
Reconstruction Algorithms for MRI

by

Berkin Bilgic

S.M. Massachusetts Institute of Technology (2010)

Submitted to the Department of Electrical Engineering & Computer

Science in Partial Fulfillment of the Requirements for the Degree of Doctor

of Philosophy at the Massachusetts Institute of Technology

February 2013

© 2013 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:

Certified by:

Department of Electrical Engineering and Computer Science

January 11, 2013

Elfar Adalsteinsson
Associate Professor of Electrical Engineering and Computer Science

Associate Professor of Health Sciences and Technology
Thesis Supervisor

Accepted by:

Leslie A. Kolodziejski
Chair, Department Committee on Graduate Students





Reconstruction Algorithms for MRI
by

Berkin Bilgic

Submitted to the Department of Electrical Engineering & Computer

Science on January 11, 2013, in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy

Abstract

This dissertation presents image reconstruction algorithms for Magnetic Resonance Imaging

(MRI) that aims to increase the imaging efficiency. Algorithms that reduce imaging time without

sacrificing the image quality and mitigate image artifacts are proposed. The goal of increasing the

MR efficiency is investigated across multiple imaging techniques: structural imaging with

multiple contrasts preparations, Diffusion Spectrum Imaging (DSI), Chemical Shift Imaging

(CSI), and Quantitative Susceptibility Mapping (QSM). The main theme connecting the proposed

methods is the utilization of prior knowledge on the reconstructed signal. This prior often

presents itself in the form of sparsity with respect to either a prespecified or learned signal

transformation.
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List of Figures

Fig. 2.1. Joint image reconstruction begins with modifying the undersampled k-space data

to obtain undersampled k-space representations of vertical and horizontal image gradients.

After finding the hyperparameters via Maximum Likelihood (ML) estimation, the means

of the posterior distributions are assigned to be the gradient estimates. Finally, images are

integrated from gradient estimates via solving a Least Squares (LS) problem.

Fig 2.2 Reconstruction results with the extended Shepp-Logan phantoms after

undersampling with acceleration R = 14.8, at 128x 128 resolution. (a) Phantoms at Nyquist

rate sampling. (b) Undersampling patterns in k-space corresponding to each image. (c) CS

reconstructions with Lustig et al.'s algorithm yielded 15.9 % RMSE (root-mean-square

error). (d) Absolute error plots for Lustig et al.'s method. (e) Reconstructions obtained

with the M-FOCUSS joint reconstruction algorithm have 8.8 % RMSE. (f) Absolute

difference between the Nyquist sampled phantoms and the M-FOCUSS reconstruction

results. (g) Joint Bayesian CS reconstruction resulted in 0 % RMSE. (h) Absolute error

plots for the Bayesian CS reconstructions.

Fig. 2.3. Reconstruction results with SR124 atlas after undersampling along the phase

encoding direction with R = 4, at 256x256 resolution. (a) Atlas images at Nyquist rate

sampling. (b) Undersampling patterns in k-space corresponding to each image. (c)

Applying the gradient descent algorithm proposed by Lustig et al. resulted in

reconstructions with 9.4 % RMSE. (d) Absolute difference between the gradient descent

reconstructions and the Nyquist rate images. (e) M-FOCUSS reconstructions have 3.2 %

RMSE. (f) Absolute error plots for the M-FOCUSS algorithm. (g) Joint Bayesian

reconstruction yielded images with 2.3 % RMSE. (h) Error plots for the joint Bayesian

reconstructions.

Fig. 2.4. Reconstruction results with TSE after undersampling along the phase encoding

direction with R = 2.5, at 256x256 resolution. (a) TSE scans at Nyquist rate sampling. (b)

Undersampling patterns used in this experiment. (c) Reconstructions obtained with Lustig

et al.'s gradient descent algorithm have 9.4 % RMSE. (d) Plots of absolute error for the

gradient descent reconstructions. (e) M-FOCUSS joint reconstruction yielded images with

5.1 % RMSE. (f) Error plots for the M-FOCUSS results. (g) Images obtained with the

joint Bayesian CS reconstruction returned 3.6 % RMSE. (h) Error plots for the Bayesian

CS reconstructions.

Fig. 2.5. To investigate the impact of spatial misalignments on joint reconstruction with

Bayesian CS and M-FOCUSS, one of the TSE images was shifted relative to the other by

0 to 2 pixels with step sizes of V2 pixels using power law and phase encoding

undersampling patterns. For speed, low resolution images with size 128x128 were used.

For joint Bayesian CS, reconstruction error increased from 2.1 % to 2.8 % at 2 pixels of

vertical shift for power law sampling, and from 5.2 % to 6.4 % at 2 pixels of horizontal
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shift for phase encoding sampling; for the M-FOCUSS method error increased from 4.7 %
to 4.9 % for power law sampling, and from 6.2 % to 6.6 % for phase encoding sampling.

Fig. 2.6. Reconstruction results with the complex-valued Shepp-Logan phantoms after
undersampling with acceleration R = 3.5, at 128x128 resolution. (a) Magnitudes of
phantoms at Nyquist rate sampling. (b) Symmetric undersampling patterns in k-space
corresponding to each image. (c) Real and imaginary parts of the first phantom (on the left
in (a)). (d) Real and imaginary parts of the second phantom (on the right in (a)). (e) CS
reconstructions with Lustig et al.'s algorithm yielded 13.1 % RMSE. (f) Absolute error
plots for Lustig et al.'s method. (g) Reconstructions obtained with the M-FOCUSS joint
reconstruction algorithm have 5.4 % RMSE. (h) Absolute difference between the Nyquist
sampled phantoms and the M-FOCUSS reconstruction results. (i) Joint Bayesian CS
reconstruction resulted in 2.4 % RMSE. (h) Absolute error plots for the Bayesian CS
reconstructions.

Fig. 2.7. Reconstruction results for complex-valued TSE images after undersampling

along the phase encoding direction with R = 2, at 128x 128 resolution. (a) Magnitudes of
the TSE scans at Nyquist rate sampling. (b) Symmetric undersampling patterns used in
this experiment. (c) Real and imaginary parts of the early echo image (on the left in (a)).
(d) Real and imaginary parts of the late echo image (on the right in (a)). (e)
Reconstructions obtained with Lustig et al.'s gradient descent algorithm have 8.8 %
RMSE. (d) Plots of absolute error for the gradient descent reconstructions. (e) M-
FOCUSS joint reconstruction yielded images with 9.7 % RMSE. (f) Error plots for the M-
FOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction returned
6.1 % RMSE. (h) Error plots for the Bayesian CS reconstructions.

Fig. 2.8. (a) Image gradients for the multi-contrast TSE scans demonstrate the similarity
under the gradient transform. (b) To quantify this similarity, we computed the cumulative
energy of the image gradient of early TSE scan (TSE1 in TSE1 order). Then we sorted the
late TSE scan (TSE2) in descending order, and computed the cumulative energy in TSE1
corresponding to the sorted indices in TSE2 which gave the curve TSE1 in TSE2 order.
The similarity of the curves indicates similar sparsity supports across images.

Fig. 2.9. (a) Lustig et al.'s algorithm yielded 9.3% error (b) absolute error for (c) Bayesian

CS with prior returned 5.8% error (d) error for Bayesian CS (e) fully-sampled prior (f)
R=4 sampling pattern.

Fig. 2.10. (al-a2) Lustig et al.'s algorithm yielded 9.5% error (bl-b2) absolute error plots

for Lustig et al. (cl-c2). Joint Bayesian CS with prior returned 4.3% error (dl-d2) error

plots for Bayesian CS (e) fully-sampled PD weighted prior image (f) R=4 random

undersampling pattern in 1 D.

Fig. 3.1. L-curve for Cl-regularized QSM results for a young subject. X-axis: data

consistency term 1 -F- 1 DF X in regularized reconstruction for varying values of the
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smoothing parameter . Y-axis: regularization term JG Xll. Setting A = 5 10~5 yielded an

under-regularized susceptibility map with ringing artifacts (a), whereas using A = 10-3

resulted an over-regularized reconstruction (c). For = 2- 104, the operating point with the

largest curvature on the L-curve was obtained (b). This setting was used for the reported

t 1-regularized results.

Fig. 3.2. L-curve for t 2-regularized QSM results for a young subject. X-axis: data

consistency term 6 -F-' DF X in regularized reconstruction for varying values of the

smoothing parameter p. Y-axis: regularization term IG X112 . Setting P = 3 -10-3 yielded an

under-regularized susceptibility map with ringing artifacts (a), whereas using p = 7 10-2

resulted an over-regularized reconstruction (c). For/ = 1.5- 102, the operating point with

the largest curvature on the L-curve was obtained (b). This setting was used for the

reported t 2-regularized results.

Fig. 3.3. Young (left) and elderly (right) group averages for FDRI (a), ti-regularized

QSM (b), and f2-regularized QSM (c). Greater iron concentration yields brighter QSM

and FDRI images. Splenium reference ROIs are indicated with a white box on the axial

QSM slices.

Fig. 3.4. X-axis: Mean ± SD iron concentration (mg/I 00 g fresh weight) determined

postmortem in each ROI (1). Y-axis: Mean ± SD ti-regularized QSM in ppm (left) and

FDRI in s '/Tesla (right) indices in all 23 subjects (black squares); the gray circles

indicate the mean of the young group, and the open circles indicate the mean of the elderly

group.

Fig. 3.5. Correlation between FDRI and ti-regularized QSM results on the regions of

interest. Results indicate strong relationship between the two methods (Rho = 0.976, p

0.0098). Left: all 23 subjects; middle: young group; right: elderly group.

Fig. 3.6. Mean ± S.E.M. of average susceptibility in ppm computed by the two methods

(Ei-regularized QSM, top; E2-regularized QSM, bottom) for each ROI in the young and

elderly groups.

Fig. 3.7 Reconstruction experiment for the piece-wise constant numerical phantom with 3

compartments. (a) Noisy field map from which the susceptibility is estimated. (b) Closed-

form QSM solution. (c) Difference between ground truth and closed-form reconstructions.

Fig. 3.8 In vivo reconstruction at 1.5T. (a) Tissue field map obtained after removing the

background phase. (b) Closed-form QSM solution. (c) Difference between iterative and

closed-form solutions.

Fig. 4.1. The L-curve traced by the data consistency and lipid-basis penalty terms as the

regularization parameter A varies. Summation over lipid frequencies for under-regularized

(a), optimally regularized (b) and over-regularized reconstructions (c) are presented. Panel
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(d) depicts the analytically computed L-curve curvature results for the sample points.

Fig.4. 2. Comparing the different artifact reduction algorithms by taking projections over
the lipid resonance frequencies (in dB scale). Gold standard reconstruction is obtained
using 20 averages of high-resolution data without peripheral k-space undersampling (20

avghigh, Rhigh 1, shown in (a)), while the basic proposed method is obtained using 2
averages of high-resolution data without undersampling (2 avghigh, Rhigh = 1, shown in (b))
and the refined proposed method uses 10-fold undersampled, 2 average high-resolution
data (2 avghigh, Rhigh = 10, shown in (c)). Lipid suppression results obtained by using only
lipid-basis penalty method and only dual-density approach are depicted in panels (d) and
(e), respectively. Applying no lipid suppression (f) results in severely corrupted spectra.

Fig. 4.3. Comparison between NRMSE values of NAA maps relative to the gold standard
reconstruction.

Fig. 4.4. Comparison between NRMSE values of NAA maps computed within the 9x9
cm 2 excitation box relative to the NAA maps obtained with the OVS method. In (a),
reconstruction results obtained using the gold-standard (20 avghigh, Rhigh = 1) method
(blue) and the OVS spectra (black) belonging to the region inside the red box are also
overplotted. In (b), the basic proposed method (blue) and the OVS spectra are compared.
The spectra obtained with the refined method (blue) and the OVS results (black) are
overplotted in (c). Lipid-basis penalty and OVS spectra are compared in (d).

Fig. 4.5. Comparison of spectra inside the region of interest marked with the red box that
were obtained with different lipid suppression methods. In (a), reconstruction results
obtained using lipid-basis penalty method (blue) and the gold-standard reconstruction
(black) are overplotted. In (b), the basic proposed method (blue) and the gold-standard
spectra are presented. The spectra obtained with the refined method (blue) and the gold-
standard results (black) are plotted in (c).

Fig. 4.6. Comparison of spectra inside the region of interest marked with the red box that
were obtained with different lipid suppression methods. Panel (a) overplots reconstruction
results using lipid-basis penalty method (blue) and the gold-standard reconstruction
(black). In (b), the basic proposed method (blue) and the gold-standard spectra are
compared. The spectra obtained with the refined method (blue) and the gold-standard
results (black) are depicted in (c).

Fig. 4.7. Lipid and NAA maps and artifact-free spectra for the Cartesian synthetic
phantom are shown in (a). In (b), spiral sampling trajectory at Nyquist rate and
reconstruction results upon the application of lipid-basis penalty are depicted. Using the
undersampled spiral trajectory in (c), a high-resolution lipid image was estimated using

FOCUSS, from which a combined image was computed due to the dual-density method.
Finally, lipid-basis penalty was applied to this combined image. Panel (d) shows lipid
suppression results when the k-space is sampled only at half of the full resolution and
lipid-basis penalty is applied. For the three reconstruction methods, the example spectra
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(plotted in blue) belong to the region of interest marked with the red box, and are

overplotted with the artifact-free spectra (in black) for comparison.

Fig. 4.8. Demonstration of approximate orthogonality between metabolite spectra obtained

from in vivo OVS scan and lipid spectra from high resolution in vivo acquisition. In (a),
the lipid and metabolite spectra with the highest orthogonality are plotted. In (b), the

components of the metabolite spectrum that are orthogonal and parallel to the lipid

spectrum for the best case in (a) are overplotted. The actual metabolite spectrum (in blue)

is totally occluded by the orthogonal component (in orange). In (c), the lipid and

metabolite spectra that are least orthogonal are depicted. In (d), the orthogonal and parallel

components of the metabolite spectrum are overplotted for the worst case in (c). Panel (e)

depicts the methodology used in computing the orthogonal and parallel metabolite

components.

Fig. 5.1. RMSE at each voxel in slice 40 of subject A upon R = 3 acceleration and

reconstruction with Menzel et al.'s method (a), eli-FOCUSS (b), Dictionary-FOCUSS

trained on subjects A (c), B (d), and C (e). Dictionary-FOCUSS errors in (f), (g) and (h)

are obtained at higher acceleration factor of R = 5 with training on subjects A, B and C,
respectively. Results for the reconstructions at R = 9 are given in (i), (j) and (k).

Fig. 5.2. RMSE at each voxel in slice 25 of subject B upon R = 3 acceleration and

reconstruction with Menzel et al.'s method (a), 4l-FOCUSS (b), Dictionary-FOCUSS

trained on subjects A (c), B (d), and C (e). Dictionary-FOCUSS errors in (f), (g) and (h)

are obtained at higher acceleration factor of R = 5 with training on subjects A, B and C,

respectively. Results for the reconstructions at R = 9 are given in (i), (j) and (k).

Fig. 5.3. Mean and standard deviation of RMSEs computed on various slices of subject A

using l- and Dictionary-FOCUSS trained on subject B. Lower panel depicts RMSE maps

for four selected slices.

Fig. 5.4. Mean and standard deviation of RMSEs computed on various slices of subject B

using 41- and Dictionary-FOCUSS trained on subject A. Lower panel depicts RMSE maps

for four selected slices.

Fig. 5.5. Top panel shows RMSEs in 'missing' q-space directions that are estimated with

Wavelet+TV, 4l-FOCUSS and Dictionary-FOCUSS with training on subjects A, B and C

at R=3. q-space images at directions [5,0,0] (a) and [0,4,0] (c) are depicted for comparison

of the reconstruction methods. In panels (b) and (d), reconstruction errors of Wavelet+TV,

4l-FOCUSS and dictionary reconstructions relative to the 10 average fully-sampled image

at directions [5,0,0] and [0,4,0] are given.

Fig. 5.6. Panel on top depicts RMSEs of Wavelet+TV, 4l-FOCUSS and Dictionary-

FOCUSS at R = 3 and fully-sampled 1 average data computed in 5 q-space locations

relative to the 10 average data for subject A. Panel on the bottom shows the same

comparison for the slice belonging to subject B.
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Fig. 5.7. Axial view of white-matter pathways labeled from streamline DSI tractography
in fully-sampled data (a) and Dictionary-FOCUSS reconstruction at R = 3 (b). The
following are visible in this view: corpus callosum - forceps minor (FMIN), corpus
callosum - forceps major (FMAJ), anterior thalamic radiations (ATR), cingulum -
cingulate gyrus bundle (CCG), superior longitudinal fasciculus - parietal bundle (SLFP),
and the superior endings of the corticospinal tract (CST). Average FA (c) and volume in
number of voxels (d) for each of the 18 labeled pathways, as obtained from the fully-
sampled (R=1, green) and Dictionary-FOCUSS reconstructed with 3-fold undersampling
(R=3, yellow) datasets belonging to subject A. Intra-hemispheric pathways are indicated
by "L-" (left) or "R-" (right). The pathways are: corpus callosum - forceps major (FMAJ),
corpus callosum - forceps minor (FMIN), anterior thalamic radiation (ATR), cingulum -
angular (infracallosal) bundle (CAB), cingulum - cingulate gyrus (supracallosal) bundle
(CCG), corticospinal tract (CST), inferior longitudinal fasciculus (ILF), superior
longitudinal fasciculus - parietal bundle (SLFP), superior longitudinal fasciculus -
temporal bundle (SLFT), uncinate fasciculus (UNC).
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Chapter 1

Introduction

1.1 Motivation

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality that is capable of

yielding high-resolution and high-contrast images of soft tissues of the body. Unlike Computed

Tomography (CT) or X-ray imaging, MRI does not employ ionizing radiation. It also does not

require the introduction of a radioactive agent as employed in Positron Emission Tomography

(PET). Therefore, MRI is considered to be a safe imaging modality that finds important clinical

use. However, a major drawback of MRI is that it is inherently a slow imaging modality,

requiring the subjects to remain motionless within a tight, closed environment typically for half

an hour or longer, depending on the imaging protocol. This constraint on the imaging time

reduces subject compliance and raises challenges especially in pediatric and patient populations.

With the introduction of parallel imaging and compressed sensing (CS) methods and ultra

high-field systems over the last decade, substantial progress has been made towards improved the

image quality and reduced acquisition time. Parallel imaging relies on the information provided

by multiple receive coils that are sensitive to different parts of the region of interest for

accelerated imaging. Aliasing caused by subsampled acquisitions is disentangled with the help of

multiple coil data to yield high quality images. Parallel imaging has made the transition from

being a technique to becoming a technology, as 2 to 3-fold accelerated acquisitions in the clinical

setting are ubiquitous. Parallel imaging methods can operate either in the image space (2), or in

the Fourier space (k-space) of the object where the data are collected (3). Compressed sensing, on

the other hand, is a less mature technique in the field of medical imaging. CS is a collection of

algorithms that aim to recover signals from subsampled measurements by applying a sparsity-

inducing prior over the signal coefficients. Even though the idea of using sparsity-promoting

optimization techniques in signal processing and statistics is not new (e.g. (4,5)), it was not

deployed in MR image reconstruction until recently (6). Because of the non-linear nature of the

processing involved, CS reconstruction artifacts are not fully characterized. As such, the clinical

translation of CS has not reached the same level as parallel imaging methods.

More recent developments aim to merge parallel imaging and CS techniques to allow further

reduction in imaging time. In this domain, LI SPIR-iT (7) is a popular algorithm that combines
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the k-space data from multiple coils while enforcing sparsity of coil images with respect to the

wavelet transform. Similarly, it is possible to combine image-domain parallel imaging with

sparsity priors for improved reconstruction (8).

In the light of these recent developments, this thesis presents image reconstruction algorithms

that aim to further increase the imaging efficiency of MRI. These algorithms achieve,

i. Reduction of the total scan time without sacrificing the image quality, and

ii. Mitigation image artifacts due to physiology or MR physics to improve the image quality.

Reduction of imaging time is a well-motivated research goal, leading to increased patient

comfort and reduced costs. This goal is investigated for the following MR imaging techniques,

i. Structural imaging with multiple contrast preparations: By exploiting image statistics

and similarity between images obtained with different contrasts, improved image

reconstruction from undersampled data is demonstrated.

ii. Diffusion Spectrum Imaging (DSI): Diffusion Weighted Imaging (DWI) aims to explore

the brain connectivity by mapping the water diffusion as a function of space. DSI is a

particular DWI method that is able to generate a complete description of diffusion

probability density functions (pdfs), but suffers from significantly long imaging times.

This dissertation demonstrates that by learning the structure of pdfs from training data, it

is possible to substantially reduce the scan time with small cost on the image quality.

Mitigation of image artifacts is yet a different way to achieve increased efficiency, as it

increases the amount of meaningful data for further processing and diagnosis. Results on artifact

mitigation are demonstrated within two contexts,

i. Regularized Quantitative Susceptibility Mapping (QSM): The magnetic property of

the tissues called magnetic susceptibility gives rise to the observed signal phase in

MRI, which is estimated using an iterative background removal method and

regularized inversion. Regularization helps reduce the streaking artifacts in the

reconstructed susceptibility map, which stem from the ill-posed nature of the

relation connecting the phase to the magnetic susceptibility.

ii. Lipid artifact reduction in Chemical Shift Imaging (CSI): A major obstacle in CSI is

the contamination of brain spectra by the strong lipid signals around the skull. Lipid

artifacts are substantially reduced by employing an iterative reconstruction method

that makes use of rapidly sampled high frequency content of lipid signals.
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1.2 Outline and bibliographical notes

In the following, the organization of the thesis is presented with brief descriptions and

bibliographical contributions of each section.

Chapter 2: is concerned with reconstruction of structural MR images from undersampled

observations. Versatility of MRI allows images with multiple contrasts preparations to be

acquired, wherein each contrast emphasizes certain tissue types. Collection of such multi-contrast

data facilitates diagnosis and finds frequent clinical use. In this setting, it is assumed that data are

acquired with a single receive coil, hence parallel imaging is outside the scope of this chapter.

One option for recovery of undersampled multi-contrast images is to employ compressed sensing

on each contrast independently. These images belong to the same underlying physiology, so they

are expected to share common tissue boundaries. Focusing on this point, this chapter presents a

joint reconstruction method capable of improving compressed sensing reconstruction quality by

exploiting the shared information content across contrasts. This method is based on Bayesian

compressed sensing, which interprets sparsity-inducing reconstruction within a probabilistic

framework. An extension to joint reconstruction is also presented: since the imaging sequences

involved in the multi-contrast protocol may have different acquisition speeds, it might be possible

to obtain a fully-sampled dataset using a fast sequence in addition to the undersampled contrasts.

By using the fully-sampled image to initialize the reconstruction, further improvement in joint

reconstruction quality is demonstrated.

The proposed methods take place in,

* B. Bilgic, V.K. Goyal, E. Adalsteinsson; Multi-contrast Reconstruction with Bayesian

Compressed Sensing; Magnetic Resonance in Medicine, 2011; 66(6):1601-1615.

* B. Bilgic, V.K. Goyal, E. Adalsteinsson; Joint Bayesian Compressed Sensingfor Multi-

contrast Reconstruction; International Society for Magnetic Resonance in Medicine 19th

Scientific Meeting, Montreal, Canada, 2011, p. 71.

* B. Bilgic, B. Adalsteinsson; Joint Bayesian Compressed Sensing with Prior Estimate;

International Society for Magnetic Resonance in Medicine 20th Scientific Meeting,

Melbourne, Australia, 2012, p. 75.

Chapter 3: focuses on Quantitative Susceptibility Mapping (QSM) which is an MRI based

imaging technique that provides valuable quantitation of tissue iron concentration and vessel

oxygenation. However, susceptibility cannot be observed directly with MRI. Reconstruction of
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underlying susceptibility maps from measured MR signal phase is a challenging problem that

requires deconvolution of an ill-posed kernel. Hence, this problem benefits from regularization

that reflects prior knowledge on the tissue susceptibility. As susceptibility is a feature tied to the

paramagnetic properties of the underlying tissues, it is expected to vary smoothly within tissue

compartments. Using regularization based on spatial gradients of the susceptibility maps

facilitates the deconvolution. In a group study where the brain iron concentration in normal aging

was investigated, this chapter shows that accurate quantification is possible with this regularized

deconvolution approach. Further, an algorithm that solves the regularized inversion problem in

less than 5 seconds is proposed, which is a significant speed up relative to proposed iterative

methods that can take up to an hour.

The contents of this chapter are included in,

* B. Bilgic, A. Pfefferbaum, T. Rohlfing, E.V. Sullivan, E. Adalsteinsson; MRI Estimates

of Brain Iron Concentration in Normal Aging Using Quantitative Susceptibility Mapping;

Neurolmage, 2012; 59(3):2625-2635.

* B. Bilgic, A.P. Fan, E. Adalsteinsson; Quantitative Susceptibility Map Reconstruction

with Magnitude Prior; International Society for Magnetic Resonance in Medicine 19th

Scientific Meeting, Montreal, Canada, 2011, p. 746.

* B. Bilgic, I. Chatnuntawech, A.P. Fan, E. Adalsteinsson; Regularized QSM in Seconds;

submitted to International Society for Magnetic Resonance in Medicine 21st Scientific

Meeting, Salt Lake City, Utah, USA, 2013.

* B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson;

Fast Regularized Reconstruction Tools for QSM and DSI; ISMRM Workshop on Data

Sampling & Image Reconstruction, Sedona, Arizona, USA, 2013, accepted.

Chapter 4: proposes two lipid artifact suppression methods for CSI. While MRI enables

spatial encoding of the human tissue, CSI also provides encoding in magnetic resonance

frequency. At each voxel, this yields a 1 -dimensional spectrum of relative concentrations of

biochemical metabolites, each with a slightly different resonant frequency. The ability to map

biochemical metabolism proves to be critical in cancer, Alzheimer's disease and multiple

sclerosis. The dominant challenge of CSI is in the low signal of the metabolites of interest. Since

signal-to-noise ratio (SNR) is proportional to the voxel size due to averaging effect, large voxels

are required to lower the noise threshold, thereby constraining the voxel sizes in spectroscopy to

be much larger than those of MRI (1 cm 3 compared to 1 mm 3). The resolution constraint poses a
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significant difficulty to metabolite detection as it leads to signal contamination from the

subcutaneous lipid layer. This chapter proposes two post-processing methods that exploit prior

knowledge about lipid and metabolite signals to yield artifact-free metabolite spectra. These

algorithms rely on two observations: lipid signals are constrained to reside around the skull, and

metabolite and lipid spectra are approximately orthogonal. As the lipids are constrained to reside

on a ring in space and within a certain range in resonance frequency, they can be well

approximated from undersampled data using sparsity-enforcing reconstruction. This permits

estimation of high-resolution lipid signals, effectively reducing the ringing artifacts. Combined

with iterative reconstruction that enforces orthogonality among metabolites in the brain and the

lipid spectra, artifact-free metabolite maps are thus obtained.

The contributions in this chapter can also be found in,

e B. Bilgic, B. Gagoski, E. Adalsteinsson; Lipid Suppression in CSI with Spatial Priors

and Highly-Undersampled Peripheral k-space; Magnetic Resonance in Medicine, 2012;

DOI: 10.1002/mrm.24399.

. B. Bilgic, B. Gagoski E. Adalsteinsson; Lipid Suppression in CSI with Highly-

Undersampled Peripheral k-space and Spatial Priors; International Society for Magnetic

Resonance in Medicine 20th Scientific Meeting, Melbourne, Australia, 2012, p. 4455.

Chapter 5: Diffusion Weighted Imaging (DWI) is a widely used method to study white

matter connectivity of the brain. Diffusion Tensor Imaging (DTI) is an established DWI method

that models the water diffusion in each voxel as a univariate Gaussian distribution. Fiber

tractography algorithms are employed to follow the major eigenvector of the tensor fit across

neighboring voxels. However, the diffusion tensor model is unable to characterize multiple fiber

orientations within the same voxel, which constitute over 90% of white matter voxels. Rather

than modeling the diffusion, Diffusion Spectrum Imaging (DSI) offers a complete description of

the diffusion probability density function (pdf). This provides DSI with the capability to resolve

complex distributions of fiber orientations, thus overcoming the single-orientation limitation of

DTI. The tradeoff is that, while a typical DTI scan takes ~5 minutes, DSI suffers from

prohibitively long imaging times of -50 minutes. By relying on prior information extracted from

a training dataset, this chapter demonstrates dramatic reduction in DSI scan time while retaining

the image quality. This high quality reconstruction is made possible by the priors encoded in a

dictionary (created from a separately acquired training DSI dataset) that captures the structure of

23



diffusion pdfs. Further, two efficient dictionary-based reconstruction methods that attain 1000-

fold computation speed-up relative to iterative DSI compressed sensing algorithms are presented.

The methods introduced in this chapter can also be found in,

e B. Bilgic, K. Setsompop, J. Cohen-Adad, A. Yendiki, L.L. Wald, E. Adalsteinsson;

Accelerated Diffusion Spectrum Imaging with Compressed Sensing using Adaptive

Dictionaries; Magnetic Resonance in Medicine, 2012; 68(6):1747-1754.

e B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson;

Fast Diffusion Spectrum Imaging Reconstruction with Trained Dictionaries; submitted to

IEEE Transactions on Medical Imaging.

e B. Bilgic, K. Setsompop, J. Cohen-Adad, V. Wedeen, L. Wald, E. Adalsteinsson;

Accelerated Diffusion Spectrum Imaging with Compressed Sensing using Adaptive

Dictionaries; 15th International Conference on Medical Image Computing and Computer

Assisted Intervention, 2012; LNCS 7512:1-9.

e B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson;

Fast DSI Reconstruction with Trained Dictionaries; submitted to International Society

for Magnetic Resonance in Medicine 21st Scientific Meeting, Salt Lake City, Utah, USA,

2013.

" B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson;

Fast Regularized Reconstruction Tools for QSM and DSI; ISMRM Workshop on Data

Sampling & Image Reconstruction, Sedona, Arizona, USA, 2013, accepted.

Chapter 6: proposes potential extensions to the methods introduced throughout the

dissertation. Higher acceleration factors may be achieved by extending the multi-contrast

reconstruction idea to include parallel imaging. Multi-modality imaging (e.g. MR-PET) may also

benefit from joint reconstruction. Employing magnitude information in QSM deconvolution may

improve the conditioning of the inversion. Quantitative susceptibility venography with vessel

tracking may be feasible with the help of tracking algorithms in fiber tractography literature. In

the context of spectroscopic imaging, parametric signal models may provide further

regularization in lipid artifact suppression. Finally, through the combination of parallel imaging

and dictionary-based reconstruction, even higher acceleration factors in DSI acquisitions may

become achievable.
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Chapter 2

Joint Reconstruction of Multi-Contrast Images

Clinical imaging with structural MRI routinely relies on multiple acquisitions of the same region

of interest under several different contrast preparations. This chapter presents a reconstruction

algorithm based on Bayesian compressed sensing to jointly reconstruct a set of images from

undersampled k-space data with higher fidelity than when the images are reconstructed either

individually or jointly by a previously proposed algorithm, M-FOCUSS. The joint inference

problem is formulated in a hierarchical Bayesian setting, wherein solving each of the inverse

problems corresponds to finding the parameters (here, image gradient coefficients) associated

with each of the images. The variance of image gradients across contrasts for a single volumetric

spatial position is a single hyperparameter. All of the images from the same anatomical region,

but with different contrast properties, contribute to the estimation of the hyperparameters, and

once they are found, the k-space data belonging to each image are used independently to infer the

image gradients. Thus, commonality of image spatial structure across contrasts is exploited

without the problematic assumption of correlation across contrasts. Examples demonstrate

improved reconstruction quality (up to a factor of 4 in root-mean-square error) compared to

previous compressed sensing algorithms and show the benefit of joint inversion under a

hierarchical Bayesian model.

2.1 Introduction

In clinical applications of structural MRI, it is routine to image the same region of interest under

multiple contrast settings to enhance the diagnostic power of TI, T2, and proton-density weighted

images. Herein, a Bayesian framework that makes use of the similarities between the images with

different contrasts is presented to jointly reconstruct MRI images from undersampled data

obtained in k-space. This method applies the joint Bayesian compressive sensing (CS) technique

of Ji et al. (9) to the multi-contrast MRI setting with modifications for computational and k-space

acquisition efficiency. Compared to conventional CS algorithms that work on each of the images

independently (e.g. (6)), this joint inversion technique is seen to improve the reconstruction

quality at a fixed undersampling ratio and to produce similar reconstruction results at higher

undersampling ratios (i.e., with less data).
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Conventional CS produces images using sparse approximation with respect to an appropriate

basis; with gradient sparsity or wavelet-domain sparsity, the positions of nonzero coefficients

correspond directly to spatial locations in the image. A natural extension to exploit structural

similarities in multi-contrast MRI is to produce an image for each contrast setting while keeping

the transform-domain sparsity pattern for each image the same. This is called joint or

simultaneous sparse approximation. One of the earliest applications of simultaneous sparse

approximation was in localization and used an algorithm based on convex relaxation (10). An

early greedy algorithm was provided by Tropp et al. (11). Most methods for simultaneous sparse

approximation extend existing algorithms such as Orthogonal Matching Pursuit (OMP), FOCal

Underdetermined System Solver (FOCUSS) (4), or Basis Pursuit (BP) (12) with a variety of ways

for fusing multiple measurements to recover the nonzero transform coefficients. Popular joint

reconstruction approaches include Simultaneous OMP (SOMP) (11), M-FOCUSS (13), and the

convex relaxation algorithm in (14). All of these algorithms provide significant improvement in

approximation quality, however they suffer from two important shortcomings for the current

problem statement. First, they assume that the signals share a common sparsity support, which

does not apply to the multi-contrast MRI scans. Even though these images have nonzero

coefficients in similar locations in the transform domain, assuming perfect overlap in the sparsity

support is too restrictive. Second, with the exception of (15), most methods formulate their

solutions under the assumption that all of the measurements are made via the same observation

matrix, which in this context would correspond to sampling the same k-space points for all of the

multi-contrast scans. As demonstrated here, observing different frequency sets for each image

increases the overall k-space coverage and improves reconstruction quality.

The general joint Bayesian CS algorithm recently presented by Ji et al. (9) addresses these

shortcomings and fits perfectly to the multi-contrast MRI context. Given the observation matrices

(D, e CK~xM with K, representing the number of k-space points sampled for the i* image and M

being the number of voxels, the linear relationship between the k-space data and the unknown

images can be expressed as y = D,x, where i =1,...,L indexes the L multi-contrast scans and

y, is the vector of k-space samples belonging to the ih image x, . Let of and of denote the

vertical and the horizontal image gradients, which are approximately sparse since the MRI images

are approximately piecewise constant in the spatial domain. In the Bayesian setting, the task is to

provide a posterior belief for the values of the gradients 6 and bfy, with the prior assumption

that these gradients should be sparse and the reconstructed images should be consistent with the

acquired k-space data. Each image formation problem (for a single contrast) constitutes an inverse
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problem of the form y, -+ x,, and the joint Bayesian algorithm aims to share information among

these tasks by placing a common hierarchical prior over the problems. Such hierarchical Bayesian

models can capture the dependencies between the signals without imposing correlation, for

example by positing correlation of variances between zero-mean quantities that are conditionally

independent given the hyperparameters. Data from all signals contribute to learning the common

prior (i.e., estimating the hyperparameters) in a maximum likelihood framework, thus making

information sharing among the images possible. Given the hierarchical prior, the individual

gradient coefficients are estimated independently. Hence, the solution of each inverse problem is

affected by both its own measured data and by data from the other tasks via the common prior.

The dependency through the estimated hyperparameters is essentially a spatially-varying

regularization, so it preserves the integrity of each individual reconstruction problem.

Apart from making use of the joint Bayesian CS machinery to improve the image

reconstruction quality, the proposed method presents several novelties. First, the Bayesian

algorithm is reduced to practice on MRI data sampled in k-space with both simulated and in vivo

acquisitions. In the elegant work by Ji et al. (9), their method was demonstrated on CS

measurements made directly in the sparse transform domain as opposed to the k-space domain

that is the natural source of raw MRI data. The observations y, were obtained via y, =<D,6,

where 0, are the wavelet coefficients belonging to the i' test image. But in all practical settings of

MRI data acquisition, the observations are carried out in the k-space corresponding to the

reconstructed images themselves, i.e. the k-space data belonging to the wavelet transform of the

image is not accessible. In the method as presented here, measurements of the image gradients are

obtained by a simple modification of the k-space data and thus it is possible to overcome this

problem. After solving for the gradient coefficients with the Bayesian algorithm, images that are

consistent with these gradients are recovered in a least-squares setting. Secondly, the presented

version accelerates the computationally-demanding joint reconstruction algorithm by making use

of the Fast Fourier Transform (FFT) to replace some of the demanding matrix operations in the

original implementation by Ji et al. This makes it possible to use the algorithm with higher

resolution data than with the original implementation, which has large memory requirements.

Also, partially-overlapping undersampling patterns are exploited to increase the collective k-

space coverage when all images are considered; herein it is reported that this flexibility in the

sampling pattern design improves the joint CS inversion quality. Additionally, the algorithm is

generalized to allow inputs that correspond to complex-valued images. Finally, these finding are

compared with the popular method in (6) and with the M-FOCUSS joint reconstruction scheme.
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In addition to yielding smaller reconstruction errors relative to either method, the proposed

Bayesian algorithm contains no parameters that need tuning.

2.2 Theory

2.2.1 Compressed Sensing in MRI

Compressed sensing has received abundant recent attention in the MRI community because of its

demonstrated ability to speed up data acquisition. Making use of CS theory to this end was first

proposed by Lustig et al. (6), who formulated the inversion problem as

x=argmin TxII + )6- TV(x) s.t. -Fox|| 2  (2.1)

where V is the wavelet basis, TV(.) is the f1 norm of discrete gradients as a proxy for total

variation, # trades off wavelet sparsity and gradient sparsity, F. is the undersampled Fourier

transform operator containing only the frequencies co G Q, and .6 is a threshold parameter that

needs to be tuned for each reconstruction task. This constrained inverse problem can be posed as

an unconstrained optimization program (6)

x = argmin y - FaxI + 2,,, - I'T x + TV(x) (2.2)

where Xwavelet and kTv are wavelet and total variation regularization parameters that again call

for tuning.

2.2.2 Conventional Compressed Sensing from a Bayesian Standpoint

Before presenting the mathematical formulation that is the basis for the proposed method, this

section briefly demonstrates that it is possible to recover the conventional CS formulation in Eq.

2.2 with a Bayesian treatment. For the moment, consider abstractly that a sparse signal x e R m

that is observed by compressive measurements via the matrix <D e R KxM, where K < M is under

consideration. The general approach of Bayesian CS is to find the most likely signal coefficients

with the assumptions that the signal is approximately sparse and that the data are corrupted by

noise with a known distribution. The sparsity assumption is reflected by the prior defined on the

signal coefficients, whereas the noise model is expressed via the likelihood term.
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As a means to justify Eq. (2.2), a commonly-used signal prior and noise distribution are

presented. The data are modeled as being corrupted by additive white Gaussian noise with

variance a via y =x + n . In this case, the probability of observing the data y given the

signal x is a Gaussian probability density function (pdf) with mean (D x and variance o0 ,

yx)=22 -K12 e y XI2 (2.3)

which constitutes the likelihood term. To formalize the belief that the signal x is sparse, a

sparsity-promoting prior is placed on it. A common prior is the separable Laplacian density

function (16)

p(x)=(X / 2)" exl{ XIxi | (2.4)

Invoking Bayes' theorem, the posterior for the signal coefficients can be related to the

likelihood and the prior as

p(x| y)= p(vIx)p(x) 
(2.5)

py)

The signal that maximizes this posterior probability via maximum a posteriori (MAP)

estimation is sought for. Since the denominator is independent of x , the MAP estimate can be

found by minimizing the negative of the logarithm of the numerator:

x = argmin||y - +x + 2C22|x||, (2.6)

This expression is very similar to the unconstrained convex optimization formulation in Eq.

(2.2); it is possible obtain Eq. (2.2) with a slightly more complicated prior that the wavelet

coefficients and gradient of the signal of interest follow Laplacian distributions. Therefore, it is

possible to view the convex relaxation CS algorithms as MAP estimates with a Laplacian prior on

the signal coefficients. It is possible to view many algorithms used in CS as MAP estimators with

respect to some prior (17).
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2.2.3 Extending Bayesian Compressed Sensing to Multi-Contrast MRI

The Bayesian analysis in the previous section has two significant shortcomings. First, it is

assumed that the signal of interest is sparse with respect to the base coordinate system. To get the

maximum benefit from estimation with respect to a separable signal prior, it is critical to change

to coordinates in which the marginal distributions of signal components are highly peaked at zero

(18). For MR image formation, we aim to take advantage of the highly peaked distributions of

image-domain gradients, and show how to modify k-space data to obtain measurements of these

gradients. Second, the optimal MAP estimation through Eq. (2.6) requires knowledge of

parameters A and a. The proposed method eliminates the tuning of such parameters by imposing

a hierarchical Bayesian model in which A and a-are modeled as realizations of random variables;

this introduces the need for "hyperpriors" at a higher level of the model, but as detailed below, it

suffices to eliminate tuning of the hyperpriors using a principle of least informativeness. Along

with addressing these shortcomings, modifications for joint reconstruction across contrast

preparations are also discussed.

In the multi-contrast setting, the signals {x }L c R represent MRI scans with different

image weightings, e.g. TI, T2 and proton density weighted images might have been obtained for

the same region of interest. These are not sparse directly in the image domain. Therefore, it is

beneficial to cast the MRI images into a sparse representation to make use of the Bayesian

formalism. The fact that the observation matrices F0 e CKxM in MRI are undersampled Fourier

operators makes it very convenient to use spatial image gradients as a sparsifying transform

(19,20). To obtain the k-space data corresponding to vertical and horizontal image gradients, it is

sufficient to modify the data y according to

FQ f (co,u) = (1-e-2i)y,(o,u) y (2.7)

Fn of (o,u) = (1 - e "'yjvm =y(2.8)

where j dPI; 6x and ofy are the ith image gradients; yx and y[ are the modified

observations; and O and v index the frequency space of the n by m pixel images, with

n- m = M. To solve Eq. (2.2), Lustig et al. (6) proposes to use the conjugate gradient descent

algorithm, for which it is relatively straightforward to incorporate the TV norm. But algorithms

that do not explicitly try to minimize an objective function (e.g. OMP and Bayesian CS) will need

to modify the k-space data according to Eqs. (2.7) and (2.8) to make use of the Total Variation

penalty in the form of spatial derivatives.
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Secondly, we need to express the likelihood term in such a way that both real and imaginary

parts of the noise n, e CKi in k-space are taken into account. We rearrange the linear

observations y' = Fn + n, as

= 'i ( + (2.9)[Sm(yx) )_ _Sm(Fa, +[Jm(n, (

for i=1,...,L, where 31e(.) and Slm(.) indicate real and imaginary parts with the

understanding that we also have an analogous set of linear equations for the horizontal gradients

of . For simplicity, we adopt the notation

Y' =0 6x +N (2.10)

where Y, N, e R 2Ki , and 0, E R 2KixM correspond to the respective concatenated variables

in Eq. (2.9). With the assumption that both real and imaginary parts of the k-space noise are white

2
Gaussian with some variance o , the data likelihood becomes

p(YX 8j,072)= (2fro.2 ) Ke 6 G 2 (2.11)

With these modifications, it is now possible to compute the MAP estimates for the image

gradients by invoking Laplacian priors over them. Unfortunately, obtaining the MAP estimates

for each signal separately contradicts with the ultimate goal to perform joint reconstruction. In

addition, it is beneficial to have a full posterior distribution for the sparse coefficients rather than

point estimates, since having a measure of uncertainty in the estimated signals leads to an elegant

experimental design method. As argued in (16), it is possible to determine an optimal k-space

sampling pattern that reduces the uncertainty in the signal estimates. But since the Laplacian prior

is not a conjugate distribution to the Gaussian likelihood, the resulting posterior will not be in the

same family as the prior, hence it will not be possible to perform the inference in closed form to

get a full posterior. The work by Ji et al. (9) presents an elegant way of estimating the image

gradients within a hierarchical Bayesian model. This approach allows information sharing

between the multi-contrast scans, at the same yields a full posterior estimate for the sparse

coefficients. In the following section, the algorithm used for finding this distribution is

summarized and the complete image reconstruction scheme is depicted in Fig. 2.1.
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Fig. 2.1. Joint image reconstruction begins with modifying the undersampled k-space data to

obtain undersampled k-space representations of vertical and horizontal image gradients. After

finding the hyperparameters via Maximum Likelihood (ML) estimation, the means of the

posterior distributions are assigned to be the gradient estimates. Finally, images are integrated

from gradient estimates via solving a Least Squares (LS) problem.

2.2.4 Bayesian Framework to Estimate the Image Gradient Coefficients

Hierarchical Bayesian representation provides the ability to capture both the idiosyncrasy of the

inversion tasks and the relations between them, while allowing closed form inference for the

image gradients. According to this model, the sparse coefficients are assumed to be drawn from a

product of zero mean normal distributions with variances determined by the hyperparameters

a = {a1

p(Of Ia)=MV(Six ,aj) (2.12)

j=1

where N(. 10,a 1) is a zero mean Gaussian density function with variance a' . In order to

promote sparsity in the gradient domain, Gamma priors are defined over the hyperparameters a
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p(alab)= lGa(ai j a,b)= J aj exp(-baj) (2.13)

pJ=1 -,= a])F(a)

where F(.) is the Gamma function, and a and b are hyper-priors that parametrize the Gamma

prior. To see why the combination of Gaussian and Gamma priors will promote a sparse

representation, consider marginalizing over the hyperparameters a to obtain the marginal priors

acting on the signal coefficients (9,16,21)

p ) = P(6 I a )p(aj I a,b)daj (2.14)

which turn out to yield improper priors of the form p(Jx ) oc 1/ 1' 1 in the particular case of

uniform hyper-priors a = b= 0. Similar to the analysis for the Laplacian prior, this formulation

would introduce an CI regularizer of the form XIm log 1 6x | if a non-joint MAP solution was

sought for. Here, it should also be noted that the hyperparameters a are shared across the multi-

contrast images, each a controlling the variance of all L gradient coefficients t5 through

Eq. (2.12). In this case, c 's diverging to infinity implies that the pixels in the j* location of all

images are zero, due to the zero-mean, zero-variance Gaussian prior at this location. On the other

hand, a finite a does not constrain all L pixels in the j* location to be non-zero, which allows

the reconstruction algorithm to capture the diversity of sparsity patterns across the multi-contrast

scans.

In practice, the noise variance o2 would also need to be estimated as it propagates via the data

likelihood term to the posterior distribution of gradient coefficients (Eq. 2.5). Even though it is

not difficult to obtain such an estimate in image domain if the full k-space data were available,

this would not be straightforward with undersampled measurements. Therefore, following Ji et al.

(9), the formulation is slightly modified so that the noise variance can be analytically integrated

out while computing the posterior. This is made possible by including the noise precision

ao = o.-2 in the signal prior,

p(6 a, ao)= f o|0, aj ao) (2.15)
j=1

A Gamma prior over the noise precision parameter ao is defined as

p(ao |c, d) = Ga(ao I c, d) = d ao-exp(-dao) (2.16)
F(c)
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In all of the following experiments, the hyper-priors are set to c = d = 0 to express that no a

priori noise precision is favored as they lead to the "least informative" improper prior

p(ao |c = 0,d = 0) cc 1/ao . The choice of priors in Eqs. (2.15-16) allows analytical computation

of the posterior for the image gradients p(6' I Y,,a), which turns out to be a multivariate

Student-t distribution with mean p,= E, Y, and covariance L, = (dIeD, + A)' with

A = diag(a,,...,a,). This formulation is seen to allow robust coefficient shrinkage and

information sharing thanks to inducing a heavy-tail in the posterior (9). It is worth noting that

placing a Gamma prior on the noise precision does not change the additive nature of observation

noise, however a heavier-tailed t-distribution replaces the normal density function in explaining

this residual noise. This has been seen to be more resilient in allowing outlying measurements (9).

Now that an expression for the posterior p(bf I Y ,a) is obtained, the remaining work is to

find a point estimate for the hyperparameters a e R m in a maximum likelihood (ML)

framework. This is achieved by searching for the hyperparameter setting that makes the

observation of the k-space data most likely, and such an optimization process is called evidence

maximization or type-II maximum likelihood method (9,16,21). Therefore, the hyperparameters

that maximize

2(a) = I a)= fp(a I a, b)p( a,ao)p(Yx I|,a 0 )doida (2.17)

are sought for. It should be noted that data from all L tasks contribute to the evidence

maximization procedure via the summation over conditional distributions. Hence, the information

sharing across the images occurs through this collaboration in the maximum likelihood estimation

of the hyperparameters. Once the point estimates are constituted using all of the observations, the

posterior for the signal coefficients of is estimated based only on its related k-space data Yx due

to p, = E,4T Yj,. Thus, all of the measurements are used in the estimation of the

hyperparameters, but only the associated data are utilized to constitute an approximation to the

gradient coefficients.

Ji et al. show that it is possible to maximize Eq. (2.17) with a sequential greedy algorithm, in

which the starting point is a single basis vector for each signal, then the basis function that yields

the largest increase in the log likelihood is added at each iteration. Alternatively, a

hyperparameter corresponding to a basis vector that is already in the dictionary of current bases

can be updated or deleted, if this gives rise to the largest increase in the likelihood at that
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iteration. A final refinement to Ji et al.'s Bayesian CS algorithm is added by replacing the

observation matrices {D, I that are needed to be stored with the Fast Fourier Transform (FFT).

This enables working with MRI images of practical sizes; otherwise each of the observation

matrices would occupy 32GB of memory for a 256x256 image. The reader is referred to

Appendix B in (9) for the update equations of this algorithm.

2.2.5 Reconstructing the Images from Horizontal and Vertical Gradient Estimates

Once the image gradients It$ and { are estimated with the joint Bayesian algorithm,

the images {x, consistent with these gradients and the undersampled measurements {Y, }

need to be found. Influenced by (19), this is formulated as a least squares (LS) optimization

problem

.,= argminla8x 1 -o"( + &,x1 -1 +AjFx, -Y (2.18)
x,

for i=1,...,L where ax, and 8,x, represent vertical and horizontal image gradients. Using

Eqs. (2.7) and (2.8) and invoking Parseval's Theorem, the optimization problem can be cast into

k-space

X, ar gmin I(1 -e-2m )X, - A 1 + 1(1 - e-4i' )X, - A 1 + AIX0 I, -Y1 (2.19)

where X,, Ax and Af are the Fourier transforms of xi, 67 and by , respectively and X., is

the transform of x, restricted to the frequency set Q,. Based on this, the following solution is

found by representing Eq. (2.19) as a quadratic polynomial and finding the root with A -+ oo

Xn, if (, v)e Q,

X-e~) (1 y~e In )A x +(I -e 2 1v/m )AYZ, (Co, 0)= < 2wl ")A2 +1-eg /,n otherwise (2.20)

Finally, taking the inverse Fourier transform gives the reconstructed images t.i, [i-.

2.2.6 Extension to Complex-Valued Images

In the general case where the underlying multi-contrast images are complex-valued, the linear

observation model of Eq. (2.9) is no longer valid. Under the assumption that the support of the

35



frequency set 0, is symmetric, it is possible to decouple the undersampled k-space observations

belonging to the real and imaginary parts of the signals,

if supp(Q,[k,,k, ] = supp(Q,[(-k,,-k,)]) , (2.21)

yf E , F'&e(x,) = y -y[k.,,k,] + y;* [(-k,,,-k,)y(.2
yJL'& ~ x) E F (2.22)

yi" E FA.Jm(xi) = -{y;[k.,,k,]-[(-k,,-k, (2.23)

Here, [k, k,] index the frequency space and y* [(-k,, - k,)] is the complex conjugate of index-

reversed k-space observations. In the case of one dimensional undersampling, the constraint on

Q, would simply correspond to an undersampling pattern that is mirror-symmetric with respect to

the line passing through the center of k-space. After obtaining the k-space datay'' and y-"7

belonging to the real and imaginary parts of the i* image x,, qe(x,) and 7m(x,) are solved for

jointly in the gradient domain, in addition to the joint inversion of multi-contrast data, hence

exposing a second level of simultaneous sparsity in the image reconstruction problem. Final

reconstructions are then obtained by combining the real and imaginary channels into complex-

valued images.

2.3 Methods

To demonstrate the inversion performance of the joint Bayesian CS algorithm, three data sets

that include a numerical phantom, the SR124 brain atlas, and in vivo acquisitions, were

reconstructed from undersampled k-space measurements belonging to the magnitude images. In

addition, two datasets including a numerical phantom and in vivo multi-contrast slices, both

consisting of complex-valued images, were also reconstructed from undersampled measurements

to test the performance of the method with complex-valued image-domain signals. The results

were quantitatively compared against the popular implementation by Lustig et al. (6), which does

not make use of joint information across the images, as well as the M-FOCUSS algorithm, which

is an alternative joint CS reconstruction algorithm.
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2.3.1 CS Reconstruction with Extended Shepp-Logan Phantoms

To generalize the Shepp-Logan phantom to the multi-contrast setting, two additional phantoms

were generated by randomly permuting the intensity levels in the original 128x 128 image.

Further, by placing 5 more circles with radii chosen randomly from an interval of [7, 13] pixels

and intensities selected randomly from [0.1, 1] to the new phantoms, the idiosyncratic portions of

the scans were aimed to be represented with different weightings. A variable-density

undersampling scheme in k-space was applied by drawing three fresh samples from a power law

density function, so that the three masks' frequency coverage was only partially overlapping.

Power law sampling indicates that the probability of sampling a point in k-space is inversely

proportional to the distance of that point to the center of k-space, which makes the vicinity of the

center of k-space more densely sampled. To realize this pattern, again Lustig et al.'s software

package (6) was used, which randomly generates many sampling patterns and retains the one that

has the smallest sidelobe-to-peak ratio in the point spread function. This approach aims to create a

sampling pattern that induces optimally incoherent aliasing artifacts (6). A high acceleration

factor of R = 14.8 was tested using the joint Bayesian CS, Lustig et al.'s gradient descent and the

M-FOCUSS algorithm. For the gradient descent method, using wavelet and TV norm penalties

were seen to yield better results than using only one of them. In all experiments, all combinations

of regularization parameters Xkv and X waveet, from the set {1 0-4 ,1 0-,l 0-2,0 } were tested and the

setting that gave the smallest reconstruction error was retained as the optimal one. In the Shepp-

Logan experiment, the parameter setting 4, = avele, =10-3 was seen to yield optimal results

for the gradient descent method. The number of iterations was taken to be 50 in all of the

examples. The Bayesian algorithm continues the iterations until convergence, which is

determined by

Aek -Atk_ I < (A mx -Atk)-7 (2.24)

where At k is the change in log likelihood at iteration k and Atm. is the maximum change in

likelihood that has been encountered in all k iterations. The convergence parameter rq was taken

to be 10-8 in this example. For the M-FOCUSS method, each image was undersampled with the

same mask as phantom 1 in the joint Bayesian CS since M-FOCUSS does not admit different

observation matrices.
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2.3.2 SR124 Multi-Channel Brain Atlas Data

This experiment makes use of the multi-contrast data extracted from the SR124 atlas (22). The

atlas features structural scans obtained with three different contrast settings at 3T,

i. Proton density weighted images: obtained with a 2D axial dual-echo fast spin echo (FSE)

sequence (TR = 10000 ms, TE = 14 ms)

ii. T2 weighted images: acquired with the same sequence as the proton density weighted

scan, except with TE = 98 ms.

iii. TI weighted images: acquired with a 3D axial IR-prep Spoiled Gradient Recalled

(SPGR) sequence (TR = 6.5 ms, TE = 1.54 ms)

The atlas images have a resolution of 256x256 pixels and cover a 24-cm field-of-view (FOV).

Since all three data sets are already registered spatially, no post-processing was applied except for

selecting a single axial slice from the atlas. Prior to reconstruction, retrospective undersampling'

was applied along the phase encoding direction with acceleration R = 4 using a different

undersampling mask for each image. Again a power law density function was utilized in selecting

the sampled k-space lines. In this case, a 1-dimensional pdf was employed, so that it was more

likely to acquire phase encoding lines close to the center of k-space. Reconstructions were

performed using Lustig et al.'s conjugate gradient descent algorithm (with Av = avere, = 10-3),

joint Bayesian method (with q =10~9 ) and the M-FOCUSS joint reconstruction algorithm.

2.3.3 3T Turbo Spin Echo (TSE) Slices with Early and Late TE's

T2-weighted axial multi-slice images of the brain of a young healthy male volunteer were

obtained with two different TE settings using a TSE sequence (256x256 pixel resolution with 38

slices, I x1 mm in-plane spatial resolution with 3 mm thick contiguous slices, TR = 6000 ms, TE1

= 27 ms, TE2 = 94 ms). Out of these, a single image slice was selected and its magnitude was

retrospectively undersampled in k-space along the phase encoding direction with acceleration R =

2.5 using a different mask for each image, again by sampling lines due to a 1-dimensional power

law distribution. The images were reconstructed using Lustig et al.'s algorithm with an optimal

1 We use the retrospective undersampling phrase to indicate that k-space samples are discarded synthetically
from data obtained at Nyquist rate in software environment, rather than skipping samples during the actual scan.
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parameter setting ( ,=wavee, =10-3 ), joint Bayesian CS algorithm (with 77 = 10-9 ) and the M-

FOCUSS method.

2.3.4 Complex-Valued Shepp-Logan Phantoms

Using four numerical phantoms derived from the original Shepp-Logan phantom, two complex

valued numerical phantoms were generated by combining the four images in real and imaginary

pairs. Retrospective undersampling was applied along the phase encoding direction with

acceleration R = 3.5 using a different undersampling mask for each image. A 1-dimensional

power law density function was utilized in selecting the sampled k-space lines, making it more

likely to acquire phase encoding lines close to the center of k-space. Again many sampling

patterns were randomly generated and the one that has the smallest sidelobe-to-peak ratio in the

point spread function was retained, but also the sampling masks were constrained to be mirror-

symmetric with respect to the center of k-space. This way, it was possible to obtain the

undersampled k-space data belonging to the real and imaginary channels of the phantoms

separately. The images were reconstructed using Lustig et al.'s algorithm (11 e = , =10-3 ),

joint Bayesian CS algorithm (reconstructing real & imaginary parts together, in addition to joint

multi-contrast reconstruction) and the M-FOCUSS method. Further, non-joint reconstructions

with the Bayesian CS method (doing a separate reconstruction for each image, but reconstructing

real & imaginary channels of each image jointly) and the FOCUSS algorithm (non-joint version

of M-FOCUSS) were conducted for comparison with Lustig et al.'s approach.

2.3.5 Complex-Valued Turbo Spin Echo Slices with Early and Late TE's

To test the performance of the algorithms on complex-valued in vivo images, axial multi-slice

images of the brain of a young healthy female subject were obtained with two different TE

settings using a TSE sequence (128x128 pixel resolution with 38 slices, 2x2 mm in-plane spatial

resolution with 3 mm thick contiguous slices, TR = 6000 ms, TE = 17 ms, TE2 = 68 ms). Data

were acquired with a body coil and both the magnitude and the phase of the images were

recorded. To enhance SNR, 5 averages and a relatively large 2-mm in-plane voxel size were used.

A single slice was selected from the dataset and its raw k-space data were retrospectively

undersampled along the phase encoding direction with acceleration R = 2 using a different mask

for each image, again by sampling lines due to a 1-dimensional power law distribution. For the

complex-valued image-domain case, the masks were constrained to be symmetric with respect to

the line passing through the center of k-space. The images were reconstructed using Lustig et al.'s
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algorithm ( ATV = w,,,, = 10- ), our joint Bayesian CS algorithm (reconstructing real &

imaginary parts and multi-contrasts together) and the M-FOCUSS method. In addition, non-joint

reconstructions with the Bayesian CS method (using a separate reconstruction for each image, but

reconstructing real & imaginary parts of each image together) and the FOCUSS algorithm were

performed.

2.4 Results

2.4.1 CS Reconstruction with Extended Shepp-Logan Phantoms

Fig. 2.2 presents the reconstruction results for the three algorithms for the extended phantoms,

along with the k-space masks used in retrospective undersampling. At acceleration R = 14.8, the

Bayesian algorithm obtained perfect recovery of the noise-free numerical phantom, whereas the

gradient descent algorithm by Lustig et al. returned 15.9 % root mean squared error (RMSE),

which we define as

3Xe )- X||2RMSE= 100. kG) 2.22

where x is the vector obtained by concatenating all L images together, and similarly i is the

concatenated vector of all L reconstructions produced by an inversion algorithm. The M-

FOCUSS joint reconstruction algorithm yielded an error of 8.8 %. The reconstruction times were

measured to be 5 minutes for gradient descent, 4 minutes for M-FOCUSS and 25 minutes for the

joint Bayesian CS algorithm.
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Fig 2.2 Reconstruction results with the extended Shepp-Logan phantoms after undersampling

with acceleration R = 14.8, at 128x128 resolution. (a) Phantoms at Nyquist rate sampling. (b)

Undersampling patterns in k-space corresponding to each image. (c) CS reconstructions with

Lustig et al.'s algorithm yielded 15.9 % RMSE (root-mean-square error). (d) Absolute error plots

for Lustig et al.'s method. (e) Reconstructions obtained with the M-FOCUSS joint reconstruction

algorithm have 8.8 % RMSE. (f) Absolute difference between the Nyquist sampled phantoms and

the M-FOCUSS reconstruction results. (g) Joint Bayesian CS reconstruction resulted in 0 %

RMSE. (h) Absolute error plots for the Bayesian CS reconstructions.

2.4.2 SR124 Multi-Channel Brain Atlas Data

The results for reconstruction upon phase encoding undersampling with acceleration R = 4 are

given in Fig. 2.3. In this case, Lustig et al.'s algorithm returned 9.4 % RMSE, while the error was

3.2 % and 2.3 % for M-FOCUSS and joint Bayesian CS methods, respectively. The

reconstructions took 43 minutes for gradient descent, 5 minutes for M-FOCUSS and 26.4 hours

for the Bayesian CS algorithm.
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Fig. 2.3. Reconstruction results with SR124 atlas after undersampling along the phase encoding

direction with R = 4, at 256x256 resolution. (a) Atlas images at Nyquist rate sampling. (b)

Undersampling patterns in k-space corresponding to each image. (c) Applying the gradient

descent algorithm proposed by Lustig et al. resulted in reconstructions with 9.4 % RMSE. (d)

Absolute difference between the gradient descent reconstructions and the Nyquist rate images. (e)

M-FOCUSS reconstructions have 3.2 % RMSE. (f) Absolute error plots for the M-FOCUSS

algorithm. (g) Joint Bayesian reconstruction yielded images with 2.3 % RMSE. (h) Error plots for

the joint Bayesian reconstructions.

2.4.3 Turbo Spin Echo (TSE) Slices with Early and Late TE's

Fig. 2.4 depicts the TSE reconstruction results obtained with the three algorithms after

undersampling along phase encoding with acceleration R = 2.5. In this setting, Lustig et al.'s code

returned a result with 9.4 % RMSE, whereas M-FOCUSS and joint Bayesian reconstruction had

5.1 % and 3.6 % errors, respectively. The total reconstruction times were 26 minutes for gradient

descent, 4 minutes for M-FOCUSS and 29.9 hours for the Bayesian CS algorithm.
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Fig. 2.4. Reconstruction results with TSE after undersampling along the phase encoding direction

with R = 2.5, at 256x256 resolution. (a) TSE scans at Nyquist rate sampling. (b) Undersampling

patterns used in this experiment. (c) Reconstructions obtained with Lustig et al.'s gradient

descent algorithm have 9.4 % RMSE. (d) Plots of absolute error for the gradient descent

reconstructions. (e) M-FOCUSS joint reconstruction yielded images with 5.1 % RMSE. (f) Error

plots for the M-FOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction

returned 3.6 % RMSE. (h) Error plots for the Bayesian CS reconstructions.

These results are also included in Table 2.1 as "PE, (Fig. 4) " for comparison with reconstruction

using the same undersampling pattern.

For brevity, additional results are presented in Table 2.1 from more extensive tests in which

various undersampling patterns and accelerations were employed. To test the algorithms'

performance at a different resolution, the TSE and atlas images were downsampled to size

128x128 prior to undersampling, and similar RMSE results as the high resolution experiments
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were noted. The table also includes an experiment with 256x256 TSE scans accelerated along the

phase encoding with R = 2.5, but using the same undersampling pattern for both images.

Dataset Resolution Undersampling Acceleration RMSE %
method factor R Lustig et M- Bayesian

al. Focuss CS

256x256 Phase encoding (PE) 3 9.7 6.8 5.8

256x256 1 PE (Fig. 2.4) 1 2.5 9.4 j 5.1 1 3.6- - - - ------------ t-------------------------- - ----------------- --------------- - -------------------
256x256 PE, same pattern 2.5 4.7
128x128 PE 2 8.1 3.8 2.1

256x256 Radial 9.2 6.0 4.5 3.0
SRI 24 128x128 PE 3 7.2 4.2 3.1

Table 2.1. Summary of additional reconstruction results on the TSE and SRI 24 datasets using the

three algorithms after retrospective undersampling with various patterns and acceleration factors.

2.4.4 Impact of Spatial Misregistration on Joint Reconstruction

Due to aliasing artifacts caused by undersampling, image registration prior to CS

reconstruction across multi-contrast images is likely to perform poorly. The effect of spatial

misalignments was investigated by shifting one of the images in the TSE dataset relative to the

other by 0 to 2 pixels with step sizes of 2 pixels using two different undersampling patterns. The

first pattern incurs R = 3 acceleration by 2D undersampling with k-space locations drawn from a

power law probability distribution. In this case, the effect of vertical misalignments was tested.

The second pattern undersamples k-space at R = 2.5 in the phase encoding direction, for which

horizontal dislocations were tested. For speed, low resolution images at size 128x 128 were used.

M-FOCUSS and joint Bayesian CS methods were tested for robustness against misregistration

and that the effect of spatial misalignment was observed to be mild for both (Fig. 2.5). Even

though Bayesian CS consistently had less reconstruction errors relative to M-FOCUSS on both

undersampling patterns at all dislocations, the performance of M-FOCUSS was seen to change

less relative to Bayesian CS with respect to the incurred translations. For joint Bayesian CS,

reconstruction error increased from 2.1 % to 2.8 % at 2 pixels of vertical shift for power law

sampling, and from 5.2 % to 6.4 % at 2 pixels of horizontal shift for phase encoding sampling; for

the M-FOCUSS method error increased from 4.7 % to 4.9 % for power law sampling, and from

6.2 % to 6.6 % for phase encoding sampling.
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Fig. 2.5. To investigate the impact of spatial misalignments on joint reconstruction with Bayesian

CS and M-FOCUSS, one of the TSE images was shifted relative to the other by 0 to 2 pixels with

step sizes of 2 pixels using power law and phase encoding undersampling patterns. For speed,
low resolution images with size 128x128 were used. For joint Bayesian CS, reconstruction error

increased from 2.1 % to 2.8 % at 2 pixels of vertical shift for power law sampling, and from 5.2

% to 6.4 % at 2 pixels of horizontal shift for phase encoding sampling; for the M-FOCUSS

method error increased from 4.7 % to 4.9 % for power law sampling, and from 6.2 % to 6.6 % for

phase encoding sampling.

2.4.5 Complex-Valued Shepp-Logan Phantoms

Absolute values of the reconstruction results after undersampling with a symmetric mask with R

= 3.5 for the complex-valued phantoms are depicted in Fig. 2.6. For complex signals, the error

metric RMSE = 100. |x - X12 / lIxi1 is used. In this case, Lustig et al.'s algorithm returned a result

with 13.1 % RMSE, whereas joint reconstructions with M-FOCUSS and joint Bayesian methods

had 5.4 % and 2.4 % errors, respectively. The total reconstruction times were 21 minutes for

gradient descent, 0.5 minutes for M-FOCUSS and 18 minutes for the Bayesian CS algorithm. On

the other hand, reconstructing each complex-valued image separately with FOCUSS and

Bayesian CS yielded 6.7 % and 4.6 % RMSE.
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Fig. 2.6. Reconstruction results with the complex-valued Shepp-Logan phantoms after

undersampling with acceleration R = 3.5, at 128x 128 resolution. (a) Magnitudes of phantoms at

Nyquist rate sampling. (b) Symmetric undersampling patterns in k-space corresponding to each

image. (c) Real and imaginary parts of the first phantom (on the left in (a)). (d) Real and

imaginary parts of the second phantom (on the right in (a)). (e) CS reconstructions with Lustig et

al.'s algorithm yielded 13.1 % RMSE. (f) Absolute error plots for Lustig et al.'s method. (g)

Reconstructions obtained with the M-FOCUSS joint reconstruction algorithm have 5.4 % RMSE.

(h) Absolute difference between the Nyquist sampled phantoms and the M-FOCUSS

reconstruction results. (i) Joint Bayesian CS reconstruction resulted in 2.4 % RMSE. (h) Absolute

error plots for the Bayesian CS reconstructions.
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2.4.6 Complex-Valued Turbo Spin Echo Slices with Early and Late TE's

Reconstruction results are compared in Fig. 2.7 for the discussed algorithms. Lustig et al.'s

method had 8.8 % error upon acceleration by R = 2 with a symmetric pattern, whereas the joint

reconstruction algorithms M-FOCUSS and joint Bayesian CS yielded 9.7 % and 6.1 % RMSE.

The processing times were 20 minutes for gradient descent, 2 minutes for M-FOCUSS and 5.2

hours for the Bayesian CS algorithm. Non-joint reconstructions with FOCUSS and Bayesian CS

returned 10.0 % and 8.6 % errors.
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Fig. 2.7. Reconstruction results for complex-valued TSE images after undersampling along the

phase encoding direction with R = 2, at 128x 128 resolution. (a) Magnitudes of the TSE scans at

Nyquist rate sampling. (b) Symmetric undersampling patterns used in this experiment. (c) Real

and imaginary parts of the early echo image (on the left in (a)). (d) Real and imaginary parts of

the late echo image (on the right in (a)). (e) Reconstructions obtained with Lustig et al.'s gradient

descent algorithm have 8.8 % RMSE. (d) Plots of absolute error for the gradient descent

reconstructions. (e) M-FOCUSS joint reconstruction yielded images with 9.7 % RMSE. (f) Error

plots for the M-FOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction

returned 6.1 % RMSE. (h) Error plots for the Bayesian CS reconstructions.
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With the same dataset, additional reconstructions were performed to quantify the effect of the

symmetry constraint on the sampling masks. Both of the late and early TE images were

reconstructed 5 times with freshly generated, random masks with R = 2 (no symmetry constraints)

and also 5 times with freshly generated symmetric masks again at R = 2. Using Lustig et al.'s

method (A =10- ) with the random masks yielded an average error of 10.5 %, whereas using

symmetric masks incurred an average error of 11.5 %.

2.5 Discussion

The application of joint Bayesian CS MRI reconstruction to images of the same object acquired

under different contrast settings was demonstrated to yield substantially higher reconstruction

fidelity than either Lustig et al.'s (non-joint) algorithm or joint M-FOCUSS, but at the cost of

substantially increased reconstruction times in this initial implementation. In contrast to M-

FOCUSS, the proposed algorithm allows for different sampling matrices being applied to each

contrast setting and unlike the gradient descent method, it has no parameters that need

adjustments. The success of this algorithm is based on the premise that the multi-contrast scans of

interest share a set of similar image gradients while each image may also present additional

unique features with its own image gradients. In Fig. 2.8 the vertical image gradients belonging to

the TSE scans are presented, where a simple experiment was conducted to quantify the similarity

between them. After sorting the image gradient magnitudes of the early TSE scan in descending

order, the cumulative energy in them was computed. Next, the late TSE gradient magnitude was

sorted in descending order and the cumulative energy in the early TSE gradient was calculated by

using the pixel index order belonging to the late TSE scan. This cumulative sum reached 95 % of

the original energy, thus confirming the visual similarity of the two gradients.

It is important to note that in the influential work by Ji et al. (9), the authors also consider joint

reconstruction of MRI images. However their dataset consists of five different slices taken from

the same scan, so the motivation for their MRI work is different from what is presented here.

Even though the multislice images have considerable similarity from one slice to the next, one

would expect multi-contrast scans to demonstrate a yet higher correlation of image features and a

correspondingly larger benefit in reconstruction fidelity.
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Fig. 2.8. (a) Image gradients for the multi-contrast TSE scans demonstrate the similarity under the

gradient transform. (b) To quantify this similarity, we computed the cumulative energy of the

image gradient of early TSE scan (TSE; in TSE; order). Then we sorted the late TSE scan (TSE 2)
in descending order, and computed the cumulative energy in TSE, corresponding to the sorted

indices in TSE 2 which gave the curve TSE, in TSE2 order. The similarity of the curves indicates

similar sparsity supports across images.

Two aspects of the proposed Bayesian reconstruction algorithm demand further attention. First,

relative to the other two algorithms we investigated, the Bayesian method is dramatically more

time consuming. The reconstruction times can be on the order of hours, which is prohibitive for

clinical use as currently implemented. As detailed in the Results section, the proposed algorithm

is about 40 times slower than gradient descent, and about 300 times slower than M-FOCUSS for

the in vivo data. Future implementations and optimizations that utilize specialized scientific

computation hardware are expected to overcome this current drawback. Particularly, it is common

to observe an order of magnitude speed-up with CUDA (Compute Unified Device Architecture)

enabled Graphics Processing Units when the problem under consideration can be adapted to the

GPU architecture (23). In a recent work, using CUDA architecture in compressed sensing was

reported to yield accelerations up to a factor of 40 (24). It is expected that parallelizing matrix
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operations and FFTs can yield significant performance boost. On the other hand, an algorithmic

reformulation can be another source of performance increase. Solving the inference problem via

variational Bayesian analysis (25) was seen to yield an order of magnitude speed-up relative to

the greedy Bayesian CS method for non-joint image reconstruction.

A second aspect of this reconstruction method that requires further analysis is the potentially

detrimental impact of source data that are not perfectly spatially aligned. To maximize the

information sharing among the inversion tasks, it is crucial to register the multi-contrast scans

before applying the joint reconstruction. To minimize the adverse consequences of such

misalignment, future implementations might deploy either real-time navigators (e.g. (26)) or

retrospective spatial registration among datasets based on preliminary CS reconstructions without

the joint constraint. For some acquisitions, subtle, non-rigid spatial misregistration may occur due

to eddy-current or Bo inhomogeneity induced distortions. To correct for such higher-order

translation effects, several fast and accurate correction methods have been proposed (e.g. (27,28))

and could be applied for correction of undersampled images in joint Bayesian reconstruction. As

the preliminary investigation in the Results section demonstrates, joint Bayesian CS algorithm is

robust against misregistration effects up to shifts of 2 pixels, and it is believed that existing

registration techniques can bring the images within this modest range. Alternatively, future work

aimed at the simultaneous joint reconstruction and spatial alignment might pose an interesting

and challenging research project in this area, which might be accomplished by introducing

additional hidden variables.

Regarding real-valued image-domain datasets, the presented CS reconstructions obtained with

Lustig et al.'s conjugate gradient descent method yielded 2 to 4 times of the RMSE returned by

the joint Bayesian algorithm. Even though this error metric cannot be considered the sole

criterion for "good" image reconstruction (29), making use of similarities between multi-contrast

scans can be a first step in this direction. In the more general case where the methods were tested

with complex-valued images, the improvement in RMSE reduced to about 1.5 times on the in

vivo data with the joint Bayesian algorithm. When the individual images were reconstructed

separately, but using their real & imaginary parts jointly, this non-joint version of the Bayesian

algorithm outperformed both Lustig et al.'s method and M-FOCUSS on the complex-valued

numerical data and the TSE scans. This might suggest that exploiting the similarity between real

and imaginary channels of the images can also be source of performance increase. It is important

to note that the current Bayesian algorithm requires the sampling patterns to be symmetric in

order to handle complex-valued images, and this constraint might be reducing the incoherence of
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the aliasing artifacts. As reported in the Result section, using symmetric patterns instead of

unconstrained ones increased the error incurred by Lustig et al.'s algorithm from 10.5 % to 11.5

%, which seems to be a mild effect. Even though the proposed joint reconstruction algorithm

increases the collective coverage of k-space by sampling non-overlapping data points across the

multi-contrast images, this benefit might be dampened by the symmetry constraint.

For comparison, the M-FOCUSS joint reconstruction algorithm was implemented and it was

noted that it also attained smaller RMSE figures compared to the gradient descent technique.

Even though M-FOCUSS is seen to outperform other competing matching pursuit based joint

algorithms (13), the Bayesian method proved to exploit the signal similarities more effectively in

the presented experiments. This is made possible by the fact that the Bayesian framework is

flexible enough to allow idiosyncratic signal parts, and strict enough to provide information

sharing. Importantly, the Bayesian approach also permits the use of different observation matrices

for each signal. This allows increased total k-space coverage across the multi-contrast scans, and

its benefit can be seen from the two experiments conducted on the TSE scans with acceleration R

= 2.5 along the phase encoding direction. The Bayesian reconstruction results displayed in Fig.

2.4 are obtained by using a different undersampling pattern for k-space corresponding to each

image, and this yielded 2.6 times less RMSE compared to Lustig et al.'s algorithm, demonstrating

the benefits of variations in the sampling pattern for different contrast weightings. On the other

hand, the experiment in Table 2.1 that uses the same pattern for both images returned 2 times

smaller RMSE compared to the gradient descent method. However, M-FOCUSS has the

advantage of being a much faster algorithm with only modest memory requirements.

Interestingly, the performance of the M-FOCUSS algorithm deteriorated significantly when

tested on the complex-valued signals, yielding poorer results relative to Lustig et al.'s method for

the complex-valued TSE dataset. Even though the joint Bayesian algorithm also suffered a

performance decrease, it still yielded significantly lower errors with the complex-valued signals.

A direction for future work is the application of the covariance estimates for the posterior

distribution produced by the Bayesian algorithm, which could be used to design optimal

undersampling patterns in k-space so as to reduce the uncertainty in the estimated signal (16,30).

Also, it is possible to obtain SNR priors, which might be utilized in the Gamma prior

p(o I c,d) = Ga(cao I c,d) defined over the noise precision ao in the Bayesian algorithm. The

setting c = d = 0 was used to incur a non-informative noise prior which would not bias the

reconstructions towards a particular noise power. In our informal experiments, smaller RMSE
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scores were also obtained with this setting. Yet the optimal selection of c and d needs further

investigation.

Results in this work do not cover parallel imaging considerations, yet combining compressive

measurements with multichannel acquisitions has received considerable attention, e.g. (8,31).

Even though exposing the Bayesian formalism to parallel imaging is beyond the current scope,

treating the receiver channels as a similarity axis in addition to the contrast dimension might be a

natural and useful extension of the work presented here.

In addition to the demonstration of the joint CS reconstruction of multiple different image

contrasts, other applications lend themselves to the same formalism for joint Bayesian image

reconstruction. These include, for instance,

+ Quantitative Susceptibility Mapping (QSM): In this setting, the aim is to solve an inverse

problem of estimating a susceptibility map X related to the phase of a complex image

jMle" via an ill-posed inverse kernel. Since the magnitude part |MI is expected to share

common image boundaries with X , it might be possible to use it as a prior to guide the

inversion task.

+ Magnetic Resonance Spectroscopic Imaging (MRSI): Combining spectroscopic data with

high resolution structural scans might help reducing the lipid contamination due to the

subcutaneous fat or enhance resolution of brain metabolite maps.

+ Multi-modal imaging techniques: Simultaneous acquisitions with different modalities

(e.g. PET-MRI) may benefit from joint reconstruction with this Bayesian formulation.

2.6 Joint Reconstruction with Prior Estimate

As acquisition times may vary among different contrasts in the multi-contrast protocol, the

overall scan time can be minimized for a fixed amount of undersampling by modulating the

degree of undersampling among the different contrast preparations. Here, the joint Bayesian

framework is extended to asymmetric undersampling schemes where one contrast image is fully

sampled while other contrasts are undersampled. By reformulating the inference problem, a new

reconstruction method that is based on the Expectation-Maximization (EM) algorithm is also

introduced. The EM approach permits the use of a prior image to facilitate the reconstruction, and

is detailed in the following.
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2.6.1 EM Algorithm for Joint Reconstruction with Prior Estimate

Given L undersampled images {x,},,LECN acquired with different contrasts and a fully-sampled

image xp,,or, a sparse representation is again obtained for the undersampled contrasts by taking the

spatial gradients in k-space:

Fn 5,= (1-e "2
jw/n)y, z, (2.26)

To simplify the expressions, the distinction between the vertical and horizontal gradients is

now omitted and the corresponding superscripts are dropped in this section. The gradient of the

prior image is directly computed as .prior = F {(1-e *2 w/n) Yprior}. The data are modeled to be

corrupted by complex Gaussian noise with variance a2, yielding the data likelihood

p(zi k,|a2) = XY(Fn b,, 021) (2.27)

A Gaussian prior across each pixel of the L images is placed to couple them,

p(5.,I y,) = N(, y,I) (2.28)

where 5,ECL is the vector formed by taking the t" pixel in each image and y, = 1/a, is the

inverse of the hyperparameter a, controlling the variance. By multiplicative combination of all

pixels, full prior distribution is obtained,

p(0|7) = |11-1,NpE.t 17) (2.29)

Combining the likelihood and the prior with the Bayes' rule, posterior for the ith image

becomes

p(', Izi,y) = X(u, Y) (2.30)

with L = r-FF0 H B 'Fo and, (2.31)

p,= FF HB z, (2.32)

where B -- 02I+FnFFH and T = diag(7). The posterior distribution is fully characterized if the

(inverse) hyperparameters y are estimated, which can be done with an EM-type algorithm by

iteratively applying Eqs. (2.31) and (2.32) followed by the update

ynew= I-II 2 I(L-L,,/y,) (2.33)

By using the prior image to initialize the EM iterations, y/nal= o.io,. , the known sparsity

support of bo facilitates the recovery of the undersampled images. After estimating the vertical

and horizontal gradients, the images {x,},=I,L that are consistent with these and the k-space data

{y1,L are again found by solving a least squares problem.
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2.6.2 Methods

Bayesian CS with prior was applied to the TSE and SR124 datasets, which were also

reconstructed with the CS algorithm by Lustig et al. (6) using total variation penalty with an

optimal regularization parameter that yielded the smallest RMSE. In the TSE experiment, an

early echo slice was retrospectively undersampled with a random 2D pattern using acceleration R

= 4 while the late echo image was kept fully sampled to serve as prior. Regarding the SR124

dataset, single slices from the T2 and TI weighted images were undersampled along phase

encoding with acceleration R = 4, while the PD image was kept fully sampled to supply prior

information. An approximate solution to the large-scale matrix inversion B- in Eq. (2.31) was

computed iteratively by Lanczos algorithm with partial reorthogonalization for the Bayesian CS

algorithm.

2.6.3 Results

Fig. 2.9 depicts the TSE dataset reconstruction results, for which Lustig et al.'s algorithm yielded

9.3% RMSE, while Bayesian CS with prior information had 5.8% error. Results for the SR124

dataset are given in Fig. 2.10. Here, Lustig et al.'s method yielded 9.5% NRMSE, and the error

was 4.3% for Bayesian CS that jointly reconstructed T2 and TI images with the help of fully-

sampled PD image. Joint Bayesian CS without using a prior had 4.9% error (not shown).

Fig. 2.9. (a) Lustig et al.'s algorithm yielded 9.3% error (b) absolute error for (c) Bayesian CS

with prior returned 5.8% error (d) error for Bayesian CS (e) fully-sampled prior (f) R=4 sampling

pattern.
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Fig. 2.10. (a1-a2) Lustig et al.'s algorithm yielded 9.5% error (bi-b 2) absolute error plots for

Lustig et al. (ci-c 2). Joint Bayesian CS with prior returned 4.3% error (di-d 2) error plots for

Bayesian CS (e) fully-sampled PD weighted prior image (f) R=4 random undersampling pattern

in ID

2.6.4 Remarks on Reconstruction with Prior Estimate

The presented method makes use of the known sparsity support of a fully-sampled image only to

initialize Bayesian CS iterations, and hence avoids imposing this support on the reconstructed

images. Acquiring a fully-sampled prior is desirable in cases where one imaging sequence is

significantly faster than the other contrast weightings, e.g. an MP-RAGE acquisition along with

other contrasts.

2.7 Conclusion

This chapter presented the theory and the implementation details of a Bayesian framework for

joint reconstruction of multi-contrast MRI scans. By efficient information sharing among these

similar signals, the Bayesian algorithm was seen to obtain reconstructions with smaller errors (up

to a factor of 4 in RMSE) relative to two popular methods, Lustig et al.'s conjugate gradient
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descent algorithm (6) and the M-FOCUSS joint reconstruction approach (13). In the presence of a

fully-sampled image, it was shown that joint reconstruction can be further enhanced by using this

image to supply prior information.
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Chapter 3

Regularized Quantitative Susceptibility Mapping

Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in

physiology and in neurological diseases associated with abnormal iron distribution. In this

chapter, the recently-developed Quantitative Susceptibility Mapping (QSM) methodology is used

to estimate the tissue magnetic susceptibility based on MRI signal phase. To investigate the effect

of different regularization choices, t and t 2 norm regularized QSM algorithms are implemented

and compared. These regularized approaches solve for the underlying magnetic susceptibility

distribution, a sensitive measure of the tissue iron concentration, that gives rise to the observed

signal phase. Regularized QSM methodology also involves a pre-processing step that removes, by

dipole fitting, unwanted background phase effects due to bulk susceptibility variations between

air and tissue and requires data acquisition only at a single field strength. For validation,

performances of the two QSM methods were measured against published estimates of regional

brain iron from postmortem and in vivo data. The in vivo comparison was based on data

previously acquired using Field-Dependent Relaxation Rate Increase (FDRI), an estimate of MRI

relaxivity enhancement due to increased main magnetic field strength, requiring data acquired at

two different field strengths. The QSM analysis was based on susceptibility-weighted images

acquired at 1.5T, whereas FDRI analysis used Multi-Shot Echo-Planar Spin Echo images

collected at 1.5T and 3.0T. Both datasets were collected in the same healthy young and elderly

adults. The in vivo estimates of regional iron concentration comported well with published

postmortem measurements; both QSM approaches yielded the same rank ordering of iron

concentration by brain structure, with the lowest in white matter and the highest in globus

pallidus. Further validation was provided by comparison of the in vivo measurements, [,-

regularized QSM versus FDRI and t 2-regularized QSM versus FDRI, which again yielded perfect

rank ordering of iron by brain structure. The final means of validation was to assess how well

each in vivo method detected known age-related differences in regional iron concentrations

measured in the same young and elderly healthy adults. Both QSM methods and FDRI were

consistent in identifying higher iron concentrations in striatal and brain stem ROIs (i.e., caudate

nucleus, putamen, globus pallidus, red nucleus, and substantia nigra) in the older than in the

young group. The two QSM methods appeared more sensitive in detecting age differences in

brain stem structures as they revealed differences of much higher statistical significance between
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the young and elderly groups than did FDRI. However, QSM values are influenced by factors

such as the myelin content, whereas FDRI is a more specific indicator of iron content. Hence,

FDRI demonstrated higher specificity to iron yet yielded noisier data despite longer scan times

and lower spatial resolution than QSM. The robustness, practicality, and demonstrated ability of

predicting the change in iron deposition in adult aging suggest that regularized QSM algorithms

using single-field-strength data are possible alternatives to tissue iron estimation requiring two

field strengths.

Further, this chapter develops a closed-form expression for f2 -regularized QSM that can be

computed in less than 5 seconds, which is a substantial speed-up compared to iterative methods

that may take up to an hour of processing time.

3.1 Introduction

Excessive iron deposition in subcortical and brain stem nuclei occurs in a variety of degenerative

neurological and psychiatric disorders, including Alzheimer's disease, Huntington's Chorea,

multiple sclerosis, and Parkinson's disease (32). Further, postmortem (1) and in vivo (33-37)

studies have revealed that deep gray matter brain structures accumulate iron at different rates

throughout adult aging. Structures that exhibit iron accrual support components of cognitive and

motor functioning (37-39). To the extent that excessive iron presence may attenuate neuronal

function or disrupt connectivity, quantification and location of iron deposition may help explain

age- and disease-related motor slowing and other selective cognitive decline.

Several MRI methods have been proposed for in vivo iron mapping and quantification.

Bartzokis et al. (40) capitalized on the enhanced transverse relaxivity (R2) due to iron with

increasing main field strength for the Field-Dependent Relaxation Rate Increase (FDRI) method.

FDRI relies on the use of R2-weighted imaging at two different field strengths and attributes the

relaxation enhancement at higher field to iron, which may be a specific measure of tissue iron

stores (40).

Whereas FDRI relies on the modulation of signal intensity in MRI to infer iron concentration,

MRI signal phase has also been proposed as a source signal for iron mapping, both by direct

evaluation of phase images (41,42) and by reconstruction of magnetic susceptibility images that

derive from the phase data (34,42). Local iron concentration is strongly correlated with the

magnetic susceptibility values (43-45); therefore, quantification of this paramagnetic property

presents a sensitive estimate of iron concentration, although possibly complicated by more
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uncommon factors, such as pathological manganese deposition (46). Phase mapping yields high-

resolution, high-SNR data that demonstrate correlation with iron (34), but as an estimate of the

underlying magnetic susceptibility, it suffers from non-local effects and spatial modulation

artifacts due to the non-trivial mapping from susceptibility to phase (47). To overcome these

limitations, herein regularized Quantitative Susceptibility Mapping (QSM) algorithms are

employed for robust estimation of the magnetic susceptibility X of tissues based on gradient-echo

signal phase. The magnetic susceptibility X maps to the observed phase shift in MRI via a well-

understood transformation, but the inverse problem, i.e., estimation of X from phase, is ill posed

due to zeros on a conical surface in the Fourier space of the forward transform; hence, X inversion

benefits from additional regularization. Recently, elegant regularization methods were proposed

for deriving susceptibility inversion. In the work by de Rochefort et al. (2010), smooth regions in

the susceptibility map are promoted to match those of the MR magnitude image by introducing a

weighted t 2 norm penalty on the spatial gradients of X. Likewise, Liu et al. (2010) regularized the

inversion by minimizing the ti norm of gradients of X, again weighted with a mask derived from

the image magnitude. Kressler et al. (2010) experimented using t and t 2 norm regularizations

directly on the susceptibility values, rather than posing the minimization on the gradient

coefficients. Another method to stabilize the susceptibility reconstruction problem is to acquire

data at multiple orientations and invert them simultaneously without regularization. This

approach was introduced by Liu et al. (2009) and also investigated by others such as Wharton and

Bowtell (2010) and Schweser et al. (2011).

In this work, two different regularization schemes are investigated for susceptibility inversion;

using fi-regularized QSM that parallels the approach of Liu et al. (2010) and 12-regularized QSM

which was introduced by de Rochefort et al. (2010). Given that magnetic susceptibility is a

property of the underlying tissue, in ti-regularized QSM the underlying assumption is that

susceptibility is approximately constant within regions of the same tissue type or within an

anatomical structure. Based on this premise, the fl-norm-penalized QSM algorithm regularizes

the inversion by requiring the estimated X to be sparse in the image gradient domain. On the other

hand, placing an t 2 norm penalty on the spatial gradients of x does not promote sparsity, but

results in a large number of small gradient coefficients and thus incurs a smooth susceptibility

reconstruction. In addition to regularized susceptibility inversion, the presented approach

incorporates a robust background phase removal technique based on effective dipole fitting (48),

which addresses the challenging problem of removing phase variations in the data that arise

primarily from bulk susceptibility variations between air and tissue rather than the more subtle

changes of X within the brain. Dipole fitting contains no parameters that need tuning and
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preserves the phase variations caused by internal susceptibility effects more faithfully than high-

pass filtering, as employed in susceptibility-weighted imaging (SWI) (41,42). All susceptibility

mapping methods require data acquired at only one field strength, thereby overcoming certain

limitations of the FDRI approach, including long scan times and the need for spatial registration

of image data acquired with different scanners at different field strengths.

Here, the ti and t 2 norm regularized QSM methods are described and applied to SWI data

previously acquired in groups of younger and elderly, healthy adults (35). To validate the iron

measures, the results of QSM methods were compared with values published from a postmortem

study (1). As further validation, QSM results were compared with those based on FDRI collected

in the same adults (35) to test the hypothesis that the iron deposition in striatal and brain stem

nuclei, but not white matter or thalamic tissue, would be greater in older than younger adults. The

chapter closes with a fast algorithm that achieves t 2-regularized susceptibility mapping in

seconds.

3.2 Methods

3.2.1 Susceptibility and MR signal phase

The normalized magnetic field shift 6 measured in a gradient-echo sequence is related to the MR

image phase p via 6 = -(p/(Boy-TE), where Bo is the main magnetic field strength, y is the

gyromagnetic ratio, and TE is the echo time. It follows from Maxwell's magnetostatic equations

that the relationship between the underlying susceptibility distribution X and the observed field

shift 6 is given by (47,49,50)

k k2
Fb= - o(FX)

3 k2 k2 ±k (+k)2 (3.1)

where F is the discrete Fourier transform matrix, kx and k, are the in-plane frequency indices, k,

is the frequency index along BO, and o denotes element-wise multiplication. Denoting with D the

kernel that relates the field map to the susceptibility, the relation can also be expressed as

6 = F-1 DFX (3.2)

The spatial frequencies at which the kernel is zero define a conical surface in k-space, which

effectively undersamples the Fourier transform of X and thereby gives rise to the ill-posed

problem of susceptibility estimation from image phase. In addition, the susceptibility kernel is not

defined at the center of k-space (the DC point), but one can choose a solution that vanishes at

60



infinity, which is obtained by setting the Fourier transform of the field to 0 at k = 0 (47). This

assignment of signal for the k-space origin causes the resulting X to have zero mean; but

independent of the particular design choice for this DC signal, the susceptibility distribution is

inherently a spatial map of relative susceptibilities. Under the assumption that the field map and

the susceptibility distribution are differentiable along k,, Li et al. (2011) derived that the

convolution kernel equals -2/3 at k = 0. In this work, the convention of assigning 0 to the DC

value of the kernel is adopted. Thus, to achieve absolute quantification of X, some reference value

needs to be established. For this study, the magnetic susceptibility value in splenium is chosen as

a reference. This structure was preferred over taking as a reference the CSF, for which the

susceptibility values were observed to differ substantially between the anterior and the posterior

ventricles in this study.

3.2.2 Background effect removal from the field map

In addition to the relatively subtle internal effects of the tissue iron on the MRI phase,

background artifacts caused by air-tissue boundaries contribute the vast majority of signal

variation in the observed phase. While the susceptibility difference between air and water is about

9.4 ppm (parts per million) (51), the largest within-brain variation due to tissue iron is more than

an order of magnitude smaller. Assuming that the average human tissue susceptibility is similar to

that of water, it is clear that background effects dominate the observed phase and this undesired

signal component is a challenge to robust susceptibility inversion. Because the background

effects usually vary slowly across space, various methods have been proposed to filter them out

based on this frequency characteristic, such as polynomial fitting (44) and forward modeling to

estimate the phase from the air/tissue interface (52). Even though these methods are effective for

background phase removal, their impact on the internal phase variations due to tissue iron is

unclear. A recent background field removal algorithm, effective dipole fitting (48), aims to

estimate the background susceptibility distribution that optimally matches the field inside the

region of interest (ROI), and removes this contribution to recover the foreground field map. This

is achieved by solving a least-squares problem

27,= argmin~ M(o -F-DFNx)II (3.3)

where M is the brain mask that marks the ROI and M is the complement of M, thus marking

the background. After solving for Xou, the field map induced only by the internal local effects is

obtained by

6d = V-F DFix0 ,, (3.4)
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Compared with high-pass filtering, effective dipole fitting was seen to yield 1/3 to 1/7 times the

root-mean-square error relative to the true field maps obtained from reference scans (48). Another

elegant background removal technique called SHARP (45), with results comparable to those of

the dipole fitting method (53), involves removing the harmonic contributions to the phase inside

the region of interest by filtering.

3.2.3 Susceptibility inversion with f1 regularization

The final step in the proposed algorithm is to estimate the susceptibility distribution that gives

rise to 6,.. Hence, the aim is to solve

6,, = F-1 DFX,. (3.5)

Because some of the spatial frequencies are undersampled by the kernel D, the inversion of XZn

benefits from regularization that imposes prior knowledge on the reconstructed susceptibility

map. The susceptibility values are tied to the paramagnetic properties of the underlying tissue

structure; hence they vary smoothly across space within anatomical boundaries and can be

approximated to be piece-wise constant. In this case, the susceptibility map is expected to be

sparsely represented in the spatial image gradient domain. To formulate this belief, the aim is to

find the X distribution that matches the field map 6,,, and that also has sparse image gradients

G,

X,, = argmin, 1,, - F' DF 'X + 1G x11, with G = G, (3.6)

G

where I|GX 1 is the f1 norm of image gradients in all three dimensions, and I is a

regularization parameter that trades off data consistency and spatial smoothness. This convex

program is very similar to the objective function in the compressed sensing (CS) MRI literature,

where the aim is to reconstruct MR images from undersampled k-space data. According to CS

theory, if the underlying image can be approximated to be sparse in a transform domain, then it

can be recovered from randomly undersampled k-space data via a nonlinear recovery scheme, and

the reconstruction quality depends on the number of observed frequency samples as well as the

coherence of the aliasing artifacts in the transform domain (54). The nonlinear recovery method

usually involves penalizing the Ci norm of the transformed image. Based on this, Eq. (3.6) can be

viewed as CS reconstruction with a modified observation matrix DF instead of the undersampled

Fourier transform.
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An objective function similar to Eq. (3.6) has been previously proposed in Liu et al. (2010),

which included a smoothing term of the form ||WG G x||L . Here, WG is a weighting matrix

derived from the MRI image magnitude, and L denotes the choice of the norm, which can be

either t, or a homotopic approximation to the to norm. Apart from the magnitude weighting, the

presented method parallels this approach.

3.2.4 Susceptibility inversion with t2 regularization

Another way of introducing regularization to the inversion problem is by penalizing the C2 norm

of spatial gradients of the susceptibility distribution,

Xi, = argmin 6,, -F- 1 DF '1+ p -G Ill (3.7)

In contrast with the t 1 regularization that promotes sparse spatial gradients (i.e. a small number

of non-zero gradient coefficients), t 2-regularized inversion favors a large number of small

gradient coefficients. Regularized QSM with t 2 norm penalty was introduced in de Rochefort et

al. (2010), which also included a weighting matrix W, derived from the signal magnitude in the

regularization term to yield 1W, G X1|. To investigate the effect of the regularization norm

selection in susceptibility inversion, QSM results with both regularization styles are presented.

3.2.5 Effect of regularization parameters X and P

The regularization parameter A in Eq. (3.6) determines the smoothness of the reconstructed

susceptibility map such that larger values of A yield smoother image results than do smaller ones

(Fig. 3.1). This flexibility permits controlling the scale of spatial features present in the X

reconstruction.
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Fig. 3.1. L-curve for ti-regularized QSM results for a young subject. X-axis: data consistency

term o6-F-' DF xH in regularized reconstruction for varying values of the smoothing parameter

A. Y-axis: regularization term|IG x11 . Setting A = 5-10-5 yielded an under-regularized

susceptibility map with ringing artifacts (a), whereas using A = 10-3 resulted an over-regularized

reconstruction (c). For A = 2- 104, the operating point with the largest curvature on the L-curve

was obtained (b). This setting was used for the reported f -regularized results.

In terms of imposing prior belief on the susceptibility distribution, it is possible to recover Eq.

(3.6) by assuming that the normalized field map bi, is corrupted by white Gaussian noise with

some variance a- and by placing a sparsity-promoting Laplacian prior distribution on the gradient

coefficients of the x map,

(3.8)
POaX) A )M expK 2 A _

where ax represents the spatial gradient of x, and M is the total number of voxels in X. With

these noise and prior models, invoking the maximum a posteriori (MAP) estimate reduces to Eq.

(3.6). From this point of view, using a large A will produce a highly peaked prior distribution at

zero, inducing sparser image gradient solutions, and smoother susceptibility maps.
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Again from a Bayesian perspective, the t 2 norm regularization corresponds to computing the

MAP estimate after placing a multivariate Gaussian prior on the gradient coefficients of the

susceptibility map,

(3.9)
PQX)= 1 2 2 2

(2OX.2 ,)M12 ( 2 2 1I X =1 )

where o2 is the data noise in the field map and # is the regularization parameter in Eq. (3.7).

Hence, the variance of the gradient coefficients (a.2 / P) is inversely proportional to the t 2

regularization parameter p. Accordingly, a large regularization parameter will limit the variation

in the gradient coefficients and induce smaller values (Fig. 3.2).

(b)13= 1.5.10-2 (c)3= 7-10-2

1 2 3 4 5 6 7 8
data consistency

Fig. 3.2. L-curve for C2-regularized QSM results for a young subject. X-axis: data consistency

term o - F' DFX112 in regularized reconstruction for varying values of the smoothing parameter

p8. Y-axis: regularization term |G x112. Setting # = 3-10-3 yielded an under-regularized

susceptibility map with ringing artifacts (a), whereas using #= 7-10-2 resulted an over-regularized

reconstruction (c). For #= 1.5-10-2, the operating point with the largest curvature on the L-curve

was obtained (b). This setting was used for the reported C2-regularized results.
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3.2.6 Selection of regularization parameters I and P

To choose appropriate regularization parameters that balance data consistency and the amount of

regularization, the L-curve method was employed (55). The corners of the L-curves were not

sharp for t - and 2 -regularized reconstructions (Figs. 3.1&2), and optimal regularization

parameters were determined by finding the operating points with the largest curvature. L-curve

tests were performed on a young and an elderly subject from the in vivo dataset and the optimal

operating points were found to be A= 2-1 04for ti-regularized QSM and 8=1.5-10-2for f 2-

regularized reconstructions on both the young and the elderly subjects.

3.2.7 Dataset acquired in younger and elderly adults used for comparison of regularized

QSM and FDRI

To examine consistency with our previous study that investigated the performance of FDRI (35),

the proposed iron quantification algorithm was tested on the same dataset, as summarized below.

Subjects

Two groups of healthy, highly educated, right-handed adults were studied: 11 younger adults

(mean+S.D. age = 24.0 ± 2.5, range = 21 to 29 years, 15.9 years of education; 5 men, 6 women)

and 12 elderly adults (mean+S.D. age = 74.4 ± 7.6, range = 64 to 86 years, 16.3 years of

education; 6 men, 6 women). The younger subjects included laboratory members and volunteers

recruited from the local community. All older participants were recruited from a larger ongoing

study of normal aging and scored well within the normal range on the Dementia Rating Scale

(56): mean = 140.6, range = 132 to 144 out of 144, cutoff for dementia = 124. Mean (and range)

of days between 1.5T and 3.OT scan acquisition were 16.5 (0 to 56) days for the young and 9.3 (0

to 42) days for the elderly group; for 2 of the young and 8 of the elderly both sets of scans were

acquired on the same day.

Image acquisition protocols

MRI data were acquired prospectively on 1.5T and 3.OT General Electric (Milwaukee, WI) Signa

human MRI scanners (gradient strength = 40 mT/m; slew rate = 150 T/m/s).

FDRI acquisition

At 1.5T, after auto shimming for the session, the following sequences were acquired for 62 axial

slices, each 2.5 mm thick:
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1) 3D SPoiled Gradient Recalled Echo (SPGR) for structural imaging and registration

(TR/TE=8.1/3.3 ms, FA=30');

2) multi-shot Echo Planar Spin Echo (EPSE) (TR/TE 6000/17, FA=90 0 , 256x192 in-plane,

FOV=24 cm, 4 NEX, 24 interleaves with 8 phase-encode lines per TR, 9:40 min);

3) multi-shot EPSE (TR/TE 6000/60, FA=90', 256x192 in-plane, FOV=24 cm, 6 NEX, 24

interleaves, 14:20 min).

At 3.0T, after auto shimming for the session, the following sequences were acquired in the

axial plane:

1) 3D SPGR for structural imaging and registration (TR/TE=8.1/3.3 ins, FA= 150, 124 slices,

1.25 mm thick);

2) multi-shot EPSE (TR/TE 6000/17, FA=90*, 256x192 in-plane, FOV=24 cm, 3 NEX, 24

interleaves, 62 slices, 2.5 mm thick, 7:10 min);

3) multi-shot EPSE (TR/TE 6000/60 ins, FA=90 0 , 256x 192 in-plane, FOV=24 cm, 6 NEX,

24 interleaves, 62 slices, 2.5 mm thick, 14:20 min).

Susceptibility-Weighted Image acquisition

At 1.5T, after auto shimming for the session, the following sequences were acquired for 62 axial

slices, each 2.5 mm thick:

1) 3D SPGR for structural imaging and registration (TR/TE=28/10 ins, FA=30 0 , 256x256

in-plane, 24 cm FOV);

2) susceptibility-weighted 3D SPGR (TR/TE=58 ms/40 ins, FA=15', 512x256 in-plane, 24

cm FOV, 12:20 min, with flow compensation) (34,57);

3) 2D gradient-recalled echo sequence (TR/TE=600/3 ins, FA=20');

4) 2D gradient-recalled echo sequence (TR/TE=600/7 ms, FA=20').

Phase images were constructed from the real and imaginary components of the SWI-SPGR

data after the phase had been unwrapped with FSL PRELUDE (Phase Region Expanding Labeler

for Unwrapping Discrete Estimates (58)). The magnitude and phase-unwrapped SWI data were

down-sampled from 512x256 to 256x256 via averaging to match the FDRI resolution. Brain

masks were generated with the FSL Brain Extraction Tool, BET (59), to be used in the dipole

fitting step for background phase removal. After estimating the foreground field maps from the
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unwrapped phase data with the down-sampled size 256x256, susceptibility maps were generated

with the two QSM algorithms.

Image registration

As previously described (35), for each subject and for 1.5T and 3.OT separately, the late-echo

EPSE data were nonrigidly registered (60) [http://nitrc.org/projects/cmtk/] to the early-echo EPSE

data. This was necessary because the two echoes arose from separate acquisitions, rather than a

single dual-echo acquisition, and were, therefore, not always perfectly aligned with each other.

The 1.5T early-echo EPSE image of each subject was registered to the 3.OT early-echo EPSE

image of the same subject, which was then registered nonrigidly to the subject's 3.OT SPGR

image. The 3.OT SPGR image from each subject, after brain extraction using BET, finally was

registered nonrigidly to the SPGR channel of the SR124 atlas (22)

[http://nitrc.org/projects/sri24/]. Via concatenation of the aforementioned registration

transformations, the 1.5T and 3.OT early-echo and late-echo images were all reformatted into 1-

mm isotropic SR124 space, each using a single interpolation with a 5-pixel-radius cosine-

windowed sinc kernel. Reformatting both 1.5T and 3.OT data from each subject into SR124

coordinates via that subject's 3.OT SPGR image (rather than separately via the early-echo EPSE

images at each field strength) ensures that the unavoidable inter-subject registration imperfections

are consistent for images from both field strengths. The 1.5T SWI magnitude images were rigidly

registered to a contemporaneously acquired structural SPGR image, which was then registered

nonrigidly to the same subject's 3.OT SPGR image. The SWI-SPGR registration was limited to a

rigid transformation because signal dropouts in magnitude SWI due to BO field inhomogeneities

prevented nonrigid correction of the relatively small distortions between SWI and SPGR. Again,

via concatenation of transformations, the phase images were reformatted into SR124 space, again

with a 5-pixel radius cosine sinc kernel. All data were analyzed in common 1-mm isotropic

SR124 atlas space.

Region-of-Interest (ROI) identification

Voxel-by-voxel FDRI images (FDRI=(R2 3t-R21 .sT)/1.5T) were created for each subject and used

to make a group FDRI average, comprising all young and elderly subjects. A similar group

average was made for the QSM images, and separate young and elderly group averages were

made for display purposes (Fig. 3.3).
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Fig. 3.3. Young (left) and elderly (right) group averages for FDRI (a), E -regularized QSM (b),
and 2-regularized QSM (c). Greater iron concentration yields brighter QSM and FDRI images.

Splenium reference ROIs are indicated with a white box on the axial QSM slices.

As previously described (35), bilateral caudate, globus pallidus, putamen, thalamus, and white

matter sample regions of interest (ROIs) were drawn on the group-average (all young plus all

elderly subjects) FDRI images in common SR124 space, reformatted in the coronal plane. The

globus pallidus, putamen, caudate, and white matter sample were drawn on 10 contiguous, 1-mm

thick slices at an anterior-posterior location that maximized the presence of all three basal ganglia

structures in the same slices. The thalamus was drawn on the next 10 contiguous slices posterior

to the basal ganglia. The caudate was eroded one pixel and thalamus was eroded two pixels on a

slice-by-slice basis to avoid partial voluming of CSF. Substantia nigra and red nucleus ROIs were

also identified, based on their FDRI intensities. The same ROIs were also manually identified on
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the group-average phase data (all young and all elderly combined), reformatted in the axial plane

(61), and guided by phase conspicuity. When drawing ROIs on the phase data, an effort was

made to exclude the bright rims around the globus pallidus and putamen as well as the division

between them. Although this approach biases the data towards more negative phase (i.e., lower

values reflecting less iron), its purpose was to maximize the sensitivity of phase to age effects.

Thus, iron estimates were conducted on both sets of ROI identifications, the phase-guided and the

FDRI-guided.

For each subject and for each ROI at each field strength, the mean intensity of all voxels in an

ROI for the early- and late-echo EPSE were used to compute R2 3T and R2
1.5T and the FDRI. QSM

values were computed as the magnetic susceptibility in parts per million (ppm) for all voxels

identified in each ROI projected onto each individual's QSM dataset. Thus, both FDRI intensity

and phase conspicuity were each used to guide ROI delineation. The average susceptibility of

splenium in each subject was used as a reference for that subject's reported QSM results. This

was preferred over taking the CSF susceptibility as a reference, as it was seen to differ

substantially between the anterior and the posterior regions. Although the raw averages in the

splenium did not differ significantly between the young and the elderly groups (p=0.2359 for fl-

regularized and p=0.2016 for t 2-regularized QSM), they were larger in the elderly group than the

young group ( ,w = -0.0378 ppm and Y ""," g = -0.0479 ppm for t-regularized and

4ni m = -0.0297ppm and = -0.0374ppm for 2 -regularized QSM). This should

induce a bias against observing young-elderly group susceptibility differences in the regularized

QSM reconstructions.

Statistical analysis

It was predicted in this study that the ROI iron values would correlate positively with published

postmortem iron values (1) and with FDRI values. Comparisons of the two in vivo iron indices

with each other and also with published postmortem values were based on nonparametric

(Spearman) correlations. The hypotheses that, relative to the young group, the elderly group

would have higher QSM and FDRI values in striatal and brain stem ROls, but not in thalamic or

white matter ROIs was tested. Because a directional hypotheses was posed, group differences

were considered significant at p:50.0125, the one-tailed, family-wise Bonferroni-corrected p-value

at cx=0.05 for 8 measures. All measurements were conducted twice: once with FDRI-guided ROI

identification, and once with phase-guided ROI identification.
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3.3 Results

3.3.1 Correlations of FDRI and QSM values with postmortem iron concentrations

Fig. 3.4 presents the mean ± SD iron concentration determined postmortem in each ROI (1) on

the x-axis and the mean ± SD FDRI values in s~'/Tesla and ti-regularized QSM values in ppm for

young plus elderly subjects on the y-axis. The correlations between ti-regularized QSM and

postmortem (Rho = 0.881, p = 0.0198), between t 2-regularized QSM and postmortem (Rho =

0.881, p = 0.0198), and between FDRI and postmortem iron indices (Rho = 0.952, p =0.01 17)

were high.

LI (axial) vs. Postmortem
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6-

4-

3-
red mcious

2

0 5 10 16 20 26 30
Postortem

FDRI (axial) vs. Postmortem
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Fig. 3.4. X-axis: Mean ± SD iron concentration (mg/100 g fresh weight) determined postmortem

in each ROI (1). Y-axis: Mean + SD Ci-regularized QSM in ppm (left) and FDRI in s '/Tesla

(right) indices in all 23 subjects (black squares); the gray circles indicate the mean of the young

group, and the open circles indicate the mean of the elderly group.

3.3.2 Correlations between in vivo QSM and FDRI iron concentration metrics

To investigate the consistency between the iron concentrations predicted by the two QSM

methods and FDRI, the three metrics in each ROI belonging to the 23 subjects were correlated.

The correlation parameters indicate strong agreement between ti-regularized QSM and FDRI

(Rho = 0.976, p = 0.0098) (Fig. 3.5) and between f 2-regularized QSM and FDRI (Rho = 0.976, p

= 0.0098) (not shown).
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Fig. 3.5. Correlation between FDRI and t I-regularized QSM results on the regions of interest.
Results indicate strong relationship between the two methods (Rho =0.976, p = 0.0098). Left: all
23 subjects; middle: young group; right: elderly group.

3.3.3 Age differences in regional iron concentration: QSM and FDRI

All ROI and statistical analyses were conducted on both phase-guided and FDRI-guided ROIs.

Based on the initial FDRI data analysis, which reported lack of consistent cerebral hemisphere

asymmetries across iron-rich structures (35), all analyses herein used bilateral data, expressed as

the mean of the left and right measures for each ROI (Table 1). The three methods produced

essentially the same results. All t-test and p-values are presented in Table 1.

3.3.4 Age differences identified with regularized QSM

Analysis of the QSM results indicated that the elderly group had significantly more iron than the

young group in striatal regions of the putamen and globus pallidus for both ti- and t 2-norm

regularized results. Even though the elderly tended to have more iron in the caudate nucleus than

the young, the difference was not significant in either of the QSM methods. Likewise, t1- and f 2 -

regularized QSM values indicated significantly more iron in the elderly than young group in the

red nucleus and substantia nigra, but not the dentate nucleus. The only exception was the ti-

regularized substantia nigra results on the phase-guided ROls, for which the group difference was

not significant using family-wise Bonferroni correction

Average susceptibility values in the thalamus tended to be lower in the elderly relative to the

young (indicating less iron in the elderly group) for both types of regularization, and this

difference was significant for t 2 norm regularized QSM under phase-guided ROIs. Likewise, the

elderly had smaller susceptibility values in the white matter sample, but the difference was not

significant (Fig. 3.6).
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Table la. Mean (±SD) of each measure by region for each group: t-regularized QSM
results using phase-guided ROIs and FDRI-guided ROIs
Region f1-regularized QSM (ppm), phase-guided ROIs ti-regularized QSM (ppm), FDRI-guided ROIs

Young Elderly t(elderly>young) Young Elderly t(elderly>young)
(N=11) (N=12) (N=11) (N=12)

Frontal WM 0.0367 0.02982 t=-0.7505a 0.0349 0.0275 t=-0.9182a
(0.0187) (0.0251) p=0.2307 (0.0190) (0.0194) p=O. 1844

Thalamus 0.0464 0.0220 t-2.1336a 0.0420 0.0208 t=-1.8805a
(0.0230) (0.0129) p=0.022 4  (0.0210) (0.0317) p=0.0370

Caudate 0.0937 0.1033 t=0.9689 0.0763 0.1038 t=2.1970
(0.0189) (0.0274) p=O.1718 (0.0224) (0.0356) p=0.0197

Putamen 0.0779 0.1233 t=3.8807 0.0683 0.1134 t=3.5777
(0.0188) (0.0343) p=0.0004 (0.0205) (0.0369) p=0.0009

Globus Pallidus 0.1224 0.1472 t=2.5420 0.1422 0.1961 t=4.9807
(0.0200) (0.0261) p=0.0095 (0.0172) (0.0318) p=.0001

Substantia Nigra 0.0820 0.1113 t=2.0712 0.1045 0.1524 t=3.0319
(0.0299) (0.0372) p=O.0254 (0.0426) (0.0331) p=0.0031

Red Nucleus 0.0933 0.1473 t=3.2568 0.0927 0.1435 t=2.8404
(0.0379) (0.0413) p=0.0019 (0.0395) (0.0458) p=0.0049

Dentate Nucleus 0.0693 0.0595 t=-10000a 0.0544 0.0487 t=~0.6703a
(0.0151) (0.0292) p=0.1643  (0.0174) (0.0225) p=0.2550

p-values are 2-tailed. Numbers in bold indicate significant differences, family-wise Bonferroni corrected based on one-
tailed directional hypotheses, requiring p<.0.0125 for 8 comparisons.
a Negative t values indicate a group difference with the elderly having less iron than the young.

Table 1b. Mean (±SD) of each measure by region for each group: t 2 regularized QSM
results using phase-guided ROIs and FDRI-guided ROIs

Region t 2-regularized QSM (ppm), phase-guided ROIs t 2-regularized QSM (ppm), FDRI-guided ROIs
Young Elderly t(elderly>young) Young Elderly t(elderly>young)
(N=11) (N=12) (N=11) (N=12)

Frontal WM 0.0240 0.0191 t=--0.8163a 0.0228 0.0187 t=-0.7029a
(0.0146) (0.0143) p=0.2 118 (0.0156) (0.0124) p=0 .244 9

Thalamus

Caudate

Putamen

Globus Pallidus

Substantia Nigra

Red Nucleus

Dentate Nucleus

0.0388 0.0155 t=-2.738a
(0.0214) (0.0194) p=0 .0061

0.0814 0.0897 t=1.1032
(0.0164) (0.0195) p=O.1412

0.0677 0.1101 t=4.7501
(0.0168) (0.0248) p=0 .0001

0.1069 0.1341 t=3.0833
(0.0188) (0.0233) p=0.00 28

0.0656 0.0939 t=2.5812
(0.0280) (0.0246) p=0. 008 7

0.0740 0.1184 t=3.2024
(0.0333) (0.0331) p=0.0021

0.0570 0.0509 t=-0.9161a
(0.0137) (0.0178) p=0.1850

0.0344 0.0139 t=-2.3931a
(0.0199) (0.0211) p=0.0131

0.0653 0.0888 t=2.2814
(0.0211) (0.0276) p=0.0166

0.0568 0.0976 t=4.3091
(0.0176) (0.0264) p=0.0002

0.1221 0.1740 t=5.1724
(0.0153) (0.0298) p=0.0001

0.0832 0.1210 t=3.0743
(0.0354) (0.0227) p=0.0029

0.0738 0.1141 t=2.6751
(0.0339) (0.0379) p=0.0071

0.04314 0.0400 t-0.5076a
(0.0146) (0.0147) p=0.3 085
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Table 1c. Mean (±SD) of each measure by region for each group: FDRI results using phase-
guided ROIs and FDRI-guided ROIs

Region FDRI (s'/Tesla), phase-guided ROIs FDRI (s1 /Tesla), FDRI-guided ROIs
Young Elderly t(elderly>young) Young Elderly t(elderly>young)
(N=11) (N=12) (N=11) (N=12)

Frontal WM 2.02 1.545 t=-2.8643a 2.0732 1.5976 t=-1.8535a
(0.3268) (0.4522) p=0.0093 (0.6149) (0.6144) p=0.077 9

Thalamus

Caudate

Putamen

Globus Pallidus

Substantia Nigra,

Red Nucleus

Dentate Nucleus

2.331 1.698 t=-2.6712a
(0.5172) (0.6105) p=0.0143

2.531 3.198 t=2.1812
(0.4752) (0.9042) p=0.0407

2.954 3.904 t=3.7284
(0.4282) (0.738) p=0.0012

4.223 4.497 t=0.8642
(0.5178) (0.9267) p=0.3972

3.225 3.421 t=0.4804
(0.9541) (0.9988) p=0.6359

3.268 3.932 t=1.7415
(0.9763) (0.8528) p=0.0962

2.41 2.533 t=0.3546
(0.7971) (0.8682) p=0.7264

2.2635 1.6767 t=-2.4115a
(0.5353) (0.6229) p=0.0251

2.5384 2.9789 t=1.3198
(0.3842) (1.0421) p=0.2011

2.8900 3.9732 t=4.1820
(0.4137) (0.7612) p=0.0004

4.8961 5.5338 t=1.9285
(0.4369) (1.0121) p=0.0674

3.1479 3.9619 t=2.0290
(0.9576) (0.9641) p=0.0553

3.1284 3.99916 t=2.5240
(0.8765) (0.7634) p=0.0197

2.0137 1.9244 t=-0.3637
(0.5972) (0.5801) p=0.7196

020-

015-

010-

005.

0.00-

Li-OSM

YoungP

ilII
(c~~A~c~~ ~'3' 4 all

L24SU
0,20-

0,10-

005-

0 00 ILPIIII
*P<,05. * P<01..an p<001, *a p<0OD elderly >young (2-taded)

+ p<.05 young> elderly (2-tailed)

Fig. 3.6. Mean ± S.E.M. of average susceptibility in ppm computed by the two methods (ti-

regularized QSM, top; f2-regularized QSM, bottom) for each ROI in the young and elderly

groups.
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3.3.5 Age differences identified with FDRI

The elderly group had a significantly higher FDRI than the young group in the putamen but not

the caudate nucleus or the very iron-rich globus pallidus. Although the elderly tended to have

higher FDRI values in the red nucleus and substantia nigra, the differences were not significant;

the groups did not differ significantly in FDRI of the dentate nucleus. By contrast, the FDRI

values in the thalamic and white matter samples were significantly lower (indicative of less iron)

in the elderly than the young group.

3.4 Discussion

This study presented regularized QSM methods with two different choices of regularization,

namely t, and f2 norm penalties, for quantifying susceptibility-weighted imaging data, and

established their ability to measure iron concentration in regional striatal and brain stem nuclei of

young and elderly adults. The in vivo estimates of regional iron concentration comported well

with published postmortem measurements (1), with both approaches yielding the same rank

ordering of iron concentration by brain structure, from lowest in white matter to highest in globus

pallidus. Further validation was provided by comparison of the in vivo measurements, the two

QSM methods and FDRI, which again yielded perfect rank ordering of iron by structure. The

final means of validation was to assess how well each in vivo method detected known age-related

differences in regional iron concentrations measured in the same young and elderly healthy

adults. Results from all three methods were consistent in identifying higher iron concentrations in

striatal and brain stem ROIs (i.e., caudate nucleus, putamen, globus pallidus, red nucleus and

substantia nigra) in the older than the young group. With the exception of f 1-regularized results

for the substantia nigra averaged under phase-guided ROIs, QSM values in the globus pallidus,

red nucleus and substantia nigra were significantly larger in the elderly than the young based on

both FDRI- and phase-guided ROls using ti or E2 regularization. For the FDRI metric, significant

difference was observed only in the putamen for FDRI- and phase-guided delineation. Therefore,

QSM appeared more sensitive than FDRI in detecting age differences in brain stem structures by

producing much smaller p-values in the statistical tests. Although both measurement approaches

identified the globus pallidus as being the most iron-rich structure regardless of age, only QSM

found that the concentration in the elderly was significantly higher than that in the young adults.

The average susceptibility value in the globus pallidus of young subjects has been reported to be

around 0.20 ppm by several groups, e.g. (45,62) (taking CSF as reference, with isotropic voxels),
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which is larger than the group averages reported in this study (0.10 - 0.14 ppm, taking splenium

as reference) . This difference might stem from averaging across subjects and partial volume

issues considering the 2.5 mm slice thickness used in data acquisition.

The two regularized QSM methods produced iron concentration estimates consistent with the

well-established FDRI metric. In addition to yielding strongly correlated results to both FDRI and

postmortem data, the susceptibility mapping approach possesses several other favorable qualities.

First, the data acquisition step for QSM is completed at a single field strength, whereas

acquisitions at two field strengths are required to compute the FDRI values. Working at a single

field strength also eliminates the need for spatial registration, and thus a potential source of

measurement error. Second, the susceptibility maps estimated with the QSM algorithms have a

higher spatial resolution than the FDRI images. This has the additional benefit of enabling the

quantification of vessel oxygenation ratios, because the individual vessels can be clearly resolved

in the produced X maps. However, the presented QSM algorithms produce relative maps of tissue

susceptibility, which requires the selection of a reference susceptibility value for absolute

quantification. In this study, the average susceptibility of splenium in each subject was taken as

reference, but a point to note is that white matter samples have been reported to have anisotropic

susceptibility (63), i.e., their susceptibility values depend on the orientation relative to the main

magnetic field.

The regularized QSM algorithms can be considered a refinement of the pioneering work by

Haacke (34,41,42) on Susceptibility-Weighted Imaging (SWI), which estimates local iron

concentration by inspecting the changes in gradient-echo image phase. Because the background

phase constitutes the major part of the observed phase, high-pass filtering is applied to obtain an

estimate of the phase accrued by the tissue iron while removing the slowly-varying background

effects. Although practical, filtering also removes some tissue phase information (48).

The proposed method addresses this problem by using an optimization approach called dipole

fitting (48) that estimates and subtracts the background phase without affecting the tissue phase.

In addition to yielding high-quality tissue field maps, dipole fitting only requires the solution of a

least-squares problem, which can be done using a variety of gradient or conjugate direction

optimization methods. As opposed to the high-pass filtering approach, which requires optimal

selection of filter size, and polynomial fitting that depends on the order of the polynomial, dipole

fitting contains no parameters that need tuning. On the other hand, high-pass filtering methods are

dramatically faster than iterative optimization methods employed in the dipole fitting approach.

In addition, rather than relying only on the image phase, which produces a spatially distorted
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measure of tissue iron concentration, the proposed method solves for the underlying paramagnetic

property of the tissue and produces a regularized measure of x, which in turn is a sensitive

estimate of iron concentration.

Other susceptibility mapping algorithms have demonstrated robust results. An elegant

approach by Schweser et al. (2011) estimated the X distribution without employing regularization.

This approach, however, requires data to be acquired at three different orientations with respect to

the main magnetic field, thereby providing challenges to subjects in terms of scan time and head

positioning and challenges to post-acquisition processing in terms of spatial registration. Another

influential QSM algorithm using regularization was introduced by de Rochefort et al. (2010) and

it forms the basis of the t 2-regularized method used in our work. After obtaining the tissue field

map by solving a least squares problem similar to the dipole fitting formulation of Liu et al.

(2010), this QSM algorithm places a weighted 12 norm penalty on the spatial gradients of X.

However, posing the reconstruction problem with an Ci norm penalty that promotes sparsity in the

spatial gradient domain of the susceptibility distribution may be a better fit to the nature of the

problem. As the susceptibility kernel effectively undersamples the k-space of the tissue field map,

the inversion problem is inherently an under-determined system similar to the one encountered in

the compressed-sensing literature (54). The demonstrated ability of sparsity-inducing priors in

undersampled image reconstruction makes the C1 norm an excellent candidate for susceptibility

mapping (64), and the ti-regularized algorithm in this study parallels this effort. An interesting

comparison in (62) between the C2-regularized approach similar to that of (47) against a multiple-

orientation reconstruction strategy should also be noted. These results indicate that f 2-regularized

single-orientation susceptibility maps yield iron estimates of quality comparable to those

calculated using data acquired at multiple orientations.

3.5 Fast 2-regularized QSM

This section presents a solution to the regularized QSM formulation that is computed in less than

5 seconds, which yields the exact minimizer of the optimization problem unlike time-consuming

iterative methods. The proposed method is straightforward to implement and can be coded in a

single line of Matlab code. Results are presented on a numerical phantom with known

susceptibility and on in vivo data.
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3.5.1 Methods

42-regularized reconstruction involves the minimization of |18i, - FHDFXI 1| + - I GX 1I, as

introduced in Eq. (3.7). The minimizer can be evaluated in closed-form by taking the gradient and

setting it to zero,

Xin = (FHD 2 F + f - GHG)-lFHDFin (3.10)

Eq. (3.10) can be computed efficiently given that the matrix inversion is rapidly performed.

The gradient along the x-axis can be expressed as

G, = FHEF (3.11)

where E, is a diagonal matrix with entries E,(i, i) = 1 - e(2 kx(i,i)/Nx), which is the k-

space representation of the difference operator Ex - 8,_1. Here, kx is the k-space index and Nx is

the matrix size along x, and Gy and Gz are similarly defined. With this formulation, the closed-

form solution becomes,

Xin = F HD[D 2 + f - (EZ + E , + E2)]~1 Fi, (3.12)

The total cost is two FFTs and multiplication of diagonal matrices. For comparison, the

objective function is minimized iteratively using nonlinear conjugate gradient (CG) (6). 100 CG

iterations were used for all results. Experiments were performed on two datasets;

i. The first set is a numerical phantom with 3-compartments (gray and white matter, CSF).

Within each compartment, X is constant and equal to Xgray=-0.023, Xwhite=0.0 2 7 ,

XCSF=-0. 0 1 8 ppm (65). The field map 6 (Fig.3.7a) is computed from the ground truth X

map using the forward dipole model and Gaussian noise with peak-SNR = 100 was

added, so that the normalized RMSE of the noisy field map was 5.9% relative to the noise

free phase. ft was chosen to minimize the RMSE in the reconstructed X, and was found to

be f = 2 - 10-4. The same f was used for both the closed form and iterative

reconstructions.

ii. The second dataset is a 3D SPGR on a healthy subject at 1.5T with resolution

0.94x0.94x2.5mm3 and TR/TE = 58ms/40ms. Background phase (Fig.3.8a) was removed

using dipole fitting (48). ft = 1.5 - 10-2 was chosen based on the L-curve heuristic. Data

were zero-padded to twice the size to avoid aliasing with circular convolution.
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3.5.2 Results

Fig. 3.7 shows closed-form QSM reconstruction and the error relative to the ground-truth X for

the numerical phantom. Using Matlab running on a standard workstation, the proposed method

took 3.3 seconds and yielded 17.4% RMSE, while the iterative algorithm gave 18.0% error in 65

minutes.

In vivo reconstruction results are presented in Fig. 3.8, where the processing time was 1.3

seconds for the proposed method and 29 minutes for the iterative CG algorithm. The difference

between the closed-form and iterative solutions was computed to be 0.3% RMSE, and is depicted

at 250-times scaling in Fig.3.8c.

I Numerical Phantom with 3 compartments

(a) Noisy field map, error due to noise: 5.9% RMSE mppm

bClosed-form SM in 3.3 seconds

c Closed-form SM error relative to true m

OSM Method Recon Time Error relative to true y
Closed-form (proposed) 3.3 seconds 17.4% RMSE
Iterative (100 iterations) 65 minutes 18.0% RMSE

Fig. 3.7 Reconstruction experiment for the piece-wise constant numerical phantom with 3

compartments. (a) Noisy field map from which the susceptibility is estimated. (b) Closed-form

QSM solution. (c) Difference between ground truth and closed-form reconstructions.
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In Vivo QSM at 1.5T

(a) Tissue field map

OSM Method Recon Time
Closed-form (proposed) 1.3 seconds

Fig. 3.8 In vivo reconstruction at 1.5T. (a) Tissue field map obtained after removing the

background phase. (b) Closed-form QSM solution. (c) Difference between iterative and closed-

form solutions.

3.5.3 Remarks on the Fast t2-regularized QSM

The proposed closed-form solution is demonstrated to yield much faster and more accurate results

than its iterative counterpart. This QSM solver is expected to facilitate online reconstruction of

susceptibility maps.

3.6 Conclusion

Herein are presented two regularized Quantitative Susceptibility Mapping algorithms, employing

tI and t 2 norm regularization, which successfully remove background phase effects via dipole

fitting and solve for the tissue susceptibility distribution via convex optimization. The
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performance of these algorithms was favorable when compared with other published in vivo and

postmortem estimates of regional tissue iron concentrations. Because the accumulation of iron in

the brain can have untoward effects on motor and cognitive function in normal aging (38,39) and

can be disproportionately greater in degenerative diseases (66-72), quantitative assessment of this

accumulation has the potential of providing a tool for monitoring or even diagnosis. The

robustness, practicality, and demonstrated ability of predicting the change in iron deposition in

adult aging suggest that the presented QSM algorithms using single-field-strength data is a

possible alternative for FDRI tissue iron estimation requiring two field strengths. Further, a

closed form expression for f2-regularized QSM is developed, which leads to estimation of

susceptibility maps within seconds.
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Chapter 4

Lipid Suppression in Chemical Shift Imaging

Mapping 'H brain metabolites using chemical shift imaging (CSI) is hampered by the presence of

subcutaneous lipid signals, which contaminate the metabolites by ringing due to limited spatial

resolution. Even though CSI at spatial resolution high enough to mitigate the lipid artifacts is

infeasible due to signal-to-noise (SNR) constraints on the metabolites, the lipid signals have

orders of magnitude higher concentration, which enables the collection of high-resolution lipid

maps with adequate SNR. The previously proposed dual-density approach exploits this high-SNR

property of the lipid layer to suppress truncation artifacts using high-resolution lipid maps.

Another recent approach for lipid suppression makes use of the fact that metabolite and lipid

spectra are approximately orthogonal, and seeks sparse metabolite spectra when projected onto

lipid-basis functions. The present work combines and extends the dual-density approach and the

lipid-basis penalty, while estimating the high-resolution lipid image from 2-average k-space data

to incur minimal increase on the scan time. Further, the spectral-spatial sparsity of the lipid ring is

exploited to estimate it from substantially undersampled (acceleration R = 10 in the peripheral k-

space) 2-average in vivo data using compressed sensing, and improved lipid suppression relative

to using dual-density or lipid-basis penalty alone is still obtained.

4.1 Introduction

The spatial resolution in proton spectroscopic imaging is constrained by the low SNR of the

metabolite signals and the total scan time required for encoding in both chemical shift and space.

Poor spatial resolution with impulse response functions of either square or circular k-space

sampling leads to significant spatial ringing artifacts, which in the case of large and undesirable

signals from subcutaneous lipid layer in spectroscopic imaging of the brain can significantly

contaminate the desired metabolite spectra throughout the brain. Considering that the lipid signals

are several orders of magnitude stronger than the biochemical spectra, the diagnostic quality of

spectroscopic data is severely limited if the truncation artifacts are not mitigated by some means

of lipid suppression.
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Standard means of lipid suppression include outer-volume suppression (OVS) (73-75),

inversion recovery (76-78), and selective brain-only excitation (79,80). Although these methods

provide effective artifact reduction, their inevitable tradeoff and common drawback is the

associated loss of brain metabolite signals, either through signal loss in peripheral brain regions

(e.g. OVS, PRESS) or throughout the brain (IR). Another proposal for lipid artifact reduction is to

acquire CSI data with a variable sampling density pattern and apply SNR-optimal apodization in

the k-space to reduce the side-lobes of the point spread function (81). Optimal filters specifically

designed to reduce the lipid contamination inside the brain yield further improvement over the

variable density approach (82). An alternative approach acquires high-resolution lipid maps in

addition to highly oversampled, low-resolution CSI data. This dual-density method (83-85)

exploits the fact that the lipid signals have high SNR, so a high-resolution lipid estimate can be

obtained with adequate SNR for subsequent processing, which includes spatial lipid masking and

combination with low-resolution CSI data. Another research direction involves k-space

extrapolation with prior knowledge of spatial boundaries of the brain (86,87). In particular,

effective lipid suppression is demonstrated at a relatively short TE of 50 ms in (87). A yet

different method of lipid suppression was recently proposed (88) by relying on the approximation

that the metabolite and lipid spectra are orthogonal, and seeks sparse metabolite spectra when

projected onto lipid-basis functions selected from the lipid layer.

The present work combines and extends the dual-density approach and the iterative lipid-basis

reconstruction. A method to estimate the high-resolution lipid image from 2-average k-space data

in fast spiral CSI is proposed and demonstrated, wherein these data are combined with the low-

resolution CSI image while imposing the lipid-basis penalty. This way, the truncation artifacts are

substantially reduced at the expense of minimal increase in total scan time. This method is then

refined by incorporating the observation that the high-resolution lipid ring is sparse in both space

and chemical shift. This leads to successful recovery of the lipid image via compressed sensing

(4,6) using highly-undersampled peripheral k-space data.

To demonstrate the performance of the proposed methods, single-slice, high-resolution (0.16

cc) CSI data were acquired in vivo at 3T with 20 averages, requiring 33 min of scan time.

Applying the lipid-basis penalty to this high-resolution data yielded virtually artifact-free spectra,

which were taken to be the gold-standard results. To apply the basic method with fully-sampled

lipid data, 20 averages of low-resolution (0.56 cc, corresponding to 10 min of scan time) CSI data

were combined with 2 averages of high-resolution data while imposing lipid-basis penalty, and

reduced-artifact metabolite spectra were obtained with normalized RMSE (NRMSE) of 8.5 % in
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the NAA maps relative to the gold-standard reconstruction. However, using the lipid-basis

penalty approach (88) with 20 averages of 0.56 cc data yielded 41.3 % NRMSE in the NAA

maps. Moreover, using the refined method, a high-resolution lipid layer was estimated via the

FOCUSS algorithm (4) from 2-average, highly undersampled (Rhigh=10 in the peripheral k-space)

data, which was combined with the 0.56 cc CSI image followed by lipid-basis penalty

reconstruction to yield 17.0 % NRMSE in the NAA map. By incurring only a minimal increase in

the scan time, 4.9- and 2-fold error reduction in metabolite maps are demonstrated relative to (88)

using the basic and refined versions of the proposed method, respectively. Further, validation for

the application of undersampling and compressed sensing recovery using variable density spirals

is presented with 10-fold undersampling on a synthetic phantom.

4.2 Theory

4.2.1 Dual-Density Reconstruction

Let yiow denote the k-space representation of low-resolution CSI data, and Yhigh denote the k-

space representation of high-resolution data from which the lipid image will be estimated due to

Xlipid = MaipidF-ig9hYhigh (4.1)

where xupid is the high-resolution, masked lipid layer image, Mlipid is a binary mask marking

the location of the lipid layer, and Fhigf is the Fourier Transform operator that samples the full

extent of high-resolution k-space. Since Yhigh usually has low SNR, the masking operation aims

to select only the lipid layer and reduce the amount of noise that will propagate from the rest of

the data.

Next, the low-resolution data is combined with the high-resolution lipid image via

Xdual = FQ-7f {(Fhigf - FIow)xlpid + Yiow} (4.2)

Here, Flo, is the Fourier Transform operator that samples only the lower frequency indices

corresponding to y1ow. Eq. 4.2 can be interpreted as extending the low-resolution k-space data

using the high frequency content of the masked lipid image, which helps reducing the ringing

artifact (83-85).
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4.2.2 Iterative Reconstruction with Lipid-Basis Penalty

Again starting with the low-resolution CSI k-space data ytow, the artifact reduction algorithm in

(88) aims to solve the convex programming problem

XLB = argminx |IFiOux - yOw||2 + X'iEMbrainILHoW X11 (4.3)

data consistency lipid-basis penalty

where Mbrain is a binary mask that indicates the metabolite region, xi is the spectrum at voxel

i, X is a regularization parameter that needs to be determined and XLB is the artifact-suppressed

image. After denoting the initial image with truncation artifacts with x1o, (where xOW =

F-O ygow), a lipid-basis matrix Llo, can be formed using the spectra inside the lipid layer of x, 0

as column vectors. Hence, to generate the lipid-basis Low, the initial image with artifacts x1o0 is

masked to retain only the lipid ring voxels. Next, each lipid spectra is assigned to be a column of

the lipid-basis Li0 n. This way, the lipid-basis matrix will have n columns, where n is the number

of voxels in the lipid mask, and each of its columns will be a lipid spectrum. Eq. 4.3 then aims to

find spectra that match the acquired k-space data, but at the same time impose the constraint that

no lipid signals arise from the brain itself.

The cost function in the iterative lipid-basis penalty reconstruction is composed of data

consistency and lipid-basis penalty terms (Eq.4.3) which penalize the deviation from the k-space

samples and the projection onto the lipid-basis, respectively. As the cost is composed of a linear

combination of the convex '2 and -i norms, the optimization problem is an unconstrained

convex programming problem, which has the important feature that all local minima are also

global (89).

4.2.3 The Basic Method: Combining 2-average, high-resolution data with high SNR, low-
resolution data

The first proposal in this chapter is to combine the two orthogonal lipid suppression

approaches: the dual-density method and the lipid-basis penalty. An additional assumption that

the high-resolution k-space Yhigh is obtained with only 2 averages is made, hence it has low

metabolite SNR while having a rapid acquisition time, and that the low-resolution yI0 , is

acquired with multiple averages to yield decent metabolite SNR. The combined image Xdua1 is
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then formed by the application of Eqs. 4.1 and 4.2. Imposing lipid-basis penalty on Xdual yields

the final result,

Xbasic = argminx ||FhighX - Ydual 12 + XMieMbrainIIdual X (4.4)

where Ydual = FhighXdual is the k-space representation of the high-resolution combined image

and Xbasic is the artifact-suppressed spectra obtained with the first proposed method. In this case,

Ldual contains the lipid spectra collected from the combined image Xdual. After masking XdualtO

retain only the lipid ring voxels, each lipid spectrum is assigned to be a column of the lipid-basis

matrix Ldual. This way, the lipid-basis is formed by using the high-frequency lipid information

present in the combined image Xdual-

4.2.4 The Refined Method: Combining 2-average, undersampled high-resolution data with
high SNR, low-resolution data

Differently from the first method, Yhigh now represents undersampled, 2-average, high-resolution

k-space data. Owing to the fact the lipid layer is sparse in both spatial and spectral domains, this

section proposes to estimate it using the sparsity-enforcing, iteratively reweighted least-squares

algorithm, FOCUSS (4):

For iteration number t = 1, ... T,

W = diag (xf 1/2) (4.5)

qt = argminq|lq|11 such that MfFhighWt q = Yhigh (4.6)

xt+1 = W t t (4._7)

Here, Wt is a diagonal weighting matrix whose j* diagonal entry is denoted as Wf1 , xt is the

lipid layer estimate at iteration t whosejt* entry is xf and Mn is the undersampling mask in (ks, ky,

kf). Masking out the background yields the final lipid image estimate, xFCUSS - Mlipidxr+1

Now, the combined image xFuss is formed using the compressed sensing-estimated lipid

image,

x = Fih~f{(Fhigf - Flo)Xipss + Ylow} (4.8)

and iterative lipid-basis reconstruction is applied as
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Xrefined = argmin, IFhighX - Ydua us A iEMbrain O ( 4 oySS)H (4.9)

to yield the artifact-suppressed image Xrefined. Here, yduJss is the k-space representation of

the combined image x 'cuss due to y2FJss = FhighXFOcuSS and LIfoyss is the lipid-basis

matrix collected from the compressed sensing reconstructed combined image. In other words,

lipid ring voxels in the combined image xFOss are selected with masking, then each lipid

spectrum is assigned to be a column of the lipid-basis matrix LIjYss. Hence, the lipid-basis is

formed by the lipid spectra in the compressed sensing reconstructed image, xFjUSs.

4.3 Methods

A healthy volunteer was scanned at a Siemens 3T scanner using 32-channel receive coil with high

spatial resolution, single-slice, constant density spiral CSI (voxel size = 0.16 cc, FOVy,= 24 cm,

slice thickness = 1cm, TE = 50 ms, TR = 2 s, number of averages = 20, acquisition time 33 min,

CHESS pulse applied for water suppression, PRESS-box excites entire FOV, including the skull).

While the large number of averages at such high resolution made the total scan time significantly

long, it enabled the reconstruction of the artifact suppressed gold-standard image. At the scanner,

this spiral acquisition was coil-combined after being gridded onto a Cartesian grid, on which all

subsequent processing was performed. The final gridded matrix size was (x,y,) = (64,64,512). To

reduce processing times, only the frequencies beyond the water peak were reconstructed. Lipid

layer and brain masks (Murid, Mbrain) were generated manually based on the high-resolution

CSI image. In particular, projection of the CSI image over the lipid frequencies served as a guide

in determining the lipid mask. Additional data were collected by using a 9x9 cm 2 PRESS-box to

excite the interior of the brain (voxel size = 0.5 cc, number of averages = 20, acquisition time =

11 min, with water suppression), and outer-volume suppression bands were placed around the

skull to null the lipid signals.

Next, the lipid suppression methods that were applied to the in vivo data are detailed and

enumerated:

i. Lipid-basis penalty method: A low-resolution, 20-average CSI k-space yl 0 , was

generated by sampling only the center 32-pixel diameter in k,-k, plane

corresponding to the operator F1,,. The voxel size of this low-resolution image was
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0.56 cc (with 1cm slice thickness), corresponding to a 10 min scan. This image was

then processed using the lipid-basis penalty method (88).

ii. Gold-standard reconstruction: To obtain the gold-standard spectra, a lipid image

was obtained from the high-resolution 20-average data which was masked with

Mlipid to retain only the lipid ring, and then combined with the low-resolution 20-

average CSI image as per the dual-density approach (83-85) in Eq. 4.2 and iterative

reconstruction with lipid-basis penalty (88) was applied to this combined image to

yield the gold-standard spectra.

iii. The basic method: For this method, masked high-resolution lipid image was

obtained from 2-average high-resolution data, and combined with the low-

resolution 20-average CSI image. Lipid basis penalty reconstruction was then

applied to this combined image.

iv. The refined method: Here, the high-resolution lipid image was estimated from

significantly undersampled 2-average data. In addition to the fully sampled center

32-pixel diameter k-space, the peripheral k-space region was substantially

undersampled (Rhigh = 10). In particular, Cartesian undersampling was applied to

the gridded data in all 3-dimensions by generating a randomly-undersampled k,-k,

sampling mask at each k1 sample. High-resolution lipid image was reconstructed

with the FOCUSS algorithm (4) using the undersampled k-space data. This lipid

layer estimate was then combined with the low-resolution CSI image, and lipid

basis penalty was applied to further reduce the ringing artifacts.

v. Dual-density method: Finally, the dual density method (83-85) was applied

without using lipid-basis penalty, by obtaining a masked high-resolution lipid image

obtained from 2-average high-resolution data, and combining it with the low-

resolution 20-average CSI image.

To provide a more practical undersampling example, a synthetically generated phantom was

also studied. A Cartesian CSI phantom was formed by using metabolite data from a spectroscopic

phantom scanned at 3T with a voxel size of 0.16 cc, and surrounding the phantom with in vivo

lipid spectra sampled from the 20-average, 0.16 cc human subject dataset (Fig. 4.7). Hence, the
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metabolite spectra in the numerical phantom are derived from a spectroscopic phantom where no

lipids are present, resulting in metabolite signals free of any lipid contamination. Also, each lipid

spectrum in the lipid layer of the numerical phantom is unique and comes from an in vivo

acquisition where spatial variations of lipids occur naturally. No synthetic noise was added to the

numerical phantom, the only noise present is due to the acquisition of the source signals. The

peak-to-peak NAA - lipid amplitude ratio was selected to be 1:100. Since the Cartesian phantom

demonstrates no lipid ringing artifacts by design, it also serves as the gold-standard image. First, a

constant density spiral sampling pattern at Nyquist rate was generated using time-optimal

gradient design toolbox (90), from which spiral k-space data was generated using the Non-

Uniform FFT (NUFFT) toolbox (91). Artifact suppression with lipid-basis penalty was applied to

obtain a high-resolution lipid-suppressed image based on the spiral k-space samples. Second, a

variable-density spiral trajectory with Nyquist rate sampling in the first half of the k-space, and

undersampling with Rhigh = 10 in the second half of the k-space was generated. High-resolution

lipid image estimate was generated using FOCUSS algorithm with NUFFT based on the

undersampled spiral data. Next, a combined image was formed using the high-resolution lipid

estimate and the fully-sampled portion of the k-space iteratively. Lipid-basis penalty was applied

to yield an artifact suppressed image. Finally, a low-resolution image was generated by using

only the first of the spiral k-space, which was then processed with the lipid-basis penalty. The

Cartesian image without artifacts serves as a substitute for the gold-standard in vivo

reconstruction, the Nyquist-rate sampled spiral data represent the in vivo basic method

reconstruction, and the undersampled spiral data stand for the in vivo refined reconstruction.

Likewise, the low-resolution spiral image is intended to represent the low-resolution in vivo

image with lipid-basis penalty.

4.3.1 Choosing an Optimal Regularization Parameter

To choose an optimal regularization parameter A for the lipid-basis penalty that balances the data

consistency and artifact suppression, the L-curve approach was employed (55) for the in vivo

study. After running the iterative reconstruction to compute the gold-standard image for several

different regularization parameters, the resulting data consistency IFhighXgold - Yduall 2 and

lipid-basis norms EiEMbrain ual Xgold,i traced a curve from which the data point with the

largest curvature was chosen to be the optimal A. Analytical curvature computation became

possible by expressing the data consistency and lipid-basis penalty as functions of A by cubic

90



spline fitting. The optimal value of X = 10-3 that is determined from the gold-standard dataset

was then used for all iterative reconstructions in this work, where the optimization problems were

solved using the conjugate gradient algorithm (89). Fig. 4.1 depicts the resulting L-curve and

projections over the lipid frequencies for various A values, as well as the curvature values at the

sample points.

In the phantom study, A, = 10-1

all of iterative reconstructions.

(d) Curvature of L-curve
A= 10-3

040
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e30
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Regularization Parameter A

was taken to be the value of the regularization parameter for

(b) 1\= 10-3

(a1 A= 10-4 (c)A = 10-2
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Fig. 4.1. The L-curve traced by the data consistency and lipid-basis penalty terms as the

regularization parameter A varies. Summation over lipid frequencies for under-regularized (a),

optimally regularized (b) and over-regularized reconstructions (c) are presented. Panel (d) depicts

the analytically computed L-curve curvature results for the sample points.
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4.4 Results

Artifact reduction performances of the five methods under evaluation, as well as spectra without

any lipid suppression are compared by taking projections over the lipid resonance frequencies in

Fig. 4.2. High-quality lipid images are obtained with the gold-standard (20 avghigh, Rhigh : 1,

denoting that 20 averages of high-resolution data are used without peripheral k-space

undersampling, shown in Fig. 4.2a), and the basic and refined methods (2 avghigh, Rhigh = 1 in Fig.

2b and 2 avghigh, Rhigh = 10 in Fig. 2c). Iterative reconstruction with lipid-basis penalty (88) also

demonstrates substantial artifact reduction (Fig. 2d) while not being able to completely remove

the ringing inside the brain. Using the dual-density approach (83-85) without lipid-basis penalty

(Fig. 2e) provides partial artifact reduction relative to the low-resolution CSI image with no lipid

suppression (Fig. 2f).

ILipid maps at TE 50 ms
(a) Gold standard (b) Proposed 1 (c) Proposed 2
20 avg h,, Rhigh I 2 avgh1 h, Rhgh=l 2 avgh1 h, RhI =10

15 dB

35 dB

(d) Lipid-basis penalty (e) Dual-density (f) No lipid suppression
Fig.4. 2. Comparing the ditferent artifact reduction algorithms by taking projections over the lipid

resonance frequencies (in dB scale). Gold standard reconstruction is obtained using 20 averages
of high-resolution data without peripheral k-space undersampling (20 avghigh, Rhigh = 1, shown in

(a)), while the basic proposed method is obtained using 2 averages of high-resolution data

without undersampling (2 avghigh, Rhigh = 1, shown in (b)) and the refined proposed method uses
10-fold undersampled, 2 average high-resolution data (2 avghigh, Rhigh = 10, shown in (c)). Lipid

suppression results obtained by using only lipid-basis penalty method and only dual-density
approach are depicted in panels (d) and (e), respectively. Applying no lipid suppression (f) results

in severely corrupted spectra.
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Fig. 4.3 validates the observation seen in Fig. 2 in terms of NRMSE by comparing the lipid-

basis penalty algorithm and the two proposed artifact reduction methods with the gold-standard

NAA map. All maps are generated by simple integration of NAA peaks over a 37.5 Hz

bandwidth. While the lipid-basis algorithm (88) has 41.3% error in the NAA maps relative to the

gold-standard, the basic method (2 avghigh, Rhigh = 1) reduces the error by 4.9 times to yield 8.5%

error, and the refined method (2 avghigh, Rhigh = 10) by 2 times to give 17.0% error relative to

lipid-basis penalty approach.

20 avg Re =

Ground Truth NAA

2 avg,,,. R,,_ =10

NAA RMSE =17.0%

Lipid-basis penalty

NAA RMSE = 41.3%

Fig. 4.3. Comparison between NRMSE values of NAA maps relative to the gold standard

reconstruction.

Fig. 4.4 presents the NAA maps computed within the 9x9 cm 2 excitation box used in the OVS

acquisition. By taking the OVS NAA images as ground truth, the relative errors were found to be

11.1% for the gold-standard (20 avghigh, Rhigh = 1, shown in (a)), 11.5% for the basic (20 avghigh,

Rhigh = 1, shown in (b)), 12.9% in the refined method (20 avghigh, Rhigh = 10, shown in (c)) and

14.7% in the NAA map produced by the lipid-basis penalty algorithm (shown in (d)).

Reconstructed spectra are also overplotted with the OVS spectra for the four methods.
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Fig. 4.4. Comparison between NRMSE values of NAA maps computed within the 9x9 cm 2

excitation box relative to the NAA maps obtained with the OVS method. In (a), reconstruction

results obtained using the gold-standard (20 avghigh, Rhigh = 1) method (blue) and the OVS spectra

(black) belonging to the region inside the red box are also overplotted. In (b), the basic proposed

method (blue) and the OVS spectra are compared. The spectra obtained with the refined method

(blue) and the OVS results (black) are overplotted in (c). Lipid-basis penalty and OVS spectra are

compared in (d).

Figs. 4.5 and 4.6 show the performances of the lipid-basis algorithm (88), the proposed

methods and the gold-standard reconstruction by comparing representative spectra in the vicinity

of two sides of the skull. Panels a, b and c in Figs. 4.5 and 4.6 overplot the spectra from the gold-

standard with lipid-basis method (88), the basic method (2 avghigh, Rhigh = 1) and the refined

method (2 avghigh, Rhigh = 10), respectively.

Lipid suppression experiment performed with the synthetic phantom is depicted in Fig. 4.7.

Panel a depicts the NAA and lipid maps from the Cartesian, artifact-free phantom and includes

spectra free of contamination. In panel b, lipid-basis penalty is applied to the phantom that was

sampled on a spiral trajectory at Nyquist rate, to yield 41.9% error in the NAA map. In c, lipid

suppression results with undersampled spiral trajectory are presented. In this case, NAA map was

recovered with 41.7% error. Panel d depicts the performance of lipid-basis penalty method when

the k-space was sampled at half of the full resolution to yield 104.1% NRMSE in the NAA map.

94



(a) Lipid-basis penalty vs. gold-standard
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(b) Proposed 1 (2 avgh,,h, Rh,,2 1) vs. gold-standard

AJ.'L AkL A-AWL ".L 4Li

A~Jk AJL XA,&L A&LL 4jL
A.ka AA-4JLw t)&kL twL, Al,6L

(c) Proposed 2 (2 avgwg, Rhgh=10) vs. gold-standard
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Fig. 4.5. Comparison of spectra inside the region of interest marked with the red box that were

obtained with different lipid suppression methods. In (a), reconstruction results obtained using

lipid-basis penalty method (blue) and the gold-standard reconstruction (black) are overplotted. In

(b), the basic proposed method (blue) and the gold-standard spectra are presented. The spectra

obtained with the refined method (blue) and the gold-standard results (black) are plotted in (c).
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Fig. 4.6. Comparison of spectra inside the region of interest marked with the red box that were

obtained with different lipid suppression methods. Panel (a) overplots reconstruction results using

lipid-basis penalty method (blue) and the gold-standard reconstruction (black). In (b), the basic

proposed method (blue) and the gold-standard spectra are compared. The spectra obtained with

the refined method (blue) and the gold-standard results (black) are depicted in (c).
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Fig. 4.7. Lipid and NAA maps and artifact-free spectra for the Cartesian synthetic phantom are
shown in (a). In (b), spiral sampling trajectory at Nyquist rate and reconstruction results upon the
application of lipid-basis penalty are depicted. Using the undersampled spiral trajectory in (c), a
high-resolution lipid image was estimated using FOCUSS, from which a combined image was

computed due to the dual-density method. Finally, lipid-basis penalty was applied to this

combined image. Panel (d) shows lipid suppression results when the k-space is sampled only at

half of the full resolution and lipid-basis penalty is applied. For the three reconstruction methods,

the example spectra (plotted in blue) belong to the region of interest marked with the red box, and

are overplotted with the artifact-free spectra (in black) for comparison.

The total reconstruction time for the in vivo dataset was 7 min for the iterative lipid-basis

penalty algorithm and 4 min for compressed sensing reconstruction of the high-resolution lipid

image with the FOCUSS algorithm on a workstation running Matlab with 48 GB memory and 12

processors.

97



4.5 Discussion

The dual-density method makes use of the fact that subcutaneous lipid signals have several orders

of magnitude higher amplitudes than the brain metabolites, which enables their estimation from

single-average, high-resolution data. In this study, the high-resolution lipid images had a voxel

size of 0.16 cc, while the previous implementations of the dual-density method enjoyed a smaller

voxel size (128X 128 matrix size in (85) and 0.076 cc voxels with 128X 128 matrix size in (83)).

Naturally, the dual-density method is expected to perform better with increased lipid image

resolution, however at the cost of increased scan time. Since the dual-density idea constitutes an

important part of the proposed methods, their performances are also expected to increase when

even higher resolution lipid priors are available. The optimal selection of the high-resolution

voxel size to balance the impact on total scan time and lipid artifact reduction remains an open

problem.

In the current work, selection of the lipid mask was performed manually, with the guidance of

the projection over lipid resonance frequencies. The brain mask was then assigned to be region

remaining inside the lipid mask. A more elegant approach can involve a pilot structural scan

acquired at the same resolution as the lipid image, which can be then segmented (e.g. using

FreeSurfer (92)) to yield the skull and brain regions. A similar idea was also implemented in (88).

A similar approach that also restricts the space in which the metabolite signals reside is by

Eslami and Jacob (93), where the spectrum at each voxel is parameterized as a sparse linear

combination of spikes and polynomials to capture the metabolite and baseline components,

respectively. Their elegant method is a holistic framework that performs field map compensation,

noise reduction and lipid artifact reduction simultaneously. In particular, their lipid suppression

performance was seen to be comparable with extrapolation methods (87). The methods proposed

here involve no parametric signal modeling, but they simply minimize projection onto lipid

spectra. Hence, it might be possible to combine Eslami and Jacob's method synergistically with

the proposed schemes to further refine the metabolite spectra.

The L-curve analysis employed for selecting an optimal regularization parameter A revealed

that the operating points on the curve map virtually to the same point for a wide range of

parameters (Fig. 4.1). In particular, the data consistency increases only 0.05 % and the

regularization decreases only 3.8 % as A increases from 10-2 to 102. Hence, if a slightly over-

regularized reconstruction is acceptable, the selection of A does not pose a problem as the

reconstruction results are insensitive to its selection.
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From a sequence design point of view, the 3-dimensional Cartesian undersampling pattern used

in the in vivo dataset will not be feasible within the spiral CSI framework, as the samples were

randomly removed in the Cartesian k-space of the gridded CSI data. Design of undersampled

trajectories that will make the refined method feasible for in vivo acquisitions is under progress

with initial results reported in (94).

Lipid suppression results obtained with the synthetic phantom demonstrates the feasibility of

spiral undersampling. Relative to the conventional, low-resolution spiral reconstruction in Fig.

4.7d, the example spectra obtained with undersampled spirals in Fig. 4.7c exhibit substantially

reduced lipid ringing artifacts in the vicinity of the lipid ring. Relative to the Nyquist rate spiral

reconstruction, compressed sensing reconstruction with 10-fold accelerated spirals yielded

comparable NAA maps and spectra. While the current work focused on undersampled spiral

trajectory, other families of readout trajectories can be deployed in the proposed scheme, e.g. a

trajectory that continues along the tangent of the spiral at the end of the low-resolution k-space

(spiral+radial).

In vivo reconstructions at TE = 50 ms with the basic and refined methods exhibit successful

artifact suppression in the cortical region (Figs. 4.5 and 4.6). Relative to the gold-standard

reconstruction (20 avghigh, Rhigh = 1) corresponding to a 33 min scan, the proposed methods

yielded comparable NAA maps (Fig. 4.3) with substantial savings in the imaging time. While

using the lipid-basis penalty at 0.56 cc voxel size (corresponding to a 10 min scan) gives effective

lipid suppression, the presence of residual lipid artifacts is visible in the lipid and NAA maps

(Figs. 4.2 and 4.3) and the cortical spectra (Figs. 4.5 and 4.6).

For additional validation, the reconstruction methods were also compared with a commercially

available lipid suppression method, OVS. Taking the NAA maps obtained with OVS as ground

truth, the four methods, namely, gold-standard (20 avghigh, Rhigh = 1), basic (2 avghigh, Rhigh = 1)

refined (20 avghigh, Rhigh = 10) and lipid-basis penalty, yielded similar fidelity where the gold-

standard gave the smallest error (11.1%) and the lipid-basis penalty method had the largest

mismatch (14.7%). Since the OVS method is obtained by exciting a 9x9 cm 2 box inside the brain

surrounded by suppression bands to null the lipid signal, the comparison is limited to the interior

of the brain where the lipid ringing artifacts are milder than the periphery of the cortex. It is seen

that the spectra reconstructed with the lipid-basis method still demonstrate residual artifacts while

the proposed methods are free of lipid ringing (Fig. 4.4). To compute the RMSEs relative to the

NAA map obtained from the OVS acquisition, all methods were masked in k-space to match the
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resolution of the OVS scan and the mean intensities of the NAA images were scaled to match the

mean intensity of the OVS map.

Relative to the lipid-basis penalty method (88), the drawback of the proposed basic algorithm

is the additional scan time required for collecting the peripheral k-space information. The refined

method addresses this problem by aggressively undersampling the high k-space and exploiting the

spatial and spectral sparsity of the lipid ring. While this entails an additional iterative

reconstruction step for the FOCUSS (4) algorithm, the computational requirements of the refined

method is not prohibitive for in vivo applications, taking only 11 min of processing time on a

workstation.

The validity of the approximation that lipid and metabolite spectra are orthogonal is

demonstrated in Fig. 4.8. All lipid spectra inside the lipid mask were selected from the 33 min, 20

average in vivo scan (578 lipid spectra in total), and all metabolite spectra were chosen from the

in vivo OVS acquisition (521 metabolite spectra in total). For each lipid spectrum, the parallel

and orthogonal components of each metabolite spectrum were computed. Based on this, the

worst and best case situations were identified, where the ratio of energy in the parallel and

orthogonal components were highest and lowest, respectively. Fig. 4.8a overplots the lipid and

metabolite spectra in the best case scenario. Even though the NAA peak completely overlaps with

the lipid signal in resonance frequency, the component of the metabolite spectra parallel to the

lipid signal has almost no energy compared to the orthogonal component. Fig. 4.8c shows the

worst case scenario for the lipid and metabolite spectra with the least degree of orthogonality. In

this case, parallel and orthogonal components have comparable signal energy. When averaged

over all lipid and metabolite spectra, the ratio of parallel component energy to orthogonal

component energy was 15.6%, showing that the orthogonality assumption is a reasonable one in

practice.

Limitations of this study include that,

i. No B0-correction was employed in post-processing, but simply the data acquired at the

scanner were used as input to the proposed lipid suppression methods. Therefore, more

refined metabolite images can be obtained when local BO shifts are taken into account,

e.g. Fig. 2 in (95) and Fig. 3 in (77).

ii. The practical implementation of the dual-density method is considerably challenging, but

this has been addressed adequately by previous investigators, e.g. (83,85). Similarly,

practical realization of prospective undersampling with spiral readout is challenging.
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Fig. 4.8. Demonstration of approximate orthogonality between metabolite spectra obtained from

in vivo OVS scan and lipid spectra from high resolution in vivo acquisition. In (a), the lipid and

metabolite spectra with the highest orthogonality are plotted. In (b), the components of the

metabolite spectrum that are orthogonal and parallel to the lipid spectrum for the best case in (a)

are overplotted. The actual metabolite spectrum (in blue) is totally occluded by the orthogonal

component (in orange). In (c), the lipid and metabolite spectra that are least orthogonal are

depicted. In (d), the orthogonal and parallel components of the metabolite spectrum are

overplotted for the worst case in (c). Panel (e) depicts the methodology used in computing the

orthogonal and parallel metabolite components.

4.6 Conclusion

The proposed lipid suppression algorithms combine and extend two previously proposed

approaches, dual-density sampling and lipid-basis orthogonality, with minimal increase on the

total scan time by collecting only 2-average high-resolution data and aggressive undersampling

(R = 10) of high frequency k-space. Successful in vivo lipid-suppression performance was
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demonstrated with artifact-free observation of metabolite spectra even in the peripheral cortical

regions without any other means of lipid suppression during acquisition at TE = 50 ms.
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Chapter 5

Accelerated Diffusion Spectrum Imaging

Diffusion Spectrum Imaging (DSI) offers detailed information on complex distributions of

intravoxel fiber orientations at the expense of extremely long imaging times (~1 hour). Recent

work by Menzel et al. (96) demonstrated successful recovery of diffusion probability density

functions (pdfs) from sub-Nyquist sampled q-space by imposing sparsity constraints on the pdfs

under wavelet and Total Variation (TV) transforms. As the performance of compressed sensing

(CS) reconstruction depends strongly on the level of sparsity in the selected transform space, a

dictionary specifically tailored for diffusion pdfs can yield higher fidelity results. This chapter

presents the first application of adaptive dictionaries in DSI, whereby the scan time of whole

brain DSI acquisition is reduced from 50 to 17 min while retaining high image quality. In vivo

experiments were conducted with the 3T Connectome MRI. The RMSE of the reconstructed

'missing' diffusion images were calculated by comparing them to a gold standard dataset

(obtained from acquiring 10 averages of diffusion images in these missing directions). The RMSE

from the proposed reconstruction method is up to 2 times lower than that of Menzel et al.'s

method, and is actually comparable to that of the fully-sampled 50 minute scan. Comparison of

tractography solutions in 18 major white-matter pathways also indicated good agreement between

the fully-sampled and 3-fold accelerated reconstructions. Further, it is demonstrated that a

dictionary trained using pdfs from a single slice of a particular subject generalizes well to other

slices from the same subject, as well as to slices from other subjects.

5.1 Introduction

Diffusion weighted MR imaging is a widely used method to study white matter structures of the

brain. Diffusion Tensor Imaging (DTI) is an established diffusion weighted imaging method,

which models the diffusion as a univariate Gaussian distribution (97). One limitation of this

model arises in the presence of fiber crossings, and this can be addressed by using a more

involved imaging method (98,99). Diffusion Spectrum Imaging (DSI) results in magnitude

representation of the full q-space and yields a complete description of the diffusion probability

density function (pdf) (100,101). While DSI is capable of resolving complex distributions of
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intravoxel fiber orientations, full q-space coverage comes at the expense of substantially long

scan times (~1 hour).

Compressed sensing (CS) comprises algorithms that recover data from undersampled

acquisitions by imposing sparsity or compressibility assumptions on the reconstructed images (6).

In the domain of DSI, acceleration with CS was successfully demonstrated by Menzel et al. (102)

by imposing wavelet and Total Variation (TV) penalties in the pdf space. Up to an undersampling

factor of 4 in q-space, it was reported that essential diffusion properties such as orientation

distribution function (odf), diffusion coefficient, and kurtosis were preserved (102). A recent

study focused on the problem of finding the best wavelet basis to represent the diffusion pdf by

comparing various wavelet transforms (103).

The performance of CS recovery depends on the level of sparsity of the signal in the selected

transform domain, as well as the incoherence of the aliasing artifacts in the transform domain and

the amount of acceleration in the sampling space (6). While prespecified transformations such as

wavelets and spatial gradients yield sparse signal representation, tailoring the sparsifying

transform based on the characteristics of the particular signal type may offer even sparser results.

K-SVD is an algorithm that designs a dictionary that achieves maximally sparse representation of

the input training data (104). The benefit of using data-driven, adaptive dictionaries trained with

K-SVD was also demonstrated in CS reconstruction of structural MR imaging (105,106).

In this chapter, the K-SVD algorithm is employed to design a sparsifying transform that yields

a signal representation with increased level of sparsity. Coupling this adaptive dictionary with the

FOcal Underdetermined System Solver (FOCUSS) algorithm (4), a parameter-free CS algorithm

is obtained. With 3-fold undersampling of q-space in in vivo experiments, up to 2-fold reduced

pdf reconstruction errors are demonstrated relative to the CS algorithm that uses wavelets and

variational penalties by Menzel et al. (102). At higher acceleration factors of 5 and 9, up to 1.8-

fold and 1.6-fold reduced errors are still obtained relative to wavelet and TV reconstruction at the

lower acceleration factor of 3. For additional validation, the RMSE of the reconstructed 'missing'

diffusion images were calculated by comparing them to a gold standard dataset obtained with 10

averages. In this case, dictionary-based reconstructions were seen to be comparable to the fully-

sampled 1 average data. For further validation, average Fractional Anisotropy (FA) and tract

volume metrics obtained from 18 major white-matter pathways were compared between the fully-

sampled and 3-fold accelerated dictionary reconstructions to yield good agreement. Additionally,

it is shown that a dictionary trained on data from a particular subject generalizes well to

reconstruction of another subject's data, still yielding up to 2-fold reduced reconstruction errors
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relative to using prespecified transforms. Hence, application of the proposed method might

reduce a typical 50-minute DSI scan to 17 minutes (upon 3x acceleration) while retaining high

image quality. In addition, using a simple el-norm penalty in the pdf space with the FOCUSS

algorithm is also investigated, and it is shown that this approach gives comparable results to the

more involved wavelet- and TV-based reconstruction by Menzel et al. (102), while being

computationally more efficient.

5.2 Theory

5.2.1 CS Recovery with Prespecified Transforms

Letting p E CN represent the 3-dimensional diffusion pdf at a particular voxel as a column vector,

and q E CM denote the corresponding undersampled q-space information, CS recovery with

wavelet and TV penalties aim to solve the convex optimization problem at a single voxel,

min, ||Fnp - q11 + a - |Ip||1 + f - TV(p) (5.1)

where Fn is the undersampled Fourier transform operator, P is a wavelet transform operator,

TV(.) is the Total Variation penalty, and a and fl are regularization parameters that need to be

determined. CS recovery is applied on a voxel-by-voxel basis to reconstruct all brain voxels.

5.2.2 Training an Adaptive Transform with K-SVD

Given an ensemble P E CNxL formed by concatenating L example pdfs {pJ1=1 collected from a

training dataset as column vectors, the K-SVD algorithm (104) aims to find the best possible

dictionary for the sparse representation of this dataset by solving,

minP,D V=1 IIi 10 subjectto ||P -DX| F; E (5.2)

where X is the matrix that contains the transform coefficient vectors {xi}L=1 as its columns, D

is the adaptive dictionary, E is a fixed constant that adjusts the data fidelity, and I. I|F is the

Frobenius norm. The K-SVD works iteratively, first by fixing D and finding an optimally sparse

X using orthogonal matching pursuit, then by updating each column of D and the transform

coefficients corresponding to this column to increase data consistency.
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5.2.3 CS Recovery with an Adaptive Transform using FOCUSS

The FOCUSS algorithm aims to find a sparse solution to the underdetermined linear system

FnDx = q, where x is the vector of transform coefficients in the transform space defined by the

dictionary D using the following iterations,

For iteration number t = 1, ... T,

W = diag (xt 11/2) (5.3)

st= argminsI|s1| such that FnDW t s = q (5.4)

xt+1 = Wtst (5.5)

Here, Wt is a diagonal weighting matrix whose j* diagonal entry is denoted as W 1, xt is the

estimate of transform coefficients at iteration t whose jt entry is xf. The final reconstruction in

diffusion pdf space is obtained via the mapping p = Dxr+1

It is also possible to impose sparsity-inducing 4i penalty directly on the pdf coefficients by

taking D to be the identity matrix I.

5.3 Methods

Diffusion EPI acquisitions were obtained from three healthy volunteers (subjects A, B and C)

using a novel 3T system (Magnetom Skyra Connectom, Siemens Healthcare, Erlangen, Germany)

equipped with the AS302 "CONNECTOM" gradient with Gmax = 300 mT/m (here Gmax = 200

mT/m was used) and Slew = 200 T/m/s. A custom-built 64-channel RF head array (107) was used

for reception with imaging parameters of 2.3 mm isotropic voxel size, FOV = 220x220x130,

matrix size = 96x96x57, bmax= 8000 s/mm2 , 514 directions full sphere q-space sampling (corners

of q-space were zero-padded since they were not sampled) organized in a Cartesian grid with

interspersed b=0 images every 20 TRs (for motion correction, 25 b=0 images in total) , in-plane

acceleration = 2x (using GRAPPA algorithm), TR/TE = 5.4 s / 60 ins, total imaging time -50

min. In addition, at 5 q-space points ([1,1,0], [0,2,-i], [0,0,3], [0,4,0], and [5,0,0]) residing on

5 different shells, 10 averages were collected for noise quantification. The corresponding b-values

for these 5 points were 640, 1600, 2880, 5120, and 8000 s/mm2 . Eddy current related distortions

were corrected using the reversed polarity method (108). Motion correction (using interspersed

b=0) was performed using FLIRT (109) with sine interpolation.
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Variable-density undersampling (using a power-law density function (6)) with R = 3

acceleration was applied in q-space on a 12x12x12 grid. Three different adaptive dictionaries

were trained with data from slice 30 of subjects A, B and C. Reconstruction experiments were

applied on test slices that are different than the training slices. In particular, two reconstruction

experiments were performed:

i. First, voxels in slice 40 of subject A were retrospectively undersampled in q-space, and

reconstructed using 5 different methods: wavelet+TV method of Menzel et al. (102), fi-

regularized FOCUSS, and Dictionary-FOCUSS with the three dictionaries trained on

three different subjects.

ii. Second, voxels in slice 25 of subject B were retrospectively undersampled with the same

R = 3 sampling pattern, and again reconstructed with wavelet+TV, -ei-FOCUSS, and the

three dictionaries trained on three different subjects.

Slice 30 was selected for training and slices 25 and 40 were chosen for test based on their

anatomical location, so that the test slices would reside on lower and upper parts of the brain,

while the training slice was one of the middle slices. For Menzel et al.'s method, Haar wavelets in

MATLAB's wavelet toolbox were used. The regularization parameters a and fl in Eq. 5.1 were

chosen by parameter sweeping with values {10-4, 3 -10-4, 10-3, 3 - 10-3 to minimize the

reconstruction error of 100 randomly selected voxels in slice 40 of subject A. The optimal

regularization parameters were found to be a = 3 - 10- 4 for wavelet and f# = 10-4 for the TV

term. By taking the fully-sampled data as ground-truth, the fidelity of the five methods were

compared using root-mean-square error (RMSE) normalized by the e2 -norm of ground-truth as

the error metric both in pdf domain and q-space.

Since the fully-sampled data are corrupted by noise, computing RMSEs relative to them will

include contributions from both reconstruction errors and additive noise. To address this, the

additional 10 average data acquired at the selected 5 q-space points were used. As a single

average full-brain DSI scan takes ~50 min, it was not practical to collect 10 averages for all of the

undersampled q-space points. As such, both error metrics are utilized for performance

quantification, namely: the RMSE relative to one average fully-sampled dataset and the RMSE

relative to gold standard data for 5 q-space points.

To compare the fully-sampled and 3-fold accelerated Dictionary-FOCUSS reconstructions in

terms of tractography solutions, streamline deterministic DSI tractography on the two datasets
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was performed in trackvis (http://trackvis.org) and 18 white-matter pathways were labeled. The

labeling was performed following the protocol described in (110), where two regions of interest

(ROIs) are drawn for each pathway in parts of the anatomy that the pathway is known to traverse.

To eliminate variability due to manual labeling in the two data sets and make the comparison as

unbiased as possible, the ROIs used here were not drawn manually on the fully-sampled and 3-

fold accelerated data. Instead, the ROIs were obtained from a different data set of 33 healthy

subjects, where the same pathways had been previously labeled (111). The respective ROIs from

the 33 subjects were averaged in MNI space (112) and the average ROIs were mapped to the

native space of the fully-sampled and R = 3 datasets using affine registration. In each data set the

tractography streamlines going through the respective ROIs were isolated to identify the 18

pathways.

5.4 Results

Fig. 5.1 depicts the error of the different reconstruction methods in the pdf domain for each voxel

in slice 40 of subject A. At R = 3 acceleration, reconstruction error of Menzel et al.'s method

averaged over brain voxels in the slice was 15.8%, while the error was 15.0% for ei-regularized

FOCUSS. Adaptive dictionary trained on subject A yielded 7.8% error. Similarly, reconstruction

with dictionaries trained on pdfs of the other subjects B and C returned 7.8% and 8.2% RMSE,

respectively. At R = 5, Dictionary-FOCUSS returned 8.9%, 8.9% and 9.3% error with training on

subjects A, B and C, respectively. At R = 9 dictionary reconstruction with training on subjects A,

B and C returned 10.0%, 10.0% and 10.4% RMSE.

In Fig. 5.2, reconstruction errors at R = 3 on slice 25 of subject B are presented. In this case,

Menzel et al.'s method yielded 17.5% average RMSE, and -i-FOCUSS had 17.3% error.

Dictionary trained on slice 40 of subject A returned 11.4% RMSE, while adaptive transforms

trained on subjects B and C had 11.4% and 11.8% error, respectively. At a higher acceleration

factor of R = 5, Dictionary-FOCUSS with training on subjects A, B and C returned 13.1%, 13.3%

and 13.5% error. At R = 9 dictionary reconstruction with training on subjects A, B and C yielded

14.2%, 14.2% and 14.4% RMSE, respectively.
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Subject A, Slice 40 pdf reconstruction error

200%

0% 0%

Fig. 5.1. RMSE at each voxel in slice 40 of subject A upon R = 3 acceleration and reconstruction

with Menzel et al.'s method (a), fi-FOCUSS (b), Dictionary-FOCUSS trained on subjects A (c),
B (d), and C (e). Dictionary-FOCUSS errors in (f), (g) and (h) are obtained at higher acceleration

factor of R = 5 with training on subjects A, B and C, respectively. Results for the reconstructions

at R = 9 are given in (i), (j) and (k).

Subject B, Slice 25 pdf reconstruction error

23% 17%

0% 0 %

Fig. 5.2. RMSE at each voxel in slice 25 of subject B upon R = 3 acceleration and reconstruction

with Menzel et al.'s method (a), fi-FOCUSS (b), Dictionary-FOCUSS trained on subjects A (c),
B (d), and C (e). Dictionary-FOCUSS errors in (f), (g) and (h) are obtained at higher acceleration

factor of R = 5 with training on subjects A, B and C, respectively. Results for the reconstructions

at R = 9 are given in (i), (j) and (k).
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Fig. 5.3 presents RMSEs obtained on various slices of subject A using Dictionary- and ei-

FOCUSS. Error bars that show the variation of the reconstruction errors are also included. RMSE

maps on four selected slices are plotted for comparison. The same analysis is carried out on

various slices of subject B, and the results are depicted in Fig 5.4.

Subject A, Dictionary vs. e I-FOCUSS recon error

S30

~25,

Is
20'

0

5

Dictionary
trained on B

f1 -FOCUSS

10 15 20 25 30 35 40 4s5

Slice 17 Slice 26 Slice 35

5o as Slice number

Slice 44

20%

0%

Fig. 5.3. Mean and standard deviation of RMSEs computed on various slices of subject A using

-e- and Dictionary-FOCUSS trained on subject B. Lower panel depicts RMSE maps for four

selected slices.

Reconstruction errors in q-space images of subject A obtained with Wavelet+TV, 1-FOCUSS

and Dictionary-FOCUSS trained on the three subjects for the undersampled q-space directions are

plotted in Fig. 5.5. For two particular diffusion directions [0,4,0] and [5,0,0], q-space

reconstructions obtained with the three methods are also presented. In Fig. 5.5a, q-space images

obtained with Wavelet+TV, 4i-FOCUSS and Dictionary-FOCUSS (with training on subject B)

are compared with the 10 average fully-sampled image at [5,0,0]. Fig. 5.5b presents the error

images relative to the 10 average data for the three methods. Figs. 5.5c and d depict the same

analysis at direction [0,4,0].
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Subject B, Dictionary vs. f1 -FOCUSS recon error

w 3 .IIUU. Wy Udl UNkm

Qr .. L1-FOCUSS

104' -

5, 5

5 10 15 20 25 30 35 40 45 50
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Fig. 5.4. Mean and standard deviation of RMSEs computed on various slices of subject B using

e- and Dictionary-FOCUSS trained on subject A. Lower panel depicts RMSE maps for four

selected slices.

In an attempt to quantify the noise in q-space and separate it from CS reconstruction error, the

10 average data acquired at 5 q-space directions were taken as ground truth and the RMSEs were

computed relative to them. Fig. 5.6 shows the error plots for the 1 average fully sampled data,

Wavelet+TV, el-FOCUSS, and Dictionary-FOCUSS reconstructions relative to the 10 average

data for slices from subjects A and B.
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Fig. 5.5. Top panel shows RMSEs in 'missing' q-space directions that are estimated with

Wavelet+TV, ei-FOCUSS and Dictionary-FOCUSS with training on subjects A, B and C at R=3.

q-space images at directions [5,0,0] (a) and [0,4,0] (c) are depicted for comparison of the

reconstruction methods. In panels (b) and (d), reconstruction errors of Wavelet+TV, -ei-FOCUSS

and dictionary reconstructions relative to the 10 average fully-sampled image at directions [5,0,0]

and [0,4,0] are given.
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Slice 25 of Subject B
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Fig. 5.6. Panel on top depicts RMSEs of Wavelet+TV, el-FOCUSS and Dictionary-FOCUSS at

R = 3 and fully-sampled 1 average data computed in 5 q-space locations relative to the 10

average data for subject A. Panel on the bottom shows the same comparison for the slice

belonging to subject B.
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Fig. 5.7a and b show tractography results of subject A for the labeled white-matter pathways in

the fully-sampled and 3-fold accelerated Dictionary-FOCUSS reconstructions. Fig. 5.7c and d

show plots of the average FA and volume of each pathway for the 18 white-matter pathways, as

calculated from the two reconstructions.

Tractography solutions for subject A

(a) Fuly-sampled data (b) Dictionary-FOCUSS reconstruction
with 3-fold acceleration

Average FractionalAnisotropy and Volume
for 18 labeled white-matter pathways, fully-sampled vs. R = 3
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5.5 Discussion

This chapter presented the first application of adaptive transforms to voxel-by-voxel CS

reconstruction of undersampled q-space data. Relative to reconstruction with prespecified

transforms, i.e. wavelet and TV, the proposed algorithm has up to 2 times reduced error in the pdf

domain at the same acceleration factor (R = 3), while requiring no regularization parameter

tuning. When the undersampling ratio was increased to R = 5 and even up to R = 9, the proposed

method still demonstrated substantial improvement relative to using prespecified transforms at a

lower acceleration factor of R = 3 (Figs. 5.1 and 5.2). As demonstrated, a dictionary trained with

pdfs from a single slice of a particular subject generalizes to other slices of the same subject, as

well as to different subjects. However, further tests are needed to see if dictionaries can

generalize across healthy and patient populations, or across age groups.

Since the acquired 1 average DSI data is corrupted by noise (especially in the outer shells), it is

desired to obtain noise-free data for more reliable computation of CS reconstruction errors.

Because even the 1 average full-shell acquisition takes ~50 min, it is practically not possible to

collect multiple-average data at all q-space points. To address this, one representative q-space

sample at each shell was collected with 10 averages to serve as "(approximately) noise-free" data.

When the noise-free data were taken to be ground-truth, the dictionary reconstruction with 3-fold

undersampling was comparable to the fully-sampled 1 average data for both subjects (Fig. 5.6).

RMSE in Fig. 5.2 was overall higher than in Fig. 5.1. A possible explanation is the inherently

lower signal-noise-ratio (SNR) in the lower axial slice, particularly in the center area of the brain

which is further away from the receive coils. In particular, the error is higher in the central region

of the image where the SNR is expected to be lowest. Since the noisy 1 average datasets were

taken to be the reference in RMSE computations in Figs. 5.1 and 2, the errors are expected to be

influenced by noise in these lower SNR regions. As seen in Figs. 5.1 and 2, Wavelet+TV and e1-

FOCUSS tend to yield larger error in the white matter, where the information is more critical for

fiber tracking. Error maps from the dictionary reconstruction is more homogenous across white

and gray matter, especially results on Fig. 5.2 resemble SNR maps where the middle of the brain

is further away from the receive coils. As Fig. 5.6 demonstrates, dictionary reconstruction has a

certain degree of denoising property, since it yields lower RMSE than the 1 average data relative

to the 10 average data. This might be one possible explanation why the RMSE is relatively higher

in the middle of the brain, which should be explored in future investigation.
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As seen in Fig. 5.5, wavelet and TV penalized reconstruction and -i-FOCUSS yield especially

poor quality results in estimating the high q-space samples. In particular, as depicted in Fig. 5.5a

and b, these CS methods tend to underestimate the high q-space content. However, this is not a

simple scaling problem, as they yield either flat (Wavelet+TV) or grainy (fe-FOCUSS) results.

Because Wavelet+TV reconstruction imposes piece-wise smoothness assumption in compressed

sensing reconstruction, it leads to loss of high frequency content. In the context of DSI, this

corresponds to attenuated high q-space information (flat, underestimated outer shell). 41-

penalized reconstruction encourages small number of non-zero coefficients, which is seen to be

insufficient to model the diffusion pdfs. This also leads to underestimated high q-space content,

but since there is no smoothness constraint in pdf domain, the reconstructed q-space is not flat.

The RMSE plot in Fig. 5.5 also demonstrates that Wavelet+TV and -i-FOCUSS results are

comparable to the adaptive reconstruction at lower q-space (Fig. 5.5c and d), and the difference

becomes more pronounced as |ql increases.

Visual inspection of the tractography solutions from the fully sampled and 3-fold accelerated

Dictionary-FOCUSS data sets (Fig. 5.7a and b) showed that the white-matter pathways

reconstructed from the two acquisitions were very similar. When comparing average FA over

each pathway, as calculated from the two reconstructions, there are two potential sources of

differences: the tractography streamlines could be different, visiting different voxels in the brain

for each data set, and/or the tensor, from which the FA value is calculated, could be different at

same voxel for each data set. However, good agreement was found between the average FA

values in the fully-sampled and 3-fold accelerated reconstructions (Fig. 5.7c and d). Some

differences are to be expected in weaker pathways that only consist of very few streamlines and

thus are more sensitive to noise and have lower test-retest reliability than the stronger pathways.

This was the case particularly for the right inferior longitudinal fasciculus (R-ILF), which did not

have any streamlines in the fully-sampled data set (Fig. 5.7d). Therefore it was not possible to

extract an average FA value for the R-ILF from the fully sampled data. Apart from this pathway,

the mean difference between the average FA values in the fully sampled and 3-fold accelerated

data, as a percentage of the value in the fully sampled data, was 3%. For the volume estimates,

the mean error was 16%. It is possible that even more stable FA and volume measurements could

be obtained by manual labeling of the paths directly on each data set, instead of using the average

ROIs. This is because the averaging of ROIs in MNI space is susceptible to misregistration errors,

leading to average ROIs that are typically much larger than the individual ROIs than a rater

would draw directly on the images. Thus the bundles that we obtained with the average ROIs are

more likely to contain stray streamlines that would be eliminated in a careful individual manual
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labeling, leading to less noisy volume and FA estimates. However, the average ROIs were used

here to avoid introducing variability due to manual labeling.

In a previous study the intra-rater and inter-rater reliability of the manual labeling procedure

was evaluated by performing manual labeling several times on the same data set. It was found

that the average distance between pathways labeled by the same and different raters to be,

respectively, in the order of 1 voxel and 2 voxels (111). In the present study, it is found that the

distance between the pathways obtained from the fully-sampled and R = 3 data sets were

comparable (median distance: 2.37mm, mean distance: 2.74mm with acquisition voxel size of

2.3mm isotropic). Further investigation with test-retest scans is warranted to determine how the

differences between the fully sampled and 3-fold undersampled results compare to the test-retest

reliability of each type of reconstruction.

In this study, fully-sampled q-space data were collected for comparison with the CS

reconstruction methods. With the fully-sampled dataset, it was simple to apply the reverse

polarity approach (108) to get good eddy current correction. It should be noted that in a real

random undersampling case where reverse pairs are not present, such eddy current correction

method will not be applicable. However, various approaches exist in performing eddy current

correction, such as linearly fitting the eddy-current distortions parameters (translation, scaling,

shearing) using the available data, and then estimating the transformation for any given q-space

data.

In the current implementation, per voxel processing time of -i-FOCUSS was 0.6 seconds,

while this was 12 seconds for Dictionary-FOCUSS and 27 seconds for Wavelet+TV method on a

workstation with 12GB memory and 6 processors. Hence, full-brain reconstruction using the i-

FOCUSS algorithm would still take days. Because each voxel can be processed independently,

parallel implementation is likely to be a significant source of performance gain. Dictionary

training step (for subject A, using 3200 voxels inside the brain mask from a single slice) took 12

minutes. An additional research direction is to evaluate the change in reconstruction quality when

multiple slices are used for training. Increased processing times due to employing a larger

dictionary may become a practical concern in this case.

The proposed CS acquisition/reconstruction can be combined with other techniques to further

reduce the acquisition time. In particular, combining the proposed method with the Blipped-

CAIPI Simultaneous MultiSlice (SMS) acquisition (113) could reduce a 50 minute DSI scan to

5.5 minutes upon 9-fold acceleration (3x3 CS-SMS).
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5.6 Fast DSI Reconstruction with Trained Dictionaries

Wavelet and TV reconstruction (96) and the dictionary-based compressed sensing method

introduced in this chapter operate iteratively, therefore they require processing times on the order

of hours per imaging slice using Matlab running on a workstation. This section presents two

dictionary-based reconstruction techniques that use analytical solutions, and are 3 orders of

magnitude faster than the Dictionary-FOCUSS approach. The first method also employs a

dictionary trained with the K-SVD algorithm, but instead of using iterative CS reconstruction,

Tikhonov regularization is applied on the dictionary transform coefficients. This admits a closed-

form expression, which is shown to be equivalent to the regularized pseudoinverse solution. The

second proposal is to apply Principal Component Analysis (PCA) on training data to derive a

lower dimensional representation of diffusion pdfs. This way, fewer PCA coefficients are

required to represent individual pdfs, effectively reducing the acceleration factor of the

undersampled acquisition. Both methods require a single matrix-vector multiplication per voxel,

hence attaining 3-orders of magnitude speed up in computation relative to iterative CS

algorithms. Computation times on the order of seconds per slice in Matlab are reported for the

methods proposed in this section, and it is shown that the reconstruction qualities are comparable

to that of Dictionary-FOCUSS on in vivo datasets. In particular, the proposed methods yield up

to 2 times less reconstruction error relative to the Wavelet+TV method at the acceleration factor

of 3, and similar results to those of Dictionary-FOCUSS algorithm. Even when the acceleration

factor is increased to 9, the proposed methods have up to 1.5 times less error compared to the

wavelet and TV results obtained at the lower acceleration factor of 3.

5.6.1 Theory

The proposed algorithms with closed-form solutions are detailed in the following.

i. Proposal I: Dictionary-based Reconstruction with Regularized Pseudoinverse

Given a dictionary D trained with the K-SVD algorithm, Tikhonov regularized reconstruction of

dictionary coefficients at a particular voxel x are found by solving,

min,| IFnDx - q||I + /I -||x||| (5.6)
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Since this objective function is strictly convex, the unique global optimizer is found by setting

the gradient equal to zero,

i = (DH FHFnD + A - I)lDH FnHq (5.7)

Alternatively, we can relate Eq. 5.7 to the singular values of the observation matrix FnD by

letting FnD = UVH,

= ((UVH)HUEVH +A - I)-(UVH)Hq

= (V(IHE + A I)VH)-lVEHUHq
= V("IH + A- -IEHUHq

= VE+UHq (5.8)

Hence, the Tikhonov regularized solution can be found by applying singular value

decomposition (SVD) to the observation matrix FnD and modifying it singular value due to

=i+ 2(u2 + A). Defining + = (EH +A - I-IEH to be the diagonal matrix with entries Ui+,

the solution matrix VE+UH in the last line of Eq.8 needs to be computed only once. The

regularization parameter A can be selected to optimize the reconstruction performance on the

training dataset that was used to generate the dictionary D. This point is addressed in more detail

under the Methods section. The result in pdf space is finally computed as pdf = DX. Regularized

pseudoinverse reconstruction is denoted as PINV in the remainder of the text.

ii. Proposal 11: Reconstruction with Principal Component Analysis

PCA is a technique that seeks the best approximation of a given set of data points using a linear

combination of a set of vectors which retain maximum variance along their directions. PCA starts

by subtracting the mean from the data points, which becomes the virtual origin of the new

coordinate system (114). Again beginning with a collection of pdfs P E CNxL, whose i* column

is a training pdf pi E CN, we obtain a modified matrix Z E CNxL by subtracting the mean pdf

from each column,

1L
zi = Pg - - P = Pi - Pmean (5.9)

where zi is the i* column of Z. Next, the covariance matrix ZZH is diagonalized to produce an

orthonormal matrix Q and a matrix of eigenvalues A,
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ZZH H 
(=10)

It is possible to obtain a reduced-dimensionality representation by generating the matrix QT

which contains the T columns of Q that correspond to the T largest eigenvalues in A. For a given

pdf p, the PCA projection becomes,

pca = QT (P - Pmean) (5.11)

The location of the projected point pca in the larger dimensional pdf space is,

PT = QTPca + Pmean

= QTQ (P - Pmean) + Pmean (5.12)

With the preceding definitions, the target pdf can be estimated from undersampled q-space in

the least-square sense,

minPT |IFnPT - 2||| (5.13)

Expressed in terms of the PCA coefficients,

minpca ||Fn(QTPca + Pmean) - q1ll

= minpca |IFnQTpca - (q - FnPmean)||2 (5.14)

The solution to the least squares problem in Eq. 5.14 is computed using the pseudoinverse,

pinv(.),

pca = pinv(FnQT)(q - FnPmean) (5.15)

The result in pdf space is finally given by

pdf = QTPca + Pmean

= QTpinv(FnQT)(q - FnPmean) + Pmean (5.16)

The reconstruction matrix QTpinv(FnQT) needs to be computed only once. The dimension of

the PCA space T is a parameter that needs to be determined. A possible way to choose this

parameter is by optimizing the reconstruction performance with respect to an error metric on the

training dataset. This point will be discussed in more detail under the Methods subsection.
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5.6.2 Methods

To compare the performance of the proposed reconstruction algorithms Tikhonov regularization

(PINV) and PCA against Dictionary-FOCUSS and Wavelet+TV, data from subjects A and B

were analyzed. Variable-density undersampling with R=3 acceleration was applied in q-space on

a 12x 12x 12 grid. Two different dictionaries were trained with data from slice 30 of subjects A

and B. Reconstruction experiments were applied on test slices that are different than the training

slices. In particular, two reconstruction experiments were performed,

i. First, voxels in slice 40 of subject A were retrospectively undersampled in q-space, and

reconstructed using four different methods: Wavelet+TV method of Menzel et al. (96),

Dictionary-FOCUSS, PINV and PCA. The training data were sampled from slice 30 of

subject B.

ii. Second, voxels in slice 25 of subject B were retrospectively undersampled with the same

R=3 sampling pattern, and again reconstructed with Wavelet+TV, Dictionary-FOCUSS,

PINV and PCA. In this experiment, the training data were obtained from slice 30 of

subject A.

In these experiments, slice 30 was selected for training and slices 25 and 40 were chosen for

test based on their anatomical location, so that the test slices would reside on lower and upper

parts of the brain, while the training slice was one of the middle slices.

By taking the fully-sampled data as ground-truth, the fidelity of the four methods were

compared using RMSE normalized by the e2 -norm of ground-truth as the error metric both in pdf

domain and q-space. To observe the performance of the dictionary-based methods, additional

reconstructions were performed at the higher acceleration factors of R=5 and 9.

Tikhonov regularization parameter A for PINV and the dimension of the PCA space T were

determined using the training data. In particular, reconstruction experiments were performed on

the training dataset with the same undersampling pattern used for the test dataset, and the

parameter that yielded the lowest RMSE was selected as the "optimal" regularization parameter.

At all acceleration factors and for both of subjects A and B, A=0.03 was seen to yield the lowest

RMSE values on the training set. For subject A, the optimal dimension of the PCA space was

found to be T=(50, 26, 22) at accelerations R=(3, 5, 9), respectively. For subject B, the

corresponding values were T=(45, 27, 13).
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To map the performance of the methods across the brain, reconstruction experiments on

multiple slices across the whole brain were performed using, Dictionary-FOCUSS, PINV and

PCA. Mean and standard deviation of RMSE in pdf domain for each slice were computed for

subjects A and B.

Since the fully-sampled data are corrupted by noise, computing RMSEs relative to them will

include contributions from both reconstruction errors and additive noise. To address this, the

additional 10 average data acquired at the selected five q-space points were used again.

To explore how reconstruction error varies as a function of q-space location, at acceleration

R=3, q-space images at the "missing" (not sampled) directions were computed using the pdfs

estimated by the four methods. RMSE values were obtained for all missing q-space directions by

taking the fully-sampled 1 average dataset as ground truth.

5.6.3 Results

Wavelet+TV, Dictionary-FOCUSS, Tikhonov regularized (PINV) and PCA reconstruction errors

relative to fully-sampled pdfs in slice 40 of subject A are presented in Fig. 5.8. All dictionary-

based methods use the same training pdfs that were collected from slice 30 of subject B. At

acceleration factor R=3, Wavelet+TV yielded 15.8% average RMSE in the reconstructed pdfs.

The dictionary-based methods Dictionary-FOCUSS, PINV and PCA had 7.8%, 8.1% and 8.7%

average error, respectively. At the higher acceleration factor of R=5, Dictionary-FOCUSS, PINV

and PCA yielded 8.9%, 8.9%, and 9.6% RMSE, respectively. At R=9, the average RMSE figures

were 10.0%, 10.2% and 11.2% for Dictionary-FOCUSS, PINV and PCA. The computation times

were 1190 min for Wavelet+TV, 530 min for Dictionary-FOCUSS, 0.6 min for PINV and 0.4

min for PCA.

Fig. 5.9 compares pdf reconstruction errors obtained with the four methods for slice 25 of

subject B. The training data for the dictionary-based methods were the pdfs in slice 30 of subject

A. At acceleration R=3, Wavelet+TV yielded 17.5%, while Dictionary-FOCUSS, Tikhonov

regularization (PINV) and PCA returned 11.4%, 11.8% and 12.8% average RMSE, respectively.

At the higher acceleration factor of R=5, Dictionary-FOCUSS, PINV and PCA yielded 13.1%,

12.8% and 13.8% RMSE, respectively. At R=9, the errors were 14.2%, 14.1% and 15.5% for

Dictionary-FOCUSS, PINV and PCA. The computation times were 1450 min for Wavelet+TV,

645 min for Dictionary-FOCUSS, 0.8 min for PINV and 0.6 min for PCA.
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Subject A, Slice 40 pdf reconstruction error

Training data: Subject B, Slice 30
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Fig. 5.8. Pdf reconstruction error maps for slice 40 of subject A. a: At acceleration R=3, Wavelet+TV

reconstruction returned 15.8% average RMSE with a computation time of 1190 min. b, e and d: At R=3,
Dictionary-FOCUSS yielded 7.8% error in 530 min, Tikhonov regularized reconstruction (PINV) had 8.1%

error in 0.6 min and the PCA method resulted in 8.7% error in 0.4 min. e, f, and g: At R=5, the three

dictionary-based methods yielded 8.9%, 8.9% and 9.6% RMSE. h, i and j: At R=9, the reconstruction

errors were 10.0%, 10.2% and 11.2% for Dictionary-FOCUSS, PINV and PCA, respectively.

Subject B, Slice 25 pdf reconstruction error

Training data: Subject A, Slice 30

23% 17%

0% 0%

20% 21%
0% 0%

Fig. 5.9. Pdf reconstruction error maps for slice 25 of subject B. a: At acceleration R=3,

Wavelet+TV reconstruction returned 17.5% average RMSE with a computation time of 1450

min. b, c and d: At R=3, Dictionary-FOCUSS yielded 11.4% error in 645 min, Tikhonov

regularized reconstruction (PINV) had 11.8% error in 0.8 min and the PCA method resulted in

12.8% error in 0.6 min. e, f, and g: At R=5, the three dictionary-based methods yielded 13.1%,

12.8% and 13.8% RMSE. h, i and j: At R=9, the reconstruction errors were 14.2%, 14.1% and

15.5% for Dictionary-FOCUSS, PINV and PCA, respectively.
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Pdf reconstruction errors for subject A across slices are plotted for Dictionary-FOCUSS, PINV

and PCA in Fig. 5.10. At four slices, RMSE maps are also depicted for comparison. The mean

RMSE averaged across all slices was found to be 11.0% for Dictionary-FOCUSS, 11.3% for

PINV and 12.1% for PCA. Results from the same analysis are presented in Fig. 5.11 for subject

B. In this case, the mean RMSE averaged across all slices was found to be 11.0% for Dictionary-

FOCUSS, 11.3% for PINV and 12.3% for PCA.

Isl

&5i

Subject A, recon error across slices

- T - -- DTon;ry-F&dU
.- PINV
... PCA

Slc15 0 S5 36

Slice 17 Suee 26

35 40

Slice 35

4 5Slice number
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20%
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Fig. 5.10. Upper panel: average and standard deviation of pdf reconstruction errors in each slice

for subject A. Lower panel: comparison of Dictionary-FOCUSS, PINV and PCA error maps at

four different slices.
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Subject B, recon error across slices
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Fig. 5.11. Upper panel: average and standard deviation of pdf reconstruction errors in each slice

for subject B. Lower panel: comparison of Dictionary-FOCUSS, PINV and PCA error maps at

four different slices.

To isolate the reconstruction error from the contribution of noise to the RMSE figures,

comparison against the 10 average dataset collected at 5 different q-space points are presented in

Fig. 5.12. The comparison is based on slice 40 of subject A, while the data used for dictionary

training were slice 30 of subject B. The average error for each of the curves in Fig. 5.12 were

33.7% for Wavelet+TV, 10.7% for fully-sampled 1 average data, 8.9% for Dictionary-FOCUSS,

8.4% for PINV and 9.0% for PCA reconstruction.
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[11,0] [0,2,-1] s 0 r&6at [0,4,0] [5,0,0]

Fig. 5.12. Upper panel: q-space reconstruction errors relative to the 10 average data collected in

five q-locations. On average, the RMSE figures were 33.7% for Wavelet+TV, 10.7% for 1

average fully-sampled data, 8.9% for Dictionary-FOCUSS, 8,4% for PINV and 9.0% for PCA.

Lower panel: zoomed-in version for detailed comparison of the methods.

Reconstruction errors at acceleration R=3 for slice 40 of subject A at the "missing" q-space

points are plotted in Fig. 5.13. When averaged over all missing q-space points, the RMSEs were

found to be 33.8% for Wavelet+TV, 15.7% for Dictionary-FOCUSS, 15.6% for PINV and 15.8%

for PCA. The lower panel shows the q-space images at the location [5,0,0] estimated by the four

reconstruction methods, as well as the fully-sampled 10 average and 1 average images.
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Subject A, Slice 40 q-space reconstruction error
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Fig. 5.13. Upper panel: q-space reconstruction errors at the missing directions relative to the 1

average fully sampled data. When averaged over the missing q-space points, the RMSEs were

found to be 33.8% for Wavelet+TV, 15.7% for Dictionary-FOCUSS, 15.6% for PINV and 15.8%

for PCA. Lower panel: Comparison of the q-space reconstructions at the point q=[5,0,0].

Fig. 5.14 depicts the effect of applying 4i regularization on the dictionary coefficient vectors

via Dictionary-FOCUSS and 42 regularization via PINV. Fig.7a-c show 4i and -2 regularized

coefficient vectors at three example voxels. Fig. 5.14d shows the cumulative sum of 4e and e2

regularized solution vectors averaged over all voxels in the slice. 4e penalized coefficients reach

90% of total energy using 19% of the coefficients, whereas 63% of all coefficients are required to

reach the same level with 2 regularization.
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(d) Cumulative sum of Li and L2 reg. coefficients
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Fig. 5.14. a, b and c: eiregularized dictionary transform coefficients obtained with Dictionary-

FOCUSS and f 2 regularized coefficients obtained with the PINV method compared at three

voxels A, B and C. d: Cumulative sums of dictionary coefficient vectors from Dictionary-

FOCUSS and PINV reconstructions averaged over the voxels in the slice.

5.6.4 Remarks on Fast DSI Reconstruction with Trained Dictionaries

The two proposed methods PINV and PCA were demonstrated to have reconstruction quality

comparable to that of Dictionary-FOCUSS in pdf domain and q-space based on Figs. 5.8 through

14. At the same time, they attained 3 orders of magnitude reduction in computation time relative

to both of the previously proposed algorithms Wavelet+TV (96) and Dictionary-FOCUSS. With

this initial implementation, which reconstructs each voxel sequentially and runs on Matlab,

processing time on the order of seconds per slice is already achievable. While being feasible for
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clinical application of accelerated DSI, the presented methods do not sacrifice reconstruction

quality for computation speed.

An alternative approach to improving reconstruction speed is to increase the convergence rate

of iterative CS algorithms through Nesterov-type gradient descent algorithms (115). These

optimal methods rely on a weighted combination of all previous gradients, and reduce the number

of iterations required to reach a certain solution precision. With the FISTA algorithm (115),

wavelet-based deblurring was seen to require 10 times fewer number of iterations compared to

gradient descent. However, even with optimal descent techniques, it would be challenging to

reduce the processing time of CS algorithms from days to a clinically feasible interval. Further,

l regularization parameters need to be determined for such optimal CS algorithms.

For both of the proposed methods, there is also one parameter that needs to be tuned, namely,

the e2 regularization parameter for PINV and the number of columns kept in PCA. Herein, the

fully-sampled training dataset was used to determine "optimal" parameters with respect to the

RMSE metric. Using the same undersampling pattern that will be applied on the test dataset, the

parameter setting that yields the lowest reconstruction RMSE on the training dataset is

determined by parameter sweeping. It should be noted that there are other established ways to

determine these regularization parameters (e.g., L-curve method, cross-validation). With the

assumption that fully-sampled data exist for dictionary training, this set was further utilized for

parameter extraction. For subject A, the dimension of the PCA space was determined by

minimizing the reconstruction error on the training set from subject B to obtain the optimal values

T=(50, 26, 22) at R=(3, 5, 9). Instead, if the parameters were determined by optimizing the

performance on subject A, the optimal values would be T=(49, 24, 23). However, both sets of

parameters yield the same RMSE on subject A, namely 8.7%, 9.6% and 11.2% at R=(3, 5, 9) in

Fig. 5.8. Similarly for subject B, the optimal parameter setting was found to be T=(45, 27, 13)

based on the training dataset from subject A. Assuming that it was possible to optimize the

parameters with data from subject B, T=(45, 22, 13) would have been obtained. In this case, the

only difference is at R=5, where the RMSE in Fig. 5.9g would decrease from 13.8% to 13.7% if

T=22 was used instead of T=27. Hence, the PCA parameters extracted from the training dataset

generalize very well to the test dataset and yield close to optimal reconstruction performance.

Because the optimal PCA dimension was seen to differ across subjects (for A, T=(50, 26, 22)

and for B, T=(45, 27, 13)), the effect of applying the optimal T determined for subject A while

reconstructing B and vice versa was tested. Regarding slice 40 of subject A, the same RMSE

values were obtained at R=3 and 5. At R=9, the error increased from 11.2% (with the optimal
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T=22) to 11.9% (with T=13 from B). Regarding the reconstruction of slice 25 of subject B, the

RMSE value did not change at R=5, however it increased from 12.8% (with the optimal T=45) to

12.9% (with T=50 from A) at R=3, and from 15.5% (with the optimal T=13) to 16.3% (with T=22

from A) at R=9. These results suggest that optimal number of columns for PCA reconstruction

generalizes across subjects, except when very high acceleration factors are employed.

The number of PCA columns that yielded the lowest error was seen to decrease as the

acceleration factor increased. PCA reconstruction in Eq. 5.16 involves the solution of a least

squares problem via the pseudoinverse of FnQT, and this problem is ill-conditioned if the

condition number of FnQT is large. In this case, small errors in the entries of this matrix can lead

to large errors in the solution vector. While keeping the number of columns T fixed, it was

observed that the condition number increased as the acceleration factor increased. For instance,

letting T=100, cond(FnQT) was computed to be 6.8 at R=3, 113.2 at R=5 and 2.0 1014 at R=9.

This indicates that smaller number of columns needs to be used at higher accelerations to keep the

least squares problem well-conditioned.

For Dictionary-FOCUSS, dictionary trained on one subject was shown to generalize to other

subjects (116). Since PINV and PCA attain similar reconstruction quality, the same observation

can be made for the proposed methods. Whether the dictionaries generalize across age groups or

patient populations remains an open question.

When 10 average data were taken as ground truth (Fig. 5.12), all three dictionary-based

methods at 3-fold acceleration were seen to yield lower error than the fully-sampled I average

data. This could indicate that dictionary-based techniques successfully estimate the missing q-

space samples as well as denoise the q-space. In accordance with this conclusion, K-SVD was

recently proposed as a denoising tool for high-angular diffusion imaging (HARDI) (117), where

training and denoising were performed on q-space images.

Also evident in Figs. 5.12 and 13 is the observation that the performance of all reconstruction

methods deteriorates at higher |ql values. While this effect is milder in the dictionary-based

techniques, the RMSE values of Wavelet+TV exceed 100% at the outer shells. As seen in the

lower panel of Fig. 5.13, Wavelet+TV fails to estimate the q-space content at large Iql and yields

coefficients with much lower amplitude than the fully-sampled reconstruction.

Regarding the PCA method, using a lower dimensional space reduces the number of

coefficients that need to be estimated from the sampled q-space points. Considering the case at

R=3 with T=50 principal components, the projected pdfs reside in a 50-dimensional space whose
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coordinates need to be determined using 171 q-space samples (at 3-fold undersampling for 515

directions). Rather than operating in the pdf space with 12x12x12 = 1728 dimensions, PCA

method seeks 50 coefficients, thus substantially reduces the effective undersampling factor of the

problem. This is thanks to the prior information encoded in the training pdf dataset.

Results obtained with Dictionary-FOCUSS and PINV indicate that with a dictionary trained by

K-SVD, using either el or e2 penalty on the dictionary transform coefficients yield comparable

results. In the case of '2 regularization, the computational advantage is that there is a closed form

expression for the solution vector. As expected, Fig. 5.14 shows that - 1 penalty yielded several

large coefficients and many smaller ones, while e2 regularization gave a more spread-out

coefficient pattern in terms of amplitude.

5.7 Conclusion

By using a data-driven transform specifically tailored for sparse representation of diffusion pdfs,

up to 2-fold reduction in reconstruction errors were obtained relative to using either prespecified

wavelet and gradient transforms, or ei-norm penalty. Further, it was demonstrated that an

adaptive dictionary trained on a particular subject generalizes well to other subjects, still yielding

significant benefits in CS reconstruction performance. Coupled with the parameter-free FOCUSS

algorithm, the proposed method can help accelerate DSI scans in the clinical domain.

In addition to the Dictionary-FOCUSS algorithm, two dictionary-based methods that yield

closed-form solutions were also presented. These methods decreased the computation time by 3

orders of magnitude relative to the iterative CS techniques, while retaining the high

reconstruction quality.
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Chapter 6

Future Directions

This chapter proposes potential extensions and future research directions related to the methods

presented in this dissertation.

6.1 Joint Reconstruction

Bayesian compressed sensing algorithm developed for reconstruction of multi-contrast structural

MRI images from undersampled data can be extended in two directions,

i. Parallel imaging: MR scanners are equipped with multiple receivers that are sensitive to

signals in their vicinity. Data obtained from multiple views of the object provide extra

spatial information, and thereby can also be used to facilitate reconstruction from

undersampled datasets. Joint reconstruction can be augmented with parallel imaging to

yield even higher savings in imaging time without loss of image quality. In addition to

the capability of recent methods e.g. (7,8,118) to combine parallel imaging with sparsity

techniques, joint reconstruction will also exploit the similarity across contrasts.

ii. Multimodal imaging: Image similarity is not limited to multi-contrast MRI.

Developments in hardware bring modalities such as MRI, PET (Positron Emission

Tomography) and CT (Computed Tomography) together in one scanner. Combined MR-

PET and PET-CT imaging may benefit from joint reconstruction, wherein quantitative

physiology and high-resolution structural imaging complete each other.

6.2 Quantitative Susceptibility Mapping

The work presented on QSM can be extended both on the application and algorithm development

fronts in directions such as,

i. Susceptibility venography: The paramagnetic nature of deoxyhemoglobin in cerebral

veins allows quantification of vessel oxygen saturation from susceptibility, which
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provides critical information for monitoring therapy in stroke and tumor (119). Since

oxygenation is expected to vary slowly along a vessel, QSM-based vessel-tracking should

be feasible. Tracking is a mature field in the context offiber tractography, which aims to

reveal white matter connectivity in the brain. The QSM tools developed herein can be

combined with the techniques in the literature on fiber tractography to generate

susceptibility venograms.

ii. QSM with magnitude prior: While MR signal phase is processed to yield susceptibility

maps, the magnitude of the signal is often overlooked. The magnitude image may provide

critical information for localization of vessels and iron-rich basal ganglia structures. It

might be possible to exploit this prior during deconvolution to improve the conditioning

of the inverse problem.

6.3 Chemical Shift Imaging

While the focus of thesis on spectroscopic imaging was limited to lipid artifact reduction,

constrained reconstruction techniques may also be able to alleviate some of the major challenges

faced in CSI, such as low metabolite SNR and low spatial resolution. Further research directions

in this domain may include,

i. Model based spectroscopy with lipid prior: Parametric modeling of spectroscopy signal

at each voxel allows mitigation of magnetic field inhomogeneities and facilitates

improved mapping of the metabolites (93). As the spectra are characterized by a small

number of parameters that need to be determined, reconstruction from undersampled data

is also made easier. Extending the model to include lipid basis functions may lead to

further reduction in lipid contamination, while taking advantage of the benefits of

mitigated artifacts from field inhomogeneity and allowing accelerated acquisition.

ii. Metabolite estimation with joint reconstruction: CSI acquisition is commonly preceded

by a structural MRI for localization of the field of view. The structural images and

metabolite maps share the same tissue boundaries, while the metabolite images enjoy

much lower resolution than that of the structural images. Similar to the multi-contrast

MRI setting wherein structural images were reconstructed jointly, it might be possible to
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regularize and enhance the resolution of metabolite maps with the help of structural

priors.

iii. Lactate imaging: Lactate is a metabolite that plays a critical role in brain pathologies such

as tumor, stroke and cerebral ischemia (120), whose detection is made especially difficult

by lipid signals that reside over the same resonance frequency. In addition to facilitating

the detection of NAA, regularized spectroscopic imaging with effective lipid suppression

may be deployed as a critical tool in lactate imaging.

6.4 Diffusion Spectrum Imaging

Model-based reconstruction of diffusion pdfs from undersampled q-space was demonstrated to

reduce DSI scan times without compromising the quality of tractography solutions. Another

source of reduction in imaging time is parallel imaging, which can be extended and enhanced in

the following ways,

i. Simultaneous Multi-Slice (SMS) imaging (113,121): While the proposed dictionary-based

method skips a subset of diffusion directions entirely, SMS accelerates imaging by

excitation of multiple image slices at the same time. The overlapping slices are then

disentangled using information from multiple receivers. SMS demonstrated 3-fold

reduction in acquisition time with little impact on the image quality. As dictionary

reconstruction and SMS undersample data in orthogonal directions, they may

synergistically combine to yield 9-fold (3x3) reduction in scan time, rendering clinical

DSI feasible for the first time.

ii. SMS with low-rank prior: When DSI data are arranged into a matrix where each column

is the vector form of a diffusion weighted image, this data structure can be well

approximated with a low-dimensional representation. This stems from the fact that all

diffusion weighted images share common structures. Enforcing this prior during SMS

recovery may improve the reconstruction.
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