
Scalable Reconfigurable Computing Leveraging
Latency-Insensitive Channels M S ACHu T T TUTE

Kermin Elliott Fleming, Jr. L

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2013

@ Massachusetts Institute of Technology 2013. All rights reserved.

Author..
Department of

.........m

Electrical Engineerml-g n Compute '
rN January 14, 2013

C ertified by
Arvind

Professor, Electrical Engineering and Computer Science
Thesis Supervisor

Certified by.
Joel S. Emer

Professor, Electrical Engineering and Computer Science

[) Thesis Supervisor

Accepted by
......................-.-. .-. . I. Kolodziej.s. ki

Chairman, Department Committee on Graduate Students

.

Scalable Reconfigurable Computing Leveraging

Latency-Insensitive Channels

by

Kermin Elliott Fleming, Jr.

Submitted to the Department of Electrical Engineering and Computer Science
on January 14, 2013, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

Traditionally, FPGAs have been confined to the limited role of small, low-volume
ASIC replacements and as circuit emulators. However, continued Moore's law scaling
has given FPGAs new life as accelerators for applications that map well to fine-grained
parallel substrates. Examples of such applications include processor modelling, com-
pression, and digital signal processing.

Although FPGAs continue to increase in size, some interesting designs still fail
to fit in to a single FPGA. Many tools exist that partition RTL descriptions across
FPGAs. Unfortunately, existing tools have low performance due to the inefficiency of
maintaining the cycle-by-cycle behavior of RTL among discrete FPGAs. These tools
are unsuitable for use in FPGA program acceleration, as the purpose of an accelerator
is to make applications run faster.

This thesis presents latency-insensitive channels, a language-level mechanism by
which programmers express points in their their design at which the cycle-by-cycle
behavior of the design may be imodified by the compiler. By decoupling the timing
of portions of the RTL from the high-level function of the program, designs may be
mapped to multiple FPGAs without suffering the performance degradation observed
in existing tools. This thesis demonstrates, using a diverse set of large designs, that
FPGA programs described in terims of latency-insensitive channels obtain significant
gains in design feasibility, compilation time, and run-time when mapped to multiple
FPGAs.

Thesis Supervisor: Arvind
Title: Professor, Electrical Engineering and Computer Science

Thesis Supervisor: Joel S. Emer
Title: Professor, Electrical Engineering and Computer Science

2

Acknowledgments

Finishing this doctoral thesis is the major, and perhaps the last, milestone of my

academic career. Completing a work of this size gives the author pause to reflect on

the path taken and the people encountered along it. First and foremost, I would like

to thank my advisors Arvind and Joel Ener for providing me with a truly complete

education. Through their guidance I have evolved from an undergraduate with limited

technical expertise to a young researcher, a transformation to which the following

pages will bear witness. Graduate school is a time of technical development and

learning; however, it is also a time of personal growth. I thank Arvind and, to a

lesser extent, Joel for providing me with many opportunities to travel overseas and

explore the world. These opportunities have given me an international education

through experience, and as a result, I have becomne a more complete human being.

This thesis is the cuhnination of a long collaboration with Joel Ener and the

members of VSSAD: Michael Adler, Angshuman Parashar, and Michael Pellauer. In

the nany summners that we spent together at the Intel facility in Hudson, we created

the LEAP FPGA operating system, which helped guide the development of critical

portions of this thesis. I would like to thank Joel in particular for training my thinking

towards solving sone of the general problems facing reconfigurable logic.

My early days at MIT were spent working on Airblue in association with Man

Cheuk Ng, Mythili Vutukuru, Sam Gross, and Hari Balakrishnan, of MIT, in associ-

ation with Jamiey Hicks and John Ankorn of Nokia Research Center Cambridge on

the Airblue wireless research platfornm. I would like to especially thank Janey, from

whon I first learned how to develop hardware from a software perspective, and John

who, presciently, suggested that Airblue only be an example in my thesis. Chun-chieh

Lin, with whom I developed the H.264 implementation presented in this thesis, was

also influential in steering mie towards thinking about latency-insensitive design as a

hardware design methodology.

Graduate school is a long journey with iany urps and downs. My parents, Ike and

Debbie, and my sister Kimberly have been supportive during my long tenure at MIT.

3

The many care packages that they sent were helpful in getting through, quite literally,

the long night of graduate school. I would also like to thank Nadan Cho, who has

made the last few years brighter and happier than they would otherwise have been. I

also thank my good friends Isaac Dekine, Chris Valerezno, Bryan Murawski, and Meg

Hyland for providing many many entertainments and transportation to some poor

graduate student.

Finally, to my reader, thank you. May you gain as much knowledge in reading

this thesis as I gained in writing it.

Kermin Fleming, October 17th, 2012

4

Contents

1 Introduction 13

1.1 Thesis Organization . 17

1.2 Thesis Contributions . 18

2 Model of Computation 20

2.1 A Model Of Computation for Multiple FPGAs 21

2.2 Compilation and Execution of Latency-Insensitive Modules 25

2.3 Accessing Resources Across FPGAs 26

3 Related Work 28

3.1 Existing Multiple FPGA Compilers 28

3.2 Latency-Insensitive Design . 31

3.3 The LEAP FPGA Operating System 35

4 Multiple FPGA Compilation 38

4.1 Compiler Overview . 39

4.2 Inputs to the LIM Compiler . 43

4.2.1 Soft Connections: Describing Latency-Insensitive Channels . . 43

4.2.2 Describing Multiple FPGA Execution Environments 46

4.2.3 FPGA Mapping File . 50

4.3 Compiler Implementation . 50

4.3.1 LIM Graph Construction . 51

4.3.2 Module Placement . 53

4.3.3 Network Synthesis . 54

4.3.4 RTL Generation . 60

4.4 Interfacing to the Bluespec Compiler 62

4.5 Conclusion . 64

5 Router Architecture 65

5.1 Correct Latency Insensitive Networks 66

5.2 Channel Marshalling . 70

5.3 Efficient Virtual Channel Buffering: the SRAMMultiFIFO 71

5.4 Routing In Parallel: Multiple Lane Routers 75

5.5 Physical Interconnect . 81

5.6 Router Instrumentation . 82

6 Compiler Optimizations 83

6.1 Loops: A Micro-kernel for Optimization Evaluation 85

6.2 Lane-Sizing and Channel-Allocation 86

6.2.1 Complexity of Lane-Sizing and Channel-Allocation 86

6.2.2 Channel-Allocation and Lane-Sizing in the LIM Compiler . . . 88

6.2.3 Performance Results . 92

6.3 Channel Compression . 96

6.3.1 Tagged Unions . 98

6.3.2 User-specified Compression . 100

6.3.3 Performance Results . 102

6.4 Conclusion . 107

7 Platform Resources 108

7.1 Latency Insensitive Platform Interfaces 109

7.2 An Abstraction for Memory . 111

7.3 Services on a Single FPGA: the Scratchpad Memory Hierarchy 114

7.3.1 Programming Interface . 114

7.3.2 A Basic Scratchpad Implementation 115

6

7.3.3 Synthesizing a Cache Hierarchy 117

7.3.4 Performance . 119

7.4 Scaling Services to Multiple FPGAs 120

7.4.1 Multiple Distributed Services 123

7.4.2 Performance . 125

7.5 Multiple FPGA Platforms . 129

7.5.1 Nallatech ACP Module . 130

7.5.2 XUPV5 . 131

7.5.3 Multiple FPGA Simulator .. 131

8 Airblue 135

8.1 Anatomy of an OFDM Pipeline . 138

8.1.1 Transmitter Pipeline . 138

8.1.2 Receiver Pipeline . 141

8.2 Spinal Codes . 142

8.3 WiLIS: High-speed Simulation of Wireless Pipelines 150

8.3.1 Airblue on Multiple FPGAs 155

9 HAsim 156

9.1 Anatomy of HAsim . 159

9.1.1 Timing Partition . 162

9.1.2 Functional Partition . 163

9.2 Scaling HAsim: 128 Core Models . 164

9.2.1 HAsim on Multiple FPGAs 168

10 H.264 170

10.1 Anatomy of H.264 . 172

10.2 H.264 Memory Architecture .. 175

10.3 H.264 on Multiple FPGAs . 179

11 Conclusion 183

11.1 Future Work . 185

7

List of Figures

2-1 A latency-insensitive program and its partitioning to two FPGAs.

4-1 Latency-insensitive module (LIM) compiler flow.

4-2 Sample Soft Connections ring declaration.

4-3 Soft Connections syntax example.

4-4 A sample FPGA environment with two FPGA platforms.

4-5 A sample FPGA mapping file.

4-6 A sample LIM graph. .

4-7 A sample module placement.

4-8 A full multiple FPGA program implementation.

4-9 Ordering of ring-stops can be sub-optimal.

4-10 An example of channel routing across FPGAs.

4-11 An example of two-pass Bluespec compilation.

5-1 Logical Architecture of inter-FPGA channels.

5-2 A complete inter-FPGA router.

5-3 Inter-FPGA router with user logic.

5-4

5-5

5-6

5-7

5-8

5-9

A deadlock arising from a data dependence in a shared resource. . . .

Channel packetization hardware.. .

Router microarchitecture, with SRAMMultiFIFO.

De-merger microarchitecture. .

Widths of inter-FPGA channels in a two-FPGA partitioning of HAsim.

Activity of inter-FPGA channels in a two-FPGA partitioning of HAsim.

8

22

. 40

. 46

. 47

. 48

. 50

. 52

. 53

. 54

. 57

. 58

. 61

. 66

. 67

. 68

69

72

74

76

77

78

5-10 A cumulative distribution of the channel traffic loads in HAsim. HAsim

is dominated by a handful of heavily loaded channels.

5-11 Routers structures scale in a log-linear fashion.....

6-1 Inter-FPGA loop test.

6-2 Loops Test performance with optimized routers. . . .

6-3 Router lane loadings for Loops Test.

6-4 Router lane parallelism for Loops Test.

6-5 HAsim performance with optimized routers.

6-6 Router lane loadings for Hasim.

6-7 Router lane parallelism for HAsim.

6-8 Syntax and bit representation for Maybe type.....

6-9 An automatically generated compression scheme for the Maybe type.

The Maybe is transformed into two separate latency-insensitive chan-

nels, the tag and body. The body channel is only enqueued if the tag

is Valid. The two channels tie in to the inter-FPGA router just like

any other channels. .

6-10 Automatic cornpiler modification of user types

6-11 Interfaces for compression modules.

6-12 Loops test performance with channel compression.

6-13 Performance overhead of compression schemes.

6-14 Router optimization composes with channel compression schemes. . .

6-15 HAsim performance with channel compression, but without router op-

tim izations. .

7-1

7-2

7-3

7-4

7-5

7-6

A general memory interface for hardware designs. . . .

A scalable memory hierarchy.

Instantiating Local Scratchpads

A degenerate memory hierarchy with no central cache.

A memory hierarchy with central cache.

A example of scratchpad read bandwidth.

9

. 79

. 81

. 85

. 92

. 92

. 93

. 93

. 94

. 94

. 98

99

100

102

104

104

105

106

. . . . 112

. . . . 113

. . . . 115

. . . . 116

. . . . 118

. . . . 120

A example of scratchpad read latency.

A example of scratchpad write bandwidth.

7-7

7-8

7-9

7-10

7-11

7-12

7-13 Simultaneous scratchpad performance......

7-14 Parallel simulation performance for loops kernel.

7-15 Parallel simulation performance for HAsim. . . .

An Airblue 802.11g-compatible transceiver.

The power spectrum of an 802.11g packet.

Symbols produced by spinal encoder.

Spinal code beam search.

An example spinal decoding.

A comparison of spinal decoder.

A spinal transceiver partitioned among two FPGAs.....

Spinal code validation test.

Components required to validate a BER estimator in a co-

environm ent. .

BER estimation simulator, partitioned across two FPGAs.

Performance results for SoftPHY partitioned simulation.

HAsim partitioned processor simulator.

HAsim un-pipelined processor timing model.

HAsim simulator performance.

HAsim simulator FMR. .

. 128

. 133

. 134

137

139

142

143

145

147

149

149

simulation

. 151

. 152

. 154

. 159

. 162

. 166

. 167

10-1 An H.264 decoder. .

10-2 H.264 memory architectures. .

10-3 H.264 frame-rates for different memory architectures and resolutions.

10

A distributed service. .

An asymmetric distributed service.

Scratchpad performance in a multiple FPGA environment.....

Remote scratchpad performance in a multiple FPGA environment.

. 121

121

123

126

127

127

8-1

8-2

8-3

8-4

8-5

8-6

8-7

8-8

8-9

8-10

8-11

9-1

9-2

9-3

9-4

171

175

180

10-4 H.264 performance on multiple FPGAs. 181

11

List of Tables

5.1 Synthesis and performance metrics for various router architectures

5.2 Synthesis metrics for various router configurations

7.1 Performance metrics for FPGA systems......

8.1

8.2

WiLIS simulation speeds of different rates.....

Synthesis metrics for WiLIS implementations.

9.1 HAsim Model Configuration.

9.2 Synthesis metrics for HAsim implementations. . .

10.1

10.2

10.3

10.4

10.5

H.264 bandwidth requirements.

H.264 memory architecture performance at QCIF resolution.

H.264 memory architecture performance at 720p resolution. .

Synthesis results for various H.264 memory hierarchies. .

Synthesis metrics for various implementations of H.264 .

12

75

. 81

130

153

154

165

168

. 175

. 178

. 178

. 179

. 182

Chapter 1

Introduction

Field-programmable gate arrays (FPGAs) were originally intended to provide a re-

placement for ASICs in small or low-volume designs. However, as FPGAs have grown

in both size and capability, they have matured from their original role to become al-

gorithmnic computation platforms in their own right. Indeed, many recent academic

and industrial research projects [17] [39] [9] [47] have targeted FPGAs, without the

intention of producing, or even emulating an ASIC. Rather than trying to precisely

emulate some circuit, the design goal for these programs is purely functional, that is,

to produce the answer to a problem of interest as quickly as possible. These projects

target FPGAs to take advantage of the performance benefits offered by the FPGA

over general purpose processors. As Moore's law continues to offer greater numbers

of transistors and general-purpose processor performance fails to scale along with it,

it is likely that FPGAs will enjoy even greater penetration into the domain of general

computation.

Unlike general purpose processors, which have a theoretically unlimited capacity

to describe programs, FPGA programs must fit within the physical resources offered

by the FPGA. As a result of this area limitation, some interesting programs may not

fit into a single FPGA. If a program cannot fit onto a given FPGA, the programmer

is faced with a handful of choices. The programmer may use a larger single FPGA

or refine the program to reduce area, neither of which may be possible. A third

possibility is to partition the program among multiple FPGAs. This option is typically

13

feasible from an implementation perspective, but often has serious drawbacks. Manual

partitioning may obtain high performance, but requires time-consuming design effort

the programmer must modify the design such that it may be partitioned, develop

inter-FPGA communications hardware, and generally take on tasks that are as or

more difficult than writing the original program. Tool-based partitioning [67] [3] [54],

while automatic, may suffer severe performance degradations of more than an order

of magnitude. Neither of these options is attractive.

The crux of the multiple FPGA problem lies in the way that hardware systems are

described: modern register-transfer languages (RTLs) do not adequately convey high-

level properties of hardware programs to the compiler, precluding significant compiler

assistance. For example, large RTL systems are frequently described in a latency-

insensitive style [13] [17] [39], which is amenable to multiple FPGA implementation.

Latency-insensitive designs are typically implemented with concrete RTL FIFOs be-

tween modules, such that the timing of data transportation in these inter-module

FIFOs does not impact the functional correctness of the modules or, in aggregate, of

the entire program. If a compiler could understand the high-level behavior of such a

program, then multiple FPGA partitioning would be straightforward: inter-module

latency-insensitive FIFOs could be stretched across FPGA boundaries while intrin-

sically preserving the functional correctness of the design. However, current RTLs

obfuscate this high-level behavior. In general, RTL compilers cannot decide when it

is safe to modify the cycle-over-cycle behavior of a program. As a result, compil-

ers devolve to preserving the cycle-over-cycle behavior of the RTL as a correctness

criterion and limit themselves to the optimization of combinational logic.

To attack the multiple FPGA problem, this thesis introduces a new language-

level construct: the latency-insensitive channel. Latency-insensitive channels have

operational behavior similar to FIFOs, but may have dynamically variable latency

and buffering. Latency-insensitive channels thus allow the programmer to directly de-

scribe points in a program where the compiler may choose to alter the timing behavior

of the system. In particular, the compiler may choose any physical implementation

of the latency insensitive channel to meet compilation goals, including mapping a

14

program to multiple FPGAs.

Programs described using latency-insensitive channels have a natural decompo-

sition into latency-insensitive modules, entities that communicate only by way of

latency-insensitive channels. Once decomposed, mapping the program to multiple

FPGAs is conceptually straightforward, since the implementation of all inter-module

comnmunications channels is left to the latency-insensitive module (LIM) compiler.

The compiler places modules on to a set of FPGAs coupled by some physical in-

terconnect. The compiler then synthesizes a prograrm-specific, inter-module com-

nunications network on top of the physical FPGA interconnect. The structures of

this synthesized network, including program-specific interconnect multiplexors, mar-

shalling structures, and arbitration logic, are optimized for the latency-insensitive

channels and behavior of the compiled program. The automatic synthesis of this

network represents a significant design-effort savings over a manually produced inter-

FPGA network: whereas the LIM compiler can automatically regenerate a network

in response to changes in the user program, for example the introduction of a new

inter-FPGA channel, a hand-design network would require significant re-engineering.

Latency-insensitive channels give a natural partitioning of hardware programs

across multiple FPGAs. However, real designs must also make use of external re-

sources, such as memory. Moreover, good use of FPGA platform resources is essential

to high-quality multiple-FPGA implementation. Performance gains in parallel coin-

puting come from making use of more resources, including memory, to accomplish a

task in parallel. The performance gain due to these increased computational resources

can be significant: for some truly parallel workloads, super-linear performance gains

can be obtained. When hardware programs scale to multiple FPGAs, they also gain

access to more resources - ranging from look-up-tables (LUTs) in the FPGA fabric

to extra external DRAM banks. These resources must be leveraged to improve the

perfornmance of multiple-FPGA implementations. For example, increasing the size

of the memory caches inside the program to utilize extra fabric resources. However,

traditional RTL compilers are not generally able to make such design modifications,

particularly when doing so iniplies a perturbation in the cycle behavior of the original

15

RTL.

By raising the level of abstraction available to the programmer above the level

of RTL and explicitly decoupling resource interfaces from program RTL, programs

partitioned across multiple FPGAs can automatically make use of the extra resources

available across platforms. This thesis will describe a scalable, transparent mecha-

nism based on latency-insensitive channels which provides automatic, programmer-

oblivious access to resources. As in the case of parallel software running on a multi-

core processor, granting access to these additional resources can dramatically acceler-

ate FPGA programs; as in software, super-linear speed-ups in real-world applications

are possible and will be demonstrated in this thesis.

Scaling designs across multiple FPGAs has traditionally been viewed as a, diffi-

cult, time- and performance-consuming task. This thesis will demonstrate not only

that multiple FPGA implementations can be generated automatically, by way of

minor modifications to existing hardware programs, but that these multiple FPGA

implementations can be superior to single FPGA implementations across several per-

formance metrics. Thus, the work presented in this thesis provides four potential

benefits to hardware designs:

* Wall-clock runtime of the program can decrease, due to improved clock fre-

quency and increased access to FPGA resources.

" Programs can be scaled to handle larger problem sizes, again due to increased

access to resources.

* Synthesis times are reduced both by the smaller size of design partitions and

the opportunity for parallel synthesis.

* Partial recompilation is available in earnest because only those FPGAs that

host modified modules need to be rebuilt.

Different programs experience different combinations of these salutary effects.

16

1.1 Thesis Organization

The thesis commences in Chapter 2.1 with a discussion of the properties that hardware

systems need to have in order to permit automatic multiple FPGA implementation.

This description of a model of computation for multiple FPGAs is followed by a

discussion of prior work related to the thesis in Chapter 3.

After the discussion of these preliminaries, the thesis proceeds to the exposition of

the LIM compiler, an automated tool capable of mapping latency-insensitive modules

onto eivironmients consisting of multiple FPGAs. Chapter 4 describes the operation

and flow of the LIM compiler. The key activity of this compiler is synthesizing a

conmnunications network between the latency-insensitive modules, including support

for channels that cross FPGA boundaries. To be practically useful, the network must

not only provide high-bandwidth and low-latency communication, but also it must

impose a low area overhead in terms of FPGA resource usage. Chapter 5 describes

an efficient router architecture for inter-FPGA communications.

Efficient, high-performnance networking hardware is essential to quality multiple-

FPGA syithesis. However, the parameterization of this hardware is equally im-

portant. The compiler plays a major role in parameterizing the inter-FPGA net-

work hardware for each application. Chapter 6 discusses program analysis techniques

and compiler optimizations that are applied during compilation to improve network

throughput. This chapter will also discuss mechanisms for program instrumentation

and feedback-dr'i'venU optimization.

Multiple FPGA programs are not comprised solely of latency-insensitive modules:

like software programs, they must interface to memory and I/O devices. Chapter 7

describes the abstraction of these dlevice-specific interfaces, which do not conform to

the latency-insensitive model of computation.

The thesis concludes with the evaluation of multiple-FPGA implementations of

several large latency-insensitive designs. Many hardware designs can be couched in

the latemncy-inisensitive model of computation, and the designs described in these chap-

ters demonstrate both the utility of the latency-insensitive paradigm and the prac-

17

ticality of the approach presented in this thesis. These designs represent whole sys-

tem hardware implementations drawn from recent academic and industrial research:

Chapter 8 describes Airblue, a set of libraries for implementing wireless baseband

transceivers, including an implementation of 802.1 1g; Chapter 9 describes HASin [47],

a framework for building cycle-accurate multi-processor simulators, which, on muml-

tiple FPGAs, can scale to hundreds of cores; and Chapter 10 describes H.264 a

high-performance video compression scheme. These chapters may be omitted if the

reader is interested only in understanding the implementation of the LIM compiler.

It is important to note, in reading about these applications, that all of them were

written targeting a single FPGA, long before the conception of the compiler presented

in this thesis. The multiple FPGA implementations presented in this thesis use the

same, unmodified source as single FPGA implementations, with the exception of

minor re-parameterizations where relevant. Although I helped to implement Airblue

and H.264 at MIT, HAsim was primarily developed at Intel.

All three of these examples experience some benefits when implemented on mul-

tiple FPGAs. Both HAsim and Airblue scale to implement larger programs, while all

three applications enjoy faster throughput for some test cases when mapped to multi-

ple FPGAs. For Airblue, throughput improvement is super-linear, in some cases. All

three examples enjoy both faster compilation and faster incremental recompilation.

Finally, the thesis describes some planned extensions to the LIM compiler and

concludes in Chapter 11.

1.2 Thesis Contributions

By providing new, abstract language-level constructs that allow the programmers to

express the intrinsic behavior of their hardware programs, this thesis will demonstrate

not only that existing hardware programs have properties that admit of multiple

FPGA partitioning, but also that by explicitly exposing these properties, high-quality

multiple FPGA implementations can be produced automatically. The following list

summarizes the contributions of this thesis:

18

* The formulation and application of a model of computation for designs with

explicit latency-insensitive channels (Chapter 2.1).

" A compiler mapping designs with explicit latency-insensitive channels to niul-

tiple FPGAs (Chapter 4).

* An area-efficient, high-performance network architecture for latency insensitive

channels (Chapter 5).

" Optimizations for inter-FPGA networks (Chapter 6).

* Techniques for providing automatic and scalable access to resources, such as

memory, across multiple FPGAs (Chapter 7).

" Numerous large hardware designs obtained through application of the compiler

(Chapters 8, 9, and 10).

19

Chapter 2

Model of Computation

Traditional RTL has a strong structural correspondence to the physical reality of

a hardware system. Designs are described in terms of registers, wires, logic gates,

memory, and clocks. Even though system behavior can be complex, the semantic

model of synchronous RTL is simple: at each clock cycle, values are read from register,

some combinational computation occurs, and the results are written back to register.

Compilers of RTL descriptions must honor these semantics: they must be cycle-

accurate, that is, they must guarantee a bijective mapping between the cycle-over-

cycle behavior of the original RTL and whatever implementation that they produce.

Synchronous systems described using RTL synthesize well, in the sense that

language-level constructs have a strong correspondence to the synthesized hardware

produced by a physical compiler. Moreover, the designer has tight control over the

design and tool flow, even until the final cell-level realization of the system. However,

the cycle-accurate model of computation and tight design control come at a cost: they

severely constrain the freedom of the compiler to alter the design. In RTL-based de-

signs, increasing the latency of even one FIFO by one cycle can break a design, while

inserting a new pipeline stage can represent a major engineering effort. In general,

RTL compilers cannot infer that making these sorts of cross-cycle-timing modifica-

tions will preserve cycle-accuracy or functional correctness, even if the modifications,

in fact, do preserve the functional correctness of the design. Since the compiler cannot

prove that modifications will maintain cycle-accuracy, it cannot assist the program-

20

mer beyond combinational optimization.

The difficulty in automatic reasoning about when it is safe to modify the cycle-

over-cycle behavior of any part of an RTL design is the direct cause of low performance

in existing multiple FPGA partitioning schemes. Since existing tools cannot reason

about design behavior as communicated through RTL, they must pay the enormous

cost of maintaining cycle accuracy across multiple FPGAs. Typically, an order of

magnitude in wall clock performance is lost, even if the design, at the high level,

could be well-partitioned across FPGAs by a human.

In the lpast, when gates were few and dear, the level of implementation control

available in RTL was necessary. However, modern FPGAs offer enormous implemen-

tation capacity. As the usage of FPGAs shifts to algorithm acceleration from circuit

emulation, the value in automating the design process becomes even more clear: real

performance gains occur at the algorithm level. Design automation, even at the cost

of slightly suboptimal performance, is essential to free the designer to focus on the

high-level aspects of program behavior, as opposed to the low-level details of RTL.

2.1 A Model Of Computation for Multiple FPGAs

This thesis seeks to raise the level of abstraction available to hardware program-

mers above traditional RTL, in an effort to simplify the scaling of fine-grained par-

allel programs to multiple FPGAs. To achieve this goal, the thesis introduces a

novel, language-level means of communicating information about design behavior:

the latency-insensitive channel. The latency-insensitive channel has operating be-

havior and interface similar to the RTL FIFOs commonly used in hardware design -

either a simple enqueue or dequeue operation, depending on the endpoint. However,

unlike the RTL FIFO, which has fixed buffering, fixed latency, and a fully specified

behavior, the latency-insensitive channel makes only two basic guarantees. First, the

channel guarantees FIFO delivery of messages. Second, the channel guarantees that

at least one message can be in flight at any point in time. These properties imply

that the channel may have dynamically-variable transport latency and arbitrary, but

21

(a) Application

0.IU1 0
v, Router 1 Router1O0 /(

drivers_0 drivers_1

(b) Partitioned Implementation of 2-1(a)

Figure 2-1: A sample program comprised of four modules and its mapping to an en-
vironment consisting of two FPGA platforms. Latency-insensitive channels between
modules located on the same platform may be connected by a simple FIFO, while
latency-insensitive channels that transit platforms are communicate via a service pro-
vided by the platform runtime. The platform drivers may also provide other services,
for example, memory, which can also be accessed by latency-insensitive channels.

non-zero, buffering. When a programmer instantiates a latency-insensitive channel,

they assert that these variations do not impact the futnctional correctness of their

design.

The latency-insensitive channel abstraction gives the compiler great freedom in

choosing the physical implementation of the channel. For example, the compiler

may choose to implement the channel using a fixed-buffer, fixed-latency RTL FIFO.

Alternatively, the compiler is free to choose a more complex implementation, includ-

ing implementations in which the endpoints of the latency-insensitive channel are

physically far apart. This freedom of choice permits the compiler to automatically

map designs described in terms of latency-insensitive channels to multiple FPGAs,

22

as shown in Figure 2-1. This thesis will use the syntax of Soft Connections [43),

presented in Section 4.2.1, to denote latency-insensitive channels. Soft Connections

sinply designate to the compiler the endpoints of the latency-insensitive channels.

Latency-insensitive channels give great freedom to the compiler writer to trans-

form hardware designs. , However, if the use of latency-insensitive channels overly

burdens the program writer, they are of little practical value. This thesis will show,

via program examples, that the task of inserting latency-insensitive channels into a

design does not significantly increase program complexity. Indeed, hardware designers

frequently use FIFOs with latency-insensitive properties, but programming languages

communicating these properties and compilers capable of leveraging these properties

do not exist. Subsequent chapters will explore several large hardware programs which

were originally expressed in RTL, but in a latency-insensitive style. As such, many

of the hardware FIFOs in these designs were actually programmer-specified physical

bindings of latency-insensitive channels. Thus, trivial textual substitution is sufficient

to lift these physical FIFOs into the latency-insensitive channel abstraction, permit-

ting the automatic mapping of these designs to multiple FPGAs. In practice, the

design automation benefits obtained by using explicit latency-insensitive channels far

outweigh the minimal programmer effort to explicitly demarcate latency-insensitive

channels.

Once a program is expressed in terms of latency-insensitive channels, compiling

that progran to multiple FPGAs requires partitioning the program into latency-

insensitive modules, modules that communicate only by way of latency-insensitive

channels. In this thesis, programs are expressly constrained to be composed of

latency-insensitive modules. Internally, modules may have whatever behavior the

programmer sees fit, provided that the internal implementation honors the potential

variability of the latency-insensitive interface. For example, once data has been ob-

tained from an interface channel, it might pass through a traditional latency-sensitive

hardware pipeline. Alternatively, although this thesis will consider only hardware

latency-insensitive modules, modules could be implemented in software running on

an FPGA-based soft-core, or even on an attached general-purpose processor. Module

23

internals do not matter; rather, it is the latency-insensitive interface that is funda-

mental.

The latency-insensitive channel formulation presented in this thesis is related to

the burgeoning field of latency-insensitive, or elastic, design [7] [13] [40]. Work in

this field, which will be discussed in detail in Section 3, can be grouped into two

areas, latency insensitive design as a methodology and as a formalism for producing

latency-insensitive implementations of arbitrary RTL. As a design methodology, la-

tency insensitive design benefits programs in several ways, including lowered design

times and simplified design-space exploration. This thesis treats latency-insensitive

design primarily as a design methodology, but differs from previous works in that it

provides explicit primitives which permit users to communicate information about

latency-insensitive points in the design to the compiler.

Latency-insensitive design also exists as a formalism [6] [8] [61] for converting

arbitrary latency-sensitive RTLs, which are referred to as synchronous state machines

(SSMs) in the relevant literature, into latency-insensitive physical implementations.

The main requirement of these transforms is that they preserve cycle-accuracy, such

that the exact behavior of the original RTL implementation may be resolved. In

contrast, the latency-insensitive channels formulated in this thesis are not required

to preserve cycle-accuracy and may change design behavior at the cycle level to meet

compilation goals, including mapping a program across multiple FPGAs. Latency-

insensitive channels, as formulated in this thesis, are a programming abstraction for

communication between points in a program, just as threads are a programming

abstraction for parallel computation. The burden of reasoning about correctness,

which has stymied previous, cycle-accurate tools, is pushed to the programmer, and

the programmer must determine whether a particular point in the program can use

a latency-insensitive channel safely.

24

2.2 Compilation and Execution of Latency-Insensitive

Modules

Once a program has been formulated in terms of latency-insensitive modules, it must

be mapped onto an environment for execution. An environment is an aggregation of

platforms, each of which can execute latency-insensitive modules, joined together by

an interconnect capable of carrying latency-insensitive channels. Depending on the

underlying implementation of the particular module, it may be mapped to a variety

of platforms for execution. For example, software modules can be executed on a

general purpose processor or perhaps a soft-core on an FPGA. Hardware modules

can be mapped to an FPGA or, if no FPGA is available or for simulation purposes,

hardware modules may be executed on a general purpose CPU inside of a hardware

simulator, as will be demonstrated in Chapter 7.

Platforms are subject to a handful of simple requirements, primarily related to

inter-platform connectivity. Each platform in the environment must be linked by

a pair of bi-direction, FIFO channels to at least one other platform. These inter-

platform channels must have guaranteed, in-order delivery. An environment, then, is

a strongly-connected network of platforms.

Given a program comprised of latency-insensitive modules and an execution en-

vironinent, the goal of a latency-insensitive module (LIM) compiler is to map the

modules of the program on to the platforms of the environment. The first step in this

mapping is to place specific modules on to specific platforms. Modules are treated

as indivisible by the compiler, and only whole module placements are possible. Once

this placement is known, the next task of the compiler is to synthesize an inter-

module communication network, that is to choose a physical implementation for each

latency-insensitive channel in the program. A significant contribution of this thesis is

the automatic generation of an area efficient, high-speed, inter-FPGA network con-

necting latency-insensitive modules. This thesis also presents several automatic and

user-directed optimizations which improve the performance of the generated network.

25

2.3 Accessing Resources Across FPGAs

Real programs, both in hardware and in software, must make use of external devices.

In software, dealing with physical devices, at least at a high level, can be straightfor-

ward. Software programs have general, well-defined, and highly-developed interfaces

to devices, and interfaces such as sockets, virtual memory, and file systems are all rel-

atively easy to use, to the point of being accessible to novice programmers. Moreover,

these interfaces are stable across many machines, even those with radically different

underlying physical hardware, permitting programs to be ported between machines,

often with very little programmer intervention.

In contrast, device interfaces on the FPGA remain primitive. Programmers aiming

to run programs on FPGAs must manually manufacture interfaces to raw, complex

physical devices, and they must develop these interfaces for each FPGA platform they

wish to use, even though the usage of physical devices is the approximately the same

across many designs. These design issues represent a significant engineering effort

and are only exacerbated by multiple FPGAs.

To illustrate the magnitude of the platform-interface problem, consider a design

that has been fully debugged in simulation, but must be ported to an FPGA for

evaluation. Porting the design to an FPGA requires bringing up various physical

interfaces such as memory, clocks, and high-speed I/O and incorporating them into

the existing design. These devices typically have non-trivial interfaces. Small errors,

such as timing mismatches between the physical and simulation devices, are easy to

make. Although trivial in scope, these errors can be extremely difficult to debug

due to the limited visibility into and the lack of high-level debugging tools available

for the FPGA. Without high-level debugging tools, finding errors in physical device

interface logic degenerates to using an oscilloscope or, at a coarser grain, physical

LEDs on the target board. These practical difficulties in FPGA use have limited the

adoption of FPGAs as a general computation infrastructure.

A second issue with FPGA design, even when targeting single FPGAs, is design

portability. Physical devices are inherently platform-specific and their interfaces are

26

fundamentally unportable. Moreover, if the programmer is not careful, any piece

of user code touching these physical interfaces can inherit their unportability. This

issue is particularly serious in latency-sensitive designs, in which circuits may well

evolve, during the FPGA porting stage, to depend on particular device timings. These

limitations have made it difficult to move designs from one FPGA platform to another,

resulting in designs with limited re-usability and short life-spans.

Although design portability is an issue in single FPGA implementation, in multiple

FPGA inplementations, the problem of portability is a first-order concern. To use

multiple FPGAs in any serious way, most, if not all, of a user design must be mappable

to all of the FPGAs in a multiple FPGA system. However, as noted previously, any

portion of the design that depends on a specific external resource, must be mapped

to a specific FPGA. If enough parts of the user design are tightly coupled to specific

FPGA resources, then multiple FPGAs are of limited use.

The solution to the physical interface problem and the platform portability prob-

lem is the same: latency-insensitive device abstraction. Just as in software, each

FPGA platform provides a library of abstract, latency-insensitive interfaces to the

physical devices available on that particular platform. Programs written using these

abstract interfaces are insulated from behavioral and timing details of the underly-

ing physical device. Both off-chip SRAM and off-chip DRAM can be captured using

the same interface, and a program using this interface can alternatively use either

SRAM or DRAM, depending on the platform, without a need for program modifica-

tion. Because all platforms provide the same abstract interface, programs using these

interfaces are portable.

In a multiple FPGA partitioning, each FPGA platform may have an instance of

an external device, and a goal of a multiple FPGA compiler is to allow a program

to make automatic use of these new resources across FPGAs. Abstract resource

interfaces also provide a solution to the resource scaling problem. Once resource

interfaces are expressed in an abstract manner, the compiler can be made aware of

these resources and assist in scaling resources usage automatically, underneath of the

abstraction layer.

27

Chapter 3

Related Work

This thesis presents a compiler that leverages explicit, language-level latency-insensitive

channels to automatically produce multiple FPGA implementations. Much of the

work in the thesis is novel, but it draws clear inspiration from prior research in

the fields of FPGA operating systems, multiple-FPGA compilation, and latency-

insensitive design.

The chapter begins with two sections discussing existing work conceptually re-

lated to the thesis: multiple FPGA compilation in Section 3.1 and latency-insensitive

computing in Section 3.2. Both of these fields are relatively new, though latency-

insensitive computing shares many theoretical ideas with the much earlier dataflow

computing. This thesis represents a synthesis of ideas from both fields. Section 3.3

outlines the LEAP FPGA operating system, a general framework for supporting the

use of external devices in single FPGA implementations. This thesis builds directly

on the ideas of LEAP, extending it to support multiple FPGAs.

3.1 Existing Multiple FPGA Compilers

Due to their generality and the incumbent overhead thereof, FPGAs cannot typically

emulate the computational capacity realizable on a contemporary ASIC, and several

FPGAs are required to emulate larger, next-generation ASIC designs. To solve this

circuit emulation problem, multiple FPGA compilers appeared shortly after the in-

28

vention of the FPGA, and there exist a number of commercially available tools [26]

[29] capable of emulating RTL designs using multiple FPGAs. Because these tools are

intended for verification, they are required to maintain the cycle accurate behavior

of all signals in the original RTL design. Existing partitioning tools are differentiated

by whether they provide dedicated [67] or multiplexed [3] [27] chip-to-chip wires, but

1)oth styles of multiple-FPGA emulation incur significant performance degradation

due to the maintenance of cycle accuracy.

Dedicated-wire partitioning tools resemble extended versions of traditional place-

and-route tools, and include inter-FPGA link delays in the circuit-level timing equa-

tions for the deternination of setup and hold times. The result is that the design

clocks are greatly slowed, since the delays of chip-to-chip wires are much longer than

on-chip delays. However, dedicated-wire partitioners produce board-level wires that

have a physical meaning, a property which may be useful in certain debugging regimes.

Dedicated-wire partitioners represent a true transliteration of the original RTL: no

effort is made at optimizing data transportation at FPGA boundaries. As a re-

sult, inter-chip data transportation may be extremely inefficient in terms of goodput,

due to the slow clock and the transportation of unused data. Another drawback of

dedicated-wire partitioning style is difficulty in timing closure: one FPGA failing to

make timing can require the repartitioning and recompilation of the entire design.

Multiplexed-wire or virtual-wire [3] partitioners differ from dedicated-wire parti-

tioners in that inter-FPGA communication is abstracted from the emulation of the

RTL design. Multiplexed-wire partitioners operate by first running a single clock

cycle of the partitioned design on each FPGA, then propagating the resulting val-

ues across multiplexed inter-device links. When this inter-FPGA data exchange is

complete and all FPGAs are synchronized, each FPGA steps another clock cycle

and the process repeats. As with dedicated-wire partitioners, multiplexed-wire par-

titioners incur performance overhead due to the maintenance of the cycle accuracy.

This overhead is manifest in the need to freeze the emulation clock while trans-

porting data between FPGAs and in the need to synchronize FPGAs at the end of

each time step. As a result, these partitioning tools do not typically exhibit high

29

performance, achieving cycle-accurate operating speeds of a few megahertz [55] [59].

Despite their drawbacks, multiplexed-wire partitioners represent a significant advance

over dedicated-wire partitioning tools both because they permit more wires to cross

between FPGAs and because they largely avoid the timing closure problems of the

dedicated wire partitioners.

TIERS [54] offers an interesting optimization for multiplexed-wire partitioners:

clock-skew-based pipelining. In the basic multiplexed-wire implementation, all FP-

GAs operate on the same global clock cycle. However, this need not be the case:

FPGAs can operate out of lock-step, provided that their inputs for a given cycle

are available. In this manner, global synchronization can be obviated in favor of a

distributed, data-flow style synchronization, improving overall emulation throughput.

Similar pipelining effects are exploited in HAsim, described in Chapter 9.

Multiple FPGA compilation remains popular in industry, particularly in the con-

text of emulating processors for the purpose of verification. IBM [2] has recently

constructed a multiple FPGA platform for verifying a recent Bluegene processor. In-

tel [53] has also implemented a cycle-accurate version of its Nehialem core across a

network of FPGAs for verification purposes. The IBM TwinStar system opts for

full-system emulation of the original RTL, while the Intel Nehalem implementation

admitted of some FPGA-friendly RTL modifications at the sub-cycle level. Both of

these systems have dozens of FPGAs and run at effective speeds in the megahertz

range.

This thesis presents an approach that is fundamentally different from existing

tools and methodologies for multiple FPGA emulation: the compiler presented in

this thesis is not required to maintain the cycle behavior or any relationship to the

cycle behavior of an unpartitioned, single FPGA design. Latency-insensitive channels

allow designers to explicitly annotate locations in designs at which it is safe to change

cycle-by-cycle behavior of the design. As a result, partitions across these channels

are free to run independently of one-another and operate on data as soon as it be-

comes available. Designs partitioned in this manner can take advantage of the natural

pipeline parallelism inherent in hardware designs at a much finer grain than existing

30

optimized partitioners, such as TIERS [54]. Furthermore, the approach presented

in this thesis enjoys an inter-FPGA bandwidth advantage over existing partition-

ers because only useful data is transported between FPGAs because only explicitly

enqueued latency-insensitive channels are permitted to cross between FPGAs.

3.2 Latency-Insensitive Design

Research into latency-insensitive design is divided into two areas: latency-insensitive

design as design methodology and latency-insensitive design as a formal methodology

for implementing arbitrary RTL designs. The former treatment places emphasis on

the development time gains derived from latency-insensitive implementations, while

the former works typically seek to convert existing RTL, referred to in the literature

as synchronous sequential machines (SSMs), into a latency-insensitive representation

of the SSM, thereby obtaining some useful property, such as timing closure.

As a methodology [13] [17] [39], latency-insensitive design has a number of ad-

vantages over traditional RTL implementation styles. Latency-insensitive design fa-

cilitates both modular refinement and architectural exploration. Latency-insensitive

modules are easier to substitute for one another because changing the timing of a

module in a latency-insensitive design does not impact the functional behavior of

the other modules. For this reason, latency-insensitive design also facilitates module

reuse. These properties stand in contrast to typical RTL implementations in which

changing the cycle-over-cycle behavior of a single component of a design, for example,

by inserting a pipeline stage, can precipitate a cascade of changes through the design,

constraining exploration and preventing meaningful design reuse at the fine grain.

Because latency-insensitive modules are isolated from one another in terms of timing

behavior, development of a latency-insensitive design can be partitioned among many

design teams.

Latency-insensitive design is related to the classical Khan process networks (KPN) [33]

model of distributed computation. KPNs are comprised of sequential processes con-

nected by unbounded FIFO queues. Writes to the queues are always non-blocking,

31

while reads are blocking. The latency-insensitive channel model of computation dif-

fers subtlety from KPNs, in that latency-insensitive channels have non-blocking reads,

but this difference has enormous theoretical impact. The implication of non-blocking

reads is that latency-insensitive modules are fully general, and may have any inter-

nal implementation, hardware or software. However, in exchange for this generality,

useful properties of KPNs, including determinism, are not guaranteed for latency-

insensitive channel-based designs.

The circuit design literature discusses a form of latency-insensitive design, called

globally asynchronous, locally synchronous (GALS) design [57]. As the scale of in-

tegration and clock frequency increases, routing clock across an entire chip becomes

power-inefficient and complicates timing closure. GALS arose as a solution to the

problem of clock distribution in synchronous circuits. Effectively, GALS designs are

partitioned into several clock islands, which communicate by way of an asynchronous,

latency-insensitive network. In some formulations, clock islands may be gated when

they are idle to conserve power. Most exploration into GALS has focused on on

physical, circuit-level issues as opposed to models of computation.

Latency-insensitive channels subsume GALS: one possible physical implementa-

tion of a latency-insensitive channel is a synchronizer crossing between two differently-

clocked modules. The compiler presented in this thesis is capable of recognizing that

the endpoints of a latency-insensitive channel reside in different clock domains and will

automatically instantiate the necessary domain-crossing logic. Moreover, it should be

possible to extend this functionality to automate the generation of clock islands.

Although this thesis advocates the direct description of programs in terms of

latency-insensitive channels, there are other ways in which such designs may arise:

formal methodologies [6] [8] [61] for transforming arbitrary IRTLs (SSMs) into latency-

insensitive implementations. Transformation from an SSM to a latency-insensitive

implementation is achieved by programmuatically introducing new control circuitry

and FIFO interconnects between partitions of the original SSM in a way that main-

tains the cycle-accurate behavior of the original SSM.

Originally [6], latency-insensitive transform techniques were proposed to aide in

32

timing closure for ASIC designs. By decoupling the cycle behavior of the original

SSM from the physical circuit clock, these techniques permit the introduction, for

example, of extra registered buffer stations, which, in the context of SoC designs, can

dramatically improve overall system timing by eliminating long wire paths.

Latency-insensitive transformation tools are also applicable to FPGA-based de-

signs. Recently [35] and [25] have applied latency-insensitive transformation tech-

niques to aide in the FPGA timing closure and resource optimization problems. Here,

the latency-insensitive transformation permits those portions of the original design

that do not map well to FPGAs, for example content-addressable-memories, to be

replaced either with multiple-cycle latency-insensitive implementations that do map

well to FPGAs or with equivalent software implementations. In both applications

of the latency-insensitive transformation, the number of physical cycles necessary to

complete an operation increases relative to the original SSM, potentially reducing

performance. However, clock frequency increases in the latency-insensitive imnple-

mentation may counter some of this performance degradation. Latency-insensitive

transforms may also be applied to produce multiple-FPGA mappings. In this re-

spect, modern latency-insensitive transforms may be considered as the extremely

refined successors of the original multiple FPGA partitioning tools, which obtained

latency-insensitive designs through coarse clock manipulation.

Carloni [6] [7] appears to be the first to attempt the automatic transformation of

arbitrary SSMs to latency-insensitive implementations. This approach takes a set of

wire-connected SSMs and introduces wrappers to convert the SSMs into a latency-

insensitive network consisting of wrapped SSMs connected by FIFO-like relay stations.

The main requirement of this transform is that the SSMs be patient, that is that they

may be stalled via external signal, a form of distributed flow control. However, as

noted previously in this chapter, it is difficult to automatically discover whether an

SSM is patient. Should an SSM not be patient, patience can be coerced through

clock-gating.

Cortadella, Kinishevsky et. al. [8] [10] and Vijayaraghavan and Arvind [61]

generalize the work of Carloni by presenting full-system transformations for trans-

33

lating arbitrary synchronous RTLs into latency-insensitive implementations through

the introduction of latency-insensitive primitives. These latency-insensitive primi-

tives replace primitive elements, such as gates and registers, of the original SSM

and are connected using a latency-insensitive communication protocol. Cortadella

et. al. introduce a latency-insensitive construction based around transparent latches

and circuit handshaking, while Vijayaraghavan advocates the use of a protocol based

on bounded FIFOS. Cortadella, Kinishevsky et. al. further refine [11] the latency-

insensitive transformation to use dataflow-style data speculation, thereby improving

throughput.

Attempts have also been made at manual conversion of SSMs to latency-insensitive

designs. Pellauer et al. [45] provide a set of constructs, called A-Ports, that resolve

the timing of processor models to FPGA timing, with the goal of resolving the cycle-

accurate behavior of the modelled processor. Programmers insert A-Ports to track the

timing of specific signals and events in their modelled processor, while other signals in

the model implementation remain untracked. Although A-Ports are not an automatic

transformation, they offer greater potential performance since parts of the processor

model which are not of interest may run independent of the A-port scheme. A-Ports

themselves use the latency-insensitive channels advocated by this thesis as an internal

communications mechanism.

The above transformational techniques all maintain some notion of the original

cycle behavior of the base SSM. The model of computation presented in this thesis, in

Chapter 2.1, expressly allows the compiler to modify the cycle behavior of the origi-

nal design, disregarding the bijective-mapping requirement of existing cycle-accurate

latency-insensitive transformations, in exchange for increased performance. In the

context of multiple FPGAs, there are powerful technical motivations to discard this

requirement: inter-FPGA links have long latencies, which can only be hidden by ef-

fective pipelining. The approach presented in this thesis can take advantage of the

natural, pipelined behavior of hardware designs, even in the context of systems with

high degrees of inter-FPGA feedback, while cycle-preserving transformations gener-

ally cannot.

34

Although the compiler presented in this thesis provides no inherent guarantees

relating to cycle-accuracy, it can be readily composed with cycle-preserving trans-

formation tools, should the cycle-accuracy of some signals be required. Indeed, one

of the example codes presented in this thesis, HAsim (Chapter 9), uses the A-Ports

technique. In association with these transform tools, the compiler presented in this

thesis can be used to verify any synchronous design, including those designs writ-

ten in a latency-sensitive style. However, there is no free lunch: as the number

of cycle-accurate signals increases, multiple FPGA implementations derived from

latency-insensitive channels will degrade in performance until they reach parity with

traditional cycle-accurate multiple FPGA partitioning tools. Conversely, the closer

a latency-insensitive channel-based multiple FPGA implementation is to pure data

flow, the faster it will be.

3.3 The LEAP FPGA Operating System

This thesis leverages the LEAP [42] FPGA operating system and extends it to sup-

port multiple FPGAs. LEAP was developed to speed the implementation of FPGA-

based systems and to ease the burden of migration between FPGA platforms by pro-

viding abstract, latency-insensitive channel-based device interfaces, between FPGA

prograns and FPGA platforms. Since all LEAP designs use the same interfaces,

interfaces need be implemented only once per FPGA platform. Conversely, because

physical interfaces are held constant across platforms, all LEAP programs can run

on all LEAP-supported FPGA platforms. This second property of LEAP platforms

is essential to the automatic implementation of latency-insensitive programs across

multiple FPGAs.

In the LEAP virtualization framework, physical devices, such as memory, expose

scalable, abstract, latency-insensitive request-response interfaces to the programmer.

An example of a standard interface provided by LEAP is memory, which will be given

a detailed treatment in Chapter 7. In LEAP, user-level designs interface to memory

by means of a simple read-request., read-response, write interface [1]. Designs may

35

instantiate as many of these memory interfaces as the choose. At compile time, LEAP

instantiates a set of caches and marshalling logic for each exposed user memory and

ties these to the specific physical memory attached to the target platform.

In addition to memory, LEAP provides other generally useful device libraries and

services to the FPGA programmer. The remote request-response protocol, RRB, [41],

is an automated mechanism for connecting FPGA programs to software running on

a host PC. LEAP also provides an implementation of the Unix Standard I/O li-

brary, including an FPGA-based implementation of printf. LEAP also provides a

single-FPGA implementation of Soft Connections [43], a syntax for describing both

named, latency-insensitive point-to-point channels and named, latency-insensitive

rings, which permit multiple ring stops to share a form of broadcast communica-

tion. The LIM compiler adopts Soft Connections, described in full in Section 4.2.1,

as a syntax for latency-insensitive channels.

LEAP originally targeted single FPGA implementation. However, the platform

abstraction advocated by LEAP can be scaled to implementations that span multi-

ple FPGAs. Often, simple services or those with low performance requirements can

be implemented directly on multiple FPGAs, without modifying the original LEAP

source. On a single FPGA, LEAP device interfaces and services are typically imple-

mented using Soft Connection point-to-point links or Soft Connection rings. Since

the LIM compiler treats Soft Connections as the fundamental unit of communication

between FPGAs, it can automatically scale some existing single-FPGA LEAP ser-

vices to a multiple-FPGA implementation. For example, the LEAP STDIO library

uses a ring to provide printf services to the user design. Scaling this service to more

FPGAs requires only that the STDIO rings be able to span multiple FPGAs.

A good multiple-FPGA operating system will go beyond simply providing services

on each FPGA. Rather, it will automatically claim and expose to the program any new

resources that become available as a result of adding FPGA platforms to the system.

In multi-core processors, threads mapped to different cores make use of not only the

additional processor, but also additional cache resources. As in a multiprocessor, each

FPGA typically has its own set of local resources, for example a memory interface. To

36

provide similar functionality in the context of multiple-FPGAs, performance critical

services, such as memory, require a multiple-FPGA specific extension of the LEAP

OS. Chapter 7 will present a mechanism by which these resources may be made

available to user programs automatically, without requiring program modification.

37

Chapter 4

Multiple FPGA Compilation

Abstractly, the LIM compiler operates on the latency-insensitive modules and chan-

nels described in Chapter 2.1. However, all compilers must have a concrete syntax

to operate on. The designs described in Chapters 8, 9, and 10 were written in Blue-

spec System Verilog [4], a commercially available high-level synthesis language. To

support these designs, the LIM compiler operates on Bluespec System Verilog. The

internal RTL representation of the latency-insensitive modules handled by the LIM

compiler is simply Bluespece , while latency-insensitive channels are denoted using the

Soft Connections [43] syntax, an extension to the base Bluespec syntax, which will be

described in Section 4.2.1. Thus, the current implementation of the LIM compiler is

best viewed as an extension of Bluespec System Verilog and its compiler, though the

compilation scheme presented in this chapter generalize to all hardware descriptions

augmented with latency-insensitive channels.

Implementations produced by the LIM compiler execute on top of some environ-

ment comprised of one or more FPGAs. Producing such implementations requires

detailed knowledge of the FPGA environment configuration and the physical capabil-

ities of each FPGA, for example, the availability of memory resources. Section 4.2.2

details how this information is conveyed to the compiler. Section 4.3 describes in

detail the implementation of the LIM compiler and its internal algorithms. The LIM

'Bluespec, itself, supports a notion of modules, but these modules may have arbitrary, latency-
sensitive interfaces. The latency-insensitive modules operated on by the LIM compiler have no direct
syntactic representation in Bluespec.

38

compiler relies on Bluespec, a closed-source, cornmercial tool, as a subroutine. Sec-

tion 4.4 describes the way in which the LIM compiler integrates Bluespec and the

implementation issues that result from Bluespec's limited external interface.

4.1 Compiler Overview

The goal of the LIM compiler is to map a program comprised of latency-insensitive

modules on to an environment comprised of multiple FPGAs. The chief property

of latency-insensitive modules that permits this mapping is that their interfaces are

comprised solely of latency-insensitive channels, the implementation of which may be

chosen by the compiler without affecting the functional correctness of the original user

program. Thus, communicating modules may reside on the same FPGA and com-

municate via a simple hardware FIFO or on two different FPGAs and communicate

over some complex network interconnect.

Conceptually, the LIM compiler takes user source, described in terms of RTL,

Bluespec, augmented with latency-insensitive channels, Soft Connections, as input

and produces a set of programming files for a target execution environment. Because

the LIM compiler operates on a commercial language, in addition to its own algo-

ritlims, the LIM compiler imust make heavy use of Bluespec as a subroutine. The

LIM compiler relies on two passes of the Bluespec compiler. The first pass of the

Bluespec compiler produces a kind of primitive intermediate representation of user

program, upon which the LIM compiler operates. The LIM compiler then analyzes

this program representation and synthesizes a new Bluespec program for each FPGA

platform in the target execution environment. These generated platform programs

consist of a stylized version of the latency-insensitive modules mapped to that plat-

form combined with a synthesized network which provides a physical implementation

of the latency-insensitive channels of those modules. The second pass of the Bluespec

conpiler produces Verilog implementations of programs produced by the LIM com-

piler, and this Verilog is compiled by an FPGA-vendor tool chain to produce a final

implementation for each FPGA.

39

Bluspec + Soft Connections

Environment Description File
platform FPGAO "drivers O.apm";

FPGAl -> drivers.fromFPGAl;

FPGAl <- drivers.toFPGAl;

endplatform

platform FPGAl "drivers l.apm";

FPGAO -> drivers.fromFPGAO;

FPGAO <- drivers.toFPGAO;

endplatform

LIM Placement

Platform Mapping File
mkA FPGAO;
mkB >FPGAO;

mkC ->FPGAl;

mkD FPGAl;I

3] I

FPGA Implementation Tools

Figure 4-1: Complete LIM compiler flow, with syntax examples. Dotted lines repre-
sent logical connections, while elaborated connections are solid.

40

Figure 4-1 shows the flow of the LIM compiler along with its source inputs. The

compiler is composed of three main phases, which occur sequentially after an ini-

tial parsing of the user program. These three phases are: the construction of graph

representation of the latency-insensitive modules and channels of an input program;

the mapping of that graph to a physical execution environment consisting of mul-

tiple FPGA platforms and their various physical resources; and the synthesis of a

inter-module coimnunications network for carrying data between latency-insensitive

modules. At the end of these three phases, the LIM compiler produces a Bluespec

program for each FPGA in the execution environment. The LIM compiler then pro-

ceeds to invoke Bluespec and the FPGA synthesis tool chain to produce a physical

implementation.

Building a Latency Insensitive Module Graph

LIM compilation begins after an initial pass of the Bluespec compiler. This Bluespec

invocation produces a set of log files, which can be parsed by the LIM compiler to

produce a representation of the user program latency-insensitive modules and the

latency-insensitive channels associated with each module. Once this data has been

obtained from Bluespec, the LIM compiler builds a dataflow graph representation of

the program: the LIM graph. In the LIM graph, edges correspond to the latency-

insensitive channels, while vertices correspond to the synchronous RTL internals of

the latency-insensitive modules. This graph will be processed by subsequent phases

and eventually used to produce a physical implementation.

Mapping LIM Graph to Execution Environment

Given a LIM graph representing a program, the LIM compiler must next map this

graph on to an execution environment, that is, a physical topology of FPGAs strongly

connected by inter-chip communications channels. Just as the quality of cell-level

placement in traditional ASIC and FPGA flows can determine performance, so too

can placement of latency insensitive modules have significant impact on the perfor-

mnance of a multiple-FPGA implementation. In addition to considering inter-module

41

communications and area constraints, placement must also take into account various

physical resources, such as memory, that may be available on the physical platforms.

This thesis largely relies on programmer assistance to place modules on FPGAs,

though automation of this process is an important area of future work.

Synthesizing Inter-Module Communication Network

Once the modules have been placed on FPGA platforms, the compiler must synthesize

a communications network connecting the latency-insensitive modules. Portions of

the network may be simple: individual latency-insensitive channels between modules

placed on the same FPGA can be implemented as fixed-buffer FIFOs. Channels may

also be mapped to a more complicated, shared network infrastructure. For example,

all the channels crossing between a pair of connected FPGAs share the single, mul-

tiplexed physical interconnect between the FPGAs. Although conceptually simple,

generating a high-quality, high-throughput inter-module network involves significant

optimization effort on the part of the compiler. Details of these optimizations will be

outlined in this chapter and elaborated in Chapter 6.

Once these three operations are completed, the LIM compiler generates a Bluespec

program for each FPGA platform in the execution environment. The synthesized

programs consist of a source-level representation of the latency-insensitive modules

mapped to the particular platform, the physical device drivers associated with that

platform, and the synthesized communications network. The generated programs

are bundled with resource interface code and compiled for a second time using the

Bluespec compiler, producing a Verilog implementation for each FPGA that can then

be passed to a vendor-provided synthesis tools to produce an FPGA programming

file. The Verilog implementation compiled by the vendor tools is fully elaborated,

and all latency-insensitive channels have been mapped to RTL. Thus, to the vendor

synthesis tools, the source for each FPGA platform is just a set of Verilog modules,

the same as any single-FPGA design.

42

4.2 Inputs to the LIM Compiler

The LIM compiler requires three kinds of inputs: a Bluespec program, annotated with

Soft Connections, a description of the execution environment to which that program

will be mapped, and a mapping file describing the physical placement of program

modules within the execution environment. The following sections describe in detail

the syntax and semantics of these input types, and can be omitted without greatly

impacting the subsequent discussion of the compiler implementation in Section 4.2.2.

4.2.1 Soft Connections: Describing Latency-Insensitive Chan-

nels

As noted in Chapter 2. 1, the chief difficulty in automating latency-insensitive design

is that latency-insensitivity is a high-level property. Designers leveraging this style

in traditional RTLs typically connect modules with guarded FIFOs and predicate

module execution on either the availability of ingress data or the availability of egress

buffer in these FIFOs. The use of hardware FIFOs in this manner is effectively

programiner-specified physical elaboration of a latency-insensitive channel.

Of course, only some FIFOs in a design will exhibit the latency insensitive prop-

erty. Because a design nay have many FIFOs and because the latency-insensitive

property of a specific FIFO is generally undecidable, it is unlikely that automated

reasoning can distinguish the latency-insensitive points in a design. In reality, not

only can tools not recognize latency-insensitivity, they may not even be able to discern

that FIFOs exist - the typical FIFO description in RTL is nothing more than wires

and registers. The primitive, low-level nature of RTL syntax is one of the reasons that

hardware compilers have traditionally been extremely limited in the kinds of optimiza-

tions that they can perform: to make any change to the design, the compiler must

infer not only that a FIFO exists but also that the FIFO is semantically latency-

insensitive. Therefore, for a compiler to automatically leverage latency-insensitive

properties, some annotation is needed to allow the designer to convey information

about latency-insensitivity to the compiler.

43

This thesis adopts the syntax of Soft. Connections [43] to describe latency insen-

sitive channels. Soft Connections are attractive as the basis for a latency insensitive

compiler both because they offer a simple syntax and because a large library of de-

signs, including those described in Chapters 8, 9, and 10, make use of them. Because

Soft Connections themselves are latency-insensitive constructs, designs described us-

ing them can be directly partitioned among multiple FPGAs by splitting the designs

across the Soft Connections.

An example of this Soft Connection syntax is shown in Figure 4-3. mkSend and

mkRecv are straightforward, with the send endpoint injecting messages and with the

receive draining those messages. This syntax is convenient because it provides a

simple way for logically separate modules to communicate while abstracting and en-

capsulating the physical interconnect effecting that communication. In the context of

the multiple FPGA compiler presented in this thesis, only Soft Connections channels

are treated as latency-insensitive. Other FIFOs, for example those provided in the

base language, retain their original fixed-implementation behavior.

In addition to point-to-point channels, Soft Connections also provide a broadcast

mechanism: the ring. Modules participating in the broadcast instantiate named ring

stops. At compile time, ring stops are aggregated by name and connected to one

another via latency-insensitive point-to-point links. The ordering of this aggregation

is not guaranteed by the compiler, and the compiler may choose an ordering to opti-

mize other design goals, a freedom which will be used in subsequent sections of this

chapter to optimize multiple FPGA implementations. Rings provide a low-cost imple-

mentation for low-bandwidth data transport and a convenient way to describe library

implementations in which the number of communicators may be statically unknown.

For example, statistics collection and many of the other services offered by the LEAP

FPGA operating system are implemented using Soft Connection rings. Because the

inter-ring-stop interconnect is implemented using latency-insensitive channels, rings

may be directly partitioned across FPGAs.

Soft Connection rings are a purely physical transport, and protocol implementa-

tion on top of the physical layer is the responsibility of the implementor. Libraries

44

for several basic protocols, including a token-ring, have been implemented on top of

Soft Connection rings. Figure 4-2 shows an example of a Soft Connection ring syntax

and one possible physical implementation, a chain of FIFOs.

Soft Connections for Modularity

Soft Connections were originally intended to improve design modularity. Most exist-

ing HDLs are hierarchical, that is, the entire design is a logical tree rooted at a single

top-level module. However, hardware designs are not necessarily isomorphic to trees:

many designs require communication between modules whose ancestors may be on

separate branches of the module hierarchy. In traditional RTLs, modules in separate

branches of the module hierarchy communicate by exporting interface wires through

each parent until a common ancestor is arrived at, at which point their wires can be

connected.

In addition to requiring tedious, error-prone port replication, hierarchical wiring

destroys design modularity. Substitute modules may need to communicate with dif-

ferent parts of the design. In a hierarchical design, these substitutions require modify-

ing each intervening layer for each possible module combination. For a design library

like Airblue, discussed in Chapter 8, where each of the dozen modules in a wireless

transceiver has a handful of alternatives, modifying the module hierarchy for each

combination is onerous.

Soft Connections as a Communication Paradigm

Soft Connections solve the hierarchical wiring problem by introducing a named send/receive

primitive into the HDL. These sends and receives are matched by name at compile

time, and the compiler automatically inserts the intervening wiring and state between

the send/receive pair. Soft Connections were intended to be an abstract, latency-

insensitive transport interface between modules and are intentionally divorced from a

physical implementation. Indeed, in addition to a simple FIFO implementation, Soft

Connections originally supported a shared, tree-like network of point-to-point chan-

nels. Although, on a single FPGA, a FIFO-based implementation of point-to-point

45

i- -_---_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_---,

module mkA;

chainA <- mkChain ("Stats")
endmodule

module mkB;
chainB <- mkChain("Stats");

endmodule

module mkC;
chainC <- mkChain("Stats");

endmodule

module mkD;

chainD <- mkChain ("Stats");
endmodule

(a) Ring Syntax

mkA mkB

A a

mkC Wmk D

(b) Logical Implementation of 4-2(a)

Figure 4-2: A sample ring declaration and its corresponding logical implementation.
Ring stop ordering is chosen by the LIM compiler.

connections is optimal from a performance perspective, the LIM compiler extends the

concept of a network of Soft Connections in the automatic synthesis of inter-FPGA

networks.

4.2.2 Describing Multiple FPGA Execution Environments

The goal of the LIM compiler is to map a set of latency-insensitive modules on to an

execution environment consisting of multiple FPGA platforms. In order to achieve

this mapping, the compiler must have a detailed knowledge of the targeted execution

environment, including the topology of the FPGA environment, the physical devices,

46

I module mkA;

Send#(bit) send <- mkSend("Link");

endmodule

,mkA II
RTL

I----------- ----------- -- I

r--------------------- -- I

mkB
RTL

module mkB;

Recv# (bits) recv - mkRecv ("Link") ;
endmodule

Figure 4-3: A pair of modules connected by a latency-insensitive channel. The arrow

represents an automatically generated connection. Users may specify a minimum
buffering as an argument to the channel constructor. Here, the tag "ToB" is used to
match connections during the compilation flow.

such as memory, attached to each FPGA, and the latency-insensitive interface li-

braries used to communicate with these devices. This information is conveyed to the

LIM compiler by way of the environment description file.

Figure 4-4 shows an example of the syntax used to describe the configuration of a

multiple FPGA environment to the LIM compiler. In this example, which corresponds

to Figure 4-7, there are two FPGA platforms connected by a single interconnect. This

simple description language has two important features: the platform declaration and

the arrow notation.

The platform declaration conveys two important pieces of information: the plat-

form service description file and the inter-platform interconnections of the platform.

The platform service description file contains all service libraries necessary to build the

interfaces to the physical devices, such as memory, attached to the FPGA platform.

Much of the previous discussion of latency-insensitive modules has focused on

the structure and properties of the input hardware program. However, hardware

programs do not operate in a vacuum: they require access to external resources. For

47

platform FPGAO drivers_0.apm;

FPGA1 -> drivers.fromFPGAl;

FPGA1 <- drivers.toFPGA1;

endplatf orm

platform FPGA1 drivers_1.apm;

FPGAO -> drivers.fromFPGAG;

FPGAO <- drivers.toFPGAO;

endplatf orm

Figure 4-4: A sample FPGA environment with two FPGA platforms.

example, some of the Airblue (Chapter 8) designs need access to a radio front-end,

while HAsim(Chapter 9) and H.264(Chapter 10) both benefit from access to a large,

fast memory store. Although physical devices are necessary in the implementation

of real systems, they do not conform to the latency-insensitive model of computation

described in Section 2.1. Thus, physical devices are not directly part of the user

program, in much the same way that software programs do not directly interface

with physical memory or I/0, instead using abstract interfaces and relying on the

operating system and underlying hardware to preserve the abstraction.

The LIM compiler chooses to encapsulate physical devices inside of services,

latency-insensitive interfaces to the devices. Service libraries, included as part of the

environment description file, serve the primary purpose of converting synchronous,

wired device interfaces into the latency-insensitive channel-based representation op-

erated on by the LIM compiler. Thus, the services offered by each platform can be

viewed as an extra latency-insensitive module from the perspective of both the hard-

ware program and the LIM compiler, with the exception that these modules cannot

move between platforms.

An example of service interface is the latency-insensitive request-response interface

to external memory, shown in Figure 7-1. All latency-insensitive modules interacting

with memory instantiate this interface. Instantiating the interface produces, within

the instantiating module, several new ring stops for rings carrying requests and re-

48

sponses to memory. When modules using memory are mapped to an FPGA providing

a memory resource, their ring stops will be connected to the physical memory specific

to that platform. On the other hand, if no external memory resource is available on the

local platform, the LIM compiler automatically routes the interface ring stops to some

neiory resource on a remote FPGA platform, just like any other latency-insensitive

channel. This provides a correct and portable, if lower performance, implementation.

Chapter 7 will discuss the implementation details of platform services in full.

The platform declaration also contains a description of the platform's inter-FPGA

connections. The arrow operators are used to denote connections between FPGAs,

with left arrow representing an incoming connection and right arrow representing an

outgoing connection. Each FPGA platform is given a symbolic name in its declara-

tion, which is used in conjunction with the arrow notation to describe connections

between FPGAs. The second argument to the arrow operator represents the hierar-

chical path in the platform service description where the inter-FPGA interconnection

device can be found. As noted in Section 2.1, these inter-FPGA interconnections are

themselves latency-insensitive channels. Like latency-insensitive channels they must

guarantee in-order message delivery. However, the inter-FPGA interconnects are not

visible to the user program in the form of a platform service and are not described us-

ing the Soft Connections syntax. Rather, the inter-FPGA interconnects are reserved

for use by the LIM compiler in generating the inter-module communications network.

Each interconnect will eventually be shared by many channels crossing between to

FPGA platforms. When viewed in aggregate, the platform declarations form a phys-

ical network of FPGAs to which the logical user program will be mapped. The arrow

notation permits the description of directed graphs of inter-FPGA interconnects, but

currently the LIM compiler requires a bi-directional inter-FPGA interconnect between

each pair of communicating FPGAs.

Environment description files are created once per environment configuration and

may be shared by all designs targeting the environment. Additionally, environment

descriptions are both independent of the program and transparent to the program-

mer - designs may be targeted to different multiple FPGA environment simply by

49

mkA -> FPGAO;
mkB -> FPGAO;
mkC -> FPGA1;

mkD -> FPGA1;

Figure 4-5: A platform mapping for file targeting the execution environment of Fig-
ure 4-4.

changing the environment description file input to the LIM compiler. Thus, new mul-

tiple FPGA implementations can be described with seconds of programmer effort,

though, of course, the compilation process may take a significant amount of time.

Transparency and portability are achieved through the use of platform virtualization,

which will be described in detail in Chapter 7.

4.2.3 FPGA Mapping File

In addition to the platform description file, the current implementation of the LIM

compiler requires programmer assistance in the specification and placement of latency-

insensitive modules. Thus, in addition to a platform description file, a program-

specific platform mapping file is also required as an input to the compiler. Figure 4-5

gives an example of the relatively simple language used for describing the placement of

modules across FPGAs, in which the arrow is used to denote the mapping of a latency-

insensitive module to a specific platform. This sample mapping file corresponds to the

program example shown in Figure 4-6 and again in Figure 4-7. Left-hand arguments

are named platforms from the environment description file, while right-hand argu-

ments are the names of program latency-insensitive modules. The mapping file may

also be used by the compiler to obtain the names of the latency insensitive modules

in the user program.

4.3 Compiler Implementation

LIM compilation consists of three main phases: constructing the LIM graph, placing

the LIM modules on to the execution environment, and synthesizing the inter-FPGA

50

communication network. Figure 4-1 shows the flow of the LIM compiler, including

the detailed input and output of each phase. The following sections will elaborate on

each of these stages giving details of the algorithms and sub-phases involved in each.

4.3.1 LIM Graph Construction

The first phase in LIM compilation is the construction of a graph representation of

the input program, the LIM graph. In the LIM graph, edges correspond to latency-

insensitive channels, while vertices correspond to the synchronous RTL internals of

the latency-insensitive modules. The vertices of the graph, the latency-insensitive

modules, are described explicitly by the programmer in the mapping file. However,

the edges of the graph, the latency-insensitive channels, are inferred from the user

program directly, through the process of channel discovery.

Latency-insensitive channel discovery commences with an initial Bluespec com-

pilation pass over the user program. As Bluespec compiles the program source, it

will emit a string containing information about each Soft Connection endpoint that

it encounters2 . This endpoint meta-data includes the module to which the endpoints

belong and the endpoint type. These emitted strings are stored in log files on a

per-module basis for future use by the LIM compiler.

At the end of the initial compilation pass, the Bluespec compiler has generated a

log file for each module, which contains a description of the connections of the module.

The LIM compiler then proceeds to construct the LIM graph, beginning by parsing

the Bluespec-produced log files. At the end of this parse, the LIM compiler posses

a nearly complete LIM graph: each latency-insensitive module of the user program

is decorated with its named ingress (receive) and egress (send) latency-insensitive

channels. The compiler completes the construction of the LIM graph of by matching

the names of the Soft Connections to form graph edges.

The matching stage mates the point-to-point channels discovered during the com-

2Some Soft Connections may have endpoints which reside in the same module. Although the

compiler does not handle this case specially, since latency-insensitive modules are indivisible and
cannot by partitioned between FPGAs, these channels will eventually be implemented to simple
RTL FIFOS.

51

Figure 4-6: A sample LIM graph produced by the first phase of the LIM compiler.

pilation pass, filling in the edges of the LIM graph. Channels are matched by name,

by iterating over the set of channel names for each channel. When a match is made,

a new graph edge is inserted in the LIM graph between the source and sink modules.

Ring endpoint matching is postponed until after physical placement as an opti-

mization. The ordering of ring stops is left to the compiler and could be determined

while matching the point-to-point stops. The problem in the an early choice of ring

ordering is that, at LIM graph construction time, all orderings are equally good. Once

placement occurs, some of the choices of ordering may turn out to be suboptimal,

resulting in needless inter-FPGA crossings. Consider Figure 4-9: the order ACDB

minimizes the number of inter-FPGA crossings, while the ordering ADCB results in

two spurious crossings. Although ordering the stops is deferred, the existence of ring

stops is noted in the LIM graph so that the placement phase can observe them.

At the end of the matching phase, the LIM compiler possesses a largely-complete,

logical graph of all the communications in the user program, wherein vertices represent

latency-insensitive modules and edges represent matched latency-insensitive channels.

This graph is used by subsequent compilation phases both to place the modules onto

the execution environment and to generate the communication network.

It is possible at the end of the matching stage to have some point-to-point channels

which do not have matches. If any channels are not matched at the termination of this

52

Figure 4-7: The modules of Figure 4-6 have been placed into an environment consist-
ing of two FPGA platforms. The dotted lines represent the logical LIM graph, which
has not yet been physically elaborated.

stage, then the program is erroneous and compilation terminates with a message about

unmatched channels. However, some channels, particularly those associated with

physical services like memory, may not be used by a given program. To accommodate

this case, the Soft Connections syntax provides an explicit primitive for optional

channels. The processing of optional channels is the same as the processing of normal

channels, with the exception that unmatched optional channels do not result in the

compiler reporting an error.

4.3.2 Module Placement

Once the set of latency-insensitive modules has been discovered and the LIM graph

built, the logical representation of the user program can be mapped on to the target

execution environment. In an ideal implementation of a LIM compiler, this mapping

of modules to platforms would be fully automated: the compiler would use estimates

of module area and inter-module communications to place modules across FPGAs.

However, the programs considered in this thesis are comprised of only a handful

of modules, and so the LIM compiler presently supports only a manual mapping.

As programs and environments scale in size, automatic placement will be necessary.

Thus, automatic placement of modules is an important future work, and a strategy

for these algorithms will be discussed in Chapter 11.

Given the description of the environment, a mapping file, and the graph of mod-

ules produced by the channel discovery phase, the current compiler proceeds to map

53

Figure 4-8: A fully elaborated multiple FPGA design. The logical latency-insensitive
channels of Figure 4-7 have been replaced with RTL implementations. Modules placed
on the same FPGA communicate via RTL FIFOs, while remote modules communicate
by way of the synthesized router infrastructure.

program modules on to platforms in the environment, by marking modules with

the platforms on which they have been placed. This information will be used in

subsequent stages both to route signals among the FPGAs and to synthesize the

inter-FPGA routers.

4.3.3 Network Synthesis

At this point, the LIM compiler has determined the topology of a program comprised

of latency-insensitive modules and has mapped these modules down onto a physical

topology of FPGA platforms. The next step of LIM compilation is to generate the

network between latency-insensitive modules. There are several individual steps in the

synthesis process. First, the physical communication topology of the program must

be completed. In the original LIM graph, communications channels were all identical

logical objects. However, in the physical realization of the program, channels may

need to cross several FPGAs to move data between modules. The compiler must

therefore route channels connecting remote modules across intervening FPGAs.

Once the physical communication topology is completely specified, the routers

multiplexing the inter-FPGA links can be synthesized. Abstractly, these routers sim-

ply multiplex the physical interconnect between a pair of FPGAs among all latency-

insensitive channels crossing between that pair of FPGAs. However, instantiating a

simple multiplexor may be highly suboptimal because the physical interconnect be-

54

tween FPGAs typically consists of a wide, bit-parallel interface. The goal of router

synthesis is to partition this wide interface in a way that maximizes the throughput

of the channels routed between a pair of FPGAs. A brief sketch of this process is

given here, but the subject will be treated more fully in Chapter 6.

Finally, once the physical topology and communication network are completely

specified, the compiler generates a Bluespec program for each FPGA platform, repre-

senting the latency-insensitive modules mapped to that platform and the synthesized

network carrying the latency-insensitive communication channels of those modules.

These programs can be used to produce a physical, multiple-FPGA implementation

of the original program.

Channel Routing

After the program graph has been mapped on to a particular physical substrate, it

may be the case that some modules which communicate with one another are not

placed together oi the same FPGA. In this case, the compiler must insert some new

latency-insensitive channels at intervening FPGA boundaries to form a path between

the communicating modules. An example of this routing is shown in Figure 4-10.

At the end of this routing phase of compilation, the logical graph of communication

implied by the user source is completely mapped to the physical platform upon which

it will execute.

Given a set of non-local channel endpoints, the current compiler implementation

routes point-to-point channels by finding the path with the shortest number of inter-

FPGA hops on the platform graph. The compiler then dissolves the original edge in

the LIM graph and inserts a new set of edges and vertices. The new vertices corre-

spond to null latency insensitive modules, while the vertices correspond to the new

latency-insensitive channels required to route the message across the environment. In

the code generation phase, these insertions to the LIM graph will result in the instanl-

tiation of a latency-insensitive channel crossing between the two appropriate routers

on each intermediate platform between the original modules. During the final RTL

generation stage, these new channels will be compiled to RTL FIFOs connecting the

55

appropriate ingress and egress routers, allowing the point-to-point channel to traverse

the FPGA boundaries.

Greedily routing channels by choosing the shortest-hop path is both simple to im-

plement and latency-minimizing in the best case. The problem with always choosing

the shortest-hop path for each channel during the routing step is that inter-FPGA

bandwidth and loading is completely ignored. The compiler will happily allocate all

channels between two FPGAs along the shortest-hop path, even if that path has low

bandwidth or becomes oversubscribed due to the allocation. Although the programs

examined in this thesis have not yet encountered a performance penalty due to this

simple allocation, it is easy to imagine that performance degradation could occur in

some programs and for some environments. A future refinement to the basic algo-

rithm is to incorporate some form of max-flow, min-cut algorithm which can account

for bandwidth between the FPGAs. Such an algorithm would also be useful in the

placement problem of the previous section.

During the LIM graph construction phase, the compiler deferred choosing the

ordering of ring stops. Now that physical placement is known, a ring endpoint ordering

and routing can be produced. Ideally, the compiler will choose an ordering of the stops

such that the number of inter-FPGA crossing encountered along the ring is minimized.

Thus, the global routing of rings reduces to finding a Hamiltonian cycle among the

platforms hosting the ring stops: physically local ring stops are connected in sequence

with the first and last endpoint connected to the preceding and succeeding platforms

in the Hamiltonian cycle of platforms.

Of course, not all topologies of platforms and ring stops will have a Hamiltonian

cycle. If this is the case, then the compiler, as in the point-to-point case, must insert

virtual latency-insensitive modules on some of the platforms to close the cycle. An

example of a fully routed ring is shown in Figure 4-10. Since this topology does not

contain a natural Hamiltonian cycle, the compiler injects a latency-insensitive module

on the middle FPGA to induce a cycle. In the physical implementation, this results

in a single extra RTL FIFO transiting the middle FPGA.

56

(a) A Hamiltonian cycle of platforms for the ring
in Figure 4-2. This implementation minimizes
inter-FPGA crossings.

(b) A non-Hamiltonian cycle of platforms for Fig-
ure 4-2. This implementation is correct, but
sub-optimal in terms of area and throughput.

Figure 4-9: Ordering ring-stops to induce a Hamiltonian cycle of platforms minimizes

inter-FPGA interconnect and maximizes throughput. However, achieving such an

ordering requires that the placement of modules is known.

57

Figure 4-10: An example of channel routing. Here, the chain traverses A,B, and C. To
close the chain, an additional channel, denoted with dashed lines, is inserted across
B. A similar process is followed for point-to-point channels.

58

Router Generation

After placement and channel routing, the LIM graph is fully elaborated: the vertices

of the graph have been logically partitioned into the subgraphs mapped to each plat-

form and the edges in the graph are either local to a subgraph or the cross between

two subgraphs. At this point, the only task remaining in producing a multiple FPGA

implementation is to elaborate the elements of the inter-FPGA communications net-

work. Edges within the same subgraph are simple: they are local to a single FPGA

and can be implemented with a simple RTL FIFOs. Edges that span two platforms

are also seemingly straightforward: all the edges between two platform subgraphs are

tied to a router that multiplexes the physical interconnect between the two platforms.

Conceptually, network synthesis is straightforward. However, the implementation

of the inter-FPGA routers bears some consideration. Simply building a naive router

that time-multiplexes the interconnect between two FPGAs among all the channels

crossing between them is often extremely wasteful, due to typical channel parameters.

In particular, most inter-FPGA interconnects operate at roughly 10 Gbps. Modern

FPGAs have dozens of these high-speed interconnects, which can be aggregated for

higher-bandwidth. This means that a user design operating at 100 MHz must produce

between 40 and 200 bits of data per inter-FPGA link per cycle to make full use of

the offered inter-FPGA bandwidth. However, most user channels have narrow bit-

width and cannot make full use of the inter-FPGA interconnect. As a result, program

performance can generally be improved by partitioning the physical interconnect into

multiple smaller lanes which can operate in parallel. If an inter-FPGA interconnect

is split into several lanes, the assignment of channels to lanes immediately becomes

an important decision problem.

Chapter 6 explores various algorithms for the parameterization of and the alloca-

tion of channels to routers. However, the behavior of these operations as a compiler

phase is uniform. The algorithms use the fully placed and routed communication

graph along with other program information to produce a lane sizes and an alloca-

tion of channels to lanes. Each lane produced in this phase will eventually instantiate

59

a lane-specific router during the code generation phase. It is important to note that

the router configurations need not be symmetric: each inter-FPGA interconnect may

have a different number of lanes and a different numbers of channels.

Once the network routers are parameterized, network synthesis is complete, and

the LIM compiler can generate Bluespec programs for each physical platform. The

generated program consists of the set of latency-insensitive modules placed on the

platform, the synthesized network, and the platform-specific services. The modules

and devices services are copied almost verbatim from the original source, though

they are placed within wrappers. To produce the network code, the compiler selects

appropriate components, i.e. routers and scheduling logic, from the highly parametric

router library described in Chapter 5. These components are then connected to

the latency-insensitive modules by inserting appropriate Soft Connections into the

synthesized router description. During the subsequent Verilog generation phase, the

Bluespec compiler will convert these Soft Connection to RTL FIFOs.

To improve the readability of the generated code and to facilitate implementation

exploration, most of the code produced during the code generation phase is drawn

from a highly parameterized Bluespec library. However, some code must still be

produced by the compiler itself, to work around limitations of the Bluespec type

system. For example, in the case of the variable width lanes created during router

generation, Bluespec's type system is not sufficiently descriptive: Bluespec does not

easily admit of a variable number of variable width arguments. In this case, the code

generation phase must synthesize and inject the full module code, rather than just

instantiating a parametric module out of the router library.

4.3.4 RTL Generation

At this point, the LIM compiler has produced a full Bluespec code describing the

physical implementation of each FPGA platform in a complete multiple FPGA im-

plementation. In the last stage of the LIM compiler, these codes, which contain the

synthesized network, the original module source, and the platform interface libraries,

are recompiled by the Bluespec compiler to RTL on a per FPGA basis. The Verilog

60

r - r -

module mkA; imodule mkRouter;

recvA <- mkRecv("A"); //Empty Router

i endmodule endmodule

I mkA

RTL

---------------------------------- J --------............

(a) First Compilation Pass
r-- I

module mkA; I module mkRouter;

recvA <- mkRecv("A"); sendA <- mkSend("A");

i endmodule endmodule

I
I - I

(b) Second Compilation Pass

Figure 4-11: An example of two-pass compilation. In the first pass, unmatched

channels are discovered. In the second compilation pass, formerly unmatched channels

are matched to the generated router code, channeling FPGA platforms.

generated by this final step can be simulated or passed to back-end synthesis tools to

produce FPGA programming files for each FPGA platform in the system.

In addition to the differences in source to be compiled, the second Bluespec compi-

lation differs from the first in its handling of Soft Connections. In the first compilation

pass, the placement of the latency-insensitive modules was unknown, and Soft Con-

nections represented logical latency-insensitive channels. However, in the second pass,

modules have been placed on physical platforms and all latency insensitive channels

have been fully elaborated and bound to a physical implementation. Thus, all Soft

Connections refer to strictly local communication within a single platform during the

61

second pass, whether this communication is between two modules placed on the same

FPGA or between a module and the inter-FPGA communication infrastructure for

that platform. The compiler chooses a physical implementation of the channels dur-

ing the second pass: simple RTL FIFOs. An example of this difference in handling is

shown in Figure 4-11. In this case, the program contains receive channel "A" which

is initially un-elaborated in the channel discovery phase, Figure 4-11(a). However, in

the second Bluespec compilation pass, the synthesized router contains the endpoint to

this channel and during this pass, the Soft Connection between the program and the

router infrastructure will be replaced with an RTL FIFO, as shown in Figure 4-11(b).

Although the current compilation needlessly recompiles many portions of the user

program during the second compilation phase, much of this work can be avoided.

User modules do not change substantially when passing through the LIM compiler. In

theory the modules could simply be linked against the synthesized routers, provided

that the LIM compiler maintained sufficient intermediate compilation information

between the two compilation passes. Indeed, even the physical FPGA synthesis of

the user latency-insensitive modules for FPGA is constant between the passes, a fact

which will become important in automatic placement algorithms, which will require

high-quality synthesis area estimates.

4.4 Interfacing to the Bluespec Compiler

The LIM compiler operates on Bluespec System Verilog augmented with Soft Con-

nections syntax. Unfortunately, the source of the Bluespec compiler is not publicly

available. However, Bluespec does provide a set of compiler interfaces so that permit

the LIM compiler to make use of Bluespec to parse source files and to construct a rep-

resentation of the latency-insensitive channels within the source program . Because

the LIM compiler must use this reduced interface, some complications in compilation

arise.

Bluespec provides a useful mechanism for implementing compiler-like interfaces:

ModuleContext. ModuleContext, as an implementation of the Haskell state monad,

62

permits the construction and mutation of arbitrary data structures within the com-

piler at compile time. These structures are hidden from the program writer and re-

main within the ModuleContext until extracted. Thus, new language primitives can

be implemented by providing users modules that store state with the ModuleContext.

By wrapping program modules with extraction code, a representation of the primitives

instantiated during compilation can be written to a log file and this representation

can be examined off-line by an external compiler, for example, the LIM compiler.

Although this interface is poor in the sense that it does not offer full visibility into

the operation of the Bluespec compiler, it does offer compiler writers some capacity

to create new language-level primitives and offer them to the programmer without

writing a new compiler front-end and without the programmer becoming aware of the

implementation of the extra-language primitives.

The previous sections noted that the LIM compiler needed some programmer an-

notation to determine latency-insensitive modules. In an ideal LIM compiler, this

assistance would not be necessary; the compiler would infer the existence of latency-

insensitive modules directly from the channel-annotated source. However, inferring

modules requires access to a low-level intermediate representation of the hardware

program, which Bluespec does not provide. As a result, although the LIM com-

piler can extract information about latency-insensitive channels, it cannot determine

latency-insensitive modules without programmer assistance. This assistance is pro-

vided by way of the explicit declaration of latency-insensitive modules in the mapping

file described in Section 4.2.2. Due to this need for programmer assistance, there is

a strong correspondence between some Bluespec modules and the latency-insensitive

modules of the LIM compiler. In an ideal compiler, this correspondence between

source modules and latency-insensitive modules would not necessarily exist. The

LIM compiler currently imakes no distinction between the definition and instance of

latency-insensitive modules: the compiler instantiates each declared module exactly

once. However, Bluespec modules not declared in the mapping file are permitted both

to have multiple instantiations and to be latency-sensitive.

The designs considered in this thesis are comprised of coarse-grained latency in-

63

sensitive modules which do not require replication. However,the lack of differentiation

between instance and definition represents a deficiency of the current LIM compiler.

This could be corrected by adding support for explicit primitives for latency insensi-

tive modules into Bluespec, by way of ModuleContext, or by writing a full compiler

front-end capable of extracting latency-insensitive modules directly from source.

4.5 Conclusion

The LIM compiler takes as input a program written in terms of latency-insensitive

modules and a description of the execution environment to which that program will be

mapped. The compiler then, through a series of steps, produces a set of programming

files that partition the original program across the FPGA platforms of an execution

environment. To achieve this partitioning, the compiler builds a graph representation

of the design comprised of vertices representing latency-insensitive modules and edges

representing latency-insensitive channels. Next, the compiler maps this graph onto

the execution environment and synthesizes a network between the modules of the

graph. Finally, the compiler produces an RTL implementation of the multiple FPGA

system.

While, the current implementation of the LIM compiler can produce fully func-

tional implementations partitioned across an arbitrary configuration of FPGAs, it

is incomplete. Due to limitations in language parsing and a strong dependence on

the Bluespec compiler, the compiler requires the programmer to explicitly annotate

latency-insensitive modules. Additionally, the mapping of latency-insensitive modules

to the execution environment requires manual assistance. Many of these limitations

are surmountable and represent an important future work.

64

Chapter 5

Router Architecture

The preceding chapter discussed the process of automatically converting high-level

programs annotated with latency-insensitive channels into multiple FPGA implemen-

tations. An important part of this compilation process is the the automatic synthesis

of an inter-module communication network. For modules located on the same FPGA,

the synthesized network is nothing more than simple RTL FIFOs. However, the net-

work between FPGAs is substantially more complicated. The key technical challenge

of inter-FPGA networking is to produce a high-quality router to multiplex the inter-

FPGA interconnect among the potentially many latency-insensitive channels crossing

the interconnect, as shown in Figure 5-1. A good inter-FPGA router provides the

illusion of FIFOs with back-pressure to the user latency insensitive channels, while

offering high performance, in terms of latency and throughput, consuming few FPGA

resources, and, most importantly, preserving the functional correctness of the original

latency-insensitive program.

This chapter will first prove the functional correctness of inter-module networks

synthesized by the LIM compiler. The chapter then introduces a high-quality inter-

FPGA router satisfying the requirements of the proof. This router is built around

the SRAM Multi-FIFO (SMF) [18], a novel, FPGA-efficient buffering resource. Fig-

ure 5-2 shows the organization of the router, which has been partitioned into two

halves: the ingress and egress routers. Although the SMF is the core of the router,

the router architecture consists of three pipelined layers built on top of some phys-

65

-......... FPGA 0 Flow Control
'---- FPGA 1 Flow Control

-- Data Path

Figure 5-1: Logical Architecture of inter-FPGA channels.

ical interconnect: channel marshalling, channel routing, and lane merging. Channel

marshalling converts the variable width data types carried by the latency-insensitive

channels into uniformly-sized network packets. Channel routing provides flow con-

trol, packet buffering, and arbitration of the shared inter-FPGA interconnect. Lane

merging extends the router to support multiple lanes, allowing channels mapped to

different lanes to concurrently transmit on different portions of the same wide physi-

cal interconnect. The remainder of the chapter will describe, in detail, the behavior

and physical implementation of the router.

5.1 Correct Latency Insensitive Networks

For the latency-insensitive model of computation, network correctness means preserv-

ing the illusion of latency-insensitive channels, or, more precisely, the guaranteed, in-

order delivery of messages. This is a relatively simple requirement, particularly when

mapping a program to a single FPGA. Some complexity arises when mapping a design

to multiple FPGAs, because many channels can cross between FPGAs and must share

a single inter-FPGA interconnect. This multiplexing of the physical interconnect be-

tween the FPGAs can introduce deadlocks if the network is not properly constructed.

66

Channel Demarshalling

Channel VC Buffering

...-- m- m--....s-.--- -m--............-.-- m-.--.

Lane Demerging

mm mm m - mm mm mm mm mm mm m - mm m - m - mm ininin

Physical Interconnect

mm mm mm m mm mm mm mm mm mm mm m mm mm mm mm mm mm

Lane Merging
mm mm mm mm mm mm mm m mm mm m .

Channel Arbitration

Channel Marshalling

Figure 5-2: A complete FPGA router, partitioned into ingress (top) and egress (bottom) halves, exhibiting all router layers.
The router depicted has three parallel lanes of different, statically determined width. This router services twelve independent
channels, with four channels statically allocated to each lane.

-.. m

Send D

User
. Recv1 B

SLogic

Rec v A
L

Credit
Monitor

Figure 5-3: An example of a synthesized router connecting an FPGA with to two
other FPGAs (not shown). Channel "Recv C" is routed through the FPGA.

However, the networks synthesized by the LIM compiler are deadlock-free.

Deadlocks arise in shared interconnect when dependent packets are forced to share

the same routing paths, which can cause the packets to block each other. Figure 5-4

shows a simple example of how such a deadlock can arise: head of line blocking. In

this case, channels A and B are dependent - a value from each is required for the

multiplication to occur. However, because B has momentarily produced data faster

than A and filled the shared inter-FPGA FIFO, the system has deadlocked.

To avoid deadlock resulting from shared paths in a network, virtual channels are

introduced to break dependence cycles [12]. Virtual channels are independent buffer

resources which multiplex the shared path. Because the virtual channel buffers are

independent, the virtual channels do not block each other. Choosing the number

of virtual channels at the router requires knowledge of the specific communication

68

Figure 5-4: A deadlock arising from a data dependence in a shared resource.

being carried out on the network. In traditional computer architectures, deciding the

number of virtual channels is a tractable problem since the communications behavior,

usually some form of coherence protocol, is known statically and dependencies can be

explicitly broken at design time by inserting a minimal number of virtual channels.

However, reasoning about the communications dependencies of an arbitrary latency-

insensitive program is difficult. Therefore, the LIM compiler must allocate a virtual

channel to each latency-insensitive channel crossing between FPGAs. Virtual channel

allocation alone is not sufficient to ensure deadlock freedom, because full virtual

channels can still cause head-of-line blocking across the shared physical channels. To

resolve this issue flow control across is introduced on each virtual channel, ensuring

that every message injected into the shared physical interconnect will eventually be

drained.

Together, universal virtual channel allocation and flow control are sufficient to

guarantee that the multiple FPGA implementations produced by the LIM compiler

69

do not introduce deadlocks into previously deadlock-free latency-insensitive designs.

This property is an easy corollary of the Dally-Seitz theorem [12], which guarantees

that virtual channels can multiplex a shared physical substrate without deadlock-

ing, so long as the the dependency graph of the virtual channels is acyclic. Since

the network formulation presented in this thesis provides a virtual channel for each

latency-insensitive channel, it must trivially have no dependence cycles. Thus, de-

pendent channels are prevented from blocking one another and deadlock is avoided.

5.2 Channel Marshalling

The first stage in inter-FPGA routing is channel marshalling. Router widths are fixed

statically to simplify the implementation of router hardware, but latency-insensitive

channels, whose widths are determined by the type of the data carried by the channel,

may be arbitrarily wide. Therefore, a packetization scheme is needed to map wide

channels in to a fixed-width packet format. Since all communications channels and

channel widths are statically determined at compile time, the compiler can infer a

bit-optimal packet protocol for each channel.

The LIM compiler will instantiate an optimal protocol for each channel based on

the width of the data transported by that channel and the width of the router to which

the channel has been allocated. These protocols are specific instantiations of a header-

body packet schema in which the header contains information about the packet length,

type, and virtual channel. There are three possibilities for implementation, each of

which is shown in Figure 5-5. First, in the case that the data width is wider than

the physical channel, marshalling and de-marshalling logic is automatically inserted.

This logic takes the form of a shift-register. Since headers tend to be only a few bits

wide, a portion of the payload is packed in with the header to improve bandwidth

utilization. The second case is that the data width is small enough to fit into a single

body word, but too large to be packed in with the header. In this case, no shift

register is needed, but a separate header word is needed. Finally, if the data width

is sufficiently small, the packet header and body will be bit-packed together into a

70

single word transmission. Since the data communicated between FPGAs tends to be

narrow, this is a significant performance optimization.

5.3 Efficient Virtual Channel Buffering: the SRAM-

MultiFIFO

LIM-compiler-generated networks require flow control on a per channel basis to guar-

antee functional correctness in multiple FPGA implementations. This is a seemingly

costly proposition, since the high latency on the inter-FPGA interconnect implies the

need for large amounts of buffering to utilize the full interconnect bandwidth. The

inter-FPGA latency appears to create a cost-performance tradeoff between buffering

per virtual channel and the performance and area of the router, since too little buffer-

ing can cause the sender to stall before the receiver even begins to receive packets,

while too much buffering appears to reduce the FPGA area available to the user

design. Indeed, a naive, register-based flow control implementation with buffering

sufficient to cover a round-trip latency of 16 cycles requires half the area of a large

FPGA. Physically, this kind of implementation does not scale beyond a pair of FP-

GAs.

The problem with the register-l)ased design is that it is unnecessarily parallel and

therefore needlessly wasteful of resources. In any cycle, any of the registers in any of

the buffers can potentially supply a data value to transmit. However, observe that the

inter-chip bandwidth between FPGAs is limited to a single, though wide, data word

per cycle. This bandwidth limitation means that to sustain the maximum rate across

the channel, exactly one channel needs to be enqueued or dequeued in any given

cycle. Therefore, a structure with low parallelism, but with high storage density, is

sufficient to sustain nearly the maximum throughput of the physical channel.

Most modern FPGAs are rich in SRAM, with a single chip containing megabytes

of storage. Although large aniounts of memory are available, the bandwidth to each

slice of this memory is limited to a single word per cycle. Because inter-FPGA

71

L-
a)

a)

(U

Header

(a) Marshalled Packetizer

Header

(b) Unmarshalled Packetizer

(c) Packed
Packe-
tizer

Figure 5-5: Channel packetization hardware. Typical headers are only a handful of
bits. The style of packetization is automatically chosen by the compiler at compile
time.

72

comrinunication is similarly constrained, in terms of bandwidth, virtual channels with

relatively large buffers can be mapped onto the resource-efficient SRAM without

significant performance loss. This optimized storage structure, depicted in Figure 5-

6, is called the SRAMMultiFIFO (SMF) [181. Since the SMF maps many FIFOs onto

a single SRAM with a small number of ports, it must introduce an arbiter to choose

which FIFO will use the SRAM port in a given cycle. FIFOs mapped to the SMF

have uniform and constant size which siiriplifies control logic at the cost of potentially

unused storage space. Thus, the SMF may increase the amount of buffering in the

inter-FPGA network over a registered implementation. However, this area penalty is

inconsequential due to the large number of SRAM resources on the typical FPGA.

Because the bandwidth of the SMF is limited, book-keeping logic can also be time

multiplexed and book-keeping meta-data stored in area efficient LUT-RAM.

The SMF, itself, is fully pipelined, and each mapped FIFO can utilize the full

bandwidth of the SRAM. However, FPGA-based SRAM typically have a single cycle

of read latency, which requires that channels reading data out of the SMF provide

extra buffering in the case that they require full pipelining. When channels win the

SMF arbitration, they receive notification from the SMF in order to update their

own internal meta-data, so that they do not request more data than they can buffer.

In practice, only high-bandwidth channels require extra buffering, since only these

channels have enough traffic to exploit full pipelining.

Area usage for SMF and a functionally similar register-based FIFO implemen-

tation are shown in Table 5.1. The SMF scales in BRAM usage as FIFO depth or

the number of channels increases, but typical designs consume only around 2% of

slices on a Virtex-5 LX-330T. The low area usage of the SMF-based router makes it

amenable to FPGA platforms with a high-degree of inter-platform interconnection.

On the other hand, registered buffer schemes can quickly exhaust large amounts of

area. Moreover, the largest implernentable registered FIFO router has no better per-

formance than a more resource efficient, but deeper SMF router, despite the inherent

parallelisn of the registered implementation.

The density of the SMF fundamentally changes the way that inter-FPGA commu-

73

Figure 5-6: FIFOs are folded onto a single logical SRAM resource. Each FIFO in the
SRAM represents a buffer for a single virtual channel

74

LUTS Registers BRAM Relative
Performance

Registered FIFOs, depth 8 10001 22248 0 1
Registered FIFOs, depth 32 25494 68813 0 1.11
SRAM Multi-FIFOs, depth 32 4996 4778 2 1.09
SRAM Multi-FIFOs, depth 128 5225 4850 8 1.11

Table 5.1: Synthesis and performance metrics for various router architectures. Results
were produced by mapping a simple HAsim dual core processor model to two FPGAs.
In this design, 29 individual channels and 1312 bits cross the inter-FPGA boundary.

nication network are designed. Unlike processor network on chips, which multiplex

virtual channels and offer extremely limited in-network buffering to conserve area,

SMF based routers can liberally allocate virtual channels to each connection travers-

ing the inter-FPGA channel without a significant area or performance penalty. As a

result, issues related to shared virtual channels [36] do not apply to the routers and

routing protocols built around the SMF. Because SMF provides deep buffers, each

flow-controlled inter-chip channel can sustain the full interconnect bandwidth across

high-latency physical interconnects. Deep buffers also reduce flow control traffic,

minimizing throughput loss.

Routers use a simple block-update flow control scheme. Each virtual channel

source keeps a conservative count of the number of free buffer spaces available at

the corresponding virtual channel sink. Each time a packet it sent, this count is

decremented. The virtual channel sink maintains a count of the free buffer space

available, which is updated as user logic drains data out of the virtual channel. When

this free space counter passes a threshold, it is set to zero and a bulk credit message

is sent to the virtual channel source. These credit messages are given priority over

other latency-insensitive channels to improve throughput.

5.4 Routing In Parallel: Multiple Lane Routers

With the channel marshalling and the SMF-based routing layers described in the pre-

vious sections, the LIM compiler can construct fully functional inter-FPGA routers.

75

Figure 5-7: De-merger microarchitecture. Each lane is steered to a separate SRAM-
MultiFIFO

To build such a single-lane router, the LIM compiler simply instantiates an SMF

and ties all inter-FPGA channels to that that single SMF. This single-lane router is

sufficient to build any inter-FPGA network required by the LIM compiler. However,

the physical properties of FPGA systems and the properties of latency-insensitive

programs suggest that the naive single-lane router architecture will be suboptimal in

most cases.

Modern inter-FPGA interconnects tend to have high-bandwidth and switch at

very high frequencies, particularly if the interconnect primitive is implemented in

silicon. As compared to the interconnect, which achieves ASIC-like performance,

user programs switch at relatively low frequency. Thus, to take advantage of the full

bandwidth offered by the inter-FPGA interconnect, the interconnect interface must

be widened, in terms of bits, until its bandwidth in the slow program clock domain

is matched to the physical interconnect bandwidth. For example, consider the ACP

platform, described in Section 7.5. The HAsim models of Chapter 9 clock no faster

than 80MHz on the ACP FPGA platform, described in Chapter 7. The low-voltage

differential signaling (LVDS) inter-FPGA channel provided by the ACP is 256 bits

wide and clocks at 200MHz. Thus, to match the bandwidth of the interconnect, the

router interface must be widened to at least 512 bits in the program clock domain. The

ACP interconnect is implemented in the FPGA fabric, but for the silicon interconnects

implemented in recent FPGAs, the device interface must be widened by a multiple

of four or five to deal with the clock ratio differential.

Inter-FPGA interconnects exposes a wide interface, but this bandwidth is wasted

76

14

12

10

0

-~| |

Z

0

20 20-40 40-60 60-80 80 100 100-120 >120

Link Width

Figure 5-8: Widths of inter-FPGA channels in a two-FPGA partitioning of HAsim.

if all the exposed bits are not used to transport useful data in each cycle. Thus,

the router infrastructure built on top of the physical interconnect must be tuned to

the behavior of the user program channels to minimize bandwidth wastage. If all

the channels in a program are wide, then the naive, single-lane router architecture is

sufficient to maximize performance. However for a typical program like HAsim, most

latency-insensitive channels are narrow, as shown in Figure 5-8. All of the channels

are much narrower than typical inter-FPGA interconnect interfaces, and most chan-

nels are less than 20 bits wide. Not only do narrow channels occur frequently, but

also, they bear most of the traffic in the design, as show in Figure 5-9. Thus, for

HAsimn, a single-lane router architecture is likely to be suboptimal. Of course, HAsimn

is a single example of a hardware design and is not necessarily representative of all

programs of interest. However, narrow channels are common in hardware designs,

since engineers try to economize for data sizes to improve design metrics, like area

and frequency.

Since latency-insensitive channels are generally narrow and the inter-FPGA in-

terconnect is wide, it is clear that a good router implementation must allow multiple

channels to transmit data simultaneously on parallel lanes. The simplest framing of

this problem is, for a m channels and a router with n lanes, to select n channels and

transmit their data on the n parallel lanes of the router. Indeed, a single lane router

produced by the LIM compiler is a base case of this problem in which n = 1. If n is

greater than one, then a crossbar is needed to select among the m lanes.

77

0.8

-

0.4

0.2

<20 20-40 40-0 60-80 80-100 100-120 >120

Link Width

Figure 5-9: Activity of inter-FPGA channels in a two-FPGA partitioning of HAsim.

A crossbar router is optimal in terms of bandwidth usage: all router lanes are

guaranteed to be filled, if there are enough channels with data. The difficulty in

building a crossbar is that the crossbar selection network scales at least linearly with

the number of lanes that must be allocated. For wide inter-FPGA interconnects,

there may be as many as ten lanes, making a crossbar prohibitively expensive to

implement. Not only is the crossbar costly to implement, it is likely to be wasteful

of resources: most channels do not have much traffic. Figure 5-10 shows a traffic

distribution for HAsim, in which the four most-heavily-loaded channels account for

more than 80% of all inter-FPGA traffic.

Instead of synthesizing a costly crossbar to obtain a parallel router implementa-

tion, the LIM compiler synthesizes routers consisting of several independent lanes to

which channels are statically assigned at compile time. Each lane has a set of ded-

icated channel marshalers and an arbiter, which together produce some packetized,

fixed-width data format specific to that lane, using the packetization schemes dis-

cussed in the previous section. These lane packet streams are merged into a single

transmission bundle for physical transport. At the merger, each lane is extend to

include a valid bit denoting whether the lane contains valid information in the par-

ticular transmission bundle. Bundles are injected into the physical layer on demand,

when at least one lane has some data to send.

On the ingress side, the corresponding de-merger, shown in Figure 5-7, takes the

bundle and steers the data and the valid bit for each lane into a FIFO. In the second

78

1

0.8

0
W

0-

0Q..

E

0 0.

0.2 -

0
0 5 10 15 20 25

Channels

Figure 5-10: A cumulative distribution of the channel traffic loads in HAsim. HAsim

is dominated by a handful of heavily loaded channels.

79

cycle, the valid bit is examined, and data is either passed up to the channel routing

layer or dropped if it is invalid. Buffering in the de-imerger is systolic. The intention

in providing a separate FIFO is to ensure that separate lanes do not block each other,

which can result in bandwidth loss. Note that if the lanes did block each other,

performance would be lost, but correctness would still be maintained because higher

level flow control guarantees the eventual drainage of all data values injected into the

network.

Lanes provide a degree of parallelism in the network architecture, but the SMF

buffer is only able to service a single word per cycle. To resolve the SMF bottleneck,

each lane is provisioned with an independent SMF for its channels. Thus, lanes can

operate independently and are fully parallel.

Counter-intuitively, multiple-lane routers, even routers with unrealistically large

numbers of lanes, are actually similar in size to single-lane routers. The chief costs, in

terms of FPGA area, of SMF router implementation are the combinational structures

needed to manage the channel flow control, to fan-in the channel data paths, and to

arbitrate the external interconnect. These structures scale log-linearly in size and

delay with the number of channels tied to the the router. Figure 5-11 shows an

example of a router arbiter: the channel state is linear in the number of channels,

but the priority selection network scales logarithmically with in area and delay with

the number of channels. By implementing multiple lanes to route a fixed number

of channels, the logarithmic term in area and delay can be reduced, while the linear

term is distributed among all the lanes. Table 5.2 shows the implementation area of

various router configurations. Introducing many lanes increases the area utilization

of the router infrastructure by only 10%, or less than 1% of the total FPGA area.

Much of the motivation for implementing routers with multiple lanes involves

improving the performance of narrow channels, since they are the common case in

many programs. However, narrow lanes do not necessarily reduce the performance of

wide channels: rather than serialize on a single lane, wide latency-insensitive chan-

nels may be partitioned into a set of narrow, but parallel channels and allocated

separately across several narrow lanes. This grants wide channels dynamic access to

80

K I I
O(channels)

QJ

0

Figure 5-11: An example of log-linear scaling in the synthesized routers. Some logic
is required for each channel, but some logic scales logarithmically with the number
of channels.

LUTS Registers BRAM

1 lane 20509 20607 41
2 lanes 21162 20792 30
3 lanes 21240 20957 20
4 lanes 21785 22151 21
8 lanes 22421 23587 20

Table 5.2: Synthesis metrics for various router configurations. Each router services
40 channels, which are evenly divided among the router lanes. Xilinx 14.1 was used
to produce bit-files. Only the number of lanes and the channel-allocation were varied.

the full bandwidth of the interconnect, while allowing narrow channels to share the

interconnect.

The routers produced by the LIM compiler may have many parallel lanes. How-

ever, the number of lanes and the static allocation of channels to lanes are important

and program-specific synthesis problems. Chapter 6 will explore algorithms for auto-

matically selecting good router implementations based on the behavior and properties

of specific programs.

5.5 Physical Interconnect

The physical interconnect layer consists of specially annotated physical devices which

carry data between platforms. The description of these interconnects is included in

81

I

the syntax of the environment description file described in Section 4.2.2.

The requirements placed on the physical interconnect for interoperability with the

synthesized network are minimal. They must provide guaranteed, in-order delivery

of messages, channel-level flow control signals, and a self-initialization mechanism.

Given the satisfaction of these requirements, the backing implementation of the in-

terconnect is irrelevant from the network's perspective and could range from LVDS

to Ethernet.

An important consequence of the guaranteed delivery requirement placed on the

platform interconnect is the creation of an automatic, distributed initialization for

the entire multiple FPGA program: a message injected into the inter-platform in-

terconnect must be delivered, and so interconnects cannot admit messages until they

are themselves initialized. As platforms come online, their interconnects self-initialize

and their modules begin executing. Modules continue executing until they stall wait-

ing for communications to or from an uninitialized interconnect. Because distributed

initialization is implicit in the local initialization of the physical interconnect, routers

need not provide global agreement on when it is safe to begin transmitting data.

5.6 Router Instrumentation

For instrumentation purposes, the synthesized routers can be automatically aug-

mented with statistics collection facilities. These statistics are automatically con-

nected to the statistics service provided by the LEAP FPGA operating system. Statis-

tics instrument both the individual channels and the router infrastructure, including

bandwidth and occupancy information, providing valuable insight into both program

behavior and the operation of the synthesized network. Indeed, some of the feedback-

driven algorithms described in Chapter 6 make use of these statics.

82

Chapter 6

Compiler Optimizations

Chapter 4 described a flow for compiling designs described using latency-insensitive

channels. One of the chief activities of the LIM compiler is the automatic synthesis

of a network capable of carrying inter-module latency-insensitive channels between

FPGAs. This chapter will explore how the properties of latency-insensitive programs

can be leveraged to improve the performance of the synthesized inter-FPGA network.

The techniques presented in this chapter focus on local optimizations: point-to-point

channels and single inter-FPGA links. Global optimizations, such as optimal link

routing between FPGAs, are important avenues of research, but are left for future

work.

The goal of the optimizations presented in this chapter is to maximize the goodput,

the total amount of useful data, carried between a pair of FPGAs. The preceding

chapters discussed the synthesis of the inter-FPGA network at a high level, but several

details of the parameterization of this network were omitted. For example, Chapter 5

described the architecture of a router with multiple, parallel lanes. However, neither

how the number or the width of the lanes are chosen nor how latency-insensitive

channels are assigned to the lanes of the router was explained. Section 6.2 will

examine how the compiler maximizes goodput by making intelligent choices for these

parameters. Section 6.3 will examine a different tactic for maximizing goodput: type-

specific compression. Compression improves overall system goodput by removing data

from the network, decreasing overall network utilization.

83

The optimizations presented in this chapter are static, that is, they are determined

at compile time. Some optimization-enabling properties of channels are also static,

for example the type and width of the channel. However, the dynamic behavior

of latency-insensitive channels can also be leveraged to improve network synthesis.

Dynamic properties, such as channel utilization can be obtained by inserting statistic

collectors into the synthesized inter-FPGA network and observing its behavior at

runtime. Dynamic information sources imply feedback-driven compilation, since they

must be collected from a functional, pre-existing implementation of the same design.

HAsim-style processor models, which will be described in detail in Chapter 9, illus-

trate the need for feedback-driven optimization. HAsim is characterized by tight feed-

back loops between modules, making its performance very sensitive to inter-module

communications latencies and thus an excellent target for network optimization. Con-

sider the case of two channels crossing between a pair FPGAs. One channel carries

information from the simulated processor's decode stage. It has a narrow bit-width,

but high utilization. The other channel is the memory interface between the last-level

cache and backing main memory. This channel is hundreds of bits wide. However, be-

cause programs generally have good locality the utilization of this channel is very low.

Clearly, any network carrying these channels should be optimized to ensure that the

high-utilization channel is given priority over the low-utilization channel. However,

the behavior of both of these channels is highly input-dependent. Thus, for the LIM

compiler to automatically discover this property and build an optimized network, it

must build an instance of HAsim with enough instrumentation to discover channel

utilization, run this instance, and then compile a new, optimized version of HAsim

using the feedback derived from the earlier implementation.

Figure 6-1: Inter-FPGA loop test. A and B are two latency-insensitive modules.

6.1 Loops: A Micro-kernel for Optimization Eval-

uation

The behavior of optimizations when applied to real programs can be difficult to

predict. Thus, a good test case is needed to verify that optimizations function as

expected. The transformations presented in this chapter largely focus on the opti-

mization of the inter-FPGA network synthesized by the LIM compiler. The loops

test, shown in Figure 6-1, is a simple design for testing such optimizations: latency-

insensitive channels go back and forth between a pair of modules on two FPGAs,

creating a long, data-dependent pipeline.

Despite its simplicity, the loops test exhibits a number of useful features. First, it

scales easily, by parameter, to large numbers of inter-FPGA crossings. This scaling

gives a knob by which to generate varying degrees of pressure on the various com-

ponents of the inter-FPGA communications complex. Second, the highly predictable

behavior of the loops program make performance bugs easier to detect and fix. Third,

the loops test should be relatively easy to optimize - the connections are plentiful,

independent, and largely uniform. Finally, because it is so simple, its performance

under optimization is easy to predict and to understand. As such, it is helpful in the

early evaluation and validation of optimizations to the inter-FPGA network. In the

following discussion of optimizations, the loops test will be used as both a means to

gather intuition about the behavior of the optimizations and as a limit study for evalu-

85

ating the maximum practical performance improvement for each of the optimizations

presented.

6.2 Lane-Sizing and Channel-Allocation

The preceding chapters discussed the construction of the inter-FPGA network. The

most important element of this network was an inter-FPGA router with multiple,

statically parameterized lanes. Details of the parameterization of this router were

omitted in the discussion of network synthesis. In particular, two decision problems,

the number and the width of the lanes and the assignment of latency-insensitive

channels to the lanes of the router, were deferred. The former problem, lane-sizing,

and the latter problem, channel-allocation, will be considered jointly in this section as

they are deeply related. Indeed, lane-sizing ultimately determines channel-allocation,

since the channels themselves have have both variable width and variable levels of

traffic. However, there are many choices of lane sizes, and the ultimate measure of

goodness for each lane-sizing is the quality of the channel-allocation obtained. Thus,

a good solution to either problem must consider both problems simultaneously. This

section will evaluate a number

6.2.1 Complexity of Lane-Sizing and Channel-Allocation

The goal of lane-sizing and channel-allocation, in the abstract, is to minimize program

runtime by maximizing inter-FPGA network throughput. However, it is difficult to

reason statically about the performance of specific lane-sizings and channel-allocations

due to complex timing dependencies between channels that may exist in a user pro-

gram. For example, two channels may always be simultaneously active. Assigning

these channels to the same lane is clearly bad for throughput, but the relationship of

the channels is difficult to derive, if only coarse-grained feedback measurements are

available.

The sizing and allocation problems can be simplified by ignoring all correlation

between channels and simply considering the relative loadings of channels. The goal

86

of this simplified problem is to minimize the load of the maximally-loaded lane, the

minimax lane. Though semantically precise, even this problem is still computa-

tionally difficult. Under this formulation, the channel assignment is similar to the

well known multiprocessor scheduling problem, while the lane-sizing problem resem-

bles integer bin-packing. Taken together, the two problems strongly resemble to the

stock-cutting problem [60]. Unfortunately, all of these problems are NP-complete, as

are lane-sizing and channel-allocation.

If the lane sizes are known, the channel-allocation problem is NP-complete by

reduction from the multiprocessor scheduling problem. The multiprocessor scheduling

problem involves running a set of processes, each with a statically known runtime,

across m symmetric processors. The objective is to minimize the time until the last

process finishes.

The multiprocessor scheduling problem can be solved using a channel assignment

algorithm, by creating a lane allocation with M lanes of single-bit width, represent-

ing the M machines to be scheduled. The processes to be scheduled are represented

as single-bit channels with loads corresponding to the run-time of the process. An

algorithm solving this channel-allocation problem will produce a solution that rep-

resents a run-time minimizing assignment of processes to processors. Thus, through

this constant-time transform, a processor-scheduling problem can be converted into a

channel-allocation problem and solved using any algorithm for channel-allocation.

Therefore, because a polynomial time solution of channel-allocation would imply

a polynomial solution to the known NP-complete process scheduling problem, the

channel-allocation problem must itself be NP-complete.

The combined lane-sizing and channel-allocation problem is also NP complete,

again by reduction to the processor-scheduling problem. As in the previous proof,

processes are converted into single-bit wide channels with loading factor equal to

their runtime and the interconnect size is set to M. This formulation is fed into

an algorithm for solving the combined lane-sizing and channel-allocation. The key

difference in the solution returned by the combined algorithm and that returned by

the channel-allocation solver alone is that some lanes may have width larger than one.

87

These supernumerary bits correspond to unused processors in the process assignment.

When considered together, the lane-sizing and channel-allocation problem form a

joint optimization problem related to the NP-complete one-dimensional stock-cutting

problem [60]. The typical formulation of the cutting-stock problem involves cutting

a number of variously sized smaller rolls of paper from uniformly sized larger rolls of

paper while minimizing waste in the form of scrap paper. In the general formulation

of the cutting stock problem, the points at which the large roll is cut, the "knife-

positions," can change as often as is necessary to obtain an optimal solution. However,

in the one-dimension version of the problem, only one choice of knife allocation is

allowed. This problem has a clear relationship to the static formulation of the lane

sizing and channel-allocation. The wide inter-FPGA lane corresponds to the large

roll of paper, while wasted bandwidth is the analog of wasted paper in the cutting

stock problem. In router construction, lane sizes, that is, the knife-edge positions,

are fixed at compile time.

Optimal solutions to static lane-sizing and channel-allocation are difficult to de-

termine. Worse, optimal solutions to the static problem do not guarantee an optimal

solution to the dynamic channel-allocation and lane-sizing problem. In particular, the

figure of merit in the static model, minimax lane loading, does not capture dynamic

timing and dependencies between channels, instead treating channels as independent,

interchangeable entities. In cases where channels do have dependence on one another,

it is possible to achieve suboptimal performance if dependent channels are assigned to

the same lane. However, the results presented in Section 6.2.3 will show that minimax

optimization does a reasonable job of optimizing real program performance.

6.2.2 Channel-Allocation and Lane-Sizing in the LIM Com-

piler

To facilitate experimentation with different algorithms, lane-sizing and channel-allocation

are implemented as a discrete phase of the compilation process. These two phases

occur together, after the channel routing step discussed in Section 4.3.3, and are

invoked per pair-wise inter-FPGA interconnect. In the current LIM compiler, lane-

sizing and channel-allocation are iterative. The LIM compiler does not currently

consider simultaneous solutions to the two problems, even though the relationship

between lane-sizing and channel-allocation and the stock-cutting problem suggests

that these problems should be considered jointly.

The lane-sizing algorithm first proposes a lane-sizing, and then that lane-sizing

is used to produce a provisional channel-allocation using some channel-allocation

algorithm. This provisional channel-allocation is then evaluated by comparing its

minimax with the previous best known lane-sizing and channel-allocation, and the

better solution is retained. After some non-zero number of iterations, the best solu-

tion, in terms of minimax is reported to the the network synthesis code for physical

implementation. Although some algorithm combinations may perform many itera-

tions in search of the best minimax allocation, all schemes will minimally test a few

different fixed numbers of lanes.

Some of the algorithms presented in this section are feedback driven, in that they

rely on channel loading information collected from some previous run of the program

under consideration. Prior to attempting lane-sizing and channel-allocation, the com-

piler takes a statistics file containing run-time-generated channel loads as an optional

input and uses the relative amounts of traffic on each channel to assist in determin-

ing the optimal lane-sizing and channel-allocation. Channels in the compilation are

matched to the statistics file based on name. If no statistics file is provided or if the

statistics file is incomplete, channels without loading information are assigned the

average of all the other loads. If no loading information is given all channels are as-

signed the same default weight, which has the effect of generating a uniform, random

assignment of channels.

There are several tactics for producing solutions to NP-complete problems. The

most obvious algorithm is a brute-force search across the space of potential solutions.

This approach is generally infeasible, but may be feasible if certain dimensions of the

problem space are constrained. Randomized solutions are another possibility. Yet a

third possibility are heuristic algorithms, in which some structure of the underlying

89

problem is exploited to produce a problem solution in polynomial time. The solution

produced by the heuristic may be suboptimal, but generally heuristic algorithms

have good performance bounds. The remainder of the section explores algorithms

from each of these categories as they pertain to lane-sizing and channel-allocation.

When solving an NP-complete problem, an optimal solution generally requires

a brute-force search among all possible solutions. If the cardinality of the solution

space is large, then this approach is infeasible. However, for some NP-complete

problems, brute force solutions are feasible if certain dimensions of the problem are

suitably constrained. In the case of channel-allocation, brute force involves testing

all possible mappings of channels to lanes, an exponential problem with complexity

Q(lc), while lane-sizing involves testing O(wl)1 lane-sizings, where c is the number

of channels, w is the lane width, and 1 is the target number of lanes. The search-

space of channel-allocation precludes brute-force solutions in all but toy programs,

since real programs have, minimally, a dozen channels. However, if the inter-FPGA

interconnect is narrow or if the number of lanes is small, brute-force methods can

be applied to lane-sizing. Thus, the first algorithm for lane-sizing is Brute-Force.

Brute-Force lane-sizing evaluates all possible combinations of lane widths for a given

interconnect width and a fixed number of lanes, choosing the lane-sizing with the best

minimax score.

Since brute-force may be computationally infeasible for some problem sizes, subop-

timal tactics are necessary to achieve a solution to the sizing and allocation problems.

The most basic scheme for solving the channel-allocation problem is randomized uni-

form allocation. In this scheme, the set of channels are randomly permuted and then

assigned to lanes sequentially, balancing the number of channels assigned to each lane.
1The cardinality of set of possible lane sizes is deeply related to the binomial theorem. The

recurrence for an upper-bound on the number of sizings is S, = S S,_1. Intuitively, this means
i= 1

selecting the width of one lane and then recursing to partition the remaining bits into lanes. For
a fixed number of lanes, the recurrence forms a diagonal of Pascal's triangle. For three lanes and
variable width, the number of sizings are the triangular numbers 1,3,6,10,...; for four lanes the
number of sizings follows the tetrahedral numbers. This recurrence is, unfortunately, exponential
in the number of lanes, with closed-form formula: (W11)! If I is small, then the number of
lanes-sizings may be practically tractable.

90

No consideration is given to static or dynamic properties of the channels in this allo-

cation scheme. For lane-sizing, the simplest scheme is Uniform partitioning, in which

the inter-FPGA interconnect is divided into an equal number of equally-sized lanes.

Although these two techniques are simple and certainly suboptimal, they have one

important property: they require only statically available information about the pro-

gran. If, however, feedback about the dynamic behavior of the program is available,

more complex approximations become available.

The reductions in the previous section demonstrated the relationship between

channel-allocation and processor scheduling, a well-studied problem which has good

approximate solutions. Processor scheduling has an approximate algorithm known

as longest processing time (LPT) [22], which sorts the processes to be scheduled

according to length and then assigns the sequentially to the processor with the least

amount of assigned work. This algorithm has an optimality bound of (Q - 1)OPT,
where m is the number of processors. For small m of the kind that are typically

seen in router allocations, the LPT algorithm gives a very good bound on an optimal

allocation. The application of LPT heuristic to channel allocation is straightforward,

but requires information about the loading of each channel which must be obtained

from a previous run or simulation of the target design. To implement LPT channel-

allocation, the channels are sorted according to their traffic levels and then assigned,

in sequence, to the least loaded lane. The LPT heuristic camn also be applied to lane-

sizing: the channels are sorted according to load factor and the widths of the most

heavily trafficked channels are chosen as the lane sizes, with the left over bits forming

ain extra lane. Since the heavily loaded lanes are often narrow, this approach typically

results in many small lanes.

The lane-sizing and channel-allocation policies are independent of one another,

permitting the full cross-product of policies to be studied. However, once load in-

formation becomes available, combinations like Random/Longest-Job-First do not

make sense - sizing a lane for a specific channel and then assigning that channel to a

different lane is a poor policy.

91

1.1e+06 . - Iori§ Vb Frf/B'riff F6rce

1 e+06 - Longest Job First/Longest Job First -- .
Longest Job First/Uniform

900000 - Random/Uniform -.-.---

800000

700000

600000
E

5 500000

400000

300000

200000

100000
1 2 3 4 5 6

Lanes

Figure 6-2: Loops test performance with various lane allocation and sizing algorithms.
1

0.8

U0.6--

15.4

0.2
02

0 -'----___
12 34

Lane

Figure 6-3: Lane loads for a Uniform lane-sizing of the loops kernel. Longest-Job-First
allocation does an excellent job of load balancing.

6.2.3 Performance Results

Figure 6-2 shows the performance of the loops test when different allocation and

sizing algorithms are applied. As expected, Longest-Job-First channel-allocation does

a good job, even in the case of uniform lane-sizing, due to the simplicity of the test

case. The kink in the graph between 4 and 5 lanes occurs because the performance of

the loops test is determined by the lane with the most traffic, but because channel-

allocation is discrete, one lane happens to have an extra channel assigned. Figures 6-4

and 6-3 show that the heuristic channel-allocation and partitioning schemes are able

to utilizes all available inter-channel bandwidth for the simple loops kernel.

92

U

04

02

0
0 1 2 3 4

Total Lanes Used

Figure 6-4: Lane parallel utilization for a Uniform lane-sizing of the loops kernel.
This kernel saturates the inter-FPGA bandwidth.

03
0~

4.5e+06

4e+06

3.5e+06

3e+06

2.5e+06

2e+06

1.5e+06

1 e+06
1 2 3 4 5 6 7

Lanes

Figure 6-5: HAsim 16 core model performance with various lane allocation and sizing
algorithms.

93

Longest Job First-Brute Force

Longest Job First-Longest Job First --
Longest Job First-Uniform --

Random/Uniform ------

0.8-

U0.6-

40.4-

02

0
12 3 4

Lane

Figure 6-6: Lane loads for a Uniform lane-sizing. Longest-Job-First allocation does
an excellent job of load balancing.

0.8

0.6

20.4

0.2

0
0 1 2 3 4

Total Lanes Used

Figure 6-7: Lane parallel utilization for a Uniform lane-sizing. HAsim has limited
parallelism and many dead cycles.

Programs more complicated than the loops benchmark can also benefit from mul-

tiple lane routers. Figure 6-5 shows the performance of a 16 core HAsim model when

different allocation and sizing algorithms are applied. The performance improvement

for HAsim is much smaller than the performance improvement for the loops test,

in part because HAsim has much less traffic. Adding more lanes improves HAsim

performance until the total number of lanes is larger than four, with the largest gap

occurring when moving from one lane to two. As with loops, random allocation

fares poorly even for a small number of lanes, since high-utilization channels may be

assigned to the same lanes, inducing a performance bottleneck.

To understand why HAsim experiences limited performance improvements when

provided with more parallel lanes, it is necessary to dig a little deeper into the behavior

94

of HAsim. In contrast to the simple loops test, which is effectively a straight pipeline

capable of consuning all offered network bandwidth, HAsim has internal performance

bottlenecks that serve to limit the performance of the system. Indeed, Figures 6-7

and 6-6 show that a significant fraction of cycles in HAsim have no inter-FPGA

communication. This results helps explain why HAsim performance improves when

scaling to a small number of lanes: there are a limited number of opportunities for

parallelism in the network, and a handful of lanes are sufficient to capture most of

then.

In theory, LPT lane-sizing should outperform Uniform lane-sizing, because LPT

can choose-program specific lane sizes. Indeed, LPT does outperform Uniform in

some cases, but only by a small margin. The reason for the lack of performance

differentiation between the LPT and the Uniform lane-sizing scheme for HAsim is

twofold. First, HAsim has limited opportunities for performance improvement, and

these are easy to obtain. Second, in practice, the routers the two algorithms generate

have similar lane sizes. LPT typically chooses lanes sizes that are somewhat narrow,

since the heavily trafficked links are also narrow. However, beyond a two or three

lanes, uniform lanes are also narrow.

One of the chief concerns when facing a brute-force search is time complexity. Run-

times for the Brute-Force lane-sizing algorithm on HAsim are tolerable only for very

small problems. For HAsim (20 channels) and a wide interconnect (256-bits), it takes

tens of hours to test all possible lane-sizings for 4 lanes, far longer than the FPGA

implementation tool chain. Beyond 4 lanes, the brute-force search does not terminate

in a reasonable time frame. For evaluation, this is an acceptable run time, but for

deployment it is unacceptable. Moreover, as FPGA technology improves, inter-chip

bandwidths will scale and larger numbers of lanes will be required to obtain full inter-

chip bandwidth. Thus, Brute-Force is not a particularly good choice for production

deployments of the compiler since Brute-Force produces results that are similar to

the simpler algorithms.

Intelligent router parameterization by way of channel-allocation and lane-sizing

can produce significant performance gains in some applications.As designs continue

95

to scale, both in complexity and number of FPGAs, improving network throughput

will become increasingly important in producing high performance multiple FPGA

implementations.

6.3 Channel Compression

The previous section discussed optimizations that improve the parallelism and, thereby,

throughput of the inter-FPGA routers generated by the LIM compiler. However, these

improvements in throughput are intrinsically limited: at some point, the inter-FPGA

interconnects have been so finely divided that adding additional lanes actually re-

sults in performance degradation. Once the routers have been fully parallelized, one

of the only options remaining to improve performance is to reduce loading in the

inter-FPGA network. One approach to reducing this loading is to compress the data

transported between FPGAs.

At first glance, data compression seems both costly and potentially ineffective:

usual applications of compression in software involve either IP network communica-

tion or storage: slow, long-latency operations that hide the computational overhead

of compression. Otherwise, in software, even the simplest compression scheme will

degrade performance. For example, a FIFO communicating between two threads will

typically not be compressed, even if the potential for compression is high, since the

performance overhead of compression is far greater than the overhead of transporting

a few extra bytes.

Unlike software, where compression can be significantly more expensive than

communication, hardware compression is almost always cheaper than communica-

tion. Typically, compression algorithms involve fine-grained bit manipulations and

difficult-to-predict branch behavior, both of which are expensive and slow on general

purpose computers. In contrast, the fine-grained, parallel fabric of FPGAs is ideal

for compression. In the FPGA, these kinds of manipulations reduce to wiring and

small numbers of gates which can operate in parallel, and can often be completed

in less than a single cycle. The simplicity and speed of compression in FPGAs also

96

implies that even schemes which obtain very poor compression, schemes which would

completely destroy software performance, can result in application-level throughput

improvement when applied to latency-insensitive channels. Experimental results pre-

sented in this section will demonstrate than even a few percent compression can result

in a. ieasurable throughput gain.

This section examines the automatic application of compression to inter-FPGA

channels. Two general schemes for compression are presented. The first scheme lever-

ages static type analysis to automatically synthesize channel compression schemes.

The second scheme enables programmers to specify their own type-specific compres-

sion algorithms and integrate them into the LIM compiler.

Compiler assistance is necessary in the application of compression schemes, as

compression should only be applied to those latency-insensitive channels that cross

between FPGAs. For channels between modules located on the same FPGA, RTL

FIFOs are both the cheapest and highest performance implementation of latency-

insensitive channels. Instantiating a compression scheme on such a channel not only

wastes resources, but also degrades performance. The problem, then, with program-

mer instantiation of compression is that the programmer cannot necessarily predict

which channels cross FPGA boundaries. In the case that a compressed channel does

not cross an FPGA boundary, the compiler cannot remove programmer-instantiated

compression scheme, resulting in a performance penalty.

The schemes presented in this section are fully automated. If the compiler deter-

mines that a channel is compressible and that channel crosses an FPGA boundary,

then the compiler will automatically instantiate compression hardware for that chan-

nel as an augmentation to the inter-FPGA router. Otherwise, the compiler will

default to the normal implementation hardware for the channel.

Some of the optimizations and experiments in this section were conducted in

collaboration with Michael Adler.

97

typedef union tagged {
void Invalid;
data t Valid;

Maybe#(type t);

Valid

Figure 6-8: Syntax and bit representation for Maybe type.

6.3.1 Tagged Unions

In general, the LIM compiler treats channel types as opaque and always transmits the

all bits of the type, even if some bits are semantically invalid. If many bits of particular

data word are not semantically valid, then transmitting the whole word is wasteful.

Modern HDLs [4], [37] support tagged Unions, which extend the classical C union

construct with a tag field so that the type of the value stored in the payload may be

determined. Because the tagged Union construct explicitly carries information about

the type its payload, compression schemes for tagged Unions can be synthesized

automatically.

In hardware designs, tagged Unions often have differently sized members. For

example, the commonly used Maybe type, shown in Figure 6-8 has two members:

Valid can be quite wide, while Invalid is always a single bit. If the Valid leg

is sufficiently wide, then an inter-FPGA channel carrying the type must use either

multiple lanes to transport the data or serialize the transmission. In either case,

Invalid values needlessly occupy network resources that could be used to transport

useful data. If Invalid values are more common than Valid values, resource waste

can be significant.

Fortunately, tagged Union types can be compressed automatically by the com-

piler. There are two possible transformations for tagged Union depending on whether

the tagged Union channel is split across multiple lanes. In the case of a single lane,

the compiler can adjust the length of the marshalled packet depending on the type

of the tagged Union member being sent in the packet. For narrow tagged Union

98

mm mm ~1ll- - - - - - I -No W" -0 so-0..' -0Dl

Figure 6-9: An automatically generated compression scheme for the Maybe type. The
Maybe is transformed into two separate latency-insensitive channels, the tag and body.
The body channel is only enqueued if the tag is Valid. The two channels tie in to
the inter-FPGA router just like any other channels.

members, fewer packet chunks must be sent. Alternatively, the compiler may split

the tagged Union into physically separate channels. The advantage of this split-

ting is that the generated channels may be mapped onto distinct lanes, preserving

parallelism in the case of wide tagged Union members. Narrow members, on the

other hand, may inject messages on fewer of the generated channels, thereby sav-

ing bandwidth. To effect this kind of type compression, the LIM compiler directly

modifies the post-placement LIM graph: the compressed latency-insensitive channel

edge is replaced by a hyper-edge representing the compiler-generated compression

channels. These generated channels are no different than the channels expressed in

the user program, and thus do not affect the existing network synthesis phase of the

LIM compiler. An example of a generated compression scheme for the Maybe type is

shown in Figure 6-9. Here, the wide payload type is transmitted only in the case of

a Valid.

Programmers may not always express the types communicated on latency insensi-

tive channels using tagged Unions as a top-level type, even if tagged Unions appear

within the type communicated. Figure 6-10 shows an example of this case, drawn

from HAsim. The BTBResp type is a structure consisting of a wide Maybe type and a

small CPU tag. Since branches are relatively uncommon compared to other instruc-

99

I

Figure 6-10: User defined types may be automatically modified by the compiler to
expose opportunities for compression.

tion types, the typical value for this structure is Invalid, and compression would

be extremely useful in this case. To capture this type usage, the compiler supports

automatic hoisting of tagged Unions over struct types. In this case, the compiler

simply converts BTBResp to a Maybe of two structs, each of which has a CPU tag

at the router. This new type can be compressed using either of the tagged Union

compression schemes described above. Tagged Union hoisting is applied only within

the synthesized network, so as not to interfere with user program behavior.

In terms of area and performance, tagged Union compression is extremely simple:

it involves only a few gates and gate delays over the uncompressed implementation.

Thus, it not only composes well with other forms of compression, but requires no extra

utility analysis to apply: all tagged Unions of sufficient width are so compressed.

6.3.2 User-specified Compression

Static, type-based compression is useful for tagged Unions, but for other types the

compiler cannot generate compression schemes because the compiler has no way of

reasoning about the semantic meaning of types. To optimize non-tagged Union

types, the compiler requires programmer assistance. Consider, for example, the Maybe

type discussed in the previous section. In many cases, the Invalid leg of the Maybe

type will be more common than the Valid leg. For example, the HAsim A-Ports

of Chapter 9, which are used to convey timing information in processor models are

100

typedef struct {
CPUID Id;

Maybe#(Bit#(32)) Target;

BTBResp#(type t);

effectively a Maybe type. However, because most parts of the timing model, i.e. the

caches and network, are inactive for most model cycles, tagged Invalid is extremely

common. One possible optimization for this channel, then, is to apply run-length

compression to the Invalid leg. Rather than sending each Invalid separately, back-

to-back Invalid messages may be aggregated and transmitted en-block, dramatically

reducing the amount of network traffic at the cost of of slightly increasing channel

latency. In the case of the Maybe type for A-Ports, the programmer has specific

knowledge of the behavior of A-Ports latency-insensitive channels: the channels have

inbalanced token traffic and are latency-tolerant, due to the time-multiplexed simu-

lation in HAsim. Compression is possible for many channel types, but the compiler

is not able to leverage this high-level behavior automatically.

To enable type-specific channel compression schemes, the programmer needs an

interface into the LIM compiler by which these schemes may be specified. To provide

this interface, the LIM compiler leverages Bluespec typeclasses, which allow the user

to specify a set functions and modules associated with a particular type. To lever-

age the compression capabilities of the LIM compiler, programmers must provide an

instance of the Compress typeclass in their source code for each type that they wish

to compress. The Compress typeclass consists of a pair of straightforward modules:

mkCompressor and mkDecompressor, with interfaces shown in Figure 6-11.

The LIM compiler is able to test for the existence of Compress typeclass instances

for specific data types at compile time and will automatically instantiate compressors

for those inter-FPGA channel types that implement the typeclass. Compression is

implemented solely at the discretion of the compiler, and channels with types that

do not implement the Compress typeclass or that connect modules co-located on the

same FPGA are not compressed. The compiler supports full type polymorphism on

definitions of the Compress class. For example, the Compress instance for the Maybe

can support any payload type. At compile time, the types of the latency-insensitive

channels, which must be concrete, are unified by the LIM compiler against an ag-

gregation of potentially-polymnorphic instances of the Compress typeclass that have

been collected from the user source. If the channel type is successfully unified against

101

interface COMPRESSOR#(type tDATA, type tENCDATA);
method Action enq(tDATA val);

method Bool notFull();

method tENCDATA firstO;

method Action deqO;

method Bool notEmptyO;

endinterf ace

interface DECOMPRESSOR#(type tDATA, type tENCDATA);
method Action enq(tENCDATA cval);

method Bool notFull();

method tDATA firsto;

method Action deq();

method Bool notEmptyO;

endinterf ace

Figure 6-11: Interfaces for compression modules.

some instance of the Compress typeclass, the compiler will instantiate a compressor.

User-specified channel compression schemes are composable, both with other user-

specified compression algorithms and with the Tagged Union compression scheme

above. The Maybe run-length compression scheme itself produces a Tagged Union

type, which, for some widths, can be compressed using the scheme of the previous

section. To achieve composable compression, the compiler could iterate over the

compressed channels, applying any newly enabled compression schemes, until a fixed-

point is reached.

6.3.3 Performance Results

Figure 6-12 shows an application of run-length compression to several instances of

the loops micro-kernel with varying numbers of inter-FPGA channels. In this test,

the channels crossing between FPGAs have been converted to the Maybe type. The

compiler automatically discovers and applies a simple run-length compression scheme

102

on the Maybe channels. In this scheme, adjacent tagged Invalid values are collapsed

into a single data token. The loops test is bandwidth dominated, as shown in Figure 6-

3, resulting in dramatic performance increases as the probability of tagged Invalid

tokens increases. In the case of heavy inter-FPGA loads, compression can result in

as much as a 425% performance improvement.

Channel compression is most useful when the inter-FPGA channels are heavily

loaded. Under extremely light loads, compression may even degrade performance,

since it adds latency to communication. In the loops test, when there are relatively

few lanes crossing the inter-FPGA boundary, the performance gains due to channel

compression are much less pronounced, but still measurable. In the case of four inter-

FPGA loops, there is enough bandwidth between the FPGAs to service all channels

in parallel. However, even in this case, channel compression provides some benefit.

Since compressors must be implemented in hardware, they must necessarily be

finite in size. The Maybe compressor in this example can collapse at most seven

consecutive tagged Invalid tokens, limiting the maximum throughput gains. Com-

pressors may also add latency to some tokens: the Maybe compressor waits for several

cycles before issuing a compressed token in the hope that more tagged Invalid to-

kens will arrive. In the case that the inter-FPGA network is heavily loaded, this

latency is irrelevant, since tokens spend large amounts of time stalled at the network

routers. In the heavily loaded case, Maybe compression shows a small performance

improvement, even if tagged Invalid values are extremely rare. Figure 6-13 shows

the performance of a compressed implementation of the loops benchmark relative to a

non-compressed implementation for a light load. If tagged Invalid are uncommon,

compression results inl a small performance degradation.

Real applications also benefit from channel compression. HAsim channels carrying

A-Ports data are the most heavily loaded connections. They must transmit data

for each processor model cycle, and have around three times more traffic that the

channels with the next heaviest load. Indeed, in the performance results presented in

Chapter 9, the entire timing model was intentionally co-located on the same FPGA to

avoid having these channels cross an FPGA boundary. Figure 6-14, which considers

103

6

8 Loopbacks ---- ~
4 Loopbacks ...--..

(Di

E
0

(D3

i

0 - - ' - - - - - - - - - -

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability of Tagged Invalid

Figure 6-12: Loops test performance improves with automatic compression. Perfor-
mance has been normalized to using 0% tagged Invalid as a baseline. Network
loading scales linearly with the number of loops.

2

1.5 1-

0

a_

0.5 F

0

Figure 6-13:
cumstances.
of the Loops

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Probability of Tagged Invalid
0.8 0.9

Compression schemes may reduce performance under some limited cir-
Performance has been normalized to a non-compressed implementation
benchmarks.

104

2Loopbacks ---

- -

-

1

1

6

5

U)

E3
U)
a,)

)2

1Ms-d a No Compression [z-= \
Maybe Compression (4 lane) = \

No-Message and Maybe Compression (4 lane) E
Maybe Compression (8 lane) 1555

0 "' No-Message and Maybe Compression (8 lane) 'z
0

8 16 25 36 49 64

Number of Simulated CPUs

Figure 6-14: A 64-core HAsin model with A-Port compression. MIPS is a measure

of the performance of the simulator, and higher MIPS means faster simulation times.

Channel-allocation was performed using LJF.

HAsim implementations with timing models partitioned across FPGAs, confirms this

partitioning choice: without compression, the performance of this partitioning is one-

third of that obtained by placing the entire timing model on a single FPGA.

Applying channel-based compression schemes to the HAsim timing partition re-

covers nearly all of the performance lost due to the poor partitioning. The composition

of tagged Union compression with run-length encoding of the Maybe type more than

doubles the baseline performance. The broadly applicable tagged Union compression

scheme results in a performance gains of up to 50%.

The compression schemes presented in the section are largely compatible with the

lane allocation schemes of Section 6.2. Indeed, all benchmarks in this section made use

of multiple lanes and the Longest-Job-First channel allocation scheme. Good channel-

allocation and lane-sizing are essential in the context of automatic compression: the

tagged Union compression scheme creates many extra, very narrow channels to save

inter-FPGA bandwidth. Figure 6-15 shows the same HAsim partitioning, but with an

105

6

5

E 3
F15

0)2

1 No Compression
Maybe Compression (4 lane)tX

No-Message and Maybe Compression (4 lane)
Maybe Compression (8 lane)

No-Message and Ma be Conression (8 lane) l=

8 16 25 36 49 64
Number of Simulated CPUs

Figure 6-15: A 64-core HAsim model with A-Port compression. Channel-allocation
was performed with random lane allocation.

inter-FPGA network synthesized using the suboptimal random lane allocation algo-

rithm. As compared to the optimized implementation in Figure 6-14, the performance

of the unoptimized implementation is up to 33% lower.

Channel compression is highly effective in improving the performance of latency-

insensitive programs mapped to multiple FPGAs. However,the concept of channel-

specific compression is not limited to the formulation of multiple FPGA compilation

presented in this thesis. The compression schemes presented in this section exploit

general properties common to all hardware implementations, particularly those tar-

geting FPGAs. Thus, the approach to compression presented in this section will also

have application to any simulation infrastructure for hardware designs in which data

is transported over a multiplexed channel, for example SCE-MI [27] and some of the

other formulations of multiple-FPGA compilation that were presented in Section 3.1.

Although these infrastructures will always be performance-limited by the need to

maintain cycle accuracy, compression will still be beneficial when transferring data

between timing domains or between chips.

106

6.4 Conclusion

The optimizations presented in this chapter focused on improving the throughput

of the inter-FPGA network synthesized by the LIM compiler by increasing router

parallelism and reducing network traffic through compression. Many programs can

benefit from these optimizations, although those programs that use the most network

bandwidth to begin with will obtain the most improvement. For example, a well-

placed implementation of HAsim has internal performance bottlenecks that limit its

network bandwidth utilization. Thus, no matter how sophisticated the optimization,

the current implementation HAsim will enjoy marginally improved performance. On

the other hand, for programs with high network utilization, like loops, or the poorly-

placed HAsin models considered in Figure 6-14 and Figure 6-15, the network op-

timizations presented in this chapter can improve performance by several hundred

percent.

The implementations presented in this thesis consider only two-FPGA environ-

ments. As implementations scale to larger numbers of FPGAs, network traffic is likely

to increase in aggregate, both because designs are larger and because portions of the

designs are physically distant. The optimizations presented in this chapter will be

extremely beneficial in such scenarios.

107

Chapter 7

Platform Resources

The previous group of chapters discussed the implementation of programs described in

terms of latency-insensitive channels across multiple FPGAs. Most of this discussion

focused on the handling of the latency-insensitive channels themselves, from their

source-level syntax to the synthesis and optimization of a network for inter-module

communication. The treatment of latency insensitive channels is central to the thesis;

however, programs expressed in terms of latency insensitive channels still require

access to external resources. For example, some of the Airblue (Chapter 8) designs

need access to a radio front-end, while HAsim (Chapter 9) and H.264 (Chapter 10)

both benefit from access to a large, fast memory store.

Increased resources are one of the major advantages of multiple FPGA imple-

mentation: multiple FPGAs have multiple resources. For example, each new FPGA

board will have its own on-board memory, and designs using memory should benefit

from this extra resource. Moreover, a good multiple FPGA compiler should automat-

ically incorporate these new resources wherever possible, allowing latency-insensitive

modules to directly use the local resources of the platform to which they are mapped.

The reality of physical devices frustrates this goal. The chief difficulty in interfac-

ing with physical devices is that they are highly non-uniform. Each physical device

has its own size, timing characteristics, and overall behavior. In a typical FPGA im-

plementation, programmers tightly couple their design RTL to the RTL interface of a

nuanced, latency-sensitive physical device, such that it becomes difficult to separate

108

the user program from the physical device. Such RTLs are unable to take advantage

of new FPGA resources, since the consumers of the resource are not differentiated

from the resource itself. Worse, any portion of the design touching devices directly

becomes unportable, limiting the benefit of multiple FPGA compilation.

This chapter explores a solution to the device interface problem: abstract latency-

insensitive interfaces. Abstract latency-insensitive interfaces are both general and

platform independent, and it is the responsibility of the platform to provide a li-

brary supporting the interface. Programs written using these interfaces are shielded

from the details of the platform upon which they are executed, enabling programs

or modules of programs to move to any platform providing the abstract interface.

The chapter begins with a discussion of interfacing to unportable wired interfaces in

Section 7.1. The remainder of the chapter focuses on memory interfaces, since the

performance of the physical memory subsystem is often critical in determining the

performance of the overall program. The discussion begins with a simple, scalable

abstraction for memory in Section 7.2 and gradually builds up from a single FPGA

memory implementation in Section 7.3 to a description of a multiple FPGA memory

hierarchy in Section 7.4. Although the chapter will focus primarily on memory sys-

temns, the techniques presented are applicable to other kinds of physical devices. The

chapter concludes in Section 7.5 with a brief description and characterization of the

various multiple FPGA platforms targeted in this thesis.

7.1 Latency Insensitive Platform Interfaces

Before outlining a scalable nemory system for multiple FPGAs, it is first necessary

to reconcile physical, board-level resources to latency-insensitive design. The latency-

insensitive model of computation consists of modules communicating solely by way of

latency-insensitive channels. However, external devices have wired interfaces which

are likely to be latency sensitive and are not accommodated by this model.

To bridge the gap between the wired latency-sensitive world and the latency-

insensitive domain of the compiler, Parashar et al. [42] introduce the concept of plat-

109

form services: a virtualized latency-insensitive abstraction layer. Services essentially

give each kind of device a latency-insensitive interface described in terms of the Soft

Connections of Chapter 4. The implementation of the wired device driver behind the

latency-insensitive service interface may be complex and latency-sensitive, however

the interface shields the user-program from these details.

Service interfaces are intentionally generic, so that the interface may capture many

different physical instances of the device - the memory interface of Figure 7-1 makes

no indication of whether it is backed by a DRAM or an SRAM chip, or what the size

of the backing chip might be. The program simply demands a memory space, and it

is the responsibility of the backing implementation to provide this abstraction. This

generality enables the movement of device-using modules between FPGA platforms

without modifying module source.

From the perspective of a program, services behave like any other latency-insensitive

module, a property that the LIM compiler exploits in scaling services to multiple FP-

GAs. However, services are literally tethered to specific a FPGA and are not part of

the user program, in much the same way that UNIX device drivers are not a part of

the an application space program. Rather, services are supplied as interface libraries

associated with each FPGA platform, and are included as part of the execution envi-

ronment description of Section 4.2.2. Common services provided by most platforms

include memory and inter-FPGA communications, but application-specific platforms

may include network, wireless, or video interfaces. Most service are shared among

several clients, and their implementations provide an automatically multiplexed in-

terface. However, services need not be shared: radio-frequency (RF) front-ends are

presented as a simple point-to-point link.

Services bear strong resemblance to kernel modules in a Unix system, and Parashar

et. al. intended platform services to be analogs to the traditional monolithic OS.

However, in the context of multiple FPGA systems, a distributed approach to service

availability is necessary, in part because some platforms may have different sets of

available services. To ensure program correctness in this case, it is the responsibility

of the compiler to make a particular service on any platform on which it is needed.

110

Providing access to remote resources requires the synthesis of inter-chip networks.

However, multiple FPGA services will be constructed in such a way that the LIM

compiler will automatically synthesize the needed network infrastructure as part of

its normal compilation flow.

7.2 An Abstraction for Memory

Memory is fundamental to programs, hardware programs included. However, the

general state of memory systems built on modern FPGAs is primitive. The first task

that FPGA designers typically take on when mapping a design to a new board is

building a memory subsystem. This process involves instantiating some complicated

vendor-provided IP, writing device-specific test benches, and debugging, often with

limited visibility into the FPGA. There are two problems in this approach. First,

each memory has a slightly different interface behavior, and modules touching these

memories often absorb these behaviors. Second, because the user program and device

interface are tightly coupled, it becomes difficult for any automated tool to differen-

tiate the two and to assist in high-level implementation. Both of these difficulties

make typical program-device interfaces unportable. Multiple clients of memory and

multiple FPGAs compound these issues.

Inter-FPGA portability is essential to multiple FPGA implementation, but tra-

ditional memory interfaces and design paradigms limit portability. What, then, is

a better memory interface? A better memory interface meets the following three

requirements: first, the interface must be stable across all platforms; second, clients

must be able to access arbitrary amounts of memory, even if the target platform does

not have enough on-board memory; third, an arbitrary number of memory clients

must be supported. A memory interface meeting these requirements allows seam-

lessly porting memory-using designs or modules across multiple platforms.

The first question in designing a memory abstraction is the general interface

needed by the clients of the memory. In software, this general interface is the famil-

iar virtual memory: a large contiguous memory with apparently sequential, blocking

111

reads and writes. Indeed, virtual memory as it exists in modern processors satisfies

the first, second, and third interface requirements. First, virtual memory is a portable

abstraction, and ample proof of its portability is evident in modern software. Sec-

ond, virtual memory provides the illusion of a large, contiguous address space to user

processes, making these processes somewhat easier to program. This illusion also

provides portability between platforms with different amounts of physical memory.

Third, virtual memory provides protection, allowing multiple processes to share a

single physical memory without interfering with one another.

FPGA programs are similar to multiprocessing with respect to memory. FPGA

programs are inherently parallel, and each memory client in a design can be viewed as

an analog to a process in a traditional time-shared general purpose computer. Thus,

virtual memory is a good starting point for a hardware memory interface, since it

satisfies all the requirements put forth for portable memory interfaces and resem-

bles existing hardware programs. However, some modifications to software virtual

memory are needed in the context of hardware programs. Hardware is intrinsically

parallel and pipelined, and the blocking interface prescribed by software virtual mem-

ory would limit the performance of many designs. Therefore, a hardware interface to

memory must expose non-blocking memory operations to the programmer, so that the

programmer has the opportunity to hide memory latency through pipelining. Thus,

rather than the blocking read and write interface presented by general purpose ISAs,

a better interface consists of three operations:

interface MEMORYIFC#(type address, type data);
Action readRequst(address addr);
ActionValue#(data) readResponseO;
Action write(address addr, data newData);

endinterf ace

Figure 7-1: A general memory interface for hardware designs [17]. Actions in the
memory system occur in-order, with writes taking precedent over reads occurring in
the same cycle. The interface is described in the syntax of Bluespec SystemVerilog.

An important property of this non-blocking memory interface is that it does not

explicitly state how many operations can be in flight, nor how quickly in-flight op-

112

erations will be retired. Requiring the programmer to handle this ambiguity in the

program provides significant freedom in the implementation backing the interface.

For example, a small memory could be implemented as a local SRAM, while a larger

memory could be backed by a cache hierarchy. This freedom of implementation admits

of automatic tools capable of producing program-specific memory implementations.

Although the state of device and memory portability in FPGA is poor, there is

some recognition in industry of the need to support more general memory interfaces.

For example, the Xilinx MPMC interface [69] allows designers to interface to a DRAM

by way of several symmetric read-write ports. However, this interface still lacks an

abstraction of size, and is limited to the physical size of whatever DRAM memory is

attached to the board. Moreover, the interface has somewhat complex behavior in

terns of the order in which responses can be received from memory. These weaknesses

make the MPMC a poor candidate for a generic memory interface.

-Inter-Chip

Ring

Shared Virtual Memory
L2 Cache Handler

(On-board DRAM) (FPGA)

On-Chip Ring

Private Host Virtual
L1 Cache Memory

(FPGA SRAM)

User
Logic

Figure 7-2: A view of a scalable multiple FPGA memory hierarchy. Fast, private local
caches are backed by a shared last-level cache, which in turn is backed by global virtual
memory. The structure of the hierarchy is automatically inferred at compilation time.

113

7.3 Services on a Single FPGA: the Scratchpad

Memory Hierarchy

The previous section defined a portable and extensible interface to memory. This

section will examine the use of that interface in providing the memory needs of a

program running on a single FPGA: the scratchpads memory hierarchy. Not only

does the scratchpads hierarchy provide an implementation of the interface described

in the preceding section, it also provides the automatic synthesis of a program-and-

platform specific multi-level memory hierarchy. The original work on the scratchpads

memory hierarchy was conducted primarily by Michael Adler in [1], though the

evaluations presented here are novel.

The description of the scratchpads hierarchy, begins with a discussion of their

programming interface in Section 7.3.1. A basic implementation of the scratchpads

hierarchy is described in Section 7.3.2. This basic implementation is augmented with

an automatically synthesized memory hierarchy in Section 7.3.3. Finally, Section 7.3.4

presents a performance evaluation of the scratchpad memory hierarchy, based on the

methodology of Stricker and Cross [56].

7.3.1 Programming Interface

The scratchpads hierarchy generally conforms to the memory interface presented in

Section 7.2. Semantically, each scratchpad represents an independent memory space

of arbitrary size. Programs instantiate a scratchpad memory interface using the

syntax shown in Figure 7.3.1. Programs may instantiate an arbitrary number of

scratchpad interfaces, however, separate scratchpad memory spaces are not coherent.

Should the program require coherence between clients, the program must orchestrate

the coherence manually.

The syntax shown in Figure 7.3.1 instantiates a single memory space with 2 ADDRT

words of type DATAT. The scratchpad constructor takes two arguments. The first ar-

gument is a unique numeric identifier for the scratchpad, an artifact of interfacing with

114

MEMORY_IFC#(ADDR_TDATA_T) mem <-
mkScratchpad(VDEV.SCRATCH.FBUFY, SCRATCHPADCACHED);

Figure 7-3: An instantiation of a local scratchpad. This declaration creates a single,
unshared memory space of size ADDRT with data type DATAT. The system library

will automatically generate a backing memory hierarchy for this address space.

the Bluespec compiler. This identification can be thought of as filling the function of

a process ID in a conventional memory hierarchy, although multiple scratchpads in

the same module will have different ids. The ID is used to identify and route requests

from the particular scratchpad instance, and the user must ensure that these identi-

fiers are unique, for example by making use of an enumeration. The second argument,

which can be ignored until later in this discussion, directs the backing, synthesized

cache hierarchy to instantiate a local Li cache.

Externally, the scratchpad interface can handle data of any size. However, to sim-

plify hardware implementation, particularly in the portions of the scratchpad hierar-

chy shared among several scratchpads, the memory hierarchy uses a fixed-width im-

plementation. As a result, some marshalling or de-marshalling logic must be inserted

at the scratchpad interface if the data type of the scratchpad is different from the

internal data type, nominally 64-bits. For large data types, requests to the scratchpad

are broken into multiple requests for the backing memory, while smaller data types

are packed into the 64-bit word size. If it is needed, Marshalling logic is automatically

inserted at compile time.

7.3.2 A Basic Scratchpad Implementation

Given a program instantiating scratchpads, the most basic implementation of the

scratchpad hierarchy is to connect each scratchpad directly to host memory on an at-

taclied general purpose processor, ignoring both on-die memory and on-chip memory

in favor of a memory with better semantic properties. Connecting user scratchpads

directly to the host memory seems counterintuitive: the host memory is far away and

the point of an FPGA memory system is, generally speaking, performance. However,

115

Figure 7-4: A degenerate memory hierarchy with no central cache.

the host memory provides pre-existing support for arbitrarily large virtual memory

spaces, permitting any number of scratchpads to have any size, up to the maximum

size supported by the host. Leveraging the existing memory functionality of the host

greatly simplifies the hardware required to support scratchpads: the hardware sim-

ply produces requests and drains responses. Complex mechanisms like paging and

address translation are handled by software and hardware on the host machine.

In the basic scratchpad implementation, each declared scratchpad is logically tied

directly to a unique virtual memory space, with all memory requests going back

and forth to that memory. However, in practical systems, there is a single host

memory which is multiplexed among all user scratchpads. Because there may be

many scratchpads distributed throughout a program, a direct connection between

each scratchpad and the host memory interface is inefficient. Instead, as shown in

Figure 7-4, scratchpads are connected using a pair of latency-insensitive rings, wherein

each scratchpad and the host memory are ring stops. Memory requests flow around

one ring from the scratchpads to the host interface, while responses flow back from

116

the host to the client scratchpads on the other ring. Two rings are needed in order

to avoid deadlock, due to request-response dependence.

Using the host memory system to provide virtual memory requires a measure of

software support. At FPGA startup time, software on the host side allocates large

buffers for each scratchpad on the FPGA. When requests arrive at the host, these

pre-allocated buffers are used to service them. These memory buffers are managed

by the operating system just like any other memory.

7.3.3 Synthesizing a Cache Hierarchy

Utilizing host virtual memory gives a correct, but extremely low-performance, imple-

mentation of an FPGA-based memory system. Borrowing from general-purpose pro-

cessor architecture, the scratchpad memory hierarchy uses multiple levels of caching

to close the memory performance gap between user logic and the relatively slow host

memory. Just as processor caches capture data locality, so too do caches in FPGA

designs. To effect this caching, the scratchpad memory hierarchy incorporates both

on-chip and off-chip memory resources.

The first level of caching in the scratchpad hierarchy occurs local to each scratch-

pad. Each scratchpad has the option of instantiating a private cache. These non-

blocking, in-order caches are implemented in fabric SRAM resources, and can be sized

independently by the designer. The L1 cache is inserted between the local memory

interface and the host memory rings. In addition to providing fast, low-latency access

to local data, this cache also serves as a filter for requests to the host memory, which

improves both the performance and scalability of the scratchpads hierarchy.

Local caches improve the performance of the memory system, but further gains are

possible. Most FPGA platforms have significant on-board memory capacity, typically

in the form of an external bank of DRAM or SRAM chips. Though this memory has

low bandwidth and high latency relative the on-die SRAM resources, accessing this

on-board memory is still orders of magnitude faster than accessing host memory. On-

board memory is usually discrete and therefore must be shared among all scratchpad

clients. Considered in this light, the on-board memory bears a striking resemblance

117

Figure 7-5: A memory hierarchy with central cache.

to a shared L2 or L3 cache in general-purpose processor systems.

The cache built on top of the on-board memory resource is called the central

cache. As a shared entity, the central cache architecture differs substantially from

the private Li caches, and more closely resembles the multi-cycle, multi-ported, set-

associative, non-blocking caches used at higher layers of general purpose processors.

The central cache is introduced as a ring stop on the scratchpad rings, replacing the

host memory interface, as shown in Figure 7-5. The central cache communicates with

the host virtual memory interface, its backing store.

Of course, some platforms may not have an on-board cache, or the designer may

choose not to expose this resource for area considerations. In this case the central

cache module is replaced by a null implementation, and the memory hierarchy ef-

fectively degenerates to the scenario shown in Figure 7-4, where all the scratchpad

memories are connected directly to the host memory interface.

118

7.3.4 Performance

Stricker and Cross studied the performance of processor memory systems during a

period of growth in the level of integration of workstation-level machines, in an effort

to determine which platforms would run various scientific workloads the fastest. They

recognized that many scientific workloads have, at their core, some kernel that iterates

over a working set with some stride length, for example looping over some array of

structures. To decide which machine would be best for a particular kernel set, they

ran simple stride-length, working set size combinations across a variety of machines

to measure cache throughput.

This methodology is attractive in evaluating FPGA-based memory hierarchies

because many FPGA applications have stride-based access patterns that resemble the

kernels proposed by Stricker and Cross. Not only do block algorithms like matrix-

matrix multiplication exhibit this pattern, but also many sliding-window algorithms

like pixel-interpolation in H.264 are essentially strided, but with slight boundary

irregularities. The Stricker and Cross method is also useful because of its highly

predictable output - memory systems should generally have monotonically decreasing

performance as stride and working set scale. Moreover, cache levels should have

clearly identifiable plateaus. If these characteristics are not present, it suggests that

the memory system may have a performance bug.

Overall, empirical evidence confirms that the behavior of scratchpads is similar to

the behavior of processor caches originally studied by Stricker and Cross. Figure 7-6

shows the performance of a scratchpad hierarchy implemented on one of the ACP

(Section 7.5.1) FPGAs. This graph depicts the three very clear plateaus expected

of the scratchpad architecture, that is, the high-performance private Li cache, the

intermediate-performance central cache, and finally the low-performance host mem-

ory. Figure 7-7 shows the latency of read operations. As with bandwidth, there are

three regions. However, the latency of the Li and L2 caches is dwarfed by the la-

tency of access to host memory. The large latency of host accesses is due to the lack

of FPGA-demand-driven DMA between the FPGA and host memory on the ACP

119

Read Bandwidth

01

0.9
0.8

7.

4.

1281

16 32 6 128 Working Set Size

Figure 7-6: A example of scratchpad read bandwidth.

platform.

Figure 7-8 shows the average write bandwidth of the scratchpad memory. Ex-

hibiting three clear plateaus, the write performance is qualitatively similar to the

read performance. However, because writes are well-pipelined, the difference in per-

formance across the three levels is much smoother. The test case depicted in the

figure uses a word size smaller than the word size used in the rest of the memory sys-

tem. As a result, read-modify-writes, which are not fully pipelined at the LI, cause

the write bandwidth to saturate at one-half word per cycle.

7.4 Scaling Services to Multiple FPGAs

In a single FPGA implementation, there are two kinds of resources, shared and ui-

shared. Unshared resources make use of point-to-point links, connecting a single

client to a single device. On the other hand, shared resources use rings, which can

scale automatically to handle any number of clients. However, in the case of shared

devices, even thought there are many clients, there is still only one physical device

120

Read Latency

3000

2500

2000

1500 Cydes

1000

Stride 6,r

4 Working Set Size

Figure 7-7: A example of scratchpad read latency.

Write Bandwidth

056

04

Words/
0.3 Cyde

02

I.

Figure 7-8: A example of scratchpad write bandwidth.

121

2

serving them.

In multiple FPGA implementations, the situation with respect to devices is more

complicated, since there can be several devices located across the FPGAs in the exe-

cution environment. There are three possible configurations of devices in a multiple

FPGA environment: unique, symmetric, and asymmetric.

Unique devices, as the name implies, are unique within the environment. Their

handling is the same as a device in a single FPGA implementation, with the exception

that some inter-ring hops may cross FPGA boundaries. An example of this kind of

this kind of service is shown in Figure 7-9. Although the clients in this example

are spread across two FPGAs, because latency-insensitive rings were in the client

interfaces, the multiple-FPGA compiler can automatically extend the service to a

second FPGA, making it available to remote modules. This synthesis is a direct

byproduct of using rings to implement shared services: the service itself is unaware

that multiple FPGAs exist in the system. However, multiple devices in the system

require special handling on the part of the service writer. Symmetric devices are those

in which the device occurs on every FPGA platform in the system, while asymmetric

devices do not appear on all the FPGAs. In reality, these two cases are almost

identical.

Handling the multiple resource case is well is an extremely important source of

performance in multiple FPGA implementations. For example, many problems end

up being memory bound on a single FPGA. A well-partitioned implementation can

potentially make use of all available memory resources in a multiple FPGA system,

leading to improved whole-system performance. There are many design issues related

to optimizing program performance in the context of distributed resources. For ex-

ample, devices across platforms may vary in quality, for example, a small, fast SRAM

versus a large, slow DRAM. A good placement tool would take advantage of these

asymmetries and attempt to match different memory consumer to memories match-

ing their specific performance needs. This thesis provides a few programmer tunable

interfaces for device optimization, but makes no attempt at automated optimization

in this space.

122

Figure 7-9: An example of a service distributed across two FPGAs. Here, the compiler
will automatically insert the dotted links and all necessary logic to transit the inter-
FPGA link.

Section 7.4.1 discusses the physical implementation of multiple FPGA services,

and Section 7.4.2 gives a brief performance characterization of the scratchpads mem-

ory hierarchy in the context of multiple FPGAs.

7.4.1 Multiple Distributed Services

On a single FPGA and on multiple FPGAs in the unique device configuration, im-

plemrenting shared devices is made somewhat straightforward by the use of rings,

which the LIM compiler handles automatically. However, in the case of multiple

FPGAs with multiple resources, whether symmetric or asymmetric, simply using a

single ring breaks down, since in the multiple resource case, servers must know which

client requests they are to service. Moreover, extending the single-service ring model

to multiple resources forces the ring to cross the high-latency inter-FPGA intercon-

nect, a needless performance penalty if clients only interact with their local memory

resource.

In the current compilation flow, the issue of communicating with multiple physical

resources is solved by creating a uniquely named ring for each resource. Unique names

are determined by the name of the platform physically hosting the device. In some

sense, this is a generalization of the unique resource case: each resource has a uniquely

namned ring for communicating with its clients. Creating unique rings per device

123

is straightforward in the current compilation flow. Each device library supporting

multiple device instances is parameterized with a variable defining platform name,

which is provided by the LIM compiler at compile time. The device library then

instantiates named rings specific to the platform.

Clients now have a means of specifying exactly which resource they should use.

However, there are still a problems. Resources are now identified, but now clients

face the problem of choosing which resource to use. Ideally, this resource allocation

decision would be taken by the LIM compiler after analyzing the memory needs of the

particular program, but the LIM compiler does not currently have this functionality.

Minimally, the module source code using a resource should not be required to be

aware of which resource it is using, only that it is indeed using a resource. If the

client module is required to know exactly which platform's resource to use, portability

between environments is immediately lost. For example, a client may demand the

memory resource of platform "FPGA1", when no such platform exists.

To abstract device usage from the client modules, the current LIM compiler imple-

mentation makes a strong use of the static knowledge of module placement. Because

module placement is statically known, when device interfaces are instantiated, the

device interface code can obtain the placement of the instantiating module and as-

sign the new client interface to the device interface rings of the platform on which it

is to be placed. This achieves the goal of abstracting resource usage: the ring choice

is determined by the mapping file and device interface libraries, which vary between

execution environments, while the client module only instantiates a device interface.

In the symmetric resource case, each platform has a resource, and making the

client-resource allocation choice simple: all clients use their local resources. The

asymmetric resource case, in which some platforms do not have a particular resource,

is slightly more complex. In this case, the asymmetric platform provides a device

interface, but this device interface is specifically parameterized to use the physical

device of another platform instead of the local platform. The LIM compiler will

aggregate these ring stops into a single ring spanning multiple FPGAs.

Figure 7-10 shows an example of an FPGA environment with several symmetric

124

services spread across an asymmetric set of platforms. In this case, the clients of C,

which does not have a local device, are routed to platform B. The design is correct in

the sense that all client have access to the service, although clients will each experience

different and perhaps, in the case of the clients on B and C, degraded performance.

In the current LIM compiler implementation, distributed access to multiple FPGA

resources makes use of static knowledge about module placement. This knowledge

drastically reduces the amount of work that the compiler needs to do in order to

connect device-using modules to the appropriate physical device. However, the im-

plementation of automatic module placement will remove this source of knowledge,

and requires the introduction of new genus of ring primitive.

The current device-sharing scheme make use of static, platform-based naming to

allocate clients to device-specific rings. Thus device-specific rings could be imple-

mented using the existing ring primitives described in Section 4.2.1 because the name

of the device-specific ring was available at LIM graph construction. In the case of

compile-time placement, device-specific rings are still necessary, but they cannot be

described using normal rings. A client can only be bound to a device-specific ring

once placement is known, but placement occurs after LIM graph construction. To

solve this problem, a new kind of platform-specific ring can be introduced. These new

ring stops are tied to a ring which is prohibited from crossing FPGA boundaries.

7.4.2 Performance

Figures 7-11 and 7-12 show the performance of a scratchpad memory in the context

of a multiple FPGA system. In this system, scratchpads on both FPGAs share a

single connection to the host meniory in a configuration similar to the one shown

in Figure 7-9. For this test, although there are multiple scratchpads in the system,

only one is active at a time. The scratchpads in this case exhibit remarkably similar

performance, even though the host memory link is asymmetric: the system tested has

a relatively long latency between host and FPGA and this obscures the effect of the

remote scratchpad requests to host memory transiting FPGAs. For those applications

that have good locality of reference, sharing a single host connection, even if it is

125

Figure 7-10: An example of a asymmetric services available in a single environment.
Here, clients on platform B are routed to platform C for service.

126

Read Bandwidth

0.9

0.8

0.7

0.6

0.5

0.3

0.2

0.1

1r

Words/
Cycle

Figure 7-11: Scratchpad performance in the context of a multiple FPGA system. This
scratchpad is local to the host memory connection. Notice performance degradation
as compared to the single FPGA performance in Figure 7-6.

Read Bandwidth

0.9

.5 Words/
Cycle

OA

0.3
0.2

0

45

Stride
g

32 Working Set Size

128

Figure 7-12: Scratchpad performance in the context of a multiple FPGA
this case the scratchpad is remote from the host memory link.

127

system. In

1I
2

1.02

4- 0.98 - ----------- '----

0.98 -
CD/

£ 0.96
CZ

0

S0.94

0.

1024 Words
8192 Words ---

0.88 1 1 1 1
1 2 3 4 5 6 7 8 16 32 64 128

Stride

Figure 7-13: Simultaneous scratchpad performance. In this test, two scratchpads
operated simultaneous. The performance of a placement in which the two scratchpads
are on different FPGAs is normalized to the performance of a placement in which the
two scratchpads are on the same FPGA.

several FPGAs away does not represent a significant performance bottleneck.

Figure 7-13 examines the case in which scratchpad memories are active at the

same time. The test examines two configurations: one in which the scratchpads are

co-located on the same FPGA and one in which they are located on two different

FPGAs. These configurations differ only in that, in the single FPGA case, the L2

cache is shared between the scratchpads, while in the two FPGA case, each scratchpad

has a dedicated, local L2 cache.

In the case that the working set fits in the Li cache, the two configurations have

nearly identical performance. If the working set fits in L2, but not in L1, the two

FPGAs configuration outperforms the single FPGA configuration by up to 11%. In

the single FPGA case, the L2 request and response rings transit both scratchpads,

128

increasing access latency from each by a single cycle. Additionally, scratchpad L2

requests may occasionally collide, causing further latency.

7.5 Multiple FPGA Platforms

Although the LIM compiler is fully general and the applications discussed in Chap-

ters 8, 9, and 10 can be mapped to any FPGA environment, the evaluations presented

in the those chapters were limited to two multiple FPGA platforms: the Nallatech

ACP [28], described in Section 7.5.1, and the Xilinx XUPv5 [701, described in Sec-

tion 7.5.2. These platforms represent nearly the cutting edge in FPGA technology at

the time of the development of the implementations presented in subsequent chap-

ters. Although both physical FPGA environments targeted in this thesis use Xilinx

FPGAs, it should be noted that the LIM compiler is general and can target FPGAs

provided by any vendor.

Choice of platform influences the performance of an FPGA application in the

same way as choice of processor architecture influences the performance of a computer

program. For example, different FPGA platforms have different memory hierarchies

and different I/O bandwidths, and different applications prefer different amounts of

these resources. Table 7.1 lists some salient, performance-influencing characteristics

of the various FPGA environments.

Section 7.5.3 describes a generic simulation framework for simulating arbitrary

configurations of FPGAs. Ultimately, programs must be mapped to real FPGA en-

vironments for execution. However, real programs have bugs, especially during early

development, and debugging on the FPGA is, at best, a difficult proposition. Thus,

at least some software simulation and validation is required before deploying a pro-

gram on the FPGA. Unlike physical FPGAs, which are intrinsically finite in size,

hardware simulators offer an unlimited supply of "implementation resources". Thus,

even very large designs can be emulated in a single simulator. Because of this, it may

at first seem that modelling multiple FPGAs is unnecessary. However, the multiple

FPGA simulator is useful in three ways. First, from the perspective of the compiler

129

Total Slices Host Bandwidth Inter-FPGA Inter-FPGA
Bandwidth Latency

Simulator Infinite 300 MB/s 314 MB/s 6400 ns
Nallatech ACP 51840 55 MB/s 1157 MB/s 346 ns
XUPv5 17280 1.3 MB/s 180 MB/s 159 ns

Table 7.1: Structural and performance metrics for various FPGA Platforms. Sim-
ulator performance metrics depend on the host CPU, and the numbers shown are
representative of a an Intel Core i7 Nehalem machine.

writer, partitioned simulation serves as the primary means to test the LIM compiler

and the various components of the synthesized multiple FPGA communications in-

frastructure. Second, partitioned simulation permits some analysis of the behavior of

partitioned programs, which is a useful source of feedback for the compiler. Finally,

partitioned simulation improves the parallelism of the software simulator, potentially

decreasing simulation time.

7.5.1 Nallatech ACP Module

The Nallatech ACP module consists of a pair of Virtex-5 LX330T that plug directly

into an Intel Front Side Bus (FSB) socket. Since it is tightly coupled to both processor

and memory, the ACP enjoys low-latency and high-bandwidth communication for its

silicon generation. Unfortunately, the ACP I/O does not support DMA to the host

memory, and host-FPGA interaction is slower than otherwise might be expected from

a direct memory-bus connection.

The two FPGAs on the ACP are connected by way of a high-speed LVDS bi-

directional interconnect. This interconnect has a fairly high bandwidth, but also has

a latency on the order of 3 pts. The Virtex-5 generation represents the last FPGA

generation in which LVDS-style communications is competitive with high-speed in-

silicon SERDES links. The ACP platform provides a two 8MB SRAM, one attached

to each of the FPGAs. Although this memory has high-bandwidth and low-latency, it

is extremely small, and, in practice, presents problems for designs with large working

sets, such as HAsim (Chapter 9). The ACP provides no other useful peripheral

130

devices.

The ACP is a very large FPGA environment for its generation, and so it can

be used for the implementation of very large algorithms. Most designs presented in

this thesis were implemented on the ACP, with the exception of the on-air wireless

experiments, which require an interface to an RF-front-end.

7.5.2 XUPV5

The XUPV5 [70] is a widely deployed educational platform built around the Virtex-

5 LX110t chip. Its chief features are its low cost and its wide deployment in the

academic community. Counterbalancing its cost and popularity are its small size and

lack of a high-performance host I/O interface. However, the XUPV5 features a wide

variety of peripherals including a 2GB DDR2 memory. Additionally, the XUPV5

has many SERDES transceivers, with operating bandwidths up to 3.75 Gbps and

sub-microsecond latencies. These links may be used to construct many different

multiple-FPGA topologies.

The XUPv5 is of primary interest in the context of Airblue, the wireless platform

presented in Chapter 8, since the XUPv5 can be integrated with the USRP2 [15] RF-

front-end. This interface goes over one of the XUPv5's high-speed SERDES links,

and permits the XUPV5 to host a variety of fully-functional, commercial-standard-

compatible wireless transceivers.

7.5.3 Multiple FPGA Simulator

In much the same way that they can be partitioned among multiple FPGAs, designs

can also be partitioned among multiple simulator instances, and, given the compi-

lation framework of Chapter 4, partitioned simulation is straightforward. To model

multiple FPGAs in simulation, the LIM compiler is simply presented with an environ-

ment containing as many simulation platforms as needed. The compilation flow for

the simulator is the same as the flow for physical FPGAs. However, instead of invok-

ing the FPGA-imnplementation tool backend to produce FPGA programming files,

131

a set of independent simulation executables are generated, one for each simulated

FPGA.

The LIM compiler requires that the platforms of an execution environment be

strongly connected by way of an inter-platform interconnect. However, RTL simu-

lators, which are generally intended for whole system simulation, have no notion of

external pins or communication with other, independent simulators. However, mod-

ern RTL simulators generally support some interface to C or C++ as a convenience

in modelling. These interfaces give access to any host system functionality available

in general programming environments, including inter-process communications. Us-

ing this software interface, partitioned simulators communicate with one another via

Unix file-system FIFOs. Each pair of communicating simulators has a single, private

FIFO, forming a fully-connected graph of simulators. These FIFOs are created at the

start of simulation, and begin transmitting as soon as both simulator endpoints are

initialized.

Any topology of FPGAs can be implemented using this simulator, giving the capa-

bility to model any program on any execution environment. Although each simulator

platform can physically communicate with all other simulators in the environment,

only those inter-connects explicitly list in the environment description file will carry

traffic. To model non-fully-connected topologies, the programmer can simply remove

these links from the description file.

Partitioned simulation leverages the latency-insensitive channels to avoid the need

to synchronize the behavior of the multiple simulators, and thus makes no attempt

to accurately model the timing of any particular physical environment. As a result,

it may be of limited use in many traditional simulation roles, such as verification.

However, in exchange for this loss of fidelity to a particular physical environment,

simulation speeds of a single design can be improved by partitioning it among many

parallel simulators.

The performance of the software simulator is generally quite good, although it is

usually a little slower than the equivalent single FPGA simulation for small designs.

Intuitively, this should not be so - parallelizing the simulation of even a small hardware

132

10000

1000

M

100

1 Process
2 Processes -

4 Processes -
10

1 10 100 1000 10000 100000

Relative Computation

Figure 7-14: A variant of the loops test, run on multiple parallel simulators. Initially
the overhead of conunication dominates, but as compute-to-communication ratio
grows, parallel simulation becomes advantageous.

design should improve the speed of what was intrinsically a serial process. The cause

of this slow down is conmunication between the simulation processes.

Figure 7-14 shows the results of a limit study of parallel simulation. In the test, a

busy delay loop is introduced into each link of the loops micro-kernel of Section 6.1,

modelling progressively more complex,and consequently slower, simulation. For light

simulation, the multi-process simulators are slower than the single process: the loops

test is simple forwarding data between the processes and incurring some commu-

nication overhead not present in the single process simulator. As the busy delay

increases and the ratio of compute to communication commensurately increases, mul-

tiple threads of execution eventually yields improved wall clock run times. Although

the graph presented implements a simple kernel, the partitioned simulation speed of

real programs may also improve. Figure 7-15 shows the simulation speeds of several

HAsim models with different numbers of cores. Parallel simulation with two pro-

cesses is as much as 35% faster than a single-process simulation for the larger HAsim

simulators. As in the case of the loops kernel, if the amount of simulation work is

small, that is, if few cores are simulated, then single process simulation is faster than

parallel simulation due to communication overhead.

133

1

10000

(D

1000

1 Process
2 Processes -----

100
1 10 100

Number of Simulated Cores

Figure 7-15: Parallel simulation improves the simulation speed of real programs, in
this case, HAsim. As with loops, the overhead of conununication dominates for small
models, but as compute-to-communication ratio grows, parallel simulation becomes
advantageous.

The simulation infrastructure presented in this section is a preliminary imple-

mentation. A better simulator architecture would implement simulation platforms as

threads in a single process to reduce communications cost, perhaps with some bet-

ter scheduling control and shared-memory-based inter-process communication. The

current simulation environment is likely paying enormous overhead due both the cost

of separate processes and the overhead of communication through file-system FIFOs,

which results in an operating system call each time a data is transmitted. If refine-

ments are made to reduce these overheads, it is possible that partitioned simulation

could eventually outperform most, if not all unpartitioned simulation.

134

. .

Chapter 8

Airblue

In recent years, the wireless research community has developed a large and growing

set of protocols and algorithms to improve the throughput and capacity of wireless

networks. These schemes span the physical (PHY), MAC, and network layers of

the protocol stack. Some examples include interference cancellation [24], ZigZag

decoding [21], Conflict Maps (CMAP) [65], the SoftPHY interface [32, 31, 64], and

SWIFT [51]. A common theme in all these schemes is that they embody some form

of cross-layer design, in which additional information is passed from lower to higher

layers, with higher layers using this information to exercise some improved control over

lower-layer decisions. For example, the SoftPHY interface [31] extends the receiver

PHY to send to higher layers confidence information about each bit's decoding, so that

those layers can perform better error recovery [32], bit rate adaptation [64], diversity

routing [34], and so on. In fact, even the simple example of using the receiver's

signal-to-noise ratio (SNR) to determine a transmit bit-rate is a PHY-MAC cross-

layer protocol.

The problem with on-going research in cross-layer protocols is in their evaluation.

Hardware is attractive for evaluation because of its good throughput and latency

characteristics. However, commercially available wireless chip-sets offer limited con-

trol flexibility: some simple MAC modifications are possible, but serious protocol

modification is generally infeasible, and, of course, no new hardware can be added to

the chip-set. FPGAs offer the performance of hardware and full flexibility. Unfor-

135

tunately, the effort required to implement a high-performance wireless protocol from

scratch in FPGA is enormous, and many existing FPGA-based solutions [66, 58] are

difficult to modify. As a result, researchers turn to software-defined radios (SDR), like

GNUradio [20], for their evaluation needs. GNURadio offers the flexibility and famil-

iarity of software and the wide-band capabilities of the USRP [15]. Since the USR.P

can transmit and receive any waveform and can operate in a number of spectrum

bands, many interesting protocol experiments are possible. However, in light of the

limited processing capability of general purpose CPUs and the microsecond-deadline

real-time requirements of modern wireless protocols, GNURadio does not offer suf-

ficient performance for cross-layer experiments at or near the levels of throughput

and latency required for commercial wireless protocols. The lack of realism in typical

wireless protocol experiments may flaw experimental results in serious ways.

Airblue solves the experimental issues in the wireless domain by coupling the

performance of the FPGA with the programmability of software. Airblue is a highly

parametric library of OFDM components intended to assist wireless domain-experts in

implementing novel baseband processors, enabling them to achieve high-performance

OFDM implementations with relatively little engineering effort. Airblue was designed

in the latency-insensitive style [39] [40], with modular refinement in mind. This prop-

erty allows Airblue modules to support many protocol configurations, since blocks in

an OFDM pipeline may be directly substituted for one another, and greatly reduces

programming overhead: new protocols typically require that only one or two blocks

be modified. In addition to programmer productivity, Airblue adds a measure of

credibility to wireless experiments: in software programmers are free to explore unre-

alizable algorithms and implementations, while Airblue implementations validated on

FPGAs can be used to fabricate high-performance ASICs with relatively minor mod-

ification. A typical baseband pipeline implemented in Airblue, shown in Figure 8-1

has relatively little feedback, although the main data path has high bandwidth and

low latency requirements.

Airblue implementations of many current wireless protocols, such as 802.1 1g, fit

on a single FPGA, but implementing future wireless protocols will likely require

136

BaseandProcsso LiTX Pipeline LiRX PipelineBaseband Processor'"w
TX Scrambler Encod Interle - Inserto- Radio

Figure 8-1: An Airblue 802.11g-compatible transceiver. In the SoftPHY experiment,
only the forward error correction (FEC) decoder block is modified.

multiple FPGAs. The computational complexity of protocols is growing, and can

overwhelm the resources of a single FPGA. Some implementations of the two protocols

examples examined in this chapter, Spinal Codes in Section 8.2 and SoftPHY in

Section 8.3, do not fit on the original Airblue platform and require multiple FPGAs.

Additionally, the physical requirements of upcoming wireless protocols may mandate

implementation across multiple FPGAs. Most, modern wireless protocols, including

802.11n and 802.11ac, are multi-in, multi-out (MIMO), and require multiple radio

front-ends to operate at full bandwidth. In single FPGAs, this is problematic, because

each FPGA platforni can intrinsically support a limited number radio front-ends,

and board-level redesign is both expensive and time-consuming. On the other had,

multiple FPGA platforms can be aggregated, using the LIM compiler, to provide

access to many front-ends simultaneously, permitting the development of large MIMO

systems using existing equipment.

A first order concern in multiple-FPGA wireless implementation is meeting protocol-

level timing. These timings govern when protocol messages must be transmitted and

violating them results in a loss of throughput due to, for example, spurious retrans-

mission. Typical wireless protocols implemented using Airblue have protocol-level

latency requirements on the order of tens of microseconds. However, the microsec-

ond time scale is easily satisfied by modern inter-FPGA interconnects which typically

sub-microsecond latencies and giga-bit bandwidths. For example, a two-FPGA parti-

tioning of the 802.11g pipeline shown in Figure 8-1 can communicate with commodity

wireless hardware.

137

This chapter will first describe the operational characteristics of a typical Airblue

system, in Section 8.1. This general discussion is followed by two different applications

of the multiple FPGA compiler proposed in this thesis to Airblue. Section 8.2

describes the implementation of a complex transceiver that does not fit in a single

FPGA, while section 8.3 examines leveraging multiple FPGAs to accelerate wireless

simulation.

8.1 Anatomy of an OFDM Pipeline

Figure 8-1 shows a block diagram of an OFDM physical-layer (PHY) transceiver. The

transceiver is divided in to two halves, the transmitter and receiver, with a shared

FFT. The PHY layer receives its digital input and output from the Medium Access

Control (MAC), which controls protocol-level timings and handshake packets. At the

other end of the pipeline, the PHY feeds digital representations of analog signals into

the radio front-end, which eventually puts a signal on the air, and receives digital

representations of incoming signals. The following section gives a brief overview of

the major blocks in a typical OFDM protocol. To assist in this discussion, Figure 8-2

shows the power spectrum of an 802.1 Ig packet.

8.1.1 Transmitter Pipeline

TX Controller: Receives information from the MAC and generates the control and

data for all the subsequent blocks.

Scrambler: Whitens, or randomizes, the data stream to improve peak-to-average

power ratio and Forward Error Correction (FEC) behavior. Scramblers are usually

implemented with linear-feedback shift registers (LFSR).

FEC Encoder: Adds redundancy to the data stream to improve transmission

throughput in the face of a noisy communications channels. Wireless transceivers

use a variety of schemes for error correction, including block codes (Reed-Solomon),

convolutional codes, and, more recently, rateless codes (the spinal codes discussed in

Section 8.2).

138

40000I
35000

10

30000

20

C 2025000
(D

L 300
20000

40 15000

10000
50

5000

60

0 200 400 600 800 1000 0

Sample Number

Figure 8-2: The power spectrum of an 802.11g packet. The packet opens with two
different preambles one starting at sample 160 and the other starting at sample 320.
The body of the packet consists of a sequence of six symbols, starting at 480. Each
symbol is 64 samples long, with 16 extra prefix samples for a total of 80 samples.
The symbols each have four pilot tones, the continuous bands at frequencies 12, 26,
39, and 53. Note that the guard bands, 0 through 5 and 59 through 63 actually do
not have power. When power is present in these bands, the symbol FFT frames are
misaligned, for example at sample 800. Such a misalignment represents a failure in
synchronization and results in a failure to decode the packet.

139

0

Protocols use a technique known as puncturing to reduce the transmitted number

of bits. For higher transmission rates on low-noise channels, the encoded data is

punctured by deleting bits before transmission and replacing them with fixed values

on reception. This reduces the number of bits to be carried over the channel and

depends on the decoder to correctly reconstruct the data.

Interleaver: Rearranges blocks of data bits by mapping adjacent coded bits into non-

adjacent sub-carriers to protect against burst errors and to improve the performance

of the error correction code. Protocols typically use block size equal to either the

number of bits in an OFDM symbol or the number of bits in a packet.

Mapper: The mapper converts digital data into an analog representation. This

analog representation is a complex number representing the phase and magnitude

of a sinusoid. This sinusoid will eventually be transmitted over the air. For high

data rates, multiple bits may be mapped to a single sinusoid, with higher precision

variations in its phase and magnitude. In Airblue, the mapper also does a serial-to-

parallel conversion in anticipation of the IFFT.

IFFT: The IFFT mixes the frequency domain sinusoid representations produced

by the mapper into a time domain representation of those sinusoids which can be

transmitted. Because FFT and IFFT are symmetric operations and because they

are computationally expensive, this block is shared between the transmit and receive

pipelines.

Pilot/Guard Insertion: Adds the values for pilot and guard sub-carriers. Pilots

are known, protocol-specific sinusoids that can be used for calibration at the receiver.

Guard bands help to mitigate interference from adjacent frequency channels.

Cyclic Prefix Insertion: Inserts a cyclic prefix, a set of repeated samples, for

each symbol. These samples have two effects. One is to protect against inter-symbol

interference, a self-interference effect due to multi-path signal propagation. The other

is to provide some margin of error for the receiver synchronization.

This block also adds a preamble before the first transmitted symbol. The preamble

is a set of known symbols used by the receiver to detect the start of a new transmission

and to learn channel parameters, including frequency-specific attenuation.

140

8.1.2 Receiver Pipeline

The receiver is the logical inverse of the transmitter pipeline. However, since the

receiver must operate on a noisy, corrupted signal, it must employ more complex al-

gorithms to recover the original transmitted bits. Consequently, the receiver occupies

a much greater area than the transmitter.

Synchronizer: The synchronizer's main function is to detect the start of a trans-

mission and to discover the alignment of OFDM symbols in the transmission using

the packet preamble. If the symbol alignment is incorrect, then OFDM symbols will

be corrupted and reception will fail. The synchronizer also uses the known preamble

to compensate for several non-idealities in transmission, including carrier frequency

offset and oscillator offset.

Serial to Parallel : This module converts the serial sample stream into parallel

FFT frames and removes the cyclic prefix. This module also coordinates some control

between the synchronizer and the main receiver pipeline.

FFT: The FFT converts the time-domain signal received by the RF front-end into a

frequency-domain representation.

Channel Estimator: This module attempts to compensate for non-idealities in the

transmission environment, such as non-uniform attenuation across frequencies. The

channel estimator uses known values in the packet, such as the preamble and symbol

pilots to tune its internal filters and modify the received samples.

Demapper: This module is the inverse of the mapper module. The Demapper

converts the sinusoid magnitude and phase descriptions produced by the FFT back

into bits. Because these translations are imprecise due to noise in the transmission, the

demnapper will also associate confidence values with the output bits. These confidence

values improve the decoding power of certain error correction algorithms.

Deinterleaver: The deinterleaver inverts the interleaving performed at the trans-

mitter and restores the original bit ordering.

Error Correction Decoder: This block exploits the structured redundancy in-

formation placed in the bit stream at the transmitter to correct errors in the data

141

Message

Figure 8-3: Symbols produced by spinal encoder.
structure to the code.

Chaining the hash function adds

transmission. Typically, the error correction decoder is the most complex block to

implement in the FPGA, both because is involves fine-grained bit manipulation and

short feedback paths and because and because it must provide high throughput at

the granularity of single corrected bits.

Descrambler: This module inverts the whitening operation performed at the trans-

mitter.

RX Controller: This module distributes control and configuration among the mod-

ules of the receiver pipeline. Its chief operation is parsing the protocol header to

obtain this control information.

8.2 Spinal Codes

Spinal codes [50] are a relatively recent, Shannon-limit approaching rateless error cor-

rection code. Spinal code are structurally simple: spinal codes randomize messages by

142

Figure 8-4: Spinal code beam search with beam width = 4. Pruning prevents a state
explosion.

143

way of a chained hash function, shown in Figure 8-3. The message to be transmitted

it divided in to small pieces fmn. These fi are hashed using a known hash function

with a known seed S0,0 , producing a symbol for transmission. Spinal codes exploit the

structured randomization provided by symbol hashing: each sequence of hash values

corresponds to a single original message prefix with very high probability. Symbol

hashing can be repeated indefinitely to produce a sequence of symbols that can be

jointly decoded at the receiver. This permits the dynamic construction of arbitrary

code rate: the transmitter can simply construct and transmit more symbols, lowering

the bit rate and increasing the information at the receiver, until the receiver is finally

able to decode the original message. The ratelessness of spinal codes permit them to

outperform, in practice, most known coding schemes.

Although the spinal transmitter is simple, consisting only of a set of simple hash

functions, the spinal receiver faces the challenging problem of extracting the original

transmitted message given the sequence of noisy received symbols. Because the hash

chaining of Figure 8-3 creates a dependence between messages fizj, the space of all

possible message can be viewed as an exponentially growing tree, a portion of which

is depicted in Figure 8-4. Each path from a leaf of the tree to the root represents a

unique message. Given a set of received symbols the receiver must choose the correct

path out of the tree.

In contrast to existing convolutional and turbo codes, which operate on a fixed-

sized trellis, spinal codes operate on an exponentially expanding tree, making choosing

the correct path in the spinal code tree a challenging problem. The decoding problem

can be broken down into two parts: deciding the most likely message for a given

rhi chunk and deciding the most likely sequence of m-i message chunks in a complete

message. The hash function plays a pivotal role in both decision problems.

At a single node, the hash functions helps to distinguish potential message chunks.

Figure 8-5 shows an example of these sequences of hashes for two possible decodings

of an rhi message chunk: p and q, versus a set of received symbols representing

rh-. For the first hash in the sequence of hashes, p and q have the same expected

value. In the case of a high transmission rate in which only one symbol is sent,

144

o 1 0 1

0

s1 ,op so,

*-X, .------ ---x---

0

s 1 ,1 p S112

1

.. x 0 X-.

X Received Symbol - Expected Symbol
Figure 8-5: Symbol sequences for two messages mi and ni, an alternative message
decoding. The chained hashes of Figure 8-3 are used to determine the symbols.
Although the first symbols coincidentally collide, the hash ensures a rapid divergence

and decodability.

145

the two messages would be equally likely at the decoder. However, because hashing

randomizes the sequence of symbols for each potential message, the likelihood of the

messages rapidly diverges as more symbols are accumulated at the receiver, and p

becomes far more likely.

Hash chaining between message chunks helps the decoder choose the correct mes-

sage in the case that symbols collide between potential messages, as in Figure 8-5.

The chained hash function guarantees independence between the symbols generated

at nodes of the the same generation in the tree. Thus even if some symbols for two

paths in the tree match (or nearly match), subsequent haj relative to p and q will

have different symbols with high probability. Since only one descendent path from

p or q is correct, if the decoder examines all the descendents of p and q, only the

descendents of one message will be likely. Another way to think of the operation of

the hash chaining is spreading errors and collisions among adjacent message nodes.

When SNR is high and noise is limited, this property permits the reception of punc-

tured packets, in which some message chunks are inferred solely from the symbols of

adjacent message chunks.

As noted above, decoding the a transmitted, spinal-encoded message amounts to

simply picking the most likely path in the tree. A naive decoder calculates, for each

node in the tree, the difference between the received set of symbols and the expected

set of symbols for that node. Then, for each leaf-to-root path in the tree, the decoder

sums summing these differences scores along the path. Finally the decoder selects

the leaf node with the smallest path sum. The message represented by this path in

the tree is the most likely transmitted message.

The problem with the naive decoder is that it is exponential in the length of the

transmitted message. The key observation in reducing the complexity of the decoder

is that only one path in the tree is ultimately correct, and only a few paths, typically

sibling of the correct path, are even likely at each message step. Only these paths

need be examined by the decoder. Aggressively pruning the message space, as shown

in Figure 8-4, still results in a reasonable decoder implementation, as shown in Figure

8-6. This pruning reduces the complexity of the exponential tree search to that of the

146

9

0

147
4 - - - - - - - --- - - - - - - -- - - - - - - - - . . . - - - -.

3 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ N (----------------.....-............... ----)------------

Figure~ ~ ~ ~ ~~ Hihe.ea..dhinicts.es.rnig.pna.ecdrsacivegeae
---I ----------ral---- .fficie y-------- whe-th y-earh--lagerpotio-o-th-deod-g- re

-- --- ----1 4. .7.

fixed-sized trellis. Although highly pruned decoders are functional, it is clear from

the software simulation of Figure 8-6 that propagating many paths per step results

in better channel efficiency. Therefore, a practical evaluation spinal codes requires

the implementation, in hardware, of spinal decoders that can handle large numbers

of paths.

Integrating spinal codes with Airblue is straightforward, due to the latency-insensitive

discipline used by Airblue. From the perspective of Airblue, a spinal decoder or de-

coder is simply a replacement for the mapping and error correction blocks in the

baseline transceiver of Figure 8-1. Interfacing to the remainder of the OFDM stack

requires nothing more than a few lines of marshalling code to match up the types of

the spinal hardware to the stack. Once integrated into the Airblue framework, the

spinal decoder can be targeted at the USRP platform for on-air testing.

With small, low-quality spinal decoders, the experimental setup is complete: the

basic Airblue system with a single FPGA is sufficient. However, small spinal decoders

are uninteresting because they are highly inefficient; on the other hand, large spinal

decoders do not fit in a single FPGA. For larger decoders, the spinal transceiver must

be partitioned between two FPGAs for on-air testing. This pipeline partitioning is

shown in Figure 8-7. The pipeline is cut in half between the spinal decoder and the

remainder of the OFDM stack and placed on two FPGAs. Creating this multiple

FPGA implementation is easy using the LIM compiler: the spinal transceiver is

simply targeted to a two FPGA environment instead of a single FPGA environment

and recompiled. This transformation requires no editing of the transceiver source,

and less than ten lines of configuration code to achieve the re-targeting.

Figure 8-8 shows the on-air operation of a partitioned implementation of the spinal

transceiver. This experiment was conducted using a pair of Airblue systems communi-

cating over a 10MHz channel in a controlled laboratory setting. The operation shows

that the software simulation of the spinal algorithm is actually quite close to the be-

havior of the actual hardware implementation on the FPGA, validating the software

simulator, which used a much simpler channel model and an idealized OFDM stack.

148

-I- i - - I - - - - -- - - - - - - - - - -

FPGAO ' FPGA1I
.------------------------ IL-------------------J

Figure 8-7: A spinal transceiver partitioned among two FPGAs.

0

60

30.0302

8
SNR (dB)

Figure 8-8: Over-the-air tests validate the hardware spinal decoder and its software

nodel. Spinal over-the-air testing was enabled by multiple FPGAs.

149

8.3 WiLIS: High-speed Simulation of Wireless Pipelines

Although Airblue was intended to assist protocol designers in evaluating protocols,

it is also a useful tool for hardware designers. As described in Section 8.1, a wireless

transmitter sends data to a receiver by modulating some carrier signal with a signal

that represents the digital data being transmitted. The receiver recovers the data

from the on-air signal through a reverse process called demodulation. Unfortunately,

the carrier signal observed by the receiver is perturbed by various physical phenomena

such as noise, interference, and fading. In order to permit reliable transmission, both

modulation and demodulation involve applying various types of algorithms in series

to minimize the impact of these physical phenomena.

Most wireless protocols are intended to be able to recover data even when the

signal is severely corrupted, and in some sense, protocol behavior under this regime

is of the greatest interest to protocol designers. On the other hand, for hardware

engineers, validating the behavior of a particular piece of hardware requires ensuring

correct behavior under a broad range of operating conditions, including conditions

under which errors may be uncommon. From the perspective of validation, the "good"

operating point is the most challenging case because it requires the greatest amount

of simulation. For example, evaluating a new error correction block requires verifying

expected operation at bit-error rates (BER) as low as 10~9, an operating point at

which the vast majority of bits are received correctly. To achieve reliable measures

for an algorithm, it is necessary to produce a statistically significant number of these

very uncommon events, a computationally intensive task.

One approach to validation is to simply operate on the air. This sort of simulation

is fast, but it has the serious drawback that it is nearly impossible to control the

broadcast environment, rendering experiments irreproducible and coverage difficult

to guarantee. As a result validation engineers go through great effort to develop

controllable channel models in software. These models typical involve the heavy use

of complex floating point routines, for example to produce noise.

Unlike the on-air implementations, which only need to meet protocol timings, a

150

L TX Pipeline
OFDM Baseband on FPGA El|RXPipeline

Figure 8-9: Components required to validate a BER. estimator in a co-simulation
enviromnent.

simulator needs to provide maximum throughput to speed architectural evaluation.

The need to model billions of bits suggests that FPGA-based implementation is nec-

essary: software-based simulations of hardware process only a few kilobits per second.

Parallel simulation across dozens of machines is not sufficient to produce enough of

the rarer events for accurate characterization. However, accelerating the whole test-

bench on an FPGA is also problematic because the channel model is not amenable

to hardware implementation. Because the original Airblue modules were designed

in a latency-insensitive manner, it is straightforward to tie the hardware simulator

of a wireless transceiver to a software channel model: the Airblue hardware auto-

matically stalls while waiting for long-latency software operations. Thus, a wireless

latency-insensitive simulator (WiLIS) can leverage hardware-software co-simulation,

which accelerates the simulation of the hardware pipeline using FPGAs but keeps the

complex channel model implementation in software. This architecture is shown in

Figure 8-9.

Many WiLIS test-beds can be accelerated by leveraging multiple FPGAs. Soft-

PHY, which extends commercially deployed error correction schemes, presents one

such example. The SoftPHY abstraction [31, 63] offers a solution to the problem of

fine-grained bit-error rate (BER) estimation. BER, estimations are valuable in opti-

mizing the throughput of a wireless network, but have been traditionally difficult to

obtain because of rapid time variations in transmission conditions. SoftPHY makes

use of a soft-decision convolutional-code decoder to export a confidence metric, the

151

FPGA 0 l TX Pipeline
Partitioned Baseband El RX Pipeline

+]14 Scrambler +]P Convolutiona Code . Interleaver-41]4 Mapper + IFFT

Test
Generator FpG 1

Figure 8-10: BER estimation simulator, partitioned across two FPGAs.

log-likelihood ratio (LLR) of a bit being one or zero, up the networking stack. Soft-

PHY has many applications in a wireless pipeline, inludl~ing rate adaptation: if bit

confidences are too low, the Soft.PHY MAC will lower the transmission data rate.

Conversely, it will raise the transrnission data rates if bit confidences are too high.

Figure 8-10 shows a good multi-FPGA partitioning of the SoftPHY evaluation

system. In this parttiioning, only the device-under-test, thatw is the SoftPHY convo-

lutional decoder, is placed on FPGA 1. The remainder of the system is placed on

FPGA 0. Multiple-FPGA partitioning benefits the SoftPHY micro-architectural sim-

ulator in two ways. First, because only the mnicroarchitecture of the error correction

algorithm varies, by partitioning the simulator at the error correction algorithm, the

bulk of the hardware simulator needs to be compiled only once. To test a different

algorithm, a relatively small logical change, only the implementation of the second

FPGA needs to be rebuilt. Second, because the clock frequencies of the FPGAs

can be scaled independently, the wall-clock performance of the simulator improves.

This frequency scaling occurs due to the availability of more resources on multiple

FPGAs, as the synthesis tools have greater freedom to choose area-intensive but

timing-optimized hardware implementations.

Figure 8-11 shows the normalized performance of two experiments: one using

a complex software channel model and the other using a simpler hardware channel

model. In the first experiment, the software channel model is the performance bot-

152

Modulation Simulation
Speed (Mb/s)

BPSK 1/2 (6 Mbps) 2.033 (33.9%)
BPSK 3/4 (9 Mbps) 2.953 (32.8%)
QPSK 1/2 (12 Mbps) 4.040 (33.7%)
QPSK 3/4 (18 Mbps) 6.036 (35.3%)
QAM-16 1/2 (24 Mbps) 8.483 (35.3%)
QAM-16 3/4 (36 Mbps) 12.725 (35.2%)
QAM-64 2/3 (48 Mbps) 15.960 (33.2%)
QAM-64 3/4 (54 Mbps) 22.244 (41.3%)

Table 8.1: WiLIS simulation speeds of different rates. Numbers in parentheses are
the ratios of the simulation speeds to the line-rate speeds of corresponding 802.11g
rates

tieneck and limits the throughput of both the single and multiple FPGA implemen-

tations. In this case the multiple FPGA implementation achieves near performance

parity with the single FPGA implementation, even though it has a much higher clock

frequency. For one data point, QAM-64, the multiple FPGA implementation slightly

outperforms the single FPGA implementation. This is because QAM-64 produces

more bits per software communication and begins to overwhelm the serial portions

of the slower single FPGA implementation.

When a simpler channel model is implemented in hardware, the multiple FPGA

implementation outperforms the single FPGA implementation by a wide margin.

In this case, the normalized performance is tied to the clock frequencies, listed in

Table 8.2, of the two designs. For BPSK, which stresses the FFT, the ratio is highest,

since the FFT is located on FPGA 0 in the partitioned implementation and this

FPGA enjoys the largest frequency improvement. For higher bit-rate modulation

schemes, the bit-wise forward error correction, located on FPGA 1, is the bottleneck.

Since the ratio of the clocks of the single FPGA implementation and FPGA 1 is

smaller, the performance gal) narrows.

In addition to improving experiment throughput, multiple FPGA compilation has

another, pragmatic advantage in the context of WiLIS: compilation time. Compila-

tion time can be a major headache in large FPGA-based systems, to the point of

153

3 1 1 1
Software Channel Model [~]

Hardware Channel Model 92.
2.5

2-
cz 2E

d-0.5

0

0z
0.5

0
BPSK QPSK QAM-16 QAM-64

Modulation Scheme

Figure 8-11: Performance results for SoftPHY partitioned simulation. Performance
is normalized to a single FPGA implementation.

LUTS Registers BRAM fMax(MHz)
WiLIS, SOVA, Single 115780 67975 46 25
WiLIS, SOVA, FPGA 0 77982 56499 34 65
WiLIS, SOVA, FPGA 1 46852 21707 39 45

Table 8.2: Synthesis metrics for single and multiple FPGA implementations of WiLIS.
Xilinx 12.1 was used to produce bit-files. To limit compile times, fMax steps at,
increments of 5MHz.

being a rate limiting step in hardware experimentation. WiLIS experiments typically

run for a few hours, but in some cases single-FPGA compilation can take nearly a

day, especially when aggressive frequencies are targeted. Because only a small part of

a WiLIS test-bench is modified for any given microarchitectural experiment, and that

portion is partitioned on the second FPGA, only the small design resident on the sec-

ond FPGA needs to be recompiled for each experiment. In the case of the SoftPHY

experiment, partitioned compilation is nearly four times faster than compilation of

the same source for a single FPGA.

154

8.3.1 Airblue on Multiple FPGAs

To meet the ever-growing demand for bandwidth from mobile devices, researchers

have developed increasingly complicated wireless protocols. Good evaluation of these

protocols requires FPGA implementation, but implementations of complex protocols,

such as spinal codes, may not fit onto a single FPGA. Thus, the chief benefit of

applying multiple FPGA compilation to Airblue is enabling the construction of these

complex transceivers.

In addition to providing a means of implementing complex transceivers, multiple

FPGAs are also helpful in evaluating individual transceiver blocks. Testing a wireless

device requires modelling a large portion of the wireless pipeline, even if the device-

under-test itself is small. FPGAs can help mitigate the computational complexity

of this simulation, but if there are many different devices parameterizations to test,

FPGA compilation times can be problematic. By placing the device-under-test oi

an FPGA separate from the remainder of the test harness, rapid recompilations are

enabled. In addition, in the case that small blocks are being tested, multiple FPGAs

can significantly accelerate simulation throughput due to increases FPGA resource

availability.

155

Chapter 9

HAsim

Simulation is critical to the design of modern processors. Before building a new

processor, architects must choose among a set of possible architectural and microar-

chitectural features with the goal of improving system performance across important

programs. The difficulty in this decision making process is twofold. First, architects

must explore a broad parameter space. Second, because mistakes can be costly in

terms of performance and, ultimately, commercial viability, architects typically de-

mand experiments that faithfully model the proposed architecture in detail. As a

result, architects typically turn to detailed software-based simulators [14, 16] to eval-

uate new architectural ideas. Unfortunately, detailed software simulation is extremely

slow: in some cases it can be less than one KIPS in aggregate. The slow speed of

simulation coupled with the need to run whole programs, billions to trillions of in-

structions in length, constrain the exploration of new architectural features to the

point of limiting technological advance.

Recently, several relaxed software simulators [38, 19, 68, 49] have become available.

These simulators trade varying degrees of accuracy for greatly decreased simulation

times. For example, the interval model [19] seeks to model only the occurrence of

important processor events, such as cache misses, TLB misses, and branch mispredic-

tions, which have significant impact on core performance. When these high-penalty

events do not occur, interval simulation assumes sustained core IPC equal to the

width of the core. Upon the predicted occurrence of such an event, the interval

156

model reverts to detailed simulation for the duration of the event. Because perfor-

mance impacting events are rare, interval based simulation can result in simulation

performance increases of around an order of magnitude as compared to conventional

full-detail simulation. Another example, SMARTs [68, 49], attempts to exploit ho-

nogeneity in programs and statistical sampling to reduce the amount of detailed

simulation required to infer whole program results. SMARTs runs the entire pro-

grain using a low-detail simulation, and then for each microarchitecture under test,

runs a collection of short but detailed simulations using the state collected during the

low-detail simulation as a starting point. This approach achieves performance gains

proportional to the amount of down-sampling, which, in some cases, can be orders of

magnitude.

Relaxation comes at the cost of simulation fidelity. Recent studies have found

that interval simulation produces errors on the order of 10% in multi-core simulation,

while sampling-based methodologies inherently report a confidence interval in which

the parameter of interest may lie. Since performance gains due to microarchitectural

optimization are frequently less than 10%, inaccurate simulators are treated with a

healthy dose of skepticism. This is particularly the case in industry because simulator

errors can lead to wrong design decisions and subsequent revenue loss. Pellauer et.

al. [44] and Khan et. al. [35] have shown that lack of fidelity in the core model can

lead to substantial variation in experimental results, even if only network processor

network performance is considered.

Another option for architectural exploration is to simulate full-system RTL on an

FPGA. Full RTL simulation [2], while fast, is only available late in the design cycle,

often too late to be of practical use in making design decisions. Full RTL is also costly

to develop and to change, even in the context of modifying high-level architectural

parameters. In spite of these shortcomings, full-system RTL is still frequently mapped

to FPGA, where it serves primarily as a verification tool. Processor RTL usually

targets next-generation ASIC technology and, as a result, may not fit on a single

FPGA. Indeed, this sort of verification simulation is the primary use case of the

legacy multiple-FPGA tools discussed in Chapter 1.

157

Recently, several researches have been conducted into FPGA-based performance

modelling [35, 44, 9], which seeks to combine the performance of the FPGA with

some of the ease of use and programmability of the software performance models.

FPGA-based performance models are similar to software performance models in de-

sign. Rather than implement a given microarchitecture in RTL, a requirement for

verification and for ASIC production, FPGA performance models emulate only the

cycle-accurate behavior of the original microarchitecture. As a result performance

models avoid many of the the challenging and time-consuming issues associated with

production circuit design, including high-frequency timing closure and extreme area

optimization. For example, a multi-ported register file may be implemented serially

as a sequence of accesses to an on-chip SRAM. Because performance models admit

FPGA-efficient micro-architectures, full chip-multiprocessor (CMP) models can be

realized on a single FPGA. On Virtex-5 family chips, Khan et al. [35] report two

processor cores per FPGA, while Pellauer et al. can model up to a sixteen-core CMP

on a single FPGA. In contrast, full-system emulation CMP RTLs [2, 53] may require

dozens of FPGAs.

Multi-cycle micro-architectures, though FPGA-efficient and easy to code, come

at a cost: FPGA clock cycles no longer correspond precisely to model clock cycles.

To help FPGA-based performance models keep track of model time, several time-

dilation techniques have been proposed. A-Ports [45] and latency-insensitive bounded

dataflow networks (LI-BDNs) [61] both permit the differentiation of model cycles

and FPGA cycles, allowing FPGA-optimized performance models to maintain cycle-

accuracy with respect to the target processor architecture.

In general, FPGA-based processor performance models have excellent perfor-

mance: full-system throughputs of more than 5 MIPS are common, even for large

multi-core models, and some models [35] have reported throughputs in excess of

50 MIPS. From a programmability perspective, most performance models are well-

parameterized, and producing a range of experiments can be as simple as testing a

range of dynamic parameters.

FPGA-based performance models are quite promising, but they still face scalabil-

158

ity issues. Although single FPGA implementations of 16-core CMPs are impressive,

academic and industrial computer architects are now considering the design of pro-

cessors with hundreds or thousands of cores. Producing performance models on that

scale requires multiple FPGA implementation. The remainder of this chapter will

consider the HAsim family of FPGA-based performance models [44], concluding with

the demonstration of a multiple-FPGA implementation of a 128-core CMP.

9.1 Anatomy of HAsim

Timing Partition

Ct D C 0
r t '0D0

D t aD rio
CI) 1oQC 0 0 0) 0
t parto D fo a c r t ft

S BD cD rt o (n
Ct 0I 00) Ct
D cmoD i p rt t 0

CD
(A(DC

(D

Functional Partition

Figure 9-1: HAsim eartitionet processor simulator. The timing partition relies on

the functional partition for all cocputation related tasks, for example instruction
tecoding. All inter-partition communnicatiopi occurs over latency-insensitive channels.

HAsin is a framework for constructing high-speed, cycle-accurate, FPGA-based

CMP simulators. By utilizing the FPGA, which has good support for the fine-grained

p~aralllism common in lprocessors, HAsim can simulate processors at speeds several

orders of magnitude faster than detailed software models. This section provides a

brief overview of the architecture of a HAsian simulator. Although this description

will cover most major blocks, a full description of the operatiomn of HAsim is beyond

the scope of this thesis. A complete description and characterization of HAsim can

be foumnd in [48].

HAsim is written in a highly paranmeterized fashion, both in terms of the struc-

ture and the number of the cores modeled. HAsim models can scale to hundreds

or thousands of cores by changing a handful of parameters, an important feature

159

for modeling future processors. The difficulty in modeling such large processors is

that, even though describing the models using HAsim is straightforward, the models

themselves do not fit in a single FPGA.

Structurally, HAsim is divided into a functional partition and a timing partition,

which separates the calculation of architectural state updates from the amount of time

that those updates take to calculate in the modeled processor [46]. The functional

model serves as an idealized architecture - it takes PC values as inputs and executes

instructions, maintaining both the architectural state and memory. The goal of the

functional model is to execute instructions as fast as possible.

In contrast to the functional partition, which manages the architectural state

of the model and the flow of instructions, the timing model manages the control

flow of the processor itself. Based on projected cycle timings, the timing model

makes decisions about when (in model time) to issue instructions, manages branch

prediction, and handles speculative operations. The timing model also manages the

state of the functional model. For example, the timing model tells the functional

model when to make speculative memory operations visible (commit) and when to roll

back execution upon mis-speculation (abort). Only the timing model must manage

the target processor timing.

Like many FPGA-based processor models, HAsim timing models use multiple

FPGA cycles to simulate one model cycle of the target processor. To resolve the

timing disparity between FPGA and model, the FPGA-cycle-to-Model-cycle Ratio

(FMR), HAsim uses a technique called A-Ports [45]. A-Ports are kind of dynamic

dataflow calculus in which processor components communicate solely by means of

A-Ports. Each component of the processor must emit a token on each of its out-

put A-Ports in each model cycle. Components do not continue to the next model

cycle until all input tokens have been received. By tracking the total number of A-

Ports messages received, HAsim can resolve the precise timing behavior of the target

processor. Because A-Ports are fully distributed, model components can execute as

soon as their inputs are ready, allowing different modules in the processor model

to simulate at different and dynamically-variable FMRs. Because it makes use of

160

dataflow-like, latency-insensitive A-Ports, HAsim is highly amenable to the multiple

FPGA implementation using the LIM compiler. Indeed, the original A-Ports pro-

tocol implementation makes use of latency-insensitive channels, in particular, Soft

Connections, internally.

To improve FPGA implementation efficiency, many operations in HAsim take

multiple cycles to complete. If HAsim modelled a single processor in this way, its

performance would be terrible, with each model cycle taking scores of FPGA cycles

to complete. Worse, most of the simulation pipeline would be guaranteed to be idle

in all FPGA cycles. Fortunately, most interesting modern architectures have multiple

cores. HAsim exploits this design trend by time-multiplexing its processor simulation

infrastructure among many cores, in a manner similar to simultaneous multi-threading

(SMT). In HAsim models with multiple cores, different components of the processor

model may operate on different model cores simultaneously. Thus, hardware uti-

lization is high and the entire model is continuously active. Time-multiplexing also

helps to hide the latency of costly, but infrequent operations such as floating point

operations, because many other processors must execute before the result of the long-

latency operation is required. The time-multiplexed approach also has the advantage

of conserving FPGA implementation area. HAsim can implement a 16-core CMP

model, while cycle-accurate modelling infrastructures that opt for direct instantia-

tion of cores, such as Khan et al. can model many fewer cores per FPGA.

Figure 9-1 shows the interface between the timing and functional partitions. This

interface permits the timing model to both control the behavior of the functional

model, e.g. choosing instructions to execute, and to query the functional model

about the status of the instructions, e.g. obtaining instruction dependencies. This

general interface permits a single functional model to service many different timing

models: when modelling a new processor -microarchitecture, only the timing model

must be modified.

As compared to OFDM and H.264, which will be discussed in the next chapter,

HAsim has relatively tight feedback loops, and these loops occur throughout the

simulation pipeline. For example, the timing partition must query the functional

161

---- Functional Partition
---- Timing Partition

commit - PC getToken

I r----------
Instruction
Memory

getInst Register getDeps
% : File

----- doloads/
ALU- 4*----*

IgetResult Data I dotores
IMemory %%otoe

L ------------ I

Figure 9-2: HAsim un-pipelined processor timing model. Some control paths and
multiplexors have been omitted to simplify the diagram.

partition to decode an instruction and wait for a response before proceeding. Similar

feedback loops arise in the other processor stages and in the cache model. Despite this

level of feedback, a natural mapping of HAsim to two FPGAs is placing the timing

and functional partitions on separate FPGAs.

The following sections offer a brief discussion of major blocks in a HAsim simula-

tor. Because HAsim is a time-multiplexed simulator, many of the interesting microar-

chitectural features of HAsim center around supporting large numbers of multiplexed

cores.

9.1.1 Timing Partition

Figure 9-2 shows the timing model of a single cycle processor. Only the PC is part

of the timing model: all other functionality is managed by the functional partition.

The timing model calls the interface methods of the functional model to execute

instructions. In this model, the HAsim functional partition interface methods are

called, one at a time, to model a single processor cycle, culminating in an update to

the timing model PC. All interfaces to the functional partition are request-response

and may take several cycles to complete. If a method is not required for an instruction

162

then it need not be called. For example, not all instructions touch the data memory,

so doLoads and doStores may not be called in every model cycle.

Although the example of Figure 9-2 shows an extremely simple uniprocessor,

HAsim also provides libraries for modeling modern CMPs, several of which have

interesting micro-architectures. HAsim models networks-on-chip by multiplexing a

multi-ported router among all simulated cores. Router state is stored in a single, on-

FPGA SRAM, and accessed via a stored permutation. Different network topologies

can be modelled by changing the permutation function. HAsim also supports the

modeling of a full cache hierarchy. Because the timing partition does not maintain

state, the cache model needs only to maintain tag information allowing it to determine

whether a request hits or misses.

9.1.2 Functional Partition

The HAsim functional partition resembles a large, out-of-order SMT machine, wherein

state elements are replicated in FPGA on-die SRAM and the processor data path and

memory interface are multiplexed among all modelled processors. These SRAM tables

are managed by passing references to in-flight instructions between the timing and

functional models. Since HAsim admits out-of-order and speculative execution, the

functional model must also maintain and roll back uncommitted speculative state.

The functional model uses a map table and free-list based out-of-order approach to

achieve this capability.

Although the functional model implements an idealized processor architecture,

it differs from a real processor in several fundamental ways. Unlike a real proces-

sor, instruction execution in the HAsim functional partition is demand-driven, based

on requests from the timing partition. Although the functional partition is deeply

pipelined, it is not bypassed, and it relies on independent instruction streams from

independent cores to achieve a high degree of parallelism.

163

9.2 Scaling HAsim: 128 Core Models

On a single FPGA, HAsim scales to 16 cores before the largest available Xilinx Virtex-

5 FPGA runs out of resources. By mapping HAsim to two FPGAs, HAsim is able to

model CMPs with up to 128 cores. HAsim achieves super linear scaling in problem

size because many structures in HAsim are either time-multiplexed among all cores

or scale logarithmically with the number of cores.

When mapping HAsim to two FPGAs, the best performing partitioning places

the timing and functional partitions on separate FPGAs. This timing-functional

partitioning works well for two reasons. First, the timing-functional interface is in-

trinsically pipelined due time-multiplexing among cores. Individual logical cores can

tolerate inter-chip communication latencies because they must already wait for other

cores to execute. Better, this tolerance scales as the number of simulated cores in-

creases. Second, the timing model does not actuate all interfaces provided by the

functional model on every model cycle. Thus, the timing-functional channels gener-

ally have lower loading than either timing-timing or functional-functional channels.

The primary advantage in mapping HAsim to multiple FPGAs is in scaling to

larger designs. However, HAsim also benefits from the increased memory resources

available on multiple FPGA platforms. HAsim fundamentally runs software pro-

grams, and these programs require high-bandwidth, low-latency memory caches to

execute quickly. Thus, large HAsim models need large amounts of fast memory. Par-

titioning HAsim designs among multiple FPGAs automatically introduces new chip-

level resources, like DRAM, into the synthesized implementation, increasing both

cache capacity and memory bandwidth.

To evaluate the LIM compiler, HAsim models for the family of CMPs described by

the parameters in Table 9.1 were generated and tested by running a mix of SPEC2000

integer and floating point applications in parallel on the modelled cores. Although

these models are similar to a realistic CMP, two details are missing from the models.

First, the model implements only a single memory controller, while modern CMPs

typically have at least two. Second, while HAsim supports detailed cache-hierarchy

164

HAsim Parameter Value
Core

ISA 64-bit Alpha
Pipeline Stages 9

Branch Policy Predict/Rollback

Outstanding Memory Requests 16

Address Translation Full TLB

L1 Cache

Associativity Direct Mapped
Size 16KB

Oiustanding Misses 16
L2 Cache

Size 256KB

Associativity 4
Outstanding Misses 16

On-chip Network

Topology 2-D Mesh

Rotiting Policy X-Y DO Wormhole

Virtu-al Channels 2

Buiffer per Channel 4

Table 9.1: HAsim Model Configuration.

modelling, it does mot currently support cache coherence. In spite of these omissions,

HAsim remains a useful tool for architectural research.

The performance of various HAsim implementations is shown in Figure 9-3 and

Figure 9-4. For small numbers of cores, the gap between the single FPGA and

multiple FPGA simulator is large, due to the request-response latency between the

timing and functional partitions. However, as the number of simulated processors

scales, models become more latency tolerant, and the performance gap closes. For

the 64-core simulator modelling both 25 and 36 core processor designs, the partitioned

simulation produces more aggregate MIPS than a single FPGA implementation.

HAsim's performance can be mleasured in two ways: the speed a which it runs

programs (instructions per second (IPS), Figure 9-3) and the speed at which it models

the target architecture (FPGA cycle to model cycle ratio (FMR), Figure 9-4). The

main difference in these two measuires is how they are affected by the modelled ar-

chitecture itself. If the modelled target architecture is slow or poorly designed, even

a fast simulator will have low IPS. On the other hand, poor architectures usually

165

10
Single FPGA

Dual FPGA (Max. 16)
Dual FPGA (Max. 64)

8 - Dual FPGA (Max. 128)
C/)

2--

E

0)
0)

2

8 16 25 36 49 64 81 100 121
Number of Simulated CPUs

Figure 9-3: Simulator program run-times in MIPS various HAsim simulation con-
figurations. Simulated cores run a combination of wupwise, applu, gec, mesa, mcf,
parser,perlbmk, and ammp from the SPEC2000 suite.

spend large amounts of time idling, which takes little time to simulate. IPS is con-

sidered the more relevant measure, since architects ultimately require full-program

simulation, but both are included to demonstrate that at least some of the perfor-

mance degradation IPS seen in the larger FPGA models is caused by a poor memory

architecture in the target CMP.

Although partitioned implementations of HAsim have lower throughput than sin-

gle FPGA implementations, the performance gap is quite narrow. The partitioned

16-core processor model achieves about 80% of the aggregate IPS of the 16-core single

FPGA implementation, largely due to the latency of communication between chips.

The inter-chip latency is also reflected in the FMR of the partitioned implementation,

which is twice as large as the single FPGA implementation. As the number of cores

scales in the partitioned models, IPS throughput increases until 36 cores. The reason

for this throughput improvement is that larger numbers of cores in a time-multiplexed

model are more resilient to inter-link latency. The FMR of the partitioned models

flat-lines after 25 cores, suggesting that the latency of the inter-FPGA link is com-

pletely hidden. After 36 cores, the IPS throughput of HAsim begins to decline. This

166

14

12 - Dual FPGA (Max. 64)
Dual F A (Max. 121)

10 -

LL
0

E

<4

2

8 16 25 36 64 81 100 121
Number of Simulated CPUs

Figure 9-4: HAsim simulator FMR tend to saturate for large numbers of cores, sug-
gesting a performance bottleneck in HAsim. Cores run the same program mix as in
Figure 9-3.

decline in IPS is due to flaws in the underlying architecture: network and niem-

ory contention at the chip level begin to dominate, reducing the performance of the

target architecture. As a result models take more cycles to execute. On the other

hand, FMR remains relatively stable, even in in the case of large numbers of cores.

This FMR stability suggests that some component of HAsim is saturated and that

HAsin itself, as opposed to the multiple FPGA implementation generated by the

LIM compiler, is bottlenecking simulation.

Exposing more FPGA resources to HAsim, in addition to increasing the maximum

number of cores that can be modelled, has a positive effect on the operating frequency

of HAsim because each FPGA has excess area available for placement. The multiple

FPGA partitioning of the 16-core simulator can be clocked at 7% and 12% faster than

the single FPGA implementation. However, as the maximum number of simulated

cores increases, the FPGA becomes more crowded, reducing operating frequency. As

a result, partitioned models supporting more cores have lower performance when

simulating the same number of cores as a smaller model.

Section 9.1 discussed the division of HAsim-based simulators into timing and

167

LUTS Registers BRAM] fMax(MHz)
HAsim, 16 cores, Single 156351 153906 127 70
HAsim, 16 cores, FPGA 0 99331 94387 75 75
HAsim, 16 cores, FPGA 1 114403 107288 60 80
HAsim, 64 cores, FPGA 0 112980 98382 111 65
HAsim, 64 cores, FPGA 1 132670 108958 133 70
HAsim, 128 cores, FPGA 0 127911 104391 245 60
HAsim, 128 cores, FPGA 1 153721 116421 174 65

Table 9.2: Synthesis metrics for single and multiple FPGA implementations of HAsim.
Xilinx 12.1 was used to produce bit-files. To limit compile times, fRlax is stepped at
increments of 5MHz.

functional partitions. This partitioning permits a single, highly optimized functional

partition with a fixed interface to support many different timing models. If, in a

multiple FPGA partitioning, the timing and functional models are placed on different

FPGAs, the generality of the functional model implies that the functional partition

need be compiled for FPGA only once, since its interface is constant across all timing

models. Once the functional model is compiled, all subsequent timing models can

reuse it. Since the functional model is larger than most timing models, this represents

a significant compilation time savings. Indeed, compiling the timing model alone

represents up to a 40% savings in overall compilation time.

9.2.1 HAsim on Multiple FPGAs

As in the case of Airblue, the chief advantage of implementing HAsim on multiple

FPGAs is problem size scaling. FPGAs cannot match the area-efficiency of silicon

implementation. Even if FPGAs did match the area efficiency of ASIC, computer

architects model machines that are generations ahead of current silicon technology.

Therefore most interesting processor models will not fit into a single FPGA. Multiple

FPGAs solve this problem by permitting the scaling of models to very large problem

sizes. Indeed, scaling the HAsim processor model to two FPGAs permits an order-of-

magnitude increase in the number of processors that can be modelled simultaneously.

In addition to problem scaling, mapping HAsimn to multiple FPGAs has other

168

benefits. Increased access to resources, such as memory and FPGA fabric, across

chips can accelerate HAsim models. In some configurations, a two-FPGA partition-

ing of HAsim has higher throughput than the peak throughput of a single FPGA

implementation. Additionally, because HAsim timing partitions can share a common

functional partition, multiple FPGA compilation may reduce compile times in some

cases.

169

Chapter 10

H.264

The H.264 Advanced Video CODEC is an ITU standard for encoding and decoding

video with a target coding efficiency twice that of H.263 and with comparable quality

to H.262 (MPEG2) [23, 52]. H.264 enables PAL (720 x 576) resolution video to be

transmitted at IMbit/sec. Like other video coding standards, H.264 specifies how to

reconstruct video from a bit stream but does not specify how to encode video. H.264

shares many of the techniques used in other video CODECs, including VP8 [62], and

is a good representative of the video compression family.

Although recent processors are capable of handling full-frame rate HD video de-

coding, H.264 remains computationally intensive and most deployments of H.264

include at least partial hardware acceleration, particularly in the power-sensitive mo-

bile space. The computational requirements of decoding H.264 video vary depending

on video resolution, frame rate, and level of compression used. Low-end mobile phone

applications favor videos encoded in the QCIF format (176 x 144) at 15 frames per

second. At the high end of the spectrum, HD-DVD videos are encoded at 1080p

(1920 x 1080) at 60 frames per second. Complicating these performance requirements

are the H.264 standard profiles, which use different combinations of compression fea-

tures. The combination of different performance levels and feature sets suggest that

different hardware architectures are needed for different H.264 deployments. Given

the importance of video as a medium of entertainment and information transfer, the

practical need for hardware acceleration in commercial deployments, and the variabil-

170

Figure 10-1: An H.264 decoder.

ity of hardware requirements, a platform for research into the architecture of H.264

decoders is valuable.

To facilitate architectural research into H.264, we implemented an FPGA-based

decoder [17]. Although H.264 does not have the latency requirements and throughput

requirements that force OFDM systems like Airblue to utilize the FPGA for func-

tional correctness, simulating hardware systems the size of H.264 is extremely slow

in software. When conducting design-space explorations across a significant param-

eter space, for example, when tuning cache parameters, FPGA-acceleration is help

in quickly testing parameters. This implementation effort led to the development

of several important aspects of the design of latency insensitive systems for archi-

tectural research and for the FPGA, including the concept of a decoupled memory

hierarchy with a uniform, split-phase interface. This interface will form the founda-

tion of the portable, automatically generated memory system described in Chapter 7.

H.264 also serves as an excellent study for memory systems for both embedded and

reconfigurable implementation substrates.

This chapter will first describe the operational characteristics and behavior of

H.264 in Section 10.1. Section 10.2 examines some experiments in to the architecture

of a frarme buffer cache hierarchy. Section 10.3 describes a multiple FPGA partitioning

of H.264 and a handful of microarchitectural results.

171

10.1 Anatomy of H.264

H.264 reconstructs video at the granularity of 16 x 16 pixel macroblocks, which may

be further subdivided into smaller sub-blocks in some decoding steps. H.264 uses

two main techniques to reduce the number of bits necessary to encode video. Intra-

prediction predicts macroblocks in a frame from other previously-decoded spatially-

local macroblocks in the same frame. Inter-prediction predicts macroblocks from

indexed macroblocks in previously decoded frames. Within a coded frame, slices,

or groups of macroblocks, may be intra-predicted, inter-predicted from the previous

frame, or inter-predicted from multiple reference frames. Figure 10-1 shows a block

diagram of an H.264 decoder.

The macroblock processing style of yields an interesting pipelined behavior: hard-

ware blocks typically operate for a few dozen cycles on a single macroblock and

then pass the macroblock to the next pipeline stage for subsequent processing. The

natural latency arising from these sequential block-level operations coupled with non-

deterministic processing times in the hardware blocks, requires a latency-insensitive

implementation. The size of the latencies between hardware blocks also make H.264

suitable for multiple FPGA implementation.

H.264 is between OFDM and HAsim in terms of feedback dependence. Feedback

in H.264 occurs at two levels: the frame and the macroblock. Feedback at the frame

level occurs through the frame buffer, as pixels from previously frames are used to

decode subsequent frames. Because of the temporal length of this feedback path, it

is of limited concern for implementations partitioned across FPGAs. Feedback at the

macroblock level occurs between the inter-prediction and intra- prediction blocks. In

this case, the inter-prediction module feeds pixel information to the intra-prediction

block. Beyond these two feedback paths, the H.264 pipeline is feed-forward. Thus,

because feedback is limited, partitioning among FPGAs at most points in the design

will not incur a major performance penalty.

The following paragraphs describe the basic behavior of blocks in H.264.

NAL Unwrap: H.264 streams are encapsulated within a transportation packet for-

172

mat, which permits the mixing of different media types, for example audio. The

Network Adaptation Layer (NAL) interprets these packets and extracts the H.264

stream from them, including high-level control information.

Entropy Decoder: In addition to video-specific compression, H.264 makes use of

general entropy encoding to further compress video streams. Depending on the perfor-

mance profile, H.264 applies one of two entropy encoding schemes: CAVLC(Context

Adaptive Variable Length Coding) and CABAC(Context Adaptive Binary Arithmetic

Coding). Both techniques feature context-aware bit-mappings that vary during de-

coding. CABAC typically achieves better compression, but is much more computa-

tionally intensive.

Inverse 'ransformation and Quantization: H.264 produces new pixel data via a

set predictions based on previously decoded image data. Although these predictions

do a good job of recovering pixel information, they do contain small errors. To

improve the overall quality of the decoded video, H.264 corrects these predictions

with a block of residual-error correcting values representing the difference between

the fixed prediction and the original image. This greatly enhances compression, since

the prediction modes and residual errors can be concisely expressed.

However, residual terms can be further compressed. Since residual terms exhibit

high spatial entropy, H.264 employs a lossy, low-pass discrete cosine transform to

develop a compact representation of the residual values. The DCT coefficients of the

residual errors are have small magnitudes, allowing the residuals to be expressed in

terms of a very small number of frequency components. H.264 also allows variable

quantization of DCT coefficients to enhance coding density.

Intra-prediction: Video frames have a high amount of spatial similarity. Intra-

prediction use previously decoded, spatially-local macroblocks to predict the next

nmacroblock. Blocks are predicted from these pixels using a set of simple pixel trans-

forms, mostly two-dimensional cosines. For additional compression, H.264 will also

predict the intra-prediction transform to use for each macroblock, based on the trans-

forms used by spatially local blocks. Errors in this prediction are also encoded in the

data stream.

173

Inter-prediction: In video, temporally adjacent frames usually have only small

differences. Inter-prediction attempts to capitalize on this inter-frame similarity by

encoding macroblocks in the current frame using a reference to a macroblock in a

previous frame and a vector representing the movement that macroblock took between

the two frames. The decoder will attempt to predict both which block to use and how

far that the block moved, based on the behavior of previously decoded, spatially-local

blocks.

H.264 permits macroblock motion to occur at sub-pixel granularity. Macroblocks

with fractional motion vectors are interpolated from multiple previous macroblocks,

using several computationally intensive spline calculations.

Deblocking Filter: Since the various compression modes of H.264 operate at the

granularity of pixel blocks, significant visual discontinuities can appear at block

boundaries. To remove these visual artifacts, H.264 incorporates a smoothing fil-

ter into its decoding loop. The deblocking filter applies a series of smooth operations

to block boundaries, depending on the kind of prediction mechanism used to produce

the particular pixel blocks. However, not all inter-block discontinuities are undesir-

able; edges in the original image may naturally occur on block boundaries. H.264

incorporates fine-grained filter control to preserve these edges.

Buffer Control: H.264 does not require inter-predicted images to depend on temporally-

local or temporally-ordered images. Rather, frames can be predicted from previously

decoded frames corresponding to frames far in the past or future of the video. Buffer

control maintains this set of previously decoded frames and is responsible for han-

dling the in-stream requests to access the stored frames (e.g. delete, reads from

inter-predict, writes from deblocking). Writes to the buffer control are typically in

raster order at the granularity of macroblocks. Reads, which occur in inter-prediction,

typically touch a few adjacent rows of macroblocks, and exhibit strong data locality.

174

Stream QCIF 720p

Input 0.01 2.75
Output 0.50 26.5
Inter-prediction 1.00 67.0

Table 10.1: H.264 bandwidth requirements for streams with variable resolu-

tions(MB/s)

H.264 H.264 H.264
4 Interpolator Interpolator Interpolator

Frame Buffer Control Frame Buffer Control Frame Buffer Control

--- --- - --- - .- MemorylInterface- -- -------- --

Private Private Private Cache Private Private Private
Cache Cache Cache Cache Cache Cache

Scratchpad -- Scratch pad Scratchpad Scratchpad -

U-..Interface Interfac Interfac Interface

a) On-Die Frame Buffer b) Single Scratchpad c) Multiple Scratchpads

Figure 10-2: H.264 memory architectures. (a) Stores all interpolation data on the

FPGA. (b) Stores the same data in a single scratchpad, allowing the decoder to work

on larger frame resolutions. (c) Stores the data in multiple scratchpads, increasing

memory I/O parallelism and reducing cache conflict misses and head-of-line blocking.

10.2 H.264 Memory Architecture

H.264 can source pixels for prediction in two ways: Intra-prediction predicts mac-

roblocks in a frame fromn other previously decoded, spatially local, mnacroblocks in

the same frame. Inter-prediction predicts macroblocks from motion-indexed pixels in

previously decoded frames. Intra-prediction takes advantage of spatial locality within

a frame - colors and textures are similar across a frame. Inter-prediction takes ad-

vantage of temporal locality across a frames - adjacent frames tend to depict similar

images. In the context of memory management, this second kind of prediction is

of the greatest interest, since it necessarily involves retrieving data from previously

decoded, stored frames.

H.264 has three distinct memory streams: input, output, and inter-prediction.

As shown in Figure 10.1, the inter-prediction, somewhat counter-intuitively, stream

dominates memory bandwidth usage. This dominance arises from the method by

which blocks are inter-predicted in H.264. Previous standards permitted only whole

175

pixel motion vectors: inter-prediction of a macro block only involved copying some

other macroblock from an existing frame and then applying a residual correction.

The bandwidth requirements of this style of inter-prediction must be strictly less

than the output bandwidth, since not all blocks are inter-predicted. However, H.264,

in addition to legacy inter-prediction schemes, permits sub-pixel motion vectors. To

provide better image reconstruction in this case, H.264 applies blurring spline filters

to pixels from as many as five different adjacent macroblocks to produce a single

predicted pixel. For quarter-sample motion vectors, thirty-six pixels must be accessed

to compute a single output pixel. Inter-prediction not only requires high memory

bandwidth, but also its access pattern is dynamic. Whole, half, and quarter pixel

motion vectors may occur at any point in the frame.

Fortunately, H.264 exhibits a number of properties that can be exploited to de-

velop an efficient memory system. First, the memory streams for the intensity (lumi-

nance) and coloration (chrominance) fields are independent. Second, motion vectors

tend to be spatially homogeneous, yielding a high degree of regional locality in pixel

accesses. Third, inter-prediction feedback occurs at the granularity of a frame, thus

simplifying management of coherence across multiple caches.

The original H.264 implementation was designed to target several different per-

formance levels with the idea of producing a minimum-cost implementation for each

design point. One key difference in the architectures was the memory subsystem.

High-end systems might target a dedicated SRAM frame buffer, while low-end sys-

tems might use a shared DRAM. These memory architectures have radically different

timings, and accommodating these timing in a latency-sensitive design can precip-

itate large code changes. To avoid this issue, the original H.264 implementation

abstracted away the timing behavior of the various system memories through the

use of a uniform, latency-insensitive, request-response interface consisting of three

operations: read request, read response, and write. Any memory hierarchy can built

under this abstraction layer without impacting the functional correctness of the client

hardware, including automatically generated memory hierarchies. This interface, and

its implications are discussed at length in Chapter 7.

176

Because the memory interfaces of the base design were written in this latency-

insensitive, request-response manner, augmenting the base implementation with caches

requires no code modification to the H.264 core: the cache is simply a memory hierar-

chy with a dynamically variable latency. Figure 10.3 presents the results of the basic

cache experimentation. A direct-imapped, blocking cache was designed and manually

inserted between the frame buffer controller and the frame buffer store, with separate

caches for the luma and chroma samples. The memory access patterns tested were

taken from a low-bit-rate QCIF video stream and a high-definition 720p clip.

It is evident from Figure 10.3 that even a small cache is highly effective in capturing

inter-prediction memory locality. With a four-byte line size and two one-kilobyte

cache, 46% of luma memory and 30% of chroma memory requests hit in the cache.

Using larger cache line sizes more than double the hit rates. The largest gain in

caching performance occurs when making the cache large enough to contain the image

data of three adjacent macroblocks at the same time, that is, large enough to capture

the data of the macroblocks to the immediate left and right of the current macroblock,

since these data values are likely to have been recently used (left) or to be used again

soon (right). Further hit-rate improvements require caching the rows of macroblocks

above and below the current macroblock; some of this benefit is seen by the larger

caches in the QCIF experiment.

Caches are clearly beneficial for H.264: with relatively little extra area, the band-

width of the memory hierarchy is amplified and, perhaps more importantly, power

is reduced. However, there are two difficulties in baseline caching experiment. First,

while the manual creation and integration of simple cache modules is not difficult,

more complicated modules, like a second-level cache, start to present implementation

difficulties. Second, from the perspective of multiple FPGA implementation, inter-

facing to a memory module directly limits the portability of a design. An interesting

solution to both of these problems is automatic cache synthesis. Rather than man-

ually developing a cache hierarchy, the request-response interfaces in H.264 can be

used to infer a hierarchy. Scratchpads [1] are such an automatic memory hierarchy

synthesis tool, the details of which are presented in Chapter 7.

177

Cache Size Chroma Hit Rate Luma Hit Rate
(8-bit Pixels) Line Size (Pixels) Line Size (Pixels)

4 8 16 32 4 8_ 16] 32

128 .177 .346 .431 .363 .032 .394 .511 .573
256 .336 .530 .636 .453 .033 .398 .516 .576
512 .369 .554 .657 .466 .242 .609 .640 .629
1024 .463 .729 .814 .823 .305 .650 .719 .720
2048 .464 .729 .862 .925 .306 .650 .720 .721
4196 .564 .780 .888 .944 .558 .778 .888 .944

Table 10.2: H.264 Inter-prediction Cache Parameter Exploration (QCIF)
Cache Size Chroma Hit Rate Luma Hit Rate
(8-bit Pixels) Line Size (Pixels) Line Size (Pixels)

4 8 16 32 4 8 16 32
128 .082 .373 .509 .578 .013 .247 .330 .371
256 .138 .429 .565 .635 .067 .275 .348 .384
512 .376 .666 .810 .883 .217 .432 .510 .552
1024 .393 .684 .829 .903 .468 .719 .837 .898
2048 .428 .712 .854 .926 .516 .756 .876 .937
4196 .428 .712 .854 .926 .516 .756 .876 .937

Table 10.3: H.264 Inter-prediction Cache Parameter Exploration (720p)

The chief issue in the evaluation of automatically synthesized systems is whether

they have performance commensurate to a hand-coded system. The baseline H.264

decoder uses the same interface as the the Scratchpad-based hierarchy, allowing the

application of Scratchpads without modifying the core code. Figure 10-2 shows three

different memory hierarchies of varying complexity for H.264. The first hierarchy is a

simple, shared, on-die, RAM-based frame buffer. This buffer is constrained by both

the size of on-die RAM available on the FPGA and offered bandwidth, which must

be multiplexed among the three field streams. It is worth noting that this memory

architecture is chosen by many published H.264 implementations. The second hier-

archy is a single Scratchpad memory hierarchy backed by the central cache. While

the architecture makes use of the automatic mid-level cache provided by Scratchpads,

the lowest-level cache is still multiplexed among the three pixel streams. The third

hierarchy partitions the Scratchpads to implement separate storage for the luma and

chroma components. Although this architecture requires a larger number of caches,

the bandwidth offered by the hierarchy is substantially higher due to the distribution

of requests across caches. Additionally, individual caches experience better perfor-

178

inance due to the removal of conflict misses. To provide a uniform basis for compar-

ison, the three hierarchies are configured to use similar amounts of on-die memory.

The performance results for the various memory hierarchy implementations are

shown in Figure 10-3. Results are not shown for higher resolutions using on-die RAM

blocks because they are not synthesizable on the FPGA, due to the size of the on-

(lie RAM frame buffer. Unlike direct implementations employing on-die memory,

the Scratchpad versions require only caches on the FPGA and remain synthesizable

as the problem size grows. As expected, the memory hierarchy in which only a

single Scratchpad is used offers less performance than the hierarchy in which the

field memory streams are split across multiple platforms. However, the performance

increase is much larger than a factor of three. This larger difference is a result of head-

of-line blocking in the single Scratchpad hierarchy. High-latency misses prevent faster,

unrelated hits from exiting the in-order memory response queue, thereby stalling

the processor pipeline. Figure 10.4 shows the implementation areas of the different

memory hierarchies combined with the H.264 memory controller. Because of the

complex synthesis process used to build Scratchpads-based hierarchies, it is difficult

to separate individual components of the FPGA platform from one another, so an

FPGA platform without any memory hierarchy is provided as a reference.

Memory Hierarchy Registers LUTs On-Die
RAM KB

Platform Components 9599 11239 8
On-die Frame Buffer 22834 31880 244
Single Scratchpad 53941 66184 208
Multiple Scratchpads 37815 52748 208

Table 10.4: H.264 synthesis results with various cache hierarchies, targeting Xilinx

Virtex 5.

10.3 H.264 on Multiple FPGAs

The chief advantage in using multiple FPGAs in evaluating H.264, beyond evaluating

the robustness of the multiple FPGA compiler, is to speed compile time. H.264 has

179

1000

Multiple Scratchpad
o 100

0
0.1

QV7 10 8
a1)
E

0.1

OClE VGA 720p 1080p

Frame Resolution
Figure 10-3: H.264 frame-rates for different memory architectures and resolutions,
plotted on a log scale.

several potential levels of implementation with widely varying feature sets and per-

formance requirements. When implementing these various feature sets, it is useful to

have a platform for rapidly evaluating the performance of different micro-architectures

and memory organizations. The lower compile times offered by our compiler are useful

in this kind of architectural exploration.

H.264 is naturally decomposed into a bit-serial front-end and a data parallel back-

end. The front-end handles decompression and packet decoding, while the back-

end applies a series of pixel-parallel transformations and filters to reconstruct the

video. H.264 has limited feedback between blocks in the main pipeline. The pipeline

synchronizes only at frame boundaries, which occur at the granularity of millions of

cycles. Intra-prediction does require some feedback from inter-prediction, but this

feedback is somewhat coarse-grained, occurring on blocks of sixty-four pixels.

Because H.264 generally lacks tight coupling among processor modules, many

high performance partitionings are possible. As an example, I choose to partition the

bit-serial front-end because the front-end computation does not parallelize efficiently.

180

3

2.5 -

C.,
z 2 --

0

CL 1.5

0 .5

0-

QCIF 720p 1080p

Frame Resolution

Figure 10-4: Performance results for H.264 implementations mapped across multiple
FPGAs. Results are normalized to a single FPGA implementation.

As such, its performance can only be increased by raising operating frequency. The

front-end also contains a number of difficult feedback paths, which end up limiting

frequency in a single FPGA implementation.

Figure 10-4 shows the performance of a partitioned implementation of H.264 rel-

ative to a single FPGA implementation. In the case of the low resolution, the mul-

tiple FPGA implementation outperforms the single FPGA implementation by 20%.

This performance gain comes from increasing the clock frequency of the partitioned

implementation relative to the single FPGA implementation. However, at higher res-

olution, inter-prediction memory traffic becomes more significant which has the effect

of frequently stalling the processing pipeline. As a result some part of the latency of

inter-chip communications is exposed and the multiple FPGA performance degrades

slightly.

181

LUTS [Registers BRAM fMax(MHz)
H.264, Single 79839 59212 63 55
H.264 FPGA 0 66893 52860 65 65
H.264 FPGA 1 13998 9493 19 85

Table 10.5: Synthesis metrics for single and multiple FPGA implementations of our
sample designs. Xilinx 12.1 was used to produce bit-files. To limit compile times, we
stepped fMax at increments of 5MHz.

182

Chapter 11

Conclusion

FPGAs are growing in importance as substrates for algorithmic computing. As pro-

grammners implement larger and larger algorithms, these algorithms may cease to fit

in a single FPGA. In the past, when programs have spilled across FPGA boundaries,

programmers have faced either the painful task of manually partitioning their design

across multiple FPGAs or the painful loss of performance through the use of existing

multiple FPGA implementation tools. By exploiting high-level properties already

present in many hardware designs, this thesis demonstrated that high-performance

multiple FPGA implementations can be produced automatically.

Past approaches to multiple FPGA partitioning have been limited by the descrip-

tive power of traditional RTLs, which obfuscate the high-level behavior and properties

of original hardware. This obfuscation forces compilers to maintain cycle-accuracy as

a fundamental level of abstraction, which causes a loss of performance in the case that

clock synchronization must be distributed across chips. To raise the level of abstrac-

tion available to the programmer, this thesis presented the latency-insensitive chan-

nel, a new primitive for communication in hardware designs. The latency-insensitive

channel permits designs to describe to the compiler points in the design where it is

safe to change the cycle behavior of the design.

Because they admit cycle behavior changes, latency-insensitive channels may have

many different physical implementations, ranging from fixed-size hardware FIFOs to

complex networks spanning multiple FPGAs. Thus, it is possible to automatically

183

compile designs so described across an arbitrary network of FPGAs. This thesis

presents the LIM compiler, a tool capable of automatically synthesizing efficient inter-

FPGA networks from user source. Unlike traditional automatic partitioning tools,

implementations produced by the LIM compiler generally enjoy high levels of perfor-

mance, in many cases surpassing single FPGA implementations of the same program.

Latency-insensitive programs implemented using the LIM compiler compute as data

flows, rather than when some globally synchronized clock ticks. Thus, rather than

paying a fixed overhead for inter-FPGA communication, latency-insensitive programs

naturally tolerate the latency of communication.

The programs presented in the latter part of the thesis benefitted substantially

from multiple FPGA implementation. All programs compiled faster, and experienced

reduced recompilation times. Many program throughputs also improved, and, in

the case of some Airblue derivatives, super linear performance gains were observed.

Additionally, HAsim and Airblue were able to scale to capture much larger designs.

In providing a language syntax, model of computation, and optimizing compiler

for multiple FPGAs, the thesis made the following specific contributions:

" The formulation and application of a model of computation for designs with

explicit latency-insensitive channels (Chapter 2.1).

* A compiler mapping designs with explicit latency-insensitive channels to mul-

tiple FPGAs (Chapter 4).

* An area-efficient, high-performance network architecture for latency insensitive

channels (Chapter 5).

" Optimizations for inter-FPGA networks (Chapter 6).

" Techniques for providing automatic and scalable access to resources, such as

memory, across multiple FPGAs (Chapter 7).

* Numerous large hardware designs obtained through application of the compiler

(Chapters 8, 9, and 10).

184

11.1 Future Work

The compiler presented in this thesis is already capable of producing high-quality

hardware implementations for multiple FPGA environments, which was amply demon-

strated in Chapters 8, 9, and 10. However, the study of the latency-insensitive model

of computation and multiple FPGA compilation presented in this thesis suggest that

there are many exciting researches left to be conducted. There are three possible

avenues of exploration suggested by the contributions of this thesis: building very

large system prototypes, improving the multiple FPGA compiler, and applying the

latency-insensitive model of computation to other applications in the space of parallel

system design.

Large Prototypes

The LIM compiler presented in this thesis permits the efficient implementation of very

large hardware programs. One example of a scalable design space capable of produc-

ing such large programs is multiple-input, multiple-output (MIMO) RF transceivers.

In MIMO, the transmitter sends multiple distinct data streams simultaneously on

physically separate antennas (MO). The corresponding receiver then receives a mix-

ing of these streams on physically separate antennas (MI). Due to the spatial diversity

among the antennas, the receiver is able to solve a series of linear equations to decode

each original data stream. Thus, adding more antennas fundamentally improves the

throughput of a wireless network. MIMO is a developing trend in high-throughput

wireless communications standards: 802.1 li [30] introduced MIMO, and the follow-on

802.11ac doubles the naximum number of MIMO streams.

The LIM compiler is an enabling implementation technology for experimenting

with large MIMO systems. MIMO baseband requires much greater computational

capacity than the wireless systems presented in Chapter 8, and multiple FPGAs do

enable the construction of these complex basebands. However, the real difficulty in

build large MIMO systems is not in the computational complexity of the baseband,

it is in physically interfacing to multiple antennas. Prototyping MIMO with eight or

185

sixteen antennas requires building an FPGA board with that many antennas, which

is a difficult task for the academic research community. However, because the LIM

compiler offers a scalable way to aggregate boards with multiple physical resources,

the LIM compiler could be used to build a large MIMO system by simply aggregating

existing single antenna solutions.

Improvements to Multiple FPGA Compilation

Some designs presented in this thesis, such as HAsim and OFDM, can scale to very

large numbers of FPGAs. There are several issues related to scaling to large numbers

of FPGAs that have been left unaddressed in the LIM compiler. Foremost among

these is automatic placement of latency-insensitive modules on to FPGA platforms.

The examples considered in Chapters 8, 9, and 10 were all comprised of a small

number of modules, making hand-placement feasible. However, as designs scale high-

quality hand-placement will quickly become difficult. A basic algorithm for automatic

placement requires two pieces of information: the area of each latency-insensitive

module and the traffic on the inter-module channels. Once this information is known,

for example by synthesizing user latency-insensitive modules to obtain their area

and using the methods of Chapter 6 to determine inter-module communications,

then successive applications of the Kernighan and Lin heuristic [5] could be used to

optimize the placement.

Applications of Latency-Insensitive Channels

The LIM compiler maps programs described using latency-insensitive channels on to

environments comprised of multiple FPGAs, with the primary intention of making

the implementation of large hardware programs feasible. However, latency-insensitive

channels enable many other interesting kinds of compilation. Within the domain

of FPGA design, latency-insensitive channels may provide a means of reducing the

ever-increasing run-times of the FPGA synthesis tool chain. Furthermore, latency-

insensitive design may be extended to solve several important problems in more gen-

eral field of digital design.

186

Currently, compilation is a significant bottleneck in FPGA-based design. Even

small designs can require hours of compilation time to produce an FPGA implemen-

tation. Worse, changing any portion of the design can result in a complete recompi-

lation, even if the change is isolated to a small portion of the design. These issues

represent a serious impediment to the adoption of FPGAs as algorithmic compute

platforms. This compilation problem represents one serious barrier to the adoption of

FPGAs as algorithmic compute platforms and severely impinges upon programmer

productivity.

The chief reason that small RTL changes precipitate global is the difficulty of

meeting global timing closure. Small changes may only perturb a small portion of

the design, but these perturbations can ripple across the design necessitating extra

work. The latency-insensitive model of computation proposed in this thesis can be

leveraged to solve this problem by providing an insulating layer between RTL mod-

ules. A single FPGA can be partitioned in to smaller "virtual" FPGAs, with some

reserved space between the "virtual" FPGAs for inter-"virtual" FPGA routing. The

"virtual" FPGAs themselves can be targeted using a compilation flow similar to the

flow presented in Chapter 4. "Virtual" FPGAs can be independently placed and

routed, with their inter-FPGA interconnects tied to specific locations on die. Once

these RTL islands have been placed-and-routed, the inter- "virtual" FPGA links can

be routed through the reserved interconnect region, in a process similar to buffer-

box routing in classical ASIC flows. Since the inter-"virtual" FPGA interconnect is

latency-insensitive, additional delay stages can be added as needed between virtual

FPGAs to achieve global timing closure. During subsequent recompilations only those

"virtual"-FPGAs that have changed and the global interconnect must be recompiled.

This approach improves tool run-times in two significant ways. First, the primary

compilation step is fundamentally parallel, and maybe quite fast in the context of

well-partitioned designs. Second, on recompilation, substantial portions of previous

compilations may be re-used. It may also be the case that platform interface libraries

of the kind discussed in Chapter 7 may be reused, without recompilation, across

all designs, in much the same way that fundamental C libraries are almost never

187

recompiled by modern software programmers.

The scope of latency-insensitive design is not limited to FPGAs alone. Indeed,

it has broad applicability to digital design, especially in the increasingly important

space of System-On-Chip (SoC) design. Current SoC design consist of heterogeneous

mixes of accelerator cores and various kinds of general purpose processors. Currently,

the interconnection network between these devices is manually designed, using a

traditional bus hierarchy. This approach is somewhat fragile, in the sense that new

system-level requirements and additional accelerator blocks can necessitate a complete

system redesign. Such efforts are also error prone: giving the wrong priority to a

channel, even at one router, can result in a loss of functionality [71].

As the complexity of SoC systems grows beyond human ability to reason about

their behavior, increased design automation will be required to assist chip developers

in producing functional designs. Latency-insensitive channels represent on possible

solution: the kind of communications that occur between blocks in an SoC are qual-

itatively similar to kinds of communication that occur in multiple FPGA designs. In

a typical SoC design, hardware blocks are aggregated into processing pipelines, for

example to handle a phone call or to play back compressed audio formats. Since these

hardware blocks conform to the latency-insensitive model of computation, it should

be possible to synthesize automatically the interconnect between the hardware and

to provide at least some performance guarantees about the aggregate behavior of the

system.

SoCs designs also involve complex interactions between software and hardware.In

most systems, the hardware acts as an offload engine for software: when software

encounters an accelerated operation, it pushes some data to the hardware and awaits

a response. In the context of FPGA design, the roles of software and hardware

can sometimes be reversed: software acts as an assistant to the FPGA, performing

complex operations that would be difficult to implement in hardware. However, in

both cases, the interaction between hardware and software can be naturally framed

in terms of latency-insensitive channels. Couching hardware-software communication

in terms of latency-insensitive channels simplifies the co-design problem as many of

188

the tedious and error-prone portions of the hardware-software communication process

can be automatically synthesized.

189

Bibliography

[1] Michael Adler, Kermin Fleming, Angshuman Parashar, Michael Pellauer, and

Joel S. Emer. LEAP Scratchpads: Automatic Memory and Cache Management

For Reconfigurable Logic. In FPGA, pages 25-28, 2011.

[2] Sameh W. Asaad, Ralph Bellofatto, Bernard Brezzo, Chuck Haymes, Mohit

Kapur, Benjamin D. Parker, Thomas Roewer, Proshanta Saha, Todd Takken,

and Jos6 A. Tierno. A cycle-accurate, cycle-reproducible multi-fpga system for

accelerating multi-core processor simulation. In FPGA, pages 153-162, 2012.

[3] Jonathan Babb, Russell Tessier, Matthew Dahl, Silvina Hanono, David M. Hoki,

and Anant Agarwal. Logic Emulation With Virtual Wires. IEEE Trans. on CAD

of Integrated Circuits and Systems, 16(6):609-626, 1997.

[4] Bluespec Inc. http://www.bluespec.com.

[5] B.W. Kernighan and Shen Lin. An Efficient Hueristic Procedure for Partitioning

Graphs. In Bell Systems Technical Journal, pages 291-307, 1970.

[6] Luca P. Carloni, Kenneth L. McMillan, Alexander Saldanha, and Alberto L.

Sangiovanni-Vincentelli. A methodology for correct-by-construction latency in-

sensitive design. In ICCAD, pages 309-315, 1999.

[7] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli.

Theory of latency-insensitive design. IEEE Trans. on CAD of Integrated Circuits

and Systems, 20(9):1059-1076, 2001.

190

[8] Josep Carmona, Jordi Cortadella, Michael Kishinevsky, and Alexander Taubin.

Elastic circuits. IEEE Trans. on CAD of Integrated Circuits and Systems,

28(10):1437- 1455, 2009.

[9] Eric S. Chung, Michael Papamichael, Eriko Nurvitadhi, James C. Hoe, Ken

Mai, and Babak Falsafi. Protoflex: Towards scalable, full-system multiprocessor

simulations using fpgas. TRETS, 2(2), 2009.

[10] Jordi Cortadella, Michael Kishinevsky, and Bill Grundmann. Synthesis of syn-

chronous elastic architectures. In DAC, pages 657-662, 2006.

[11] Jordi Cortadella, Marc Galceran Ons, and Michael Kishinevsky. Elastic systems.

In MEMOCODE, pages 149-158, 2010.

[12] W. J. Dally and C. L. Seitz. Deadlock-Free Message Routing in Multiprocessor

Interconnection Networks. IEEE Trans. Comput., 36:547-553, May 1987.

[13] Nirav Dave, Man Cheuk Ng, Michael Pellauer, and Arvind. A design flow based

on modular refinement. In Formal Methods and Models for Codesign (MEM-

OCODE), 2010 8th IEEE/ACM International Conference on, pages 11 -20, Jul.

2010.

[14] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.K. Luk, S. Manne, S. Mukherjee,

H. Patil, S. Wallace, N. Binkert, R. Espasa, and T. Juan. Asim: A performance

model framework. IEEE Computer, 2002.

[15] Ettus Research USRP2. http://www.ettus.com/products.

[16] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX

Annual Technical Conference, FR EENIX Track, pages 41-46, 2005.

[17] K. Fleming, Chun-Chieh Lin, N. Dave, Arvind, G. Raghavan, and J. Hicks.

H.264 Decoder: A Case Study in Multiple Design Points. In Formal Methods and

Models for Co-Design, 2008. MEMOCODE 2008. 6th ACM/IEEE International

Conference on, pages 165 -174, Jun. 2008.

191

[18] Kermin Fleming, Myron King, Man Cheuk Ng, Asif Khan, and Muralidaran

Vijayaraghavan. High-throughput Pipelined Mergesort. In MEMOCODE, pages

155-158, 2008.

[19] Davy Genbrugge, Stijn Eyerman, and Lieven Eeckhout. Interval simulation:

Raising the level of abstraction in architectural simulation. In HPCA, pages

1-12, 2010.

[20] The GNURadio Software Radio. http://gnuradio.org/trac.

[21] Shyamnath Gollakota and Dina Katabi. ZigZag decoding: Combating hidden

terminals in wireless networks. In SIGCOMM'08, Seattle, WA, 2008.

[22] R. L. Graham. Bounds on multiprocessing timing anomalies. SIAM JOURNAL

ON APPLIED MATHEMATICS, 17(2):416-429, 1969.

[23] ITU-T Video Coding Experts Group. Draft ITU-T Recommendation and Final

Draft International Standard of Joint Video Specification, May, 2003.

[24] Daniel Halperin, Thomas Anderson, and David Wetherall. Taking the Sting out

of Carrier Sense: Interference Cancellation for Wireless LANs. In MobiCom '08,

San Francisco, CA, 2008.

[25] Tyler S. Harris, Zhuo Ruan, and David A. Penry. Techniques for li-bdn synthesis

for hybrid microarchitectural simulation. In ICCD, pages 253-260, 2011.

[26] http://www.cadence.com/products/sd/palladium-series/pages/default.

aspx. "Cadence Palladium".

[27] http://www.eda.org/itc/scemi.pdf. Standard Co-Emulation Modelling Interface

(SCE-MI): Reference Manual.

[28] http://www.nallatech.com. Nallatech ACP module.

[29] "http: //www .synopsys. com/Systems/FPGABasedPrototyping/pages/

certify. aspx". "Synopsys Certify".

192

[30] IEEE Standard 802.11: Wireless LAN Medium Access Control and Physical

Layer Specifications, 1999.

[31] Kyle Jamieson. The SoftPHY Abstraction: from Packets to Symbols in Wireless

Network Design. PhD thesis, MIT, Cambridge, MA, 2008.

[32] Kyle Jamieson and Hari Balakrishnan. PPR: Partial Packet Recovery for Wire-

less Networks. In SIGCOMM'07.

[33] G. Kahn. The semantics of a simple language for parallel programming. In

Information Processing, pages 471-475, 1974.

[34] Sachin Katti, Dina Katabi, Hari Balakrishnan, and Muriel Medard. Symbol-

Level Network Coding for Wireless Mesh Networks. In SIGCOMM'08, Seattle,

WA, 2008.

[35] Asif Khan, Muralidaran Vijayaraghavan, Silas Boyd-Wickizer, and Arvind. Fast

and cycle-accurate modeling of a multicore processor. In ISPASS, pages 178-187,

2012.

[36] Michel A. Kinsy, Myong Hyon Cho, Tina Wem, G. Edward Suh, Marten van Dijk,

and Srinivas Devadas. Application-aware Deadlock-free Oblivious Routing. In

ISCA, pages 208- 219, 2009.

[37] S. Y. Liao. Towards a new standard for system level design. In Proceedings of

the Eighth International Workshop on Hardware/Software Codesign, pages 2-7,

San Diego, CA, May 2000.

[38] Jason E. Miller, Harshad Kasture, George Kurian, Charles Gruenwald III,

Nathan Beckmann, Christopher Celio, Jonathan Eastep, and Anant Agarwal.

Graphite: A Distributed Parallel Simulator for Multicores. In HPCA, pages

1-12, 2010.

[39] M. C. Ng, K. Fleming, M. Vutukuru, S. Gross, Arvind, and H. Balakrishnan.

Airblue: A System for Cross-Layer Wireless Protocol Development. In ANCS'10,

San Diego, CA, 2010.

193

[40] Man Cheuk Ng, Muralidaran Vijayaraghavan, Gopal Raghavan, Nirav Dave,

Jamey Hicks, and Arvind. From WiFI to WiMAX: Techniques for IP Reuse

Across Different OFDM Protocols. In MEMOCODE'07.

[41] A. Parashar, M. Adler, M. Pellauer, and J. Emer. Hybrid CPU/FPGA Per-

formance Models. In WARP '08: The 3rd Workshop on Architectural Research

Prototyping, 2008.

[42] Angshuman Parashar, Michael Adler, Kermin Fleming, Michael Pellauer, and

Joel Emer. LEAP: A Virtual Platform Architecture for FPGAs. In CARL '10:

The 1st Workshop on the Intersections of Computer Architecture and Reconfig-

urable Logic, 2010.

[43] M. Pellauer, M. Adler, D. Chiou, and J. Emer. Soft Connections: Addressing

the Hardware-Design Modularity Problem. In DAC '09: Proceedings of the 46th

Annual Design Automation Conference, pages 276-281. ACM, 2009.

[44] M. Pellauer, M. Adler, M. Kinsy, A. Parashar, and J. Emer. HAsim: FPGA-

Based High-Detail Multicore Simulation Using Time-Division Multiplexing. In

The 17th International Symposium on High-Performance Computer Architecture

(HPCA), February 2011.

[45] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer. A-Ports: An

Efficient Abstraction for Cycle-Accurate Performance Models on FPGAs. In

Proceedings of the International Symposium on Field-Programmable Gate Arrays

(FPGA), February 2008.

[46] M. Pellauer, M. Vijayaraghavan, M. Adler, Arvind, and J. Emer. Quick Per-

formance Models Quickly: Closely-Coupled Timing-Directed Simulation on FP-

GAs. In IEEE International Symposium on Performance Analysis of Systems

and Software (ISPASS), April 2008.

194

[47] Michael Pellauer, Michael Adler, Michel A. Kinsy, Angshuman Parashar, and

Joel S. Emer. HAsim: FPGA-based high-detail multicore simulation using time-

division multiplexing. In HPCA, 2011.

[48] Michael I. Pellauer. HAsim: Cycle-accurate Multicore Performance Models on

FPGAs. PhD thesis, MIT, Cambridge, MA, 2010.

[49] Erez Perelman, Greg Haimerly, Michael Van Biesbrouck, Timothy Sherwood, and

Brad Calder. Using simpoint for accurate and efficient simulation. In SIGMET-

RICS, pages 318-319, 2003.

[50] J. Perry, H. Balakrishnan, and D. Shah. Rateless spinal codes. In HotNets-X,

October 2011.

[51] Hariharan Rahul, Nate Kushman, Dina Katabi, Charles Sodini, and Farinaz

Edalat. Learning to share: narrowband-friendly wideband networks. In SIG-

COMM'08, Seattle, WA, USA, 2008.

[52] Iain E.G. Richardson. H.264 and MPEG-4 Video Compression. John Willey &

Sons, 2003.

[53] Graham Schelle, Jamison D. Collins, Ethan Schuchman, Perry H. Wang, Xiang

Zou, Gautham N. Chinya, Ralf Plate, Thorsten Mattner, Franz Olbrich, Per

Hannarlund, Ronak Singhal, Jim Brayton, Sebastian Steibl, and Hong Wang.

Intel Nehalem Processor Core Made FPGA Synthesizable. In FPGA, pages 3-12,

2010.

[54] Charles Selvidge, Anant Agarwal, Matthew Dahl, and Jonathan Babb. TIERS:

Topology Independent Pipelined Routing and Scheduling for Virtual Wire Com-

pilation. In FPGA, pages 25-31, 1995.

[55] Todd Snyder. Multiple FPGA Partitioning Tools and Their Performance. Private

communication, 2011.

195

[56] T. Stricker and T. Cross. Global Address Space, Non-Uniform Bandwidth: A

Memory System Perform ance Characterization of Parallel Systems. In Proceed-

ings of the 3rd IEEE Symposium on High-Performance Computer Architecture,

HPCA '97, 1997.

[57] Syed Suhaib and Deepak Mathaikutty and Sandeep Shukla. Dataflow Architec-

tures for GALS. Electron. Notes Theor. Comput. Sci., 200(1), February 2008.

[58] Kun Tan, Jiansong Zhang, Ji Fang, He Liu, Yusheng Ye, Shen Wang, Yong-

guang Zhang, Haitao Wu, Wei Wang, and Geoffrey M. Voelker. Sora: High

Performance Software Radio Using General Purpose Multi-core Processors. In

NSDI'09, Boston, MA, 2009.

[59] Russel Tessier. Multi-FPGA Systems: Logic Emulation. Reconfigurable Com-

puting, pages 637-669, 2008.

[60] Shunji Umetani, Mutsunori Yagiura, and Toshihide Ibaraki. One-dimensional

cutting stock problem to minimize the number of different patterns. European

Journal of Operational Research, 146(2):388-402, April 2003.

[61] Muralidran Vijayaraghavan and Arvind. Bounded Dataflow Networks and

Latency-Insensitive Circuits. In MEMOCODE'09, Cambridge, MA, 2009.

[62] VP8 Open Video Codec. http://www.webmproject.org/.

[63] Mythili Vutukuru. Physical Layer-Aware Wireless Link Layer Protocols. PhD

thesis, MIT, Cambridge, MA, 2010.

[64] Mythili Vutukuru, Hari Balakrishnan, and Kyle Jamieson. Cross-Layer Wireless

Bit Rate Adaptation. In SIGCOMM'09.

[65] Mythili Vutukuru, Kyle Jamieson, and Hari Balakrishnan. Harnessing Exposed

Terminals in Wireless Networks. In NSDI'08.

[66] Rice university wireless open-access research platform (WARP). http: //warp.

rice. edu.

196

[67] Nam Sung Woo and Jaeseok Kim. An Efficient Method of Partitioning Circuits

for Multiple-FPGA Implementation. In Proceedings of the 30th international

Design Automation Conference, DAC '93, pages 202-207, New York, NY, USA,

1993. ACM.

[68] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsafi, and James C. Hoe.

Statistical Sampling of Microarchitecture Simulation. ACM Trans. Model. Com-

put. Simul., 16(3):197-224, 2006.

[69] Xilinx, Inc. Multi-Port Memory Controller. 2011.

[70] Xilinx University Program XUPV5-LX11 OT Development System. http: //www.

xilinx. com/univ/xupv5-lxll0t .htm.

[71] Rumi Zahir. Design Issues in Telecommunications SoCs. Private communication,

2012.

197

