tendency to activate around the time of budding, the timings of 

pulses from the two homologous P7xtetO promoters are correlated. If both P7xtetO copies turn on, 

>70% of the time they do so within 15 minutes of each other (ρ = 0.42, Figure 3.9B). In general, 

the “on” periods are not independent (p < 10
-5

, χ
2
 test; ρ = 0.42) at each locus (Figure 3.9C). 

These results are in striking contrast to the view of transcriptional bursting as intrinsically driven 

with exponential interarrival times (Raj et al. 2006; Raj and van Oudenaarden 2009; Larson et al. 

2009; Golding et al. 2005). 
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Figure 3.9 | Transcriptional bursts from homologous loci are cell-cycle dependent and 
partially correlated. 
(A) The probability that each P7xtetO’s transcription rate is above background, computed by averaging 
individual cell responses at different cell-cycle progression, increases after G1. (B) A 2D histogram of 
activation time for each promoter when both activate (t = 0 at budding). Most activation occurs near 
budding and is correlated. (C) Classifying single-cell S/G2/M periods from (A) by whether each P7xtetO 
activates reveals correlations in sporadic expression. Error bars represent SEM from bootstrapping. 

Disaggregating static population distributions of mRNA level by cell-cycle phase confirms G1 

inactivity at tetO promoters 

Further support for these real-time observations was obtained in our lab by using single-molecule 

mRNA fluorescence in situ hybridization (FISH) to probe how mRNA numbers in single cells 

varied with cell-cycle phase, classified based on the presence and size of a bud (Zopf et al.). 

Figure 3.10A&B describe mRNA distributions from cells with P1xtetO and P7xtetO, but no activator 

present (basal expression). The G1 distributions are zero-peaked with a long-tail that disappears 

by early S, suggesting transcription does not occur in G1, consistent with Figure 3.9A. 

Progression through S/G2/M leads to a unimodal non-zero-peaked distribution in G2/M 

consistent also with real-time observations (Figure 3.9B) indicating the time when an inactive 

promoter turns ON in S/G2 is variable. With intermediate expression, there is also increased 

activity in S/G2/M, but the G1 distribution is qualitatively different: a non-zero peak indicates 

transcription now occurs in G1 (Figure 3.10C&D). However, low transcription activity does not 

imply G1 inactivity. The weak but constitutive DOA1 promoter (PDOA1) has a non-zero G1 peak 

even with low mRNA levels (Figure 3.10E). While the mRNA distributions for the total 
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population in Figure 3.10 exhibit the long-tailed shape predicted by the standard model (Paulsson 

et al. 2000; Raj et al. 2006), partitioning the data by cell-cycle phase reveals it is incorrect. 

3.4 Conclusion 

Our results indicate the G1 to S/G2 transition has strong effects on transcriptional activity 

beyond differences in gene dosage for the tetO promoters, which have characteristics (strong 

TATA box, regulable) of “noisy” promoters identified in genome-wide studies (Bar-Even et al. 

2006; Newman et al. 2006). Temporary disruption of a repressed promoter’s chromatin 

architecture during DNA replication could explain the pulse timing in Figure 3.9B. Whatever the 

event, it does not occur independently at homologous loci. Our data alter the interpretation of 

studies where static mRNA or protein distributions are fit to stochastic models of gene 

expression to infer steady-state dynamics (Raj et al. 2006; Mao et al. 2010; To and Maheshri 

2010; Munsky et al. 2012). This difficulty of using static data to pinpoint origins of variability 

has been anticipated (Taniguchi et al. 2010; Hilfinger and Paulsson 2011), although even static 

mRNA FISH data can reveal additional dynamic information (Wyart et al. 2010) as 

demonstrated by disaggregating mRNA distributions by cell-cycle phase (Figure 3.10) (Zopf et 

al.). New models incorporating cell-cycle linked pulses of transcription should alter predictions 

of gene network behavior. 
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Figure 3.10 | Large differences in transcriptional activity between S/G2/M and G1 depend on 
the promoter. 
(A) YFP mRNA distributions in a haploid yeast with integrated P1xtetO-YFP and no tTA are shown in a 
column as a function of cell-cycle phase. Points and horizontal lines above each distribution are the 
experimental mean and standard deviation, respectively. (B) As in (A) but with P7xtetO. (C & D) As in (A & 
B) but with tTA and 100 or 500 ng/mL dox added for P1xtetO and P7xtetO, respectively. (E) Integrated PDOA1-
YFP with native DOA1 expressed from a plasmid. (Figure courtesy of Katie Quinn.) 
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CHAPTER 4. A COMBINATION OF PROMOTER ARCHITECTURE AND CELL-

CYCLE PHASE INFLUENCES DELAYS IN GENE ACTIVATION
‡
 

4.1 Introduction 

Promoter chromatin contributes substantially to a gene’s transcriptional regulation. As discussed 

in Chapter 1, the positioning of nucleosomes relative to cis-regulatory elements in yeast 

distinguishes two classes of promoters: “open” promoters where binding sites for transcription 

factors (TFs) are present and accessible in a nucleosome-depleted region (NDR), and “covered” 

promoters where nucleosomes flanking an NDR occlude recognition sequences necessary to 

achieve transcription (Tirosh and Barkai 2008; Field et al. 2008). The covered promoter class is 

enriched for regulated genes and has greater dynamic range and expression noise (Tirosh and 

Barkai 2008) owing to the competition between nucleosomes, transactivors, and the general 

transcription machinery to bind the same sequences. Promoter-specific studies at inducible GAL 

and PHO promoters highlight this competition by demonstrating the requirement of chromatin 

disruption for transcription (Lohr 1997). In the next section, we discuss how the PHO5 promoter 

has served as a model for chromatin regulated-transcription, and how this has improved our 

understanding of the relationship between promoter architecture and its steady-state expression 

dynamics. 

However, the role of promoter chromatin architecture in regulating gene activation kinetics is 

less well understood despite the transient behavior of regulated genes being crucial to proper 

stress response, pathway coordination, and cell-cycle control. A comparison of Msn2p target 

promoters revealed slower response kinetics for nucleosome-occluded architectures, but this and 

other kinetic studies of PHO5 promoter activation thus far have been limited by population-

average measurements (Barbaric et al. 2001; Jessen et al. 2006; Lam et al. 2008; Zhou and Zhou 

2011). Single-cell approaches to signaling and observing gene induction have likewise been 

susceptible to the confounding possibility of unobservable delays in signal transduction (Charvin 

                                                 

‡
 Portions of the text and figures in this chapter are drawn from (Zopf et al. 2013a, 2013b). 
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et al. 2008). To address these issues, we developed a switchable transactivator in S. cerevisiae 

based on the phosphate starvation pathway. Here we apply this system to a library of PHO5 

promoter variants (Lam et al. 2008) to study the relationship between promoter architecture and 

kinetics of transcription activation, and we find that cell-cycle phase plays a major role in 

determining the activation delay at individual promoters. 

4.2 The PHO5 promoter as a model for chromatin-regulated transcription 

Phosphate-responsive promoters in general and the PHO5 promoter in particular have served as 

a model system for studying the relationship between promoter chromatin and transcription 

regulation. As a member of the phosphate starvation pathway, PHO5 is regulated by the TF 

Pho4p (Fascher et al. 1990). Pho4p is the master regulator of the yeast phosphate starvation 

pathway, and translocates to the nucleus in response to low intracellular phosphate (O’Neill et al. 

1996) in turn activating promoters of “PHO” genes (Springer et al. 2003). These promoters for 

the PHO genes lie in the “covered” class with a canonical architecture of at least 3 well-

positioned nucleosomes. The -1 nucleosome occludes the TATA box, and Pho4p binding sites of 

varying affinity can be present either “under” or in a NDR between the -2 and/or -3 nucleosome. 

The PHO5 promoter in particular has a low-affinity Pho4p binding site in the NDR (traditionally 

referred to as UASp1, but here referred to as a nucleosome-free site or NFS), and a high-affinity 

Pho4p binding site under the -2 nucleosome (traditionally referred to as UASp2, but here 

referred to as a nucleosome-occluded site or NOS) (Almer et al. 1986; Rudolph 1987; Vogel et 

al. 1989) (Figure 4.1). Despite the possibility of stochastic DNA unwinding from the -2 

nucleosome, Pho4p binding at the UASp2 is not observable until it has bound the UASp1 and 

instigated chromatin remodeling (Svaren 1997). Various cofactor knockouts have demonstrated a 

degree of redundancy in the activation of the PHO5 promoter (Barbaric et al. 2007; Korber et al. 

2006), but transcription activation does require chromatin disassembly (Adkins et al. 2004). 

 

Figure 4.1 | The PHO5 promoter. 
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The roles of several HATs, remodelers, and chaperones have been implicated in efficient PHO5 

activation. Initially, the cofactor Pho2p recruits NuA4 to poise the promoter through its H4 

acetylation activity (Nourani et al. 2004). This may be to balance the repressing effect of Rpd3L 

histone deacetylation recruited to the promoter by Set1-dependent H3K4 methylation, which 

serves to prevent histone turnover at the promoter (Wang et al. 2011). Acting before Pho4p 

arrival, promoter poising is crucial to efficient induction, and elimination of these acetylation or 

deacetylation activities slows activation or increases basal expression, respectively. Upon 

phosphate depletion, Pho4p binds UASp1 and recruits the SAGA HAT and SWI/SNF chromatin 

remodeling complexes (Barbaric et al. 2003; Neely et al. 2002; Dhasarathy and Kladde 2005) 

with additional roles observed for the HAT Rtt109 (Williams et al. 2008) and the remodeler 

INO80 (Steger et al. 2003). The combined activities of these complexes drive accessibility of 

UASp2, more stable binding of Pho4p (Barbaric et al. 2001; Reinke and Hörz 2003), and 

eventual removal of nucleosomes across the promoter (Korber et al. 2004), which liberates the 

TATA box from the -1 nucleosome. Efficient eviction also requires the histone chaperone Asf1 

(Adkins et al. 2004; Korber et al. 2006). Pho4p finally stabilizes pre-initiation complex 

formation (Mao et al. 2010) possibly mediated by the association between SAGA and the TATA 

binding protein (Barbaric et al. 2003). Continued transcription requires Pho4p to maintain an 

open promoter by antagonizing histone deposition by the chaperone Spt6, but not necessarily to 

maintain the initiation complex (Adkins and Tyler 2006). The chromatin remodeling function 

recruited by Pho4p is therefore the crucial purpose in its binding to the PHO5 promoter. An 

additional factor that binds the PHO5 promoter, Mcm1p, has been implicated in mitotic 

induction of the promoter (Pondugula et al. 2009), but this phenomenon is related to cycle-

dependent phosphate depletion. Appreciable activation only occurs in the presence of Pho4p 

(Neef and Kladde 2003), which suggests only to a supporting role for Mcm1p possibly 

contributing to nucleosome disruption. 

Other PHO promoters possess different numbers and affinity of Pho4p binding sites within these 

two regions.  A detailed study using a library of promoter mutants based on PHO5 showed that 

PHO promoter chromatin architecture serves to disentangle the regulatory parameters in the 

steady-state response (Lam et al. 2008). Specifically, the NFS site affinity governs the threshold 

for induction by Pho4p while the NOS dominates the expression level.  This strategy provides 

the cell a way to activate subsets of the PHO pathway in response to intermediate stimuli 
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independently of the output strength. Thus, at intermediate levels of phosphate when nuclear 

Pho4p activity is moderated, the cell can first activate the high-affinity exposed site genes PHM4 

and PHO84 to mobilize internal phosphate stores and take up phosphate with higher affinity 

membrane transporters. Only if phosphate conditions become more dire will Pho4p activity be 

sufficient to activate the low-affinity exposed site promoters like that of PHO5 and other 

phosphate scavenging genes thus conserving energy and materials for the most severe stresses 

(Lam et al. 2008; Steger et al. 2003). Since promoter architecture clearly plays a significant role 

in determining the response of a gene to a transactivator input, and because nucleosome 

remodeling is essential to efficient activation kinetics, a role for architecture in the transient 

induction kinetics is likely. 

4.3 Reengineering the PHO pathway to accurately measure gene activation 

kinetics of PHO promoters 

We sought to measure to kinetics of activation at a series of PHO5 promoter variants with 

precise changes in promoter architecture that mimic differences in natural PHO promoters. In 

high phosphate conditions, the master transcription factor Pho4p, responsible for the phosphate 

starvation response by activating PHO genes, is preferentially exported to the cytoplasm via 

phosphorylation of multiple serine residues (Kaffman et al. 1994; Kaffman et al. 1998) Transfer 

of yeast cells to low external phosphate conditions leads to eventual depletion of intracellular 

phosphate levels (Shirahama et al. 1996), inhibition of Pho4p phosphorylation, and translocation 

of the transcription factor from the cytoplasm to the nucleus (Kaffman et al. 1994; O’Neill et al. 

1996) where it activates PHO promoters.  Previous measures of PHO5 activation kinetics in 

single cells usually entail transferring yeast cells from high to low phosphate conditions, and 

then measuring gene expression (Thomas and O’Shea 2005) or chromatin state (Jessen et al. 

2006) of the PHO5 promoter. While such measurements have indicated cell-to-cell variability in 

remodeling and expression, they are unable to decouple the kinetics of the upstream phosphate 

signaling pathway from gene activation. In fact, in one of these studies activation delays were 

found to be due to the time required to deplete vacuolar stores of polyphosphate (Thomas and 

O’Shea 2005). Additionally, the single-cell measurements employed were static population 

snapshots. Though these studies provided timecourse data for the evolution of the population 

response, single promoter activation trajectories cannot be inferred. 
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To obviate these problems and increase the time resolution of the kinetic measurement, we 

developed a switchable transactivator system (1) to rapidly control and observe the nuclear 

translocation of Pho4p, and (2) to measure subsequent expression from a PHO5 promoter variant 

driving a CFP reporter, all in the same single cell (Figure 4.2). This required multiple changes in 

the endogenous pathway. To ensure rapid translocation in response to a step change in external 

phosphate levels, we eliminated major feedback pathways and vacuolar storage of 

polyphosphate. Normally, cells employ a dual positive and negative feedback loop architecture 

to respond to changes in external phosphate concentration. This results in switching the 

complement of high and low affinity phosphate transporters present on the membrane and can 

even result in a bimodal population response at intermediate levels of phosphate (Wykoff et al. 

2007). Our strategy was to eliminate these feedback loops and retune the system to meet our 

criteria. We started with strain EY2210 (Appendix, Table A.1, (Wykoff et al. 2007)). The spl2Δ 

prevents down regulation of low affinity phosphate transporters in low phosphate conditions and 

hence eliminates the positive feedback loop. Also PHO84, encoding the high affinity transporter, 

is replaced with CFP. With no high affinity phosphate transporter, which normally is upregulated 

in low phosphate conditions (Bun-Ya et al. 1991), there is no negative feedback loop. This strain 

also expresses an Nhp2p-mCherry protein fusion to fluorescently label the nucleus. Because we 

sought to look at CFP expression from tetO promoters, we replaced CFP at the PHO84 locus 

with a KlURA3 (using a PCR fragment from B108, Appendix, Table A.2) and regenerated uracil 

auxotrophy by eliminating a portion of KlURA3 (using a short PCR fragment from B464, 

Appendix, Table A.2). Utilization of vacuolar stores of phosphate can delay the response to 

changes in external levels (Thomas and O’Shea 2005) so we eliminated a key vacuolar 

transporter, Phm4p, by integrating a phm4Δ::HIS3MX6 PCR fragment. In this background, 

growth in the microfluidic chamber in low external phosphate (5 μM) slows relative to growth in 

high phosphate (5000 μM) (Figure 4.3); however, this occurs gradually and does not 

significantly impact either changes in Pho4p’s nuclear localization or the transcription rate until 

late times. (While 5 μM external phosphate leads to a severe growth defect in culture and is 

reportedly below the Km of the low affinity transporters (Wykoff and O’Shea 2001), we have 

found both nutrients and drugs are more potent in the microfluidic chamber. This is likely due to 

both constant perfusion and a reduction in mass transfer limitations present in culture.) These 

genetic modifications thus enabled toggling the nuclear state of Pho4p using an external 
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phosphate concentration that has minimal effects on growth rate on the time-scale of reporter 

gene activation. 

 

Figure 4.2 | A switchable transactivator system to probe promoter activation kinetics in 
yeast. 
Extracellular phosphate concentration controls the nucleo-cytoplasmic localization of the Pho4-YFP TF 
fusion through an engineered phosphate starvation pathway. When localized to the RFP-marked 
nucleus, the TF drives expression of CFP from the PHO5 promoter or a variant differing only in the 
affinities of the open and nucleosome-occluded Pho4p binding sites (high: “H”, Δ; low: “L”, ○; ablated: 
“X”, no symbol). 

 

Figure 4.3 | Mean growth rate decreases only gradually in low phosphate. 
The switchable transactivator strain was grown in the microfluidic device in high phosphate (white area) 
before switching to low phosphate media (light green area). The mean instantaneous growth rate varies 
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over time due to cell-cycle synchronization imposed by trapping similarly-sized cells in the device and 
cell cycle-dependent changes in growth rate (discussed in Chapter 3). 

To observe the translocation, we expressed a Pho4-YFP (Citrine (Griesbeck et al. 2001)) fusion 

and compared its signal colocalization with the RFP-marked nucleus. We chose to constitutively 

overexpress Pho4-YFP to rapidly attain and exceed a phosphate-starved nuclear Pho4p level, 

rather than rely on slow positive feedback through Pho4p-dependent increases in expression of 

PHO81 (Yoshida et al. 1989; Creasy et al. 1996), the inhibitor of the cyclin-CDK which drives 

Pho4p nuclear export. This ensures the downstream steady-state promoter response is quickly 

saturated with respect to Pho4p and not sensitive to small fluctuations in its concentration. 

Finally, the nuclear YFP signal we observe represents a pool of Pho4p phosphoforms that may 

have varying transcriptional activity based on phosphorylation of S223, referred to as site 6 

(O’Neill et al. 1996; Springer et al. 2003). Therefore we utilized a mutant Pho4
SD6

 (Komeili and 

O’Shea 1999) with the site 6 serine converted aspartate, which fixes site 6 in a “phosphorylated” 

state and prevents binding to the Pho2p cofactor. Thus Pho4
SD6

 has reduced but still potent 

transcriptional activity (Springer et al. 2003), and fluorescence observed from the nuclear Pho4-

YFP pool represents a uniform activity. This reengineered strain was then grown in a 

microfluidic device that allows rapid (< 1 min) changes in external phosphate concentrations. By 

monitoring large step changes in Pho4-YFP nuclear translocation in single cells using real-time 

fluorescence microscopy at 5 min intervals, we determined the response delays of individual 

target promoter activation using the automated computational tools described in Chapter 2. 

Figure 4.4 describes the kinetics of Pho4-YFP localization (nuclear YFP signal – cytoplasmic 

YFP signal) and activation of the PHO5 promoter driving CFP, respectively. In Figure 4.4B, we 

report the resulting instantaneous CFP transcription rate, which we infer using the measured CFP 

total fluorescence time series and the continuous-time transcription model in Chapter 2. While 

the average transcription rate over the population reaches a constant steady-state after 100 mins 

in low phosphate, in single cells the transcription rate exhibits cell cycle-dependent fluctuations  

(Figure 4.5) consistent with our previous observations at constitutively-active endogenous or 

induced synthetic promoters in Chapter 3. When individual cells activate transcription, they 

exhibit a smooth rise in the transcription rate. While the absolute value to which this rate rises 

depends on the particular cell, all cells show a similar characteristic shape and duration of the 
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rise (Figure 4.6). Given the measurement frequency, noise, and the spline fits used to smooth and 

differentiate the CFP time series (see section 2.4), this characteristic rise time (~40 min) in the 

inferred transcription rate is consistent with a sharp transition in the actual transcription rate 

smoothed over the ~20 min time resolution window. (The inferred, smoothed transcription rate 

will begin to rise ~20 min before the actual transition, and will not fully reach the “on” state until 

~20 min after the switch.) 

 

 

Figure 4.4 | A step change in nuclear Pho4-YFP leads to CFP transcription activation in single 
cells. 
(A) After a step to low phosphate growth conditions, the TF localization (nuclear – cytoplasmic YFP 
intensity) in single cells quickly rises above a threshold level sufficient for promoter activation. (B) In 
response to the TF localization in each cell in A, an instantaneous CFP transcription rate is calculated 
that crosses the “on” threshold at distributed times. Data shown for the wild-type PHO5 promoter. 
(Symbols as in A.) 
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Figure 4.5 | Transcription from the PHO5 promoter oscillates across the cell cycle at steady 
state. 
Data for each cell cycle at steady state (>100 minutes after the phosphate switch) is mapped to a 
normalized cell cycle progression as in Chapter 3 (Figure 3.2) and the mean is taken for bins across the 
cell cycle. (A) Mean Pho4-YFP localization is not a function of cell cycle progression while (B) mean CFP 
transcription rate exhibits strong cell cycle oscillations. Dashed lines represent 1 S.D. from the mean 
(points), and error bars represent the S.E.M. by bootstrapping. 

 

Figure 4.6 | Single cell traces exhibit qualitatively similar rises to steady-state transcription. 
Single cell transcription rate time series (thin, multicolored lines) were synchronized by the time at 
which each crosses the switch “on” transcription rate threshold (dashed, black line), and the mean is 
plotted at each time interval (thick, red line). 
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We then need an unbiased method to assign transcription transition times for precise 

comparisons of promoter variant activation kinetics in the case of a switch on to an oscillating 

steady state. If we model the transcription rate response to a step change in phosphate as a 

Heaviside function, a spline fit to simulated data yields a value at the activation time that is 

midway between the baseline and active transcription rates (see section 2.4). Even with cell 

cycle-dependent oscillations, activation would occur on average at the time transcription rate 

reaches the midway point to the new, time-averaged steady state (Figure 2.4). The switch time is 

then estimated at the midpoint between the “off” and “on” levels. The “off” level is ~0 AU/min 

for each promoter, but a step test of each promoter variant depicted in Figure 4.2 results in a 

range of active transcription strengths (Figure 4.7). Therefore, the “on” transcription rate 

resulting from the step change must be calculated for each promoter variant. In each case, the 

steady-state transcription rate varies with the cell cycle, which yields an oscillating, dynamical 

steady state. However, the mean transcription rate trends down at later times for the weaker LL 

and LX promoters (Figure 4.7B) most likely due to a strong link to the decreasing growth rate 

(section 3.2, Figure 4.3) while the mean for XH and XL hovers around the detection limit. Since 

the long-time mean is not necessarily representative of the “on” state at early times, we 

approximate the initial “on” level based on the first peak to trough in transcription rate after 

activation. We take the mean of the midpoint between the first peak >3 AU/min and the 

following trough in transcription rate in all cells as the new mean “on” level for transcription rate 

immediately after activation. We are then able to calculate automatically a transcription rate 

threshold for each promoter architecture as half of the estimated mean “on” level.  

 

 

 

Figure 4.7 | Step responses for each promoter in the PHO5 variant library (next page). 
(A) Single-cell and mean Pho4-YFP nuclear localization in response to a step change in phosphate for 
each promoter variant quickly reach the localization threshold determined sufficient to activate 
transcription (Figure 4.8). (B) Single-cell and mean CFP transcription rate driven by the TF localization in 
A reach the promoter-specific switch “on” threshold at variable times. (C) Mean TF localization and (D) 
mean CFP transcription rate overlay for all promoter variants. 
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To find the delay in activation, we determine when nuclear Pho4-YFP levels have crossed a 

threshold sufficient to activate expression. We can estimate this threshold by ordering single 

cells by the localization level at the time of activation (Figure 4.8). We take as the threshold the 

localization level at which 5% of single cells have activated.  Due to the low variability in single-

cell localization profiles (Figure 4.7A), this threshold is robust; raising it merely shifts the 

localization time for all cells equally. The activation delay for each cell is then estimated as the 

time between localization and transcriptional activation. This value represents delays in 

remodeling, initiation, elongation, translation, and maturation of the CFP reporter (~ 11 min half-

life, section 2.4). Because the latter three processes are identical for every promoter variant, any 

differences in delays we see are related to forming an active promoter state. 
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Figure 4.8 | Determining transcription activation and effective TF nuclear localization times in 
single cells during step tests (next page). 
After the switch to low phosphate at t = 0 (green shaded area), a sample cell begins to express CFP (A, 
cyan) in response to the TF localizing to the nucleus (C, green). The inferred CFP transcription rate (B, 
blue) rises after the TF localizes to an effective level. Transcription and localization transition times for 
each cell are then found in 5 calculation steps (corresponding to the red numbers on plots). (1) The 
transcription threshold (horizontal black dashed line, B) is set at 50% of the “on” transcription rate in the 
population as discussed in the text. This threshold point corresponds well to the beginning of a rise in 
observable protein (A). (2) Because of the 10-15 min lag in observing transcription (τobs) due to protein 
maturation, the TF localization level 15 min prior to the observed time of transcription activation is 
noted. (3) Steps 1 and 2 were repeated for all cell traces creating a distribution of localization values 
(inset in C). (4) The effective TF localization threshold is set at the 5th localization percentile (vertical, 
dashed line in inset). This corresponds to a TF level where many cells do activate transcription 
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suggesting that nuclear TF levels are no longer limiting.  Any resulting delays in transcription activation 
are interpreted as due to the transcription process and not due to a lack of nuclear TF. (5) Each cell’s 
localization time is then determined when nuclear TF levels cross the effective TF localization threshold 
(horizontal red dashed line, C). 

4.4 Activation kinetics is largely dictated by cell cycle phase  

We measured activation kinetics of the eight PHO5 promoter variants (Figure 4.2) subject to a 

drop in phosphate when grown in glucose. Upon activation, single cells from all variants exhibit 

the same characteristic rise to an oscillating steady-state transcription rate (Figure 4.7). As 

discussed in the previous section, this implies activation occurs as a fast (<20 min) switch to an 

active transcription state at the single promoter level, rather than a slow progression through a 

series of more and more active transcription states. The XH and XL variants which lack a NDR 

site exhibit the longest delay, whereas the HH variant exhibits the shortest delay (Figure 4.9). 

The delay may correlate roughly with steady-state expression levels, but certainly not in a linear 

manner, as significantly large differences in delays between HX, XH, and XL correspond to 

small differences in steady-state expression. Moreover, LH may be an exception as it has a 

longer delay than the lower expressing HX and HL variants, although this difference is not 

significant within error. At the very least, we can conclude that delay times are related to 

promoter architecture. 

 

Figure 4.9 | Transcription activation delay time is related to promoter architecture. 
(A) Each point represents the mean delay time calculated for the step tests of each promoter variant in 
Figure 4.7 plotted against the mean steady state transcription level for times >100 min after the 
phosphate switch. Error bars represent S.E.M. by bootstrapping, and are negligible for the mean steady 
state transcription. (B) The distribution of single-cell delay times from each promoter. 



  87 

 

Because we measured delays at the single cell level, we could go beyond mean delay times and 

compare delay time distributions (Figure 4.9B). Especially with the XL and XH variants, there 

appear to be two groups of cells with shorter and longer delay times. In Chapter 3, we found that 

cell-cycle phase can have large effects on steady-state transcription rate of low expressed noisy 

genes that goes beyond gene dosage. Therefore we classified cells by cell-cycle phase in which 

localization occurred using the absence (G1) or presence (S/G2/M) of a bud. In comparing the 

mean delay times of these two groups (Figure 4.10), localization in G1 as compared to S/G2/M 

leads to a longer activation delay across promoter architectures despite no difference in 

localization strength between the two phases initially or over time (Figure 4.11). However, the 

activation delay differences are not always significant. 

 

Figure 4.10 | Mean promoter response delay by cell cycle phase for step tests of the PHO5 
promoter variants in glucose media. 
Bars represent the mean for all cells in which a delay was measured (dark gray), or the mean of those 
cells in which TF localization occurred during G1 (white) or S/G2/M (light gray). Numbers above each bar 
represent the number of cells averaged. Error bars represent S.E.M. by bootstrapping. 
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Figure 4.11 | TF localization level does not correlate to cell-cycle phase at the start of 
localization. 
(A) From the wild-type PHO5 step test in Figure 4.4, mean Pho4-YFP localization for the two classes of 
cells where TF localization starts in G1 versus S/G2/M. (B) The corresponding mean CFP transcription 
rate for each class. Error bars represent ±1 standard deviation at each time point. There is no difference 
in localization at early times. The small systematic difference in localization at later times is within one 
standard deviation, and has no effect on mean transcription rate. 

We reasoned that the short time cells spend in G1 when grown in glucose (~30 min with ~100 

min doubling time, Figure 4.12) might confound these results in two ways. First, some fraction 

of cells is likely misclassified in G1 or S/G2/M because localization is only estimated accurately 

within one time point (±5 minute sampling frequency). Second, cells that localize Pho4-YFP in 

G1 may actually activate quickly because they quickly reach the transition to S phase (<30 min). 
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We addressed these concerns by extending the time cells spent in G1 by repeating the step test 

experiments using 2% galactose as the carbon source (Figure 4.12). We chose to focus on the 

HH, LH, XH, and HX variants, which span different delay times and steady-state expression 

levels and in which the NFS is systematically varied. With the extended G1, the differences in 

delay times are now significant depending on whether localization occurs in G1 versus S/G2/M 

(Figure 4.13). To see if the widening disparity in delay times was due to the extended G1 in 

galactose, we visualized single cell traces by when localization and activation occur in relation to 

normalized cell-cycle progression (as in section 3.2). Analyzing single cell traces in this manner 

reveals (Figure 4.14): if localization occurs in early S/G2, there is a short delay to activation 

(magenta); if localization occurs in G1, there is a longer delay with the majority of events not 

activating until the G1/S transition (red) and a minority of events activating in G1 (blue); and if 

localization occurs in late G2/M (arbitrarily defined with a cell cycle progression >0.7) activation 

usually does not occur until the next cell cycle, and frequently not until the subsequent G1/S 

transition. While steady-state transcription in G1 is lower versus S/G2/M (Figure 4.15, and 

Figure 4.5, Figure 3.4, Figure 3.5) and activation times are determined based on a fixed 

threshold, the large delays are due to the initial absence of transcription in G1 and late G2/M 

(Figure 4.16). This analysis not only confirmed activation in G1 is slower than post-budding, it 

also shows that differences between the activation delay during G1 versus S/G2 are even larger 

because we had lumped the early S/G2 (short delay) and late G2/M events (long delay) events 

(Figure 4.13). Taken together, it appears that early S/G2 is a permissive period for activation of 

PHO promoters. 
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Figure 4.12 | The median cell cycle length for cells throughout step tests in glucose or 
galactose media. 
For each observed cell cycle, the full cell cycle length (full bar height) was calculated as the time 
between divisions, and the G1S transition was calculated as the median bud formation time as a 
fraction of the total cell cycle. The G1 length (white portion) is the product of the full cell cycle length 
and the median cycle progression at bud formation, and the remaining cycle time is attributed to 
S/G2/M (gray portion). 

 

Figure 4.13 | Transcription activation is slow in G1. 
For a step test in media containing galactose as the carbon source, the mean promoter response delay 
times categorizing each cell as G1 (white) or S/G2/M (gray) based on the point in the cell cycle at which 
TF localization occurred. The number of cells in each category appears above each bar, and error bars 
represent S.E.M by bootstrapping. 
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Figure 4.14 | Transcription activation is dependent on a permissive period in S/G2. 
For the step tests in Figure 4.13, single-cell time of transcription start (circles) against the localization 
time as normalized cell cycle progression. The green diagonal represents the point of TF localization. 
Vertical distance from the green diagonal to the circle represents the promoter response delay time. 
Average cell-cycle G1 length is demarcated on the localization axis. A boundary is arbitrarily defined 
between S/G2 and G2/M at 0.7, since there appears to be a difference in the rate of transcription 
activation between early and late S/G2/M. 
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Figure 4.15 | Steady-state transcription varies across the cell cycle at PHO5 promoter variants 
 CFP transcription rate data from each galactose step test at long times (>100 minutes in low phosphate, 
when at least 80% cells have activated transcription for XH and at least 90% for the other variants), was 
binned according to the corresponding cell cycle progress at each time point. The bootstrapped means 
(points) are plotted for each normalized cycle progression bin along with one standard deviation above 
and below (dashed lines). Error bars represent S.E.M. of the mean by bootstrapping, and “N” is the 
number of data points in each bin. 
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Figure 4.16 | Lack of CFP transcription activation in G1 is due to long times spent waiting until 
S/G2. 
Transcription rate is plotted from the time of TF localization (points) for 50 cells in which localization 
occurred during G1. The plurality of cells that do not activate CFP transcription until S/G2/M do not 
transcribe at all during G1 rather than exhibiting detectable transcription that does not reach the 
threshold (dashed line). 

4.5 Promoter architecture affects cell cycle dependent delay 

Cell-cycle phase appears to be an event in trans that strongly influences promoter transitions in 

cis that are required for activation. We next asked whether and how promoter architecture affects 

the two distinct delays occurring in G1 versus early S/G2. Comparing the G1 delay with an 

aggregate S/G2/M delay between HH, LH, XH, and HX shows that the absence of a NFS site 

strongly affects the delay in S/G2/M (Figure 4.13). In addition, both LH and HX exhibit 

indistinguishable delay times even though they have significantly different steady-state 

expression levels (Figure 4.17). To incorporate the impact of localizing in late G2/M, we defined 
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and calculated probability of three events: activation in S/G2 given S/G2 localization, activation 

in G1 given G1 localization, and activation in G1 given localization without activation in the 

prior G2/M. The first event is a measure of the S/G2 delay whereas the second and third events 

are measures for the G1 delay. In Table 1, we list these probabilities for different promoter 

architectures and group them based on statistically significant differences (pairwise Fisher’s 

exact test comparisons – see table legend). These data also reveal that the absence of the NFS 

extends the S/G2 delay (by decreasing the probability of activation in S/G2 given localization in 

S/G2). Moreover, the aggregate affinity of both sites is important to the G1 delay. HH and (to a 

lesser extent) LH variants are more likely to activate transcription in G1 compared to the HX and 

XH variants. While LH and HX have very similar delay times in Figure 4.13, the pairwise 

comparisons show LH is more likely to activate transcription in G1 following TF localization in 

G2/M. This could be due to the discrete cell-cycle phase categorization used in the statistical test 

compared to the continuous measurement of delay time. In Figure 4.14, about half of the LH 

cells that localize in G2/M and activate transcription in G1 activate towards the end of G1. The 

delay time for these cells is not much different than the HX cells that activate in early S/G2, but 

the classification is distinct. Further extending G1 by growing cells in media with raffinose as the 

carbon source should clarify whether, given enough time, LH can activate in G1 faster than HX. 

At the very least, we can conclude that both a NFS and a NOS are necessary for activation in G1 

by comparing HH to both XH and HX, and we consider it likely that aggregate affinity dictates 

G1 delay. 
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Figure 4.17 | Mean steady-state CFP transcription rate from PHO5 promoter variants in 
galactose step tests. 
Bars represent the bootstrapped mean of all data in each plot of Figure 4.15, and error bars represent 
the S.E.M. 

Table 1 | Reliance on the S/G2 permissive period for activation is dependent on promoter 
architecture 

Localization starts in: G1 S/G2 G2/M 

Probability 

transcription starts in: 

G1 

vs. 

Later 

S/G2 

vs. 

Later 

Next G1 

vs. 

Next S/G2/M 

HH 0.52 + 0.78 + 0.68 + 

LH 0.25 – 0.76 + 0.54 + 

HX 0.20 – 0.64 + 0.24 – 

XH 0.22 – 0.33 – 0.26 – 

Promoters in the “+” group are significantly more likely to activate transcription during the first 
indicated period compared to promoters in the “–” group in each column (pairwise Fisher’s exact test, p 
< 0.05). 

Our data predict that being in or transitioning to early S/G2, an event in trans, can accelerate 

promoter transitions in cis to shorten the activation delay. Moreover, given a NFS site, lower 

aggregate affinity of Pho4p binding sites should extend the G1 delay. We tested this prediction in 

a different way, by expressing two copies of the LH, LL, or LX variants in diploid cells in 

glucose. A short activation delay in S/G2 would lead activation of both copies of these promoter 

variants to appear strongly correlated. However, the strength of the correlation would decrease 
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with aggregate affinity if the slower G1 delay times are due to slow promoter transitions in cis. 

These predictions were roughly borne out as two copies of LH and LL variants showed highly 

correlated (ρ ~ 0.75) activation whereas the LX variant correlation was less (ρ ~ 0.5) but still 

strong (Figure 4.18A). Indeed, as predicted when localization occurs in S/G2 the two promoter 

copies are almost perfectly correlated because activation is largely restricted to S/G2 (Figure 

4.18B). Importantly, this trend in correlated activation was independent of the steady-state 

transcription rate. The XH variant has an equivalent steady-state transcription rate to LL and LX, 

but the absence of a NFS site leads to longer S/G2 delays and, as predicted, a lower correlation 

(ρ ~ 0.4) (Figure 4.18A & B). 

 

Figure 4.18| The cell cycle correlates transcription activation at two homologous promoter 
copies. 
(A) Single-cell delay times for step tests of a diploid strain with two homologous copies of the indicated 
promoter driving expression of either CFP or YFP. (B) For the step tests in A, single-cell time of 
transcription start against the localization time as normalized cycle progression. For each cell (colors), 
the transcription start times for the two promoter copies (circles) are connected to show the difference 
in activation times. Vertical distance from the green diagonal to each point represents each promoter’s 
response delay time. 
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4.6 Memory of previous activation events can eliminate cell-cycle dependent 

delays 

A number of yeast promoters, including INO1 and GAL1, have been shown to reactivate faster 

after having been recently transcribed as compared to a naïve reporter (Brickner et al. 2007; 

Kundu et al. 2007). In these cases, the transcriptional memory has lasted multiple cell cycles and 

corresponded to movement of the promoter to the nuclear periphery. We sought to determine if 

transcriptional memory exists at PHO5 promoter variants and whether it accelerates reactivation 

in a cell cycle-dependent way. We chose to focus on PHO5 (LH) and the HX variant that exhibit 

similar delay times. Cells with these variants were grown in galactose media and subject to a first 

step test, leaving cells in low phosphate for 200 minutes. This was followed by a period in high 

phosphate to delocalize the Pho4-YFP to the cytoplasm, and then a second step test to low 

phosphate (Figure 4.19A). The high phosphate period intervening between the two step tests had 

a duration of either 75 minutes or 150 minutes, shorter or longer than the average cell cycle 

length, respectively (Figure 4.20). Transcription quickly ceased after removal of Pho4p from the 

nucleus, consistent with rapid chromatin reassembly (Schermer et al. 2005; Adkins and Tyler 

2006), and no transcriptional activity was observed during the high phosphate “off” period 

(Figure 4.19B). Upon reactivation, the mean response delay decreased in both cases (Figure 

4.21).  

 

Figure 4.19 | Reactivation of the PHO5 promoter reveals memory of previous transcription. 
(A) TF localization in response to a 75 min pulse of high phosphate (“off” pulse) between periods of low 
phosphate. Data shown for strain bearing the wild-type PHO5 promoter (LH). (B) CFP transcription rate 
of LH in response to TF localization in A reactivates faster. (Symbols as in A.) (C) Mean promoter 
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activation delay times in all or cell-cycle categorized single-cells on the first and second step for the 
indicated promoters and “off” pulse lengths. Error bars represent S.E.M. by bootstrapping. 

 

Figure 4.20 | Median cell cycle length for the full time course of the transcriptional memory 
reactivation step tests. 
Cell cycle (full bar), G1phase (white portion), and S/G2/M phase (gray portion) lengths calculated as in 
Figure 4.12. 

 

Figure 4.21 | Memory at the promoter decreases cell cycle-dependence. 
Mean promoter activation delay times in all or cell-cycle categorized single-cells on the first and second 
step for the indicated promoters and “off” pulse lengths. Error bars represent S.E.M. by bootstrapping. 
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Since direct observation of the nuclear Pho4-YFP input to the promoter precludes pathway 

feedback as the source of memory, the accelerated kinetics reflects transcriptional memory at the 

PHO5 promoter itself. Furthermore, the memory survives over the length of the cell cycle. 

Repeating the tests on the HX architecture, which had a similar response delay to LH (Figure 

4.13) despite a stark difference in architectures, we again found a faster reactivation response 

(Figure 4.21). This suggests the memory mechanism is not strictly architecture-dependent. 

Categorizing each cell as before based on the cell cycle phase at the time of TF localization 

reveals a link between the transcriptional memory and the cell-cycle dependence of gene 

activation delays. In each test, reactivation delays for G1 cells are shorter than for the initial 

response while the change in response delay for S/G2/M localized cells tends not to change 

significantly (Figure 4.21). For each promoter, the shorter G1 delay upon reactivation is due to 

the significantly lower likelihood of passing through G1 without activation if localization occurs 

in G1 or the previous G2/M period (Table 2, pairwise Fischer exact test, variable p-value). In 

contrast to the accelerated reactivation for cells during G1, those in which the TF localized in 

S/G2 do not reactivate transcription any faster on the second stimulation, which contributes to 

the lack of a significant change in delay time for S/G2/M cells in Figure 4.21. Thus, the memory 

creates an accelerated response by increasing the rate of gene activation in G1, thereby 

diminishing the reliance on the S/G2 phase. Interestingly, upon reactivation the G1 response 

delay time decreases for HX but disappears for LH (Figure 4.21), which intimates a role for 

architecture in exploiting the memory mechanism. This establishes a supporting role for the NOS 

in more permissive reactivation similar to the dependence in G1 on aggregate affinity when 

activating a naïve promoter (Table 1). Taken together, these results indicate a long-lived, post-

transcriptional state of the PHO5 promoter decreases the G1 delay, which practically eliminates 

the cell-cycle dependence. A similar memory test of the XH promoter, with a much longer S/G2 

delay, may reveal significantly faster reactivation also occurs during S/G2, which would suggest 

the post-transcriptional promoter state accelerates activation kinetics in a more general, cell-

cycle independent way. 
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Table 2 | Transcriptional memory increases the probability of transcription activation in G1. 

Localization starts in: G1 S/G2 G2/M 

Probability 

transcription starts in: 

G1 

vs. 

Later 

S/G2 

vs. 

Later 

Next G1 

vs. 

Next S/G2/M 

LH 75 min 
Pulse 1 0.09 0.75 0.31 

Pulse 2 0.43 +++ 0.67 – 0.62 + 

LH 150 min 
Pulse1 0.19 0.65 0.50 

Pulse 2 0.57 +++ 0.74 – 0.67 – 

HX 75 min 
Pulse 1 0.08 0.56 0.20 

Pulse 2 0.32 ++ 0.79 – 0.67 +++ 

HX 150 min 
Pulse 1 0.15 0.65 0.11 

Pulse 2 0.46 +++ 0.71 – 0.75 +++ 

Pairwise Fisher’s exact tests were performed between the first and second pulse of low phosphate in 
each memory test. Probabilities corresponding to a significant increase in the likelihood of activating 
transcription during the first indicated period in each column are denoted as (+++: p ≤ 0.05; ++: p < 0.1; 
+: p < 0.2) while no significant change is labeled as “–”. 

4.7 Activation kinetics at synthetic promoters is also cell cycle-dependent 

Finally, we asked if cell-cycle phase affects the kinetics of gene activation more generally by 

measuring the time to activate at synthetic 1xtetO and 7xtetO promoters (consisting of 1 and 7 

tetO binding sites fused to the CYC1 minimal promoter, respectively) in response to a step 

change in a TF input. Rather than inducing the promoters through the tet-Trans-Activator and its 

repressor doxycycline, of which concentration changes may affect the TF slowly and at variable 

times in single cells (Charvin et al. 2008), we developed a chimerical, Pho4p-based switchable 

transactivator to target the tetO promoters (Figure 4.22). Instead of integrating Pho4-YFP into 

the switchable transactivator strain background, we introduced a Pho4tetR-YFP at the leu2 locus. 

The C-terminal Pho4p DNA binding domain is well-defined (Ogawa and Oshima 1990) and 

easily eliminated (McAndrew et al. 1998), so we replaced it with a tetR C-terminally fused to 

Citrine. YFP was fused to tetR using the peptide linker (GDGAGLIN) reported in (Sheff and 
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Thorn 2004), but modified for more common codon usage and to convert the PacI restriction site 

to a SpeI site by exchanging valine for isoleucine (GGT GAT GGT GCT GGA CTA GTT 

AAT, translated as GDGAGLVN). The modified linker was then used to fuse tetR to the PHO4 

shuttling domain (base pairs 1-600).  Because Pho4p is known to dimerize with the Pho2p 

cofactor we also deleted the Pho2p binding domain in PHO5 (base pairs 601-741) {{967 Hirst 

1994;}}, further insulating the pathway from native phosphate regulation. Into the resulting 

strain (Y947, Appendix, Table A.1), we integrated either the 1xtetO or 7xtetO promoter driving 

CFP at the URA3 locus using integrating plasmids (B579 or B720, Appendix, Table A.2). 

 

Figure 4.22 | A chimerical, switchable transactivator system to probe activation kinetics at 
tetO promoters. 
In response to a step change in phosphate concentration, both TF localization and subsequent gene 
activation from the 1xtetO and 7xtetO promoter are identical (Figure 4.23A&B). The activation delay 
time distribution (Figure 4.23C), with a median 17 min delay, is likely dominated by fluorophore 
maturation (~10 min delay, section 2.4). Therefore, on average both promoters respond quickly to the 
TF. However, when we separate cells by the cell-cycle phase when TF localization occurs, the post-
budding delay distribution is significantly different from the pre-budding delay distribution (Figure 
4.23D, 2-sample K-S test: 1xtetO, p = 0.05; 7xtetO, p < 0.001), with median response times in post-
budded cells 7 (1xtetO) or 10 (7xtetO) minutes earlier. We repeated the 7xtetO promoter step test in 2% 
raffinose to extend G1 and better sample G1 cells. Both the median 20 min activation delay and the 10 
min gap between pre- and post-bud cells’ delay (K-S test: p = 0.005) are similar to results in glucose, with 
prolonged delays in activation restricted to G1 (Figure 4.24). These results suggest the cell cycle may 
play a more general role in transcription activation. 
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Figure 4.23 | Synthetic tetO promoter activation depends on cell-cycle phase. 
(A) Localization of the chimerical TF in response to low phosphate was identical in strains carrying either 
1xtetO- or 7xtetO-CFP. Thick lines represent the mean, and thin lines represent single cell traces (SC). (B) 
The resulting CFP transcription from each tetO promoter was normalized to the average first peak 
height for comparison. (C) The distribution of delay times is the same for both tetO promoters in 
glucose, but growth in raffinose slows the response. (D) Disaggregating the distributions by cell-cycle 
phase reveals faster activation post-budding. 

 

Figure 4.24 | Synthetic tetO promoter activation is slow in G1. 
The time of localization and transcription start with respect to bud formation are plotted for single cells 
from the 7xtetO step test in raffinose. Vertical distance from the green diagonal represents the delay in 
transcription activation after TF localization. 
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4.8 Discussion 

While a wealth of studies have probed the dynamics and mechanism of relieving chromatin 

repression at the PHO5 promoter (reviewed in (Rando and Winston 2012)), the role of promoter 

architecture in gene activation kinetics remained unclear. To isolate the effect of transactivator 

binding site affinity and location from upstream signaling dynamics, we performed step tests on 

a library of previously described PHO5 promoter variants (Lam et al. 2008) in a yeast strain 

background engineered for rapid and observable switches in Pho4p activity. We find that 

promoter response delay is strongly linked to the cell-cycle phase, with varying binding site 

requirements in different phases. The dominance of the cell cycle in trans leads to surprisingly 

high correlation in response timing between homologous copies of even the slowest, most 

variable architectures. Moreover, accelerated reactivation revealed transcriptional memory 

manifests as a decreased cell cycle-dependence. The prominent role of the cell cycle is an 

unexpected influence on the regulatory capacity of promoter chromatin. 

The presence of chromatin at the promoter provides a tunable activation delay in response to a 

stimulus, but how architecture determines that delay is closely related to transitions through cell-

cycle phases. The prohibitive effect of promoter chromatin is most prominent in the extended G1 

during growth in galactose. Here, the NFS affinity correlated with likelihood of activating during 

G1, but in the absence of a NOS, the HX promoter could not efficiently activate (Table 1). This 

suggests a step-wise model for activation under repressive chromatin conditions in G1 consistent 

with previous work demonstrating the inability of Pho4p to bind the NOS initially at the 

repressed promoter without Pho4p transcriptional activity first recruited to the NFS (Venter et al. 

1994; Svaren et al. 1994; Korber et al. 2006). NFS-bound Pho4p recruits the histone 

acetyltransferase activity of the SAGA complex (Barbaric et al. 2003) to acetylate the -2 

nucleosome possibly destabilizing DNA-histone contacts and providing NOS access even 

without remodeling (Adkins et al. 2004). From there, nucleosome loss spreads from the NDR 

until activation (Jessen et al. 2006). Under this model, aggregate promoter binding site affinity 

and dispersed Pho4p binding provide an advantage in efficiently driving nucleosome eviction. 

However, activation during the permissive period in S/G2 occurs through a faster pathway 

unavailable in G1. Through some event in trans during S/G2, the NOS is no longer necessary for 

rapid activation, and Pho4p-NFS binding can efficiently drive nucleosome remodeling, which is 
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required to recruit the general transcription machinery (Adkins et al. 2007). We argue that 

although the promoter chromatin is not completely accessible in S/G2, the remodeling process is 

expedited by a looser nucleosome structure. This is evidenced by the accelerated S/G2/M 

response for the XH variant without a NFS, which can only be activated by Pho4p competitively 

binding the hidden NOS to drive remodeling. While our strain may be overexpressing Pho4p 

relative to the endogenous TF under no stress, the nuclear Pho4p concentration remains constant 

across the cell cycle (Figure 4.5A). Therefore, the strong probability of activating once S/G2 is 

reached can only be explained by a Pho4p-independent increase in the NOS accessibility. Our 

observation of an S/G2 permissive period for faster activation likely reflects alternating periods 

of promoter chromatin accessibility throughout the cell cycle. One possible PHO5-specific cause 

of cell cycle-dependent chromatin disruption is Mcm1p binding between the -1 and -2 

nucleosomes. Though it is has been associated with mitotic induction of PHO5, its activity is 

shifted earlier in the cell cycle if phosphate storage is eliminated (Neef and Kladde 2003; 

Pondugula et al. 2009) as in our switchable transactivator strain. However, our observation of 

accelerated activation post-budding even at synthetic tetO promoters (Figure 4.23) argues in 

favor of a global effect of the cell cycle on transcription activation, which relegates Mcm1p 

binding to a supporting role in PHO5 activation. The relative lengths of the cell-cycle phases 

then determine the relevance of architecture to the activation delay. In the case of exponential 

growth in glucose, G1 is much shorter than S/G2/M, which leads to frequent permissive periods. 

Thus, the population average follows the NFS-dependence of S/G2 permissive period activation. 

Slow growth through a long G1 phase decreases the frequency of permissive periods, and creates 

more reliance on the overall promoter architecture. 

As suggested by the onset of the permissive period in S-phase, the increase in chromatin 

accessibility could be caused by DNA replication. Nucleosomes are quickly redeposited after 

replication fork passage, making opportunistic Pho4p binding on a bare promoter unlikely. 

However, the nucleosomes from the template DNA are decomposed and the constituent histones 

are distributed between the two copies in combination with histones in trans (Annunziato 2012; 

Alabert and Groth 2012). Reforming nucleosomes with cytosolic histones may reduce Set1-

generated H3K4 methylation at the promoter which recruits the histone deacetylase (HDAC) 

activity of the Rpd3L complex (Wang et al. 2011) thereby disrupting the balance of NuA4 HAT 

and Rpd3L HDAC activities which poise the PHO5 promoter (Nourani et al. 2004; Wang et al. 
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2011). Indeed, loss of Rdp3L activity at the PHO5 promoter was recently shown to increase 

nucleosome turnover, basal transcription, and activation kinetics (Wang et al. 2011). While DNA 

replication is not required for PHO5 promoter activation (Schmid et al. 1992), our results 

indicate it may serve to accelerate successful Pho4p-driven remodeling. DNA replication could 

also loosen chromatin structure through a non-promoter-specific pathway as we also observed a 

similar S/G2 permissive period in activation for synthetic tetO-based promoters (Figure 4.24). 

The transcriptional memory elicits an accelerated response by making transcription activation 

generally more permissible in G1. Though a previous study found little change in reactivation 

kinetics at the PHO5 promoter (Zhou and Zhou 2011), our method controls for delays in the 

phosphate signaling pathway and measures kinetics at the single-promoter level and at higher 

resolution. There are several possible mechanisms by which epigenetic memory at the promoter 

could lead to greater chromatin accessibility across the cell cycle. It is possible that removal of 

the Pho4p stimulus to deactivate a transcribing PHO5 promoter may lead to a period of greater 

lability while repressive chromatin marks are being reestablished. However, nucleosomes are 

rapidly redeposited from a separate histone source (Schermer et al. 2005) making preservation of 

accessibility-enhancing histone modifications unlikely, and Set1-dependent repression is reset in 

less than one hour (Zhou and Zhou 2011). Attractive, histone modification-independent 

alternatives include maintained localization at the nuclear periphery as observed at the promoters 

of INO1 and GAL1 over several generations (Brickner et al. 2007). Another possibility is 

prolonged, inherited activity of the SWI/SNF chromatin remodeler perpetuating weaker 

nucleosome positioning as at the GAL1 promoter (Kundu et al. 2007) since SWI/SNF is also 

recruited to induce the PHO5 promoter (Dhasarathy and Kladde 2005). Neither of these 

pathways would depend directly on the affinity of the NFS or NOS but instead require only that 

the complement of required cofactors have been successfully recruited. Whereas the reactivated 

LH promoter is completely cell-cycle independent, the remaining discrepancy between G1 and 

S/G2/M activation for HX demonstrates the memory mechanism must somehow account for 

promoter architecture. We therefore favor a model which includes a long-lived labile chromatin 

state at the promoter. 

In the context of the complete phosphate signaling pathway, the interplay between promoter cell-

cycle- and architecture-dependence may accentuate the delay for slower variants. Nutrient 
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depletion tends to arrest yeast cells in G1 (Figure 4.12 and Figure 3.5) and therefore extends the 

prohibitive period. This may provide additional time for the conservative response genes, which 

have high affinity NFS, to alleviate the stress by mobilizing intracellular stores (PHO8, PHM2, 

PHM4) or increasing the phosphate affinity of cell-surface transporters (PHO84) before resorting 

to secretion of valuable materials to scavenge phosphate from the extracellular environment 

(PHO5) (Lam et al. 2008; Springer et al. 2003). The cell cycle thus adds complexity to a 

coordinated stress response. Additionally, transcriptional memory at promoters would enable a 

rapid switch to the radical emergency response expression program in the face of repeated stress. 

Since regulable promoters in yeast typically contain a nucleosome-free region enriched for 

transcription factor binding sites (Tirosh and Barkai 2008) and this canonical nucleosome pattern 

is preserved in metazoans (Barski et al. 2007; Tirosh and Barkai 2008), an activation time-scale 

separation strategy linked to the cell-cycle may be a general scheme to selectively activate 

transcription at subsets of promoters in stress-response networks. 
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CHAPTER 5. FUTURE DIRECTIONS 

The single-cell real-time analysis techniques developed in this thesis have led to a new view of 

the cell cycle as a general regulator of transcription activation, rather than being restricted to 

influencing classically identified cell cycle-regulated genes. Yet a full picture is by no means 

complete, and many questions remain regarding the universality, mechanism, and phenotypic 

impact of this phenomenon. Given the dominance of the cell cycle in transcriptional variability, 

how does this change predictions of stochastic models of gene regulatory networks? What is the 

molecular mechanism through which the cell cycle exerts its influence? Given the timing of the 

permissive period onset in S-phase, does DNA replication directly enhance transcription 

activation? What are the required factors that mediate the permissive period? The same factors 

likely also play a role in the S/G2 permissive period observed during the kinetic stress response 

at PHO5 promoters. However, promoter variants do not equally depend on or utilize the 

permissive period to activate transcription. This begs the question, what are the molecular 

activation pathways available to some PHO5 promoter architectures but not others, and how do 

they depend on the cell cycle? Promoter reactivation may take place through pathways newly 

accessible by prior activation. What is the memory mechanism? How general is it, or is it 

entirely gene-specific? These results would also come to bear on synthetic biology applications. 

In addition to providing foundational design rules for eukaryotic promoters with desired kinetics, 

this unappreciated role of the cell cycle should play an important role in modeling and 

implementing robust networks. In the remaining sections, we suggest potential research 

strategies to address the above questions. 

5.1 Towards improved stochastic gene expression models 

We used real-time inferences of transcription rate in single yeast cells to investigate the effect of 

the cell cycle on instantaneous expression. By comparing the transcription rate to cell cycle 

progression under steady growth conditions in Chapter 3, we were able to show that the cell 

cycle is a surprisingly dominant source of variability in transcription. Extrinsic factors are known 

to play a significant role in expression variation both between cells and within the same cell over 
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time (Elowitz et al. 2002; Raser and O’Shea 2004; Volfson et al. 2006; Pedraza and van 

Oudenaarden 2005; Colman-Lerner et al. 2005), but the restriction of transcription to the period 

post-budding highlights the cell cycle as a driving force in noisy gene expression. The 

combination of no expression in G1 and the S-phase permissive period leads to a large (>> 2) 

fold-change in transcription when expression pulses do occur, which contributes significantly to 

the variability across an asynchronously dividing population as well as correlates expression 

between reporters in single cells. Thus, this finding calls into question the inference of steady-

state dynamics using the standard stochastic model of gene expression (To and Maheshri 2010; 

Raj et al. 2006; Mao et al. 2010; Munsky et al. 2012; Tan and van Oudenaarden 2010), which 

attributes all population variability to the intrinsic stochasticity of transcription activation at a 

promoter. 

Explicitly including the effects of the cell cycle on transcription rate will lead to more accurate 

stochastic models of gene expression. Future work should investigate under what circumstances 

predictions are altered by inclusion of cell cycle-dependent effects. At the very least, gene 

dosage creates a baseline 2-fold change in the observed transcription rate at an active reporter 

after replication in any dividing system. Moreover, in systems where progression through the cell 

cycle may influence the actual activation probability of a reporter as we observed at low levels 

of expression from the noisy 7xtetO synthetic promoter (Figure 3.9), subsets of the population in 

different cell-cycle phases follow entirely different expression dynamics. Indeed, for the single-

mRNA measurements of noisy and constitutive expression in Chapter 3 (Figure 3.10), a simple 

model where transcription switched between low and high rates in G1 and S/G2/M, respectively, 

could reproduce the main features of observed mRNA distributions across the population  (Zopf 

et al.). This model could also explain the shift of the mRNA distribution through the cell cycle 

(Figure 3.10) whereas the standard model fails to capture the periodic generation of the long tail. 

Thus, considering the cell cycle is crucial to meaningful interpretation of noisy gene expression 

in dividing cells. This is not to say all transcriptional bursts are cell cycle-linked nor that there is 

no intrinsic stochasticity at the promoter; clear bursts of expression appear in quiescent cells 

(Suter et al. 2011) and not every S-phase we observed lead to a transcription pulse (Figure 3.7). 

However, models featuring cell-cycle phase-specific expression regimes would account for a 

large extrinsic source of variability that is mostly ignored at present. Theoretical investigations 

should lead the way in predicting the effect on regulatory networks. In particular, we anticipate 
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the effect of the cell cycle to be important in network topologies where noisy promoters 

experience periods of low expression. One example is a positive feedback loop, which has been 

associated with bimodal and bistable expression in populations (To and Maheshri 2010).  

Restriction of transcription to S/G2 should alter the stability of the low expression state. 

Adaptation of current experimental techniques will provide support for or counterevidence 

against theoretical predictions. In this thesis we used bud morphology to assign cells to the G1 or 

S/G2/M phases of the cell cycle, but more accurate phase assignments are possible. More 

accurate phase assignments could be coupled to FISH through co-observing nuclear localization 

of a Whi5p-fluorescent protein fusion, which delocalizes to the cytoplasm between the START 

checkpoint in G1 until just before mitosis, and by marking the bud-neck with a Cdc10p-

fluorescent protein fusion as in (Charvin et al. 2008). Cell-cycle phase in other organisms could 

be similar monitored with phase-specific fluorescent reporter fusions. Likewise, incorporating 

cell-cycle phase data into other real-time methods of observing transcription (Taniguchi et al. 

2010; Golding et al. 2005; Maiuri et al. 2011; Chubb et al. 2006; Muramoto et al. 2012; Larson 

et al. 2011; Choi et al. 2008; Suter et al. 2011) will facilitate more mechanistically relevant 

models. These efforts would be invaluable to determining the contribution of the S-phase 

permissive period to transcription variability in various systems. 

5.2 Investigating the permissive transcription period in S/G2 

Our working hypothesis is that the process of DNA replication leads to the observed permissive 

period for activation during early S/G2. Passage of the replication fork leads to expulsion and 

reassembly of nucleosomes along the DNA (Alabert and Groth 2012). This may provide a 

window of opportunity for transactivator access which coupled with some level of transcriptional 

feedback would maintain an active transcriptional state throughout S/G2/M. To test the 

importance of replication we could observe the transcription rate of a non-replicating reporter. 

To achieve such a reporter, a 7xtetO synthetic promoter-YFP gene fusion could be expressed 

from a centromeric plasmid in which the replication origin is flanked by parallel loxP sequences. 

Expression of an inducible CRE recombinase during microfluidic culture would then recombine 

the loxP sequences (Sternberg and Hamilton 1981), looping out the origin, to generate a non-

replicating reporter plasmid that is stable over multiple generations. The reporter’s tet-
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transactivator (tTA)-driven transcription can then be observed in real-time in the noisy 

expression regime. Cells in which the plasmid maintains the capacity to replicate can be 

discarded during analysis in silico if expression is observed in both lineages following 

recombinase expression. If no transcriptional bursts occur, or if they are infrequent and 

uncorrelated to cycle phase, replication directly generates the permissive period. If S-phase is 

still permissive for transcription activation even in the absence of replication, the increase in 

activation probability is due instead to an S/G2 phase-specific trans-factor or -event. 

Whether or not replication directly causes the increased activation probability, the above 

experiment would not pinpoint the factors involved. Global changes to chromatin during S-phase 

are a possible trans-event contributing to the permissive period even in the absence of 

replication. As a model system for chromatin study, many chromatin-modifying or –remodeling 

complexes and histone chaperones in yeast are conserved or have homologues in metazoans. 

Therefore, factors found to be important to a general S/G2 permissive period in yeast may have a 

role in the replication-linked window of opportunity discussed in section 1.3, which is crucial to 

biologically-relevant processes such as development and tumorigenesis. Identified factors could 

offer potential drug targets to slow cancer progression or prevent metastases. 

We next propose a strategy to identify proteins and complexes required to generate the S-phase 

permissive period. First, candidate proteins likely to have a role will be selected. Promising 

targets include those associated with the post-replication window of chromatin maturation. The 

chaperones Asf1 (Groth et al. 2007), CAF-1 (Kaufman 1996), and Rtt106 (Fazly et al. 2012) are 

responsible for deposition of H3/H4 tetramers after fork passage; deletion mutants targeting 

these may slow chromatin maturation and extend the permissive S/G2 window. The process of 

H2A/B deposition after replication is less clear, but may involve Nap1, a chaperone of H2A/B 

histones (Ito et al. 1996), which may have a similar effect upon deletion. Additionally, post-

translational modifications of histones associated with the chromatin maturation process can be 

targeted by deleting the histone acetyltransferase Rtt109 (H3K56ac, (Recht et al. 2006; Williams 

et al. 2008)), or by using histone mutants (H4K5R, H4K12R (Megee et al. 1990)). 

 Next, in a strain with constitutive expression of tTA, a single candidate protein will be deleted to 

create a library of deletion mutants. Then each mutant will be “color-coded”. A set of plasmids 
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where each bears a combination of 1, 2, or 3 fluorescent reporters (RFP, YFP, and CFP) can be 

transformed into the deletion mutant strains to provide 7 unique color-profiles (7 combinations 

of 1 or more colors). On each of these plasmids, one fluorescent reporter will be driven by the 

7xtetO promoter to allow observation of noisy transcription pulses while any remaining reporters 

will be driven by constitutive promoters. This creates 7 sub-libraries in the deletion mutant 

library. We can then co-culture a strain from each sub-library in the same microfluidic chamber 

to observe expression from the 7xtetO reporter in real-time and use the color code to distinguish 

between deletions. This strategy would allow rapid time-lapse screening of the role of 84 

candidate proteins with only 12 microfluidic chambers (3 experiment-days with 4 channels per 

microfluidic plate). This strategy could be extended to study potentially varying roles of factors 

in noisy expression from subtelomeric and heterochromatic regions as well, both of which are 

strongly repressed by chromatin. Combining the library screen with the test of replication-

dependence outlined above, a mechanistic understanding of the S-phase permissive period for 

noisy gene expression in yeast, and possibly higher eukaryotes, will be realized soon. 

5.3 Promoter architecture-dependent activation kinetics: from mechanism to 

design 

We also employed a novel transactivator switch to probe the kinetics of transcription activation 

as a function of promoter architecture. While activation kinetics are certainly influenced by 

promoter architecture, cell-cycle progression analysis in Chapter 4 again revealed a strong 

dependence on an S/G2 permissive period to achieve active transcription in response to a step 

change in transactivator. By eliminating delays in upstream signaling, we expected to abate the 

extrinsic processes which dominate PHO5 expression (Raser and O’Shea 2004) and the mitotic 

activation of PHO5 caused by phase-specific fluctuations in intracellular phosphate levels (Neef 

and Kladde 2003; Pondugula et al. 2009). Thus, we anticipated variability in nucleosome 

remodeling at the promoter would dictate variability in the activation delay. Instead, the time of 

transcription factor localization to the nucleus relative to the onset of S/G2 dominated the delay 

due to slow kinetics in G1. The importance of this cell-cycle effect, though, is tuned to different 

degrees based on promoter architecture. While correlated by the cell cycle in trans, the response 

times from two homologous promoters in a single cell varied dependent on architecture. Taken 

together, these results point to an architecture-dependent ability to activate through multiple 
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pathways (Barbaric et al. 2007) which apparently have varying degrees of dependence on the cell 

cycle. 

An important question to answer next is what are the molecular pathways important for efficient 

activation from the different promoter architectures? It has been shown that architecture and 

transactivator occupancy can determine differential cofactor requirements (Hertel et al. 2005; 

Dhasarathy and Kladde 2005), but how these relate to the cell cycle is also an open question. 

DNA replication could again play a direct role in enhancing promoter accessibility. With some 

additional engineering, the switchable transactivator strain background could be adapted for the 

non-replicating reporter strategy described above to test this hypothesis. Another likely 

contributor is binding of the late cell-cycle factor Mcm1p. Though Mcm1p binds the PHO5 

promoter and facilitates mitotic activation in coordination with Pho4p following cell cycle-linked 

depletion of intracellular phosphate (Neef and Kladde 2003; Pondugula et al. 2009), our 

engineered strains lack intracellular phosphate stores to buffer fluctuations. The cells then may 

experience phosphate shortages more quickly and shift mitotic activation earlier in the cell cycle 

(Neef and Kladde 2003). The possibility that Mcm1p binding creates a more accessible 

chromatin state for Pho4p-driven activation can be easily tested by eliminating Mcm1p binding 

sites from the PHO5 promoter and looking for a decrease in S/G2 permissiveness for activation. 

Though PHO5 activation may have a direct link to the cell cycle mediated by Mcm1p, the fact 

that we observe the S/G2 permissive period even when activating a synthetic promoter in 

Chapter 4 suggests additional, more general pathways are also involved. 

While it may be difficult to adapt the deletion mutant library strategy to our highly engineered 

switchable transactivator strain, proteins and complexes identified as important to the S/G2 

permissive period in noisy expression may have a role in the cell cycle-dependence of PHO5 

activation as well. Targeted experiments using the switchable transactivator would elucidate the 

kinetic role of these proteins and complexes, in addition to those known to contribute to efficient 

activation, promoter poising, and reassembly such as SAGA (Barbaric et al. 2001, 2003; Reinke 

and Hörz 2003; Gregory et al. 1998; Barbaric et al. 2007; Dhasarathy and Kladde 2005), NuA4 

(Nourani et al. 2004), COMPASS (Wang et al. 2011; Carvin and Kladde 2004), Rpd3L (Wang et 

al. 2011), SWI/SNF (Neely et al. 2002; Dhasarathy and Kladde 2005; Barbaric et al. 2001), 

INO80 (Steger et al. 2003), Asf1 (Adkins et al. 2004; Korber et al. 2006), and Spt6 (Adkins and 
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Tyler 2006). Though many are not required for viability, the dynamic balance between these 

factors can be important to determining the initial promoter state (Gregory et al. 1998; Wang et 

al. 2011; Nourani et al. 2004) so deletion mutants would not provide a view of activation 

pathways at the endogenous PHO5 promoter. Instead, we propose replacing catalytic and 

targeting subunits of the complexes with temperature sensitive alleles (either available through a 

large collection at the Boone Laboratory, University of Toronto or developed using one of 

several techniques (Tan et al. 2009b; Ben-Aroya et al. 2008)). During microfluidic culture, an 

objective heater can be used to shift the chamber to the non-permissive temperature prior to a 

step change in the transactivator. This would allow a test of the promoter response kinetics in the 

absence of specific factor activities to determine which pathways are utilized most readily by a 

particular promoter architecture. This technique can be extended to study the molecular 

mechanism of memory as well by shifting the temperature before, during, and after the first 

active transcription period in a reactivation test. By detailing how promoter architectures require 

or access different activation pathways, a more fundamental understanding of eukaryotic gene 

regulation will be gained. 

Towards better design of eukaryotic networks 

The grand goal of synthetic biology to build circuits to predictably perform complicated tasks 

using a toolbox of individual genetic components has had some successes, but has fallen far short 

of expectations to date. Often the components do not function or interact as expected (Kelly et al. 

2009). Robust networks have also been difficult to achieve partially due to unexpected extrinsic 

effects. Unanticipated interactions with the host cell physiology can affect expression of genes in 

the engineered network (Tan et al. 2009a), and growth rate and the cell cycle may also play a 

role in undermining predicted behaviors.  

As an example, one particular function of synthetic gene circuits that has elicited great interest is 

the design of a clock or oscillator (reviewed in (Purcell et al. 2010)). Though many published 

oscillator networks appear decoupled from the cell cycle, robust function remains an issue. In the 

case of the classic repressilator, transition to stationary phase halted the oscillatory nature of this 

gene network (Elowitz and Leibler 2000). The strong cell cycle-dependence we observed for 

activation of regulated genes in yeast may contribute to difficulty implementing synthetic 
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oscillators in eukaryotes. Not only does the presence of chromatin at eukaryotic promoters 

complicate gene regulation compared to that in prokaryotes, but large, periodic changes in its 

degree of repression would add an unexpected forcing function, which must be accounted for but 

could also be exploited. 

Our studies at the PHO5 promoter provide the foundation for a set of rules to design eukaryotic 

promoters with desired kinetic properties, and the switchable transactivator system provides a 

means to test novel promoters. We found that a nucleosome-free transactivator binding site 

allowed efficient activation during the S/G2 permissive period while aggregate promoter affinity 

was important to the ability to activate in G1. These principles were established for relatively 

conservative promoter changes to isolate the effect of each binding site, but other promoter 

features could provide additional regulatory behaviors. Longer and less variable delays could be 

achieved through stronger nucleosomes positioning, more nucleosomes between the nucleosome-

depleted region and the TATA box, and additional occluded binding sites. The degree of cell 

cycle-dependence is also likely to be tunable and probably dominated by nucleosome positioning 

strength. After the investigation outlined above, architecture-dependent activation pathways can 

also be selected through promoter design. Different promoter architectures can be created 

through DNA sequence using a nucleosome positioning algorithm such as (Kaplan et al. 2009), 

or selected from other PHO or endogenous yeast promoters. The kinetics of each can then be 

probed using an appropriate chimerical, switchable transactivator. Detailed characterization of 

promoter kinetics with regard to the cell cycle will then allow more robust circuit construction 

through more accurate network models. While effects of the cell cycle are now being considered 

in modeling synthetic networks in bacteria (Chen et al. 2004; Yoda et al. 2007; Tuttle et al. 

2005), they should prove crucial to successfully predicting network behavior of regulated genes 

in eukaryotes. 
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APPENDIX 

Table A.1 | Yeast strains used in this study 

Strain Relevant Genotype  Parent Strain Reference 

EY131 MATa pho4Δ::TRP1  W303 Gift from E. O’Shea 

EY2150 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho84Δ::CFP-kanR 

PHO4::cYFP-HIS3 

 W303 Gift from E. O’Shea 

EY2210 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::PHO4(1-

741bp)-cYFP-HIS3 pho84Δ::CFP-

kanR 

 W303 Gift from E. O’Shea 

EY2436 pho5Δ::CFP-KANMX6   Gift from E. O’Shea 

EY2439 PPHO5-pho5Δ::PmutHL-CFP-KANMX6   Gift from E. O’Shea 

EY2441 PPHO5-pho5Δ::PmutLX-CFP-KANMX6   Gift from E. O’Shea 

EY2442 PPHO5-pho5Δ::PmutHX-CFP-KANMX6   Gift from E. O’Shea 

EY2470 PPHO5-pho5Δ::PmutHH-CFP-KANMX6   Gift from E. O’Shea 

EY2472 PPHO5-pho5Δ::PmutLL-CFP-KANMX6   Gift from E. O’Shea 

EY2474 PPHO5-pho5Δ::PmutHXH-CFP-

KANMX6 

  Gift from E. O’Shea 

EY2478 PPHO5-pho5Δ::PmutHXL-CFP-KANMX6   Gift from E. O’Shea 

Y1 MATa trp1-1 can1-100 leu2-3,112 his 

3-11,5 ura3 GAL+ ADE+ 

 W303 Laboratory 

collection 

Y3 MATa ade2-1 trp1-1 can1-100 leu2-

3,112 his 3-11,5 ura3 GAL+ 

 W303 Laboratory 

collection 
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Strain Relevant Genotype  Parent Strain Reference 

Y6 MATα ade2-1 trp1-1 can1-100 leu2-

3,112 his 3-11,5 ura3 GAL+ 

 W303 Laboratory 

collection 

Y47 MATa leu2::PADH1-CFP-

hisG::URA3::kanR::hisG  

 Y1 Gift from E. O’Shea  

(Raser and O’Shea 

2004)  

Y114 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho84Δ::CFP-kanR 

pho4Δ::TRP1 

 EY2210 

(EY131 PCR 

template) 

This study 

Y152 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::CFP-kanR phm4Δ::PGPD-

PHO81-HIS3MX6 leu2Δ::PTEF1m7-

PHO4-cYFP 

 Y114 (+ B133 

PCR product, 

+ B141) 

Laboratory 

collection 

Y216 MATα ade2-1 ura3::P7xtetO-vYFP-

kanR 

 Y6 Laboratory 

collection (Lee and 

Maheshri 2012) 

Y231 MATa leu2::PPGK1-RFP 

ADE2::PMYO2-tTA ura3::P7xtetO-CFP-

kanR 

 Y3 Laboratory 

collection (Lee and 

Maheshri 2012) 

Y236 MATa/α leu2::PPGK1-RFP 

ADE2::PMYO2-tTA ura3/ura3::P7xtetO-

CFP-kanR/ P7xtetO-vYFP-kanR 

 Y231xY216 This study 

Y320 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::KlURA3 

 Y114 This study 

Y532 MATa doa1::vYFP + pRS316-DOA1  Y1 + B858 This study 

Y784 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 

 Y320 This study 
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Strain Relevant Genotype  Parent Strain Reference 

Y785 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

 Y784 This study 

(“switchable 

transactivator” base 

strain) 

Y789 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

pho5Δ::CFP-KANMX6 

 Y785 + PHO5 

locus PCR 

product from 

EY2436 

This study 

Y790 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutHL-CFP-KANMX6 

 Y785 + PHO5 

locus PCR 

product from 

EY2439 

This study 

Y791 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutLX-CFP-KANMX6 

 Y785 + PHO5 

locus PCR 

product from 

EY2441 

This study 

Y792 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutHX-CFP-KANMX6 

 Y785 + PHO5 

locus PCR 

product from 

EY2442 

This study 

Y793 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutHH-CFP-KANMX6 

 Y785 + PHO5 

locus PCR 

product from 

EY2470 

This study 

Y794 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutLL-CFP-KANMX6 

 Y785 + PHO5 

locus PCR 

product from 

EY2472 

This study 

Y795 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

 Y785 + PHO5 

locus PCR 

product from 

This study 
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Strain Relevant Genotype  Parent Strain Reference 

PPHO5-pho5Δ::PmutXH-CFP-KANMX6 EY2474 

Y796 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutXL-CFP-KANMX6 

 Y785 + PHO5 

locus PCR 

product from 

EY2478 

This study 

Y833 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

pho5Δ:: CFP-KANMX6 

leu2Δ::PTEF1m7-PHO4
SD6-

cYFP-

hisG::URA3::kanR::hisG 

 Y789 + B631 This study 

Y837 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutHL-CFP-KANMX6 

leu2Δ::PTEF1m7-PHO4
SD6

-cYFP-

hisG::URA3::kanR::hisG 

 Y790 + B631 This study 

Y840 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutLX-CFP-KANMX6 

leu2Δ::PTEF1m7-PHO4
SD6

-cYFP-

hisG::URA3::kanR::hisG 

 Y791 + B631 This study 

Y844 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutHX-CFP-KANMX6 

leu2Δ::PTEF1m7-PHO4
SD6

-cYFP-

hisG::URA3::kanR::hisG 

 Y792 + B631 This study 

Y848 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutHH-CFP-KANMX6 

 Y793 + B631 This study 
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Strain Relevant Genotype  Parent Strain Reference 

leu2Δ::PTEF1m7-PHO4
SD6

-cYFP-

hisG::URA3::kanR::hisG 

Y852 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutLL-CFP-KANMX6 

leu2Δ::PTEF1m7-PHO4
SD6

-cYFP-

hisG::URA3::kanR::hisG 

 Y794 + B631 This study 

Y855 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutXH-CFP-KANMX6 

leu2Δ::PTEF1m7-PHO4
SD6

-cYFP-

hisG::URA3::kanR::hisG 

 Y795 + B631 This study 

Y858 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutXL-CFP-KANMX6 

leu2Δ::PTEF1m7-PHO4
SD6

-cYFP-

hisG::URA3::kanR::hisG 

 Y796 + B631 This study 

Y868 MATα ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

 Y785 mating-

type switch 

(using B278) 

This study 

Y869 MATα ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

pho5Δ::vYFP-KANMX6 

 Y868 + YFP-

KANMX6 PCR 

product 

(B182) 

This study 

Y871 MATa/α pho5Δ::CFP /pho5Δ::vYFP 

diploid 

 Y833 x Y869 This study 

Y933 MATα ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

 Y869 + 

EB1425 pop-

in/pop-out as 

This study 
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Strain Relevant Genotype  Parent Strain Reference 

PPHO5-pho5Δ::PmutLX-vYFP-

KANMX6 

in (Lam et al. 

2008) 

Y936 MATα ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutLL-vYFP-KANMX6 

 B89 pJRL2 

Y937 MATa/α PPHO5-pho5Δ::PmutLX-CFP / 

PPHO5-pho5Δ::PmutLX-vYFP diploid 

 Y840 x Y933 This study 

Y940 MATa/α PPHO5-pho5Δ::PmutLL-CFP / 

PPHO5-pho5Δ::PmutLL-vYFP diploid 

 Y852 x Y936 This study 

Y942 MATα ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

PPHO5-pho5Δ::PmutXH-vYFP-

KANMX6 

 B89 pJRL2 

Y944 MATa/α PPHO5-pho5Δ::PmutXH-CFP / 

PPHO5-pho5Δ::PmutXH-vYFP diploid 

 Y855 x Y942 This study 

Y947 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

leu2Δ::PTEF1m7-PHO4ΔP2-tetR-cYFP 

 Y785 (+B798) This study 

Y960 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4Δ::TRP1 

pho84Δ::klura3 phm4Δ::HIS3MX6 

leu2Δ::PTEF1m7-PHO4ΔP2-tetR-cYFP 

URA3::P1xtetO-CFP 

 Y947 (+B579) This study 

Y962 MATa ADE+ NHP2::RFP-NAT 

spl2Δ::LEU2 pho4::TRP1 

pho84Δ::klura3 phm4::HIS3MX6 

leu2Δ::PTEF1m7-PHO4ΔP2-tetR-cYFP 

URA3::P7xtetO-CFP 

 Y947 (+B720) This study 
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Table A.2 | Plasmids used in strain construction 

Plasmid Base vector Relevant gene Construction information 

B48 Yeast centromeric P1xtetO-CFP Laboratory stock 

B89 pJRL2 PPGK1-vYFP Laboratory stock, leu2 integrating 

vector (Raser and O’Shea 2004) 

B108 pBluescript KlURA3 Laboratory stock, contains URA3 

gene from K. lactis; PCR template 

for pho84Δ in Y320 

B129 pRS303 HIS3MX6 HIS3MX6 from pFA6a-HIS3MX6 

(Longtine et al. 1998)(BglII/EcoRI 

digested) ligated into pRS303 

(BamHI/EcoRI); PCR template for 

phm4Δ in Y785 

B133 pRS303 PGPD-PHO84-

HIS3MX6 

Into pRS303, cloned PGPD-PHO84 

(SalI/PvuII into SalI/EcoRV) and 

HIS3MX6 (BglII/EcoRI into 

BamHI/EcoRI) 

B141 pJRL2 PTEF1m7-PHO4 -

cYFP 

PCRed PHO4-Citrine from 

EY2150 genome and clone PTEF1m7 

(SalI/EcoRI) – PHO4 – Citrine 

(EcoRI/NotI) into SalI/NotI 

digested pJRL2 (B89). PTEF1m7  

from (Nevoigt et al. 2006). 

B163 pRS303 P1xtetO-vYFP Laboratory stock 

B165 pRS303 P7xtetO-vYFP Laboratory stock 

B198 pRS303 P7xtetO-tTA Laboratory stock 

B228 pCM189 PADH1-tTA Laboratory stock 

B229 pRS303 P1xtetO-tdTomato  Laboratory stock 

B278 pRS316 PGAL1-HO Laboratory stock  

B464 pBluescript klura3 Digested B108 with EcoRV and 

self-ligated to remove portion of 

ORF and make KlURA3 non-
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Plasmid Base vector Relevant gene Construction information 

functional; PCR template for klura3 

Y784 

B579 pRS306 P1xtetO-CFP XhoI/NotI digested P1xtetO-CFP 

from B48 ligated in front of TACT1 

in pRS306 (XhoI/NotI) 

B720 pRS306 P7xtetO-CFP XhoI/BamHI digested P7xtetO-CFP 

from B198 ligated in front of TACT1 

in pRS306 (XhoI/NotI) 

B798 pJRL2 PTEF1m7-

PHO4ΔP2-tetR-

cYFP 

PTEF1m7 (SalI/EcoRI) – PHO4(1-

600bp) (EcoRI/SpeI) – linker – tetR 

(SpeI/PacI) – linker – Citrine 

(PacI/NotI) ligated into SalI/NotI 

digested pJRL2 (B89) 

B798 pJRL2 

hisG::URA3::kanR::hisG 

PTEF1m7-

PHO4
SD6

-cYFP 

PHO4 gene PCRed from the MluI-

restriction site 58bp 5’ to S223 

(using a primer carrying the SD 

mutation TCTGAT) to the PacI-

restrcition site between PHO4 and 

cYFP, and cloned into B141 

(MluI/PacI) 

EB1424 pRS306 PmutXH-PHO5 Gift from F. Lam (Lam et al. 2008) 

EB1425 pRS306 PmutLX-PHO5 Gift from F. Lam (Lam et al. 2008) 

EB1734 pRS306 PmutLL-PHO5 Gift from F. Lam (Lam et al. 2008) 
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