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presents itself in the form of sparsity with respect to either a prespecified or learned signal
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List of Figures

Fig. 2.1. Joint image reconstruction begins with modifying the undersampled k-space data
to obtain undersampled k-space representations of vertical and horizontal image gradients.
After finding the hyperparameters via Maximum Likelihood (ML) estimation, the means
of the posterior distributions are assigned to be the gradient estimates. Finally, images are
integrated from gradient estimates via solving a Least Squares (LS) problem.

Fig 2.2 Reconstruction results with the extended Shepp-Logan phantoms after
undersampling with acceleration R = 14.8, at 128x128 resolution. (a) Phantoms at Nyquist
rate sampling. (b) Undersampling patterns in k-space corresponding to each image. (¢) CS
reconstructions with Lustig ef al.’s algorithm yielded 15.9 % RMSE (root-mean-square
error). (d) Absolute error plots for Lustig ef al.’s method. (e) Reconstructions obtained
with the M-FOCUSS joint reconstruction algorithm have 8.8 % RMSE. (f) Absolute
difference between the Nyquist sampled phantoms and the M-FOCUSS reconstruction
results. (g) Joint Bayesian CS reconstruction resulted in 0 % RMSE. (h) Absolute error
plots for the Bayesian CS reconstructions.

Fig. 2.3. Reconstruction results with SRI24 atlas after undersampling along the phase
encoding direction with R = 4, at 256x256 resolution. (a) Atlas images at Nyquist rate
sampling. (b) Undersampling patterns in k-space corresponding to each image. (c)
Applying the gradient descent algorithm proposed by Lustig ef al. resulted in
reconstructions with 9.4 % RMSE. (d) Absolute difference between the gradient descent
reconstructions and the Nyquist rate images. (¢) M-FOCUSS reconstructions have 3.2 %
RMSE. (f) Absolute error plots for the M-FOCUSS algorithm. (g) Joint Bayesian
reconstruction yielded images with 2.3 % RMSE. (h) Error plots for the joint Bayesian
reconstructions.

Fig. 2.4. Reconstruction results with TSE after undersampling along the phase encoding
direction with R = 2.5, at 256x256 resolution. (a) TSE scans at Nyquist rate sampling. (b)
Undersampling patterns used in this experiment. (c) Reconstructions obtained with Lustig
et al.’s gradient descent algorithm have 9.4 % RMSE. (d) Plots of absolute error for the
gradient descent reconstructions. (¢) M-FOCUSS joint reconstruction yielded images with
5.1 % RMSE. (f) Error plots for the M-FOCUSS results. (g) Images obtained with the
joint Bayesian CS reconstruction returned 3.6 % RMSE. (h) Error plots for the Bayesian
CS reconstructions.

Fig. 2.5. To investigate the impact of spatial misalignments on joint reconstruction with
Bayesian CS and M-FOCUSS, one of the TSE images was shifted relative to the other by
0 to 2 pixels with step sizes of %2 pixels using power law and phase encoding
undersampling patterns. For speed, low resolution images with size 128x128 were used.
For joint Bayesian CS, reconstruction error increased from 2.1 % to 2.8 % at 2 pixels of
vertical shift for power law sampling, and from 5.2 % to 6.4 % at 2 pixels of horizontal
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shift for phase encoding sampling; for the M-FOCUSS method error increased from 4.7 %
to 4.9 % for power law sampling, and from 6.2 % to 6.6 % for phase encoding sampling,

Fig. 2.6. Reconstruction results with the complex-valued Shepp-Logan phantoms after
undersampling with acceleration R = 3.5, at 128x128 resolution. (a) Magnitudes of
phantoms at Nyquist rate sampling. (b) Symmetric undersampling patterns in k-space
corresponding to each image. (c) Real and imaginary parts of the first phantom (on the left
in (a)). (d) Real and imaginary parts of the second phantom (on the right in (a)). (¢) CS
reconstructions with Lustig ef al.’s algorithm yielded 13.1 % RMSE. (f) Absolute error
plots for Lustig e al.’s method. (g) Reconstructions obtained with the M-FOCUSS joint
reconstruction algorithm have 5.4 % RMSE. (h) Absolute difference between the Nyquist
sampled phantoms and the M-FOCUSS reconstruction results. (i) Joint Bayesian CS
reconstruction resulted in 2.4 % RMSE. (h) Absolute error plots for the Bayesian CS
reconstructions.

Fig. 2.7. Reconstruction results for complex-valued TSE images after undersampling
along the phase encoding direction with R = 2, at 128x128 resolution. (a) Magnitudes of
the TSE scans at Nyquist rate sampling. (b) Symmetric undersampling patterns used in
this experiment. (c) Real and imaginary parts of the early echo image (on the left in (a)).
(d) Real and imaginary parts of the late echo image (on the right in (a)). (e)
Reconstructions obtained with Lustig er al.’s gradient descent algorithm have 8.8 %
RMSE. (d) Plots of absolute error for the gradient descent reconstructions. (e) M-
FOCUSS joint reconstruction yielded images with 9.7 % RMSE. (f) Error plots for the M-
FOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction returned
6.1 % RMSE. (h) Error plots for the Bayesian CS reconstructions.

Fig. 2.8. (a) Image gradients for the multi-contrast TSE scans demonstrate the similarity
under the gradient transform. (b) To quantify this similarity, we computed the cumulative
energy of the image gradient of early TSE scan (7SE! in TSE! order). Then we sorted the
late TSE scan (TSE2) in descending order, and computed the cumulative energy in TSE1
corresponding to the sorted indices in TSE2 which gave the curve TSE! in TSE2 order.
The similarity of the curves indicates similar sparsity supports across images.

Fig. 2.9. (a) Lustig et al.’s algorithm yielded 9.3% error (b) absolute error for (c) Bayesian
CS with prior returned 5.8% error (d) error for Bayesian CS (e) fully-sampled prior (f)
R=4 sampling pattern.

Fig. 2.10. (al-a2) Lustig et al.’s algorithm yielded 9.5% error (b1-b2) absolute error plots
for Lustig et al. (c1-c2). Joint Bayesian CS with prior returned 4.3% error (d1-d2) error
plots for Bayesian CS (e) fully-sampled PD weighted prior image (f) R=4 random
undersampling pattern in 1D.

Fig. 3.1. L-curve for £;-regularized QSM results for a young subject. X-axis: data

consistency term ”5 ~-F'DF 1"2 in regularized reconstruction for varying values of the
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smoothing parameter 1. Y-axis: regularization term ||G y/| . Setting 1 = 5:10” yielded an
V4 g y

under-regularized susceptibility map with ringing artifacts (a), whereas using A = 107
resulted an over-regularized reconstruction (c). For A = 2-10™, the operating point with the
largest curvature on the L-curve was obtained (b). This setting was used for the reported
£i-regularized results.

Fig. 3.2. L-curve for {,-regularized QSM results for a young subject. X-axis: data

consistency term "5 ~F ' DF x“z in regularized reconstruction for varying values of the

smoothing parameter 8. Y-axis: regularization term |G x|, . Setting g = 3-107 yielded an
2

under-regularized susceptibility map with ringing artifacts (a), whereas using g = 7 107
resulted an over-regularized reconstruction (c). For = 1.5 107, the operating point with
the largest curvature on the L-curve was obtained (b). This setting was used for the
reported £,-regularized results.

Fig. 3.3. Young (left) and elderly (right) group averages for FDRI (a), £,-regularized
QSM (b), and £,-regularized QSM (c). Greater iron concentration yields brighter QSM
and FDRI images. Splenium reference ROIs are indicated with a white box on the axial
QSM slices.

Fig. 3.4. X-axis: Mean + SD iron concentration (mg/100 g fresh weight) determined
postmortem in each ROI (1). Y-axis: Mean + SD &;-regularized QSM in ppm (left) and
FDRI in s '/Tesla (right) indices in all 23 subjects (black squares); the gray circles
indicate the mean of the young group, and the open circles indicate the mean of the elderly
group.

Fig. 3.5. Correlation between FDRI and £,-regularized QSM results on the regions of
interest. Results indicate strong relationship between the two methods (Rho = 0.976, p =
0.0098). Left: all 23 subjects; middle: young group; right: elderly group.

Fig. 3.6. Mean + S.E.M. of average susceptibility in ppm computed by the two methods
(£,-regularized QSM, top; {,-regularized QSM, bottom) for each ROI in the young and
elderly groups.

Fig. 3.7 Reconstruction experiment for the piece-wise constant numerical phantom with 3
compartments. (a) Noisy field map from which the susceptibility is estimated. (b) Closed-
form QSM solution. (c) Difference between ground truth and closed-form reconstructions.

Fig. 3.8 In vivo reconstruction at 1.5T. (a) Tissue field map obtained after removing the
background phase. (b) Closed-form QSM solution. (c) Difference between iterative and
closed-form solutions.

Fig. 4.1. The L-curve traced by the data consistency and lipid-basis penalty terms as the
regularization parameter A varies. Summation over lipid frequencies for under-regularized
(a), optimally regularized (b) and over-regularized reconstructions (c) are presented. Panel
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(d) depicts the analytically computed L-curve curvature results for the sample points.

Fig.4. 2. Comparing the different artifact reduction algorithms by taking projections over
the lipid resonance frequencies (in dB scale). Gold standard reconstruction is obtained
using 20 averages of high-resolution data without peripheral k-space undersampling (20
aVghigh, Rhigh = 1, shown in (a)), while the basic proposed method is obtained using 2
averages of high-resolution data without undersampling (2 avgigh, Riigh = 1, shown in (b))
and the refined proposed method uses 10-fold undersampled, 2 average high-resolution
data (2 avguigh, Rhigh = 10, shown in (c)). Lipid suppression results obtained by using only
lipid-basis penalty method and only dual-density approach are depicted in panels (d) and
(e), respectively. Applying no lipid suppression (f) results in severely corrupted spectra.

Fig. 4.3. Comparison between NRMSE values of NAA maps relative to the gold standard
reconstruction.

Fig. 4.4. Comparison between NRMSE values of NAA maps computed within the 9x9
cm’ excitation box relative to the NAA maps obtained with the OVS method. In (a),
reconstruction results obtained using the gold-standard (20 avghign, Ruigah = 1) method
(blue) and the OVS spectra (black) belonging to the region inside the red box are also
overplotted. In (b), the basic proposed method (blue) and the OVS spectra are compared.
The spectra obtained with the refined method (blue) and the OVS results (black) are
overplotted in (c). Lipid-basis penalty and OVS spectra are compared in (d).

Fig. 4.5. Comparison of spectra inside the region of interest marked with the red box that
were obtained with different lipid suppression methods. In (a), reconstruction results
obtained using lipid-basis penalty method (blue) and the gold-standard reconstruction
(black) are overplotted. In (b), the basic proposed method (blue) and the gold-standard
spectra are presented. The spectra obtained with the refined method (blue) and the gold-
standard results (black) are plotted in (c).

Fig. 4.6. Comparison of spectra inside the region of interest marked with the red box that
were obtained with different lipid suppression methods. Panel (a) overplots reconstruction
results using lipid-basis penalty method (blue) and the gold-standard reconstruction
(black). In (b), the basic proposed method (blue) and the gold-standard spectra are
compared. The spectra obtained with the refined method (blue) and the gold-standard
results (black) are depicted in (c).

Fig. 4.7. Lipid and NAA maps and artifact-free spectra for the Cartesian synthetic
phantom are shown in (a). In (b), spiral sampling trajectory at Nyquist rate and
reconstruction results upon the application of lipid-basis penalty are depicted. Using the
undersampled spiral trajectory in (c), a high-resolution lipid image was estimated using
FOCUSS, from which a combined image was computed due to the dual-density method.
Finally, lipid-basis penalty was applied to this combined image. Panel (d) shows lipid
suppression results when the k-space is sampled only at half of the full resolution and
lipid-basis penalty is applied. For the three reconstruction methods, the example spectra
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(plotted in blue) belong to the region of interest marked with the red box, and are
overplotted with the artifact-free spectra (in black) for comparison.

Fig. 4.8. Demonstration of approximate orthogonality between metabolite spectra obtained
from in vivo OVS scan and lipid spectra from high resolution in vivo acquisition. In (a),
the lipid and metabolite spectra with the highest orthogonality are plotted. In (b), the
components of the metabolite spectrum that are orthogonal and parallel to the lipid
spectrum for the best case in (a) are overplotted. The actual metabolite spectrum (in blue)
is totally occluded by the orthogonal component (in orange). In (c), the lipid and
metabolite spectra that are least orthogonal are depicted. In (d), the orthogonal and parallel
components of the metabolite spectrum are overplotted for the worst case in (c). Panel ()
depicts the methodology used in computing the orthogonal and parallel metabolite
components.

Fig. 5.1. RMSE at each voxel in slice 40 of subject A upon R = 3 acceleration and
reconstruction with Menzel et al.’s method (a), £;-FOCUSS (b), Dictionary-FOCUSS
trained on subjects A (c), B (d), and C (e). Dictionary-FOCUSS errors in (f), (g) and (h)
are obtained at higher acceleration factor of R = 5 with training on subjects A, B and C,
respectively. Results for the reconstructions at R =9 are given in (i), (j) and (k).

Fig. 5.2. RMSE at each voxel in slice 25 of subject B upon R = 3 acceleration and
reconstruction with Menzel et al.’s method (a), #,-FOCUSS (b), Dictionary-FOCUSS
trained on subjects A (c), B (d), and C (e). Dictionary-FOCUSS errors in (f), (g) and (h)
are obtained at higher acceleration factor of R = 5 with training on subjects A, B and C,
respectively. Results for the reconstructions at R =9 are given in (i), (j) and (k).

Fig. 5.3. Mean and standard deviation of RMSEs computed on various slices of subject A
using ¥, - and Dictionary-FOCUSS trained on subject B. Lower panel depicts RMSE maps
for four selected slices.

Fig. 5.4. Mean and standard deviation of RMSEs computed on various slices of subject B
using ;- and Dictionary-FOCUSS trained on subject A. Lower panel depicts RMSE maps
for four selected slices.

Fig. 5.5. Top panel shows RMSEs in ‘missing’ g-space directions that are estimated with
Wavelet+TV, £,-FOCUSS and Dictionary-FOCUSS with training on subjects A, B and C
at R=3. g-space images at directions [5,0,0] (a) and [0,4,0] (c) are depicted for comparison
of the reconstruction methods. In panels (b) and (d), reconstruction errors of Wavelet+TV,
£,-FOCUSS and dictionary reconstructions relative to the 10 average fully-sampled image
at directions [5,0,0] and [0,4,0] are given.

Fig. 5.6. Panel on top depicts RMSEs of Wavelet+TV, #;-FOCUSS and Dictionary-
FOCUSS at R = 3 and fully-sampled 1 average data computed in 5 g-space locations
relative to the 10 average data for subject A. Panel on the bottom shows the same
comparison for the slice belonging to subject B.
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Fig. 5.7. Axial view of white-matter pathways labeled from streamline DSI tractography
in fully-sampled data (a) and Dictionary-FOCUSS reconstruction at R = 3 (b). The
following are visible in this view: corpus callosum - forceps minor (FMIN), corpus
callosum - forceps major (FMAJ), anterior thalamic radiations (ATR), cingulum -
cingulate gyrus bundle (CCG), superior longitudinal fasciculus - parietal bundle (SLFP),
and the superior endings of the corticospinal tract (CST). Average FA (c) and volume in
number of voxels (d) for each of the 18 labeled pathways, as obtained from the fully-
sampled (R=1, green) and Dictionary-FOCUSS reconstructed with 3-fold undersampling
(R=3, yellow) datasets belonging to subject A. Intra-hemispheric pathways are indicated
by “L-” (left) or “R-” (right). The pathways are: corpus callosum - forceps major (FMAJ),
corpus callosum - forceps minor (FMIN), anterior thalamic radiation (ATR), cingulum -
angular (infracallosal) bundle (CAB), cingulum - cingulate gyrus (supracallosal) bundle
(CCG), corticospinal tract (CST), inferior longitudinal fasciculus (ILF), superior
longitudinal fasciculus - parietal bundie (SLFP), superior longitudinal fasciculus -
temporal bundle (SLFT), uncinate fasciculus (UNC).
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Chapter 1

Introduction

1.1 Motivation

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality that is capable of
yielding high-resolution and high-contrast images of soft tissues of the body. Unlike Computed
Tomography (CT) or X-ray imaging, MRI does not employ ionizing radiation. It also does not
require the introduction of a radioactive agent as employed in Positron Emission Tomography
(PET). Therefore, MRI is considered to be a safe imaging modality that finds important clinical
use. However, a major drawback of MRI is that it is inherently a slow imaging modality,
requiring the subjects to remain motionless within a tight, closed environment typically for half
an hour or longer, depending on the imaging protocol. This constraint on the imaging time

reduces subject compliance and raises challenges especially in pediatric and patient populations.

With the introduction of parallel imaging and compressed sensing (CS) methods and ultra
high-field systems over the last decade, substantial progress has been made towards improved the
image quality and reduced acquisition time. Parallel imaging relies on the information provided
by multiple receive coils that are sensitive to different parts of the region of interest for
accelerated imaging. Aliasing caused by subsampled acquisitions is disentangled with the help of
multiple coil data to yield high quality images. Parallel imaging has made the transition from
being a technique to becoming a technology, as 2 to 3-fold accelerated acquisitions in the clinical
setting are ubiquitous. Parallel imaging methods can operate either in the image space (2), or in
the Fourier space (k-space) of the object where the data are collected (3). Compressed sensing, on
the other hand, is a less mature technique in the field of medical imaging. CS is a collection of
algorithms that aim to recover signals from subsampled measurements by applying a sparsity-
inducing prior over the signal coefficients. Even though the idea of using sparsity-promoting
optimization techniques in signal processing and statistics is not new (e.g. (4,5)), it was not
deployed in MR image reconstruction until recently (6). Because of the non-linear nature of the
processing involved, CS reconstruction artifacts are not fully characterized. As such, the clinical

translation of CS has not reached the same level as parallel imaging methods.

More recent developments aim to merge parallel imaging and CS techniques to allow further

reduction in imaging time. In this domain, L1 SPIR-iT (7) is a popular algorithm that combines
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the k-space data from multiple coils while enforcing sparsity of coil images with respect to the
wavelet transform. Similarly, it is possible to combine image-domain parallel imaging with

sparsity priors for improved reconstruction (8).

In the light of these recent developments, this thesis presents image reconstruction algorithms

that aim to further increase the imaging efficiency of MRI. These algorithms achieve,

i.  Reduction of the total scan time without sacrificing the image quality, and

ii.  Mitigation image artifacts due to physiology or MR physics to improve the image quality.

Reduction of imaging time is a well-motivated research goal, leading to increased patient

comfort and reduced costs. This goal is investigated for the following MR imaging techniques,

i.  Structural imaging with multiple contrast preparations: By exploiting image statistics
and similarity between images obtained with different contrasts, improved image
reconstruction from undersampled data is demonstrated.

ii.  Diffusion Spectrum Imaging (DSI): Diffusion Weighted Imaging (DWI) aims to explore
the brain connectivity by mapping the water diffusion as a function of space. DSI is a
particular DWI method that is able to generate a complete description of diffusion
probability density functions (pdfs), but suffers from significantly long imaging times.
This dissertation demonstrates that by learning the structure of pdfs from training data, it

is possible to substantially reduce the scan time with small cost on the image quality.

Mitigation of image artifacts is yet a different way to achieve increased efficiency, as it
increases the amount of meaningful data for further processing and diagnosis. Results on artifact

mitigation are demonstrated within two contexts,

i.  Regularized Quantitative Susceptibility Mapping (QSM): The magnetic property of
the tissues called magnetic susceptibility gives rise to the observed signal phase in
MRI, which is estimated using an iterative background removal method and
regularized inversion. Regularization helps reduce the streaking artifacts in the
reconstructed susceptibility map, which stem from the ill-posed nature of the
relation connecting the phase to the magnetic susceptibility.

ii.  Lipid artifact reduction in Chemical Shift Imaging (CSI): A major obstacle in CSI is
the contamination of brain spectra by the strong lipid signals around the skull. Lipid
artifacts are substantially reduced by employing an iterative reconstruction method

that makes use of rapidly sampled high frequency content of lipid signals.
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1.2 Outline and bibliographical notes

In the following, the organization of the thesis is presented with brief descriptions and

bibliographical contributions of each section.

Chapter 2: is concerned with reconstruction of structural MR images from undersampled
observations. Versatility of MRI allows images with multiple contrasts preparations to be
acquired, wherein each contrast emphasizes certain tissue types. Collection of such multi-contrast
data facilitates diagnosis and finds frequent clinical use. In this setting, it is assumed that data are
acquired with a single receive coil, hence parallel imaging is outside the scope of this chapter.
One option for recovery of undersampled multi-contrast images is to employ compressed sensing
on each contrast independently. These images belong to the same underlying physiology, so they
are expected to share common tissue boundaries. Focusing on this point, this chapter presents a
joint reconstruction method capable of improving compressed sensing reconstruction quality by
exploiting the shared information content across contrasts. This method is based on Bayesian
compressed sensing, which interprets sparsity-inducing reconstruction within a probabilistic
framework. An extension to joint reconstruction is also presented: since the imaging sequences
involved in the multi-contrast protocol may have different acquisition speeds, it might be possible
to obtain a fully-sampled dataset using a fast sequence in addition to the undersampled contrasts.
By using the fully-sampled image to initialize the reconstruction, further improvement in joint

reconstruction quality is demonstrated.
The proposed methods take place in,

e B. Bilgic, V.K. Goyal, E. Adalsteinsson; Multi-contrast Reconstruction with Bayesian
Compressed Sensing; Magnetic Resonance in Medicine, 2011; 66(6):1601-1615.

e B. Bilgic, V.K. Goyal, E. Adalsteinsson; Joint Bayesian Compressed Sensing for Multi-
contrast Reconstruction; International Society for Magnetic Resonance in Medicine 19th
Scientific Meeting, Montreal, Canada, 2011, p. 71.

e B. Bilgic, E. Adalsteinsson; Joint Bayesian Compressed Sensing with Prior Estimate;
International Society for Magnetic Resonance in Medicine 20th Scientific Meeting,

Melbourne, Australia, 2012, p. 75.
Chapter 3: focuses on Quantitative Susceptibility Mapping (QSM) which is an MRI based

imaging technique that provides valuable quantitation of tissue iron concentration and vessel

oxygenation. However, susceptibility cannot be observed directly with MRI. Reconstruction of
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underlying susceptibility maps from measured MR signal phase is a challenging problem that
requires deconvolution of an ill-posed kernel. Hence, this problem benefits from regularization
that reflects prior knowledge on the tissue susceptibility. As susceptibility is a feature tied to the
paramagnetic properties of the underlying tissues, it is expected to vary smoothly within tissue
compartments. Using regularization based on spatial gradients of the susceptibility maps
facilitates the deconvolution. In a group study where the brain iron concentration in normal aging
was investigated, this chapter shows that accurate quantification is possible with this regularized
deconvolution approach. Further, an algorithm that solves the regularized inversion problem in
less than 5 seconds is proposed, which is a significant speed up relative to proposed iterative

methods that can take up to an hour.
The contents of this chapter are included in,

e B. Bilgic, A. Pfefferbaum, T. Rohlfing, E.V. Sullivan, E. Adalsteinsson; MRI Estimates
of Brain Iron Concentration in Normal Aging Using Quantitative Susceptibility Mapping;
Neurolmage, 2012; 59(3):2625-2635.

e B. Bilgic, A.P. Fan, E. Adalsteinsson; Quantitative Susceptibility Map Reconstruction
with Magnitude Prior; International Society for Magnetic Resonance in Medicine 19th
Scientific Meeting, Montreal, Canada, 2011, p. 746.

e B. Bilgic, I. Chatnuntawech, A.P. Fan, E. Adalsteinsson; Regularized QSM in Seconds;
submitted to International Society for Magnetic Resonance in Medicine 21st Scientific
Meeting, Salt Lake City, Utah, USA, 2013.

e B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson;
Fast Regularized Reconstruction Tools for OSM and DSI; ISMRM Workshop on Data
Sampling & Image Reconstruction, Sedona, Arizona, USA, 2013, accepted.

Chapter 4: proposes two lipid artifact suppression methods for CSI. While MRI enables
spatial encoding of the human tissue, CSI also provides encoding in magnetic resonance
frequency. At each voxel, this yields a 1-dimensional spectrum of relative concentrations of
biochemical metabolites, each with a slightly different resonant frequency. The ability to map
biochemical metabolism proves to be critical in cancer, Alzheimer's disease and multiple
sclerosis. The dominant challenge of CSl is in the low signal of the metabolites of interest. Since
signal-to-noise ratio (SNR) is proportional to the voxel size due to averaging effect, large voxels
are required to lower the noise threshold, thereby constraining the voxel sizes in spectroscopy to

be much larger than those of MRI (1 ¢cm® compared to 1 mm?®). The resolution constraint poses a
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significant difficulty to metabolite detection as it leads to signal contamination from the
subcutaneous lipid layer. This chapter proposes two post-processing methods that exploit prior
knowledge about lipid and metabolite signals to yield artifact-free metabolite spectra. These
algorithms rely on two observations: lipid signals are constrained to reside around the skull, and
metabolite and lipid spectra are approximately orthogonal. As the lipids are constrained to reside
on a ring in space and within a certain range in resonance frequency, they can be well
approximated from undersampled data using sparsity-enforcing reconstruction. This permits
estimation of high-resolution lipid signals, effectively reducing the ringing artifacts. Combined
with iterative reconstruction that enforces orthogonality among metabolites in the brain and the

lipid spectra, artifact-free metabolite maps are thus obtained.
The contributions in this chapter can also be found in,

e B. Bilgic, B. Gagoski, E. Adalsteinsson; Lipid Suppression in CSI with Spatial Priors
and Highly-Undersampled Peripheral k-space; Magnetic Resonance in Medicine, 2012;
DOLI: 10.1002/mrm.24399.

e B. Bilgic, B. Gagoski E. Adalsteinsson; Lipid Suppression in CSI with Highly-
Undersampled Peripheral k-space and Spatial Priors; International Society for Magnetic
Resonance in Medicine 20th Scientific Meeting, Melbourne, Australia, 2012, p. 4455.

Chapter 5: Diffusion Weighted Imaging (DWI) is a widely used method to study white
matter connectivity of the brain. Diffusion Tensor Imaging (DTI) is an established DWI method
that models the water diffusion in each voxel as a univariate Gaussian distribution. Fiber
tractography algorithms are employed to follow the major eigenvector of the tensor fit across
neighboring voxels. However, the diffusion tensor model is unable to characterize multiple fiber
orientations within the same voxel, which constitute over 90% of white matter voxels. Rather
than modeling the diffusion, Diffusion Spectrum Imaging (DSI) offers a complete description of
the diffusion probability density function (pdf). This provides DSI with the capability to resolve
complex distributions of fiber orientations, thus overcoming the single-orientation limitation of
DTI. The tradeoff is that, while a typical DTI scan takes ~5 minutes, DSI suffers from
prohibitively long imaging times of ~50 minutes. By relying on prior information extracted from
a training dataset, this chapter demonstrates dramatic reduction in DSI scan time while retaining
the image quality. This high quality reconstruction is made possible by the priors encoded in a

dictionary (created from a separately acquired training DSI dataset) that captures the structure of

23



diffusion pdfs. Further, two efficient dictionary-based reconstruction methods that attain 1000-

fold computation speed-up relative to iterative DSI compressed sensing algorithms are presented.

The methods introduced in this chapter can also be found in,

B. Bilgic, K. Setsompop, J. Cohen-Adad, A. Yendiki, L.L. Wald, E. Adalsteinsson;
Accelerated Diffusion Spectrum Imaging with Compressed Sensing using Adaptive
Dictionaries; Magnetic Resonance in Medicine, 2012; 68(6):1747-1754.

B. Bilgic, I. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson;
Fast Diffusion Spectrum Imaging Reconstruction with Trained Dictionaries; submitted to
IEEE Transactions on Medical Imaging.

B. Bilgic, K. Setsompop, J. Cohen-Adad, V. Wedeen, L. Wald, E. Adalsteinsson;
Accelerated Diffusion Spectrum Imaging with Compressed Sensing using Adaptive
Dictionaries; 15th International Conference on Medical Image Computing and Computer
Assisted Intervention, 2012; LNCS 7512:1-9.

B. Bilgic, 1. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson;
Fast DSI Reconstruction with Trained Dictionaries; submitted to International Society
for Magnetic Resonance in Medicine 2 1st Scientific Meeting, Salt Lake City, Utah, USA,
2013.

B. Bilgic, 1. Chatnuntawech, K. Setsompop, S.F. Cauley, L.L. Wald, E. Adalsteinsson;
Fast Regularized Reconstruction Tools for QSM and DSI; ISMRM Workshop on Data
Sampling & Image Reconstruction, Sedona, Arizona, USA, 2013, accepted.

Chapter 6: proposes potential extensions to the methods introduced throughout the

dissertation. Higher acceleration factors may be achieved by extending the multi-contrast

reconstruction idea to include parallel imaging. Multi-modality imaging (e.g. MR-PET) may also

benefit from joint reconstruction. Employing magnitude information in QSM deconvolution may

improve the conditioning of the inversion. Quantitative susceptibility venography with vessel

tracking may be feasible with the help of tracking algorithms in fiber tractography literature. In

the context of spectroscopic imaging, parametric signal models may provide further

regularization in lipid artifact suppression. Finally, through the combination of parallel imaging

and dictionary-based reconstruction, even higher acceleration factors in DSI acquisitions may

become achievable.
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Chapter 2

Joint Reconstruction of Multi-Contrast Images

Clinical imaging with structural MRI routinely relies on multiple acquisitions of the same region
of interest under several different contrast preparations. This chapter presents a reconstruction
algorithm based on Bayesian compressed sensing to jointly reconstruct a set of images from
undersampled k-space data with higher fidelity than when the images are reconstructed either
individually or jointly by a previously proposed algorithm, M-FOCUSS. The joint inference
problem is formulated in a hierarchical Bayesian setting, wherein solving each of the inverse
problems corresponds to finding the parameters (here, image gradient coefficients) associated
with each of the images. The variance of image gradients across contrasts for a single volumetric
spatial position is a single hyperparameter. All of the images from the same anatomical region,
but with different contrast properties, contribute to the estimation of the hyperparameters, and
once they are found, the k-space data belonging to each image are used independently to infer the
image gradients. Thus, commonality of image spatial structure across contrasts is exploited
without the problematic assumption of correlation across contrasts. Examples demonstrate
improved reconstruction quality (up to a factor of 4 in root-mean-square error) compared to
previous compressed sensing algorithms and show the benefit of joint inversion under a

hierarchical Bayesian model.

2.1 Introduction

In clinical applications of structural MR, it is routine to image the same region of interest under
multiple contrast settings to enhance the diagnostic power of T1, T2, and proton-density weighted
images. Herein, a Bayesian framework that makes use of the similarities between the images with
different contrasts is presented to jointly reconstruct MRI images from undersampled data
obtained in k-space. This method applies the joint Bayesian compressive sensing (CS) technique
of Ji et al. (9) to the multi-contrast MRI setting with modifications for computational and k-space
acquisition efficiency. Compared to conventional CS algorithms that work on each of the images
independently (e.g. (6)), this joint inversion technique is seen to improve the reconstruction
quality at a fixed undersampling ratio and to produce similar reconstruction results at higher

undersampling ratios (i.e., with less data).
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Conventional CS produces images using sparse approximation with respect to an appropriate
basis; with gradient sparsity or wavelet-domain sparsity, the positions of nonzero coefficients
correspond directly to spatial locations in the image. A natural extension to exploit structural
similarities in multi-contrast MRI is to produce an image for each contrast setting while keeping
the transform-domain sparsity pattern for each image the same. This is called joint or
simultaneous sparse approximation. One of the earliest applications of simultaneous sparse
approximation was in localization and used an algorithm based on convex relaxation (10). An
early greedy algorithm was provided by Tropp et al. (11). Most methods for simultaneous sparse
approximation extend existing algorithms such as Orthogonal Matching Pursuit (OMP), FOCal
Underdetermined System Solver (FOCUSS) (4), or Basis Pursuit (BP) (12) with a variety of ways
for fusing multiple measurements to recover the nonzero transform coefficients. Popular joint
reconstruction approaches include Simultaneous OMP (SOMP) (11), M-FOCUSS (13), and the
convex relaxation algorithm in (14). All of these algorithms provide significant improvement in
approximation quality, however they suffer from two important shortcomings for the current
problem statement. First, they assume that the signals share a common sparsity support, which
does not apply to the multi-contrast MRI scans. Even though these images have nonzero
coefficients in similar locations in the transform domain, assuming perfect overlap in the sparsity
support is too restrictive. Second, with the exception of (15), most methods formulate their
solutions under the assumption that all of the measurements are made via the same observation
matrix, which in this context would correspond to sampling the same k-space points for all of the
multi-contrast scans. As demonstrated here, observing different frequency sets for each image

increases the overall k-space coverage and improves reconstruction quality.

The general joint Bayesian CS algorithm recently presented by Ji et al. (9) addresses these
shortcomings and fits perfectly to the multi-contrast MRI context. Given the observation matrices
®, e C**M with K, representing the number of k-space points sampled for the i™ image and M
being the number of voxels, the linear relationship between the k-space data and the unknown
images can be expressed as y, =®,x; where i=1,....L indexes the L multi-contrast scans and
y;is the vector of k-space samples belonging to the i™ image x,. Let 7 and &} denote the

vertical and the horizontal image gradients, which are approximately sparse since the MRI images

are approximately piecewise constant in the spatial domain. In the Bayesian setting, the task is to
provide a posterior belief for the values of the gradients d; and 47, with the prior assumption

that these gradients should be sparse and the reconstructed images should be consistent with the

acquired k-space data. Each image formation problem (for a single contrast) constitutes an inverse
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problem of the form y, — x;, and the joint Bayesian algorithm aims to share information among

these tasks by placing a common hierarchical prior over the problems. Such hierarchical Bayesian
models can capture the dependencies between the signals without imposing correlation, for
example by positing correlation of variances between zero-mean quantities that are conditionally
independent given the hyperparameters. Data from all signals contribute to learning the common
prior (i.e., estimating the hyperparameters) in a maximum likelihood framework, thus making
information sharing among the images possible. Given the hierarchical prior, the individual
gradient coefficients are estimated independently. Hence, the solution of each inverse problem is
affected by both its own measured data and by data from the other tasks via the common prior.
The dependency through the estimated hyperparameters is essentially a spatially-varying

regularization, so it preserves the integrity of each individual reconstruction problem.

Apart from making use of the joint Bayesian CS machinery to improve the image
reconstruction quality, the proposed method presents several novelties. First, the Bayesian
algorithm is reduced to practice on MRI data sampled in k-space with both simulated and in vivo
acquisitions. In the elegant work by Ji et al. (9), their method was demonstrated on CS

measurements made directly in the sparse transform domain as opposed to the k-space domain

that is the natural source of raw MRI data. The observations y, were obtained via y, =®0,

where 8, are the wavelet coefficients belonging to the i" test image. But in all practical settings of

MRI data acquisition, the observations are carried out in the k-space corresponding to the
reconstructed images themselves, i.e. the k-space data belonging to the wavelet transform of the
image is not accessible. In the method as presented here, measurements of the image gradients are
obtained by a simple modification of the k-space data and thus it is possible to overcome this
problem. After solving for the gradient coefficients with the Bayesian algorithm, images that are
consistent with these gradients are recovered in a least-squares setting. Secondly, the presented
version accelerates the computationally-demanding joint reconstruction algorithm by making use
of the Fast Fourier Transform (FFT) to replace some of the demanding matrix operations in the
original implementation by Ji ef al. This makes it possible to use the algorithm with higher
resolution data than with the original implementation, which has large memory requirements.
Also, partially-overlapping undersampling patterns are exploited to increase the collective -
space coverage when all images are considered; herein it is reported that this flexibility in the
sampling pattern design improves the joint CS inversion quality. Additionally, the algorithm is
generalized to allow inputs that correspond to complex-valued images. Finally, these finding are

compared with the popular method in (6) and with the M-FOCUSS joint reconstruction scheme.
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In addition to yielding smaller reconstruction errors relative to either method, the proposed

Bayesian algorithm contains no parameters that need tuning.

2.2 Theory
2.2.1 Compressed Sensing in MRI

Compressed sensing has received abundant recent attention in the MRI community because of its
demonstrated ability to speed up data acquisition. Making use of CS theory to this end was first

proposed by Lustig et al. (6), who formulated the inversion problem as
X =argmin ||‘I-‘Tx||1 +B-TV(x) st |y—-Fux|, <¢ @.1)

where ¥ is the wavelet basis, TV(.) is the £; norm of discrete gradients as a proxy for total
variation, B trades off wavelet sparsity and gradient sparsity, F, is the undersampled Fourier

transform operator containing only the frequencies @ € 2, and £ is a threshold parameter that
needs to be tuned for each reconstruction task. This constrained inverse problem can be posed as

an unconstrained optimization program (6)
Z=argmin |y = Foxll, + Ay [¥7 ], + A - TV (x) (2.2)

where A, and A, are wavelet and total variation regularization parameters that again call

for tuning,.

2.2.2 Conventional Compressed Sensing from a Bayesian Standpoint

Before presenting the mathematical formulation that is the basis for the proposed method, this

section briefly demonstrates that it is possible to recover the conventional CS formulation in Eq.
2.2 with a Bayesian treatment. For the moment, consider abstractly that a sparse signal x € R*

that is observed by compressive measurements via the matrix ® € R“**  where K < M is under
consideration. The general approach of Bayesian CS is to find the most likely signal coefficients
with the assumptions that the signal is approximately sparse and that the data are corrupted by
noise with a known distribution. The sparsity assumption is reflected by the prior defined on the

signal coefficients, whereas the noise model is expressed via the likelihood term.
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As a means to justify Eq. (2.2), a commonly-used signal prior and noise distribution are

presented. The data are modeled as being corrupted by additive white Gaussian noise with

variance o> via y=®x+n. In this case, the probability of observing the data y given the

signal x is a Gaussian probability density function (pdf) with mean @ x and variance o?,

p(y1 %)= o " exP(— 2%" v (Dx"z) 23)
G

which constitutes the likelihood term. To formalize the belief that the signal x is sparse, a
sparsity-promoting prior is placed on it. A common prior is the separable Laplacian density

function (16)

plx)=@r2) exl{— xiM? X, |J 24

Invoking Bayes’ theorem, the posterior for the signal coefficients can be related to the

likelihood and the prior as

plai )~ 20 1200) ng ) )
P

The signal that maximizes this posterior probability via maximum a posteriori (MAP)
estimation is sought for. Since the denominator is independent of X , the MAP estimate can be

found by minimizing the negative of the logarithm of the numerator:

Xy =argmin]y — x| + 20> A, (2.6)

This expression is very similar to the unconstrained convex optimization formulation in Eq.
(2.2); it is possible obtain Eq. (2.2) with a slightly more complicated prior that the wavelet
coefficients and gradient of the signal of interest follow Laplacian distributions. Therefore, it is
possible to view the convex relaxation CS algorithms as MAP estimates with a Laplacian prior on
the signal coefficients. It is possible to view many algorithms used in CS as MAP estimators with

respect to some prior (17).

29



2.2.3 Extending Bayesian Compressed Sensing to Multi-Contrast MRI

The Bayesian analysis in the previous section has two significant shortcomings. First, it is
assumed that the signal of interest is sparse with respect to the base coordinate system. To get the
maximum benefit from estimation with respect to a separable signal prior, it is critical to change
to coordinates in which the marginal distributions of signal components are highly peaked at zero
(18). For MR image formation, we aim to take advantage of the highly peaked distributions of
image-domain gradients, and show how to modify k-space data to obtain measurements of these
gradients. Second, the optimal MAP estimation through Eq. (2.6) requires knowledge of
parameters A and 6. The proposed method eliminates the tuning of such parameters by imposing
a hierarchical Bayesian model in which A and o are modeled as realizations of random variables;
this introduces the need for “hyperpriors” at a higher level of the model, but as detailed below, it
suffices to eliminate tuning of the hyperpriors using a principle of least informativeness. Along
with addressing these shortcomings, modifications for joint reconstruction across contrast

preparations are also discussed.

In the multi-contrast setting, the signals {x, }f‘zl e€R"Y represent MRI scans with different

image weightings, e.g. T1, T2 and proton density weighted images might have been obtained for
the same region of interest. These are not sparse directly in the image domain. Therefore, it is

beneficial to cast the MRI images into a sparse representation to make use of the Bayesian
formalism. The fact that the observation matrices Fg, € C**M in MRI are undersampled Fourier

operators makes it very convenient to use spatial image gradients as a sparsifying transform

(19,20). To obtain the k-space data corresponding to vertical and horizontal image gradients, it is

sufficient to modify the data y, according to

Fy, 87 (0,0) = (1-e"'")y (w,0) = y; 2.7

Fo, 6 (@,0) =1~y (0,0) = y! (2.8)

where j= J-1; o7 and & are the i” image gradients; y® and y} are the modified
observations; and @ and U index the frequency space of the n by m pixel images, with
n-m=M . To solve Eq. (2.2), Lustig et al. (6) proposes to use the conjugate gradient descent
algorithm, for which it is relatively straightforward to incorporate the TV norm. But algorithms
that do not explicitly try to minimize an objective function (e.g. OMP and Bayesian CS) will need
to modify the k-space data according to Egs. (2.7) and (2.8) to make use of the Total Variation

penalty in the form of spatial derivatives.
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Secondly, we need to express the likelihood term in such a way that both real and imaginary

parts of the noise m, e C* in k-space are taken into account. We rearrange the linear

observations y; = F, 8 +n, as

Re(y)) | _| Re(Fg) |, [Re(n,-)] -
|:.7m(yf )}{Jm(FQ, )]J" " Im(n,) (2.9)

for i=1...,L, where Re(.)) and Jm(.) indicate real and imaginary parts with the
understanding that we also have an analogous set of linear equations for the horizontal gradients

67 . For simplicity, we adopt the notation
Y*=®6 +N, (2.10)

where ¥*,N, e R*i, and @, e R***" correspond to the respective concatenated variables
in Eq. (2.9). With the assumption that both real and imaginary parts of the k-space noise are white

Gaussian with some variance o> , the data likelihood becomes

Pl 197.07)- oo e

Yix —q)iéf

2) @.11)

With these modifications, it is now possible to compute the MAP estimates for the image
gradients by invoking Laplacian priors over them. Unfortunately, obtaining the MAP estimates
for each signal separately contradicts with the ultimate goal to perform joint reconstruction. In
addition, it is beneficial to have a full posterior distribution for the sparse coefficients rather than
point estimates, since having a measure of uncertainty in the estimated signals leads to an elegant
experimental design method. As argued in (16), it is possible to determine an optimal k-space
sampling pattern that reduces the uncertainty in the signal estimates. But since the Laplacian prior
is not a conjugate distribution to the Gaussian likelihood, the resulting posterior will not be in the
same family as the prior, hence it will not be possible to perform the inference in closed form to
get a full posterior. The work by Ji et al. (9) presents an elegant way of estimating the image
gradients within a hierarchical Bayesian model. This approach allows information sharing
between the multi-contrast scans, at the same yields a full posterior estimate for the sparse
coefficients. In the following section, the algorithm used for finding this distribution is

summarized and the complete image reconstruction scheme is depicted in Fig. 2.1.
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Fig. 2.1. Joint image reconstruction begins with modifying the undersampled k-space data to
obtain undersampled k-space representations of vertical and horizontal image gradients. After
finding the hyperparameters via Maximum Likelihood (ML) estimation, the means of the
posterior distributions are assigned to be the gradient estimates. Finally, images are integrated
from gradient estimates via solving a Least Squares (LS) problem.

2.2.4 Bayesian Framework to Estimate the Image Gradient Coefficients

Hierarchical Bayesian representation provides the ability to capture both the idiosyncrasy of the
inversion tasks and the relations between them, while allowing closed form inference for the
image gradients. According to this model, the sparse coefficients are assumed to be drawn from a

product of zero mean normal distributions with variances determined by the hyperparameters

_ M
o= {a‘l }_,l—l

oz 10,07 2.12)

=<

p(rff‘ Ia)=

~.
I

where N(:| O,a;l) is a zero mean Gaussian density function with variance a:l . In order to

promote sparsity in the gradient domain, Gamma priors are defined over the hyperparameters @

32



M M a
plala,b)=]]Gata, |a,b) = ]‘[Fi—a;"exp(-ba ) (2.13)
j=1 = @)

where I'(.) is the Gamma function, and a and b are hyper-priors that parametrize the Gamma
prior. To see why the combination of Gaussian and Gamma priors will promote a sparse
representation, consider marginalizing over the hyperparameters @ to obtain the marginal priors

acting on the signal coefficients (9,16,21)

PG = [P35, | 0,)p(a, | a,b)da, (2.14)

which turn out to yield improper priors of the form p(d;,) o< 1/|4;; |in the particular case of
uniform hyper-priors a=5b=0. Similar to the analysis for the Laplacian prior, this formulation
would introduce an £,; regularizer of the form Z'}il log| d;: ;| if a non-joint MAP solution was
sought for. Here, it should also be noted that the hyperparameters @ are shared across the multi-

. . . . . Y
contrast images, each o controlling the variance of all L gradient coefficients {6 }:1 through

5L )
Eq. (2.12). In this case,a s diverging to infinity implies that the pixels in the /™ location of all

images are zero, due to the zero-mean, zero-variance Gaussian prior at this location. On the other

hand, a finite o, does not constrain all L pixels in the ™ location to be non-zero, which allows

the reconstruction algorithm to capture the diversity of sparsity patterns across the multi-contrast

scans.

In practice, the noise variance o would also need to be estimated as it propagates via the data
likelihood term to the posterior distribution of gradient coefficients (Eq. 2.5). Even though it is
not difficult to obtain such an estimate in image domain if the full k-space data were available,
this would not be straightforward with undersampled measurements. Therefore, following Ji ef al.
(9), the formulation is slightly modified so that the noise variance can be analytically integrated
out while computing the posterior. This is made possible by including the noise precision
a, =oc " in the signal prior,

plor 1@ ) =T 67, 10,0ty (2.15)

J=1

A Gamma prior over the noise precision parameter «, is defined as

P, |exd) = Gala, | ¢,d) = rd(i) o exp (—dary) 2.16)
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In all of the following experiments, the hyper-priors are set to ¢ =d =0 to express that no a

priori noise precision is favored as they lead to the “least informative” improper prior

p(oy |c=0,d=0)x1/a,. The choice of priors in Egs. (2.15-16) allows analytical computation

of the posterior for the image gradients p(d; | ¥,",@), which tumns out to be a multivariate

Student-s distribution with mean p, =X,®]Y¥" and covariance X, =(®'®, + A)™" with
A =diag(a,,...,),). This formulation is seen to allow robust coefficient shrinkage and

information sharing thanks to inducing a heavy-tail in the posterior (9). It is worth noting that
placing a Gamma prior on the noise precision does not change the additive nature of observation
noise, however a heavier-tailed #-distribution replaces the normal density function in explaining

this residual noise. This has been seen to be more resilient in allowing outlying measurements (9).

Now that an expression for the posterior p(d; | ¥,",a) is obtained, the remaining work is to

1

find a point estimate for the hyperparameters @ € RY in a maximum likelihood (ML)
framework. This is achieved by searching for the hyperparameter setting that makes the
observation of the A-space data most likely, and such an optimization process is called evidence
maximization or type-II maximum likelihood method (9,16,21). Therefore, the hyperparameters

that maximize

L L
L@)= p¥7 | @)=Y [ play | a,b)p(07 | a ) p(¥ | 570 )ddTder,  (2:17)
i=1 =l

are sought for. It should be noted that data from all L tasks contribute to the evidence
maximization procedure via the summation over conditional distributions. Hence, the information
sharing across the images occurs through this collaboration in the maximum likelihood estimation

of the hyperparameters. Once the point estimates are constituted using all of the observations, the

posterior for the signal coefficients 4, is estimated based only on its related k-space data ¥,* due

top, =X, @ ¥*. Thus, all of the measurements are used in the estimation of the

hyperparameters, but only the associated data are utilized to constitute an approximation to the

gradient coefficients.

Ji et al. show that it is possible to maximize Eq. (2.17) with a sequential greedy algorithm, in
which the starting point is a single basis vector for each signal, then the basis function that yields
the largest increase in the log likelihood is added at each iteration. Alternatively, a
hyperparameter corresponding to a basis vector that is already in the dictionary of current bases

can be updated or deleted, if this gives rise to the largest increase in the likelihood at that
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iteration. A final refinement to Ji et al’s Bayesian CS algorithm is added by replacing the
observation matrices {(I) ; }11: , that are needed to be stored with the Fast Fourier Transform (FFT).

This enables working with MRI images of practical sizes; otherwise each of the observation
matrices would occupy 32GB of memory for a 256x256 image. The reader is referred to

Appendix B in (9) for the update equations of this algorithm.

2.2.5 Reconstructing the Images from Horizontal and Vertical Gradient Estimates

x
i

Once the image gradients {J }le and {6,? },1:1 are estimated with the joint Bayesian algorithm,

. L . . . L
the images {x, }i=l consistent with these gradients and the undersampled measurements {Y,. }I.:l

need to be found. Influenced by (19), this is formulated as a least squares (LS) optimization
problem

0,X,—0;

L R I U O L ™

for i=1,...,L where 0,x; and 0 x, represent vertical and horizontal image gradients. Using
Egs. (2.7) and (2.8) and invoking Parseval’s Theorem, the optimization problem can be cast into
k-space

X, = argmin"(l—e_z’”‘”/”)X, 47
X;

 +la-emmx, ] Alxo ¥, (o)

where X,, 4] and 4; are the Fourier transforms of x,, 4] and ;' , respectively and X, is

the transform of X, restricted to the frequency set ;. Based on this, the following solution is

found by representing Eq. (2.19) as a quadratic polynomial and finding the root with 4 — o

Xo if (w,v)eQ,;
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Finally, taking the inverse Fourier transform gives the reconstructed images {x, },:1

2.2.6 Extension to Complex-Valued Images

In the general case where the underlying multi-contrast images are complex-valued, the linear

observation model of Eq. (2.9) is no longer valid. Under the assumption that the support of the
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frequency set €Q;is symmetric, it is possible to decouple the undersampled k-space observations

belonging to the real and imaginary parts of the signals,

if supp(Qylk,.k, ) = supp(Ql(~k..~k,)]) . 2.21)
y*L F, Re(x;) = %'(y,.[k,‘,ky] + 3, [k —k, )]) (2.22)
yimC Fo Im(x;) = %j'(y;[kx,ky]— y: [(—k,,—k, )]) (2.23)

Here, [k, ,k,]index the frequency space and (%, —k,)]is the complex conjugate of index-

reversed k-space observations. In the case of one dimensional undersampling, the constraint on

Q; would simply correspond to an undersampling pattern that is mirror-symmetric with respect to

the line passing through the center of k-space. After obtaining the k-space data yf?" and y,.y"‘
belonging to the real and imaginary parts of the i image x;, Re(x;)and Im(x,) are solved for

jointly in the gradient domain, in addition to the joint inversion of multi-contrast data, hence
exposing a second level of simultaneous sparsity in the image reconstruction problem. Final
reconstructions are then obtained by combining the real and imaginary channels into complex-

valued images.

2.3 Methods

To demonstrate the inversion performance of the joint Bayesian CS algorithm, three data sets
that include a numerical phantom, the SRI24 brain atlas, and in vivo acquisitions, were
reconstructed from undersampled k-space measurements belonging to the magnitude images. In
addition, two datasets including a numerical phantom and in vivo multi-contrast slices, both
consisting of complex-valued images, were also reconstructed from undersampled measurements
to test the performance of the method with complex-valued image-domain signals. The results
were quantitatively compared against the popular implementation by Lustig et al. (6), which does
not make use of joint information across the images, as well as the M-FOCUSS algorithm, which

is an alternative joint CS reconstruction algorithm.

36



2.3.1 CS Reconstruction with Extended Shepp-Logan Phantoms

To generalize the Shepp-Logan phantom to the multi-contrast setting, two additional phantoms
were generated by randomly permuting the intensity levels in the original 128x128 image.
Further, by placing 5 more circles with radii chosen randomly from an interval of [7, 13] pixels
and intensities selected randomly from [0.1, 1] to the new phantoms, the idiosyncratic portions of
the scans were aimed to be represented with different weightings. A variable-density
undersampling scheme in k-space was applied by drawing three fresh samples from a power law
density function, so that the three masks’ frequency coverage was only partially overlapping.
Power law sampling indicates that the probability of sampling a point in k-space is inversely
proportional to the distance of that point to the center of k-space, which makes the vicinity of the
center of k-space more densely sampled. To realize this pattern, again Lustig ef al.’s software
package (6) was used, which randomly generates many sampling patterns and retains the one that
has the smallest sidelobe-to-peak ratio in the point spread function. This approach aims to create a
sampling pattern that induces optimally incoherent aliasing artifacts (6). A high acceleration
factor of R = 14.8 was tested using the joint Bayesian CS, Lustig ef al.’s gradient descent and the
M-FOCUSS algorithm. For the gradient descent method, using wavelet and TV norm penalties

were seen to yield better results than using only one of them. In all experiments, all combinations
of regularization parameters A, and A, from the set {1 07*,107,1072,0} were tested and the
setting that gave the smallest reconstruction error was retained as the optimal one. In the Shepp-
Logan experiment, the parameter setting A, = A, .00 = 107 was seen to yield optimal results

for the gradient descent method. The number of iterations was taken to be 50 in all of the
examples. The Bayesian algorithm continues the iterations until convergence, which is

determined by

9

AL, AL, | < (AL —M) T (2.29)

where A/, is the change in log likelihood at iteration k and Af,,. is the maximum change in

likelihood that has been encountered in all & iterations. The convergence parameter 77 was taken

to be 107 in this example. For the M-FOCUSS method, each image was undersampled with the
same mask as phantom 1 in the joint Bayesian CS since M-FOCUSS does not admit different

observation matrices.
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2.3.2 SR124 Multi-Channel Brain Atlas Data

This experiment makes use of the multi-contrast data extracted from the SRI24 atlas (22). The

atlas features structural scans obtained with three different contrast settings at 3T,

i.  Proton density weighted images: obtained with a 2D axial dual-echo fast spin echo (FSE)
sequence (TR = 10000 ms, TE = 14 ms)
ii. T2 weighted images: acquired with the same sequence as the proton density weighted
scan, except with TE = 98 ms.
iii. Tl weighted images: acquired with a 3D axial IR-prep Spoiled Gradient Recalled
(SPGR) sequence (TR = 6.5 ms, TE = 1.54 ms)

The atlas images have a resolution of 256x256 pixels and cover a 24-cm field-of-view (FOV).
Since all three data sets are already registered spatially, no post-processing was applied except for
selecting a single axial slice from the atlas. Prior to reconstruction, retrospective undersampling'
was applied along the phase encoding direction with acceleration R = 4 using a different
undersampling mask for each image. Again a power law density function was utilized in selecting
the sampled k-space lines. In this case, a 1-dimensional pdf was employed, so that it was more
likely to acquire phase encoding lines close to the center of k-space. Reconstructions were
performed using Lustig et al.’s conjugate gradient descent algorithm (with A, =4, =107),

avelet

joint Bayesian method (with 7 =10~ ) and the M-FOCUSS joint reconstruction algorithm.

2.3.3 3T Turbo Spin Echo (TSE) Slices with Early and Late TE’s

T2-weighted axial multi-slice images of the brain of a young healthy male volunteer were
obtained with two different TE settings using a TSE sequence (256x256 pixel resolution with 38
slices, 1x1 mm in-plane spatial resolution with 3 mm thick contiguous slices, TR = 6000 ms, TE,
= 27 ms, TE; = 94 ms). Out of these, a single image slice was selected and its magnitude was
retrospectively undersampled in £-space along the phase encoding direction with acceleration R =
2.5 using a different mask for each image, again by sampling lines due to a 1-dimensional power

law distribution. The images were reconstructed using Lustig ef al.’s algorithm with an optimal

' We use the retrospective undersampling phrase to indicate that k-space samples are discarded synthetically
from data obtained at Nyquist rate in software environment, rather than skipping samples during the actual scan.
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parameter setting (A, = 4 =107), joint Bayesian CS algorithm (with 7 =107 ) and the M-

‘wavelet
FOCUSS method.

2.3.4 Complex-Valued Shepp-Logan Phantoms

Using four numerical phantoms derived from the original Shepp-Logan phantom, two complex
valued numerical phantoms were generated by combining the four images in real and imaginary
pairs. Retrospective undersampling was applied along the phase encoding direction with
acceleration R = 3.5 using a different undersampling mask for each image. A 1-dimensional
power law density function was utilized in selecting the sampled k-space lines, making it more
likely to acquire phase encoding lines close to the center of k-space. Again many sampling
patterns were randomly generated and the one that has the smallest sidelobe-to-peak ratio in the
point spread function was retained, but also the sampling masks were constrained to be mirror-
symmetric with respect to the center of k-space. This way, it was possible to obtain the

undersampled k-space data belonging to the real and imaginary channels of the phantoms
separately. The images were reconstructed using Lustig ef al.’s algorithm (A, = 4,00 = 107),

joint Bayesian CS algorithm (reconstructing real & imaginary parts together, in addition to joint
multi-contrast reconstruction) and the M-FOCUSS method. Further, non-joint reconstructions
with the Bayesian CS method (doing a separate reconstruction for each image, but reconstructing
real & imaginary channels of each image jointly) and the FOCUSS algorithm (non-joint version

of M-FOCUSS) were conducted for comparison with Lustig et al.’s approach.

2.3.5 Complex-Valued Turbo Spin Echo Slices with Early and Late TE’s

To test the performance of the algorithms on complex-valued in vivo images, axial multi-slice
images of the brain of a young healthy female subject were obtained with two different TE
settings using a TSE sequence (128%128 pixel resolution with 38 slices, 2x2 mm in-plane spatial
resolution with 3 mm thick contiguous slices, TR = 6000 ms, TE, = 17 ms, TE, = 68 ms). Data
were acquired with a body coil and both the magnitude and the phase of the images were
recorded. To enhance SNR, 5 averages and a relatively large 2-mm in-plane voxel size were used.
A single slice was selected from the dataset and its raw A-space data were retrospectively
undersampled along the phase encoding direction with acceleration R = 2 using a different mask
for each image, again by sampling lines due to a 1-dimensional power law distribution. For the
complex-valued image-domain case, the masks were constrained to be symmetric with respect to

the line passing through the center of k-space. The images were reconstructed using Lustig ef al.’s
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algorithm (A, =4,

waveler =107°), our joint Bayesian CS algorithm (reconstructing real &
imaginary parts and multi-contrasts together) and the M-FOCUSS method. In addition, non-joint
reconstructions with the Bayesian CS method (using a separate reconstruction for each image, but
reconstructing real & imaginary parts of each image together) and the FOCUSS algorithm were

performed.

2.4 Results

2.4.1 CS Reconstruction with Extended Shepp-Logan Phantoms

Fig. 2.2 presents the reconstruction results for the three algorithms for the extended phantoms,
along with the k-space masks used in retrospective undersampling. At acceleration R = 14.8, the
Bayesian algorithm obtained perfect recovery of the noise-free numerical phantom, whereas the
gradient descent algorithm by Lustig et al. returned 15.9 % root mean squared error (RMSE),

which we define as

|Re(®) - ],

RMSE = 100- 122"
|+, (2:25)

where X is the vector obtained by concatenating all L images together, and similarly x is the
concatenated vector of all L reconstructions produced by an inversion algorithm. The M-
FOCUSS joint reconstruction algorithm yielded an error of 8.8 %. The reconstruction times were
measured to be 5 minutes for gradient descent, 4 minutes for M-FOCUSS and 25 minutes for the

joint Bayesian CS algorithm.
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Fig 2.2 Reconstruction results with the extended Shepp-Logan phantoms after undersampling
with acceleration R = 14.8, at 128x128 resolution. (a) Phantoms at Nyquist rate sampling. (b)
Undersampling patterns in k-space corresponding to each image. (c) CS reconstructions with
Lustig et al.’s algorithm yielded 15.9 % RMSE (root-mean-square error). (d) Absolute error plots
for Lustig ef al.’s method. (e) Reconstructions obtained with the M-FOCUSS joint reconstruction
algorithm have 8.8 % RMSE. (f) Absolute difference between the Nyquist sampled phantoms and
the M-FOCUSS reconstruction results. (g) Joint Bayesian CS reconstruction resulted in 0 %
RMSE. (h) Absolute error plots for the Bayesian CS reconstructions.

2.4.2 SRI24 Multi-Channel Brain Atlas Data

The results for reconstruction upon phase encoding undersampling with acceleration R = 4 are
given in Fig. 2.3. In this case, Lustig et al.’s algorithm returned 9.4 % RMSE, while the error was
32 % and 23 % for M-FOCUSS and joint Bayesian CS methods, respectively. The
reconstructions took 43 minutes for gradient descent, 5 minutes for M-FOCUSS and 26.4 hours

for the Bayesian CS algorithm.
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Fig. 2.3. Reconstruction results with SRI24 atlas after undersampling along the phase encoding
direction with R = 4, at 256x256 resolution. (a) Atlas images at Nyquist rate sampling. (b)
Undersampling patterns in k-space corresponding to each image. (¢) Applying the gradient
descent algorithm proposed by Lustig ef al. resulted in reconstructions with 9.4 % RMSE. (d)
Absolute difference between the gradient descent reconstructions and the Nyquist rate images. (€)
M-FOCUSS reconstructions have 3.2 % RMSE. (f) Absolute error plots for the M-FOCUSS
algorithm. (g) Joint Bayesian reconstruction yielded images with 2.3 % RMSE. (h) Error plots for
the joint Bayesian reconstructions.

2.4.3 Turbo Spin Echo (TSE) Slices with Early and Late TE’s

Fig. 2.4 depicts the TSE reconstruction results obtained with the three algorithms after
undersampling along phase encoding with acceleration R = 2.5. In this setting, Lustig et al.’s code
returned a result with 9.4 % RMSE, whereas M-FOCUSS and joint Bayesian reconstruction had
5.1 % and 3.6 % errors, respectively. The total reconstruction times were 26 minutes for gradient

descent, 4 minutes for M-FOCUSS and 29.9 hours for the Bayesian CS algorithm.
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Fig. 2.4. Reconstruction results with TSE after undersampling along the phase encoding direction
with R = 2.5, at 256x256 resolution. (a) TSE scans at Nyquist rate sampling. (b) Undersampling
patterns used in this experiment. (¢) Reconstructions obtained with Lustig et al.’s gradient
descent algorithm have 9.4 % RMSE. (d) Plots of absolute error for the gradient descent
reconstructions. (¢) M-FOCUSS joint reconstruction yielded images with 5.1 % RMSE. (f) Error
plots for the M-FOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction
returned 3.6 % RMSE. (h) Error plots for the Bayesian CS reconstructions.

These results are also included in Table 2.1 as “PE, (Fig. 4)” for comparison with reconstruction
using the same undersampling pattern.

For brevity, additional results are presented in Table 2.1 from more extensive tests in which
various undersampling patterns and accelerations were employed. To test the algorithms’
performance at a different resolution, the TSE and atlas images were downsampled to size

128x128 prior to undersampling, and similar RMSE results as the high resolution experiments
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were noted. The table also includes an experiment with 256x256 TSE scans accelerated along the

phase encoding with R = 2.5, but using the same undersampling pattern for both images.

Dataset Resolution Undersampling Acceleration RMSE %
method factor R Lustig et M- Bayesian
al. Focuss CS
256%256 Phase encoding (PE) 3 9.7 6.8 5.8
TSE 256%256 Power law 6 8.1 7.8 6.3
256x256 PE (Fig. 2.4) 25 9.4 5.1 3.6
256%256 PE, same pattern 2.5 4.7
128x128 PE 2 8.1 3.8 2.1
256%x256 Radial 9.2 6.0 45 3.0
SRI124 128x128 PE 3 72 a2 31

Table 2.1. Summary of additional reconstruction results on the TSE and SRI 24 datasets using the

three algorithms after retrospective undersampling with various patterns and acceleration factors.

2.4.4 Tmpact of Spatial Misregistration on Joint Reconstruction

Due to aliasing artifacts caused by undersampling, image registration prior to CS
reconstruction across multi-contrast images is likely to perform poorly. The effect of spatial
misalignments was investigated by shifting one of the images in the TSE dataset relative to the
other by 0 to 2 pixels with step sizes of ¥ pixels using two different undersampling patterns. The
first pattern incurs R = 3 acceleration by 2D undersampling with k-space locations drawn from a
power law probability distribution. In this case, the effect of vertical misalignments was tested.
The second pattern undersamples k-space at R = 2.5 in the phase encoding direction, for which
horizontal dislocations were tested. For speed, low resolution images at size 128x128 were used.
M-FOCUSS and joint Bayesian CS methods were tested for robustness against misregistration
and that the effect of spatial misalignment was observed to be mild for both (Fig. 2.5). Even
though Bayesian CS consistently had less reconstruction errors relative to M-FOCUSS on both
undersampling patterns at all dislocations, the performance of M-FOCUSS was seen to change
less relative to Bayesian CS with respect to the incurred translations. For joint Bayesian CS,
reconstruction error increased from 2.1 % to 2.8 % at 2 pixels of vertical shift for power law
sampling, and from 5.2 % to 6.4 % at 2 pixels of horizontal shift for phase encoding sampling; for
the M-FOCUSS method error increased from 4.7 % to 4.9 % for power law sampling, and from

6.2 % to 6.6 % for phase encoding sampling.
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Fig. 2.5. To investigate the impact of spatial misalignments on joint reconstruction with Bayesian
CS and M-FOCUSS, one of the TSE images was shitted relative to the other by 0 to 2 pixels with
step sizes of ¥4 pixels using power law and phase encoding undersampling patterns. For speed,
low resolution images with size 128x%128 were used. For joint Bayesian CS, reconstruction error
increased from 2.1 % to 2.8 % at 2 pixels of vertical shift for power law sampling, and from 5.2
% to 6.4 % at 2 pixels of horizontal shift for phase encoding sampling; for the M-FOCUSS
method error increased from 4.7 % to 4.9 % for power law sampling, and from 6.2 % to 6.6 % for
phase encoding sampling.

2.4.5 Complex-Valued Shepp-Logan Phantoms

Absolute values of the reconstruction results after undersampling with a symmetric mask with R

= 3.5 for the complex-valued phantoms are depicted in Fig. 2.6. For complex signals, the error

metric RMSE = 100-|

X-— x|| 5 ||x"2 is used. In this case, Lustig ef al.’s algorithm returned a result

with 13.1 % RMSE, whereas joint reconstructions with M-FOCUSS and joint Bayesian methods
had 5.4 % and 2.4 % errors, respectively. The total reconstruction times were 21 minutes for
gradient descent, 0.5 minutes for M-FOCUSS and 18 minutes for the Bayesian CS algorithm. On
the other hand, reconstructing each complex-valued image separately with FOCUSS and

Bayesian CS yielded 6.7 % and 4.6 % RMSE.
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Fig. 2.6. Reconstruction results with the complex-valued Shepp-Logan phantoms after
undersampling with acceleration R = 3.5, at 128x128 resolution. (a) Magnitudes of phantoms at
Nyquist rate sampling. (b) Symmetric undersampling patterns in k-space corresponding to each
image. (c) Real and imaginary parts of the first phantom (on the left in (a)). (d) Real and
imaginary parts of the second phantom (on the right in (a)). (e) CS reconstructions with Lustig ef
al.’s algorithm yielded 13.1 % RMSE. (f) Absolute error plots for Lustig et al.’s method. (g)
Reconstructions obtained with the M-FOCUSS joint reconstruction algorithm have 5.4 % RMSE.
(h) Absolute difference between the Nyquist sampled phantoms and the M-FOCUSS
reconstruction results. (i) Joint Bayesian CS reconstruction resulted in 2.4 % RMSE. (h) Absolute
error plots for the Bayesian CS reconstructions.
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2.4.6 Complex-Valued Turbo Spin Echo Slices with Early and Late TE’s

Reconstruction results are compared in Fig. 2.7 for the discussed algorithms. Lustig et al.’s
method had 8.8 % error upon acceleration by R = 2 with a symmetric pattern, whereas the joint
reconstruction algorithms M-FOCUSS and joint Bayesian CS yielded 9.7 % and 6.1 % RMSE.
The processing times were 20 minutes for gradient descent, 2 minutes for M-FOCUSS and 5.2
hours for the Bayesian CS algorithm. Non-joint reconstructions with FOCUSS and Bayesian CS

returned 10.0 % and 8.6 % errors.

Fig. 2.7. Reconstruction results for complex-valued TSE images after undersampling along the
phase encoding direction with R = 2, at 128x128 resolution. (a) Magnitudes of the TSE scans at
Nyquist rate sampling. (b) Symmetric undersampling patterns used in this experiment. (c) Real
and imaginary parts of the early echo image (on the left in (a)). (d) Real and imaginary parts of
the late echo image (on the right in (a)). (e) Reconstructions obtained with Lustig et al.’s gradient
descent algorithm have 8.8 % RMSE. (d) Plots of absolute error for the gradient descent
reconstructions. () M-FOCUSS joint reconstruction yielded images with 9.7 % RMSE. (f) Error
plots for the M-FOCUSS results. (g) Images obtained with the joint Bayesian CS reconstruction
returned 6.1 % RMSE. (h) Error plots for the Bayesian CS reconstructions.
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With the same dataset, additional reconstructions were performed to quantify the effect of the
symmetry constraint on the sampling masks. Both of the late and early TE images were
reconstructed 5 times with freshly generated, random masks with R = 2 (no symmetry constraints)

and also 5 times with freshly generated symmetric masks again at R = 2. Using Lustig ef al.’s
method (4;;, =107) with the random masks yielded an average error of 10.5 %, whereas using

symmetric masks incurred an average error of 11.5 %.

2.5 Discussion

The application of joint Bayesian CS MRI reconstruction to images of the same object acquired
under different contrast settings was demonstrated to yield substantially higher reconstruction
fidelity than either Lustig e al.’s (non-joint) algorithm or joint M-FOCUSS, but at the cost of
substantially increased reconstruction times in this initial implementation. In contrast to M-
FOCUSS, the proposed algorithm allows for different sampling matrices being applied to each
contrast setting and unlike the gradient descent method, it has no parameters that need
adjustments. The success of this algorithm is based on the premise that the multi-contrast scans of
interest share a set of similar image gradients while each image may also present additional
unique features with its own image gradients. In Fig. 2.8 the vertical image gradients belonging to
the TSE scans are presented, where a simple experiment was conducted to quantify the similarity
between them. After sorting the image gradient magnitudes of the early TSE scan in descending
order, the cumulative energy in them was computed. Next, the late TSE gradient magnitude was
sorted in descending order and the cumulative energy in the early TSE gradient was calculated by
using the pixel index order belonging to the /ate TSE scan. This cumulative sum reached 95 % of

the original energy, thus confirming the visual similarity of the two gradients.

It is important to note that in the influential work by Ji ez al. (9), the authors also consider joint
reconstruction of MRI images. However their dataset consists of five different slices taken from
the same scan, so the motivation for their MRI work is different from what is presented here.
Even though the multislice images have considerable similarity from one slice to the next, one
would expect multi-contrast scans to demonstrate a yet higher correlation of image features and a

correspondingly larger benefit in reconstruction fidelity.
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Fig. 2.8. (a) Image gradients for the multi-contrast TSE scans demonstrate the similarity under the
gradient transform. (b) To quantify this similarity, we computed the cumulative energy of the
image gradient of early TSE scan (TSE, in TSE; order). Then we sorted the late TSE scan (TSE;)
in descending order, and computed the cumulative energy in TSE, corresponding to the sorted
indices in TSE, which gave the curve TSE, in TSE, order. The similarity of the curves indicates
similar sparsity supports across images.

Two aspects of the proposed Bayesian reconstruction algorithm demand further attention. First,
relative to the other two algorithms we investigated, the Bayesian method is dramatically more
time consuming. The reconstruction times can be on the order of hours, which is prohibitive for
clinical use as currently implemented. As detailed in the Results section, the proposed algorithm
is about 40 times slower than gradient descent, and about 300 times slower than M-FOCUSS for
the in vivo data. Future implementations and optimizations that utilize specialized scientific
computation hardware are expected to overcome this current drawback. Particularly, it is common
to observe an order of magnitude speed-up with CUDA (Compute Unified Device Architecture)
enabled Graphics Processing Units when the problem under consideration can be adapted to the
GPU architecture (23). In a recent work, using CUDA architecture in compressed sensing was

reported to yield accelerations up to a factor of 40 (24). It is expected that parallelizing matrix
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operations and FFTs can yield significant performance boost. On the other hand, an algorithmic
reformulation can be another source of performance increase. Solving the inference problem via
variational Bayesian analysis (25) was seen to yield an order of magnitude speed-up relative to

the greedy Bayesian CS method for non-joint image reconstruction.

A second aspect of this reconstruction method that requires further analysis is the potentially
detrimental impact of source data that are not perfectly spatially aligned. To maximize the
information sharing among the inversion tasks, it is crucial to register the multi-contrast scans
before applying the joint reconstruction. To minimize the adverse consequences of such
misalignment, future implementations might deploy either real-time navigators (e.g. (26)) or
retrospective spatial registration among datasets based on preliminary CS reconstructions without
the joint constraint. For some acquisitions, subtle, non-rigid spatial misregistration may occur due
to eddy-current or B, inhomogeneity induced distortions. To correct for such higher-order
translation effects, several fast and accurate correction methods have been proposed (e.g. (27,28))
and could be applied for correction of undersampled images in joint Bayesian reconstruction. As
the preliminary investigation in the Results section demonstrates, joint Bayesian CS algorithm is
robust against misregistration effects up to shifts of 2 pixels, and it is believed that existing
registration techniques can bring the images within this modest range. Alternatively, future work
aimed at the simultaneous joint reconstruction and spatial alignment might pose an interesting
and challenging research project in this area, which might be accomplished by introducing

additional hidden variables.

Regarding real-valued image-domain datasets, the presented CS reconstructions obtained with
Lustig et al.’s conjugate gradient descent method yielded 2 to 4 times of the RMSE returned by
the joint Bayesian algorithm. Even though this error metric cannot be considered the sole
criterion for “good” image reconstruction (29), making use of similarities between multi-contrast
scans can be a first step in this direction. In the more general case where the methods were tested
with complex-valued images, the improvement in RMSE reduced to about 1.5 times on the in
vivo data with the joint Bayesian algorithm. When the individual images were reconstructed
separately, but using their real & imaginary parts jointly, this non-joint version of the Bayesian
algorithm outperformed both Lustig et al.’s method and M-FOCUSS on the complex-valued
numerical data and the TSE scans. This might suggest that exploiting the similarity between real
and imaginary channels of the images can also be source of performance increase. It is important
to note that the current Bayesian algorithm requires the sampling patterns to be symmetric in

order to handle complex-valued images, and this constraint might be reducing the incoherence of
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the aliasing artifacts. As reported in the Result section, using symmetric patterns instead of
unconstrained ones increased the error incurred by Lustig ef al.’s algorithm from 10.5 % to 11.5
%, which seems to be a mild effect. Even though the proposed joint reconstruction algorithm
increases the collective coverage of k-space by sampling non-overlapping data points across the

multi-contrast images, this benefit might be dampened by the symmetry constraint.

For comparison, the M-FOCUSS joint reconstruction algorithm was implemented and it was
noted that it also attained smaller RMSE figures compared to the gradient descent technique.
Even though M-FOCUSS is seen to outperform other competing matching pursuit based joint
algorithms (13), the Bayesian method proved to exploit the signal similarities more effectively in
the presented experiments. This is made possible by the fact that the Bayesian framework is
flexible enough to allow idiosyncratic signal parts, and strict enough to provide information
sharing. Importantly, the Bayesian approach also permits the use of different observation matrices
for each signal. This allows increased total k-space coverage across the multi-contrast scans, and
its benefit can be seen from the two experiments conducted on the TSE scans with acceleration R
= 2.5 along the phase encoding direction. The Bayesian reconstruction results displayed in Fig.
2.4 are obtained by using a different undersampling pattern for k-space corresponding to each
image, and this yielded 2.6 times less RMSE compared to Lustig ef al.’s algorithm, demonstrating
the benefits of variations in the sampling pattern for different contrast weightings. On the other
hand, the experiment in Table 2.1 that uses the same pattern for both images returned 2 times
smaller RMSE compared to the gradient descent method. However, M-FOCUSS has the
advantage of being a much faster algorithm with only modest memory requirements.
Interestingly, the performance of the M-FOCUSS algorithm deteriorated significantly when
tested on the complex-valued signals, yielding poorer results relative to Lustig ef al.’s method for
the complex-valued TSE dataset. Even though the joint Bayesian algorithm also suffered a

performance decrease, it still yielded significantly lower errors with the complex-valued signals.

A direction for future work is the application of the covariance estimates for the posterior
distribution produced by the Bayesian algorithm, which could be used to design optimal
undersampling patterns in k-space so as to reduce the uncertainty in the estimated signal (16,30).
Also, it is possible to obtain SNR priors, which might be utilized in the Gamma prior
p(a, | c,d) = Ga(a, | ¢,d) defined over the noise precisiona, in the Bayesian algorithm. The
setting ¢ =d =0 was used to incur a non-informative noise prior which would not bias the

reconstructions towards a particular noise power. In our informal experiments, smaller RMSE
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scores were also obtained with this setting. Yet the optimal selection of ¢ and d needs further

investigation.

Results in this work do not cover parallel imaging considerations, yet combining compressive
measurements with multichannel acquisitions has received considerable attention, e.g. (8,31).
Even though exposing the Bayesian formalism to parallel imaging is beyond the current scope,
treating the receiver channels as a similarity axis in addition to the contrast dimension might be a

natural and useful extension of the work presented here.

In addition to the demonstration of the joint CS reconstruction of multiple different image
contrasts, other applications lend themselves to the same formalism for joint Bayesian image

reconstruction. These include, for instance,

< Quantitative Susceptibility Mapping (OSM): In this setting, the aim is to solve an inverse

problem of estimating a susceptibility map x related to the phase of a complex image

|M |e”’ via an ill-posed inverse kernel. Since the magnitude part |M l is expected to share
common image boundaries with yx , it might be possible to use it as a prior to guide the

inversion task.

% Magnetic Resonance Spectroscopic Imaging (MRSI): Combining spectroscopic data with
high resolution structural scans might help reducing the lipid contamination due to the
subcutaneous fat or enhance resolution of brain metabolite maps.

% Multi-modal imaging techniques: Simultaneous acquisitions with different modalities

(e.g. PET-MRI) may benefit from joint reconstruction with this Bayesian formulation.

2.6 Joint Reconstruction with Prior Estimate

As acquisition times may vary among different contrasts in the multi-contrast protocol, the
overall scan time can be minimized for a fixed amount of undersampling by modulating the
degree of undersampling among the different contrast preparations. Here, the joint Bayesian
framework is extended to asymmetric undersampling schemes where one contrast image is fully
sampled while other contrasts are undersampled. By reformulating the inference problem, a new
reconstruction method that is based on the Expectation-Maximization (EM) algorithm is also
introduced. The EM approach permits the use of a prior image to facilitate the reconstruction, and

is detailed in the following.
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2.6.1 EM Algorithm for Joint Reconstruction with Prior Estimate

Given L undersampled images {x,},-;,EC¥ acquired with different contrasts and a fully-sampled

image X,,,.,,, @ sparse representation is again obtained for the undersampled contrasts by taking the
spatial gradients in k-space:

Fod,= (1—e—2"j“’/")y,. =z (2.26)

To simplify the expressions, the distinction between the vertical and horizontal gradients is

now omitted and the corresponding superscripts are dropped in this section. The gradient of the

prior image is directly computed as d,,,r = F ' {(1—e 2 Vpriory. The data are modeled to be

corrupted by complex Gaussian noise with variance o’, yielding the data likelihood
P(Z16,,6%) = N(Fq 6, 6°T) Q.27
A Gaussian prior across each pixel of the L images is placed to couple them,
Py =N, y.I) (2.28)

where 8 ,EC is the vector formed by taking the " pixel in each image and y, = 1/q, is the
inverse of the hyperparameter a, controlling the variance. By multiplicative combination of all

pixels, full prior distribution is obtained,

p(J |?) = l_lFl,Np(a.llyl) (2.29)

Combining the likelihood and the prior with the Bayes’ rule, posterior for the i™ image

becomes
P(0ilzy) =N, X) (2.30)
with £ =TI-TF;"B"'FqI and, (2.31)
#i=TF'B'z, (2.32)

where B = 6’ I+FoI'Fo" and I = diag(y). The posterior distribution is fully characterized if the
(inverse) hyperparameters y are estimated, which can be done with an EM-type algorithm by

iteratively applying Eqs. (2.31) and (2.32) followed by the update

1 = | APIL~LE 0 /yr) (2.33)

initial __

By using the prior image to initialize the EM iterations, y," = |5,,,,-o,,,|2, the known sparsity
support of d,,,, facilitates the recovery of the undersampled images. After estimating the vertical
and horizontal gradients, the images {x;}.1,. that are consistent with these and the k-space data

{y:}=1, are again found by solving a least squares problem.
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2.6.2 Methods

Bayesian CS with prior was applied to the TSE and SRI24 datasets, which were also
reconstructed with the CS algorithm by Lustig et al. (6) using total variation penalty with an
optimal regularization parameter that yielded the smallest RMSE. In the TSE experiment, an
early echo slice was retrospectively undersampled with a random 2D pattern using acceleration R
= 4 while the late echo image was kept fully sampled to serve as prior. Regarding the SRI24
dataset, single slices from the T2 and T1 weighted images were undersampled along phase
encoding with acceleration R = 4, while the PD image was kept fully sampled to supply prior
information. An approximate solution to the large-scale matrix inversion B in Eq. (2.31) was
computed iteratively by Lanczos algorithm with partial reorthogonalization for the Bayesian CS

algorithm.

2.6.3 Results

Fig. 2.9 depicts the TSE dataset reconstruction results, for which Lustig et al.’s algorithm yielded
9.3% RMSE, while Bayesian CS with prior information had 5.8% error. Results for the SRI124
dataset are given in Fig. 2.10. Here, Lustig et al.’s method yielded 9.5% NRMSE, and the error
was 4.3% for Bayesian CS that jointly reconstructed T2 and T1 images with the help of fully-

sampled PD image. Joint Bayesian CS without using a prior had 4.9% error (not shown).

: (b)

(¢) Prior image T (1) R=4 sampling :

Bavesian CS with prior: 3.8%  (d)

Fig. 2.9. (a) Lustig et al.’s algorithm yielded 9.3% error (b) absolute error for (c) Bayesian CS
with prior returned 5.8% error (d) error for Bayesian CS (e) fully-sampled prior (f) R=4 sampling
pattern.
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Lustig et al. TVipenalty: 9.5%

: (Ca) L(d ) = (d-)
A > A §
\ 3 vd DR
- g ;

Joint Bayesian CS with prior: 4.3%

(¢) Prior image (1 R dsampling

Fig. 2.10. (a;-a;) Lustig et al.’s algorithm yielded 9.5% error (b,-b,) absolute error plots for
Lustig et al. (¢,-¢c;). Joint Bayesian CS with prior returned 4.3% error (d,-d;) error plots for
Bayesian CS (e) fully-sampled PD weighted prior image (f) =4 random undersampling pattern
in 1D

2.6.4 Remarks on Reconstruction with Prior Estimate

The presented method makes use of the known sparsity support of a fully-sampled image only to
initialize Bayesian CS iterations, and hence avoids imposing this support on the reconstructed
images. Acquiring a fully-sampled prior is desirable in cases where one imaging sequence is
significantly faster than the other contrast weightings, e.g. an MP-RAGE acquisition along with

other contrasts.

2.7 Conclusion

This chapter presented the theory and the implementation details of a Bayesian framework for
joint reconstruction of multi-contrast MRI scans. By efficient information sharing among these
similar signals, the Bayesian algorithm was seen to obtain reconstructions with smaller errors (up

to a factor of 4 in RMSE) relative to two popular methods, Lustig ef al.’s conjugate gradient
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descent algorithm (6) and the M-FOCUSS joint reconstruction approach (13). In the presence of a
fully-sampled image, it was shown that joint reconstruction can be further enhanced by using this

image to supply prior information.
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Chapter 3

Regularized Quantitative Susceptibility Mapping

Quantifying tissue iron concentration in vivo is instrumental for understanding the role of iron in
physiology and in neurological diseases associated with abnormal iron distribution. In this
chapter, the recently-developed Quantitative Susceptibility Mapping (QSM) methodology is used
to estimate the tissue magnetic susceptibility based on MRI signal phase. To investigate the effect
of different regularization choices, ¢, and £, norm regularized QSM algorithms are implemented
and compared. These regularized approaches solve for the underlying magnetic susceptibility
distribution, a sensitive measure of the tissue iron concentration, that gives rise to the observed
signal phase. Regularized QSM methodology also involves a pre-processing step that removes, by
dipole fitting, unwanted background phase effects due to bulk susceptibility variations between
air and tissue and requires data acquisition only at a single field strength. For validation,
performances of the two QSM methods were measured against published estimates of regional
brain iron from postmortem and in vivo data. The in vivo comparison was based on data
previously acquired using Field-Dependent Relaxation Rate Increase (FDRI), an estimate of MRI
relaxivity enhancement due to increased main magnetic field strength, requiring data acquired at
two different field strengths. The QSM analysis was based on susceptibility-weighted images
acquired at 1.5T, whereas FDRI analysis used Multi-Shot Echo-Planar Spin Echo images
collected at 1.5T and 3.0T. Both datasets were collected in the same healthy young and elderly
adults. The in vivo estimates of regional iron concentration comported well with published
postmortem measurements; both QSM approaches yielded the same rank ordering of iron
concentration by brain structure, with the lowest in white matter and the highest in globus
pallidus. Further validation was provided by comparison of the in vivo measurements, £;-
regularized QSM versus FDRI and {,-regularized QSM versus FDRI, which again yielded perfect
rank ordering of iron by brain structure. The final means of validation was to assess how well
each in vivo method detected known age-related differences in regional iron concentrations
measured in the same young and elderly healthy adults. Both QSM methods and FDRI were
consistent in identifying higher iron concentrations in striatal and brain stem ROIs (i.e., caudate
nucleus, putamen, globus pallidus, red nucleus, and substantia nigra) in the older than in the
young group. The two QSM methods appeared more sensitive in detecting age differences in

brain stem structures as they revealed differences of much higher statistical significance between

57



the young and elderly groups than did FDRI. However, QSM values are influenced by factors
such as the myelin content, whereas FDRI is a more specific indicator of iron content. Hence,
FDRI demonstrated higher specificity to iron yet yielded noisier data despite longer scan times
and lower spatial resolution than QSM. The robustness, practicality, and demonstrated ability of
predicting the change in iron deposition in adult aging suggest that regularized QSM algorithms
using single-field-strength data are possible alternatives to tissue iron estimation requiring two

field strengths.

Further, this chapter develops a closed-form expression for £,-regularized QSM that can be
computed in less than 5 seconds, which is a substantial speed-up compared to iterative methods

that may take up to an hour of processing time.

3.1 Introduction

Excessive iron deposition in subcortical and brain stem nuclei occurs in a variety of degenerative
neurological and psychiatric disorders, including Alzheimer’s disease, Huntington’s Chorea,
multiple sclerosis, and Parkinson’s disease (32). Further, postmortem (1) and in vivo (33-37)
studies have revealed that deep gray matter brain structures accumulate iron at different rates
throughout adult aging. Structures that exhibit iron accrual support components of cognitive and
motor functioning (37-39). To the extent that excessive iron presence may attenuate neuronal
function or disrupt connectivity, quantification and location of iron deposition may help explain

age- and disease-related motor slowing and other selective cognitive decline.

Several MRI methods have been proposed for in vivo iron mapping and quantification.
Bartzokis et al. (40) capitalized on the enhanced transverse relaxivity (R2) due to iron with
increasing main field strength for the Field-Dependent Relaxation Rate Increase (FDRI) method.
FDRI relies on the use of R2-weighted imaging at two different field strengths and attributes the
relaxation enhancement at higher field to iron, which may be a specific measure of tissue iron
stores (40).

Whereas FDRI relies on the modulation of signal intensity in MRI to infer iron concentration,
MRI signal phase has also been proposed as a source signal for iron mapping, both by direct
evaluation of phase images (41,42) and by reconstruction of magnetic susceptibility images that
derive from the phase data (34,42). Local iron concentration is strongly correlated with the
magnetic susceptibility values (43-45); therefore, quantification of this paramagnetic property

presents a sensitive estimate of iron concentration, although possibly complicated by more
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uncommon factors, such as pathological manganese deposition (46). Phase mapping yields high-
resolution, high-SNR data that demonstrate correlation with iron (34), but as an estimate of the
underlying magnetic susceptibility, it suffers from non-local effects and spatial modulation
artifacts due to the non-trivial mapping from susceptibility to phase (47). To overcome these
limitations, herein regularized Quantitative Susceptibility Mapping (QSM) algorithms are
employed for robust estimation of the magnetic susceptibility x of tissues based on gradient-echo
signal phase. The magnetic susceptibility ¥ maps to the observed phase shift in MRI via a well-
understood transformation, but the inverse problem, i.e., estimation of y from phase, is ill posed
due to zeros on a conical surface in the Fourier space of the forward transform; hence, x inversion
benefits from additional regularization. Recently, elegant regularization methods were proposed
for deriving susceptibility inversion. In the work by de Rochefort et al. (2010), smooth regions in
the susceptibility map are promoted to match those of the MR magnitude image by introducing a
weighted €, norm penalty on the spatial gradients of x. Likewise, Liu et al. (2010) regularized the
inversion by minimizing the £, norm of gradients of x, again weighted with a mask derived from
the image magnitude. Kressler et al. (2010) experimented using €; and €, norm regularizations
directly on the susceptibility values, rather than posing the minimization on the gradient
coefficients. Another method to stabilize the susceptibility reconstruction problem is to acquire
data at multiple orientations and invert them simultaneously without regularization. This
approach was introduced by Liu ef al. (2009) and also investigated by others such as Wharton and
Bowtell (2010) and Schweser ef al. (2011).

In this work, two different regularization schemes are investigated for susceptibility inversion;
using £,-regularized QSM that parallels the approach of Liu et al. (2010) and £,-regularized QSM
which was introduced by de Rochefort et al. (2010). Given that magnetic susceptibility is a
property of the underlying tissue, in £,-regularized QSM the underlying assumption is that
susceptibility is approximately constant within regions of the same tissue type or within an
anatomical structure. Based on this premise, the £;-norm-penalized QSM algorithm regularizes
the inversion by requiring the estimated y to be sparse in the image gradient domain. On the other
hand, placing an £, norm penalty on the spatial gradients of y does not promote sparsity, but
results in a large number of small gradient coefficients and thus incurs a smooth susceptibility
reconstruction. In addition to regularized susceptibility inversion, the presented approach
incorporates a robust background phase removal technique based on effective dipole fitting (48),
which addresses the challenging problem of removing phase variations in the data that arise
primarily from bulk susceptibility variations between air and tissue rather than the more subtle

changes of y within the brain. Dipole fitting contains no parameters that need tuning and
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preserves the phase variations caused by internal susceptibility effects more faithfully than high-
pass filtering, as employed in susceptibility-weighted imaging (SWI) (41,42). All susceptibility
mapping methods require data acquired at only one field strength, thereby overcoming certain
limitations of the FDRI approach, including long scan times and the need for spatial registration

of image data acquired with different scanners at different field strengths.

Here, the £; and £, norm regularized QSM methods are described and applied to SWI data
previously acquired in groups of younger and elderly, healthy adults (35). To validate the iron
measures, the results of QSM methods were compared with values published from a postmortem
study (1). As further validation, QSM results were compared with those based on FDRI collected
in the same adults (35) to test the hypothesis that the iron deposition in striatal and brain stem
nuclei, but not white matter or thalamic tissue, would be greater in older than younger adults. The
chapter closes with a fast algorithm that achieves £,-regularized susceptibility mapping in

seconds.

3.2 Methods

3.2.1 Susceptibility and MR signal phase

The normalized magnetic field shift 6 measured in a gradient-echo sequence is related to the MR
image phase ¢ via 6 = —¢/(B,y-TE), where B, is the main magnetic field strength, y is the
gyromagnetic ratio, and TE is the echo time. It follows from Maxwell’s magnetostatic equations
that the relationship between the underlying susceptibility distribution y and the observed field
shift d is given by (47,49,50)

1 k2
”:[E_kj+k;+k;}(”) 3.1)

where F is the discrete Fourier transform matrix, k. and £, are the in-plane frequency indices, £,
is the frequency index along By, and o denotes element-wise multiplication. Denoting with D the

kernel that relates the field map to the susceptibility, the relation can also be expressed as
o=F'DFy G-2)

The spatial frequencies at which the kernel is zero define a conical surface in k-space, which
effectively undersamples the Fourier transform of y and thereby gives rise to the ill-posed
problem of susceptibility estimation from image phase. In addition, the susceptibility kernel is not

defined at the center of k-space (the DC point), but one can choose a solution that vanishes at
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infinity, which is obtained by setting the Fourier transform of the field to 0 at £ = 0 (47). This
assignment of signal for the k-space origin causes the resulting y to have zero mean; but
independent of the particular design choice for this DC signal, the susceptibility distribution is
inherently a spatial map of relative susceptibilities. Under the assumption that the field map and
the susceptibility distribution are differentiable along k,, Li et al. (2011) derived that the
convolution kernel equals -2/3 at & = 0. In this work, the convention of assigning 0 to the DC
value of the kernel is adopted. Thus, to achieve absolute quantification of x, some reference value
needs to be established. For this study, the magnetic susceptibility value in splenium is chosen as
a reference. This structure was preferred over taking as a reference the CSF, for which the
susceptibility values were observed to differ substantially between the anterior and the posterior

ventricles in this study.

3.2.2 Background effect removal from the field map

In addition to the relatively subtle internal effects of the tissue iron on the MRI phase,
background artifacts caused by air-tissue boundaries contribute the vast majority of signal
variation in the observed phase. While the susceptibility difference between air and water is about
9.4 ppm (parts per million) (51), the largest within-brain variation due to tissue iron is more than
an order of magnitude smaller. Assuming that the average human tissue susceptibility is similar to
that of water, it is clear that background effects dominate the observed phase and this undesired
signal component is a challenge to robust susceptibility inversion. Because the background
effects usually vary slowly across space, various methods have been proposed to filter them out
based on this frequency characteristic, such as polynomial fitting (44) and forward modeling to
estimate the phase from the air/tissue interface (52). Even though these methods are effective for
background phase removal, their impact on the internal phase variations due to tissue iron is
unclear. A recent background field removal algorithm, effective dipole fitting (48), aims to
estimate the background susceptibility distribution that optimally matches the field inside the
region of interest (ROI), and removes this contribution to recover the foreground field map. This

is achieved by solving a least-squares problem

Ko = ArMIN, ||M(5 -F'DFM z) (33)

2
2

where M is the brain mask that marks the ROI and M is the complement of M, thus marking
the background. After solving for x,., the field map induced only by the internal local effects is
obtained by

8, =06-F'DFMy,, (G4
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Compared with high-pass filtering, effective dipole fitting was seen to yield 1/3 to 1/7 times the
root-mean-square error relative to the true field maps obtained from reference scans (48). Another
elegant background removal technique called SHARP (45), with results comparable to those of
the dipole fitting method (53), involves removing the harmonic contributions to the phase inside

the region of interest by filtering.

3.2.3 Susceptibility inversion with ¢, regularization

The final step in the proposed algorithm is to estimate the susceptibility distribution that gives

rise to d,,. Hence, the aim is to solve
-1
o,=F DFy, 3.5)

Because some of the spatial frequencies are undersampled by the kernel D, the inversion of ;,
benefits from regularization that imposes prior knowledge on the reconstructed susceptibility
map. The susceptibility values are tied to the paramagnetic properties of the underlying tissue
structure; hence they vary smoothly across space within anatomical boundaries and can be
approximated to be piece-wise constant. In this case, the susceptibility map is expected to be
sparsely represented in the spatial image gradient domain. To formulate this belief, the aim is to

find the y distribution that matches the field map d,,, and that also has sparse image gradients

Gx
3, ~F'DF | +2-|G ], with G=|G
G

z

Xi, = argmin, (3.6)

y

where "G ){"l is the €; norm of image gradients in all three dimensions, and 1 is a

regularization parameter that trades off data consistency and spatial smoothness. This convex
program is very similar to the objective function in the compressed sensing (CS) MRI literature,
where the aim is to reconstruct MR images from undersampled k-space data. According to CS
theory, if the underlying image can be approximated to be sparse in a transform domain, then it
can be recovered from randomly undersampled 4-space data via a nonlinear recovery scheme, and
the reconstruction quality depends on the number of observed frequency samples as well as the
coherence of the aliasing artifacts in the transform domain (54). The nonlinear recovery method
usually involves penalizing the £; norm of the transformed image. Based on this, Eq. (3.6) can be
viewed as CS reconstruction with a modified observation matrix DF instead of the undersampled

Fourier transform.
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An objective function similar to Eq. (3.6) has been previously proposed in Liu et al. (2010),
which included a smoothing term of the form "WGG x" , - Here, W is a weighting matrix

derived from the MRI image magnitude, and L denotes the choice of the norm, which can be
either £; or a homotopic approximation to the £, norm. Apart from the magnitude weighting, the

presented method parallels this approach.

3.2.4 Susceptibility inversion with £, regularization

Another way of introducing regularization to the inversion problem is by penalizing the £, norm

of spatial gradients of the susceptibility distribution,
. - 2 2

X, = argmin ||J,.n —F ' DF x"z +8-|G xl, (3.7
In contrast with the £, regularization that promotes sparse spatial gradients (i.e. a small number
of non-zero gradient coefficients), €,-regularized inversion favors a large number of small
gradient coefficients. Regularized QSM with £, norm penalty was introduced in de Rochefort et
al. (2010), which also included a weighting matrix W, derived from the signal magnitude in the
regularization term to yield”\’Vl G l||§ To investigate the effect of the regularization norm

selection in susceptibility inversion, QSM results with both regularization styles are presented.

3.2.5 Effect of regularization parameters A and

The regularization parameter 4 in Eq. (3.6) determines the smoothness of the reconstructed
susceptibility map such that larger values of 4 yield smoother image results than do smaller ones
(Fig. 3.1). This flexibility permits controlling the scale of spatial features present in the x

reconstruction.
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Fig. 3.1. L-curve for £,-regularized QSM results for a young subject. X-axis: data consistency
term ”5 ~F'DF x"2 in regularized reconstruction for varying values of the smoothing parameter

A. Y-axis: regularization term|[G x| . Setting 1 = 5-10° vyielded an under-regularized
\ g g

susceptibility map with ringing artifacts (a), whereas using 1 = 107 resulted an over-regularized
reconstruction (c). For 2 = 2-10™, the operating point with the largest curvature on the L-curve
was obtained (b). This setting was used for the reported £,-regularized results.

In terms of imposing prior belief on the susceptibility distribution, it is possible to recover Eq.
(3.6) by assuming that the normalized field map d,, is corrupted by white Gaussian noise with

some variance o> and by placing a sparsity-promoting Laplacian prior distribution on the gradient

J (3.8)

where dy represents the spatial gradient of x, and M is the total number of voxels in y. With

coefficients of the y map,

P 1 Hu
P(aX)=(4o_z) exp(——zygl%

these noise and prior models, invoking the maximum a posteriori (MAP) estimate reduces to Eq.
(3.6). From this point of view, using a large A will produce a highly peaked prior distribution at

zero, inducing sparser image gradient solutions, and smoother susceptibility maps.
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Again from a Bayesian perspective, the £, norm regularization corresponds to computing the
MAP estimate after placing a multivariate Gaussian prior on the gradient coefficients of the

susceptibility map,

i=1

1 O (3.9)
P(aX)_(2ﬂ0'2 /ﬁ)mz exp[ 202 /ﬂszil J

where ¢’ is the data noise in the field map and £ is the regularization parameter in Eq. (3.7).

Hence, the variance of the gradient coefficients (0'2 / ﬁ) is inversely proportional to the {,

regularization parameter . Accordingly, a large regularization parameter will limit the variation

in the gradient coefficients and induce smaller values (Fig. 3.2).
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Fig. 3.2. L-curve for {,-regularized QSM results for a young subject. X-axis: data consistency
term "5 -F'DF x”z in regularized reconstruction for varying values of the smoothing parameter

p. Y-axis: regularization term "G ;{"2. Setting f# = 3107 yielded an under-regularized

susceptibility map with ringing artifacts (a), whereas using =71 07 resulted an over-regularized
reconstruction (c). For # = 1.5-107, the operating point with the largest curvature on the L-curve
was obtained (b). This setting was used for the reported £,-regularized results.
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3.2.6 Selection of regularization parameters 2 and

To choose appropriate regularization parameters that balance data consistency and the amount of
regularization, the L-curve method was employed (55). The corners of the L-curves were not
sharp for £;- and £,-regularized reconstructions (Figs. 3.1&2), and optimal regularization
parameters were determined by finding the operating points with the largest curvature. L-curve

tests were performed on a young and an elderly subject from the in vivo dataset and the optimal
operating points were found to be A=2-10"*for £,-regularized QSM and B=1.5-10"for {,-

regularized reconstructions on both the young and the elderly subjects.

3.2.7 Dataset acquired in younger and elderly adults used for comparison of regularized

QSM and FDRI

To examine consistency with our previous study that investigated the performance of FDRI (35),

the proposed iron quantification algorithm was tested on the same dataset, as summarized below.
Subjects

Two groups of healthy, highly educated, right-handed adults were studied: 11 younger adults
(mean£S.D. age = 24.0 + 2.5, range = 21 to 29 years, 15.9 years of education; 5 men, 6 women)
and 12 elderly adults (meantS.D. age = 74.4 + 7.6, range = 64 to 86 years, 16.3 years of
education; 6 men, 6 women). The younger subjects included laboratory members and volunteers
recruited from the local community. All older participants were recruited from a larger ongoing
study of normal aging and scored well within the normal range on the Dementia Rating Scale
(56): mean = 140.6, range = 132 to 144 out of 144, cutoff for dementia = 124. Mean (and range)
of days between 1.5T and 3.0T scan acquisition were 16.5 (0 to 56) days for the young and 9.3 (0
to 42) days for the elderly group; for 2 of the young and 8 of the elderly both sets of scans were

acquired on the same day.
Image acquisition protocols

MRI data were acquired prospectively on 1.5T and 3.0T General Electric (Milwaukee, WI) Signa
human MRI scanners (gradient strength = 40 mT/m; slew rate = 150 T/m/s).

FDRI acquisition

At 1.5T, after auto shimming for the session, the following sequences were acquired for 62 axial

slices, each 2.5 mm thick:
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1) 3D SPoiled Gradient Recalled Echo (SPGR) for structural imaging and registration
(TR/TE=8.1/3.3 ms, FA=30°);

2) multi-shot Echo Planar Spin Echo (EPSE) (TR/TE 6000/17, FA=90°, 256x192 in-plane,
FOV=24 ¢m, 4 NEX, 24 interleaves with 8 phase-encode lines per TR, 9:40 min);

3) multi-shot EPSE (TR/TE 6000/60, FA=90°, 256x192 in-plane, FOV=24 cm, 6 NEX, 24

interleaves, 14:20 min).

At 3.0T, after auto shimming for the session, the following sequences were acquired in the
axial plane:
1) 3D SPGR for structural imaging and registration (TR/TE=8.1/3.3 ms, FA=15°, 124 slices,
1.25 mm thick);

2) multi-shot EPSE (TR/TE 6000/17, FA=90°, 256x192 in-plane, FOV=24 cm, 3 NEX, 24

interleaves, 62 slices, 2.5 mm thick, 7:10 min);

3) multi-shot EPSE (TR/TE 6000/60 ms, FA=90°, 256x192 in-plane, FOV=24 c¢m, 6 NEX,

24 interleaves, 62 slices, 2.5 mm thick, 14:20 min).

Susceptibility-Weighted Image acquisition
At 1.5T, after auto shimming for the session, the following sequences were acquired for 62 axial

slices, each 2.5 mm thick:

1) 3D SPGR for structural imaging and registration (TR/TE=28/10 ms, FA=30°, 256x256
in-plane, 24 cm FOV);

2) susceptibility-weighted 3D SPGR (TR/TE=58 ms/40 ms, FA=15°, 512x256 in-plane, 24
cm FOV, 12:20 min, with flow compensation) (34,57);

3) 2D gradient-recalled echo sequence (TR/TE=600/3 ms, FA=20°);

4) 2D gradient-recalled echo sequence (TR/TE=600/7 ms, FA=20°).

Phase images were constructed from the real and imaginary components of the SWI-SPGR
data after the phase had been unwrapped with FSL PRELUDE (Phase Region Expanding Labeler
for Unwrapping Discrete Estimates (58)). The magnitude and phase-unwrapped SWI data were
down-sampled from 512x256 to 256%256 via averaging to match the FDRI resolution. Brain
masks were generated with the FSL Brain Extraction Tool, BET (59), to be used in the dipole

fitting step for background phase removal. After estimating the foreground field maps from the
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unwrapped phase data with the down-sampled size 256x256, susceptibility maps were generated

with the two QSM algorithms.

Image registration

As previously described (35), for each subject and for 1.5T and 3.0T separately, the late-echo
EPSE data were nonrigidly registered (60) [http:/nitrc.org/projects/cmtk/] to the early-echo EPSE
data. This was necessary because the two echoes arose from separate acquisitions, rather than a
single dual-echo acquisition, and were, therefore, not always perfectly aligned with each other.
The 1.5T early-echo EPSE image of each subject was registered to the 3.0T early-echo EPSE
image of the same subject, which was then registered nonrigidly to the subject's 3.0T SPGR
image. The 3.0T SPGR image from each subject, after brain extraction using BET, finally was
registered  nonrigidly to the SPGR  channel of the SRI24 atlas (22)
[http://nitrc.org/projects/sri24/].  Via concatenation of the aforementioned registration
transformations, the 1.5T and 3.0T early-echo and late-echo images were all reformatted into 1-
mm isotropic SRI24 space, each using a single interpolation with a 5-pixel-radius cosine-
windowed sinc kernel. Reformatting both 1.5T and 3.0T data from each subject into SRI24
coordinates via that subject's 3.0T SPGR image (rather than separately via the early-echo EPSE
images at each field strength) ensures that the unavoidable inter-subject registration imperfections
are consistent for images from both field strengths. The 1.5T SWI magnitude images were rigidly
registered to a contemporaneously acquired structural SPGR image, which was then registered
nonrigidly to the same subject's 3.0T SPGR image. The SWI-SPGR registration was limited to a
rigid transformation because signal dropouts in magnitude SWI due to BO field inhomogeneities
prevented nonrigid correction of the relatively small distortions between SWI and SPGR. Again,
via concatenation of transformations, the phase images were reformatted into SRI24 space, again
with a 5-pixel radius cosine sinc kernel. All data were analyzed in common I-mm isotropic

SRI24 atlas space.

Region-of-Interest (ROI) identification

Voxel-by-voxel FDRI images (FDRI=(R23—R2, 51)/1.5T) were created for each subject and used
to make a group FDRI average, comprising all young and elderly subjects. A similar group
average was made for the QSM images, and separate young and elderly group averages were

made for display purposes (Fig. 3.3).
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Fig. 3.3. Young (left) and elderly (right) group averages for FDRI (a), {;-regularized QSM (b),
and {,-regularized QSM (c). Greater iron concentration yields brighter QSM and FDRI images.
Splenium reference ROIs are indicated with a white box on the axial QSM slices.

As previously described (35), bilateral caudate, globus pallidus, putamen, thalamus, and white
matter sample regions of interest (ROls) were drawn on the group-average (all young plus all
elderly subjects) FDRI images in common SRI24 space, reformatted in the coronal plane. The
globus pallidus, putamen, caudate, and white matter sample were drawn on 10 contiguous, 1-mm
thick slices at an anterior—posterior location that maximized the presence of all three basal ganglia
structures in the same slices. The thalamus was drawn on the next 10 contiguous slices posterior
to the basal ganglia. The caudate was eroded one pixel and thalamus was eroded two pixels on a
slice-by-slice basis to avoid partial voluming of CSF. Substantia nigra and red nucleus ROIs were

also identified, based on their FDRI intensities. The same ROIs were also manually identified on
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the group-average phase data (all young and all elderly combined), reformatted in the axial plane
(61), and guided by phase conspicuity. When drawing ROIs on the phase data, an effort was
made to exclude the bright rims around the globus pallidus and putamen as well as the division
between them. Although this approach biases the data towards more negative phase (i.e., lower
values reflecting less iron), its purpose was to maximize the sensitivity of phase to age effects.
Thus, iron estimates were conducted on both sets of ROI identifications, the phase-guided and the
FDRI-guided.

For each subject and for each ROI at each field strength, the mean intensity of all voxels in an
ROI for the early- and late-echo EPSE were used to compute R2;7 and R2; sy and the FDRI. QSM
values were computed as the magnetic susceptibility in parts per million (ppm) for all voxels
identified in each ROI projected onto each individual's QSM dataset. Thus, both FDRI intensity
and phase conspicuity were each used to guide ROI delineation. The average susceptibility of
splenium in each subject was used as a reference for that subject’s reported QSM results. This
was preferred over taking the CSF susceptibility as a reference, as it was seen to differ
substantially between the anterior and the posterior regions. Although the raw averages in the
splenium did not differ significantly between the young and the elderly groups (p=0.2359 for {;-
regularized and p=0.2016 for £;-regularized QSM), they were larger in the elderly group than the

young group ( }(;‘,Zg‘m =—0.0378 ppmand ;% =-0.0479 ppm for ¢ ,-regularized and

Zspienam = —0.0297ppmaand g€ =—0.0374ppm for ¢,-regularized QSM). This should

induce a bias against observing young-elderly group susceptibility differences in the regularized

QSM reconstructions.

Statistical analysis

It was predicted in this study that the ROI iron values would correlate positively with published
postmortem iron values (1) and with FDRI values. Comparisons of the two in vivo iron indices
with each other and also with published postmortem values were based on nonparametric
(Spearman) correlations. The hypotheses that, relative to the young group, the elderly group
would have higher QSM and FDRI values in striatal and brain stem ROIs, but not in thalamic or
white matter ROIs was tested. Because a directional hypotheses was posed, group differences
were considered significant at p<0.0125, the one-tailed, family-wise Bonferroni-corrected p-value
at a=0.05 for 8 measures. All measurements were conducted twice: once with FDRI-guided ROI

identification, and once with phase-guided ROI identification.
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3.3 Results
3.3.1 Correlations of FDRI and QSM values with postmortem iron concentrations

Fig. 3.4 presents the mean + SD iron concentration determined postmortem in each ROI (1) on
the x-axis and the mean + SD FDRI values in s'/Tesla and €,-regularized QSM values in ppm for
young plus elderly subjects on the y-axis. The correlations between {,-regularized QSM and
postmortem (Rho = 0.881, p = 0.0198), between £,-regularized QSM and postmortem (Rho =
0.881, p = 0.0198), and between FDRI and postmortem iron indices (Rho = 0.952, p =0.0117)

were high.
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Fig. 3.4. X-axis: Mean £ SD iron concentration (mg/100 g fresh weight) determined postmortem
in each ROI (1). Y-axis: Mean + SD ,-regularized QSM in ppm (left) and FDRI in s '/Tesla
(right) indices in all 23 subjects (black squares); the gray circles indicate the mean of the young
group, and the open circles indicate the mean of the elderly group.

3.3.2 Correlations between in vivo QSM and FDRI iron concentration metrics

To investigate the consistency between the iron concentrations predicted by the two QSM
methods and FDRI, the three metrics in each ROI belonging to the 23 subjects were correlated.
The correlation parameters indicate strong agreement between {,-regularized QSM and FDRI
(Rho = 0.976, p = 0.0098) (Fig. 3.5) and between {,-regularized QSM and FDRI (Rho = 0.976, p
=0.0098) (not shown).
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Fig. 3.5. Correlation between FDRI and €;-regularized QSM results on the regions of interest.
Results indicate strong relationship between the two methods (Rho = 0.976, p = 0.0098). Left: all
23 subjects; middle: young group; right: elderly group.

3.3.3 Age differences in regional iron concentration: QSM and FDRI

All ROI and statistical analyses were conducted on both phase-guided and FDRI-guided ROls.
Based on the initial FDRI data analysis, which reported lack of consistent cerebral hemisphere
asymmetries across iron-rich structures (35), all analyses herein used bilateral data, expressed as
the mean of the left and right measures for each ROI (Table 1). The three methods produced

essentially the same results. All #-test and p-values are presented in Table 1.
3.3.4 Age differences identified with regularized QSM

Analysis of the QSM results indicated that the elderly group had significantly more iron than the
young group in striatal regions of the putamen and globus pallidus for both {,- and {,-norm
regularized results. Even though the elderly tended to have more iron in the caudate nucleus than
the young, the difference was not significant in either of the QSM methods. Likewise, £,- and {,-
regularized QSM values indicated significantly more iron in the elderly than young group in the
red nucleus and substantia nigra, but not the dentate nucleus. The only exception was the ;-
regularized substantia nigra results on the phase-guided ROlIs, for which the group difference was

not significant using family-wise Bonferroni correction

Average susceptibility values in the thalamus tended to be lower in the elderly relative to the
young (indicating less iron in the elderly group) for both types of regularization, and this
difference was significant for £, norm regularized QSM under phase-guided ROIs. Likewise, the
elderly had smaller susceptibility values in the white matter sample, but the difference was not

significant (Fig. 3.6).
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Table 1a. Mean (£SD) of each measure by region for each group: {;-regularized QSM
results using phase-guided ROIs and FDRI-guided ROIs

Region {,-regularized QSM (ppm), phase-guided ROIs __{,-regularized QSM (ppm), FDRI-guided ROIs
Young Elderly H(elderly>young) Young Elderly t(elderly>young)
(N=11) (N=12) (N=11) (N=12)
Frontal WM 0.0367 0.02982 +=—0.7505* 0.0349 0.0275 +=-0.9182*
(0.0187) (0.0251)  p=0.2307 (0.0190) (0.0194) p=0.1844
Thalamus 0.0464 0.0220 =-2.1336" 0.0420 0.0208 =1.8805*
(0.0230) (0.0129) p=0.0224 (0.0210) (0.0317) p=0.0370
Caudate 0.0937 0.1033 t=0.9689 0.0763 0.1038 =2.1970
(0.0189) (0.0274) p=0.1718 (0.0224) (0.0356) p=0.0197
Putamen 0.0779 0.1233 1=3.8807 0.0683 0.1134 =3.5777
(0.0188) (0.0343) p=0.0004 (0.0205) (0.0369) p=0.0009
Globus Pallidus 0.1224 0.1472 1=2.5420 0.1422 0.1961 =4.9807
(0.0200) (0.0261)  p=0.0095 (0.0172) (0.0318) p=0.0001
Substantia Nigra 0.0820 0.1113 =2.0712 0.1045 0.1524 +=3.0319
(0.0299) (0.0372) p=0.0254 (0.0426) (0.0331) p=0.0031
Red Nucleus 0.0933 0.1473 1=3.2568 0.0927 0.1435 +=2.8404
(0.0379) (0.0413) p=0.0019 (0.0395) (0.0458) p=0.0049
Dentate Nucleus 0.0693 0.0595 =—1.0000" 0.0544 0.0487 =—0.6703"
(0.0151) (0.0292) p=0.1643 (0.0174) (0.0225) p=0.2550

p-values are 2-tailed. Numbers in bold indicate significant differences, family-wise Bonferroni corrected based on one-
tailed directional hypotheses, requiring p<.0.0125 for 8 comparisons.
* Negative ¢ values indicate a group difference with the elderly having less iron than the young.

Table 1b. Mean (+SD) of each measure by region for each group: {; regularized QSM
results using phase-guided ROIs and FDRI-guided ROIs

Region {,-regularized QSM (ppm). phase-guided ROIs __{,-regularized QSM (ppm), FDRI-guided ROls
Young Elderly #(elderly>young) Young Elderly t(elderly>young)
(N=11) (N=12) (N=11) (N=12)
Frontal WM 0.0240 0.0191 =—0.8163* 0.0228 0.0187 =—0.7029°
(0.0146) (0.0143) p=0.2118 (0.0156) (0.0124) p=0.2449
Thalamus 0.0388 0.0155 =-2.738" 0.0344 0.0139 =2.3931°
(0.0214) (0.0194) p=0.0061 (0.0199) (0.0211) p=0.0131
Caudate 0.0814 0.0897 t=1.1032 0.0653 0.0888 =2.2814
(0.0164) (0.0195) p=0.1412 (0.0211) (0.0276) p=0.0166
Putamen 0.0677 0.1101 t=4.7501 0.0568 0.0976 =4.3091
(0.0168) (0.0248) p=0.0001 (0.0176) (0.0264) p=0.0002
Globus Pallidus 0.1069 0.1341 1=3.0833 0.1221 0.1740 =5.1724
(0.0188) (0.0233) p=0.0028 (0.0153) (0.0298) p=0.0001
Substantia Nigra 0.0656 0.0939 =2.5812 0.0832 0.1210 +=3.0743
(0.0280) (0.0246) p=0.0087 (0.0354) (0.0227) p=0.0029
Red Nucleus 0.0740 0.1184 1=3.2024 0.0738 0.1141 +=2.6751
(0.0333) (0.0331) p=0.0021 (0.0339) (0.0379) p=0.0071
Dentate Nucleus 0.0570 0.0509 t=—0.9161" 0.04314 0.0400 =—0.5076*
(0.0137) (0.0178) p=0.1850 (0.0146) (0.0147) p=0.3085
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L1-QSM (ppm)

Table 1c. Mean (£SD) of each measure by region for each group: FDRI results using phase-
guided ROIs and FDRI-guided ROIs

Region FDRI (s '/Tesla), phase-guided ROIs FDRI (s '/Tesla), FDRI-guided ROIs
Young Elderly t(elderly>young) Young Elderly t(elderly>young)
(N=11) (N=12) (N=11) (N=12)
Frontal WM 2.02 1.545 =—2.8643* 2.0732 1.5976 =—1.8535%
(0.3268) (0.4522) p=0.0093 (0.6149) (0.6144) p=0.0779
Thalamus 2:.331 1.698 =2.6712* 2.2635 1.6767 24115
(0.5172) (0.6105) p=0.0143 (0.5353) (0.6229) p=0.0251
Caudate 2.531 3.198 =2.1812 2.5384 2.9789 =1.3198
(0.4752) (0.9042) p=0.0407 (0.3842) (1.0421) p=0.2011
Putamen 2.954 3.904 =3.7284 2.8900 3.9732 =4.1820
(0.4282) (0.738) p=0.0012 (0.4137) (0.7612) p=0.0004
Globus Pallidus 4.223 4.497 +=0.8642 4.8961 5.5338 =1.9285
(0.5178) (0.9267) p=0.3972 (0.4369) (1.0121) p=0.0674
Substantia Nigra 3.225 3.421 +=0.4804 3.1479 3.9619 =2.0290
(0.9541) (0.9988) p=0.6359 (0.9576) (0.9641) p=0.0553
Red Nucleus 3.268 3.932 =1.7415 3.1284 3.99916 =2.5240
(0.9763) (0.8528) p=0.0962 (0.8765) (0.7634) p=0.0197
Dentate Nucleus 2.41 2.533 =0.3546 2.0137 1.9244 =0.3637
(0.7971) (0.8682) p=0.7264 (0.5972) (0.5801) p=0.7196
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Fig. 3.6. Mean + S.E.M. of average susceptibility in ppm computed by the two methods (-
regularized QSM, top; [,-regularized QSM, bottom) for each ROI in the young and elderly
groups.
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3.3.5 Age differences identified with FDRI

The elderly group had a significantly higher FDRI than the young group in the putamen but not
the caudate nucleus or the very iron-rich globus pallidus. Although the elderly tended to have
higher FDRI values in the red nucleus and substantia nigra, the differences were not significant;
the groups did not differ significantly in FDRI of the dentate nucleus. By contrast, the FDRI
values in the thalamic and white matter samples were significantly lower (indicative of less iron)

in the elderly than the young group.

3.4 Discussion

This study presented regularized QSM methods with two different choices of regularization,
namely £, and £, norm penalties, for quantifying susceptibility-weighted imaging data, and
established their ability to measure iron concentration in regional striatal and brain stem nuclei of
young and elderly adults. The in vivo estimates of regional iron concentration comported well
with published postmortem measurements (1), with both approaches yielding the same rank
ordering of iron concentration by brain structure, from lowest in white matter to highest in globus
pallidus. Further validation was provided by comparison of the in vivo measurements, the two
QSM methods and FDRI, which again yielded perfect rank ordering of iron by structure. The
final means of validation was to assess how well each in vivo method detected known age-related
differences in regional iron concentrations measured in the same young and elderly healthy
adults. Results from all three methods were consistent in identifying higher iron concentrations in
striatal and brain stem ROIs (i.e., caudate nucleus, putamen, globus pallidus, red nucleus and
substantia nigra) in the older than the young group. With the exception of £,-regularized results
for the substantia nigra averaged under phase-guided ROIs, QSM values in the globus pallidus,
red nucleus and substantia nigra were significantly larger in the elderly than the young based on
both FDRI- and phase-guided ROIs using £, or £, regularization. For the FDRI metric, significant
difference was observed only in the putamen for FDRI- and phase-guided delineation. Therefore,
QSM appeared more sensitive than FDRI in detecting age differences in brain stem structures by
producing much smaller p-values in the statistical tests. Although both measurement approaches
identified the globus pallidus as being the most iron-rich structure regardless of age, only QSM
found that the concentration in the elderly was significantly higher than that in the young adults.
The average susceptibility value in the globus pallidus of young subjects has been reported to be

around 0.20 ppm by several groups, e.g. (45,62) (taking CSF as reference, with isotropic voxels),
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which is larger than the group averages reported in this study (0.10 — 0.14 ppm, taking splenium
as reference) . This difference might stem from averaging across subjects and partial volume

issues considering the 2.5 mm slice thickness used in data acquisition.

The two regularized QSM methods produced iron concentration estimates consistent with the
well-established FDRI metric. In addition to yielding strongly correlated results to both FDRI and
postmortem data, the susceptibility mapping approach possesses several other favorable qualities.
First, the data acquisition step for QSM is completed at a single field strength, whereas
acquisitions at two field strengths are required to compute the FDRI values. Working at a single
field strength also eliminates the need for spatial registration, and thus a potential source of
measurement error. Second, the susceptibility maps estimated with the QSM algorithms have a
higher spatial resolution than the FDRI images. This has the additional benefit of enabling the
quantification of vessel oxygenation ratios, because the individual vessels can be clearly resolved
in the produced y maps. However, the presented QSM algorithms produce relative maps of tissue
susceptibility, which requires the selection of a reference susceptibility value for absolute
quantification. In this study, the average susceptibility of splenium in each subject was taken as
reference, but a point to note is that white matter samples have been reported to have anisotropic
susceptibility (63), i.e., their susceptibility values depend on the orientation relative to the main

magnetic field.

The regularized QSM algorithms can be considered a refinement of the pioneering work by
Haacke (34,41,42) on Susceptibility-Weighted Imaging (SWI), which estimates local iron
concentration by inspecting the changes in gradient-echo image phase. Because the background
phase constitutes the major part of the observed phase, high-pass filtering is applied to obtain an
estimate of the phase accrued by the tissue iron while removing the slowly-varying background

effects. Although practical, filtering also removes some tissue phase information (48).

The proposed method addresses this problem by using an optimization approach called dipole
fitting (48) that estimates and subtracts the background phase without affecting the tissue phase.
In addition to yielding high-quality tissue field maps, dipole fitting only requires the solution of a
least-squares problem, which can be done using a variety of gradient or conjugate direction
optimization methods. As opposed to the high-pass filtering approach, which requires optimal
selection of filter size, and polynomial fitting that depends on the order of the polynomial, dipole
fitting contains no parameters that need tuning. On the other hand, high-pass filtering methods are
dramatically faster than iterative optimization methods employed in the dipole fitting approach.

In addition, rather than relying only on the image phase, which produces a spatially distorted
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measure of tissue iron concentration, the proposed method solves for the underlying paramagnetic
property of the tissue and produces a regularized measure of x, which in tumn is a sensitive

estimate of iron concentration.

Other susceptibility mapping algorithms have demonstrated robust results. An elegant
approach by Schweser et al. (2011) estimated the y distribution without employing regularization.
This approach, however, requires data to be acquired at three different orientations with respect to
the main magnetic field, thereby providing challenges to subjects in terms of scan time and head
positioning and challenges to post-acquisition processing in terms of spatial registration. Another
influential QSM algorithm using regularization was introduced by de Rochefort et al. (2010) and
it forms the basis of the {,-regularized method used in our work. After obtaining the tissue field
map by solving a least squares problem similar to the dipole fitting formulation of Liu et al.
(2010), this QSM algorithm places a weighted £, norm penalty on the spatial gradients of y.
However, posing the reconstruction problem with an £, norm penalty that promotes sparsity in the
spatial gradient domain of the susceptibility distribution may be a better fit to the nature of the
problem. As the susceptibility kernel effectively undersamples the k-space of the tissue field map,
the inversion problem is inherently an under-determined system similar to the one encountered in
the compressed-sensing literature (54). The demonstrated ability of sparsity-inducing priors in
undersampled image reconstruction makes the £, norm an excellent candidate for susceptibility
mapping (64), and the £,-regularized algorithm in this study parallels this effort. An interesting
comparison in (62) between the ¢,-regularized approach similar to that of (47) against a multiple-
orientation reconstruction strategy should also be noted. These results indicate that £,-regularized
single-orientation susceptibility maps yield iron estimates of quality comparable to those

calculated using data acquired at multiple orientations.

3.5 Fast £,-regularized QSM

This section presents a solution to the regularized QSM formulation that is computed in less than
5 seconds, which yields the exact minimizer of the optimization problem unlike time-consuming
iterative methods. The proposed method is straightforward to implement and can be coded in a
single line of Matlab code. Results are presented on a numerical phantom with known

susceptibility and on in vivo data.
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3.5.1 Methods

£,-regularized reconstruction involves the minimization of ||8;, — F¥DFx||2 + B - ||Gx||3, as
introduced in Eq. (3.7). The minimizer can be evaluated in closed-form by taking the gradient and

setting it to zero,

Xin = (FID?F + § - GHG)"'FADFS,, (3.10)

Eq. (3.10) can be computed efficiently given that the matrix inversion is rapidly performed.
The gradient along the x-axis can be expressed as

G, = FHE,F (3.11)

where E, is a diagonal matrix with entries E,(i, i) = 1 — e C27V=1kx(LD/Nx) \which is the k-

space representation of the difference operator &, — §,—1. Here, k, is the k-space index and N, is

the matrix size along x, and Gy, and G, are similarly defined. With this formulation, the closed-

form solution becomes,

Xin = FED[D? + B - (EZ + EZ + E1)]"1F5,, (3.12)
The total cost is two FFTs and multiplication of diagonal matrices. For comparison, the
objective function is minimized iteratively using nonlinear conjugate gradient (CG) (6). 100 CG

iterations were used for all results. Experiments were performed on two datasets;

i.  The first set is a numerical phantom with 3-compartments (gray and white matter, CSF).
Within each compartment, y is constant and equal t0 Ygrqy==0.023, Xypite=0.027,
Xcsp=—0.018 ppm (65). The field map & (Fig.3.7a) is computed from the ground truth x
map using the forward dipole model and Gaussian noise with peak-SNR = 100 was
added, so that the normalized RMSE of the noisy field map was 5.9% relative to the noise
free phase. B was chosen to minimize the RMSE in the reconstructed yx, and was found to
be B =2-10"%* The same B was used for both the closed form and iterative
reconstructions.

ii.  The second dataset is a 3D SPGR on a healthy subject at 1.5T with resolution
0.94x0.94x2.5mm’ and TR/TE = 58ms/40ms. Background phase (Fig.3.8a) was removed
using dipole fitting (48). B = 1.5- 1072 was chosen based on the L-curve heuristic. Data

were zero-padded to twice the size to avoid aliasing with circular convolution.
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3.5.2 Results

Fig. 3.7 shows closed-form QSM reconstruction and the error relative to the ground-truth x for
the numerical phantom. Using Matlab running on a standard workstation, the proposed method
took 3.3 seconds and yielded 17.4% RMSE, while the iterative algorithm gave 18.0% error in 65

minutes.

In vivo reconstruction results are presented in Fig. 3.8, where the processing time was 1.3
seconds for the proposed method and 29 minutes for the iterative CG algorithm. The difference
between the closed-form and iterative solutions was computed to be 0.3% RMSE, and is depicted

at 250-times scaling in Fig.3.8c.

Numerical Phantom with 3 compartments ]

¢) Closed-form QSM error relative to true

QSM Method Recon Time | Error relative to true y

Closed-form (proposed) 3.3 seconds 17.4% RMSE
Iterative (100 iterations) 65 minutes 18.0% RMSE

Fig. 3.7 Reconstruction experiment for the piece-wise constant numerical phantom with 3
compartments. (a) Noisy field map from which the susceptibility is estimated. (b) Closed-form
QSM solution. (c¢) Difference between ground truth and closed-form reconstructions.
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[ InvVivoQSMat1.5T |
(a) Tissue field map

‘ OSM Method Recon Time
Closed-form (proposed) 1.3 seconds
Lcrative (100 iferat T
Fig. 3.8 In vivo reconstruction at 1.5T. (a) Tissue field map obtained after removing the
background phase. (b) Closed-form QSM solution. (c) Difference between iterative and closed-

form solutions.

3.5.3 Remarks on the Fast {,-regularized QSM

The proposed closed-form solution is demonstrated to yield much faster and more accurate results
than its iterative counterpart. This QSM solver is expected to facilitate online reconstruction of

susceptibility maps.

3.6 Conclusion

Herein are presented two regularized Quantitative Susceptibility Mapping algorithms, employing
¢, and £, norm regularization, which successfully remove background phase effects via dipole

fitting and solve for the tissue susceptibility distribution via convex optimization. The
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performance of these algorithms was favorable when compared with other published ir vivo and
postmortem estimates of regional tissue iron concentrations. Because the accumulation of iron in
the brain can have untoward effects on motor and cognitive function in normal aging (38,39) and
can be disproportionately greater in degenerative diseases (66-72), quantitative assessment of this
accumulation has the potential of providing a tool for monitoring or even diagnosis. The
robustness, practicality, and demonstrated ability of predicting the change in iron deposition in
adult aging suggest that the presented QSM algorithms using single-field-strength data is a
possible alternative for FDRI tissue iron estimation requiring two field strengths. Further, a
closed form expression for £,-regularized QSM is developed, which leads to estimation of

susceptibility maps within seconds.
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Chapter 4

Lipid Suppression in Chemical Shift Imaging

Mapping 'H brain metabolites using chemical shift imaging (CSI) is hampered by the presence of
subcutaneous lipid signals, which contaminate the metabolites by ringing due to limited spatial
resolution. Even though CSI at spatial resolution high enough to mitigate the lipid artifacts is
infeasible due to signal-to-noise (SNR) constraints on the metabolites, the lipid signals have
orders of magnitude higher concentration, which enables the collection of high-resolution lipid
maps with adequate SNR. The previously proposed dual-density approach exploits this high-SNR
property of the lipid layer to suppress truncation artifacts using high-resolution lipid maps.
Another recent approach for lipid suppression makes use of the fact that metabolite and lipid
spectra are approximately orthogonal, and seeks sparse metabolite spectra when projected onto
lipid-basis functions. The present work combines and extends the dual-density approach and the
lipid-basis penalty, while estimating the high-resolution lipid image from 2-average k-space data
to incur minimal increase on the scan time. Further, the spectral-spatial sparsity of the lipid ring is
exploited to estimate it from substantially undersampled (acceleration R = 10 in the peripheral -
space) 2-average in vivo data using compressed sensing, and improved lipid suppression relative

to using dual-density or lipid-basis penalty alone is still obtained.

4.1 Introduction

The spatial resolution in proton spectroscopic imaging is constrained by the low SNR of the
metabolite signals and the total scan time required for encoding in both chemical shift and space.
Poor spatial resolution with impulse response functions of either square or circular k-space
sampling leads to significant spatial ringing artifacts, which in the case of large and undesirable
signals from subcutaneous lipid layer in spectroscopic imaging of the brain can significantly
contaminate the desired metabolite spectra throughout the brain. Considering that the lipid signals
are several orders of magnitude stronger than the biochemical spectra, the diagnostic quality of
spectroscopic data is severely limited if the truncation artifacts are not mitigated by some means

of lipid suppression.
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Standard means of lipid suppression include outer-volume suppression (OVS) (73-75),
inversion recovery (76-78), and selective brain-only excitation (79,80). Although these methods
provide effective artifact reduction, their inevitable tradeoff and common drawback is the
associated loss of brain metabolite signals, either through signal loss in peripheral brain regions
(e.g. OVS, PRESS) or throughout the brain (IR). Another proposal for lipid artifact reduction is to
acquire CSI data with a variable sampling density pattern and apply SNR-optimal apodization in
the k-space to reduce the side-lobes of the point spread function (81). Optimal filters specifically
designed to reduce the lipid contamination inside the brain yield further improvement over the
variable density approach (82). An alternative approach acquires high-resolution lipid maps in
addition to highly oversampled, low-resolution CSI data. This dual-density method (83-85)
exploits the fact that the lipid signals have high SNR, so a high-resolution lipid estimate can be
obtained with adequate SNR for subsequent processing, which includes spatial lipid masking and
combination with low-resolution CSI data. Another research direction involves k-space
extrapolation with prior knowledge of spatial boundaries of the brain (86,87). In particular,
effective lipid suppression is demonstrated at a relatively short TE of 50 ms in (87). A yet
different method of lipid suppression was recently proposed (88) by relying on the approximation
that the metabolite and lipid spectra are orthogonal, and seeks sparse metabolite spectra when

projected onto lipid-basis functions selected from the lipid layer.

The present work combines and extends the dual-density approach and the iterative lipid-basis
reconstruction. A method to estimate the high-resolution lipid image from 2-average k-space data
in fast spiral CSI is proposed and demonstrated, wherein these data are combined with the low-
resolution CSI image while imposing the lipid-basis penalty. This way, the truncation artifacts are
substantially reduced at the expense of minimal increase in total scan time. This method is then
refined by incorporating the observation that the high-resolution lipid ring is sparse in both space
and chemical shift. This leads to successful recovery of the lipid image via compressed sensing

(4,6) using highly-undersampled peripheral k-space data.

To demonstrate the performance of the proposed methods, single-slice, high-resolution (0.16
cc) CSI data were acquired in vivo at 3T with 20 averages, requiring 33 min of scan time.
Applying the lipid-basis penalty to this high-resolution data yielded virtually artifact-free spectra,
which were taken to be the gold-standard results. To apply the basic method with fully-sampled
lipid data, 20 averages of low-resolution (0.56 cc, corresponding to 10 min of scan time) CSI data
were combined with 2 averages of high-resolution data while imposing lipid-basis penalty, and

reduced-artifact metabolite spectra were obtained with normalized RMSE (NRMSE) of 8.5 % in
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the NAA maps relative to the gold-standard reconstruction. However, using the lipid-basis
penalty approach (88) with 20 averages of 0.56 cc data yielded 41.3 % NRMSE in the NAA
maps. Moreover, using the refined method, a high-resolution lipid layer was estimated via the
FOCUSS algorithm (4) from 2-average, highly undersampled (Ry;g:=10 in the peripheral k-space)
data, which was combined with the 0.56 cc CSI image followed by lipid-basis penalty
reconstruction to yield 17.0 % NRMSE in the NAA map. By incurring only a minimal increase in
the scan time, 4.9- and 2-fold error reduction in metabolite maps are demonstrated relative to (88)
using the basic and refined versions of the proposed method, respectively. Further, validation for
the application of undersampling and compressed sensing recovery using variable density spirals

is presented with 10-fold undersampling on a synthetic phantom.

4.2 Theory

4.2.1 Dual-Density Reconstruction

Let ¥,y denote the k-space representation of low-resolution CSI data, and yp;gn denote the k-

space representation of high-resolution data from which the lipid image will be estimated due to
Xiipia = MuipiaFrignYhigh 4.1

where X;;i4 is the high-resolution, masked lipid layer image, Mj;p;q is a binary mask marking
the location of the lipid layer, and Fy;g4p, is the Fourier Tran<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>